1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28 
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/mmu_context.h>
35 #include <asm/tlbflush.h>
36 #include <asm/timer.h>
37 #include <asm/desc.h>
38 #include <asm/ldt.h>
39 
40 #include "perf_event.h"
41 
42 struct x86_pmu x86_pmu __read_mostly;
43 
44 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
45 	.enabled = 1,
46 };
47 
48 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
49 
50 u64 __read_mostly hw_cache_event_ids
51 				[PERF_COUNT_HW_CACHE_MAX]
52 				[PERF_COUNT_HW_CACHE_OP_MAX]
53 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
54 u64 __read_mostly hw_cache_extra_regs
55 				[PERF_COUNT_HW_CACHE_MAX]
56 				[PERF_COUNT_HW_CACHE_OP_MAX]
57 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
58 
59 /*
60  * Propagate event elapsed time into the generic event.
61  * Can only be executed on the CPU where the event is active.
62  * Returns the delta events processed.
63  */
x86_perf_event_update(struct perf_event * event)64 u64 x86_perf_event_update(struct perf_event *event)
65 {
66 	struct hw_perf_event *hwc = &event->hw;
67 	int shift = 64 - x86_pmu.cntval_bits;
68 	u64 prev_raw_count, new_raw_count;
69 	int idx = hwc->idx;
70 	s64 delta;
71 
72 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
73 		return 0;
74 
75 	/*
76 	 * Careful: an NMI might modify the previous event value.
77 	 *
78 	 * Our tactic to handle this is to first atomically read and
79 	 * exchange a new raw count - then add that new-prev delta
80 	 * count to the generic event atomically:
81 	 */
82 again:
83 	prev_raw_count = local64_read(&hwc->prev_count);
84 	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
85 
86 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
87 					new_raw_count) != prev_raw_count)
88 		goto again;
89 
90 	/*
91 	 * Now we have the new raw value and have updated the prev
92 	 * timestamp already. We can now calculate the elapsed delta
93 	 * (event-)time and add that to the generic event.
94 	 *
95 	 * Careful, not all hw sign-extends above the physical width
96 	 * of the count.
97 	 */
98 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
99 	delta >>= shift;
100 
101 	local64_add(delta, &event->count);
102 	local64_sub(delta, &hwc->period_left);
103 
104 	return new_raw_count;
105 }
106 
107 /*
108  * Find and validate any extra registers to set up.
109  */
x86_pmu_extra_regs(u64 config,struct perf_event * event)110 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
111 {
112 	struct hw_perf_event_extra *reg;
113 	struct extra_reg *er;
114 
115 	reg = &event->hw.extra_reg;
116 
117 	if (!x86_pmu.extra_regs)
118 		return 0;
119 
120 	for (er = x86_pmu.extra_regs; er->msr; er++) {
121 		if (er->event != (config & er->config_mask))
122 			continue;
123 		if (event->attr.config1 & ~er->valid_mask)
124 			return -EINVAL;
125 		/* Check if the extra msrs can be safely accessed*/
126 		if (!er->extra_msr_access)
127 			return -ENXIO;
128 
129 		reg->idx = er->idx;
130 		reg->config = event->attr.config1;
131 		reg->reg = er->msr;
132 		break;
133 	}
134 	return 0;
135 }
136 
137 static atomic_t active_events;
138 static atomic_t pmc_refcount;
139 static DEFINE_MUTEX(pmc_reserve_mutex);
140 
141 #ifdef CONFIG_X86_LOCAL_APIC
142 
reserve_pmc_hardware(void)143 static bool reserve_pmc_hardware(void)
144 {
145 	int i;
146 
147 	for (i = 0; i < x86_pmu.num_counters; i++) {
148 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
149 			goto perfctr_fail;
150 	}
151 
152 	for (i = 0; i < x86_pmu.num_counters; i++) {
153 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
154 			goto eventsel_fail;
155 	}
156 
157 	return true;
158 
159 eventsel_fail:
160 	for (i--; i >= 0; i--)
161 		release_evntsel_nmi(x86_pmu_config_addr(i));
162 
163 	i = x86_pmu.num_counters;
164 
165 perfctr_fail:
166 	for (i--; i >= 0; i--)
167 		release_perfctr_nmi(x86_pmu_event_addr(i));
168 
169 	return false;
170 }
171 
release_pmc_hardware(void)172 static void release_pmc_hardware(void)
173 {
174 	int i;
175 
176 	for (i = 0; i < x86_pmu.num_counters; i++) {
177 		release_perfctr_nmi(x86_pmu_event_addr(i));
178 		release_evntsel_nmi(x86_pmu_config_addr(i));
179 	}
180 }
181 
182 #else
183 
reserve_pmc_hardware(void)184 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)185 static void release_pmc_hardware(void) {}
186 
187 #endif
188 
check_hw_exists(void)189 static bool check_hw_exists(void)
190 {
191 	u64 val, val_fail, val_new= ~0;
192 	int i, reg, reg_fail, ret = 0;
193 	int bios_fail = 0;
194 	int reg_safe = -1;
195 
196 	/*
197 	 * Check to see if the BIOS enabled any of the counters, if so
198 	 * complain and bail.
199 	 */
200 	for (i = 0; i < x86_pmu.num_counters; i++) {
201 		reg = x86_pmu_config_addr(i);
202 		ret = rdmsrl_safe(reg, &val);
203 		if (ret)
204 			goto msr_fail;
205 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
206 			bios_fail = 1;
207 			val_fail = val;
208 			reg_fail = reg;
209 		} else {
210 			reg_safe = i;
211 		}
212 	}
213 
214 	if (x86_pmu.num_counters_fixed) {
215 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
216 		ret = rdmsrl_safe(reg, &val);
217 		if (ret)
218 			goto msr_fail;
219 		for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
220 			if (val & (0x03 << i*4)) {
221 				bios_fail = 1;
222 				val_fail = val;
223 				reg_fail = reg;
224 			}
225 		}
226 	}
227 
228 	/*
229 	 * If all the counters are enabled, the below test will always
230 	 * fail.  The tools will also become useless in this scenario.
231 	 * Just fail and disable the hardware counters.
232 	 */
233 
234 	if (reg_safe == -1) {
235 		reg = reg_safe;
236 		goto msr_fail;
237 	}
238 
239 	/*
240 	 * Read the current value, change it and read it back to see if it
241 	 * matches, this is needed to detect certain hardware emulators
242 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
243 	 */
244 	reg = x86_pmu_event_addr(reg_safe);
245 	if (rdmsrl_safe(reg, &val))
246 		goto msr_fail;
247 	val ^= 0xffffUL;
248 	ret = wrmsrl_safe(reg, val);
249 	ret |= rdmsrl_safe(reg, &val_new);
250 	if (ret || val != val_new)
251 		goto msr_fail;
252 
253 	/*
254 	 * We still allow the PMU driver to operate:
255 	 */
256 	if (bios_fail) {
257 		printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
258 		printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
259 	}
260 
261 	return true;
262 
263 msr_fail:
264 	printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
265 	printk("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
266 		boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
267 		reg, val_new);
268 
269 	return false;
270 }
271 
hw_perf_event_destroy(struct perf_event * event)272 static void hw_perf_event_destroy(struct perf_event *event)
273 {
274 	x86_release_hardware();
275 	atomic_dec(&active_events);
276 }
277 
hw_perf_lbr_event_destroy(struct perf_event * event)278 void hw_perf_lbr_event_destroy(struct perf_event *event)
279 {
280 	hw_perf_event_destroy(event);
281 
282 	/* undo the lbr/bts event accounting */
283 	x86_del_exclusive(x86_lbr_exclusive_lbr);
284 }
285 
x86_pmu_initialized(void)286 static inline int x86_pmu_initialized(void)
287 {
288 	return x86_pmu.handle_irq != NULL;
289 }
290 
291 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)292 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
293 {
294 	struct perf_event_attr *attr = &event->attr;
295 	unsigned int cache_type, cache_op, cache_result;
296 	u64 config, val;
297 
298 	config = attr->config;
299 
300 	cache_type = (config >>  0) & 0xff;
301 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
302 		return -EINVAL;
303 
304 	cache_op = (config >>  8) & 0xff;
305 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
306 		return -EINVAL;
307 
308 	cache_result = (config >> 16) & 0xff;
309 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
310 		return -EINVAL;
311 
312 	val = hw_cache_event_ids[cache_type][cache_op][cache_result];
313 
314 	if (val == 0)
315 		return -ENOENT;
316 
317 	if (val == -1)
318 		return -EINVAL;
319 
320 	hwc->config |= val;
321 	attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
322 	return x86_pmu_extra_regs(val, event);
323 }
324 
x86_reserve_hardware(void)325 int x86_reserve_hardware(void)
326 {
327 	int err = 0;
328 
329 	if (!atomic_inc_not_zero(&pmc_refcount)) {
330 		mutex_lock(&pmc_reserve_mutex);
331 		if (atomic_read(&pmc_refcount) == 0) {
332 			if (!reserve_pmc_hardware())
333 				err = -EBUSY;
334 			else
335 				reserve_ds_buffers();
336 		}
337 		if (!err)
338 			atomic_inc(&pmc_refcount);
339 		mutex_unlock(&pmc_reserve_mutex);
340 	}
341 
342 	return err;
343 }
344 
x86_release_hardware(void)345 void x86_release_hardware(void)
346 {
347 	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
348 		release_pmc_hardware();
349 		release_ds_buffers();
350 		mutex_unlock(&pmc_reserve_mutex);
351 	}
352 }
353 
354 /*
355  * Check if we can create event of a certain type (that no conflicting events
356  * are present).
357  */
x86_add_exclusive(unsigned int what)358 int x86_add_exclusive(unsigned int what)
359 {
360 	int i;
361 
362 	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
363 		mutex_lock(&pmc_reserve_mutex);
364 		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
365 			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
366 				goto fail_unlock;
367 		}
368 		atomic_inc(&x86_pmu.lbr_exclusive[what]);
369 		mutex_unlock(&pmc_reserve_mutex);
370 	}
371 
372 	atomic_inc(&active_events);
373 	return 0;
374 
375 fail_unlock:
376 	mutex_unlock(&pmc_reserve_mutex);
377 	return -EBUSY;
378 }
379 
x86_del_exclusive(unsigned int what)380 void x86_del_exclusive(unsigned int what)
381 {
382 	atomic_dec(&x86_pmu.lbr_exclusive[what]);
383 	atomic_dec(&active_events);
384 }
385 
x86_setup_perfctr(struct perf_event * event)386 int x86_setup_perfctr(struct perf_event *event)
387 {
388 	struct perf_event_attr *attr = &event->attr;
389 	struct hw_perf_event *hwc = &event->hw;
390 	u64 config;
391 
392 	if (!is_sampling_event(event)) {
393 		hwc->sample_period = x86_pmu.max_period;
394 		hwc->last_period = hwc->sample_period;
395 		local64_set(&hwc->period_left, hwc->sample_period);
396 	}
397 
398 	if (attr->type == PERF_TYPE_RAW)
399 		return x86_pmu_extra_regs(event->attr.config, event);
400 
401 	if (attr->type == PERF_TYPE_HW_CACHE)
402 		return set_ext_hw_attr(hwc, event);
403 
404 	if (attr->config >= x86_pmu.max_events)
405 		return -EINVAL;
406 
407 	/*
408 	 * The generic map:
409 	 */
410 	config = x86_pmu.event_map(attr->config);
411 
412 	if (config == 0)
413 		return -ENOENT;
414 
415 	if (config == -1LL)
416 		return -EINVAL;
417 
418 	/*
419 	 * Branch tracing:
420 	 */
421 	if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
422 	    !attr->freq && hwc->sample_period == 1) {
423 		/* BTS is not supported by this architecture. */
424 		if (!x86_pmu.bts_active)
425 			return -EOPNOTSUPP;
426 
427 		/* BTS is currently only allowed for user-mode. */
428 		if (!attr->exclude_kernel)
429 			return -EOPNOTSUPP;
430 
431 		/* disallow bts if conflicting events are present */
432 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
433 			return -EBUSY;
434 
435 		event->destroy = hw_perf_lbr_event_destroy;
436 	}
437 
438 	hwc->config |= config;
439 
440 	return 0;
441 }
442 
443 /*
444  * check that branch_sample_type is compatible with
445  * settings needed for precise_ip > 1 which implies
446  * using the LBR to capture ALL taken branches at the
447  * priv levels of the measurement
448  */
precise_br_compat(struct perf_event * event)449 static inline int precise_br_compat(struct perf_event *event)
450 {
451 	u64 m = event->attr.branch_sample_type;
452 	u64 b = 0;
453 
454 	/* must capture all branches */
455 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
456 		return 0;
457 
458 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
459 
460 	if (!event->attr.exclude_user)
461 		b |= PERF_SAMPLE_BRANCH_USER;
462 
463 	if (!event->attr.exclude_kernel)
464 		b |= PERF_SAMPLE_BRANCH_KERNEL;
465 
466 	/*
467 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
468 	 */
469 
470 	return m == b;
471 }
472 
x86_pmu_hw_config(struct perf_event * event)473 int x86_pmu_hw_config(struct perf_event *event)
474 {
475 	if (event->attr.precise_ip) {
476 		int precise = 0;
477 
478 		/* Support for constant skid */
479 		if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
480 			precise++;
481 
482 			/* Support for IP fixup */
483 			if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
484 				precise++;
485 		}
486 
487 		if (event->attr.precise_ip > precise)
488 			return -EOPNOTSUPP;
489 	}
490 	/*
491 	 * check that PEBS LBR correction does not conflict with
492 	 * whatever the user is asking with attr->branch_sample_type
493 	 */
494 	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
495 		u64 *br_type = &event->attr.branch_sample_type;
496 
497 		if (has_branch_stack(event)) {
498 			if (!precise_br_compat(event))
499 				return -EOPNOTSUPP;
500 
501 			/* branch_sample_type is compatible */
502 
503 		} else {
504 			/*
505 			 * user did not specify  branch_sample_type
506 			 *
507 			 * For PEBS fixups, we capture all
508 			 * the branches at the priv level of the
509 			 * event.
510 			 */
511 			*br_type = PERF_SAMPLE_BRANCH_ANY;
512 
513 			if (!event->attr.exclude_user)
514 				*br_type |= PERF_SAMPLE_BRANCH_USER;
515 
516 			if (!event->attr.exclude_kernel)
517 				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
518 		}
519 	}
520 
521 	if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
522 		event->attach_state |= PERF_ATTACH_TASK_DATA;
523 
524 	/*
525 	 * Generate PMC IRQs:
526 	 * (keep 'enabled' bit clear for now)
527 	 */
528 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
529 
530 	/*
531 	 * Count user and OS events unless requested not to
532 	 */
533 	if (!event->attr.exclude_user)
534 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
535 	if (!event->attr.exclude_kernel)
536 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
537 
538 	if (event->attr.type == PERF_TYPE_RAW)
539 		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
540 
541 	if (event->attr.sample_period && x86_pmu.limit_period) {
542 		if (x86_pmu.limit_period(event, event->attr.sample_period) >
543 				event->attr.sample_period)
544 			return -EINVAL;
545 	}
546 
547 	return x86_setup_perfctr(event);
548 }
549 
550 /*
551  * Setup the hardware configuration for a given attr_type
552  */
__x86_pmu_event_init(struct perf_event * event)553 static int __x86_pmu_event_init(struct perf_event *event)
554 {
555 	int err;
556 
557 	if (!x86_pmu_initialized())
558 		return -ENODEV;
559 
560 	err = x86_reserve_hardware();
561 	if (err)
562 		return err;
563 
564 	atomic_inc(&active_events);
565 	event->destroy = hw_perf_event_destroy;
566 
567 	event->hw.idx = -1;
568 	event->hw.last_cpu = -1;
569 	event->hw.last_tag = ~0ULL;
570 
571 	/* mark unused */
572 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
573 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
574 
575 	return x86_pmu.hw_config(event);
576 }
577 
x86_pmu_disable_all(void)578 void x86_pmu_disable_all(void)
579 {
580 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
581 	int idx;
582 
583 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
584 		u64 val;
585 
586 		if (!test_bit(idx, cpuc->active_mask))
587 			continue;
588 		rdmsrl(x86_pmu_config_addr(idx), val);
589 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
590 			continue;
591 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
592 		wrmsrl(x86_pmu_config_addr(idx), val);
593 	}
594 }
595 
596 /*
597  * There may be PMI landing after enabled=0. The PMI hitting could be before or
598  * after disable_all.
599  *
600  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
601  * It will not be re-enabled in the NMI handler again, because enabled=0. After
602  * handling the NMI, disable_all will be called, which will not change the
603  * state either. If PMI hits after disable_all, the PMU is already disabled
604  * before entering NMI handler. The NMI handler will not change the state
605  * either.
606  *
607  * So either situation is harmless.
608  */
x86_pmu_disable(struct pmu * pmu)609 static void x86_pmu_disable(struct pmu *pmu)
610 {
611 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
612 
613 	if (!x86_pmu_initialized())
614 		return;
615 
616 	if (!cpuc->enabled)
617 		return;
618 
619 	cpuc->n_added = 0;
620 	cpuc->enabled = 0;
621 	barrier();
622 
623 	x86_pmu.disable_all();
624 }
625 
x86_pmu_enable_all(int added)626 void x86_pmu_enable_all(int added)
627 {
628 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
629 	int idx;
630 
631 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
632 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
633 
634 		if (!test_bit(idx, cpuc->active_mask))
635 			continue;
636 
637 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
638 	}
639 }
640 
641 static struct pmu pmu;
642 
is_x86_event(struct perf_event * event)643 static inline int is_x86_event(struct perf_event *event)
644 {
645 	return event->pmu == &pmu;
646 }
647 
648 /*
649  * Event scheduler state:
650  *
651  * Assign events iterating over all events and counters, beginning
652  * with events with least weights first. Keep the current iterator
653  * state in struct sched_state.
654  */
655 struct sched_state {
656 	int	weight;
657 	int	event;		/* event index */
658 	int	counter;	/* counter index */
659 	int	unassigned;	/* number of events to be assigned left */
660 	int	nr_gp;		/* number of GP counters used */
661 	unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
662 };
663 
664 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
665 #define	SCHED_STATES_MAX	2
666 
667 struct perf_sched {
668 	int			max_weight;
669 	int			max_events;
670 	int			max_gp;
671 	int			saved_states;
672 	struct event_constraint	**constraints;
673 	struct sched_state	state;
674 	struct sched_state	saved[SCHED_STATES_MAX];
675 };
676 
677 /*
678  * Initialize interator that runs through all events and counters.
679  */
perf_sched_init(struct perf_sched * sched,struct event_constraint ** constraints,int num,int wmin,int wmax,int gpmax)680 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
681 			    int num, int wmin, int wmax, int gpmax)
682 {
683 	int idx;
684 
685 	memset(sched, 0, sizeof(*sched));
686 	sched->max_events	= num;
687 	sched->max_weight	= wmax;
688 	sched->max_gp		= gpmax;
689 	sched->constraints	= constraints;
690 
691 	for (idx = 0; idx < num; idx++) {
692 		if (constraints[idx]->weight == wmin)
693 			break;
694 	}
695 
696 	sched->state.event	= idx;		/* start with min weight */
697 	sched->state.weight	= wmin;
698 	sched->state.unassigned	= num;
699 }
700 
perf_sched_save_state(struct perf_sched * sched)701 static void perf_sched_save_state(struct perf_sched *sched)
702 {
703 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
704 		return;
705 
706 	sched->saved[sched->saved_states] = sched->state;
707 	sched->saved_states++;
708 }
709 
perf_sched_restore_state(struct perf_sched * sched)710 static bool perf_sched_restore_state(struct perf_sched *sched)
711 {
712 	if (!sched->saved_states)
713 		return false;
714 
715 	sched->saved_states--;
716 	sched->state = sched->saved[sched->saved_states];
717 
718 	/* continue with next counter: */
719 	clear_bit(sched->state.counter++, sched->state.used);
720 
721 	return true;
722 }
723 
724 /*
725  * Select a counter for the current event to schedule. Return true on
726  * success.
727  */
__perf_sched_find_counter(struct perf_sched * sched)728 static bool __perf_sched_find_counter(struct perf_sched *sched)
729 {
730 	struct event_constraint *c;
731 	int idx;
732 
733 	if (!sched->state.unassigned)
734 		return false;
735 
736 	if (sched->state.event >= sched->max_events)
737 		return false;
738 
739 	c = sched->constraints[sched->state.event];
740 	/* Prefer fixed purpose counters */
741 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
742 		idx = INTEL_PMC_IDX_FIXED;
743 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
744 			if (!__test_and_set_bit(idx, sched->state.used))
745 				goto done;
746 		}
747 	}
748 
749 	/* Grab the first unused counter starting with idx */
750 	idx = sched->state.counter;
751 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
752 		if (!__test_and_set_bit(idx, sched->state.used)) {
753 			if (sched->state.nr_gp++ >= sched->max_gp)
754 				return false;
755 
756 			goto done;
757 		}
758 	}
759 
760 	return false;
761 
762 done:
763 	sched->state.counter = idx;
764 
765 	if (c->overlap)
766 		perf_sched_save_state(sched);
767 
768 	return true;
769 }
770 
perf_sched_find_counter(struct perf_sched * sched)771 static bool perf_sched_find_counter(struct perf_sched *sched)
772 {
773 	while (!__perf_sched_find_counter(sched)) {
774 		if (!perf_sched_restore_state(sched))
775 			return false;
776 	}
777 
778 	return true;
779 }
780 
781 /*
782  * Go through all unassigned events and find the next one to schedule.
783  * Take events with the least weight first. Return true on success.
784  */
perf_sched_next_event(struct perf_sched * sched)785 static bool perf_sched_next_event(struct perf_sched *sched)
786 {
787 	struct event_constraint *c;
788 
789 	if (!sched->state.unassigned || !--sched->state.unassigned)
790 		return false;
791 
792 	do {
793 		/* next event */
794 		sched->state.event++;
795 		if (sched->state.event >= sched->max_events) {
796 			/* next weight */
797 			sched->state.event = 0;
798 			sched->state.weight++;
799 			if (sched->state.weight > sched->max_weight)
800 				return false;
801 		}
802 		c = sched->constraints[sched->state.event];
803 	} while (c->weight != sched->state.weight);
804 
805 	sched->state.counter = 0;	/* start with first counter */
806 
807 	return true;
808 }
809 
810 /*
811  * Assign a counter for each event.
812  */
perf_assign_events(struct event_constraint ** constraints,int n,int wmin,int wmax,int gpmax,int * assign)813 int perf_assign_events(struct event_constraint **constraints, int n,
814 			int wmin, int wmax, int gpmax, int *assign)
815 {
816 	struct perf_sched sched;
817 
818 	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
819 
820 	do {
821 		if (!perf_sched_find_counter(&sched))
822 			break;	/* failed */
823 		if (assign)
824 			assign[sched.state.event] = sched.state.counter;
825 	} while (perf_sched_next_event(&sched));
826 
827 	return sched.state.unassigned;
828 }
829 EXPORT_SYMBOL_GPL(perf_assign_events);
830 
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)831 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
832 {
833 	struct event_constraint *c;
834 	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
835 	struct perf_event *e;
836 	int i, wmin, wmax, unsched = 0;
837 	struct hw_perf_event *hwc;
838 
839 	bitmap_zero(used_mask, X86_PMC_IDX_MAX);
840 
841 	if (x86_pmu.start_scheduling)
842 		x86_pmu.start_scheduling(cpuc);
843 
844 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
845 		cpuc->event_constraint[i] = NULL;
846 		c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
847 		cpuc->event_constraint[i] = c;
848 
849 		wmin = min(wmin, c->weight);
850 		wmax = max(wmax, c->weight);
851 	}
852 
853 	/*
854 	 * fastpath, try to reuse previous register
855 	 */
856 	for (i = 0; i < n; i++) {
857 		hwc = &cpuc->event_list[i]->hw;
858 		c = cpuc->event_constraint[i];
859 
860 		/* never assigned */
861 		if (hwc->idx == -1)
862 			break;
863 
864 		/* constraint still honored */
865 		if (!test_bit(hwc->idx, c->idxmsk))
866 			break;
867 
868 		/* not already used */
869 		if (test_bit(hwc->idx, used_mask))
870 			break;
871 
872 		__set_bit(hwc->idx, used_mask);
873 		if (assign)
874 			assign[i] = hwc->idx;
875 	}
876 
877 	/* slow path */
878 	if (i != n) {
879 		int gpmax = x86_pmu.num_counters;
880 
881 		/*
882 		 * Do not allow scheduling of more than half the available
883 		 * generic counters.
884 		 *
885 		 * This helps avoid counter starvation of sibling thread by
886 		 * ensuring at most half the counters cannot be in exclusive
887 		 * mode. There is no designated counters for the limits. Any
888 		 * N/2 counters can be used. This helps with events with
889 		 * specific counter constraints.
890 		 */
891 		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
892 		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
893 			gpmax /= 2;
894 
895 		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
896 					     wmax, gpmax, assign);
897 	}
898 
899 	/*
900 	 * In case of success (unsched = 0), mark events as committed,
901 	 * so we do not put_constraint() in case new events are added
902 	 * and fail to be scheduled
903 	 *
904 	 * We invoke the lower level commit callback to lock the resource
905 	 *
906 	 * We do not need to do all of this in case we are called to
907 	 * validate an event group (assign == NULL)
908 	 */
909 	if (!unsched && assign) {
910 		for (i = 0; i < n; i++) {
911 			e = cpuc->event_list[i];
912 			e->hw.flags |= PERF_X86_EVENT_COMMITTED;
913 			if (x86_pmu.commit_scheduling)
914 				x86_pmu.commit_scheduling(cpuc, i, assign[i]);
915 		}
916 	} else {
917 		for (i = 0; i < n; i++) {
918 			e = cpuc->event_list[i];
919 			/*
920 			 * do not put_constraint() on comitted events,
921 			 * because they are good to go
922 			 */
923 			if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
924 				continue;
925 
926 			/*
927 			 * release events that failed scheduling
928 			 */
929 			if (x86_pmu.put_event_constraints)
930 				x86_pmu.put_event_constraints(cpuc, e);
931 		}
932 	}
933 
934 	if (x86_pmu.stop_scheduling)
935 		x86_pmu.stop_scheduling(cpuc);
936 
937 	return unsched ? -EINVAL : 0;
938 }
939 
940 /*
941  * dogrp: true if must collect siblings events (group)
942  * returns total number of events and error code
943  */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)944 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
945 {
946 	struct perf_event *event;
947 	int n, max_count;
948 
949 	max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
950 
951 	/* current number of events already accepted */
952 	n = cpuc->n_events;
953 
954 	if (is_x86_event(leader)) {
955 		if (n >= max_count)
956 			return -EINVAL;
957 		cpuc->event_list[n] = leader;
958 		n++;
959 	}
960 	if (!dogrp)
961 		return n;
962 
963 	list_for_each_entry(event, &leader->sibling_list, group_entry) {
964 		if (!is_x86_event(event) ||
965 		    event->state <= PERF_EVENT_STATE_OFF)
966 			continue;
967 
968 		if (n >= max_count)
969 			return -EINVAL;
970 
971 		cpuc->event_list[n] = event;
972 		n++;
973 	}
974 	return n;
975 }
976 
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)977 static inline void x86_assign_hw_event(struct perf_event *event,
978 				struct cpu_hw_events *cpuc, int i)
979 {
980 	struct hw_perf_event *hwc = &event->hw;
981 
982 	hwc->idx = cpuc->assign[i];
983 	hwc->last_cpu = smp_processor_id();
984 	hwc->last_tag = ++cpuc->tags[i];
985 
986 	if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
987 		hwc->config_base = 0;
988 		hwc->event_base	= 0;
989 	} else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
990 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
991 		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
992 		hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
993 	} else {
994 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
995 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
996 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
997 	}
998 }
999 
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)1000 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1001 					struct cpu_hw_events *cpuc,
1002 					int i)
1003 {
1004 	return hwc->idx == cpuc->assign[i] &&
1005 		hwc->last_cpu == smp_processor_id() &&
1006 		hwc->last_tag == cpuc->tags[i];
1007 }
1008 
1009 static void x86_pmu_start(struct perf_event *event, int flags);
1010 
x86_pmu_enable(struct pmu * pmu)1011 static void x86_pmu_enable(struct pmu *pmu)
1012 {
1013 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1014 	struct perf_event *event;
1015 	struct hw_perf_event *hwc;
1016 	int i, added = cpuc->n_added;
1017 
1018 	if (!x86_pmu_initialized())
1019 		return;
1020 
1021 	if (cpuc->enabled)
1022 		return;
1023 
1024 	if (cpuc->n_added) {
1025 		int n_running = cpuc->n_events - cpuc->n_added;
1026 		/*
1027 		 * apply assignment obtained either from
1028 		 * hw_perf_group_sched_in() or x86_pmu_enable()
1029 		 *
1030 		 * step1: save events moving to new counters
1031 		 */
1032 		for (i = 0; i < n_running; i++) {
1033 			event = cpuc->event_list[i];
1034 			hwc = &event->hw;
1035 
1036 			/*
1037 			 * we can avoid reprogramming counter if:
1038 			 * - assigned same counter as last time
1039 			 * - running on same CPU as last time
1040 			 * - no other event has used the counter since
1041 			 */
1042 			if (hwc->idx == -1 ||
1043 			    match_prev_assignment(hwc, cpuc, i))
1044 				continue;
1045 
1046 			/*
1047 			 * Ensure we don't accidentally enable a stopped
1048 			 * counter simply because we rescheduled.
1049 			 */
1050 			if (hwc->state & PERF_HES_STOPPED)
1051 				hwc->state |= PERF_HES_ARCH;
1052 
1053 			x86_pmu_stop(event, PERF_EF_UPDATE);
1054 		}
1055 
1056 		/*
1057 		 * step2: reprogram moved events into new counters
1058 		 */
1059 		for (i = 0; i < cpuc->n_events; i++) {
1060 			event = cpuc->event_list[i];
1061 			hwc = &event->hw;
1062 
1063 			if (!match_prev_assignment(hwc, cpuc, i))
1064 				x86_assign_hw_event(event, cpuc, i);
1065 			else if (i < n_running)
1066 				continue;
1067 
1068 			if (hwc->state & PERF_HES_ARCH)
1069 				continue;
1070 
1071 			x86_pmu_start(event, PERF_EF_RELOAD);
1072 		}
1073 		cpuc->n_added = 0;
1074 		perf_events_lapic_init();
1075 	}
1076 
1077 	cpuc->enabled = 1;
1078 	barrier();
1079 
1080 	x86_pmu.enable_all(added);
1081 }
1082 
1083 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1084 
1085 /*
1086  * Set the next IRQ period, based on the hwc->period_left value.
1087  * To be called with the event disabled in hw:
1088  */
x86_perf_event_set_period(struct perf_event * event)1089 int x86_perf_event_set_period(struct perf_event *event)
1090 {
1091 	struct hw_perf_event *hwc = &event->hw;
1092 	s64 left = local64_read(&hwc->period_left);
1093 	s64 period = hwc->sample_period;
1094 	int ret = 0, idx = hwc->idx;
1095 
1096 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
1097 		return 0;
1098 
1099 	/*
1100 	 * If we are way outside a reasonable range then just skip forward:
1101 	 */
1102 	if (unlikely(left <= -period)) {
1103 		left = period;
1104 		local64_set(&hwc->period_left, left);
1105 		hwc->last_period = period;
1106 		ret = 1;
1107 	}
1108 
1109 	if (unlikely(left <= 0)) {
1110 		left += period;
1111 		local64_set(&hwc->period_left, left);
1112 		hwc->last_period = period;
1113 		ret = 1;
1114 	}
1115 	/*
1116 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1117 	 */
1118 	if (unlikely(left < 2))
1119 		left = 2;
1120 
1121 	if (left > x86_pmu.max_period)
1122 		left = x86_pmu.max_period;
1123 
1124 	if (x86_pmu.limit_period)
1125 		left = x86_pmu.limit_period(event, left);
1126 
1127 	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1128 
1129 	if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1130 	    local64_read(&hwc->prev_count) != (u64)-left) {
1131 		/*
1132 		 * The hw event starts counting from this event offset,
1133 		 * mark it to be able to extra future deltas:
1134 		 */
1135 		local64_set(&hwc->prev_count, (u64)-left);
1136 
1137 		wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1138 	}
1139 
1140 	/*
1141 	 * Due to erratum on certan cpu we need
1142 	 * a second write to be sure the register
1143 	 * is updated properly
1144 	 */
1145 	if (x86_pmu.perfctr_second_write) {
1146 		wrmsrl(hwc->event_base,
1147 			(u64)(-left) & x86_pmu.cntval_mask);
1148 	}
1149 
1150 	perf_event_update_userpage(event);
1151 
1152 	return ret;
1153 }
1154 
x86_pmu_enable_event(struct perf_event * event)1155 void x86_pmu_enable_event(struct perf_event *event)
1156 {
1157 	if (__this_cpu_read(cpu_hw_events.enabled))
1158 		__x86_pmu_enable_event(&event->hw,
1159 				       ARCH_PERFMON_EVENTSEL_ENABLE);
1160 }
1161 
1162 /*
1163  * Add a single event to the PMU.
1164  *
1165  * The event is added to the group of enabled events
1166  * but only if it can be scehduled with existing events.
1167  */
x86_pmu_add(struct perf_event * event,int flags)1168 static int x86_pmu_add(struct perf_event *event, int flags)
1169 {
1170 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1171 	struct hw_perf_event *hwc;
1172 	int assign[X86_PMC_IDX_MAX];
1173 	int n, n0, ret;
1174 
1175 	hwc = &event->hw;
1176 
1177 	n0 = cpuc->n_events;
1178 	ret = n = collect_events(cpuc, event, false);
1179 	if (ret < 0)
1180 		goto out;
1181 
1182 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1183 	if (!(flags & PERF_EF_START))
1184 		hwc->state |= PERF_HES_ARCH;
1185 
1186 	/*
1187 	 * If group events scheduling transaction was started,
1188 	 * skip the schedulability test here, it will be performed
1189 	 * at commit time (->commit_txn) as a whole.
1190 	 */
1191 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1192 		goto done_collect;
1193 
1194 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1195 	if (ret)
1196 		goto out;
1197 	/*
1198 	 * copy new assignment, now we know it is possible
1199 	 * will be used by hw_perf_enable()
1200 	 */
1201 	memcpy(cpuc->assign, assign, n*sizeof(int));
1202 
1203 done_collect:
1204 	/*
1205 	 * Commit the collect_events() state. See x86_pmu_del() and
1206 	 * x86_pmu_*_txn().
1207 	 */
1208 	cpuc->n_events = n;
1209 	cpuc->n_added += n - n0;
1210 	cpuc->n_txn += n - n0;
1211 
1212 	ret = 0;
1213 out:
1214 	return ret;
1215 }
1216 
x86_pmu_start(struct perf_event * event,int flags)1217 static void x86_pmu_start(struct perf_event *event, int flags)
1218 {
1219 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1220 	int idx = event->hw.idx;
1221 
1222 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1223 		return;
1224 
1225 	if (WARN_ON_ONCE(idx == -1))
1226 		return;
1227 
1228 	if (flags & PERF_EF_RELOAD) {
1229 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1230 		x86_perf_event_set_period(event);
1231 	}
1232 
1233 	event->hw.state = 0;
1234 
1235 	cpuc->events[idx] = event;
1236 	__set_bit(idx, cpuc->active_mask);
1237 	__set_bit(idx, cpuc->running);
1238 	x86_pmu.enable(event);
1239 	perf_event_update_userpage(event);
1240 }
1241 
perf_event_print_debug(void)1242 void perf_event_print_debug(void)
1243 {
1244 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1245 	u64 pebs, debugctl;
1246 	struct cpu_hw_events *cpuc;
1247 	unsigned long flags;
1248 	int cpu, idx;
1249 
1250 	if (!x86_pmu.num_counters)
1251 		return;
1252 
1253 	local_irq_save(flags);
1254 
1255 	cpu = smp_processor_id();
1256 	cpuc = &per_cpu(cpu_hw_events, cpu);
1257 
1258 	if (x86_pmu.version >= 2) {
1259 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1260 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1261 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1262 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1263 
1264 		pr_info("\n");
1265 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1266 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1267 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1268 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1269 		if (x86_pmu.pebs_constraints) {
1270 			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1271 			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1272 		}
1273 		if (x86_pmu.lbr_nr) {
1274 			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1275 			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1276 		}
1277 	}
1278 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1279 
1280 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1281 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1282 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1283 
1284 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1285 
1286 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1287 			cpu, idx, pmc_ctrl);
1288 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1289 			cpu, idx, pmc_count);
1290 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1291 			cpu, idx, prev_left);
1292 	}
1293 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1294 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1295 
1296 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1297 			cpu, idx, pmc_count);
1298 	}
1299 	local_irq_restore(flags);
1300 }
1301 
x86_pmu_stop(struct perf_event * event,int flags)1302 void x86_pmu_stop(struct perf_event *event, int flags)
1303 {
1304 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1305 	struct hw_perf_event *hwc = &event->hw;
1306 
1307 	if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1308 		x86_pmu.disable(event);
1309 		cpuc->events[hwc->idx] = NULL;
1310 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1311 		hwc->state |= PERF_HES_STOPPED;
1312 	}
1313 
1314 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1315 		/*
1316 		 * Drain the remaining delta count out of a event
1317 		 * that we are disabling:
1318 		 */
1319 		x86_perf_event_update(event);
1320 		hwc->state |= PERF_HES_UPTODATE;
1321 	}
1322 }
1323 
x86_pmu_del(struct perf_event * event,int flags)1324 static void x86_pmu_del(struct perf_event *event, int flags)
1325 {
1326 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1327 	int i;
1328 
1329 	/*
1330 	 * event is descheduled
1331 	 */
1332 	event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1333 
1334 	/*
1335 	 * If we're called during a txn, we don't need to do anything.
1336 	 * The events never got scheduled and ->cancel_txn will truncate
1337 	 * the event_list.
1338 	 *
1339 	 * XXX assumes any ->del() called during a TXN will only be on
1340 	 * an event added during that same TXN.
1341 	 */
1342 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1343 		return;
1344 
1345 	/*
1346 	 * Not a TXN, therefore cleanup properly.
1347 	 */
1348 	x86_pmu_stop(event, PERF_EF_UPDATE);
1349 
1350 	for (i = 0; i < cpuc->n_events; i++) {
1351 		if (event == cpuc->event_list[i])
1352 			break;
1353 	}
1354 
1355 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1356 		return;
1357 
1358 	/* If we have a newly added event; make sure to decrease n_added. */
1359 	if (i >= cpuc->n_events - cpuc->n_added)
1360 		--cpuc->n_added;
1361 
1362 	if (x86_pmu.put_event_constraints)
1363 		x86_pmu.put_event_constraints(cpuc, event);
1364 
1365 	/* Delete the array entry. */
1366 	while (++i < cpuc->n_events) {
1367 		cpuc->event_list[i-1] = cpuc->event_list[i];
1368 		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1369 	}
1370 	--cpuc->n_events;
1371 
1372 	perf_event_update_userpage(event);
1373 }
1374 
x86_pmu_handle_irq(struct pt_regs * regs)1375 int x86_pmu_handle_irq(struct pt_regs *regs)
1376 {
1377 	struct perf_sample_data data;
1378 	struct cpu_hw_events *cpuc;
1379 	struct perf_event *event;
1380 	int idx, handled = 0;
1381 	u64 val;
1382 
1383 	cpuc = this_cpu_ptr(&cpu_hw_events);
1384 
1385 	/*
1386 	 * Some chipsets need to unmask the LVTPC in a particular spot
1387 	 * inside the nmi handler.  As a result, the unmasking was pushed
1388 	 * into all the nmi handlers.
1389 	 *
1390 	 * This generic handler doesn't seem to have any issues where the
1391 	 * unmasking occurs so it was left at the top.
1392 	 */
1393 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1394 
1395 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1396 		if (!test_bit(idx, cpuc->active_mask)) {
1397 			/*
1398 			 * Though we deactivated the counter some cpus
1399 			 * might still deliver spurious interrupts still
1400 			 * in flight. Catch them:
1401 			 */
1402 			if (__test_and_clear_bit(idx, cpuc->running))
1403 				handled++;
1404 			continue;
1405 		}
1406 
1407 		event = cpuc->events[idx];
1408 
1409 		val = x86_perf_event_update(event);
1410 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1411 			continue;
1412 
1413 		/*
1414 		 * event overflow
1415 		 */
1416 		handled++;
1417 		perf_sample_data_init(&data, 0, event->hw.last_period);
1418 
1419 		if (!x86_perf_event_set_period(event))
1420 			continue;
1421 
1422 		if (perf_event_overflow(event, &data, regs))
1423 			x86_pmu_stop(event, 0);
1424 	}
1425 
1426 	if (handled)
1427 		inc_irq_stat(apic_perf_irqs);
1428 
1429 	return handled;
1430 }
1431 
perf_events_lapic_init(void)1432 void perf_events_lapic_init(void)
1433 {
1434 	if (!x86_pmu.apic || !x86_pmu_initialized())
1435 		return;
1436 
1437 	/*
1438 	 * Always use NMI for PMU
1439 	 */
1440 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1441 }
1442 
1443 static int
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1444 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1445 {
1446 	u64 start_clock;
1447 	u64 finish_clock;
1448 	int ret;
1449 
1450 	/*
1451 	 * All PMUs/events that share this PMI handler should make sure to
1452 	 * increment active_events for their events.
1453 	 */
1454 	if (!atomic_read(&active_events))
1455 		return NMI_DONE;
1456 
1457 	start_clock = sched_clock();
1458 	ret = x86_pmu.handle_irq(regs);
1459 	finish_clock = sched_clock();
1460 
1461 	perf_sample_event_took(finish_clock - start_clock);
1462 
1463 	return ret;
1464 }
1465 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1466 
1467 struct event_constraint emptyconstraint;
1468 struct event_constraint unconstrained;
1469 
1470 static int
x86_pmu_notifier(struct notifier_block * self,unsigned long action,void * hcpu)1471 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1472 {
1473 	unsigned int cpu = (long)hcpu;
1474 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1475 	int i, ret = NOTIFY_OK;
1476 
1477 	switch (action & ~CPU_TASKS_FROZEN) {
1478 	case CPU_UP_PREPARE:
1479 		for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1480 			cpuc->kfree_on_online[i] = NULL;
1481 		if (x86_pmu.cpu_prepare)
1482 			ret = x86_pmu.cpu_prepare(cpu);
1483 		break;
1484 
1485 	case CPU_STARTING:
1486 		if (x86_pmu.cpu_starting)
1487 			x86_pmu.cpu_starting(cpu);
1488 		break;
1489 
1490 	case CPU_ONLINE:
1491 		for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1492 			kfree(cpuc->kfree_on_online[i]);
1493 			cpuc->kfree_on_online[i] = NULL;
1494 		}
1495 		break;
1496 
1497 	case CPU_DYING:
1498 		if (x86_pmu.cpu_dying)
1499 			x86_pmu.cpu_dying(cpu);
1500 		break;
1501 
1502 	case CPU_UP_CANCELED:
1503 	case CPU_DEAD:
1504 		if (x86_pmu.cpu_dead)
1505 			x86_pmu.cpu_dead(cpu);
1506 		break;
1507 
1508 	default:
1509 		break;
1510 	}
1511 
1512 	return ret;
1513 }
1514 
pmu_check_apic(void)1515 static void __init pmu_check_apic(void)
1516 {
1517 	if (cpu_has_apic)
1518 		return;
1519 
1520 	x86_pmu.apic = 0;
1521 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1522 	pr_info("no hardware sampling interrupt available.\n");
1523 
1524 	/*
1525 	 * If we have a PMU initialized but no APIC
1526 	 * interrupts, we cannot sample hardware
1527 	 * events (user-space has to fall back and
1528 	 * sample via a hrtimer based software event):
1529 	 */
1530 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1531 
1532 }
1533 
1534 static struct attribute_group x86_pmu_format_group = {
1535 	.name = "format",
1536 	.attrs = NULL,
1537 };
1538 
1539 /*
1540  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1541  * out of events_attr attributes.
1542  */
filter_events(struct attribute ** attrs)1543 static void __init filter_events(struct attribute **attrs)
1544 {
1545 	struct device_attribute *d;
1546 	struct perf_pmu_events_attr *pmu_attr;
1547 	int i, j;
1548 
1549 	for (i = 0; attrs[i]; i++) {
1550 		d = (struct device_attribute *)attrs[i];
1551 		pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1552 		/* str trumps id */
1553 		if (pmu_attr->event_str)
1554 			continue;
1555 		if (x86_pmu.event_map(i))
1556 			continue;
1557 
1558 		for (j = i; attrs[j]; j++)
1559 			attrs[j] = attrs[j + 1];
1560 
1561 		/* Check the shifted attr. */
1562 		i--;
1563 	}
1564 }
1565 
1566 /* Merge two pointer arrays */
merge_attr(struct attribute ** a,struct attribute ** b)1567 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1568 {
1569 	struct attribute **new;
1570 	int j, i;
1571 
1572 	for (j = 0; a[j]; j++)
1573 		;
1574 	for (i = 0; b[i]; i++)
1575 		j++;
1576 	j++;
1577 
1578 	new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1579 	if (!new)
1580 		return NULL;
1581 
1582 	j = 0;
1583 	for (i = 0; a[i]; i++)
1584 		new[j++] = a[i];
1585 	for (i = 0; b[i]; i++)
1586 		new[j++] = b[i];
1587 	new[j] = NULL;
1588 
1589 	return new;
1590 }
1591 
events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1592 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1593 			  char *page)
1594 {
1595 	struct perf_pmu_events_attr *pmu_attr = \
1596 		container_of(attr, struct perf_pmu_events_attr, attr);
1597 	u64 config = x86_pmu.event_map(pmu_attr->id);
1598 
1599 	/* string trumps id */
1600 	if (pmu_attr->event_str)
1601 		return sprintf(page, "%s", pmu_attr->event_str);
1602 
1603 	return x86_pmu.events_sysfs_show(page, config);
1604 }
1605 
1606 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1607 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1608 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1609 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1610 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1611 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1612 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1613 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1614 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1615 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1616 
1617 static struct attribute *empty_attrs;
1618 
1619 static struct attribute *events_attr[] = {
1620 	EVENT_PTR(CPU_CYCLES),
1621 	EVENT_PTR(INSTRUCTIONS),
1622 	EVENT_PTR(CACHE_REFERENCES),
1623 	EVENT_PTR(CACHE_MISSES),
1624 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1625 	EVENT_PTR(BRANCH_MISSES),
1626 	EVENT_PTR(BUS_CYCLES),
1627 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1628 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1629 	EVENT_PTR(REF_CPU_CYCLES),
1630 	NULL,
1631 };
1632 
1633 static struct attribute_group x86_pmu_events_group = {
1634 	.name = "events",
1635 	.attrs = events_attr,
1636 };
1637 
x86_event_sysfs_show(char * page,u64 config,u64 event)1638 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1639 {
1640 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1641 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1642 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1643 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1644 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1645 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1646 	ssize_t ret;
1647 
1648 	/*
1649 	* We have whole page size to spend and just little data
1650 	* to write, so we can safely use sprintf.
1651 	*/
1652 	ret = sprintf(page, "event=0x%02llx", event);
1653 
1654 	if (umask)
1655 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1656 
1657 	if (edge)
1658 		ret += sprintf(page + ret, ",edge");
1659 
1660 	if (pc)
1661 		ret += sprintf(page + ret, ",pc");
1662 
1663 	if (any)
1664 		ret += sprintf(page + ret, ",any");
1665 
1666 	if (inv)
1667 		ret += sprintf(page + ret, ",inv");
1668 
1669 	if (cmask)
1670 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1671 
1672 	ret += sprintf(page + ret, "\n");
1673 
1674 	return ret;
1675 }
1676 
init_hw_perf_events(void)1677 static int __init init_hw_perf_events(void)
1678 {
1679 	struct x86_pmu_quirk *quirk;
1680 	int err;
1681 
1682 	pr_info("Performance Events: ");
1683 
1684 	switch (boot_cpu_data.x86_vendor) {
1685 	case X86_VENDOR_INTEL:
1686 		err = intel_pmu_init();
1687 		break;
1688 	case X86_VENDOR_AMD:
1689 		err = amd_pmu_init();
1690 		break;
1691 	default:
1692 		err = -ENOTSUPP;
1693 	}
1694 	if (err != 0) {
1695 		pr_cont("no PMU driver, software events only.\n");
1696 		return 0;
1697 	}
1698 
1699 	pmu_check_apic();
1700 
1701 	/* sanity check that the hardware exists or is emulated */
1702 	if (!check_hw_exists())
1703 		return 0;
1704 
1705 	pr_cont("%s PMU driver.\n", x86_pmu.name);
1706 
1707 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1708 
1709 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1710 		quirk->func();
1711 
1712 	if (!x86_pmu.intel_ctrl)
1713 		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1714 
1715 	perf_events_lapic_init();
1716 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1717 
1718 	unconstrained = (struct event_constraint)
1719 		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1720 				   0, x86_pmu.num_counters, 0, 0);
1721 
1722 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1723 
1724 	if (x86_pmu.event_attrs)
1725 		x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1726 
1727 	if (!x86_pmu.events_sysfs_show)
1728 		x86_pmu_events_group.attrs = &empty_attrs;
1729 	else
1730 		filter_events(x86_pmu_events_group.attrs);
1731 
1732 	if (x86_pmu.cpu_events) {
1733 		struct attribute **tmp;
1734 
1735 		tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1736 		if (!WARN_ON(!tmp))
1737 			x86_pmu_events_group.attrs = tmp;
1738 	}
1739 
1740 	pr_info("... version:                %d\n",     x86_pmu.version);
1741 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1742 	pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1743 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1744 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1745 	pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1746 	pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1747 
1748 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1749 	perf_cpu_notifier(x86_pmu_notifier);
1750 
1751 	return 0;
1752 }
1753 early_initcall(init_hw_perf_events);
1754 
x86_pmu_read(struct perf_event * event)1755 static inline void x86_pmu_read(struct perf_event *event)
1756 {
1757 	x86_perf_event_update(event);
1758 }
1759 
1760 /*
1761  * Start group events scheduling transaction
1762  * Set the flag to make pmu::enable() not perform the
1763  * schedulability test, it will be performed at commit time
1764  *
1765  * We only support PERF_PMU_TXN_ADD transactions. Save the
1766  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1767  * transactions.
1768  */
x86_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)1769 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1770 {
1771 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1772 
1773 	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
1774 
1775 	cpuc->txn_flags = txn_flags;
1776 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1777 		return;
1778 
1779 	perf_pmu_disable(pmu);
1780 	__this_cpu_write(cpu_hw_events.n_txn, 0);
1781 }
1782 
1783 /*
1784  * Stop group events scheduling transaction
1785  * Clear the flag and pmu::enable() will perform the
1786  * schedulability test.
1787  */
x86_pmu_cancel_txn(struct pmu * pmu)1788 static void x86_pmu_cancel_txn(struct pmu *pmu)
1789 {
1790 	unsigned int txn_flags;
1791 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1792 
1793 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1794 
1795 	txn_flags = cpuc->txn_flags;
1796 	cpuc->txn_flags = 0;
1797 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1798 		return;
1799 
1800 	/*
1801 	 * Truncate collected array by the number of events added in this
1802 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1803 	 */
1804 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1805 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1806 	perf_pmu_enable(pmu);
1807 }
1808 
1809 /*
1810  * Commit group events scheduling transaction
1811  * Perform the group schedulability test as a whole
1812  * Return 0 if success
1813  *
1814  * Does not cancel the transaction on failure; expects the caller to do this.
1815  */
x86_pmu_commit_txn(struct pmu * pmu)1816 static int x86_pmu_commit_txn(struct pmu *pmu)
1817 {
1818 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1819 	int assign[X86_PMC_IDX_MAX];
1820 	int n, ret;
1821 
1822 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1823 
1824 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1825 		cpuc->txn_flags = 0;
1826 		return 0;
1827 	}
1828 
1829 	n = cpuc->n_events;
1830 
1831 	if (!x86_pmu_initialized())
1832 		return -EAGAIN;
1833 
1834 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1835 	if (ret)
1836 		return ret;
1837 
1838 	/*
1839 	 * copy new assignment, now we know it is possible
1840 	 * will be used by hw_perf_enable()
1841 	 */
1842 	memcpy(cpuc->assign, assign, n*sizeof(int));
1843 
1844 	cpuc->txn_flags = 0;
1845 	perf_pmu_enable(pmu);
1846 	return 0;
1847 }
1848 /*
1849  * a fake_cpuc is used to validate event groups. Due to
1850  * the extra reg logic, we need to also allocate a fake
1851  * per_core and per_cpu structure. Otherwise, group events
1852  * using extra reg may conflict without the kernel being
1853  * able to catch this when the last event gets added to
1854  * the group.
1855  */
free_fake_cpuc(struct cpu_hw_events * cpuc)1856 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1857 {
1858 	kfree(cpuc->shared_regs);
1859 	kfree(cpuc);
1860 }
1861 
allocate_fake_cpuc(void)1862 static struct cpu_hw_events *allocate_fake_cpuc(void)
1863 {
1864 	struct cpu_hw_events *cpuc;
1865 	int cpu = raw_smp_processor_id();
1866 
1867 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1868 	if (!cpuc)
1869 		return ERR_PTR(-ENOMEM);
1870 
1871 	/* only needed, if we have extra_regs */
1872 	if (x86_pmu.extra_regs) {
1873 		cpuc->shared_regs = allocate_shared_regs(cpu);
1874 		if (!cpuc->shared_regs)
1875 			goto error;
1876 	}
1877 	cpuc->is_fake = 1;
1878 	return cpuc;
1879 error:
1880 	free_fake_cpuc(cpuc);
1881 	return ERR_PTR(-ENOMEM);
1882 }
1883 
1884 /*
1885  * validate that we can schedule this event
1886  */
validate_event(struct perf_event * event)1887 static int validate_event(struct perf_event *event)
1888 {
1889 	struct cpu_hw_events *fake_cpuc;
1890 	struct event_constraint *c;
1891 	int ret = 0;
1892 
1893 	fake_cpuc = allocate_fake_cpuc();
1894 	if (IS_ERR(fake_cpuc))
1895 		return PTR_ERR(fake_cpuc);
1896 
1897 	c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
1898 
1899 	if (!c || !c->weight)
1900 		ret = -EINVAL;
1901 
1902 	if (x86_pmu.put_event_constraints)
1903 		x86_pmu.put_event_constraints(fake_cpuc, event);
1904 
1905 	free_fake_cpuc(fake_cpuc);
1906 
1907 	return ret;
1908 }
1909 
1910 /*
1911  * validate a single event group
1912  *
1913  * validation include:
1914  *	- check events are compatible which each other
1915  *	- events do not compete for the same counter
1916  *	- number of events <= number of counters
1917  *
1918  * validation ensures the group can be loaded onto the
1919  * PMU if it was the only group available.
1920  */
validate_group(struct perf_event * event)1921 static int validate_group(struct perf_event *event)
1922 {
1923 	struct perf_event *leader = event->group_leader;
1924 	struct cpu_hw_events *fake_cpuc;
1925 	int ret = -EINVAL, n;
1926 
1927 	fake_cpuc = allocate_fake_cpuc();
1928 	if (IS_ERR(fake_cpuc))
1929 		return PTR_ERR(fake_cpuc);
1930 	/*
1931 	 * the event is not yet connected with its
1932 	 * siblings therefore we must first collect
1933 	 * existing siblings, then add the new event
1934 	 * before we can simulate the scheduling
1935 	 */
1936 	n = collect_events(fake_cpuc, leader, true);
1937 	if (n < 0)
1938 		goto out;
1939 
1940 	fake_cpuc->n_events = n;
1941 	n = collect_events(fake_cpuc, event, false);
1942 	if (n < 0)
1943 		goto out;
1944 
1945 	fake_cpuc->n_events = n;
1946 
1947 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1948 
1949 out:
1950 	free_fake_cpuc(fake_cpuc);
1951 	return ret;
1952 }
1953 
x86_pmu_event_init(struct perf_event * event)1954 static int x86_pmu_event_init(struct perf_event *event)
1955 {
1956 	struct pmu *tmp;
1957 	int err;
1958 
1959 	switch (event->attr.type) {
1960 	case PERF_TYPE_RAW:
1961 	case PERF_TYPE_HARDWARE:
1962 	case PERF_TYPE_HW_CACHE:
1963 		break;
1964 
1965 	default:
1966 		return -ENOENT;
1967 	}
1968 
1969 	err = __x86_pmu_event_init(event);
1970 	if (!err) {
1971 		/*
1972 		 * we temporarily connect event to its pmu
1973 		 * such that validate_group() can classify
1974 		 * it as an x86 event using is_x86_event()
1975 		 */
1976 		tmp = event->pmu;
1977 		event->pmu = &pmu;
1978 
1979 		if (event->group_leader != event)
1980 			err = validate_group(event);
1981 		else
1982 			err = validate_event(event);
1983 
1984 		event->pmu = tmp;
1985 	}
1986 	if (err) {
1987 		if (event->destroy)
1988 			event->destroy(event);
1989 	}
1990 
1991 	if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
1992 		event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
1993 
1994 	return err;
1995 }
1996 
refresh_pce(void * ignored)1997 static void refresh_pce(void *ignored)
1998 {
1999 	if (current->mm)
2000 		load_mm_cr4(current->mm);
2001 }
2002 
x86_pmu_event_mapped(struct perf_event * event)2003 static void x86_pmu_event_mapped(struct perf_event *event)
2004 {
2005 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2006 		return;
2007 
2008 	if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
2009 		on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2010 }
2011 
x86_pmu_event_unmapped(struct perf_event * event)2012 static void x86_pmu_event_unmapped(struct perf_event *event)
2013 {
2014 	if (!current->mm)
2015 		return;
2016 
2017 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2018 		return;
2019 
2020 	if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
2021 		on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2022 }
2023 
x86_pmu_event_idx(struct perf_event * event)2024 static int x86_pmu_event_idx(struct perf_event *event)
2025 {
2026 	int idx = event->hw.idx;
2027 
2028 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2029 		return 0;
2030 
2031 	if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2032 		idx -= INTEL_PMC_IDX_FIXED;
2033 		idx |= 1 << 30;
2034 	}
2035 
2036 	return idx + 1;
2037 }
2038 
get_attr_rdpmc(struct device * cdev,struct device_attribute * attr,char * buf)2039 static ssize_t get_attr_rdpmc(struct device *cdev,
2040 			      struct device_attribute *attr,
2041 			      char *buf)
2042 {
2043 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2044 }
2045 
set_attr_rdpmc(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)2046 static ssize_t set_attr_rdpmc(struct device *cdev,
2047 			      struct device_attribute *attr,
2048 			      const char *buf, size_t count)
2049 {
2050 	unsigned long val;
2051 	ssize_t ret;
2052 
2053 	ret = kstrtoul(buf, 0, &val);
2054 	if (ret)
2055 		return ret;
2056 
2057 	if (val > 2)
2058 		return -EINVAL;
2059 
2060 	if (x86_pmu.attr_rdpmc_broken)
2061 		return -ENOTSUPP;
2062 
2063 	if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2064 		/*
2065 		 * Changing into or out of always available, aka
2066 		 * perf-event-bypassing mode.  This path is extremely slow,
2067 		 * but only root can trigger it, so it's okay.
2068 		 */
2069 		if (val == 2)
2070 			static_key_slow_inc(&rdpmc_always_available);
2071 		else
2072 			static_key_slow_dec(&rdpmc_always_available);
2073 		on_each_cpu(refresh_pce, NULL, 1);
2074 	}
2075 
2076 	x86_pmu.attr_rdpmc = val;
2077 
2078 	return count;
2079 }
2080 
2081 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2082 
2083 static struct attribute *x86_pmu_attrs[] = {
2084 	&dev_attr_rdpmc.attr,
2085 	NULL,
2086 };
2087 
2088 static struct attribute_group x86_pmu_attr_group = {
2089 	.attrs = x86_pmu_attrs,
2090 };
2091 
2092 static const struct attribute_group *x86_pmu_attr_groups[] = {
2093 	&x86_pmu_attr_group,
2094 	&x86_pmu_format_group,
2095 	&x86_pmu_events_group,
2096 	NULL,
2097 };
2098 
x86_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)2099 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2100 {
2101 	if (x86_pmu.sched_task)
2102 		x86_pmu.sched_task(ctx, sched_in);
2103 }
2104 
perf_check_microcode(void)2105 void perf_check_microcode(void)
2106 {
2107 	if (x86_pmu.check_microcode)
2108 		x86_pmu.check_microcode();
2109 }
2110 EXPORT_SYMBOL_GPL(perf_check_microcode);
2111 
2112 static struct pmu pmu = {
2113 	.pmu_enable		= x86_pmu_enable,
2114 	.pmu_disable		= x86_pmu_disable,
2115 
2116 	.attr_groups		= x86_pmu_attr_groups,
2117 
2118 	.event_init		= x86_pmu_event_init,
2119 
2120 	.event_mapped		= x86_pmu_event_mapped,
2121 	.event_unmapped		= x86_pmu_event_unmapped,
2122 
2123 	.add			= x86_pmu_add,
2124 	.del			= x86_pmu_del,
2125 	.start			= x86_pmu_start,
2126 	.stop			= x86_pmu_stop,
2127 	.read			= x86_pmu_read,
2128 
2129 	.start_txn		= x86_pmu_start_txn,
2130 	.cancel_txn		= x86_pmu_cancel_txn,
2131 	.commit_txn		= x86_pmu_commit_txn,
2132 
2133 	.event_idx		= x86_pmu_event_idx,
2134 	.sched_task		= x86_pmu_sched_task,
2135 	.task_ctx_size          = sizeof(struct x86_perf_task_context),
2136 };
2137 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)2138 void arch_perf_update_userpage(struct perf_event *event,
2139 			       struct perf_event_mmap_page *userpg, u64 now)
2140 {
2141 	struct cyc2ns_data *data;
2142 
2143 	userpg->cap_user_time = 0;
2144 	userpg->cap_user_time_zero = 0;
2145 	userpg->cap_user_rdpmc =
2146 		!!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2147 	userpg->pmc_width = x86_pmu.cntval_bits;
2148 
2149 	if (!sched_clock_stable())
2150 		return;
2151 
2152 	data = cyc2ns_read_begin();
2153 
2154 	/*
2155 	 * Internal timekeeping for enabled/running/stopped times
2156 	 * is always in the local_clock domain.
2157 	 */
2158 	userpg->cap_user_time = 1;
2159 	userpg->time_mult = data->cyc2ns_mul;
2160 	userpg->time_shift = data->cyc2ns_shift;
2161 	userpg->time_offset = data->cyc2ns_offset - now;
2162 
2163 	/*
2164 	 * cap_user_time_zero doesn't make sense when we're using a different
2165 	 * time base for the records.
2166 	 */
2167 	if (event->clock == &local_clock) {
2168 		userpg->cap_user_time_zero = 1;
2169 		userpg->time_zero = data->cyc2ns_offset;
2170 	}
2171 
2172 	cyc2ns_read_end(data);
2173 }
2174 
2175 /*
2176  * callchain support
2177  */
2178 
backtrace_stack(void * data,char * name)2179 static int backtrace_stack(void *data, char *name)
2180 {
2181 	return 0;
2182 }
2183 
backtrace_address(void * data,unsigned long addr,int reliable)2184 static void backtrace_address(void *data, unsigned long addr, int reliable)
2185 {
2186 	struct perf_callchain_entry *entry = data;
2187 
2188 	perf_callchain_store(entry, addr);
2189 }
2190 
2191 static const struct stacktrace_ops backtrace_ops = {
2192 	.stack			= backtrace_stack,
2193 	.address		= backtrace_address,
2194 	.walk_stack		= print_context_stack_bp,
2195 };
2196 
2197 void
perf_callchain_kernel(struct perf_callchain_entry * entry,struct pt_regs * regs)2198 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
2199 {
2200 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2201 		/* TODO: We don't support guest os callchain now */
2202 		return;
2203 	}
2204 
2205 	perf_callchain_store(entry, regs->ip);
2206 
2207 	dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
2208 }
2209 
2210 static inline int
valid_user_frame(const void __user * fp,unsigned long size)2211 valid_user_frame(const void __user *fp, unsigned long size)
2212 {
2213 	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2214 }
2215 
get_segment_base(unsigned int segment)2216 static unsigned long get_segment_base(unsigned int segment)
2217 {
2218 	struct desc_struct *desc;
2219 	int idx = segment >> 3;
2220 
2221 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2222 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2223 		struct ldt_struct *ldt;
2224 
2225 		if (idx > LDT_ENTRIES)
2226 			return 0;
2227 
2228 		/* IRQs are off, so this synchronizes with smp_store_release */
2229 		ldt = lockless_dereference(current->active_mm->context.ldt);
2230 		if (!ldt || idx > ldt->size)
2231 			return 0;
2232 
2233 		desc = &ldt->entries[idx];
2234 #else
2235 		return 0;
2236 #endif
2237 	} else {
2238 		if (idx > GDT_ENTRIES)
2239 			return 0;
2240 
2241 		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2242 	}
2243 
2244 	return get_desc_base(desc);
2245 }
2246 
2247 #ifdef CONFIG_IA32_EMULATION
2248 
2249 #include <asm/compat.h>
2250 
2251 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry * entry)2252 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2253 {
2254 	/* 32-bit process in 64-bit kernel. */
2255 	unsigned long ss_base, cs_base;
2256 	struct stack_frame_ia32 frame;
2257 	const void __user *fp;
2258 
2259 	if (!test_thread_flag(TIF_IA32))
2260 		return 0;
2261 
2262 	cs_base = get_segment_base(regs->cs);
2263 	ss_base = get_segment_base(regs->ss);
2264 
2265 	fp = compat_ptr(ss_base + regs->bp);
2266 	while (entry->nr < PERF_MAX_STACK_DEPTH) {
2267 		unsigned long bytes;
2268 		frame.next_frame     = 0;
2269 		frame.return_address = 0;
2270 
2271 		bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2272 		if (bytes != 0)
2273 			break;
2274 
2275 		if (!valid_user_frame(fp, sizeof(frame)))
2276 			break;
2277 
2278 		perf_callchain_store(entry, cs_base + frame.return_address);
2279 		fp = compat_ptr(ss_base + frame.next_frame);
2280 	}
2281 	return 1;
2282 }
2283 #else
2284 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry * entry)2285 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2286 {
2287     return 0;
2288 }
2289 #endif
2290 
2291 void
perf_callchain_user(struct perf_callchain_entry * entry,struct pt_regs * regs)2292 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
2293 {
2294 	struct stack_frame frame;
2295 	const void __user *fp;
2296 
2297 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2298 		/* TODO: We don't support guest os callchain now */
2299 		return;
2300 	}
2301 
2302 	/*
2303 	 * We don't know what to do with VM86 stacks.. ignore them for now.
2304 	 */
2305 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2306 		return;
2307 
2308 	fp = (void __user *)regs->bp;
2309 
2310 	perf_callchain_store(entry, regs->ip);
2311 
2312 	if (!current->mm)
2313 		return;
2314 
2315 	if (perf_callchain_user32(regs, entry))
2316 		return;
2317 
2318 	while (entry->nr < PERF_MAX_STACK_DEPTH) {
2319 		unsigned long bytes;
2320 		frame.next_frame	     = NULL;
2321 		frame.return_address = 0;
2322 
2323 		bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2324 		if (bytes != 0)
2325 			break;
2326 
2327 		if (!valid_user_frame(fp, sizeof(frame)))
2328 			break;
2329 
2330 		perf_callchain_store(entry, frame.return_address);
2331 		fp = frame.next_frame;
2332 	}
2333 }
2334 
2335 /*
2336  * Deal with code segment offsets for the various execution modes:
2337  *
2338  *   VM86 - the good olde 16 bit days, where the linear address is
2339  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2340  *
2341  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2342  *          to figure out what the 32bit base address is.
2343  *
2344  *    X32 - has TIF_X32 set, but is running in x86_64
2345  *
2346  * X86_64 - CS,DS,SS,ES are all zero based.
2347  */
code_segment_base(struct pt_regs * regs)2348 static unsigned long code_segment_base(struct pt_regs *regs)
2349 {
2350 	/*
2351 	 * For IA32 we look at the GDT/LDT segment base to convert the
2352 	 * effective IP to a linear address.
2353 	 */
2354 
2355 #ifdef CONFIG_X86_32
2356 	/*
2357 	 * If we are in VM86 mode, add the segment offset to convert to a
2358 	 * linear address.
2359 	 */
2360 	if (regs->flags & X86_VM_MASK)
2361 		return 0x10 * regs->cs;
2362 
2363 	if (user_mode(regs) && regs->cs != __USER_CS)
2364 		return get_segment_base(regs->cs);
2365 #else
2366 	if (user_mode(regs) && !user_64bit_mode(regs) &&
2367 	    regs->cs != __USER32_CS)
2368 		return get_segment_base(regs->cs);
2369 #endif
2370 	return 0;
2371 }
2372 
perf_instruction_pointer(struct pt_regs * regs)2373 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2374 {
2375 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2376 		return perf_guest_cbs->get_guest_ip();
2377 
2378 	return regs->ip + code_segment_base(regs);
2379 }
2380 
perf_misc_flags(struct pt_regs * regs)2381 unsigned long perf_misc_flags(struct pt_regs *regs)
2382 {
2383 	int misc = 0;
2384 
2385 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2386 		if (perf_guest_cbs->is_user_mode())
2387 			misc |= PERF_RECORD_MISC_GUEST_USER;
2388 		else
2389 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2390 	} else {
2391 		if (user_mode(regs))
2392 			misc |= PERF_RECORD_MISC_USER;
2393 		else
2394 			misc |= PERF_RECORD_MISC_KERNEL;
2395 	}
2396 
2397 	if (regs->flags & PERF_EFLAGS_EXACT)
2398 		misc |= PERF_RECORD_MISC_EXACT_IP;
2399 
2400 	return misc;
2401 }
2402 
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)2403 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2404 {
2405 	cap->version		= x86_pmu.version;
2406 	cap->num_counters_gp	= x86_pmu.num_counters;
2407 	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
2408 	cap->bit_width_gp	= x86_pmu.cntval_bits;
2409 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
2410 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
2411 	cap->events_mask_len	= x86_pmu.events_mask_len;
2412 }
2413 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2414