1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
38 
39 #include "rds.h"
40 #include "iw.h"
41 
42 static struct kmem_cache *rds_iw_incoming_slab;
43 static struct kmem_cache *rds_iw_frag_slab;
44 static atomic_t	rds_iw_allocation = ATOMIC_INIT(0);
45 
rds_iw_frag_drop_page(struct rds_page_frag * frag)46 static void rds_iw_frag_drop_page(struct rds_page_frag *frag)
47 {
48 	rdsdebug("frag %p page %p\n", frag, frag->f_page);
49 	__free_page(frag->f_page);
50 	frag->f_page = NULL;
51 }
52 
rds_iw_frag_free(struct rds_page_frag * frag)53 static void rds_iw_frag_free(struct rds_page_frag *frag)
54 {
55 	rdsdebug("frag %p page %p\n", frag, frag->f_page);
56 	BUG_ON(frag->f_page);
57 	kmem_cache_free(rds_iw_frag_slab, frag);
58 }
59 
60 /*
61  * We map a page at a time.  Its fragments are posted in order.  This
62  * is called in fragment order as the fragments get send completion events.
63  * Only the last frag in the page performs the unmapping.
64  *
65  * It's OK for ring cleanup to call this in whatever order it likes because
66  * DMA is not in flight and so we can unmap while other ring entries still
67  * hold page references in their frags.
68  */
rds_iw_recv_unmap_page(struct rds_iw_connection * ic,struct rds_iw_recv_work * recv)69 static void rds_iw_recv_unmap_page(struct rds_iw_connection *ic,
70 				   struct rds_iw_recv_work *recv)
71 {
72 	struct rds_page_frag *frag = recv->r_frag;
73 
74 	rdsdebug("recv %p frag %p page %p\n", recv, frag, frag->f_page);
75 	if (frag->f_mapped)
76 		ib_dma_unmap_page(ic->i_cm_id->device,
77 			       frag->f_mapped,
78 			       RDS_FRAG_SIZE, DMA_FROM_DEVICE);
79 	frag->f_mapped = 0;
80 }
81 
rds_iw_recv_init_ring(struct rds_iw_connection * ic)82 void rds_iw_recv_init_ring(struct rds_iw_connection *ic)
83 {
84 	struct rds_iw_recv_work *recv;
85 	u32 i;
86 
87 	for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
88 		struct ib_sge *sge;
89 
90 		recv->r_iwinc = NULL;
91 		recv->r_frag = NULL;
92 
93 		recv->r_wr.next = NULL;
94 		recv->r_wr.wr_id = i;
95 		recv->r_wr.sg_list = recv->r_sge;
96 		recv->r_wr.num_sge = RDS_IW_RECV_SGE;
97 
98 		sge = rds_iw_data_sge(ic, recv->r_sge);
99 		sge->addr = 0;
100 		sge->length = RDS_FRAG_SIZE;
101 		sge->lkey = 0;
102 
103 		sge = rds_iw_header_sge(ic, recv->r_sge);
104 		sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
105 		sge->length = sizeof(struct rds_header);
106 		sge->lkey = 0;
107 	}
108 }
109 
rds_iw_recv_clear_one(struct rds_iw_connection * ic,struct rds_iw_recv_work * recv)110 static void rds_iw_recv_clear_one(struct rds_iw_connection *ic,
111 				  struct rds_iw_recv_work *recv)
112 {
113 	if (recv->r_iwinc) {
114 		rds_inc_put(&recv->r_iwinc->ii_inc);
115 		recv->r_iwinc = NULL;
116 	}
117 	if (recv->r_frag) {
118 		rds_iw_recv_unmap_page(ic, recv);
119 		if (recv->r_frag->f_page)
120 			rds_iw_frag_drop_page(recv->r_frag);
121 		rds_iw_frag_free(recv->r_frag);
122 		recv->r_frag = NULL;
123 	}
124 }
125 
rds_iw_recv_clear_ring(struct rds_iw_connection * ic)126 void rds_iw_recv_clear_ring(struct rds_iw_connection *ic)
127 {
128 	u32 i;
129 
130 	for (i = 0; i < ic->i_recv_ring.w_nr; i++)
131 		rds_iw_recv_clear_one(ic, &ic->i_recvs[i]);
132 
133 	if (ic->i_frag.f_page)
134 		rds_iw_frag_drop_page(&ic->i_frag);
135 }
136 
rds_iw_recv_refill_one(struct rds_connection * conn,struct rds_iw_recv_work * recv,gfp_t kptr_gfp,gfp_t page_gfp)137 static int rds_iw_recv_refill_one(struct rds_connection *conn,
138 				  struct rds_iw_recv_work *recv,
139 				  gfp_t kptr_gfp, gfp_t page_gfp)
140 {
141 	struct rds_iw_connection *ic = conn->c_transport_data;
142 	dma_addr_t dma_addr;
143 	struct ib_sge *sge;
144 	int ret = -ENOMEM;
145 
146 	if (!recv->r_iwinc) {
147 		if (!atomic_add_unless(&rds_iw_allocation, 1, rds_iw_sysctl_max_recv_allocation)) {
148 			rds_iw_stats_inc(s_iw_rx_alloc_limit);
149 			goto out;
150 		}
151 		recv->r_iwinc = kmem_cache_alloc(rds_iw_incoming_slab,
152 						 kptr_gfp);
153 		if (!recv->r_iwinc) {
154 			atomic_dec(&rds_iw_allocation);
155 			goto out;
156 		}
157 		INIT_LIST_HEAD(&recv->r_iwinc->ii_frags);
158 		rds_inc_init(&recv->r_iwinc->ii_inc, conn, conn->c_faddr);
159 	}
160 
161 	if (!recv->r_frag) {
162 		recv->r_frag = kmem_cache_alloc(rds_iw_frag_slab, kptr_gfp);
163 		if (!recv->r_frag)
164 			goto out;
165 		INIT_LIST_HEAD(&recv->r_frag->f_item);
166 		recv->r_frag->f_page = NULL;
167 	}
168 
169 	if (!ic->i_frag.f_page) {
170 		ic->i_frag.f_page = alloc_page(page_gfp);
171 		if (!ic->i_frag.f_page)
172 			goto out;
173 		ic->i_frag.f_offset = 0;
174 	}
175 
176 	dma_addr = ib_dma_map_page(ic->i_cm_id->device,
177 				  ic->i_frag.f_page,
178 				  ic->i_frag.f_offset,
179 				  RDS_FRAG_SIZE,
180 				  DMA_FROM_DEVICE);
181 	if (ib_dma_mapping_error(ic->i_cm_id->device, dma_addr))
182 		goto out;
183 
184 	/*
185 	 * Once we get the RDS_PAGE_LAST_OFF frag then rds_iw_frag_unmap()
186 	 * must be called on this recv.  This happens as completions hit
187 	 * in order or on connection shutdown.
188 	 */
189 	recv->r_frag->f_page = ic->i_frag.f_page;
190 	recv->r_frag->f_offset = ic->i_frag.f_offset;
191 	recv->r_frag->f_mapped = dma_addr;
192 
193 	sge = rds_iw_data_sge(ic, recv->r_sge);
194 	sge->addr = dma_addr;
195 	sge->length = RDS_FRAG_SIZE;
196 
197 	sge = rds_iw_header_sge(ic, recv->r_sge);
198 	sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
199 	sge->length = sizeof(struct rds_header);
200 
201 	get_page(recv->r_frag->f_page);
202 
203 	if (ic->i_frag.f_offset < RDS_PAGE_LAST_OFF) {
204 		ic->i_frag.f_offset += RDS_FRAG_SIZE;
205 	} else {
206 		put_page(ic->i_frag.f_page);
207 		ic->i_frag.f_page = NULL;
208 		ic->i_frag.f_offset = 0;
209 	}
210 
211 	ret = 0;
212 out:
213 	return ret;
214 }
215 
216 /*
217  * This tries to allocate and post unused work requests after making sure that
218  * they have all the allocations they need to queue received fragments into
219  * sockets.  The i_recv_mutex is held here so that ring_alloc and _unalloc
220  * pairs don't go unmatched.
221  *
222  * -1 is returned if posting fails due to temporary resource exhaustion.
223  */
rds_iw_recv_refill(struct rds_connection * conn,gfp_t kptr_gfp,gfp_t page_gfp,int prefill)224 int rds_iw_recv_refill(struct rds_connection *conn, gfp_t kptr_gfp,
225 		       gfp_t page_gfp, int prefill)
226 {
227 	struct rds_iw_connection *ic = conn->c_transport_data;
228 	struct rds_iw_recv_work *recv;
229 	struct ib_recv_wr *failed_wr;
230 	unsigned int posted = 0;
231 	int ret = 0;
232 	u32 pos;
233 
234 	while ((prefill || rds_conn_up(conn)) &&
235 	       rds_iw_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
236 		if (pos >= ic->i_recv_ring.w_nr) {
237 			printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
238 					pos);
239 			ret = -EINVAL;
240 			break;
241 		}
242 
243 		recv = &ic->i_recvs[pos];
244 		ret = rds_iw_recv_refill_one(conn, recv, kptr_gfp, page_gfp);
245 		if (ret) {
246 			ret = -1;
247 			break;
248 		}
249 
250 		/* XXX when can this fail? */
251 		ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
252 		rdsdebug("recv %p iwinc %p page %p addr %lu ret %d\n", recv,
253 			 recv->r_iwinc, recv->r_frag->f_page,
254 			 (long) recv->r_frag->f_mapped, ret);
255 		if (ret) {
256 			rds_iw_conn_error(conn, "recv post on "
257 			       "%pI4 returned %d, disconnecting and "
258 			       "reconnecting\n", &conn->c_faddr,
259 			       ret);
260 			ret = -1;
261 			break;
262 		}
263 
264 		posted++;
265 	}
266 
267 	/* We're doing flow control - update the window. */
268 	if (ic->i_flowctl && posted)
269 		rds_iw_advertise_credits(conn, posted);
270 
271 	if (ret)
272 		rds_iw_ring_unalloc(&ic->i_recv_ring, 1);
273 	return ret;
274 }
275 
rds_iw_inc_purge(struct rds_incoming * inc)276 static void rds_iw_inc_purge(struct rds_incoming *inc)
277 {
278 	struct rds_iw_incoming *iwinc;
279 	struct rds_page_frag *frag;
280 	struct rds_page_frag *pos;
281 
282 	iwinc = container_of(inc, struct rds_iw_incoming, ii_inc);
283 	rdsdebug("purging iwinc %p inc %p\n", iwinc, inc);
284 
285 	list_for_each_entry_safe(frag, pos, &iwinc->ii_frags, f_item) {
286 		list_del_init(&frag->f_item);
287 		rds_iw_frag_drop_page(frag);
288 		rds_iw_frag_free(frag);
289 	}
290 }
291 
rds_iw_inc_free(struct rds_incoming * inc)292 void rds_iw_inc_free(struct rds_incoming *inc)
293 {
294 	struct rds_iw_incoming *iwinc;
295 
296 	iwinc = container_of(inc, struct rds_iw_incoming, ii_inc);
297 
298 	rds_iw_inc_purge(inc);
299 	rdsdebug("freeing iwinc %p inc %p\n", iwinc, inc);
300 	BUG_ON(!list_empty(&iwinc->ii_frags));
301 	kmem_cache_free(rds_iw_incoming_slab, iwinc);
302 	atomic_dec(&rds_iw_allocation);
303 	BUG_ON(atomic_read(&rds_iw_allocation) < 0);
304 }
305 
rds_iw_inc_copy_to_user(struct rds_incoming * inc,struct iov_iter * to)306 int rds_iw_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
307 {
308 	struct rds_iw_incoming *iwinc;
309 	struct rds_page_frag *frag;
310 	unsigned long to_copy;
311 	unsigned long frag_off = 0;
312 	int copied = 0;
313 	int ret;
314 	u32 len;
315 
316 	iwinc = container_of(inc, struct rds_iw_incoming, ii_inc);
317 	frag = list_entry(iwinc->ii_frags.next, struct rds_page_frag, f_item);
318 	len = be32_to_cpu(inc->i_hdr.h_len);
319 
320 	while (iov_iter_count(to) && copied < len) {
321 		if (frag_off == RDS_FRAG_SIZE) {
322 			frag = list_entry(frag->f_item.next,
323 					  struct rds_page_frag, f_item);
324 			frag_off = 0;
325 		}
326 		to_copy = min_t(unsigned long, iov_iter_count(to),
327 				RDS_FRAG_SIZE - frag_off);
328 		to_copy = min_t(unsigned long, to_copy, len - copied);
329 
330 		/* XXX needs + offset for multiple recvs per page */
331 		rds_stats_add(s_copy_to_user, to_copy);
332 		ret = copy_page_to_iter(frag->f_page,
333 					frag->f_offset + frag_off,
334 					to_copy,
335 					to);
336 		if (ret != to_copy)
337 			return -EFAULT;
338 
339 		frag_off += to_copy;
340 		copied += to_copy;
341 	}
342 
343 	return copied;
344 }
345 
346 /* ic starts out kzalloc()ed */
rds_iw_recv_init_ack(struct rds_iw_connection * ic)347 void rds_iw_recv_init_ack(struct rds_iw_connection *ic)
348 {
349 	struct ib_send_wr *wr = &ic->i_ack_wr;
350 	struct ib_sge *sge = &ic->i_ack_sge;
351 
352 	sge->addr = ic->i_ack_dma;
353 	sge->length = sizeof(struct rds_header);
354 	sge->lkey = rds_iw_local_dma_lkey(ic);
355 
356 	wr->sg_list = sge;
357 	wr->num_sge = 1;
358 	wr->opcode = IB_WR_SEND;
359 	wr->wr_id = RDS_IW_ACK_WR_ID;
360 	wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
361 }
362 
363 /*
364  * You'd think that with reliable IB connections you wouldn't need to ack
365  * messages that have been received.  The problem is that IB hardware generates
366  * an ack message before it has DMAed the message into memory.  This creates a
367  * potential message loss if the HCA is disabled for any reason between when it
368  * sends the ack and before the message is DMAed and processed.  This is only a
369  * potential issue if another HCA is available for fail-over.
370  *
371  * When the remote host receives our ack they'll free the sent message from
372  * their send queue.  To decrease the latency of this we always send an ack
373  * immediately after we've received messages.
374  *
375  * For simplicity, we only have one ack in flight at a time.  This puts
376  * pressure on senders to have deep enough send queues to absorb the latency of
377  * a single ack frame being in flight.  This might not be good enough.
378  *
379  * This is implemented by have a long-lived send_wr and sge which point to a
380  * statically allocated ack frame.  This ack wr does not fall under the ring
381  * accounting that the tx and rx wrs do.  The QP attribute specifically makes
382  * room for it beyond the ring size.  Send completion notices its special
383  * wr_id and avoids working with the ring in that case.
384  */
385 #ifndef KERNEL_HAS_ATOMIC64
rds_iw_set_ack(struct rds_iw_connection * ic,u64 seq,int ack_required)386 static void rds_iw_set_ack(struct rds_iw_connection *ic, u64 seq,
387 				int ack_required)
388 {
389 	unsigned long flags;
390 
391 	spin_lock_irqsave(&ic->i_ack_lock, flags);
392 	ic->i_ack_next = seq;
393 	if (ack_required)
394 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
395 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
396 }
397 
rds_iw_get_ack(struct rds_iw_connection * ic)398 static u64 rds_iw_get_ack(struct rds_iw_connection *ic)
399 {
400 	unsigned long flags;
401 	u64 seq;
402 
403 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
404 
405 	spin_lock_irqsave(&ic->i_ack_lock, flags);
406 	seq = ic->i_ack_next;
407 	spin_unlock_irqrestore(&ic->i_ack_lock, flags);
408 
409 	return seq;
410 }
411 #else
rds_iw_set_ack(struct rds_iw_connection * ic,u64 seq,int ack_required)412 static void rds_iw_set_ack(struct rds_iw_connection *ic, u64 seq,
413 				int ack_required)
414 {
415 	atomic64_set(&ic->i_ack_next, seq);
416 	if (ack_required) {
417 		smp_mb__before_atomic();
418 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
419 	}
420 }
421 
rds_iw_get_ack(struct rds_iw_connection * ic)422 static u64 rds_iw_get_ack(struct rds_iw_connection *ic)
423 {
424 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
425 	smp_mb__after_atomic();
426 
427 	return atomic64_read(&ic->i_ack_next);
428 }
429 #endif
430 
431 
rds_iw_send_ack(struct rds_iw_connection * ic,unsigned int adv_credits)432 static void rds_iw_send_ack(struct rds_iw_connection *ic, unsigned int adv_credits)
433 {
434 	struct rds_header *hdr = ic->i_ack;
435 	struct ib_send_wr *failed_wr;
436 	u64 seq;
437 	int ret;
438 
439 	seq = rds_iw_get_ack(ic);
440 
441 	rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
442 	rds_message_populate_header(hdr, 0, 0, 0);
443 	hdr->h_ack = cpu_to_be64(seq);
444 	hdr->h_credit = adv_credits;
445 	rds_message_make_checksum(hdr);
446 	ic->i_ack_queued = jiffies;
447 
448 	ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
449 	if (unlikely(ret)) {
450 		/* Failed to send. Release the WR, and
451 		 * force another ACK.
452 		 */
453 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
454 		set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
455 
456 		rds_iw_stats_inc(s_iw_ack_send_failure);
457 
458 		rds_iw_conn_error(ic->conn, "sending ack failed\n");
459 	} else
460 		rds_iw_stats_inc(s_iw_ack_sent);
461 }
462 
463 /*
464  * There are 3 ways of getting acknowledgements to the peer:
465  *  1.	We call rds_iw_attempt_ack from the recv completion handler
466  *	to send an ACK-only frame.
467  *	However, there can be only one such frame in the send queue
468  *	at any time, so we may have to postpone it.
469  *  2.	When another (data) packet is transmitted while there's
470  *	an ACK in the queue, we piggyback the ACK sequence number
471  *	on the data packet.
472  *  3.	If the ACK WR is done sending, we get called from the
473  *	send queue completion handler, and check whether there's
474  *	another ACK pending (postponed because the WR was on the
475  *	queue). If so, we transmit it.
476  *
477  * We maintain 2 variables:
478  *  -	i_ack_flags, which keeps track of whether the ACK WR
479  *	is currently in the send queue or not (IB_ACK_IN_FLIGHT)
480  *  -	i_ack_next, which is the last sequence number we received
481  *
482  * Potentially, send queue and receive queue handlers can run concurrently.
483  * It would be nice to not have to use a spinlock to synchronize things,
484  * but the one problem that rules this out is that 64bit updates are
485  * not atomic on all platforms. Things would be a lot simpler if
486  * we had atomic64 or maybe cmpxchg64 everywhere.
487  *
488  * Reconnecting complicates this picture just slightly. When we
489  * reconnect, we may be seeing duplicate packets. The peer
490  * is retransmitting them, because it hasn't seen an ACK for
491  * them. It is important that we ACK these.
492  *
493  * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
494  * this flag set *MUST* be acknowledged immediately.
495  */
496 
497 /*
498  * When we get here, we're called from the recv queue handler.
499  * Check whether we ought to transmit an ACK.
500  */
rds_iw_attempt_ack(struct rds_iw_connection * ic)501 void rds_iw_attempt_ack(struct rds_iw_connection *ic)
502 {
503 	unsigned int adv_credits;
504 
505 	if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
506 		return;
507 
508 	if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
509 		rds_iw_stats_inc(s_iw_ack_send_delayed);
510 		return;
511 	}
512 
513 	/* Can we get a send credit? */
514 	if (!rds_iw_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
515 		rds_iw_stats_inc(s_iw_tx_throttle);
516 		clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
517 		return;
518 	}
519 
520 	clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
521 	rds_iw_send_ack(ic, adv_credits);
522 }
523 
524 /*
525  * We get here from the send completion handler, when the
526  * adapter tells us the ACK frame was sent.
527  */
rds_iw_ack_send_complete(struct rds_iw_connection * ic)528 void rds_iw_ack_send_complete(struct rds_iw_connection *ic)
529 {
530 	clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
531 	rds_iw_attempt_ack(ic);
532 }
533 
534 /*
535  * This is called by the regular xmit code when it wants to piggyback
536  * an ACK on an outgoing frame.
537  */
rds_iw_piggyb_ack(struct rds_iw_connection * ic)538 u64 rds_iw_piggyb_ack(struct rds_iw_connection *ic)
539 {
540 	if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
541 		rds_iw_stats_inc(s_iw_ack_send_piggybacked);
542 	return rds_iw_get_ack(ic);
543 }
544 
545 /*
546  * It's kind of lame that we're copying from the posted receive pages into
547  * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
548  * them.  But receiving new congestion bitmaps should be a *rare* event, so
549  * hopefully we won't need to invest that complexity in making it more
550  * efficient.  By copying we can share a simpler core with TCP which has to
551  * copy.
552  */
rds_iw_cong_recv(struct rds_connection * conn,struct rds_iw_incoming * iwinc)553 static void rds_iw_cong_recv(struct rds_connection *conn,
554 			      struct rds_iw_incoming *iwinc)
555 {
556 	struct rds_cong_map *map;
557 	unsigned int map_off;
558 	unsigned int map_page;
559 	struct rds_page_frag *frag;
560 	unsigned long frag_off;
561 	unsigned long to_copy;
562 	unsigned long copied;
563 	uint64_t uncongested = 0;
564 	void *addr;
565 
566 	/* catch completely corrupt packets */
567 	if (be32_to_cpu(iwinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
568 		return;
569 
570 	map = conn->c_fcong;
571 	map_page = 0;
572 	map_off = 0;
573 
574 	frag = list_entry(iwinc->ii_frags.next, struct rds_page_frag, f_item);
575 	frag_off = 0;
576 
577 	copied = 0;
578 
579 	while (copied < RDS_CONG_MAP_BYTES) {
580 		uint64_t *src, *dst;
581 		unsigned int k;
582 
583 		to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
584 		BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
585 
586 		addr = kmap_atomic(frag->f_page);
587 
588 		src = addr + frag_off;
589 		dst = (void *)map->m_page_addrs[map_page] + map_off;
590 		for (k = 0; k < to_copy; k += 8) {
591 			/* Record ports that became uncongested, ie
592 			 * bits that changed from 0 to 1. */
593 			uncongested |= ~(*src) & *dst;
594 			*dst++ = *src++;
595 		}
596 		kunmap_atomic(addr);
597 
598 		copied += to_copy;
599 
600 		map_off += to_copy;
601 		if (map_off == PAGE_SIZE) {
602 			map_off = 0;
603 			map_page++;
604 		}
605 
606 		frag_off += to_copy;
607 		if (frag_off == RDS_FRAG_SIZE) {
608 			frag = list_entry(frag->f_item.next,
609 					  struct rds_page_frag, f_item);
610 			frag_off = 0;
611 		}
612 	}
613 
614 	/* the congestion map is in little endian order */
615 	uncongested = le64_to_cpu(uncongested);
616 
617 	rds_cong_map_updated(map, uncongested);
618 }
619 
620 /*
621  * Rings are posted with all the allocations they'll need to queue the
622  * incoming message to the receiving socket so this can't fail.
623  * All fragments start with a header, so we can make sure we're not receiving
624  * garbage, and we can tell a small 8 byte fragment from an ACK frame.
625  */
626 struct rds_iw_ack_state {
627 	u64		ack_next;
628 	u64		ack_recv;
629 	unsigned int	ack_required:1;
630 	unsigned int	ack_next_valid:1;
631 	unsigned int	ack_recv_valid:1;
632 };
633 
rds_iw_process_recv(struct rds_connection * conn,struct rds_iw_recv_work * recv,u32 byte_len,struct rds_iw_ack_state * state)634 static void rds_iw_process_recv(struct rds_connection *conn,
635 				struct rds_iw_recv_work *recv, u32 byte_len,
636 				struct rds_iw_ack_state *state)
637 {
638 	struct rds_iw_connection *ic = conn->c_transport_data;
639 	struct rds_iw_incoming *iwinc = ic->i_iwinc;
640 	struct rds_header *ihdr, *hdr;
641 
642 	/* XXX shut down the connection if port 0,0 are seen? */
643 
644 	rdsdebug("ic %p iwinc %p recv %p byte len %u\n", ic, iwinc, recv,
645 		 byte_len);
646 
647 	if (byte_len < sizeof(struct rds_header)) {
648 		rds_iw_conn_error(conn, "incoming message "
649 		       "from %pI4 didn't include a "
650 		       "header, disconnecting and "
651 		       "reconnecting\n",
652 		       &conn->c_faddr);
653 		return;
654 	}
655 	byte_len -= sizeof(struct rds_header);
656 
657 	ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
658 
659 	/* Validate the checksum. */
660 	if (!rds_message_verify_checksum(ihdr)) {
661 		rds_iw_conn_error(conn, "incoming message "
662 		       "from %pI4 has corrupted header - "
663 		       "forcing a reconnect\n",
664 		       &conn->c_faddr);
665 		rds_stats_inc(s_recv_drop_bad_checksum);
666 		return;
667 	}
668 
669 	/* Process the ACK sequence which comes with every packet */
670 	state->ack_recv = be64_to_cpu(ihdr->h_ack);
671 	state->ack_recv_valid = 1;
672 
673 	/* Process the credits update if there was one */
674 	if (ihdr->h_credit)
675 		rds_iw_send_add_credits(conn, ihdr->h_credit);
676 
677 	if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && byte_len == 0) {
678 		/* This is an ACK-only packet. The fact that it gets
679 		 * special treatment here is that historically, ACKs
680 		 * were rather special beasts.
681 		 */
682 		rds_iw_stats_inc(s_iw_ack_received);
683 
684 		/*
685 		 * Usually the frags make their way on to incs and are then freed as
686 		 * the inc is freed.  We don't go that route, so we have to drop the
687 		 * page ref ourselves.  We can't just leave the page on the recv
688 		 * because that confuses the dma mapping of pages and each recv's use
689 		 * of a partial page.  We can leave the frag, though, it will be
690 		 * reused.
691 		 *
692 		 * FIXME: Fold this into the code path below.
693 		 */
694 		rds_iw_frag_drop_page(recv->r_frag);
695 		return;
696 	}
697 
698 	/*
699 	 * If we don't already have an inc on the connection then this
700 	 * fragment has a header and starts a message.. copy its header
701 	 * into the inc and save the inc so we can hang upcoming fragments
702 	 * off its list.
703 	 */
704 	if (!iwinc) {
705 		iwinc = recv->r_iwinc;
706 		recv->r_iwinc = NULL;
707 		ic->i_iwinc = iwinc;
708 
709 		hdr = &iwinc->ii_inc.i_hdr;
710 		memcpy(hdr, ihdr, sizeof(*hdr));
711 		ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
712 
713 		rdsdebug("ic %p iwinc %p rem %u flag 0x%x\n", ic, iwinc,
714 			 ic->i_recv_data_rem, hdr->h_flags);
715 	} else {
716 		hdr = &iwinc->ii_inc.i_hdr;
717 		/* We can't just use memcmp here; fragments of a
718 		 * single message may carry different ACKs */
719 		if (hdr->h_sequence != ihdr->h_sequence ||
720 		    hdr->h_len != ihdr->h_len ||
721 		    hdr->h_sport != ihdr->h_sport ||
722 		    hdr->h_dport != ihdr->h_dport) {
723 			rds_iw_conn_error(conn,
724 				"fragment header mismatch; forcing reconnect\n");
725 			return;
726 		}
727 	}
728 
729 	list_add_tail(&recv->r_frag->f_item, &iwinc->ii_frags);
730 	recv->r_frag = NULL;
731 
732 	if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
733 		ic->i_recv_data_rem -= RDS_FRAG_SIZE;
734 	else {
735 		ic->i_recv_data_rem = 0;
736 		ic->i_iwinc = NULL;
737 
738 		if (iwinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
739 			rds_iw_cong_recv(conn, iwinc);
740 		else {
741 			rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
742 					  &iwinc->ii_inc, GFP_ATOMIC);
743 			state->ack_next = be64_to_cpu(hdr->h_sequence);
744 			state->ack_next_valid = 1;
745 		}
746 
747 		/* Evaluate the ACK_REQUIRED flag *after* we received
748 		 * the complete frame, and after bumping the next_rx
749 		 * sequence. */
750 		if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
751 			rds_stats_inc(s_recv_ack_required);
752 			state->ack_required = 1;
753 		}
754 
755 		rds_inc_put(&iwinc->ii_inc);
756 	}
757 }
758 
759 /*
760  * Plucking the oldest entry from the ring can be done concurrently with
761  * the thread refilling the ring.  Each ring operation is protected by
762  * spinlocks and the transient state of refilling doesn't change the
763  * recording of which entry is oldest.
764  *
765  * This relies on IB only calling one cq comp_handler for each cq so that
766  * there will only be one caller of rds_recv_incoming() per RDS connection.
767  */
rds_iw_recv_cq_comp_handler(struct ib_cq * cq,void * context)768 void rds_iw_recv_cq_comp_handler(struct ib_cq *cq, void *context)
769 {
770 	struct rds_connection *conn = context;
771 	struct rds_iw_connection *ic = conn->c_transport_data;
772 
773 	rdsdebug("conn %p cq %p\n", conn, cq);
774 
775 	rds_iw_stats_inc(s_iw_rx_cq_call);
776 
777 	tasklet_schedule(&ic->i_recv_tasklet);
778 }
779 
rds_poll_cq(struct rds_iw_connection * ic,struct rds_iw_ack_state * state)780 static inline void rds_poll_cq(struct rds_iw_connection *ic,
781 			       struct rds_iw_ack_state *state)
782 {
783 	struct rds_connection *conn = ic->conn;
784 	struct ib_wc wc;
785 	struct rds_iw_recv_work *recv;
786 
787 	while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
788 		rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
789 			 (unsigned long long)wc.wr_id, wc.status, wc.byte_len,
790 			 be32_to_cpu(wc.ex.imm_data));
791 		rds_iw_stats_inc(s_iw_rx_cq_event);
792 
793 		recv = &ic->i_recvs[rds_iw_ring_oldest(&ic->i_recv_ring)];
794 
795 		rds_iw_recv_unmap_page(ic, recv);
796 
797 		/*
798 		 * Also process recvs in connecting state because it is possible
799 		 * to get a recv completion _before_ the rdmacm ESTABLISHED
800 		 * event is processed.
801 		 */
802 		if (rds_conn_up(conn) || rds_conn_connecting(conn)) {
803 			/* We expect errors as the qp is drained during shutdown */
804 			if (wc.status == IB_WC_SUCCESS) {
805 				rds_iw_process_recv(conn, recv, wc.byte_len, state);
806 			} else {
807 				rds_iw_conn_error(conn, "recv completion on "
808 				       "%pI4 had status %u, disconnecting and "
809 				       "reconnecting\n", &conn->c_faddr,
810 				       wc.status);
811 			}
812 		}
813 
814 		rds_iw_ring_free(&ic->i_recv_ring, 1);
815 	}
816 }
817 
rds_iw_recv_tasklet_fn(unsigned long data)818 void rds_iw_recv_tasklet_fn(unsigned long data)
819 {
820 	struct rds_iw_connection *ic = (struct rds_iw_connection *) data;
821 	struct rds_connection *conn = ic->conn;
822 	struct rds_iw_ack_state state = { 0, };
823 
824 	rds_poll_cq(ic, &state);
825 	ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
826 	rds_poll_cq(ic, &state);
827 
828 	if (state.ack_next_valid)
829 		rds_iw_set_ack(ic, state.ack_next, state.ack_required);
830 	if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
831 		rds_send_drop_acked(conn, state.ack_recv, NULL);
832 		ic->i_ack_recv = state.ack_recv;
833 	}
834 	if (rds_conn_up(conn))
835 		rds_iw_attempt_ack(ic);
836 
837 	/* If we ever end up with a really empty receive ring, we're
838 	 * in deep trouble, as the sender will definitely see RNR
839 	 * timeouts. */
840 	if (rds_iw_ring_empty(&ic->i_recv_ring))
841 		rds_iw_stats_inc(s_iw_rx_ring_empty);
842 
843 	/*
844 	 * If the ring is running low, then schedule the thread to refill.
845 	 */
846 	if (rds_iw_ring_low(&ic->i_recv_ring))
847 		queue_delayed_work(rds_wq, &conn->c_recv_w, 0);
848 }
849 
rds_iw_recv(struct rds_connection * conn)850 int rds_iw_recv(struct rds_connection *conn)
851 {
852 	struct rds_iw_connection *ic = conn->c_transport_data;
853 	int ret = 0;
854 
855 	rdsdebug("conn %p\n", conn);
856 
857 	/*
858 	 * If we get a temporary posting failure in this context then
859 	 * we're really low and we want the caller to back off for a bit.
860 	 */
861 	mutex_lock(&ic->i_recv_mutex);
862 	if (rds_iw_recv_refill(conn, GFP_KERNEL, GFP_HIGHUSER, 0))
863 		ret = -ENOMEM;
864 	else
865 		rds_iw_stats_inc(s_iw_rx_refill_from_thread);
866 	mutex_unlock(&ic->i_recv_mutex);
867 
868 	if (rds_conn_up(conn))
869 		rds_iw_attempt_ack(ic);
870 
871 	return ret;
872 }
873 
rds_iw_recv_init(void)874 int rds_iw_recv_init(void)
875 {
876 	struct sysinfo si;
877 	int ret = -ENOMEM;
878 
879 	/* Default to 30% of all available RAM for recv memory */
880 	si_meminfo(&si);
881 	rds_iw_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
882 
883 	rds_iw_incoming_slab = kmem_cache_create("rds_iw_incoming",
884 					sizeof(struct rds_iw_incoming),
885 					0, 0, NULL);
886 	if (!rds_iw_incoming_slab)
887 		goto out;
888 
889 	rds_iw_frag_slab = kmem_cache_create("rds_iw_frag",
890 					sizeof(struct rds_page_frag),
891 					0, 0, NULL);
892 	if (!rds_iw_frag_slab)
893 		kmem_cache_destroy(rds_iw_incoming_slab);
894 	else
895 		ret = 0;
896 out:
897 	return ret;
898 }
899 
rds_iw_recv_exit(void)900 void rds_iw_recv_exit(void)
901 {
902 	kmem_cache_destroy(rds_iw_incoming_slab);
903 	kmem_cache_destroy(rds_iw_frag_slab);
904 }
905