1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36 
37 #include "rds.h"
38 #include "iw.h"
39 
40 
41 /*
42  * This is stored as mr->r_trans_private.
43  */
44 struct rds_iw_mr {
45 	struct rds_iw_device	*device;
46 	struct rds_iw_mr_pool	*pool;
47 	struct rdma_cm_id	*cm_id;
48 
49 	struct ib_mr	*mr;
50 
51 	struct rds_iw_mapping	mapping;
52 	unsigned char		remap_count;
53 };
54 
55 /*
56  * Our own little MR pool
57  */
58 struct rds_iw_mr_pool {
59 	struct rds_iw_device	*device;		/* back ptr to the device that owns us */
60 
61 	struct mutex		flush_lock;		/* serialize fmr invalidate */
62 	struct work_struct	flush_worker;		/* flush worker */
63 
64 	spinlock_t		list_lock;		/* protect variables below */
65 	atomic_t		item_count;		/* total # of MRs */
66 	atomic_t		dirty_count;		/* # dirty of MRs */
67 	struct list_head	dirty_list;		/* dirty mappings */
68 	struct list_head	clean_list;		/* unused & unamapped MRs */
69 	atomic_t		free_pinned;		/* memory pinned by free MRs */
70 	unsigned long		max_message_size;	/* in pages */
71 	unsigned long		max_items;
72 	unsigned long		max_items_soft;
73 	unsigned long		max_free_pinned;
74 	int			max_pages;
75 };
76 
77 static void rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all);
78 static void rds_iw_mr_pool_flush_worker(struct work_struct *work);
79 static int rds_iw_init_reg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
80 static int rds_iw_map_reg(struct rds_iw_mr_pool *pool,
81 			  struct rds_iw_mr *ibmr,
82 			  struct scatterlist *sg, unsigned int nents);
83 static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
84 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
85 			struct list_head *unmap_list,
86 			struct list_head *kill_list,
87 			int *unpinned);
88 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr);
89 
rds_iw_get_device(struct sockaddr_in * src,struct sockaddr_in * dst,struct rds_iw_device ** rds_iwdev,struct rdma_cm_id ** cm_id)90 static int rds_iw_get_device(struct sockaddr_in *src, struct sockaddr_in *dst,
91 			     struct rds_iw_device **rds_iwdev,
92 			     struct rdma_cm_id **cm_id)
93 {
94 	struct rds_iw_device *iwdev;
95 	struct rds_iw_cm_id *i_cm_id;
96 
97 	*rds_iwdev = NULL;
98 	*cm_id = NULL;
99 
100 	list_for_each_entry(iwdev, &rds_iw_devices, list) {
101 		spin_lock_irq(&iwdev->spinlock);
102 		list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) {
103 			struct sockaddr_in *src_addr, *dst_addr;
104 
105 			src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr;
106 			dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr;
107 
108 			rdsdebug("local ipaddr = %x port %d, "
109 				 "remote ipaddr = %x port %d"
110 				 "..looking for %x port %d, "
111 				 "remote ipaddr = %x port %d\n",
112 				src_addr->sin_addr.s_addr,
113 				src_addr->sin_port,
114 				dst_addr->sin_addr.s_addr,
115 				dst_addr->sin_port,
116 				src->sin_addr.s_addr,
117 				src->sin_port,
118 				dst->sin_addr.s_addr,
119 				dst->sin_port);
120 #ifdef WORKING_TUPLE_DETECTION
121 			if (src_addr->sin_addr.s_addr == src->sin_addr.s_addr &&
122 			    src_addr->sin_port == src->sin_port &&
123 			    dst_addr->sin_addr.s_addr == dst->sin_addr.s_addr &&
124 			    dst_addr->sin_port == dst->sin_port) {
125 #else
126 			/* FIXME - needs to compare the local and remote
127 			 * ipaddr/port tuple, but the ipaddr is the only
128 			 * available information in the rds_sock (as the rest are
129 			 * zero'ed.  It doesn't appear to be properly populated
130 			 * during connection setup...
131 			 */
132 			if (src_addr->sin_addr.s_addr == src->sin_addr.s_addr) {
133 #endif
134 				spin_unlock_irq(&iwdev->spinlock);
135 				*rds_iwdev = iwdev;
136 				*cm_id = i_cm_id->cm_id;
137 				return 0;
138 			}
139 		}
140 		spin_unlock_irq(&iwdev->spinlock);
141 	}
142 
143 	return 1;
144 }
145 
146 static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
147 {
148 	struct rds_iw_cm_id *i_cm_id;
149 
150 	i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL);
151 	if (!i_cm_id)
152 		return -ENOMEM;
153 
154 	i_cm_id->cm_id = cm_id;
155 
156 	spin_lock_irq(&rds_iwdev->spinlock);
157 	list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list);
158 	spin_unlock_irq(&rds_iwdev->spinlock);
159 
160 	return 0;
161 }
162 
163 static void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev,
164 				struct rdma_cm_id *cm_id)
165 {
166 	struct rds_iw_cm_id *i_cm_id;
167 
168 	spin_lock_irq(&rds_iwdev->spinlock);
169 	list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) {
170 		if (i_cm_id->cm_id == cm_id) {
171 			list_del(&i_cm_id->list);
172 			kfree(i_cm_id);
173 			break;
174 		}
175 	}
176 	spin_unlock_irq(&rds_iwdev->spinlock);
177 }
178 
179 
180 int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id)
181 {
182 	struct sockaddr_in *src_addr, *dst_addr;
183 	struct rds_iw_device *rds_iwdev_old;
184 	struct rdma_cm_id *pcm_id;
185 	int rc;
186 
187 	src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr;
188 	dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr;
189 
190 	rc = rds_iw_get_device(src_addr, dst_addr, &rds_iwdev_old, &pcm_id);
191 	if (rc)
192 		rds_iw_remove_cm_id(rds_iwdev, cm_id);
193 
194 	return rds_iw_add_cm_id(rds_iwdev, cm_id);
195 }
196 
197 void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
198 {
199 	struct rds_iw_connection *ic = conn->c_transport_data;
200 
201 	/* conn was previously on the nodev_conns_list */
202 	spin_lock_irq(&iw_nodev_conns_lock);
203 	BUG_ON(list_empty(&iw_nodev_conns));
204 	BUG_ON(list_empty(&ic->iw_node));
205 	list_del(&ic->iw_node);
206 
207 	spin_lock(&rds_iwdev->spinlock);
208 	list_add_tail(&ic->iw_node, &rds_iwdev->conn_list);
209 	spin_unlock(&rds_iwdev->spinlock);
210 	spin_unlock_irq(&iw_nodev_conns_lock);
211 
212 	ic->rds_iwdev = rds_iwdev;
213 }
214 
215 void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn)
216 {
217 	struct rds_iw_connection *ic = conn->c_transport_data;
218 
219 	/* place conn on nodev_conns_list */
220 	spin_lock(&iw_nodev_conns_lock);
221 
222 	spin_lock_irq(&rds_iwdev->spinlock);
223 	BUG_ON(list_empty(&ic->iw_node));
224 	list_del(&ic->iw_node);
225 	spin_unlock_irq(&rds_iwdev->spinlock);
226 
227 	list_add_tail(&ic->iw_node, &iw_nodev_conns);
228 
229 	spin_unlock(&iw_nodev_conns_lock);
230 
231 	rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id);
232 	ic->rds_iwdev = NULL;
233 }
234 
235 void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock)
236 {
237 	struct rds_iw_connection *ic, *_ic;
238 	LIST_HEAD(tmp_list);
239 
240 	/* avoid calling conn_destroy with irqs off */
241 	spin_lock_irq(list_lock);
242 	list_splice(list, &tmp_list);
243 	INIT_LIST_HEAD(list);
244 	spin_unlock_irq(list_lock);
245 
246 	list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node)
247 		rds_conn_destroy(ic->conn);
248 }
249 
250 static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg,
251 		struct scatterlist *list, unsigned int sg_len)
252 {
253 	sg->list = list;
254 	sg->len = sg_len;
255 	sg->dma_len = 0;
256 	sg->dma_npages = 0;
257 	sg->bytes = 0;
258 }
259 
260 static int rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev,
261 				  struct rds_iw_scatterlist *sg)
262 {
263 	struct ib_device *dev = rds_iwdev->dev;
264 	int i, ret;
265 
266 	WARN_ON(sg->dma_len);
267 
268 	sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
269 	if (unlikely(!sg->dma_len)) {
270 		printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n");
271 		return -EBUSY;
272 	}
273 
274 	sg->bytes = 0;
275 	sg->dma_npages = 0;
276 
277 	ret = -EINVAL;
278 	for (i = 0; i < sg->dma_len; ++i) {
279 		unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]);
280 		u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]);
281 		u64 end_addr;
282 
283 		sg->bytes += dma_len;
284 
285 		end_addr = dma_addr + dma_len;
286 		if (dma_addr & PAGE_MASK) {
287 			if (i > 0)
288 				goto out_unmap;
289 			dma_addr &= ~PAGE_MASK;
290 		}
291 		if (end_addr & PAGE_MASK) {
292 			if (i < sg->dma_len - 1)
293 				goto out_unmap;
294 			end_addr = (end_addr + PAGE_MASK) & ~PAGE_MASK;
295 		}
296 
297 		sg->dma_npages += (end_addr - dma_addr) >> PAGE_SHIFT;
298 	}
299 
300 	/* Now gather the dma addrs into one list */
301 	if (sg->dma_npages > fastreg_message_size)
302 		goto out_unmap;
303 
304 
305 
306 	return 0;
307 
308 out_unmap:
309 	ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL);
310 	sg->dma_len = 0;
311 	return ret;
312 }
313 
314 
315 struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev)
316 {
317 	struct rds_iw_mr_pool *pool;
318 
319 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
320 	if (!pool) {
321 		printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n");
322 		return ERR_PTR(-ENOMEM);
323 	}
324 
325 	pool->device = rds_iwdev;
326 	INIT_LIST_HEAD(&pool->dirty_list);
327 	INIT_LIST_HEAD(&pool->clean_list);
328 	mutex_init(&pool->flush_lock);
329 	spin_lock_init(&pool->list_lock);
330 	INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker);
331 
332 	pool->max_message_size = fastreg_message_size;
333 	pool->max_items = fastreg_pool_size;
334 	pool->max_free_pinned = pool->max_items * pool->max_message_size / 4;
335 	pool->max_pages = fastreg_message_size;
336 
337 	/* We never allow more than max_items MRs to be allocated.
338 	 * When we exceed more than max_items_soft, we start freeing
339 	 * items more aggressively.
340 	 * Make sure that max_items > max_items_soft > max_items / 2
341 	 */
342 	pool->max_items_soft = pool->max_items * 3 / 4;
343 
344 	return pool;
345 }
346 
347 void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo)
348 {
349 	struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
350 
351 	iinfo->rdma_mr_max = pool->max_items;
352 	iinfo->rdma_mr_size = pool->max_pages;
353 }
354 
355 void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool)
356 {
357 	flush_workqueue(rds_wq);
358 	rds_iw_flush_mr_pool(pool, 1);
359 	BUG_ON(atomic_read(&pool->item_count));
360 	BUG_ON(atomic_read(&pool->free_pinned));
361 	kfree(pool);
362 }
363 
364 static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool)
365 {
366 	struct rds_iw_mr *ibmr = NULL;
367 	unsigned long flags;
368 
369 	spin_lock_irqsave(&pool->list_lock, flags);
370 	if (!list_empty(&pool->clean_list)) {
371 		ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list);
372 		list_del_init(&ibmr->mapping.m_list);
373 	}
374 	spin_unlock_irqrestore(&pool->list_lock, flags);
375 
376 	return ibmr;
377 }
378 
379 static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev)
380 {
381 	struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
382 	struct rds_iw_mr *ibmr = NULL;
383 	int err = 0, iter = 0;
384 
385 	while (1) {
386 		ibmr = rds_iw_reuse_fmr(pool);
387 		if (ibmr)
388 			return ibmr;
389 
390 		/* No clean MRs - now we have the choice of either
391 		 * allocating a fresh MR up to the limit imposed by the
392 		 * driver, or flush any dirty unused MRs.
393 		 * We try to avoid stalling in the send path if possible,
394 		 * so we allocate as long as we're allowed to.
395 		 *
396 		 * We're fussy with enforcing the FMR limit, though. If the driver
397 		 * tells us we can't use more than N fmrs, we shouldn't start
398 		 * arguing with it */
399 		if (atomic_inc_return(&pool->item_count) <= pool->max_items)
400 			break;
401 
402 		atomic_dec(&pool->item_count);
403 
404 		if (++iter > 2) {
405 			rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted);
406 			return ERR_PTR(-EAGAIN);
407 		}
408 
409 		/* We do have some empty MRs. Flush them out. */
410 		rds_iw_stats_inc(s_iw_rdma_mr_pool_wait);
411 		rds_iw_flush_mr_pool(pool, 0);
412 	}
413 
414 	ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL);
415 	if (!ibmr) {
416 		err = -ENOMEM;
417 		goto out_no_cigar;
418 	}
419 
420 	spin_lock_init(&ibmr->mapping.m_lock);
421 	INIT_LIST_HEAD(&ibmr->mapping.m_list);
422 	ibmr->mapping.m_mr = ibmr;
423 
424 	err = rds_iw_init_reg(pool, ibmr);
425 	if (err)
426 		goto out_no_cigar;
427 
428 	rds_iw_stats_inc(s_iw_rdma_mr_alloc);
429 	return ibmr;
430 
431 out_no_cigar:
432 	if (ibmr) {
433 		rds_iw_destroy_fastreg(pool, ibmr);
434 		kfree(ibmr);
435 	}
436 	atomic_dec(&pool->item_count);
437 	return ERR_PTR(err);
438 }
439 
440 void rds_iw_sync_mr(void *trans_private, int direction)
441 {
442 	struct rds_iw_mr *ibmr = trans_private;
443 	struct rds_iw_device *rds_iwdev = ibmr->device;
444 
445 	switch (direction) {
446 	case DMA_FROM_DEVICE:
447 		ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list,
448 			ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
449 		break;
450 	case DMA_TO_DEVICE:
451 		ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list,
452 			ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL);
453 		break;
454 	}
455 }
456 
457 /*
458  * Flush our pool of MRs.
459  * At a minimum, all currently unused MRs are unmapped.
460  * If the number of MRs allocated exceeds the limit, we also try
461  * to free as many MRs as needed to get back to this limit.
462  */
463 static void rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all)
464 {
465 	struct rds_iw_mr *ibmr, *next;
466 	LIST_HEAD(unmap_list);
467 	LIST_HEAD(kill_list);
468 	unsigned long flags;
469 	unsigned int nfreed = 0, ncleaned = 0, unpinned = 0;
470 
471 	rds_iw_stats_inc(s_iw_rdma_mr_pool_flush);
472 
473 	mutex_lock(&pool->flush_lock);
474 
475 	spin_lock_irqsave(&pool->list_lock, flags);
476 	/* Get the list of all mappings to be destroyed */
477 	list_splice_init(&pool->dirty_list, &unmap_list);
478 	if (free_all)
479 		list_splice_init(&pool->clean_list, &kill_list);
480 	spin_unlock_irqrestore(&pool->list_lock, flags);
481 
482 	/* Batched invalidate of dirty MRs.
483 	 * For FMR based MRs, the mappings on the unmap list are
484 	 * actually members of an ibmr (ibmr->mapping). They either
485 	 * migrate to the kill_list, or have been cleaned and should be
486 	 * moved to the clean_list.
487 	 * For fastregs, they will be dynamically allocated, and
488 	 * will be destroyed by the unmap function.
489 	 */
490 	if (!list_empty(&unmap_list)) {
491 		ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list,
492 						     &kill_list, &unpinned);
493 		/* If we've been asked to destroy all MRs, move those
494 		 * that were simply cleaned to the kill list */
495 		if (free_all)
496 			list_splice_init(&unmap_list, &kill_list);
497 	}
498 
499 	/* Destroy any MRs that are past their best before date */
500 	list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) {
501 		rds_iw_stats_inc(s_iw_rdma_mr_free);
502 		list_del(&ibmr->mapping.m_list);
503 		rds_iw_destroy_fastreg(pool, ibmr);
504 		kfree(ibmr);
505 		nfreed++;
506 	}
507 
508 	/* Anything that remains are laundered ibmrs, which we can add
509 	 * back to the clean list. */
510 	if (!list_empty(&unmap_list)) {
511 		spin_lock_irqsave(&pool->list_lock, flags);
512 		list_splice(&unmap_list, &pool->clean_list);
513 		spin_unlock_irqrestore(&pool->list_lock, flags);
514 	}
515 
516 	atomic_sub(unpinned, &pool->free_pinned);
517 	atomic_sub(ncleaned, &pool->dirty_count);
518 	atomic_sub(nfreed, &pool->item_count);
519 
520 	mutex_unlock(&pool->flush_lock);
521 }
522 
523 static void rds_iw_mr_pool_flush_worker(struct work_struct *work)
524 {
525 	struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker);
526 
527 	rds_iw_flush_mr_pool(pool, 0);
528 }
529 
530 void rds_iw_free_mr(void *trans_private, int invalidate)
531 {
532 	struct rds_iw_mr *ibmr = trans_private;
533 	struct rds_iw_mr_pool *pool = ibmr->device->mr_pool;
534 
535 	rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len);
536 	if (!pool)
537 		return;
538 
539 	/* Return it to the pool's free list */
540 	rds_iw_free_fastreg(pool, ibmr);
541 
542 	/* If we've pinned too many pages, request a flush */
543 	if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
544 	    atomic_read(&pool->dirty_count) >= pool->max_items / 10)
545 		queue_work(rds_wq, &pool->flush_worker);
546 
547 	if (invalidate) {
548 		if (likely(!in_interrupt())) {
549 			rds_iw_flush_mr_pool(pool, 0);
550 		} else {
551 			/* We get here if the user created a MR marked
552 			 * as use_once and invalidate at the same time. */
553 			queue_work(rds_wq, &pool->flush_worker);
554 		}
555 	}
556 }
557 
558 void rds_iw_flush_mrs(void)
559 {
560 	struct rds_iw_device *rds_iwdev;
561 
562 	list_for_each_entry(rds_iwdev, &rds_iw_devices, list) {
563 		struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool;
564 
565 		if (pool)
566 			rds_iw_flush_mr_pool(pool, 0);
567 	}
568 }
569 
570 void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents,
571 		    struct rds_sock *rs, u32 *key_ret)
572 {
573 	struct rds_iw_device *rds_iwdev;
574 	struct rds_iw_mr *ibmr = NULL;
575 	struct rdma_cm_id *cm_id;
576 	struct sockaddr_in src = {
577 		.sin_addr.s_addr = rs->rs_bound_addr,
578 		.sin_port = rs->rs_bound_port,
579 	};
580 	struct sockaddr_in dst = {
581 		.sin_addr.s_addr = rs->rs_conn_addr,
582 		.sin_port = rs->rs_conn_port,
583 	};
584 	int ret;
585 
586 	ret = rds_iw_get_device(&src, &dst, &rds_iwdev, &cm_id);
587 	if (ret || !cm_id) {
588 		ret = -ENODEV;
589 		goto out;
590 	}
591 
592 	if (!rds_iwdev->mr_pool) {
593 		ret = -ENODEV;
594 		goto out;
595 	}
596 
597 	ibmr = rds_iw_alloc_mr(rds_iwdev);
598 	if (IS_ERR(ibmr))
599 		return ibmr;
600 
601 	ibmr->cm_id = cm_id;
602 	ibmr->device = rds_iwdev;
603 
604 	ret = rds_iw_map_reg(rds_iwdev->mr_pool, ibmr, sg, nents);
605 	if (ret == 0)
606 		*key_ret = ibmr->mr->rkey;
607 	else
608 		printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret);
609 
610 out:
611 	if (ret) {
612 		if (ibmr)
613 			rds_iw_free_mr(ibmr, 0);
614 		ibmr = ERR_PTR(ret);
615 	}
616 	return ibmr;
617 }
618 
619 /*
620  * iWARP reg handling
621  *
622  * The life cycle of a fastreg registration is a bit different from
623  * FMRs.
624  * The idea behind fastreg is to have one MR, to which we bind different
625  * mappings over time. To avoid stalling on the expensive map and invalidate
626  * operations, these operations are pipelined on the same send queue on
627  * which we want to send the message containing the r_key.
628  *
629  * This creates a bit of a problem for us, as we do not have the destination
630  * IP in GET_MR, so the connection must be setup prior to the GET_MR call for
631  * RDMA to be correctly setup.  If a fastreg request is present, rds_iw_xmit
632  * will try to queue a LOCAL_INV (if needed) and a REG_MR work request
633  * before queuing the SEND. When completions for these arrive, they are
634  * dispatched to the MR has a bit set showing that RDMa can be performed.
635  *
636  * There is another interesting aspect that's related to invalidation.
637  * The application can request that a mapping is invalidated in FREE_MR.
638  * The expectation there is that this invalidation step includes ALL
639  * PREVIOUSLY FREED MRs.
640  */
641 static int rds_iw_init_reg(struct rds_iw_mr_pool *pool,
642 			   struct rds_iw_mr *ibmr)
643 {
644 	struct rds_iw_device *rds_iwdev = pool->device;
645 	struct ib_mr *mr;
646 	int err;
647 
648 	mr = ib_alloc_mr(rds_iwdev->pd, IB_MR_TYPE_MEM_REG,
649 			 pool->max_message_size);
650 	if (IS_ERR(mr)) {
651 		err = PTR_ERR(mr);
652 
653 		printk(KERN_WARNING "RDS/IW: ib_alloc_mr failed (err=%d)\n", err);
654 		return err;
655 	}
656 
657 	ibmr->mr = mr;
658 	return 0;
659 }
660 
661 static int rds_iw_rdma_reg_mr(struct rds_iw_mapping *mapping)
662 {
663 	struct rds_iw_mr *ibmr = mapping->m_mr;
664 	struct rds_iw_scatterlist *m_sg = &mapping->m_sg;
665 	struct ib_reg_wr reg_wr;
666 	struct ib_send_wr *failed_wr;
667 	int ret, n;
668 
669 	n = ib_map_mr_sg_zbva(ibmr->mr, m_sg->list, m_sg->len, PAGE_SIZE);
670 	if (unlikely(n != m_sg->len))
671 		return n < 0 ? n : -EINVAL;
672 
673 	reg_wr.wr.next = NULL;
674 	reg_wr.wr.opcode = IB_WR_REG_MR;
675 	reg_wr.wr.wr_id = RDS_IW_REG_WR_ID;
676 	reg_wr.wr.num_sge = 0;
677 	reg_wr.mr = ibmr->mr;
678 	reg_wr.key = mapping->m_rkey;
679 	reg_wr.access = IB_ACCESS_LOCAL_WRITE |
680 			IB_ACCESS_REMOTE_READ |
681 			IB_ACCESS_REMOTE_WRITE;
682 
683 	/*
684 	 * Perform a WR for the reg_mr. Each individual page
685 	 * in the sg list is added to the fast reg page list and placed
686 	 * inside the reg_mr WR.  The key used is a rolling 8bit
687 	 * counter, which should guarantee uniqueness.
688 	 */
689 	ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++);
690 	mapping->m_rkey = ibmr->mr->rkey;
691 
692 	failed_wr = &reg_wr.wr;
693 	ret = ib_post_send(ibmr->cm_id->qp, &reg_wr.wr, &failed_wr);
694 	BUG_ON(failed_wr != &reg_wr.wr);
695 	if (ret)
696 		printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
697 			__func__, __LINE__, ret);
698 	return ret;
699 }
700 
701 static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr)
702 {
703 	struct ib_send_wr s_wr, *failed_wr;
704 	int ret = 0;
705 
706 	if (!ibmr->cm_id->qp || !ibmr->mr)
707 		goto out;
708 
709 	memset(&s_wr, 0, sizeof(s_wr));
710 	s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID;
711 	s_wr.opcode = IB_WR_LOCAL_INV;
712 	s_wr.ex.invalidate_rkey = ibmr->mr->rkey;
713 	s_wr.send_flags = IB_SEND_SIGNALED;
714 
715 	failed_wr = &s_wr;
716 	ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr);
717 	if (ret) {
718 		printk_ratelimited(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n",
719 			__func__, __LINE__, ret);
720 		goto out;
721 	}
722 out:
723 	return ret;
724 }
725 
726 static int rds_iw_map_reg(struct rds_iw_mr_pool *pool,
727 			  struct rds_iw_mr *ibmr,
728 			  struct scatterlist *sg,
729 			  unsigned int sg_len)
730 {
731 	struct rds_iw_device *rds_iwdev = pool->device;
732 	struct rds_iw_mapping *mapping = &ibmr->mapping;
733 	u64 *dma_pages;
734 	int ret = 0;
735 
736 	rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len);
737 
738 	ret = rds_iw_map_scatterlist(rds_iwdev, &mapping->m_sg);
739 	if (ret) {
740 		dma_pages = NULL;
741 		goto out;
742 	}
743 
744 	if (mapping->m_sg.dma_len > pool->max_message_size) {
745 		ret = -EMSGSIZE;
746 		goto out;
747 	}
748 
749 	ret = rds_iw_rdma_reg_mr(mapping);
750 	if (ret)
751 		goto out;
752 
753 	rds_iw_stats_inc(s_iw_rdma_mr_used);
754 
755 out:
756 	kfree(dma_pages);
757 
758 	return ret;
759 }
760 
761 /*
762  * "Free" a fastreg MR.
763  */
764 static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool,
765 		struct rds_iw_mr *ibmr)
766 {
767 	unsigned long flags;
768 	int ret;
769 
770 	if (!ibmr->mapping.m_sg.dma_len)
771 		return;
772 
773 	ret = rds_iw_rdma_fastreg_inv(ibmr);
774 	if (ret)
775 		return;
776 
777 	/* Try to post the LOCAL_INV WR to the queue. */
778 	spin_lock_irqsave(&pool->list_lock, flags);
779 
780 	list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list);
781 	atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned);
782 	atomic_inc(&pool->dirty_count);
783 
784 	spin_unlock_irqrestore(&pool->list_lock, flags);
785 }
786 
787 static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool,
788 				struct list_head *unmap_list,
789 				struct list_head *kill_list,
790 				int *unpinned)
791 {
792 	struct rds_iw_mapping *mapping, *next;
793 	unsigned int ncleaned = 0;
794 	LIST_HEAD(laundered);
795 
796 	/* Batched invalidation of fastreg MRs.
797 	 * Why do we do it this way, even though we could pipeline unmap
798 	 * and remap? The reason is the application semantics - when the
799 	 * application requests an invalidation of MRs, it expects all
800 	 * previously released R_Keys to become invalid.
801 	 *
802 	 * If we implement MR reuse naively, we risk memory corruption
803 	 * (this has actually been observed). So the default behavior
804 	 * requires that a MR goes through an explicit unmap operation before
805 	 * we can reuse it again.
806 	 *
807 	 * We could probably improve on this a little, by allowing immediate
808 	 * reuse of a MR on the same socket (eg you could add small
809 	 * cache of unused MRs to strct rds_socket - GET_MR could grab one
810 	 * of these without requiring an explicit invalidate).
811 	 */
812 	while (!list_empty(unmap_list)) {
813 		unsigned long flags;
814 
815 		spin_lock_irqsave(&pool->list_lock, flags);
816 		list_for_each_entry_safe(mapping, next, unmap_list, m_list) {
817 			*unpinned += mapping->m_sg.len;
818 			list_move(&mapping->m_list, &laundered);
819 			ncleaned++;
820 		}
821 		spin_unlock_irqrestore(&pool->list_lock, flags);
822 	}
823 
824 	/* Move all laundered mappings back to the unmap list.
825 	 * We do not kill any WRs right now - it doesn't seem the
826 	 * fastreg API has a max_remap limit. */
827 	list_splice_init(&laundered, unmap_list);
828 
829 	return ncleaned;
830 }
831 
832 static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool,
833 		struct rds_iw_mr *ibmr)
834 {
835 	if (ibmr->mr)
836 		ib_dereg_mr(ibmr->mr);
837 }
838