1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28 
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/mmu_context.h>
35 #include <asm/tlbflush.h>
36 #include <asm/timer.h>
37 #include <asm/desc.h>
38 #include <asm/ldt.h>
39 
40 #include "perf_event.h"
41 
42 struct x86_pmu x86_pmu __read_mostly;
43 
44 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
45 	.enabled = 1,
46 };
47 
48 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
49 
50 u64 __read_mostly hw_cache_event_ids
51 				[PERF_COUNT_HW_CACHE_MAX]
52 				[PERF_COUNT_HW_CACHE_OP_MAX]
53 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
54 u64 __read_mostly hw_cache_extra_regs
55 				[PERF_COUNT_HW_CACHE_MAX]
56 				[PERF_COUNT_HW_CACHE_OP_MAX]
57 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
58 
59 /*
60  * Propagate event elapsed time into the generic event.
61  * Can only be executed on the CPU where the event is active.
62  * Returns the delta events processed.
63  */
x86_perf_event_update(struct perf_event * event)64 u64 x86_perf_event_update(struct perf_event *event)
65 {
66 	struct hw_perf_event *hwc = &event->hw;
67 	int shift = 64 - x86_pmu.cntval_bits;
68 	u64 prev_raw_count, new_raw_count;
69 	int idx = hwc->idx;
70 	s64 delta;
71 
72 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
73 		return 0;
74 
75 	/*
76 	 * Careful: an NMI might modify the previous event value.
77 	 *
78 	 * Our tactic to handle this is to first atomically read and
79 	 * exchange a new raw count - then add that new-prev delta
80 	 * count to the generic event atomically:
81 	 */
82 again:
83 	prev_raw_count = local64_read(&hwc->prev_count);
84 	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
85 
86 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
87 					new_raw_count) != prev_raw_count)
88 		goto again;
89 
90 	/*
91 	 * Now we have the new raw value and have updated the prev
92 	 * timestamp already. We can now calculate the elapsed delta
93 	 * (event-)time and add that to the generic event.
94 	 *
95 	 * Careful, not all hw sign-extends above the physical width
96 	 * of the count.
97 	 */
98 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
99 	delta >>= shift;
100 
101 	local64_add(delta, &event->count);
102 	local64_sub(delta, &hwc->period_left);
103 
104 	return new_raw_count;
105 }
106 
107 /*
108  * Find and validate any extra registers to set up.
109  */
x86_pmu_extra_regs(u64 config,struct perf_event * event)110 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
111 {
112 	struct hw_perf_event_extra *reg;
113 	struct extra_reg *er;
114 
115 	reg = &event->hw.extra_reg;
116 
117 	if (!x86_pmu.extra_regs)
118 		return 0;
119 
120 	for (er = x86_pmu.extra_regs; er->msr; er++) {
121 		if (er->event != (config & er->config_mask))
122 			continue;
123 		if (event->attr.config1 & ~er->valid_mask)
124 			return -EINVAL;
125 		/* Check if the extra msrs can be safely accessed*/
126 		if (!er->extra_msr_access)
127 			return -ENXIO;
128 
129 		reg->idx = er->idx;
130 		reg->config = event->attr.config1;
131 		reg->reg = er->msr;
132 		break;
133 	}
134 	return 0;
135 }
136 
137 static atomic_t active_events;
138 static DEFINE_MUTEX(pmc_reserve_mutex);
139 
140 #ifdef CONFIG_X86_LOCAL_APIC
141 
reserve_pmc_hardware(void)142 static bool reserve_pmc_hardware(void)
143 {
144 	int i;
145 
146 	for (i = 0; i < x86_pmu.num_counters; i++) {
147 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
148 			goto perfctr_fail;
149 	}
150 
151 	for (i = 0; i < x86_pmu.num_counters; i++) {
152 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
153 			goto eventsel_fail;
154 	}
155 
156 	return true;
157 
158 eventsel_fail:
159 	for (i--; i >= 0; i--)
160 		release_evntsel_nmi(x86_pmu_config_addr(i));
161 
162 	i = x86_pmu.num_counters;
163 
164 perfctr_fail:
165 	for (i--; i >= 0; i--)
166 		release_perfctr_nmi(x86_pmu_event_addr(i));
167 
168 	return false;
169 }
170 
release_pmc_hardware(void)171 static void release_pmc_hardware(void)
172 {
173 	int i;
174 
175 	for (i = 0; i < x86_pmu.num_counters; i++) {
176 		release_perfctr_nmi(x86_pmu_event_addr(i));
177 		release_evntsel_nmi(x86_pmu_config_addr(i));
178 	}
179 }
180 
181 #else
182 
reserve_pmc_hardware(void)183 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)184 static void release_pmc_hardware(void) {}
185 
186 #endif
187 
check_hw_exists(void)188 static bool check_hw_exists(void)
189 {
190 	u64 val, val_fail, val_new= ~0;
191 	int i, reg, reg_fail, ret = 0;
192 	int bios_fail = 0;
193 	int reg_safe = -1;
194 
195 	/*
196 	 * Check to see if the BIOS enabled any of the counters, if so
197 	 * complain and bail.
198 	 */
199 	for (i = 0; i < x86_pmu.num_counters; i++) {
200 		reg = x86_pmu_config_addr(i);
201 		ret = rdmsrl_safe(reg, &val);
202 		if (ret)
203 			goto msr_fail;
204 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
205 			bios_fail = 1;
206 			val_fail = val;
207 			reg_fail = reg;
208 		} else {
209 			reg_safe = i;
210 		}
211 	}
212 
213 	if (x86_pmu.num_counters_fixed) {
214 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
215 		ret = rdmsrl_safe(reg, &val);
216 		if (ret)
217 			goto msr_fail;
218 		for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
219 			if (val & (0x03 << i*4)) {
220 				bios_fail = 1;
221 				val_fail = val;
222 				reg_fail = reg;
223 			}
224 		}
225 	}
226 
227 	/*
228 	 * If all the counters are enabled, the below test will always
229 	 * fail.  The tools will also become useless in this scenario.
230 	 * Just fail and disable the hardware counters.
231 	 */
232 
233 	if (reg_safe == -1) {
234 		reg = reg_safe;
235 		goto msr_fail;
236 	}
237 
238 	/*
239 	 * Read the current value, change it and read it back to see if it
240 	 * matches, this is needed to detect certain hardware emulators
241 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
242 	 */
243 	reg = x86_pmu_event_addr(reg_safe);
244 	if (rdmsrl_safe(reg, &val))
245 		goto msr_fail;
246 	val ^= 0xffffUL;
247 	ret = wrmsrl_safe(reg, val);
248 	ret |= rdmsrl_safe(reg, &val_new);
249 	if (ret || val != val_new)
250 		goto msr_fail;
251 
252 	/*
253 	 * We still allow the PMU driver to operate:
254 	 */
255 	if (bios_fail) {
256 		printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
257 		printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
258 	}
259 
260 	return true;
261 
262 msr_fail:
263 	printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
264 	printk("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
265 		boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
266 		reg, val_new);
267 
268 	return false;
269 }
270 
hw_perf_event_destroy(struct perf_event * event)271 static void hw_perf_event_destroy(struct perf_event *event)
272 {
273 	x86_release_hardware();
274 }
275 
hw_perf_lbr_event_destroy(struct perf_event * event)276 void hw_perf_lbr_event_destroy(struct perf_event *event)
277 {
278 	hw_perf_event_destroy(event);
279 
280 	/* undo the lbr/bts event accounting */
281 	x86_del_exclusive(x86_lbr_exclusive_lbr);
282 }
283 
x86_pmu_initialized(void)284 static inline int x86_pmu_initialized(void)
285 {
286 	return x86_pmu.handle_irq != NULL;
287 }
288 
289 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)290 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
291 {
292 	struct perf_event_attr *attr = &event->attr;
293 	unsigned int cache_type, cache_op, cache_result;
294 	u64 config, val;
295 
296 	config = attr->config;
297 
298 	cache_type = (config >>  0) & 0xff;
299 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
300 		return -EINVAL;
301 
302 	cache_op = (config >>  8) & 0xff;
303 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
304 		return -EINVAL;
305 
306 	cache_result = (config >> 16) & 0xff;
307 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
308 		return -EINVAL;
309 
310 	val = hw_cache_event_ids[cache_type][cache_op][cache_result];
311 
312 	if (val == 0)
313 		return -ENOENT;
314 
315 	if (val == -1)
316 		return -EINVAL;
317 
318 	hwc->config |= val;
319 	attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
320 	return x86_pmu_extra_regs(val, event);
321 }
322 
x86_reserve_hardware(void)323 int x86_reserve_hardware(void)
324 {
325 	int err = 0;
326 
327 	if (!atomic_inc_not_zero(&active_events)) {
328 		mutex_lock(&pmc_reserve_mutex);
329 		if (atomic_read(&active_events) == 0) {
330 			if (!reserve_pmc_hardware())
331 				err = -EBUSY;
332 			else
333 				reserve_ds_buffers();
334 		}
335 		if (!err)
336 			atomic_inc(&active_events);
337 		mutex_unlock(&pmc_reserve_mutex);
338 	}
339 
340 	return err;
341 }
342 
x86_release_hardware(void)343 void x86_release_hardware(void)
344 {
345 	if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
346 		release_pmc_hardware();
347 		release_ds_buffers();
348 		mutex_unlock(&pmc_reserve_mutex);
349 	}
350 }
351 
352 /*
353  * Check if we can create event of a certain type (that no conflicting events
354  * are present).
355  */
x86_add_exclusive(unsigned int what)356 int x86_add_exclusive(unsigned int what)
357 {
358 	int ret = -EBUSY, i;
359 
360 	if (atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what]))
361 		return 0;
362 
363 	mutex_lock(&pmc_reserve_mutex);
364 	for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
365 		if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
366 			goto out;
367 	}
368 
369 	atomic_inc(&x86_pmu.lbr_exclusive[what]);
370 	ret = 0;
371 
372 out:
373 	mutex_unlock(&pmc_reserve_mutex);
374 	return ret;
375 }
376 
x86_del_exclusive(unsigned int what)377 void x86_del_exclusive(unsigned int what)
378 {
379 	atomic_dec(&x86_pmu.lbr_exclusive[what]);
380 }
381 
x86_setup_perfctr(struct perf_event * event)382 int x86_setup_perfctr(struct perf_event *event)
383 {
384 	struct perf_event_attr *attr = &event->attr;
385 	struct hw_perf_event *hwc = &event->hw;
386 	u64 config;
387 
388 	if (!is_sampling_event(event)) {
389 		hwc->sample_period = x86_pmu.max_period;
390 		hwc->last_period = hwc->sample_period;
391 		local64_set(&hwc->period_left, hwc->sample_period);
392 	}
393 
394 	if (attr->type == PERF_TYPE_RAW)
395 		return x86_pmu_extra_regs(event->attr.config, event);
396 
397 	if (attr->type == PERF_TYPE_HW_CACHE)
398 		return set_ext_hw_attr(hwc, event);
399 
400 	if (attr->config >= x86_pmu.max_events)
401 		return -EINVAL;
402 
403 	/*
404 	 * The generic map:
405 	 */
406 	config = x86_pmu.event_map(attr->config);
407 
408 	if (config == 0)
409 		return -ENOENT;
410 
411 	if (config == -1LL)
412 		return -EINVAL;
413 
414 	/*
415 	 * Branch tracing:
416 	 */
417 	if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
418 	    !attr->freq && hwc->sample_period == 1) {
419 		/* BTS is not supported by this architecture. */
420 		if (!x86_pmu.bts_active)
421 			return -EOPNOTSUPP;
422 
423 		/* BTS is currently only allowed for user-mode. */
424 		if (!attr->exclude_kernel)
425 			return -EOPNOTSUPP;
426 
427 		/* disallow bts if conflicting events are present */
428 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
429 			return -EBUSY;
430 
431 		event->destroy = hw_perf_lbr_event_destroy;
432 	}
433 
434 	hwc->config |= config;
435 
436 	return 0;
437 }
438 
439 /*
440  * check that branch_sample_type is compatible with
441  * settings needed for precise_ip > 1 which implies
442  * using the LBR to capture ALL taken branches at the
443  * priv levels of the measurement
444  */
precise_br_compat(struct perf_event * event)445 static inline int precise_br_compat(struct perf_event *event)
446 {
447 	u64 m = event->attr.branch_sample_type;
448 	u64 b = 0;
449 
450 	/* must capture all branches */
451 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
452 		return 0;
453 
454 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
455 
456 	if (!event->attr.exclude_user)
457 		b |= PERF_SAMPLE_BRANCH_USER;
458 
459 	if (!event->attr.exclude_kernel)
460 		b |= PERF_SAMPLE_BRANCH_KERNEL;
461 
462 	/*
463 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
464 	 */
465 
466 	return m == b;
467 }
468 
x86_pmu_hw_config(struct perf_event * event)469 int x86_pmu_hw_config(struct perf_event *event)
470 {
471 	if (event->attr.precise_ip) {
472 		int precise = 0;
473 
474 		/* Support for constant skid */
475 		if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
476 			precise++;
477 
478 			/* Support for IP fixup */
479 			if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
480 				precise++;
481 		}
482 
483 		if (event->attr.precise_ip > precise)
484 			return -EOPNOTSUPP;
485 	}
486 	/*
487 	 * check that PEBS LBR correction does not conflict with
488 	 * whatever the user is asking with attr->branch_sample_type
489 	 */
490 	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
491 		u64 *br_type = &event->attr.branch_sample_type;
492 
493 		if (has_branch_stack(event)) {
494 			if (!precise_br_compat(event))
495 				return -EOPNOTSUPP;
496 
497 			/* branch_sample_type is compatible */
498 
499 		} else {
500 			/*
501 			 * user did not specify  branch_sample_type
502 			 *
503 			 * For PEBS fixups, we capture all
504 			 * the branches at the priv level of the
505 			 * event.
506 			 */
507 			*br_type = PERF_SAMPLE_BRANCH_ANY;
508 
509 			if (!event->attr.exclude_user)
510 				*br_type |= PERF_SAMPLE_BRANCH_USER;
511 
512 			if (!event->attr.exclude_kernel)
513 				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
514 		}
515 	}
516 
517 	if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
518 		event->attach_state |= PERF_ATTACH_TASK_DATA;
519 
520 	/*
521 	 * Generate PMC IRQs:
522 	 * (keep 'enabled' bit clear for now)
523 	 */
524 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
525 
526 	/*
527 	 * Count user and OS events unless requested not to
528 	 */
529 	if (!event->attr.exclude_user)
530 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
531 	if (!event->attr.exclude_kernel)
532 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
533 
534 	if (event->attr.type == PERF_TYPE_RAW)
535 		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
536 
537 	if (event->attr.sample_period && x86_pmu.limit_period) {
538 		if (x86_pmu.limit_period(event, event->attr.sample_period) >
539 				event->attr.sample_period)
540 			return -EINVAL;
541 	}
542 
543 	return x86_setup_perfctr(event);
544 }
545 
546 /*
547  * Setup the hardware configuration for a given attr_type
548  */
__x86_pmu_event_init(struct perf_event * event)549 static int __x86_pmu_event_init(struct perf_event *event)
550 {
551 	int err;
552 
553 	if (!x86_pmu_initialized())
554 		return -ENODEV;
555 
556 	err = x86_reserve_hardware();
557 	if (err)
558 		return err;
559 
560 	event->destroy = hw_perf_event_destroy;
561 
562 	event->hw.idx = -1;
563 	event->hw.last_cpu = -1;
564 	event->hw.last_tag = ~0ULL;
565 
566 	/* mark unused */
567 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
568 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
569 
570 	return x86_pmu.hw_config(event);
571 }
572 
x86_pmu_disable_all(void)573 void x86_pmu_disable_all(void)
574 {
575 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
576 	int idx;
577 
578 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
579 		u64 val;
580 
581 		if (!test_bit(idx, cpuc->active_mask))
582 			continue;
583 		rdmsrl(x86_pmu_config_addr(idx), val);
584 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
585 			continue;
586 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
587 		wrmsrl(x86_pmu_config_addr(idx), val);
588 	}
589 }
590 
x86_pmu_disable(struct pmu * pmu)591 static void x86_pmu_disable(struct pmu *pmu)
592 {
593 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
594 
595 	if (!x86_pmu_initialized())
596 		return;
597 
598 	if (!cpuc->enabled)
599 		return;
600 
601 	cpuc->n_added = 0;
602 	cpuc->enabled = 0;
603 	barrier();
604 
605 	x86_pmu.disable_all();
606 }
607 
x86_pmu_enable_all(int added)608 void x86_pmu_enable_all(int added)
609 {
610 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
611 	int idx;
612 
613 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
614 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
615 
616 		if (!test_bit(idx, cpuc->active_mask))
617 			continue;
618 
619 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
620 	}
621 }
622 
623 static struct pmu pmu;
624 
is_x86_event(struct perf_event * event)625 static inline int is_x86_event(struct perf_event *event)
626 {
627 	return event->pmu == &pmu;
628 }
629 
630 /*
631  * Event scheduler state:
632  *
633  * Assign events iterating over all events and counters, beginning
634  * with events with least weights first. Keep the current iterator
635  * state in struct sched_state.
636  */
637 struct sched_state {
638 	int	weight;
639 	int	event;		/* event index */
640 	int	counter;	/* counter index */
641 	int	unassigned;	/* number of events to be assigned left */
642 	int	nr_gp;		/* number of GP counters used */
643 	unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
644 };
645 
646 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
647 #define	SCHED_STATES_MAX	2
648 
649 struct perf_sched {
650 	int			max_weight;
651 	int			max_events;
652 	int			max_gp;
653 	int			saved_states;
654 	struct event_constraint	**constraints;
655 	struct sched_state	state;
656 	struct sched_state	saved[SCHED_STATES_MAX];
657 };
658 
659 /*
660  * Initialize interator that runs through all events and counters.
661  */
perf_sched_init(struct perf_sched * sched,struct event_constraint ** constraints,int num,int wmin,int wmax,int gpmax)662 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
663 			    int num, int wmin, int wmax, int gpmax)
664 {
665 	int idx;
666 
667 	memset(sched, 0, sizeof(*sched));
668 	sched->max_events	= num;
669 	sched->max_weight	= wmax;
670 	sched->max_gp		= gpmax;
671 	sched->constraints	= constraints;
672 
673 	for (idx = 0; idx < num; idx++) {
674 		if (constraints[idx]->weight == wmin)
675 			break;
676 	}
677 
678 	sched->state.event	= idx;		/* start with min weight */
679 	sched->state.weight	= wmin;
680 	sched->state.unassigned	= num;
681 }
682 
perf_sched_save_state(struct perf_sched * sched)683 static void perf_sched_save_state(struct perf_sched *sched)
684 {
685 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
686 		return;
687 
688 	sched->saved[sched->saved_states] = sched->state;
689 	sched->saved_states++;
690 }
691 
perf_sched_restore_state(struct perf_sched * sched)692 static bool perf_sched_restore_state(struct perf_sched *sched)
693 {
694 	if (!sched->saved_states)
695 		return false;
696 
697 	sched->saved_states--;
698 	sched->state = sched->saved[sched->saved_states];
699 
700 	/* continue with next counter: */
701 	clear_bit(sched->state.counter++, sched->state.used);
702 
703 	return true;
704 }
705 
706 /*
707  * Select a counter for the current event to schedule. Return true on
708  * success.
709  */
__perf_sched_find_counter(struct perf_sched * sched)710 static bool __perf_sched_find_counter(struct perf_sched *sched)
711 {
712 	struct event_constraint *c;
713 	int idx;
714 
715 	if (!sched->state.unassigned)
716 		return false;
717 
718 	if (sched->state.event >= sched->max_events)
719 		return false;
720 
721 	c = sched->constraints[sched->state.event];
722 	/* Prefer fixed purpose counters */
723 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
724 		idx = INTEL_PMC_IDX_FIXED;
725 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
726 			if (!__test_and_set_bit(idx, sched->state.used))
727 				goto done;
728 		}
729 	}
730 
731 	/* Grab the first unused counter starting with idx */
732 	idx = sched->state.counter;
733 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
734 		if (!__test_and_set_bit(idx, sched->state.used)) {
735 			if (sched->state.nr_gp++ >= sched->max_gp)
736 				return false;
737 
738 			goto done;
739 		}
740 	}
741 
742 	return false;
743 
744 done:
745 	sched->state.counter = idx;
746 
747 	if (c->overlap)
748 		perf_sched_save_state(sched);
749 
750 	return true;
751 }
752 
perf_sched_find_counter(struct perf_sched * sched)753 static bool perf_sched_find_counter(struct perf_sched *sched)
754 {
755 	while (!__perf_sched_find_counter(sched)) {
756 		if (!perf_sched_restore_state(sched))
757 			return false;
758 	}
759 
760 	return true;
761 }
762 
763 /*
764  * Go through all unassigned events and find the next one to schedule.
765  * Take events with the least weight first. Return true on success.
766  */
perf_sched_next_event(struct perf_sched * sched)767 static bool perf_sched_next_event(struct perf_sched *sched)
768 {
769 	struct event_constraint *c;
770 
771 	if (!sched->state.unassigned || !--sched->state.unassigned)
772 		return false;
773 
774 	do {
775 		/* next event */
776 		sched->state.event++;
777 		if (sched->state.event >= sched->max_events) {
778 			/* next weight */
779 			sched->state.event = 0;
780 			sched->state.weight++;
781 			if (sched->state.weight > sched->max_weight)
782 				return false;
783 		}
784 		c = sched->constraints[sched->state.event];
785 	} while (c->weight != sched->state.weight);
786 
787 	sched->state.counter = 0;	/* start with first counter */
788 
789 	return true;
790 }
791 
792 /*
793  * Assign a counter for each event.
794  */
perf_assign_events(struct event_constraint ** constraints,int n,int wmin,int wmax,int gpmax,int * assign)795 int perf_assign_events(struct event_constraint **constraints, int n,
796 			int wmin, int wmax, int gpmax, int *assign)
797 {
798 	struct perf_sched sched;
799 
800 	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
801 
802 	do {
803 		if (!perf_sched_find_counter(&sched))
804 			break;	/* failed */
805 		if (assign)
806 			assign[sched.state.event] = sched.state.counter;
807 	} while (perf_sched_next_event(&sched));
808 
809 	return sched.state.unassigned;
810 }
811 EXPORT_SYMBOL_GPL(perf_assign_events);
812 
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)813 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
814 {
815 	struct event_constraint *c;
816 	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
817 	struct perf_event *e;
818 	int i, wmin, wmax, unsched = 0;
819 	struct hw_perf_event *hwc;
820 
821 	bitmap_zero(used_mask, X86_PMC_IDX_MAX);
822 
823 	if (x86_pmu.start_scheduling)
824 		x86_pmu.start_scheduling(cpuc);
825 
826 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
827 		cpuc->event_constraint[i] = NULL;
828 		c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
829 		cpuc->event_constraint[i] = c;
830 
831 		wmin = min(wmin, c->weight);
832 		wmax = max(wmax, c->weight);
833 	}
834 
835 	/*
836 	 * fastpath, try to reuse previous register
837 	 */
838 	for (i = 0; i < n; i++) {
839 		hwc = &cpuc->event_list[i]->hw;
840 		c = cpuc->event_constraint[i];
841 
842 		/* never assigned */
843 		if (hwc->idx == -1)
844 			break;
845 
846 		/* constraint still honored */
847 		if (!test_bit(hwc->idx, c->idxmsk))
848 			break;
849 
850 		/* not already used */
851 		if (test_bit(hwc->idx, used_mask))
852 			break;
853 
854 		__set_bit(hwc->idx, used_mask);
855 		if (assign)
856 			assign[i] = hwc->idx;
857 	}
858 
859 	/* slow path */
860 	if (i != n) {
861 		int gpmax = x86_pmu.num_counters;
862 
863 		/*
864 		 * Do not allow scheduling of more than half the available
865 		 * generic counters.
866 		 *
867 		 * This helps avoid counter starvation of sibling thread by
868 		 * ensuring at most half the counters cannot be in exclusive
869 		 * mode. There is no designated counters for the limits. Any
870 		 * N/2 counters can be used. This helps with events with
871 		 * specific counter constraints.
872 		 */
873 		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
874 		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
875 			gpmax /= 2;
876 
877 		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
878 					     wmax, gpmax, assign);
879 	}
880 
881 	/*
882 	 * In case of success (unsched = 0), mark events as committed,
883 	 * so we do not put_constraint() in case new events are added
884 	 * and fail to be scheduled
885 	 *
886 	 * We invoke the lower level commit callback to lock the resource
887 	 *
888 	 * We do not need to do all of this in case we are called to
889 	 * validate an event group (assign == NULL)
890 	 */
891 	if (!unsched && assign) {
892 		for (i = 0; i < n; i++) {
893 			e = cpuc->event_list[i];
894 			e->hw.flags |= PERF_X86_EVENT_COMMITTED;
895 			if (x86_pmu.commit_scheduling)
896 				x86_pmu.commit_scheduling(cpuc, i, assign[i]);
897 		}
898 	}
899 
900 	if (!assign || unsched) {
901 
902 		for (i = 0; i < n; i++) {
903 			e = cpuc->event_list[i];
904 			/*
905 			 * do not put_constraint() on comitted events,
906 			 * because they are good to go
907 			 */
908 			if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
909 				continue;
910 
911 			/*
912 			 * release events that failed scheduling
913 			 */
914 			if (x86_pmu.put_event_constraints)
915 				x86_pmu.put_event_constraints(cpuc, e);
916 		}
917 	}
918 
919 	if (x86_pmu.stop_scheduling)
920 		x86_pmu.stop_scheduling(cpuc);
921 
922 	return unsched ? -EINVAL : 0;
923 }
924 
925 /*
926  * dogrp: true if must collect siblings events (group)
927  * returns total number of events and error code
928  */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)929 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
930 {
931 	struct perf_event *event;
932 	int n, max_count;
933 
934 	max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
935 
936 	/* current number of events already accepted */
937 	n = cpuc->n_events;
938 
939 	if (is_x86_event(leader)) {
940 		if (n >= max_count)
941 			return -EINVAL;
942 		cpuc->event_list[n] = leader;
943 		n++;
944 	}
945 	if (!dogrp)
946 		return n;
947 
948 	list_for_each_entry(event, &leader->sibling_list, group_entry) {
949 		if (!is_x86_event(event) ||
950 		    event->state <= PERF_EVENT_STATE_OFF)
951 			continue;
952 
953 		if (n >= max_count)
954 			return -EINVAL;
955 
956 		cpuc->event_list[n] = event;
957 		n++;
958 	}
959 	return n;
960 }
961 
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)962 static inline void x86_assign_hw_event(struct perf_event *event,
963 				struct cpu_hw_events *cpuc, int i)
964 {
965 	struct hw_perf_event *hwc = &event->hw;
966 
967 	hwc->idx = cpuc->assign[i];
968 	hwc->last_cpu = smp_processor_id();
969 	hwc->last_tag = ++cpuc->tags[i];
970 
971 	if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
972 		hwc->config_base = 0;
973 		hwc->event_base	= 0;
974 	} else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
975 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
976 		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
977 		hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
978 	} else {
979 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
980 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
981 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
982 	}
983 }
984 
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)985 static inline int match_prev_assignment(struct hw_perf_event *hwc,
986 					struct cpu_hw_events *cpuc,
987 					int i)
988 {
989 	return hwc->idx == cpuc->assign[i] &&
990 		hwc->last_cpu == smp_processor_id() &&
991 		hwc->last_tag == cpuc->tags[i];
992 }
993 
994 static void x86_pmu_start(struct perf_event *event, int flags);
995 
x86_pmu_enable(struct pmu * pmu)996 static void x86_pmu_enable(struct pmu *pmu)
997 {
998 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
999 	struct perf_event *event;
1000 	struct hw_perf_event *hwc;
1001 	int i, added = cpuc->n_added;
1002 
1003 	if (!x86_pmu_initialized())
1004 		return;
1005 
1006 	if (cpuc->enabled)
1007 		return;
1008 
1009 	if (cpuc->n_added) {
1010 		int n_running = cpuc->n_events - cpuc->n_added;
1011 		/*
1012 		 * apply assignment obtained either from
1013 		 * hw_perf_group_sched_in() or x86_pmu_enable()
1014 		 *
1015 		 * step1: save events moving to new counters
1016 		 */
1017 		for (i = 0; i < n_running; i++) {
1018 			event = cpuc->event_list[i];
1019 			hwc = &event->hw;
1020 
1021 			/*
1022 			 * we can avoid reprogramming counter if:
1023 			 * - assigned same counter as last time
1024 			 * - running on same CPU as last time
1025 			 * - no other event has used the counter since
1026 			 */
1027 			if (hwc->idx == -1 ||
1028 			    match_prev_assignment(hwc, cpuc, i))
1029 				continue;
1030 
1031 			/*
1032 			 * Ensure we don't accidentally enable a stopped
1033 			 * counter simply because we rescheduled.
1034 			 */
1035 			if (hwc->state & PERF_HES_STOPPED)
1036 				hwc->state |= PERF_HES_ARCH;
1037 
1038 			x86_pmu_stop(event, PERF_EF_UPDATE);
1039 		}
1040 
1041 		/*
1042 		 * step2: reprogram moved events into new counters
1043 		 */
1044 		for (i = 0; i < cpuc->n_events; i++) {
1045 			event = cpuc->event_list[i];
1046 			hwc = &event->hw;
1047 
1048 			if (!match_prev_assignment(hwc, cpuc, i))
1049 				x86_assign_hw_event(event, cpuc, i);
1050 			else if (i < n_running)
1051 				continue;
1052 
1053 			if (hwc->state & PERF_HES_ARCH)
1054 				continue;
1055 
1056 			x86_pmu_start(event, PERF_EF_RELOAD);
1057 		}
1058 		cpuc->n_added = 0;
1059 		perf_events_lapic_init();
1060 	}
1061 
1062 	cpuc->enabled = 1;
1063 	barrier();
1064 
1065 	x86_pmu.enable_all(added);
1066 }
1067 
1068 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1069 
1070 /*
1071  * Set the next IRQ period, based on the hwc->period_left value.
1072  * To be called with the event disabled in hw:
1073  */
x86_perf_event_set_period(struct perf_event * event)1074 int x86_perf_event_set_period(struct perf_event *event)
1075 {
1076 	struct hw_perf_event *hwc = &event->hw;
1077 	s64 left = local64_read(&hwc->period_left);
1078 	s64 period = hwc->sample_period;
1079 	int ret = 0, idx = hwc->idx;
1080 
1081 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
1082 		return 0;
1083 
1084 	/*
1085 	 * If we are way outside a reasonable range then just skip forward:
1086 	 */
1087 	if (unlikely(left <= -period)) {
1088 		left = period;
1089 		local64_set(&hwc->period_left, left);
1090 		hwc->last_period = period;
1091 		ret = 1;
1092 	}
1093 
1094 	if (unlikely(left <= 0)) {
1095 		left += period;
1096 		local64_set(&hwc->period_left, left);
1097 		hwc->last_period = period;
1098 		ret = 1;
1099 	}
1100 	/*
1101 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1102 	 */
1103 	if (unlikely(left < 2))
1104 		left = 2;
1105 
1106 	if (left > x86_pmu.max_period)
1107 		left = x86_pmu.max_period;
1108 
1109 	if (x86_pmu.limit_period)
1110 		left = x86_pmu.limit_period(event, left);
1111 
1112 	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1113 
1114 	/*
1115 	 * The hw event starts counting from this event offset,
1116 	 * mark it to be able to extra future deltas:
1117 	 */
1118 	local64_set(&hwc->prev_count, (u64)-left);
1119 
1120 	wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1121 
1122 	/*
1123 	 * Due to erratum on certan cpu we need
1124 	 * a second write to be sure the register
1125 	 * is updated properly
1126 	 */
1127 	if (x86_pmu.perfctr_second_write) {
1128 		wrmsrl(hwc->event_base,
1129 			(u64)(-left) & x86_pmu.cntval_mask);
1130 	}
1131 
1132 	perf_event_update_userpage(event);
1133 
1134 	return ret;
1135 }
1136 
x86_pmu_enable_event(struct perf_event * event)1137 void x86_pmu_enable_event(struct perf_event *event)
1138 {
1139 	if (__this_cpu_read(cpu_hw_events.enabled))
1140 		__x86_pmu_enable_event(&event->hw,
1141 				       ARCH_PERFMON_EVENTSEL_ENABLE);
1142 }
1143 
1144 /*
1145  * Add a single event to the PMU.
1146  *
1147  * The event is added to the group of enabled events
1148  * but only if it can be scehduled with existing events.
1149  */
x86_pmu_add(struct perf_event * event,int flags)1150 static int x86_pmu_add(struct perf_event *event, int flags)
1151 {
1152 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1153 	struct hw_perf_event *hwc;
1154 	int assign[X86_PMC_IDX_MAX];
1155 	int n, n0, ret;
1156 
1157 	hwc = &event->hw;
1158 
1159 	n0 = cpuc->n_events;
1160 	ret = n = collect_events(cpuc, event, false);
1161 	if (ret < 0)
1162 		goto out;
1163 
1164 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1165 	if (!(flags & PERF_EF_START))
1166 		hwc->state |= PERF_HES_ARCH;
1167 
1168 	/*
1169 	 * If group events scheduling transaction was started,
1170 	 * skip the schedulability test here, it will be performed
1171 	 * at commit time (->commit_txn) as a whole.
1172 	 */
1173 	if (cpuc->group_flag & PERF_EVENT_TXN)
1174 		goto done_collect;
1175 
1176 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1177 	if (ret)
1178 		goto out;
1179 	/*
1180 	 * copy new assignment, now we know it is possible
1181 	 * will be used by hw_perf_enable()
1182 	 */
1183 	memcpy(cpuc->assign, assign, n*sizeof(int));
1184 
1185 done_collect:
1186 	/*
1187 	 * Commit the collect_events() state. See x86_pmu_del() and
1188 	 * x86_pmu_*_txn().
1189 	 */
1190 	cpuc->n_events = n;
1191 	cpuc->n_added += n - n0;
1192 	cpuc->n_txn += n - n0;
1193 
1194 	ret = 0;
1195 out:
1196 	return ret;
1197 }
1198 
x86_pmu_start(struct perf_event * event,int flags)1199 static void x86_pmu_start(struct perf_event *event, int flags)
1200 {
1201 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1202 	int idx = event->hw.idx;
1203 
1204 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1205 		return;
1206 
1207 	if (WARN_ON_ONCE(idx == -1))
1208 		return;
1209 
1210 	if (flags & PERF_EF_RELOAD) {
1211 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1212 		x86_perf_event_set_period(event);
1213 	}
1214 
1215 	event->hw.state = 0;
1216 
1217 	cpuc->events[idx] = event;
1218 	__set_bit(idx, cpuc->active_mask);
1219 	__set_bit(idx, cpuc->running);
1220 	x86_pmu.enable(event);
1221 	perf_event_update_userpage(event);
1222 }
1223 
perf_event_print_debug(void)1224 void perf_event_print_debug(void)
1225 {
1226 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1227 	u64 pebs, debugctl;
1228 	struct cpu_hw_events *cpuc;
1229 	unsigned long flags;
1230 	int cpu, idx;
1231 
1232 	if (!x86_pmu.num_counters)
1233 		return;
1234 
1235 	local_irq_save(flags);
1236 
1237 	cpu = smp_processor_id();
1238 	cpuc = &per_cpu(cpu_hw_events, cpu);
1239 
1240 	if (x86_pmu.version >= 2) {
1241 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1242 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1243 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1244 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1245 
1246 		pr_info("\n");
1247 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1248 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1249 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1250 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1251 		if (x86_pmu.pebs_constraints) {
1252 			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1253 			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1254 		}
1255 		if (x86_pmu.lbr_nr) {
1256 			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1257 			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1258 		}
1259 	}
1260 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1261 
1262 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1263 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1264 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1265 
1266 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1267 
1268 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1269 			cpu, idx, pmc_ctrl);
1270 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1271 			cpu, idx, pmc_count);
1272 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1273 			cpu, idx, prev_left);
1274 	}
1275 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1276 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1277 
1278 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1279 			cpu, idx, pmc_count);
1280 	}
1281 	local_irq_restore(flags);
1282 }
1283 
x86_pmu_stop(struct perf_event * event,int flags)1284 void x86_pmu_stop(struct perf_event *event, int flags)
1285 {
1286 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1287 	struct hw_perf_event *hwc = &event->hw;
1288 
1289 	if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1290 		x86_pmu.disable(event);
1291 		cpuc->events[hwc->idx] = NULL;
1292 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1293 		hwc->state |= PERF_HES_STOPPED;
1294 	}
1295 
1296 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1297 		/*
1298 		 * Drain the remaining delta count out of a event
1299 		 * that we are disabling:
1300 		 */
1301 		x86_perf_event_update(event);
1302 		hwc->state |= PERF_HES_UPTODATE;
1303 	}
1304 }
1305 
x86_pmu_del(struct perf_event * event,int flags)1306 static void x86_pmu_del(struct perf_event *event, int flags)
1307 {
1308 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1309 	int i;
1310 
1311 	/*
1312 	 * event is descheduled
1313 	 */
1314 	event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1315 
1316 	/*
1317 	 * If we're called during a txn, we don't need to do anything.
1318 	 * The events never got scheduled and ->cancel_txn will truncate
1319 	 * the event_list.
1320 	 *
1321 	 * XXX assumes any ->del() called during a TXN will only be on
1322 	 * an event added during that same TXN.
1323 	 */
1324 	if (cpuc->group_flag & PERF_EVENT_TXN)
1325 		return;
1326 
1327 	/*
1328 	 * Not a TXN, therefore cleanup properly.
1329 	 */
1330 	x86_pmu_stop(event, PERF_EF_UPDATE);
1331 
1332 	for (i = 0; i < cpuc->n_events; i++) {
1333 		if (event == cpuc->event_list[i])
1334 			break;
1335 	}
1336 
1337 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1338 		return;
1339 
1340 	/* If we have a newly added event; make sure to decrease n_added. */
1341 	if (i >= cpuc->n_events - cpuc->n_added)
1342 		--cpuc->n_added;
1343 
1344 	if (x86_pmu.put_event_constraints)
1345 		x86_pmu.put_event_constraints(cpuc, event);
1346 
1347 	/* Delete the array entry. */
1348 	while (++i < cpuc->n_events) {
1349 		cpuc->event_list[i-1] = cpuc->event_list[i];
1350 		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1351 	}
1352 	--cpuc->n_events;
1353 
1354 	perf_event_update_userpage(event);
1355 }
1356 
x86_pmu_handle_irq(struct pt_regs * regs)1357 int x86_pmu_handle_irq(struct pt_regs *regs)
1358 {
1359 	struct perf_sample_data data;
1360 	struct cpu_hw_events *cpuc;
1361 	struct perf_event *event;
1362 	int idx, handled = 0;
1363 	u64 val;
1364 
1365 	cpuc = this_cpu_ptr(&cpu_hw_events);
1366 
1367 	/*
1368 	 * Some chipsets need to unmask the LVTPC in a particular spot
1369 	 * inside the nmi handler.  As a result, the unmasking was pushed
1370 	 * into all the nmi handlers.
1371 	 *
1372 	 * This generic handler doesn't seem to have any issues where the
1373 	 * unmasking occurs so it was left at the top.
1374 	 */
1375 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1376 
1377 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1378 		if (!test_bit(idx, cpuc->active_mask)) {
1379 			/*
1380 			 * Though we deactivated the counter some cpus
1381 			 * might still deliver spurious interrupts still
1382 			 * in flight. Catch them:
1383 			 */
1384 			if (__test_and_clear_bit(idx, cpuc->running))
1385 				handled++;
1386 			continue;
1387 		}
1388 
1389 		event = cpuc->events[idx];
1390 
1391 		val = x86_perf_event_update(event);
1392 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1393 			continue;
1394 
1395 		/*
1396 		 * event overflow
1397 		 */
1398 		handled++;
1399 		perf_sample_data_init(&data, 0, event->hw.last_period);
1400 
1401 		if (!x86_perf_event_set_period(event))
1402 			continue;
1403 
1404 		if (perf_event_overflow(event, &data, regs))
1405 			x86_pmu_stop(event, 0);
1406 	}
1407 
1408 	if (handled)
1409 		inc_irq_stat(apic_perf_irqs);
1410 
1411 	return handled;
1412 }
1413 
perf_events_lapic_init(void)1414 void perf_events_lapic_init(void)
1415 {
1416 	if (!x86_pmu.apic || !x86_pmu_initialized())
1417 		return;
1418 
1419 	/*
1420 	 * Always use NMI for PMU
1421 	 */
1422 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1423 }
1424 
1425 static int
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1426 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1427 {
1428 	u64 start_clock;
1429 	u64 finish_clock;
1430 	int ret;
1431 
1432 	if (!atomic_read(&active_events))
1433 		return NMI_DONE;
1434 
1435 	start_clock = sched_clock();
1436 	ret = x86_pmu.handle_irq(regs);
1437 	finish_clock = sched_clock();
1438 
1439 	perf_sample_event_took(finish_clock - start_clock);
1440 
1441 	return ret;
1442 }
1443 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1444 
1445 struct event_constraint emptyconstraint;
1446 struct event_constraint unconstrained;
1447 
1448 static int
x86_pmu_notifier(struct notifier_block * self,unsigned long action,void * hcpu)1449 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1450 {
1451 	unsigned int cpu = (long)hcpu;
1452 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1453 	int i, ret = NOTIFY_OK;
1454 
1455 	switch (action & ~CPU_TASKS_FROZEN) {
1456 	case CPU_UP_PREPARE:
1457 		for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1458 			cpuc->kfree_on_online[i] = NULL;
1459 		if (x86_pmu.cpu_prepare)
1460 			ret = x86_pmu.cpu_prepare(cpu);
1461 		break;
1462 
1463 	case CPU_STARTING:
1464 		if (x86_pmu.cpu_starting)
1465 			x86_pmu.cpu_starting(cpu);
1466 		break;
1467 
1468 	case CPU_ONLINE:
1469 		for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1470 			kfree(cpuc->kfree_on_online[i]);
1471 			cpuc->kfree_on_online[i] = NULL;
1472 		}
1473 		break;
1474 
1475 	case CPU_DYING:
1476 		if (x86_pmu.cpu_dying)
1477 			x86_pmu.cpu_dying(cpu);
1478 		break;
1479 
1480 	case CPU_UP_CANCELED:
1481 	case CPU_DEAD:
1482 		if (x86_pmu.cpu_dead)
1483 			x86_pmu.cpu_dead(cpu);
1484 		break;
1485 
1486 	default:
1487 		break;
1488 	}
1489 
1490 	return ret;
1491 }
1492 
pmu_check_apic(void)1493 static void __init pmu_check_apic(void)
1494 {
1495 	if (cpu_has_apic)
1496 		return;
1497 
1498 	x86_pmu.apic = 0;
1499 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1500 	pr_info("no hardware sampling interrupt available.\n");
1501 
1502 	/*
1503 	 * If we have a PMU initialized but no APIC
1504 	 * interrupts, we cannot sample hardware
1505 	 * events (user-space has to fall back and
1506 	 * sample via a hrtimer based software event):
1507 	 */
1508 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1509 
1510 }
1511 
1512 static struct attribute_group x86_pmu_format_group = {
1513 	.name = "format",
1514 	.attrs = NULL,
1515 };
1516 
1517 /*
1518  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1519  * out of events_attr attributes.
1520  */
filter_events(struct attribute ** attrs)1521 static void __init filter_events(struct attribute **attrs)
1522 {
1523 	struct device_attribute *d;
1524 	struct perf_pmu_events_attr *pmu_attr;
1525 	int i, j;
1526 
1527 	for (i = 0; attrs[i]; i++) {
1528 		d = (struct device_attribute *)attrs[i];
1529 		pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1530 		/* str trumps id */
1531 		if (pmu_attr->event_str)
1532 			continue;
1533 		if (x86_pmu.event_map(i))
1534 			continue;
1535 
1536 		for (j = i; attrs[j]; j++)
1537 			attrs[j] = attrs[j + 1];
1538 
1539 		/* Check the shifted attr. */
1540 		i--;
1541 	}
1542 }
1543 
1544 /* Merge two pointer arrays */
merge_attr(struct attribute ** a,struct attribute ** b)1545 static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1546 {
1547 	struct attribute **new;
1548 	int j, i;
1549 
1550 	for (j = 0; a[j]; j++)
1551 		;
1552 	for (i = 0; b[i]; i++)
1553 		j++;
1554 	j++;
1555 
1556 	new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1557 	if (!new)
1558 		return NULL;
1559 
1560 	j = 0;
1561 	for (i = 0; a[i]; i++)
1562 		new[j++] = a[i];
1563 	for (i = 0; b[i]; i++)
1564 		new[j++] = b[i];
1565 	new[j] = NULL;
1566 
1567 	return new;
1568 }
1569 
events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1570 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1571 			  char *page)
1572 {
1573 	struct perf_pmu_events_attr *pmu_attr = \
1574 		container_of(attr, struct perf_pmu_events_attr, attr);
1575 	u64 config = x86_pmu.event_map(pmu_attr->id);
1576 
1577 	/* string trumps id */
1578 	if (pmu_attr->event_str)
1579 		return sprintf(page, "%s", pmu_attr->event_str);
1580 
1581 	return x86_pmu.events_sysfs_show(page, config);
1582 }
1583 
1584 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1585 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1586 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1587 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1588 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1589 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1590 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1591 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1592 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1593 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1594 
1595 static struct attribute *empty_attrs;
1596 
1597 static struct attribute *events_attr[] = {
1598 	EVENT_PTR(CPU_CYCLES),
1599 	EVENT_PTR(INSTRUCTIONS),
1600 	EVENT_PTR(CACHE_REFERENCES),
1601 	EVENT_PTR(CACHE_MISSES),
1602 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1603 	EVENT_PTR(BRANCH_MISSES),
1604 	EVENT_PTR(BUS_CYCLES),
1605 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1606 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1607 	EVENT_PTR(REF_CPU_CYCLES),
1608 	NULL,
1609 };
1610 
1611 static struct attribute_group x86_pmu_events_group = {
1612 	.name = "events",
1613 	.attrs = events_attr,
1614 };
1615 
x86_event_sysfs_show(char * page,u64 config,u64 event)1616 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1617 {
1618 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1619 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1620 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1621 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1622 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1623 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1624 	ssize_t ret;
1625 
1626 	/*
1627 	* We have whole page size to spend and just little data
1628 	* to write, so we can safely use sprintf.
1629 	*/
1630 	ret = sprintf(page, "event=0x%02llx", event);
1631 
1632 	if (umask)
1633 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1634 
1635 	if (edge)
1636 		ret += sprintf(page + ret, ",edge");
1637 
1638 	if (pc)
1639 		ret += sprintf(page + ret, ",pc");
1640 
1641 	if (any)
1642 		ret += sprintf(page + ret, ",any");
1643 
1644 	if (inv)
1645 		ret += sprintf(page + ret, ",inv");
1646 
1647 	if (cmask)
1648 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1649 
1650 	ret += sprintf(page + ret, "\n");
1651 
1652 	return ret;
1653 }
1654 
init_hw_perf_events(void)1655 static int __init init_hw_perf_events(void)
1656 {
1657 	struct x86_pmu_quirk *quirk;
1658 	int err;
1659 
1660 	pr_info("Performance Events: ");
1661 
1662 	switch (boot_cpu_data.x86_vendor) {
1663 	case X86_VENDOR_INTEL:
1664 		err = intel_pmu_init();
1665 		break;
1666 	case X86_VENDOR_AMD:
1667 		err = amd_pmu_init();
1668 		break;
1669 	default:
1670 		err = -ENOTSUPP;
1671 	}
1672 	if (err != 0) {
1673 		pr_cont("no PMU driver, software events only.\n");
1674 		return 0;
1675 	}
1676 
1677 	pmu_check_apic();
1678 
1679 	/* sanity check that the hardware exists or is emulated */
1680 	if (!check_hw_exists())
1681 		return 0;
1682 
1683 	pr_cont("%s PMU driver.\n", x86_pmu.name);
1684 
1685 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1686 
1687 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1688 		quirk->func();
1689 
1690 	if (!x86_pmu.intel_ctrl)
1691 		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1692 
1693 	perf_events_lapic_init();
1694 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1695 
1696 	unconstrained = (struct event_constraint)
1697 		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1698 				   0, x86_pmu.num_counters, 0, 0);
1699 
1700 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1701 
1702 	if (x86_pmu.event_attrs)
1703 		x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1704 
1705 	if (!x86_pmu.events_sysfs_show)
1706 		x86_pmu_events_group.attrs = &empty_attrs;
1707 	else
1708 		filter_events(x86_pmu_events_group.attrs);
1709 
1710 	if (x86_pmu.cpu_events) {
1711 		struct attribute **tmp;
1712 
1713 		tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1714 		if (!WARN_ON(!tmp))
1715 			x86_pmu_events_group.attrs = tmp;
1716 	}
1717 
1718 	pr_info("... version:                %d\n",     x86_pmu.version);
1719 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1720 	pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1721 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1722 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1723 	pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1724 	pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1725 
1726 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1727 	perf_cpu_notifier(x86_pmu_notifier);
1728 
1729 	return 0;
1730 }
1731 early_initcall(init_hw_perf_events);
1732 
x86_pmu_read(struct perf_event * event)1733 static inline void x86_pmu_read(struct perf_event *event)
1734 {
1735 	x86_perf_event_update(event);
1736 }
1737 
1738 /*
1739  * Start group events scheduling transaction
1740  * Set the flag to make pmu::enable() not perform the
1741  * schedulability test, it will be performed at commit time
1742  */
x86_pmu_start_txn(struct pmu * pmu)1743 static void x86_pmu_start_txn(struct pmu *pmu)
1744 {
1745 	perf_pmu_disable(pmu);
1746 	__this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1747 	__this_cpu_write(cpu_hw_events.n_txn, 0);
1748 }
1749 
1750 /*
1751  * Stop group events scheduling transaction
1752  * Clear the flag and pmu::enable() will perform the
1753  * schedulability test.
1754  */
x86_pmu_cancel_txn(struct pmu * pmu)1755 static void x86_pmu_cancel_txn(struct pmu *pmu)
1756 {
1757 	__this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1758 	/*
1759 	 * Truncate collected array by the number of events added in this
1760 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1761 	 */
1762 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1763 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1764 	perf_pmu_enable(pmu);
1765 }
1766 
1767 /*
1768  * Commit group events scheduling transaction
1769  * Perform the group schedulability test as a whole
1770  * Return 0 if success
1771  *
1772  * Does not cancel the transaction on failure; expects the caller to do this.
1773  */
x86_pmu_commit_txn(struct pmu * pmu)1774 static int x86_pmu_commit_txn(struct pmu *pmu)
1775 {
1776 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1777 	int assign[X86_PMC_IDX_MAX];
1778 	int n, ret;
1779 
1780 	n = cpuc->n_events;
1781 
1782 	if (!x86_pmu_initialized())
1783 		return -EAGAIN;
1784 
1785 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1786 	if (ret)
1787 		return ret;
1788 
1789 	/*
1790 	 * copy new assignment, now we know it is possible
1791 	 * will be used by hw_perf_enable()
1792 	 */
1793 	memcpy(cpuc->assign, assign, n*sizeof(int));
1794 
1795 	cpuc->group_flag &= ~PERF_EVENT_TXN;
1796 	perf_pmu_enable(pmu);
1797 	return 0;
1798 }
1799 /*
1800  * a fake_cpuc is used to validate event groups. Due to
1801  * the extra reg logic, we need to also allocate a fake
1802  * per_core and per_cpu structure. Otherwise, group events
1803  * using extra reg may conflict without the kernel being
1804  * able to catch this when the last event gets added to
1805  * the group.
1806  */
free_fake_cpuc(struct cpu_hw_events * cpuc)1807 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1808 {
1809 	kfree(cpuc->shared_regs);
1810 	kfree(cpuc);
1811 }
1812 
allocate_fake_cpuc(void)1813 static struct cpu_hw_events *allocate_fake_cpuc(void)
1814 {
1815 	struct cpu_hw_events *cpuc;
1816 	int cpu = raw_smp_processor_id();
1817 
1818 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1819 	if (!cpuc)
1820 		return ERR_PTR(-ENOMEM);
1821 
1822 	/* only needed, if we have extra_regs */
1823 	if (x86_pmu.extra_regs) {
1824 		cpuc->shared_regs = allocate_shared_regs(cpu);
1825 		if (!cpuc->shared_regs)
1826 			goto error;
1827 	}
1828 	cpuc->is_fake = 1;
1829 	return cpuc;
1830 error:
1831 	free_fake_cpuc(cpuc);
1832 	return ERR_PTR(-ENOMEM);
1833 }
1834 
1835 /*
1836  * validate that we can schedule this event
1837  */
validate_event(struct perf_event * event)1838 static int validate_event(struct perf_event *event)
1839 {
1840 	struct cpu_hw_events *fake_cpuc;
1841 	struct event_constraint *c;
1842 	int ret = 0;
1843 
1844 	fake_cpuc = allocate_fake_cpuc();
1845 	if (IS_ERR(fake_cpuc))
1846 		return PTR_ERR(fake_cpuc);
1847 
1848 	c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
1849 
1850 	if (!c || !c->weight)
1851 		ret = -EINVAL;
1852 
1853 	if (x86_pmu.put_event_constraints)
1854 		x86_pmu.put_event_constraints(fake_cpuc, event);
1855 
1856 	free_fake_cpuc(fake_cpuc);
1857 
1858 	return ret;
1859 }
1860 
1861 /*
1862  * validate a single event group
1863  *
1864  * validation include:
1865  *	- check events are compatible which each other
1866  *	- events do not compete for the same counter
1867  *	- number of events <= number of counters
1868  *
1869  * validation ensures the group can be loaded onto the
1870  * PMU if it was the only group available.
1871  */
validate_group(struct perf_event * event)1872 static int validate_group(struct perf_event *event)
1873 {
1874 	struct perf_event *leader = event->group_leader;
1875 	struct cpu_hw_events *fake_cpuc;
1876 	int ret = -EINVAL, n;
1877 
1878 	fake_cpuc = allocate_fake_cpuc();
1879 	if (IS_ERR(fake_cpuc))
1880 		return PTR_ERR(fake_cpuc);
1881 	/*
1882 	 * the event is not yet connected with its
1883 	 * siblings therefore we must first collect
1884 	 * existing siblings, then add the new event
1885 	 * before we can simulate the scheduling
1886 	 */
1887 	n = collect_events(fake_cpuc, leader, true);
1888 	if (n < 0)
1889 		goto out;
1890 
1891 	fake_cpuc->n_events = n;
1892 	n = collect_events(fake_cpuc, event, false);
1893 	if (n < 0)
1894 		goto out;
1895 
1896 	fake_cpuc->n_events = n;
1897 
1898 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1899 
1900 out:
1901 	free_fake_cpuc(fake_cpuc);
1902 	return ret;
1903 }
1904 
x86_pmu_event_init(struct perf_event * event)1905 static int x86_pmu_event_init(struct perf_event *event)
1906 {
1907 	struct pmu *tmp;
1908 	int err;
1909 
1910 	switch (event->attr.type) {
1911 	case PERF_TYPE_RAW:
1912 	case PERF_TYPE_HARDWARE:
1913 	case PERF_TYPE_HW_CACHE:
1914 		break;
1915 
1916 	default:
1917 		return -ENOENT;
1918 	}
1919 
1920 	err = __x86_pmu_event_init(event);
1921 	if (!err) {
1922 		/*
1923 		 * we temporarily connect event to its pmu
1924 		 * such that validate_group() can classify
1925 		 * it as an x86 event using is_x86_event()
1926 		 */
1927 		tmp = event->pmu;
1928 		event->pmu = &pmu;
1929 
1930 		if (event->group_leader != event)
1931 			err = validate_group(event);
1932 		else
1933 			err = validate_event(event);
1934 
1935 		event->pmu = tmp;
1936 	}
1937 	if (err) {
1938 		if (event->destroy)
1939 			event->destroy(event);
1940 	}
1941 
1942 	if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
1943 		event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
1944 
1945 	return err;
1946 }
1947 
refresh_pce(void * ignored)1948 static void refresh_pce(void *ignored)
1949 {
1950 	if (current->mm)
1951 		load_mm_cr4(current->mm);
1952 }
1953 
x86_pmu_event_mapped(struct perf_event * event)1954 static void x86_pmu_event_mapped(struct perf_event *event)
1955 {
1956 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1957 		return;
1958 
1959 	if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
1960 		on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
1961 }
1962 
x86_pmu_event_unmapped(struct perf_event * event)1963 static void x86_pmu_event_unmapped(struct perf_event *event)
1964 {
1965 	if (!current->mm)
1966 		return;
1967 
1968 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1969 		return;
1970 
1971 	if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
1972 		on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
1973 }
1974 
x86_pmu_event_idx(struct perf_event * event)1975 static int x86_pmu_event_idx(struct perf_event *event)
1976 {
1977 	int idx = event->hw.idx;
1978 
1979 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1980 		return 0;
1981 
1982 	if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1983 		idx -= INTEL_PMC_IDX_FIXED;
1984 		idx |= 1 << 30;
1985 	}
1986 
1987 	return idx + 1;
1988 }
1989 
get_attr_rdpmc(struct device * cdev,struct device_attribute * attr,char * buf)1990 static ssize_t get_attr_rdpmc(struct device *cdev,
1991 			      struct device_attribute *attr,
1992 			      char *buf)
1993 {
1994 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1995 }
1996 
set_attr_rdpmc(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)1997 static ssize_t set_attr_rdpmc(struct device *cdev,
1998 			      struct device_attribute *attr,
1999 			      const char *buf, size_t count)
2000 {
2001 	unsigned long val;
2002 	ssize_t ret;
2003 
2004 	ret = kstrtoul(buf, 0, &val);
2005 	if (ret)
2006 		return ret;
2007 
2008 	if (val > 2)
2009 		return -EINVAL;
2010 
2011 	if (x86_pmu.attr_rdpmc_broken)
2012 		return -ENOTSUPP;
2013 
2014 	if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2015 		/*
2016 		 * Changing into or out of always available, aka
2017 		 * perf-event-bypassing mode.  This path is extremely slow,
2018 		 * but only root can trigger it, so it's okay.
2019 		 */
2020 		if (val == 2)
2021 			static_key_slow_inc(&rdpmc_always_available);
2022 		else
2023 			static_key_slow_dec(&rdpmc_always_available);
2024 		on_each_cpu(refresh_pce, NULL, 1);
2025 	}
2026 
2027 	x86_pmu.attr_rdpmc = val;
2028 
2029 	return count;
2030 }
2031 
2032 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2033 
2034 static struct attribute *x86_pmu_attrs[] = {
2035 	&dev_attr_rdpmc.attr,
2036 	NULL,
2037 };
2038 
2039 static struct attribute_group x86_pmu_attr_group = {
2040 	.attrs = x86_pmu_attrs,
2041 };
2042 
2043 static const struct attribute_group *x86_pmu_attr_groups[] = {
2044 	&x86_pmu_attr_group,
2045 	&x86_pmu_format_group,
2046 	&x86_pmu_events_group,
2047 	NULL,
2048 };
2049 
x86_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)2050 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2051 {
2052 	if (x86_pmu.sched_task)
2053 		x86_pmu.sched_task(ctx, sched_in);
2054 }
2055 
perf_check_microcode(void)2056 void perf_check_microcode(void)
2057 {
2058 	if (x86_pmu.check_microcode)
2059 		x86_pmu.check_microcode();
2060 }
2061 EXPORT_SYMBOL_GPL(perf_check_microcode);
2062 
2063 static struct pmu pmu = {
2064 	.pmu_enable		= x86_pmu_enable,
2065 	.pmu_disable		= x86_pmu_disable,
2066 
2067 	.attr_groups		= x86_pmu_attr_groups,
2068 
2069 	.event_init		= x86_pmu_event_init,
2070 
2071 	.event_mapped		= x86_pmu_event_mapped,
2072 	.event_unmapped		= x86_pmu_event_unmapped,
2073 
2074 	.add			= x86_pmu_add,
2075 	.del			= x86_pmu_del,
2076 	.start			= x86_pmu_start,
2077 	.stop			= x86_pmu_stop,
2078 	.read			= x86_pmu_read,
2079 
2080 	.start_txn		= x86_pmu_start_txn,
2081 	.cancel_txn		= x86_pmu_cancel_txn,
2082 	.commit_txn		= x86_pmu_commit_txn,
2083 
2084 	.event_idx		= x86_pmu_event_idx,
2085 	.sched_task		= x86_pmu_sched_task,
2086 	.task_ctx_size          = sizeof(struct x86_perf_task_context),
2087 };
2088 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)2089 void arch_perf_update_userpage(struct perf_event *event,
2090 			       struct perf_event_mmap_page *userpg, u64 now)
2091 {
2092 	struct cyc2ns_data *data;
2093 
2094 	userpg->cap_user_time = 0;
2095 	userpg->cap_user_time_zero = 0;
2096 	userpg->cap_user_rdpmc =
2097 		!!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2098 	userpg->pmc_width = x86_pmu.cntval_bits;
2099 
2100 	if (!sched_clock_stable())
2101 		return;
2102 
2103 	data = cyc2ns_read_begin();
2104 
2105 	/*
2106 	 * Internal timekeeping for enabled/running/stopped times
2107 	 * is always in the local_clock domain.
2108 	 */
2109 	userpg->cap_user_time = 1;
2110 	userpg->time_mult = data->cyc2ns_mul;
2111 	userpg->time_shift = data->cyc2ns_shift;
2112 	userpg->time_offset = data->cyc2ns_offset - now;
2113 
2114 	/*
2115 	 * cap_user_time_zero doesn't make sense when we're using a different
2116 	 * time base for the records.
2117 	 */
2118 	if (event->clock == &local_clock) {
2119 		userpg->cap_user_time_zero = 1;
2120 		userpg->time_zero = data->cyc2ns_offset;
2121 	}
2122 
2123 	cyc2ns_read_end(data);
2124 }
2125 
2126 /*
2127  * callchain support
2128  */
2129 
backtrace_stack(void * data,char * name)2130 static int backtrace_stack(void *data, char *name)
2131 {
2132 	return 0;
2133 }
2134 
backtrace_address(void * data,unsigned long addr,int reliable)2135 static void backtrace_address(void *data, unsigned long addr, int reliable)
2136 {
2137 	struct perf_callchain_entry *entry = data;
2138 
2139 	perf_callchain_store(entry, addr);
2140 }
2141 
2142 static const struct stacktrace_ops backtrace_ops = {
2143 	.stack			= backtrace_stack,
2144 	.address		= backtrace_address,
2145 	.walk_stack		= print_context_stack_bp,
2146 };
2147 
2148 void
perf_callchain_kernel(struct perf_callchain_entry * entry,struct pt_regs * regs)2149 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
2150 {
2151 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2152 		/* TODO: We don't support guest os callchain now */
2153 		return;
2154 	}
2155 
2156 	perf_callchain_store(entry, regs->ip);
2157 
2158 	dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
2159 }
2160 
2161 static inline int
valid_user_frame(const void __user * fp,unsigned long size)2162 valid_user_frame(const void __user *fp, unsigned long size)
2163 {
2164 	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2165 }
2166 
get_segment_base(unsigned int segment)2167 static unsigned long get_segment_base(unsigned int segment)
2168 {
2169 	struct desc_struct *desc;
2170 	int idx = segment >> 3;
2171 
2172 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2173 		struct ldt_struct *ldt;
2174 
2175 		if (idx > LDT_ENTRIES)
2176 			return 0;
2177 
2178 		/* IRQs are off, so this synchronizes with smp_store_release */
2179 		ldt = lockless_dereference(current->active_mm->context.ldt);
2180 		if (!ldt || idx > ldt->size)
2181 			return 0;
2182 
2183 		desc = &ldt->entries[idx];
2184 	} else {
2185 		if (idx > GDT_ENTRIES)
2186 			return 0;
2187 
2188 		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2189 	}
2190 
2191 	return get_desc_base(desc);
2192 }
2193 
2194 #ifdef CONFIG_COMPAT
2195 
2196 #include <asm/compat.h>
2197 
2198 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry * entry)2199 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2200 {
2201 	/* 32-bit process in 64-bit kernel. */
2202 	unsigned long ss_base, cs_base;
2203 	struct stack_frame_ia32 frame;
2204 	const void __user *fp;
2205 
2206 	if (!test_thread_flag(TIF_IA32))
2207 		return 0;
2208 
2209 	cs_base = get_segment_base(regs->cs);
2210 	ss_base = get_segment_base(regs->ss);
2211 
2212 	fp = compat_ptr(ss_base + regs->bp);
2213 	while (entry->nr < PERF_MAX_STACK_DEPTH) {
2214 		unsigned long bytes;
2215 		frame.next_frame     = 0;
2216 		frame.return_address = 0;
2217 
2218 		bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2219 		if (bytes != 0)
2220 			break;
2221 
2222 		if (!valid_user_frame(fp, sizeof(frame)))
2223 			break;
2224 
2225 		perf_callchain_store(entry, cs_base + frame.return_address);
2226 		fp = compat_ptr(ss_base + frame.next_frame);
2227 	}
2228 	return 1;
2229 }
2230 #else
2231 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry * entry)2232 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2233 {
2234     return 0;
2235 }
2236 #endif
2237 
2238 void
perf_callchain_user(struct perf_callchain_entry * entry,struct pt_regs * regs)2239 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
2240 {
2241 	struct stack_frame frame;
2242 	const void __user *fp;
2243 
2244 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2245 		/* TODO: We don't support guest os callchain now */
2246 		return;
2247 	}
2248 
2249 	/*
2250 	 * We don't know what to do with VM86 stacks.. ignore them for now.
2251 	 */
2252 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2253 		return;
2254 
2255 	fp = (void __user *)regs->bp;
2256 
2257 	perf_callchain_store(entry, regs->ip);
2258 
2259 	if (!current->mm)
2260 		return;
2261 
2262 	if (perf_callchain_user32(regs, entry))
2263 		return;
2264 
2265 	while (entry->nr < PERF_MAX_STACK_DEPTH) {
2266 		unsigned long bytes;
2267 		frame.next_frame	     = NULL;
2268 		frame.return_address = 0;
2269 
2270 		bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2271 		if (bytes != 0)
2272 			break;
2273 
2274 		if (!valid_user_frame(fp, sizeof(frame)))
2275 			break;
2276 
2277 		perf_callchain_store(entry, frame.return_address);
2278 		fp = frame.next_frame;
2279 	}
2280 }
2281 
2282 /*
2283  * Deal with code segment offsets for the various execution modes:
2284  *
2285  *   VM86 - the good olde 16 bit days, where the linear address is
2286  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2287  *
2288  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2289  *          to figure out what the 32bit base address is.
2290  *
2291  *    X32 - has TIF_X32 set, but is running in x86_64
2292  *
2293  * X86_64 - CS,DS,SS,ES are all zero based.
2294  */
code_segment_base(struct pt_regs * regs)2295 static unsigned long code_segment_base(struct pt_regs *regs)
2296 {
2297 	/*
2298 	 * For IA32 we look at the GDT/LDT segment base to convert the
2299 	 * effective IP to a linear address.
2300 	 */
2301 
2302 #ifdef CONFIG_X86_32
2303 	/*
2304 	 * If we are in VM86 mode, add the segment offset to convert to a
2305 	 * linear address.
2306 	 */
2307 	if (regs->flags & X86_VM_MASK)
2308 		return 0x10 * regs->cs;
2309 
2310 	if (user_mode(regs) && regs->cs != __USER_CS)
2311 		return get_segment_base(regs->cs);
2312 #else
2313 	if (user_mode(regs) && !user_64bit_mode(regs) &&
2314 	    regs->cs != __USER32_CS)
2315 		return get_segment_base(regs->cs);
2316 #endif
2317 	return 0;
2318 }
2319 
perf_instruction_pointer(struct pt_regs * regs)2320 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2321 {
2322 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2323 		return perf_guest_cbs->get_guest_ip();
2324 
2325 	return regs->ip + code_segment_base(regs);
2326 }
2327 
perf_misc_flags(struct pt_regs * regs)2328 unsigned long perf_misc_flags(struct pt_regs *regs)
2329 {
2330 	int misc = 0;
2331 
2332 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2333 		if (perf_guest_cbs->is_user_mode())
2334 			misc |= PERF_RECORD_MISC_GUEST_USER;
2335 		else
2336 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2337 	} else {
2338 		if (user_mode(regs))
2339 			misc |= PERF_RECORD_MISC_USER;
2340 		else
2341 			misc |= PERF_RECORD_MISC_KERNEL;
2342 	}
2343 
2344 	if (regs->flags & PERF_EFLAGS_EXACT)
2345 		misc |= PERF_RECORD_MISC_EXACT_IP;
2346 
2347 	return misc;
2348 }
2349 
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)2350 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2351 {
2352 	cap->version		= x86_pmu.version;
2353 	cap->num_counters_gp	= x86_pmu.num_counters;
2354 	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
2355 	cap->bit_width_gp	= x86_pmu.cntval_bits;
2356 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
2357 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
2358 	cap->events_mask_len	= x86_pmu.events_mask_len;
2359 }
2360 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2361