1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63 * struct regulator_map
64 *
65 * Used to provide symbolic supply names to devices.
66 */
67 struct regulator_map {
68 struct list_head list;
69 const char *dev_name; /* The dev_name() for the consumer */
70 const char *supply;
71 struct regulator_dev *regulator;
72 };
73
74 /*
75 * struct regulator_enable_gpio
76 *
77 * Management for shared enable GPIO pin
78 */
79 struct regulator_enable_gpio {
80 struct list_head list;
81 struct gpio_desc *gpiod;
82 u32 enable_count; /* a number of enabled shared GPIO */
83 u32 request_count; /* a number of requested shared GPIO */
84 unsigned int ena_gpio_invert:1;
85 };
86
87 /*
88 * struct regulator_supply_alias
89 *
90 * Used to map lookups for a supply onto an alternative device.
91 */
92 struct regulator_supply_alias {
93 struct list_head list;
94 struct device *src_dev;
95 const char *src_supply;
96 struct device *alias_dev;
97 const char *alias_supply;
98 };
99
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106 unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108 int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110 struct device *dev,
111 const char *supply_name);
112
dev_to_rdev(struct device * dev)113 static struct regulator_dev *dev_to_rdev(struct device *dev)
114 {
115 return container_of(dev, struct regulator_dev, dev);
116 }
117
rdev_get_name(struct regulator_dev * rdev)118 static const char *rdev_get_name(struct regulator_dev *rdev)
119 {
120 if (rdev->constraints && rdev->constraints->name)
121 return rdev->constraints->name;
122 else if (rdev->desc->name)
123 return rdev->desc->name;
124 else
125 return "";
126 }
127
have_full_constraints(void)128 static bool have_full_constraints(void)
129 {
130 return has_full_constraints || of_have_populated_dt();
131 }
132
133 /**
134 * of_get_regulator - get a regulator device node based on supply name
135 * @dev: Device pointer for the consumer (of regulator) device
136 * @supply: regulator supply name
137 *
138 * Extract the regulator device node corresponding to the supply name.
139 * returns the device node corresponding to the regulator if found, else
140 * returns NULL.
141 */
of_get_regulator(struct device * dev,const char * supply)142 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
143 {
144 struct device_node *regnode = NULL;
145 char prop_name[32]; /* 32 is max size of property name */
146
147 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
148
149 snprintf(prop_name, 32, "%s-supply", supply);
150 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
151
152 if (!regnode) {
153 dev_dbg(dev, "Looking up %s property in node %s failed",
154 prop_name, dev->of_node->full_name);
155 return NULL;
156 }
157 return regnode;
158 }
159
_regulator_can_change_status(struct regulator_dev * rdev)160 static int _regulator_can_change_status(struct regulator_dev *rdev)
161 {
162 if (!rdev->constraints)
163 return 0;
164
165 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
166 return 1;
167 else
168 return 0;
169 }
170
171 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)172 static int regulator_check_voltage(struct regulator_dev *rdev,
173 int *min_uV, int *max_uV)
174 {
175 BUG_ON(*min_uV > *max_uV);
176
177 if (!rdev->constraints) {
178 rdev_err(rdev, "no constraints\n");
179 return -ENODEV;
180 }
181 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
182 rdev_err(rdev, "operation not allowed\n");
183 return -EPERM;
184 }
185
186 if (*max_uV > rdev->constraints->max_uV)
187 *max_uV = rdev->constraints->max_uV;
188 if (*min_uV < rdev->constraints->min_uV)
189 *min_uV = rdev->constraints->min_uV;
190
191 if (*min_uV > *max_uV) {
192 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
193 *min_uV, *max_uV);
194 return -EINVAL;
195 }
196
197 return 0;
198 }
199
200 /* Make sure we select a voltage that suits the needs of all
201 * regulator consumers
202 */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV)203 static int regulator_check_consumers(struct regulator_dev *rdev,
204 int *min_uV, int *max_uV)
205 {
206 struct regulator *regulator;
207
208 list_for_each_entry(regulator, &rdev->consumer_list, list) {
209 /*
210 * Assume consumers that didn't say anything are OK
211 * with anything in the constraint range.
212 */
213 if (!regulator->min_uV && !regulator->max_uV)
214 continue;
215
216 if (*max_uV > regulator->max_uV)
217 *max_uV = regulator->max_uV;
218 if (*min_uV < regulator->min_uV)
219 *min_uV = regulator->min_uV;
220 }
221
222 if (*min_uV > *max_uV) {
223 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
224 *min_uV, *max_uV);
225 return -EINVAL;
226 }
227
228 return 0;
229 }
230
231 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)232 static int regulator_check_current_limit(struct regulator_dev *rdev,
233 int *min_uA, int *max_uA)
234 {
235 BUG_ON(*min_uA > *max_uA);
236
237 if (!rdev->constraints) {
238 rdev_err(rdev, "no constraints\n");
239 return -ENODEV;
240 }
241 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
242 rdev_err(rdev, "operation not allowed\n");
243 return -EPERM;
244 }
245
246 if (*max_uA > rdev->constraints->max_uA)
247 *max_uA = rdev->constraints->max_uA;
248 if (*min_uA < rdev->constraints->min_uA)
249 *min_uA = rdev->constraints->min_uA;
250
251 if (*min_uA > *max_uA) {
252 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
253 *min_uA, *max_uA);
254 return -EINVAL;
255 }
256
257 return 0;
258 }
259
260 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,int * mode)261 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
262 {
263 switch (*mode) {
264 case REGULATOR_MODE_FAST:
265 case REGULATOR_MODE_NORMAL:
266 case REGULATOR_MODE_IDLE:
267 case REGULATOR_MODE_STANDBY:
268 break;
269 default:
270 rdev_err(rdev, "invalid mode %x specified\n", *mode);
271 return -EINVAL;
272 }
273
274 if (!rdev->constraints) {
275 rdev_err(rdev, "no constraints\n");
276 return -ENODEV;
277 }
278 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
279 rdev_err(rdev, "operation not allowed\n");
280 return -EPERM;
281 }
282
283 /* The modes are bitmasks, the most power hungry modes having
284 * the lowest values. If the requested mode isn't supported
285 * try higher modes. */
286 while (*mode) {
287 if (rdev->constraints->valid_modes_mask & *mode)
288 return 0;
289 *mode /= 2;
290 }
291
292 return -EINVAL;
293 }
294
295 /* dynamic regulator mode switching constraint check */
regulator_check_drms(struct regulator_dev * rdev)296 static int regulator_check_drms(struct regulator_dev *rdev)
297 {
298 if (!rdev->constraints) {
299 rdev_err(rdev, "no constraints\n");
300 return -ENODEV;
301 }
302 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
303 rdev_err(rdev, "operation not allowed\n");
304 return -EPERM;
305 }
306 return 0;
307 }
308
regulator_uV_show(struct device * dev,struct device_attribute * attr,char * buf)309 static ssize_t regulator_uV_show(struct device *dev,
310 struct device_attribute *attr, char *buf)
311 {
312 struct regulator_dev *rdev = dev_get_drvdata(dev);
313 ssize_t ret;
314
315 mutex_lock(&rdev->mutex);
316 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
317 mutex_unlock(&rdev->mutex);
318
319 return ret;
320 }
321 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
322
regulator_uA_show(struct device * dev,struct device_attribute * attr,char * buf)323 static ssize_t regulator_uA_show(struct device *dev,
324 struct device_attribute *attr, char *buf)
325 {
326 struct regulator_dev *rdev = dev_get_drvdata(dev);
327
328 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
329 }
330 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
331
name_show(struct device * dev,struct device_attribute * attr,char * buf)332 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
333 char *buf)
334 {
335 struct regulator_dev *rdev = dev_get_drvdata(dev);
336
337 return sprintf(buf, "%s\n", rdev_get_name(rdev));
338 }
339 static DEVICE_ATTR_RO(name);
340
regulator_print_opmode(char * buf,int mode)341 static ssize_t regulator_print_opmode(char *buf, int mode)
342 {
343 switch (mode) {
344 case REGULATOR_MODE_FAST:
345 return sprintf(buf, "fast\n");
346 case REGULATOR_MODE_NORMAL:
347 return sprintf(buf, "normal\n");
348 case REGULATOR_MODE_IDLE:
349 return sprintf(buf, "idle\n");
350 case REGULATOR_MODE_STANDBY:
351 return sprintf(buf, "standby\n");
352 }
353 return sprintf(buf, "unknown\n");
354 }
355
regulator_opmode_show(struct device * dev,struct device_attribute * attr,char * buf)356 static ssize_t regulator_opmode_show(struct device *dev,
357 struct device_attribute *attr, char *buf)
358 {
359 struct regulator_dev *rdev = dev_get_drvdata(dev);
360
361 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
362 }
363 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
364
regulator_print_state(char * buf,int state)365 static ssize_t regulator_print_state(char *buf, int state)
366 {
367 if (state > 0)
368 return sprintf(buf, "enabled\n");
369 else if (state == 0)
370 return sprintf(buf, "disabled\n");
371 else
372 return sprintf(buf, "unknown\n");
373 }
374
regulator_state_show(struct device * dev,struct device_attribute * attr,char * buf)375 static ssize_t regulator_state_show(struct device *dev,
376 struct device_attribute *attr, char *buf)
377 {
378 struct regulator_dev *rdev = dev_get_drvdata(dev);
379 ssize_t ret;
380
381 mutex_lock(&rdev->mutex);
382 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
383 mutex_unlock(&rdev->mutex);
384
385 return ret;
386 }
387 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
388
regulator_status_show(struct device * dev,struct device_attribute * attr,char * buf)389 static ssize_t regulator_status_show(struct device *dev,
390 struct device_attribute *attr, char *buf)
391 {
392 struct regulator_dev *rdev = dev_get_drvdata(dev);
393 int status;
394 char *label;
395
396 status = rdev->desc->ops->get_status(rdev);
397 if (status < 0)
398 return status;
399
400 switch (status) {
401 case REGULATOR_STATUS_OFF:
402 label = "off";
403 break;
404 case REGULATOR_STATUS_ON:
405 label = "on";
406 break;
407 case REGULATOR_STATUS_ERROR:
408 label = "error";
409 break;
410 case REGULATOR_STATUS_FAST:
411 label = "fast";
412 break;
413 case REGULATOR_STATUS_NORMAL:
414 label = "normal";
415 break;
416 case REGULATOR_STATUS_IDLE:
417 label = "idle";
418 break;
419 case REGULATOR_STATUS_STANDBY:
420 label = "standby";
421 break;
422 case REGULATOR_STATUS_BYPASS:
423 label = "bypass";
424 break;
425 case REGULATOR_STATUS_UNDEFINED:
426 label = "undefined";
427 break;
428 default:
429 return -ERANGE;
430 }
431
432 return sprintf(buf, "%s\n", label);
433 }
434 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
435
regulator_min_uA_show(struct device * dev,struct device_attribute * attr,char * buf)436 static ssize_t regulator_min_uA_show(struct device *dev,
437 struct device_attribute *attr, char *buf)
438 {
439 struct regulator_dev *rdev = dev_get_drvdata(dev);
440
441 if (!rdev->constraints)
442 return sprintf(buf, "constraint not defined\n");
443
444 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
445 }
446 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
447
regulator_max_uA_show(struct device * dev,struct device_attribute * attr,char * buf)448 static ssize_t regulator_max_uA_show(struct device *dev,
449 struct device_attribute *attr, char *buf)
450 {
451 struct regulator_dev *rdev = dev_get_drvdata(dev);
452
453 if (!rdev->constraints)
454 return sprintf(buf, "constraint not defined\n");
455
456 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
457 }
458 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
459
regulator_min_uV_show(struct device * dev,struct device_attribute * attr,char * buf)460 static ssize_t regulator_min_uV_show(struct device *dev,
461 struct device_attribute *attr, char *buf)
462 {
463 struct regulator_dev *rdev = dev_get_drvdata(dev);
464
465 if (!rdev->constraints)
466 return sprintf(buf, "constraint not defined\n");
467
468 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
469 }
470 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
471
regulator_max_uV_show(struct device * dev,struct device_attribute * attr,char * buf)472 static ssize_t regulator_max_uV_show(struct device *dev,
473 struct device_attribute *attr, char *buf)
474 {
475 struct regulator_dev *rdev = dev_get_drvdata(dev);
476
477 if (!rdev->constraints)
478 return sprintf(buf, "constraint not defined\n");
479
480 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
481 }
482 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
483
regulator_total_uA_show(struct device * dev,struct device_attribute * attr,char * buf)484 static ssize_t regulator_total_uA_show(struct device *dev,
485 struct device_attribute *attr, char *buf)
486 {
487 struct regulator_dev *rdev = dev_get_drvdata(dev);
488 struct regulator *regulator;
489 int uA = 0;
490
491 mutex_lock(&rdev->mutex);
492 list_for_each_entry(regulator, &rdev->consumer_list, list)
493 uA += regulator->uA_load;
494 mutex_unlock(&rdev->mutex);
495 return sprintf(buf, "%d\n", uA);
496 }
497 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
498
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)499 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
500 char *buf)
501 {
502 struct regulator_dev *rdev = dev_get_drvdata(dev);
503 return sprintf(buf, "%d\n", rdev->use_count);
504 }
505 static DEVICE_ATTR_RO(num_users);
506
type_show(struct device * dev,struct device_attribute * attr,char * buf)507 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
508 char *buf)
509 {
510 struct regulator_dev *rdev = dev_get_drvdata(dev);
511
512 switch (rdev->desc->type) {
513 case REGULATOR_VOLTAGE:
514 return sprintf(buf, "voltage\n");
515 case REGULATOR_CURRENT:
516 return sprintf(buf, "current\n");
517 }
518 return sprintf(buf, "unknown\n");
519 }
520 static DEVICE_ATTR_RO(type);
521
regulator_suspend_mem_uV_show(struct device * dev,struct device_attribute * attr,char * buf)522 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
523 struct device_attribute *attr, char *buf)
524 {
525 struct regulator_dev *rdev = dev_get_drvdata(dev);
526
527 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
528 }
529 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
530 regulator_suspend_mem_uV_show, NULL);
531
regulator_suspend_disk_uV_show(struct device * dev,struct device_attribute * attr,char * buf)532 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
533 struct device_attribute *attr, char *buf)
534 {
535 struct regulator_dev *rdev = dev_get_drvdata(dev);
536
537 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
538 }
539 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
540 regulator_suspend_disk_uV_show, NULL);
541
regulator_suspend_standby_uV_show(struct device * dev,struct device_attribute * attr,char * buf)542 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
543 struct device_attribute *attr, char *buf)
544 {
545 struct regulator_dev *rdev = dev_get_drvdata(dev);
546
547 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
548 }
549 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
550 regulator_suspend_standby_uV_show, NULL);
551
regulator_suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)552 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
553 struct device_attribute *attr, char *buf)
554 {
555 struct regulator_dev *rdev = dev_get_drvdata(dev);
556
557 return regulator_print_opmode(buf,
558 rdev->constraints->state_mem.mode);
559 }
560 static DEVICE_ATTR(suspend_mem_mode, 0444,
561 regulator_suspend_mem_mode_show, NULL);
562
regulator_suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)563 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
564 struct device_attribute *attr, char *buf)
565 {
566 struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568 return regulator_print_opmode(buf,
569 rdev->constraints->state_disk.mode);
570 }
571 static DEVICE_ATTR(suspend_disk_mode, 0444,
572 regulator_suspend_disk_mode_show, NULL);
573
regulator_suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)574 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
575 struct device_attribute *attr, char *buf)
576 {
577 struct regulator_dev *rdev = dev_get_drvdata(dev);
578
579 return regulator_print_opmode(buf,
580 rdev->constraints->state_standby.mode);
581 }
582 static DEVICE_ATTR(suspend_standby_mode, 0444,
583 regulator_suspend_standby_mode_show, NULL);
584
regulator_suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)585 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
586 struct device_attribute *attr, char *buf)
587 {
588 struct regulator_dev *rdev = dev_get_drvdata(dev);
589
590 return regulator_print_state(buf,
591 rdev->constraints->state_mem.enabled);
592 }
593 static DEVICE_ATTR(suspend_mem_state, 0444,
594 regulator_suspend_mem_state_show, NULL);
595
regulator_suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)596 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
597 struct device_attribute *attr, char *buf)
598 {
599 struct regulator_dev *rdev = dev_get_drvdata(dev);
600
601 return regulator_print_state(buf,
602 rdev->constraints->state_disk.enabled);
603 }
604 static DEVICE_ATTR(suspend_disk_state, 0444,
605 regulator_suspend_disk_state_show, NULL);
606
regulator_suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)607 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
608 struct device_attribute *attr, char *buf)
609 {
610 struct regulator_dev *rdev = dev_get_drvdata(dev);
611
612 return regulator_print_state(buf,
613 rdev->constraints->state_standby.enabled);
614 }
615 static DEVICE_ATTR(suspend_standby_state, 0444,
616 regulator_suspend_standby_state_show, NULL);
617
regulator_bypass_show(struct device * dev,struct device_attribute * attr,char * buf)618 static ssize_t regulator_bypass_show(struct device *dev,
619 struct device_attribute *attr, char *buf)
620 {
621 struct regulator_dev *rdev = dev_get_drvdata(dev);
622 const char *report;
623 bool bypass;
624 int ret;
625
626 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
627
628 if (ret != 0)
629 report = "unknown";
630 else if (bypass)
631 report = "enabled";
632 else
633 report = "disabled";
634
635 return sprintf(buf, "%s\n", report);
636 }
637 static DEVICE_ATTR(bypass, 0444,
638 regulator_bypass_show, NULL);
639
640 /* Calculate the new optimum regulator operating mode based on the new total
641 * consumer load. All locks held by caller */
drms_uA_update(struct regulator_dev * rdev)642 static int drms_uA_update(struct regulator_dev *rdev)
643 {
644 struct regulator *sibling;
645 int current_uA = 0, output_uV, input_uV, err;
646 unsigned int mode;
647
648 /*
649 * first check to see if we can set modes at all, otherwise just
650 * tell the consumer everything is OK.
651 */
652 err = regulator_check_drms(rdev);
653 if (err < 0)
654 return 0;
655
656 if (!rdev->desc->ops->get_optimum_mode &&
657 !rdev->desc->ops->set_load)
658 return 0;
659
660 if (!rdev->desc->ops->set_mode &&
661 !rdev->desc->ops->set_load)
662 return -EINVAL;
663
664 /* get output voltage */
665 output_uV = _regulator_get_voltage(rdev);
666 if (output_uV <= 0) {
667 rdev_err(rdev, "invalid output voltage found\n");
668 return -EINVAL;
669 }
670
671 /* get input voltage */
672 input_uV = 0;
673 if (rdev->supply)
674 input_uV = regulator_get_voltage(rdev->supply);
675 if (input_uV <= 0)
676 input_uV = rdev->constraints->input_uV;
677 if (input_uV <= 0) {
678 rdev_err(rdev, "invalid input voltage found\n");
679 return -EINVAL;
680 }
681
682 /* calc total requested load */
683 list_for_each_entry(sibling, &rdev->consumer_list, list)
684 current_uA += sibling->uA_load;
685
686 if (rdev->desc->ops->set_load) {
687 /* set the optimum mode for our new total regulator load */
688 err = rdev->desc->ops->set_load(rdev, current_uA);
689 if (err < 0)
690 rdev_err(rdev, "failed to set load %d\n", current_uA);
691 } else {
692 /* now get the optimum mode for our new total regulator load */
693 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
694 output_uV, current_uA);
695
696 /* check the new mode is allowed */
697 err = regulator_mode_constrain(rdev, &mode);
698 if (err < 0) {
699 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
700 current_uA, input_uV, output_uV);
701 return err;
702 }
703
704 err = rdev->desc->ops->set_mode(rdev, mode);
705 if (err < 0)
706 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
707 }
708
709 return err;
710 }
711
suspend_set_state(struct regulator_dev * rdev,struct regulator_state * rstate)712 static int suspend_set_state(struct regulator_dev *rdev,
713 struct regulator_state *rstate)
714 {
715 int ret = 0;
716
717 /* If we have no suspend mode configration don't set anything;
718 * only warn if the driver implements set_suspend_voltage or
719 * set_suspend_mode callback.
720 */
721 if (!rstate->enabled && !rstate->disabled) {
722 if (rdev->desc->ops->set_suspend_voltage ||
723 rdev->desc->ops->set_suspend_mode)
724 rdev_warn(rdev, "No configuration\n");
725 return 0;
726 }
727
728 if (rstate->enabled && rstate->disabled) {
729 rdev_err(rdev, "invalid configuration\n");
730 return -EINVAL;
731 }
732
733 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
734 ret = rdev->desc->ops->set_suspend_enable(rdev);
735 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
736 ret = rdev->desc->ops->set_suspend_disable(rdev);
737 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
738 ret = 0;
739
740 if (ret < 0) {
741 rdev_err(rdev, "failed to enabled/disable\n");
742 return ret;
743 }
744
745 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
746 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
747 if (ret < 0) {
748 rdev_err(rdev, "failed to set voltage\n");
749 return ret;
750 }
751 }
752
753 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
754 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
755 if (ret < 0) {
756 rdev_err(rdev, "failed to set mode\n");
757 return ret;
758 }
759 }
760 return ret;
761 }
762
763 /* locks held by caller */
suspend_prepare(struct regulator_dev * rdev,suspend_state_t state)764 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
765 {
766 if (!rdev->constraints)
767 return -EINVAL;
768
769 switch (state) {
770 case PM_SUSPEND_STANDBY:
771 return suspend_set_state(rdev,
772 &rdev->constraints->state_standby);
773 case PM_SUSPEND_MEM:
774 return suspend_set_state(rdev,
775 &rdev->constraints->state_mem);
776 case PM_SUSPEND_MAX:
777 return suspend_set_state(rdev,
778 &rdev->constraints->state_disk);
779 default:
780 return -EINVAL;
781 }
782 }
783
print_constraints(struct regulator_dev * rdev)784 static void print_constraints(struct regulator_dev *rdev)
785 {
786 struct regulation_constraints *constraints = rdev->constraints;
787 char buf[160] = "";
788 int count = 0;
789 int ret;
790
791 if (constraints->min_uV && constraints->max_uV) {
792 if (constraints->min_uV == constraints->max_uV)
793 count += sprintf(buf + count, "%d mV ",
794 constraints->min_uV / 1000);
795 else
796 count += sprintf(buf + count, "%d <--> %d mV ",
797 constraints->min_uV / 1000,
798 constraints->max_uV / 1000);
799 }
800
801 if (!constraints->min_uV ||
802 constraints->min_uV != constraints->max_uV) {
803 ret = _regulator_get_voltage(rdev);
804 if (ret > 0)
805 count += sprintf(buf + count, "at %d mV ", ret / 1000);
806 }
807
808 if (constraints->uV_offset)
809 count += sprintf(buf, "%dmV offset ",
810 constraints->uV_offset / 1000);
811
812 if (constraints->min_uA && constraints->max_uA) {
813 if (constraints->min_uA == constraints->max_uA)
814 count += sprintf(buf + count, "%d mA ",
815 constraints->min_uA / 1000);
816 else
817 count += sprintf(buf + count, "%d <--> %d mA ",
818 constraints->min_uA / 1000,
819 constraints->max_uA / 1000);
820 }
821
822 if (!constraints->min_uA ||
823 constraints->min_uA != constraints->max_uA) {
824 ret = _regulator_get_current_limit(rdev);
825 if (ret > 0)
826 count += sprintf(buf + count, "at %d mA ", ret / 1000);
827 }
828
829 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
830 count += sprintf(buf + count, "fast ");
831 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
832 count += sprintf(buf + count, "normal ");
833 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
834 count += sprintf(buf + count, "idle ");
835 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
836 count += sprintf(buf + count, "standby");
837
838 if (!count)
839 sprintf(buf, "no parameters");
840
841 rdev_dbg(rdev, "%s\n", buf);
842
843 if ((constraints->min_uV != constraints->max_uV) &&
844 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
845 rdev_warn(rdev,
846 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
847 }
848
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)849 static int machine_constraints_voltage(struct regulator_dev *rdev,
850 struct regulation_constraints *constraints)
851 {
852 const struct regulator_ops *ops = rdev->desc->ops;
853 int ret;
854
855 /* do we need to apply the constraint voltage */
856 if (rdev->constraints->apply_uV &&
857 rdev->constraints->min_uV == rdev->constraints->max_uV) {
858 int current_uV = _regulator_get_voltage(rdev);
859 if (current_uV < 0) {
860 rdev_err(rdev,
861 "failed to get the current voltage(%d)\n",
862 current_uV);
863 return current_uV;
864 }
865 if (current_uV < rdev->constraints->min_uV ||
866 current_uV > rdev->constraints->max_uV) {
867 ret = _regulator_do_set_voltage(
868 rdev, rdev->constraints->min_uV,
869 rdev->constraints->max_uV);
870 if (ret < 0) {
871 rdev_err(rdev,
872 "failed to apply %duV constraint(%d)\n",
873 rdev->constraints->min_uV, ret);
874 return ret;
875 }
876 }
877 }
878
879 /* constrain machine-level voltage specs to fit
880 * the actual range supported by this regulator.
881 */
882 if (ops->list_voltage && rdev->desc->n_voltages) {
883 int count = rdev->desc->n_voltages;
884 int i;
885 int min_uV = INT_MAX;
886 int max_uV = INT_MIN;
887 int cmin = constraints->min_uV;
888 int cmax = constraints->max_uV;
889
890 /* it's safe to autoconfigure fixed-voltage supplies
891 and the constraints are used by list_voltage. */
892 if (count == 1 && !cmin) {
893 cmin = 1;
894 cmax = INT_MAX;
895 constraints->min_uV = cmin;
896 constraints->max_uV = cmax;
897 }
898
899 /* voltage constraints are optional */
900 if ((cmin == 0) && (cmax == 0))
901 return 0;
902
903 /* else require explicit machine-level constraints */
904 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
905 rdev_err(rdev, "invalid voltage constraints\n");
906 return -EINVAL;
907 }
908
909 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
910 for (i = 0; i < count; i++) {
911 int value;
912
913 value = ops->list_voltage(rdev, i);
914 if (value <= 0)
915 continue;
916
917 /* maybe adjust [min_uV..max_uV] */
918 if (value >= cmin && value < min_uV)
919 min_uV = value;
920 if (value <= cmax && value > max_uV)
921 max_uV = value;
922 }
923
924 /* final: [min_uV..max_uV] valid iff constraints valid */
925 if (max_uV < min_uV) {
926 rdev_err(rdev,
927 "unsupportable voltage constraints %u-%uuV\n",
928 min_uV, max_uV);
929 return -EINVAL;
930 }
931
932 /* use regulator's subset of machine constraints */
933 if (constraints->min_uV < min_uV) {
934 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
935 constraints->min_uV, min_uV);
936 constraints->min_uV = min_uV;
937 }
938 if (constraints->max_uV > max_uV) {
939 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
940 constraints->max_uV, max_uV);
941 constraints->max_uV = max_uV;
942 }
943 }
944
945 return 0;
946 }
947
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)948 static int machine_constraints_current(struct regulator_dev *rdev,
949 struct regulation_constraints *constraints)
950 {
951 const struct regulator_ops *ops = rdev->desc->ops;
952 int ret;
953
954 if (!constraints->min_uA && !constraints->max_uA)
955 return 0;
956
957 if (constraints->min_uA > constraints->max_uA) {
958 rdev_err(rdev, "Invalid current constraints\n");
959 return -EINVAL;
960 }
961
962 if (!ops->set_current_limit || !ops->get_current_limit) {
963 rdev_warn(rdev, "Operation of current configuration missing\n");
964 return 0;
965 }
966
967 /* Set regulator current in constraints range */
968 ret = ops->set_current_limit(rdev, constraints->min_uA,
969 constraints->max_uA);
970 if (ret < 0) {
971 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
972 return ret;
973 }
974
975 return 0;
976 }
977
978 static int _regulator_do_enable(struct regulator_dev *rdev);
979
980 /**
981 * set_machine_constraints - sets regulator constraints
982 * @rdev: regulator source
983 * @constraints: constraints to apply
984 *
985 * Allows platform initialisation code to define and constrain
986 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
987 * Constraints *must* be set by platform code in order for some
988 * regulator operations to proceed i.e. set_voltage, set_current_limit,
989 * set_mode.
990 */
set_machine_constraints(struct regulator_dev * rdev,const struct regulation_constraints * constraints)991 static int set_machine_constraints(struct regulator_dev *rdev,
992 const struct regulation_constraints *constraints)
993 {
994 int ret = 0;
995 const struct regulator_ops *ops = rdev->desc->ops;
996
997 if (constraints)
998 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
999 GFP_KERNEL);
1000 else
1001 rdev->constraints = kzalloc(sizeof(*constraints),
1002 GFP_KERNEL);
1003 if (!rdev->constraints)
1004 return -ENOMEM;
1005
1006 ret = machine_constraints_voltage(rdev, rdev->constraints);
1007 if (ret != 0)
1008 goto out;
1009
1010 ret = machine_constraints_current(rdev, rdev->constraints);
1011 if (ret != 0)
1012 goto out;
1013
1014 /* do we need to setup our suspend state */
1015 if (rdev->constraints->initial_state) {
1016 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1017 if (ret < 0) {
1018 rdev_err(rdev, "failed to set suspend state\n");
1019 goto out;
1020 }
1021 }
1022
1023 if (rdev->constraints->initial_mode) {
1024 if (!ops->set_mode) {
1025 rdev_err(rdev, "no set_mode operation\n");
1026 ret = -EINVAL;
1027 goto out;
1028 }
1029
1030 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1031 if (ret < 0) {
1032 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1033 goto out;
1034 }
1035 }
1036
1037 /* If the constraints say the regulator should be on at this point
1038 * and we have control then make sure it is enabled.
1039 */
1040 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1041 ret = _regulator_do_enable(rdev);
1042 if (ret < 0 && ret != -EINVAL) {
1043 rdev_err(rdev, "failed to enable\n");
1044 goto out;
1045 }
1046 }
1047
1048 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1049 && ops->set_ramp_delay) {
1050 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1051 if (ret < 0) {
1052 rdev_err(rdev, "failed to set ramp_delay\n");
1053 goto out;
1054 }
1055 }
1056
1057 print_constraints(rdev);
1058 return 0;
1059 out:
1060 kfree(rdev->constraints);
1061 rdev->constraints = NULL;
1062 return ret;
1063 }
1064
1065 /**
1066 * set_supply - set regulator supply regulator
1067 * @rdev: regulator name
1068 * @supply_rdev: supply regulator name
1069 *
1070 * Called by platform initialisation code to set the supply regulator for this
1071 * regulator. This ensures that a regulators supply will also be enabled by the
1072 * core if it's child is enabled.
1073 */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1074 static int set_supply(struct regulator_dev *rdev,
1075 struct regulator_dev *supply_rdev)
1076 {
1077 int err;
1078
1079 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1080
1081 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1082 if (rdev->supply == NULL) {
1083 err = -ENOMEM;
1084 return err;
1085 }
1086 supply_rdev->open_count++;
1087
1088 return 0;
1089 }
1090
1091 /**
1092 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1093 * @rdev: regulator source
1094 * @consumer_dev_name: dev_name() string for device supply applies to
1095 * @supply: symbolic name for supply
1096 *
1097 * Allows platform initialisation code to map physical regulator
1098 * sources to symbolic names for supplies for use by devices. Devices
1099 * should use these symbolic names to request regulators, avoiding the
1100 * need to provide board-specific regulator names as platform data.
1101 */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1102 static int set_consumer_device_supply(struct regulator_dev *rdev,
1103 const char *consumer_dev_name,
1104 const char *supply)
1105 {
1106 struct regulator_map *node;
1107 int has_dev;
1108
1109 if (supply == NULL)
1110 return -EINVAL;
1111
1112 if (consumer_dev_name != NULL)
1113 has_dev = 1;
1114 else
1115 has_dev = 0;
1116
1117 list_for_each_entry(node, ®ulator_map_list, list) {
1118 if (node->dev_name && consumer_dev_name) {
1119 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1120 continue;
1121 } else if (node->dev_name || consumer_dev_name) {
1122 continue;
1123 }
1124
1125 if (strcmp(node->supply, supply) != 0)
1126 continue;
1127
1128 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1129 consumer_dev_name,
1130 dev_name(&node->regulator->dev),
1131 node->regulator->desc->name,
1132 supply,
1133 dev_name(&rdev->dev), rdev_get_name(rdev));
1134 return -EBUSY;
1135 }
1136
1137 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1138 if (node == NULL)
1139 return -ENOMEM;
1140
1141 node->regulator = rdev;
1142 node->supply = supply;
1143
1144 if (has_dev) {
1145 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1146 if (node->dev_name == NULL) {
1147 kfree(node);
1148 return -ENOMEM;
1149 }
1150 }
1151
1152 list_add(&node->list, ®ulator_map_list);
1153 return 0;
1154 }
1155
unset_regulator_supplies(struct regulator_dev * rdev)1156 static void unset_regulator_supplies(struct regulator_dev *rdev)
1157 {
1158 struct regulator_map *node, *n;
1159
1160 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1161 if (rdev == node->regulator) {
1162 list_del(&node->list);
1163 kfree(node->dev_name);
1164 kfree(node);
1165 }
1166 }
1167 }
1168
1169 #define REG_STR_SIZE 64
1170
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1171 static struct regulator *create_regulator(struct regulator_dev *rdev,
1172 struct device *dev,
1173 const char *supply_name)
1174 {
1175 struct regulator *regulator;
1176 char buf[REG_STR_SIZE];
1177 int err, size;
1178
1179 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1180 if (regulator == NULL)
1181 return NULL;
1182
1183 mutex_lock(&rdev->mutex);
1184 regulator->rdev = rdev;
1185 list_add(®ulator->list, &rdev->consumer_list);
1186
1187 if (dev) {
1188 regulator->dev = dev;
1189
1190 /* Add a link to the device sysfs entry */
1191 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1192 dev->kobj.name, supply_name);
1193 if (size >= REG_STR_SIZE)
1194 goto overflow_err;
1195
1196 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1197 if (regulator->supply_name == NULL)
1198 goto overflow_err;
1199
1200 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1201 buf);
1202 if (err) {
1203 rdev_warn(rdev, "could not add device link %s err %d\n",
1204 dev->kobj.name, err);
1205 /* non-fatal */
1206 }
1207 } else {
1208 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1209 if (regulator->supply_name == NULL)
1210 goto overflow_err;
1211 }
1212
1213 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1214 rdev->debugfs);
1215 if (!regulator->debugfs) {
1216 rdev_warn(rdev, "Failed to create debugfs directory\n");
1217 } else {
1218 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1219 ®ulator->uA_load);
1220 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1221 ®ulator->min_uV);
1222 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1223 ®ulator->max_uV);
1224 }
1225
1226 /*
1227 * Check now if the regulator is an always on regulator - if
1228 * it is then we don't need to do nearly so much work for
1229 * enable/disable calls.
1230 */
1231 if (!_regulator_can_change_status(rdev) &&
1232 _regulator_is_enabled(rdev))
1233 regulator->always_on = true;
1234
1235 mutex_unlock(&rdev->mutex);
1236 return regulator;
1237 overflow_err:
1238 list_del(®ulator->list);
1239 kfree(regulator);
1240 mutex_unlock(&rdev->mutex);
1241 return NULL;
1242 }
1243
_regulator_get_enable_time(struct regulator_dev * rdev)1244 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1245 {
1246 if (rdev->constraints && rdev->constraints->enable_time)
1247 return rdev->constraints->enable_time;
1248 if (!rdev->desc->ops->enable_time)
1249 return rdev->desc->enable_time;
1250 return rdev->desc->ops->enable_time(rdev);
1251 }
1252
regulator_find_supply_alias(struct device * dev,const char * supply)1253 static struct regulator_supply_alias *regulator_find_supply_alias(
1254 struct device *dev, const char *supply)
1255 {
1256 struct regulator_supply_alias *map;
1257
1258 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1259 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1260 return map;
1261
1262 return NULL;
1263 }
1264
regulator_supply_alias(struct device ** dev,const char ** supply)1265 static void regulator_supply_alias(struct device **dev, const char **supply)
1266 {
1267 struct regulator_supply_alias *map;
1268
1269 map = regulator_find_supply_alias(*dev, *supply);
1270 if (map) {
1271 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1272 *supply, map->alias_supply,
1273 dev_name(map->alias_dev));
1274 *dev = map->alias_dev;
1275 *supply = map->alias_supply;
1276 }
1277 }
1278
regulator_dev_lookup(struct device * dev,const char * supply,int * ret)1279 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1280 const char *supply,
1281 int *ret)
1282 {
1283 struct regulator_dev *r;
1284 struct device_node *node;
1285 struct regulator_map *map;
1286 const char *devname = NULL;
1287
1288 regulator_supply_alias(&dev, &supply);
1289
1290 /* first do a dt based lookup */
1291 if (dev && dev->of_node) {
1292 node = of_get_regulator(dev, supply);
1293 if (node) {
1294 list_for_each_entry(r, ®ulator_list, list)
1295 if (r->dev.parent &&
1296 node == r->dev.of_node)
1297 return r;
1298 *ret = -EPROBE_DEFER;
1299 return NULL;
1300 } else {
1301 /*
1302 * If we couldn't even get the node then it's
1303 * not just that the device didn't register
1304 * yet, there's no node and we'll never
1305 * succeed.
1306 */
1307 *ret = -ENODEV;
1308 }
1309 }
1310
1311 /* if not found, try doing it non-dt way */
1312 if (dev)
1313 devname = dev_name(dev);
1314
1315 list_for_each_entry(r, ®ulator_list, list)
1316 if (strcmp(rdev_get_name(r), supply) == 0)
1317 return r;
1318
1319 list_for_each_entry(map, ®ulator_map_list, list) {
1320 /* If the mapping has a device set up it must match */
1321 if (map->dev_name &&
1322 (!devname || strcmp(map->dev_name, devname)))
1323 continue;
1324
1325 if (strcmp(map->supply, supply) == 0)
1326 return map->regulator;
1327 }
1328
1329
1330 return NULL;
1331 }
1332
regulator_resolve_supply(struct regulator_dev * rdev)1333 static int regulator_resolve_supply(struct regulator_dev *rdev)
1334 {
1335 struct regulator_dev *r;
1336 struct device *dev = rdev->dev.parent;
1337 int ret;
1338
1339 /* No supply to resovle? */
1340 if (!rdev->supply_name)
1341 return 0;
1342
1343 /* Supply already resolved? */
1344 if (rdev->supply)
1345 return 0;
1346
1347 r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1348 if (ret == -ENODEV) {
1349 /*
1350 * No supply was specified for this regulator and
1351 * there will never be one.
1352 */
1353 return 0;
1354 }
1355
1356 if (!r) {
1357 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1358 rdev->supply_name, rdev->desc->name);
1359 return -EPROBE_DEFER;
1360 }
1361
1362 /* Recursively resolve the supply of the supply */
1363 ret = regulator_resolve_supply(r);
1364 if (ret < 0)
1365 return ret;
1366
1367 ret = set_supply(rdev, r);
1368 if (ret < 0)
1369 return ret;
1370
1371 /* Cascade always-on state to supply */
1372 if (_regulator_is_enabled(rdev)) {
1373 ret = regulator_enable(rdev->supply);
1374 if (ret < 0)
1375 return ret;
1376 }
1377
1378 return 0;
1379 }
1380
1381 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,bool exclusive,bool allow_dummy)1382 static struct regulator *_regulator_get(struct device *dev, const char *id,
1383 bool exclusive, bool allow_dummy)
1384 {
1385 struct regulator_dev *rdev;
1386 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1387 const char *devname = NULL;
1388 int ret;
1389
1390 if (id == NULL) {
1391 pr_err("get() with no identifier\n");
1392 return ERR_PTR(-EINVAL);
1393 }
1394
1395 if (dev)
1396 devname = dev_name(dev);
1397
1398 if (have_full_constraints())
1399 ret = -ENODEV;
1400 else
1401 ret = -EPROBE_DEFER;
1402
1403 mutex_lock(®ulator_list_mutex);
1404
1405 rdev = regulator_dev_lookup(dev, id, &ret);
1406 if (rdev)
1407 goto found;
1408
1409 regulator = ERR_PTR(ret);
1410
1411 /*
1412 * If we have return value from dev_lookup fail, we do not expect to
1413 * succeed, so, quit with appropriate error value
1414 */
1415 if (ret && ret != -ENODEV)
1416 goto out;
1417
1418 if (!devname)
1419 devname = "deviceless";
1420
1421 /*
1422 * Assume that a regulator is physically present and enabled
1423 * even if it isn't hooked up and just provide a dummy.
1424 */
1425 if (have_full_constraints() && allow_dummy) {
1426 pr_warn("%s supply %s not found, using dummy regulator\n",
1427 devname, id);
1428
1429 rdev = dummy_regulator_rdev;
1430 goto found;
1431 /* Don't log an error when called from regulator_get_optional() */
1432 } else if (!have_full_constraints() || exclusive) {
1433 dev_warn(dev, "dummy supplies not allowed\n");
1434 }
1435
1436 mutex_unlock(®ulator_list_mutex);
1437 return regulator;
1438
1439 found:
1440 if (rdev->exclusive) {
1441 regulator = ERR_PTR(-EPERM);
1442 goto out;
1443 }
1444
1445 if (exclusive && rdev->open_count) {
1446 regulator = ERR_PTR(-EBUSY);
1447 goto out;
1448 }
1449
1450 ret = regulator_resolve_supply(rdev);
1451 if (ret < 0) {
1452 regulator = ERR_PTR(ret);
1453 goto out;
1454 }
1455
1456 if (!try_module_get(rdev->owner))
1457 goto out;
1458
1459 regulator = create_regulator(rdev, dev, id);
1460 if (regulator == NULL) {
1461 regulator = ERR_PTR(-ENOMEM);
1462 module_put(rdev->owner);
1463 goto out;
1464 }
1465
1466 rdev->open_count++;
1467 if (exclusive) {
1468 rdev->exclusive = 1;
1469
1470 ret = _regulator_is_enabled(rdev);
1471 if (ret > 0)
1472 rdev->use_count = 1;
1473 else
1474 rdev->use_count = 0;
1475 }
1476
1477 out:
1478 mutex_unlock(®ulator_list_mutex);
1479
1480 return regulator;
1481 }
1482
1483 /**
1484 * regulator_get - lookup and obtain a reference to a regulator.
1485 * @dev: device for regulator "consumer"
1486 * @id: Supply name or regulator ID.
1487 *
1488 * Returns a struct regulator corresponding to the regulator producer,
1489 * or IS_ERR() condition containing errno.
1490 *
1491 * Use of supply names configured via regulator_set_device_supply() is
1492 * strongly encouraged. It is recommended that the supply name used
1493 * should match the name used for the supply and/or the relevant
1494 * device pins in the datasheet.
1495 */
regulator_get(struct device * dev,const char * id)1496 struct regulator *regulator_get(struct device *dev, const char *id)
1497 {
1498 return _regulator_get(dev, id, false, true);
1499 }
1500 EXPORT_SYMBOL_GPL(regulator_get);
1501
1502 /**
1503 * regulator_get_exclusive - obtain exclusive access to a regulator.
1504 * @dev: device for regulator "consumer"
1505 * @id: Supply name or regulator ID.
1506 *
1507 * Returns a struct regulator corresponding to the regulator producer,
1508 * or IS_ERR() condition containing errno. Other consumers will be
1509 * unable to obtain this regulator while this reference is held and the
1510 * use count for the regulator will be initialised to reflect the current
1511 * state of the regulator.
1512 *
1513 * This is intended for use by consumers which cannot tolerate shared
1514 * use of the regulator such as those which need to force the
1515 * regulator off for correct operation of the hardware they are
1516 * controlling.
1517 *
1518 * Use of supply names configured via regulator_set_device_supply() is
1519 * strongly encouraged. It is recommended that the supply name used
1520 * should match the name used for the supply and/or the relevant
1521 * device pins in the datasheet.
1522 */
regulator_get_exclusive(struct device * dev,const char * id)1523 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1524 {
1525 return _regulator_get(dev, id, true, false);
1526 }
1527 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1528
1529 /**
1530 * regulator_get_optional - obtain optional access to a regulator.
1531 * @dev: device for regulator "consumer"
1532 * @id: Supply name or regulator ID.
1533 *
1534 * Returns a struct regulator corresponding to the regulator producer,
1535 * or IS_ERR() condition containing errno.
1536 *
1537 * This is intended for use by consumers for devices which can have
1538 * some supplies unconnected in normal use, such as some MMC devices.
1539 * It can allow the regulator core to provide stub supplies for other
1540 * supplies requested using normal regulator_get() calls without
1541 * disrupting the operation of drivers that can handle absent
1542 * supplies.
1543 *
1544 * Use of supply names configured via regulator_set_device_supply() is
1545 * strongly encouraged. It is recommended that the supply name used
1546 * should match the name used for the supply and/or the relevant
1547 * device pins in the datasheet.
1548 */
regulator_get_optional(struct device * dev,const char * id)1549 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1550 {
1551 return _regulator_get(dev, id, false, false);
1552 }
1553 EXPORT_SYMBOL_GPL(regulator_get_optional);
1554
1555 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)1556 static void _regulator_put(struct regulator *regulator)
1557 {
1558 struct regulator_dev *rdev;
1559
1560 if (regulator == NULL || IS_ERR(regulator))
1561 return;
1562
1563 rdev = regulator->rdev;
1564
1565 debugfs_remove_recursive(regulator->debugfs);
1566
1567 /* remove any sysfs entries */
1568 if (regulator->dev)
1569 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1570 mutex_lock(&rdev->mutex);
1571 kfree(regulator->supply_name);
1572 list_del(®ulator->list);
1573 kfree(regulator);
1574
1575 rdev->open_count--;
1576 rdev->exclusive = 0;
1577 mutex_unlock(&rdev->mutex);
1578
1579 module_put(rdev->owner);
1580 }
1581
1582 /**
1583 * regulator_put - "free" the regulator source
1584 * @regulator: regulator source
1585 *
1586 * Note: drivers must ensure that all regulator_enable calls made on this
1587 * regulator source are balanced by regulator_disable calls prior to calling
1588 * this function.
1589 */
regulator_put(struct regulator * regulator)1590 void regulator_put(struct regulator *regulator)
1591 {
1592 mutex_lock(®ulator_list_mutex);
1593 _regulator_put(regulator);
1594 mutex_unlock(®ulator_list_mutex);
1595 }
1596 EXPORT_SYMBOL_GPL(regulator_put);
1597
1598 /**
1599 * regulator_register_supply_alias - Provide device alias for supply lookup
1600 *
1601 * @dev: device that will be given as the regulator "consumer"
1602 * @id: Supply name or regulator ID
1603 * @alias_dev: device that should be used to lookup the supply
1604 * @alias_id: Supply name or regulator ID that should be used to lookup the
1605 * supply
1606 *
1607 * All lookups for id on dev will instead be conducted for alias_id on
1608 * alias_dev.
1609 */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)1610 int regulator_register_supply_alias(struct device *dev, const char *id,
1611 struct device *alias_dev,
1612 const char *alias_id)
1613 {
1614 struct regulator_supply_alias *map;
1615
1616 map = regulator_find_supply_alias(dev, id);
1617 if (map)
1618 return -EEXIST;
1619
1620 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1621 if (!map)
1622 return -ENOMEM;
1623
1624 map->src_dev = dev;
1625 map->src_supply = id;
1626 map->alias_dev = alias_dev;
1627 map->alias_supply = alias_id;
1628
1629 list_add(&map->list, ®ulator_supply_alias_list);
1630
1631 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1632 id, dev_name(dev), alias_id, dev_name(alias_dev));
1633
1634 return 0;
1635 }
1636 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1637
1638 /**
1639 * regulator_unregister_supply_alias - Remove device alias
1640 *
1641 * @dev: device that will be given as the regulator "consumer"
1642 * @id: Supply name or regulator ID
1643 *
1644 * Remove a lookup alias if one exists for id on dev.
1645 */
regulator_unregister_supply_alias(struct device * dev,const char * id)1646 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1647 {
1648 struct regulator_supply_alias *map;
1649
1650 map = regulator_find_supply_alias(dev, id);
1651 if (map) {
1652 list_del(&map->list);
1653 kfree(map);
1654 }
1655 }
1656 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1657
1658 /**
1659 * regulator_bulk_register_supply_alias - register multiple aliases
1660 *
1661 * @dev: device that will be given as the regulator "consumer"
1662 * @id: List of supply names or regulator IDs
1663 * @alias_dev: device that should be used to lookup the supply
1664 * @alias_id: List of supply names or regulator IDs that should be used to
1665 * lookup the supply
1666 * @num_id: Number of aliases to register
1667 *
1668 * @return 0 on success, an errno on failure.
1669 *
1670 * This helper function allows drivers to register several supply
1671 * aliases in one operation. If any of the aliases cannot be
1672 * registered any aliases that were registered will be removed
1673 * before returning to the caller.
1674 */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)1675 int regulator_bulk_register_supply_alias(struct device *dev,
1676 const char *const *id,
1677 struct device *alias_dev,
1678 const char *const *alias_id,
1679 int num_id)
1680 {
1681 int i;
1682 int ret;
1683
1684 for (i = 0; i < num_id; ++i) {
1685 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1686 alias_id[i]);
1687 if (ret < 0)
1688 goto err;
1689 }
1690
1691 return 0;
1692
1693 err:
1694 dev_err(dev,
1695 "Failed to create supply alias %s,%s -> %s,%s\n",
1696 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1697
1698 while (--i >= 0)
1699 regulator_unregister_supply_alias(dev, id[i]);
1700
1701 return ret;
1702 }
1703 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1704
1705 /**
1706 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1707 *
1708 * @dev: device that will be given as the regulator "consumer"
1709 * @id: List of supply names or regulator IDs
1710 * @num_id: Number of aliases to unregister
1711 *
1712 * This helper function allows drivers to unregister several supply
1713 * aliases in one operation.
1714 */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)1715 void regulator_bulk_unregister_supply_alias(struct device *dev,
1716 const char *const *id,
1717 int num_id)
1718 {
1719 int i;
1720
1721 for (i = 0; i < num_id; ++i)
1722 regulator_unregister_supply_alias(dev, id[i]);
1723 }
1724 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1725
1726
1727 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)1728 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1729 const struct regulator_config *config)
1730 {
1731 struct regulator_enable_gpio *pin;
1732 struct gpio_desc *gpiod;
1733 int ret;
1734
1735 gpiod = gpio_to_desc(config->ena_gpio);
1736
1737 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
1738 if (pin->gpiod == gpiod) {
1739 rdev_dbg(rdev, "GPIO %d is already used\n",
1740 config->ena_gpio);
1741 goto update_ena_gpio_to_rdev;
1742 }
1743 }
1744
1745 ret = gpio_request_one(config->ena_gpio,
1746 GPIOF_DIR_OUT | config->ena_gpio_flags,
1747 rdev_get_name(rdev));
1748 if (ret)
1749 return ret;
1750
1751 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1752 if (pin == NULL) {
1753 gpio_free(config->ena_gpio);
1754 return -ENOMEM;
1755 }
1756
1757 pin->gpiod = gpiod;
1758 pin->ena_gpio_invert = config->ena_gpio_invert;
1759 list_add(&pin->list, ®ulator_ena_gpio_list);
1760
1761 update_ena_gpio_to_rdev:
1762 pin->request_count++;
1763 rdev->ena_pin = pin;
1764 return 0;
1765 }
1766
regulator_ena_gpio_free(struct regulator_dev * rdev)1767 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1768 {
1769 struct regulator_enable_gpio *pin, *n;
1770
1771 if (!rdev->ena_pin)
1772 return;
1773
1774 /* Free the GPIO only in case of no use */
1775 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
1776 if (pin->gpiod == rdev->ena_pin->gpiod) {
1777 if (pin->request_count <= 1) {
1778 pin->request_count = 0;
1779 gpiod_put(pin->gpiod);
1780 list_del(&pin->list);
1781 kfree(pin);
1782 rdev->ena_pin = NULL;
1783 return;
1784 } else {
1785 pin->request_count--;
1786 }
1787 }
1788 }
1789 }
1790
1791 /**
1792 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1793 * @rdev: regulator_dev structure
1794 * @enable: enable GPIO at initial use?
1795 *
1796 * GPIO is enabled in case of initial use. (enable_count is 0)
1797 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1798 */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)1799 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1800 {
1801 struct regulator_enable_gpio *pin = rdev->ena_pin;
1802
1803 if (!pin)
1804 return -EINVAL;
1805
1806 if (enable) {
1807 /* Enable GPIO at initial use */
1808 if (pin->enable_count == 0)
1809 gpiod_set_value_cansleep(pin->gpiod,
1810 !pin->ena_gpio_invert);
1811
1812 pin->enable_count++;
1813 } else {
1814 if (pin->enable_count > 1) {
1815 pin->enable_count--;
1816 return 0;
1817 }
1818
1819 /* Disable GPIO if not used */
1820 if (pin->enable_count <= 1) {
1821 gpiod_set_value_cansleep(pin->gpiod,
1822 pin->ena_gpio_invert);
1823 pin->enable_count = 0;
1824 }
1825 }
1826
1827 return 0;
1828 }
1829
1830 /**
1831 * _regulator_enable_delay - a delay helper function
1832 * @delay: time to delay in microseconds
1833 *
1834 * Delay for the requested amount of time as per the guidelines in:
1835 *
1836 * Documentation/timers/timers-howto.txt
1837 *
1838 * The assumption here is that regulators will never be enabled in
1839 * atomic context and therefore sleeping functions can be used.
1840 */
_regulator_enable_delay(unsigned int delay)1841 static void _regulator_enable_delay(unsigned int delay)
1842 {
1843 unsigned int ms = delay / 1000;
1844 unsigned int us = delay % 1000;
1845
1846 if (ms > 0) {
1847 /*
1848 * For small enough values, handle super-millisecond
1849 * delays in the usleep_range() call below.
1850 */
1851 if (ms < 20)
1852 us += ms * 1000;
1853 else
1854 msleep(ms);
1855 }
1856
1857 /*
1858 * Give the scheduler some room to coalesce with any other
1859 * wakeup sources. For delays shorter than 10 us, don't even
1860 * bother setting up high-resolution timers and just busy-
1861 * loop.
1862 */
1863 if (us >= 10)
1864 usleep_range(us, us + 100);
1865 else
1866 udelay(us);
1867 }
1868
_regulator_do_enable(struct regulator_dev * rdev)1869 static int _regulator_do_enable(struct regulator_dev *rdev)
1870 {
1871 int ret, delay;
1872
1873 /* Query before enabling in case configuration dependent. */
1874 ret = _regulator_get_enable_time(rdev);
1875 if (ret >= 0) {
1876 delay = ret;
1877 } else {
1878 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1879 delay = 0;
1880 }
1881
1882 trace_regulator_enable(rdev_get_name(rdev));
1883
1884 if (rdev->desc->off_on_delay) {
1885 /* if needed, keep a distance of off_on_delay from last time
1886 * this regulator was disabled.
1887 */
1888 unsigned long start_jiffy = jiffies;
1889 unsigned long intended, max_delay, remaining;
1890
1891 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1892 intended = rdev->last_off_jiffy + max_delay;
1893
1894 if (time_before(start_jiffy, intended)) {
1895 /* calc remaining jiffies to deal with one-time
1896 * timer wrapping.
1897 * in case of multiple timer wrapping, either it can be
1898 * detected by out-of-range remaining, or it cannot be
1899 * detected and we gets a panelty of
1900 * _regulator_enable_delay().
1901 */
1902 remaining = intended - start_jiffy;
1903 if (remaining <= max_delay)
1904 _regulator_enable_delay(
1905 jiffies_to_usecs(remaining));
1906 }
1907 }
1908
1909 if (rdev->ena_pin) {
1910 if (!rdev->ena_gpio_state) {
1911 ret = regulator_ena_gpio_ctrl(rdev, true);
1912 if (ret < 0)
1913 return ret;
1914 rdev->ena_gpio_state = 1;
1915 }
1916 } else if (rdev->desc->ops->enable) {
1917 ret = rdev->desc->ops->enable(rdev);
1918 if (ret < 0)
1919 return ret;
1920 } else {
1921 return -EINVAL;
1922 }
1923
1924 /* Allow the regulator to ramp; it would be useful to extend
1925 * this for bulk operations so that the regulators can ramp
1926 * together. */
1927 trace_regulator_enable_delay(rdev_get_name(rdev));
1928
1929 _regulator_enable_delay(delay);
1930
1931 trace_regulator_enable_complete(rdev_get_name(rdev));
1932
1933 return 0;
1934 }
1935
1936 /* locks held by regulator_enable() */
_regulator_enable(struct regulator_dev * rdev)1937 static int _regulator_enable(struct regulator_dev *rdev)
1938 {
1939 int ret;
1940
1941 /* check voltage and requested load before enabling */
1942 if (rdev->constraints &&
1943 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1944 drms_uA_update(rdev);
1945
1946 if (rdev->use_count == 0) {
1947 /* The regulator may on if it's not switchable or left on */
1948 ret = _regulator_is_enabled(rdev);
1949 if (ret == -EINVAL || ret == 0) {
1950 if (!_regulator_can_change_status(rdev))
1951 return -EPERM;
1952
1953 ret = _regulator_do_enable(rdev);
1954 if (ret < 0)
1955 return ret;
1956
1957 } else if (ret < 0) {
1958 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1959 return ret;
1960 }
1961 /* Fallthrough on positive return values - already enabled */
1962 }
1963
1964 rdev->use_count++;
1965
1966 return 0;
1967 }
1968
1969 /**
1970 * regulator_enable - enable regulator output
1971 * @regulator: regulator source
1972 *
1973 * Request that the regulator be enabled with the regulator output at
1974 * the predefined voltage or current value. Calls to regulator_enable()
1975 * must be balanced with calls to regulator_disable().
1976 *
1977 * NOTE: the output value can be set by other drivers, boot loader or may be
1978 * hardwired in the regulator.
1979 */
regulator_enable(struct regulator * regulator)1980 int regulator_enable(struct regulator *regulator)
1981 {
1982 struct regulator_dev *rdev = regulator->rdev;
1983 int ret = 0;
1984
1985 if (regulator->always_on)
1986 return 0;
1987
1988 if (rdev->supply) {
1989 ret = regulator_enable(rdev->supply);
1990 if (ret != 0)
1991 return ret;
1992 }
1993
1994 mutex_lock(&rdev->mutex);
1995 ret = _regulator_enable(rdev);
1996 mutex_unlock(&rdev->mutex);
1997
1998 if (ret != 0 && rdev->supply)
1999 regulator_disable(rdev->supply);
2000
2001 return ret;
2002 }
2003 EXPORT_SYMBOL_GPL(regulator_enable);
2004
_regulator_do_disable(struct regulator_dev * rdev)2005 static int _regulator_do_disable(struct regulator_dev *rdev)
2006 {
2007 int ret;
2008
2009 trace_regulator_disable(rdev_get_name(rdev));
2010
2011 if (rdev->ena_pin) {
2012 if (rdev->ena_gpio_state) {
2013 ret = regulator_ena_gpio_ctrl(rdev, false);
2014 if (ret < 0)
2015 return ret;
2016 rdev->ena_gpio_state = 0;
2017 }
2018
2019 } else if (rdev->desc->ops->disable) {
2020 ret = rdev->desc->ops->disable(rdev);
2021 if (ret != 0)
2022 return ret;
2023 }
2024
2025 /* cares about last_off_jiffy only if off_on_delay is required by
2026 * device.
2027 */
2028 if (rdev->desc->off_on_delay)
2029 rdev->last_off_jiffy = jiffies;
2030
2031 trace_regulator_disable_complete(rdev_get_name(rdev));
2032
2033 return 0;
2034 }
2035
2036 /* locks held by regulator_disable() */
_regulator_disable(struct regulator_dev * rdev)2037 static int _regulator_disable(struct regulator_dev *rdev)
2038 {
2039 int ret = 0;
2040
2041 if (WARN(rdev->use_count <= 0,
2042 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2043 return -EIO;
2044
2045 /* are we the last user and permitted to disable ? */
2046 if (rdev->use_count == 1 &&
2047 (rdev->constraints && !rdev->constraints->always_on)) {
2048
2049 /* we are last user */
2050 if (_regulator_can_change_status(rdev)) {
2051 ret = _notifier_call_chain(rdev,
2052 REGULATOR_EVENT_PRE_DISABLE,
2053 NULL);
2054 if (ret & NOTIFY_STOP_MASK)
2055 return -EINVAL;
2056
2057 ret = _regulator_do_disable(rdev);
2058 if (ret < 0) {
2059 rdev_err(rdev, "failed to disable\n");
2060 _notifier_call_chain(rdev,
2061 REGULATOR_EVENT_ABORT_DISABLE,
2062 NULL);
2063 return ret;
2064 }
2065 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2066 NULL);
2067 }
2068
2069 rdev->use_count = 0;
2070 } else if (rdev->use_count > 1) {
2071
2072 if (rdev->constraints &&
2073 (rdev->constraints->valid_ops_mask &
2074 REGULATOR_CHANGE_DRMS))
2075 drms_uA_update(rdev);
2076
2077 rdev->use_count--;
2078 }
2079
2080 return ret;
2081 }
2082
2083 /**
2084 * regulator_disable - disable regulator output
2085 * @regulator: regulator source
2086 *
2087 * Disable the regulator output voltage or current. Calls to
2088 * regulator_enable() must be balanced with calls to
2089 * regulator_disable().
2090 *
2091 * NOTE: this will only disable the regulator output if no other consumer
2092 * devices have it enabled, the regulator device supports disabling and
2093 * machine constraints permit this operation.
2094 */
regulator_disable(struct regulator * regulator)2095 int regulator_disable(struct regulator *regulator)
2096 {
2097 struct regulator_dev *rdev = regulator->rdev;
2098 int ret = 0;
2099
2100 if (regulator->always_on)
2101 return 0;
2102
2103 mutex_lock(&rdev->mutex);
2104 ret = _regulator_disable(rdev);
2105 mutex_unlock(&rdev->mutex);
2106
2107 if (ret == 0 && rdev->supply)
2108 regulator_disable(rdev->supply);
2109
2110 return ret;
2111 }
2112 EXPORT_SYMBOL_GPL(regulator_disable);
2113
2114 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)2115 static int _regulator_force_disable(struct regulator_dev *rdev)
2116 {
2117 int ret = 0;
2118
2119 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2120 REGULATOR_EVENT_PRE_DISABLE, NULL);
2121 if (ret & NOTIFY_STOP_MASK)
2122 return -EINVAL;
2123
2124 ret = _regulator_do_disable(rdev);
2125 if (ret < 0) {
2126 rdev_err(rdev, "failed to force disable\n");
2127 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2128 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2129 return ret;
2130 }
2131
2132 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2133 REGULATOR_EVENT_DISABLE, NULL);
2134
2135 return 0;
2136 }
2137
2138 /**
2139 * regulator_force_disable - force disable regulator output
2140 * @regulator: regulator source
2141 *
2142 * Forcibly disable the regulator output voltage or current.
2143 * NOTE: this *will* disable the regulator output even if other consumer
2144 * devices have it enabled. This should be used for situations when device
2145 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2146 */
regulator_force_disable(struct regulator * regulator)2147 int regulator_force_disable(struct regulator *regulator)
2148 {
2149 struct regulator_dev *rdev = regulator->rdev;
2150 int ret;
2151
2152 mutex_lock(&rdev->mutex);
2153 regulator->uA_load = 0;
2154 ret = _regulator_force_disable(regulator->rdev);
2155 mutex_unlock(&rdev->mutex);
2156
2157 if (rdev->supply)
2158 while (rdev->open_count--)
2159 regulator_disable(rdev->supply);
2160
2161 return ret;
2162 }
2163 EXPORT_SYMBOL_GPL(regulator_force_disable);
2164
regulator_disable_work(struct work_struct * work)2165 static void regulator_disable_work(struct work_struct *work)
2166 {
2167 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2168 disable_work.work);
2169 int count, i, ret;
2170
2171 mutex_lock(&rdev->mutex);
2172
2173 BUG_ON(!rdev->deferred_disables);
2174
2175 count = rdev->deferred_disables;
2176 rdev->deferred_disables = 0;
2177
2178 for (i = 0; i < count; i++) {
2179 ret = _regulator_disable(rdev);
2180 if (ret != 0)
2181 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2182 }
2183
2184 mutex_unlock(&rdev->mutex);
2185
2186 if (rdev->supply) {
2187 for (i = 0; i < count; i++) {
2188 ret = regulator_disable(rdev->supply);
2189 if (ret != 0) {
2190 rdev_err(rdev,
2191 "Supply disable failed: %d\n", ret);
2192 }
2193 }
2194 }
2195 }
2196
2197 /**
2198 * regulator_disable_deferred - disable regulator output with delay
2199 * @regulator: regulator source
2200 * @ms: miliseconds until the regulator is disabled
2201 *
2202 * Execute regulator_disable() on the regulator after a delay. This
2203 * is intended for use with devices that require some time to quiesce.
2204 *
2205 * NOTE: this will only disable the regulator output if no other consumer
2206 * devices have it enabled, the regulator device supports disabling and
2207 * machine constraints permit this operation.
2208 */
regulator_disable_deferred(struct regulator * regulator,int ms)2209 int regulator_disable_deferred(struct regulator *regulator, int ms)
2210 {
2211 struct regulator_dev *rdev = regulator->rdev;
2212 int ret;
2213
2214 if (regulator->always_on)
2215 return 0;
2216
2217 if (!ms)
2218 return regulator_disable(regulator);
2219
2220 mutex_lock(&rdev->mutex);
2221 rdev->deferred_disables++;
2222 mutex_unlock(&rdev->mutex);
2223
2224 ret = queue_delayed_work(system_power_efficient_wq,
2225 &rdev->disable_work,
2226 msecs_to_jiffies(ms));
2227 if (ret < 0)
2228 return ret;
2229 else
2230 return 0;
2231 }
2232 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2233
_regulator_is_enabled(struct regulator_dev * rdev)2234 static int _regulator_is_enabled(struct regulator_dev *rdev)
2235 {
2236 /* A GPIO control always takes precedence */
2237 if (rdev->ena_pin)
2238 return rdev->ena_gpio_state;
2239
2240 /* If we don't know then assume that the regulator is always on */
2241 if (!rdev->desc->ops->is_enabled)
2242 return 1;
2243
2244 return rdev->desc->ops->is_enabled(rdev);
2245 }
2246
2247 /**
2248 * regulator_is_enabled - is the regulator output enabled
2249 * @regulator: regulator source
2250 *
2251 * Returns positive if the regulator driver backing the source/client
2252 * has requested that the device be enabled, zero if it hasn't, else a
2253 * negative errno code.
2254 *
2255 * Note that the device backing this regulator handle can have multiple
2256 * users, so it might be enabled even if regulator_enable() was never
2257 * called for this particular source.
2258 */
regulator_is_enabled(struct regulator * regulator)2259 int regulator_is_enabled(struct regulator *regulator)
2260 {
2261 int ret;
2262
2263 if (regulator->always_on)
2264 return 1;
2265
2266 mutex_lock(®ulator->rdev->mutex);
2267 ret = _regulator_is_enabled(regulator->rdev);
2268 mutex_unlock(®ulator->rdev->mutex);
2269
2270 return ret;
2271 }
2272 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2273
2274 /**
2275 * regulator_can_change_voltage - check if regulator can change voltage
2276 * @regulator: regulator source
2277 *
2278 * Returns positive if the regulator driver backing the source/client
2279 * can change its voltage, false otherwise. Useful for detecting fixed
2280 * or dummy regulators and disabling voltage change logic in the client
2281 * driver.
2282 */
regulator_can_change_voltage(struct regulator * regulator)2283 int regulator_can_change_voltage(struct regulator *regulator)
2284 {
2285 struct regulator_dev *rdev = regulator->rdev;
2286
2287 if (rdev->constraints &&
2288 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2289 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2290 return 1;
2291
2292 if (rdev->desc->continuous_voltage_range &&
2293 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2294 rdev->constraints->min_uV != rdev->constraints->max_uV)
2295 return 1;
2296 }
2297
2298 return 0;
2299 }
2300 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2301
2302 /**
2303 * regulator_count_voltages - count regulator_list_voltage() selectors
2304 * @regulator: regulator source
2305 *
2306 * Returns number of selectors, or negative errno. Selectors are
2307 * numbered starting at zero, and typically correspond to bitfields
2308 * in hardware registers.
2309 */
regulator_count_voltages(struct regulator * regulator)2310 int regulator_count_voltages(struct regulator *regulator)
2311 {
2312 struct regulator_dev *rdev = regulator->rdev;
2313
2314 if (rdev->desc->n_voltages)
2315 return rdev->desc->n_voltages;
2316
2317 if (!rdev->supply)
2318 return -EINVAL;
2319
2320 return regulator_count_voltages(rdev->supply);
2321 }
2322 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2323
2324 /**
2325 * regulator_list_voltage - enumerate supported voltages
2326 * @regulator: regulator source
2327 * @selector: identify voltage to list
2328 * Context: can sleep
2329 *
2330 * Returns a voltage that can be passed to @regulator_set_voltage(),
2331 * zero if this selector code can't be used on this system, or a
2332 * negative errno.
2333 */
regulator_list_voltage(struct regulator * regulator,unsigned selector)2334 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2335 {
2336 struct regulator_dev *rdev = regulator->rdev;
2337 const struct regulator_ops *ops = rdev->desc->ops;
2338 int ret;
2339
2340 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2341 return rdev->desc->fixed_uV;
2342
2343 if (ops->list_voltage) {
2344 if (selector >= rdev->desc->n_voltages)
2345 return -EINVAL;
2346 mutex_lock(&rdev->mutex);
2347 ret = ops->list_voltage(rdev, selector);
2348 mutex_unlock(&rdev->mutex);
2349 } else if (rdev->supply) {
2350 ret = regulator_list_voltage(rdev->supply, selector);
2351 } else {
2352 return -EINVAL;
2353 }
2354
2355 if (ret > 0) {
2356 if (ret < rdev->constraints->min_uV)
2357 ret = 0;
2358 else if (ret > rdev->constraints->max_uV)
2359 ret = 0;
2360 }
2361
2362 return ret;
2363 }
2364 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2365
2366 /**
2367 * regulator_get_regmap - get the regulator's register map
2368 * @regulator: regulator source
2369 *
2370 * Returns the register map for the given regulator, or an ERR_PTR value
2371 * if the regulator doesn't use regmap.
2372 */
regulator_get_regmap(struct regulator * regulator)2373 struct regmap *regulator_get_regmap(struct regulator *regulator)
2374 {
2375 struct regmap *map = regulator->rdev->regmap;
2376
2377 return map ? map : ERR_PTR(-EOPNOTSUPP);
2378 }
2379
2380 /**
2381 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2382 * @regulator: regulator source
2383 * @vsel_reg: voltage selector register, output parameter
2384 * @vsel_mask: mask for voltage selector bitfield, output parameter
2385 *
2386 * Returns the hardware register offset and bitmask used for setting the
2387 * regulator voltage. This might be useful when configuring voltage-scaling
2388 * hardware or firmware that can make I2C requests behind the kernel's back,
2389 * for example.
2390 *
2391 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2392 * and 0 is returned, otherwise a negative errno is returned.
2393 */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)2394 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2395 unsigned *vsel_reg,
2396 unsigned *vsel_mask)
2397 {
2398 struct regulator_dev *rdev = regulator->rdev;
2399 const struct regulator_ops *ops = rdev->desc->ops;
2400
2401 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2402 return -EOPNOTSUPP;
2403
2404 *vsel_reg = rdev->desc->vsel_reg;
2405 *vsel_mask = rdev->desc->vsel_mask;
2406
2407 return 0;
2408 }
2409 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2410
2411 /**
2412 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2413 * @regulator: regulator source
2414 * @selector: identify voltage to list
2415 *
2416 * Converts the selector to a hardware-specific voltage selector that can be
2417 * directly written to the regulator registers. The address of the voltage
2418 * register can be determined by calling @regulator_get_hardware_vsel_register.
2419 *
2420 * On error a negative errno is returned.
2421 */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)2422 int regulator_list_hardware_vsel(struct regulator *regulator,
2423 unsigned selector)
2424 {
2425 struct regulator_dev *rdev = regulator->rdev;
2426 const struct regulator_ops *ops = rdev->desc->ops;
2427
2428 if (selector >= rdev->desc->n_voltages)
2429 return -EINVAL;
2430 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2431 return -EOPNOTSUPP;
2432
2433 return selector;
2434 }
2435 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2436
2437 /**
2438 * regulator_get_linear_step - return the voltage step size between VSEL values
2439 * @regulator: regulator source
2440 *
2441 * Returns the voltage step size between VSEL values for linear
2442 * regulators, or return 0 if the regulator isn't a linear regulator.
2443 */
regulator_get_linear_step(struct regulator * regulator)2444 unsigned int regulator_get_linear_step(struct regulator *regulator)
2445 {
2446 struct regulator_dev *rdev = regulator->rdev;
2447
2448 return rdev->desc->uV_step;
2449 }
2450 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2451
2452 /**
2453 * regulator_is_supported_voltage - check if a voltage range can be supported
2454 *
2455 * @regulator: Regulator to check.
2456 * @min_uV: Minimum required voltage in uV.
2457 * @max_uV: Maximum required voltage in uV.
2458 *
2459 * Returns a boolean or a negative error code.
2460 */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)2461 int regulator_is_supported_voltage(struct regulator *regulator,
2462 int min_uV, int max_uV)
2463 {
2464 struct regulator_dev *rdev = regulator->rdev;
2465 int i, voltages, ret;
2466
2467 /* If we can't change voltage check the current voltage */
2468 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2469 ret = regulator_get_voltage(regulator);
2470 if (ret >= 0)
2471 return min_uV <= ret && ret <= max_uV;
2472 else
2473 return ret;
2474 }
2475
2476 /* Any voltage within constrains range is fine? */
2477 if (rdev->desc->continuous_voltage_range)
2478 return min_uV >= rdev->constraints->min_uV &&
2479 max_uV <= rdev->constraints->max_uV;
2480
2481 ret = regulator_count_voltages(regulator);
2482 if (ret < 0)
2483 return ret;
2484 voltages = ret;
2485
2486 for (i = 0; i < voltages; i++) {
2487 ret = regulator_list_voltage(regulator, i);
2488
2489 if (ret >= min_uV && ret <= max_uV)
2490 return 1;
2491 }
2492
2493 return 0;
2494 }
2495 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2496
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)2497 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2498 int min_uV, int max_uV,
2499 unsigned *selector)
2500 {
2501 struct pre_voltage_change_data data;
2502 int ret;
2503
2504 data.old_uV = _regulator_get_voltage(rdev);
2505 data.min_uV = min_uV;
2506 data.max_uV = max_uV;
2507 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2508 &data);
2509 if (ret & NOTIFY_STOP_MASK)
2510 return -EINVAL;
2511
2512 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2513 if (ret >= 0)
2514 return ret;
2515
2516 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2517 (void *)data.old_uV);
2518
2519 return ret;
2520 }
2521
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)2522 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2523 int uV, unsigned selector)
2524 {
2525 struct pre_voltage_change_data data;
2526 int ret;
2527
2528 data.old_uV = _regulator_get_voltage(rdev);
2529 data.min_uV = uV;
2530 data.max_uV = uV;
2531 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2532 &data);
2533 if (ret & NOTIFY_STOP_MASK)
2534 return -EINVAL;
2535
2536 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2537 if (ret >= 0)
2538 return ret;
2539
2540 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2541 (void *)data.old_uV);
2542
2543 return ret;
2544 }
2545
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)2546 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2547 int min_uV, int max_uV)
2548 {
2549 int ret;
2550 int delay = 0;
2551 int best_val = 0;
2552 unsigned int selector;
2553 int old_selector = -1;
2554
2555 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2556
2557 min_uV += rdev->constraints->uV_offset;
2558 max_uV += rdev->constraints->uV_offset;
2559
2560 /*
2561 * If we can't obtain the old selector there is not enough
2562 * info to call set_voltage_time_sel().
2563 */
2564 if (_regulator_is_enabled(rdev) &&
2565 rdev->desc->ops->set_voltage_time_sel &&
2566 rdev->desc->ops->get_voltage_sel) {
2567 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2568 if (old_selector < 0)
2569 return old_selector;
2570 }
2571
2572 if (rdev->desc->ops->set_voltage) {
2573 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2574 &selector);
2575
2576 if (ret >= 0) {
2577 if (rdev->desc->ops->list_voltage)
2578 best_val = rdev->desc->ops->list_voltage(rdev,
2579 selector);
2580 else
2581 best_val = _regulator_get_voltage(rdev);
2582 }
2583
2584 } else if (rdev->desc->ops->set_voltage_sel) {
2585 if (rdev->desc->ops->map_voltage) {
2586 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2587 max_uV);
2588 } else {
2589 if (rdev->desc->ops->list_voltage ==
2590 regulator_list_voltage_linear)
2591 ret = regulator_map_voltage_linear(rdev,
2592 min_uV, max_uV);
2593 else if (rdev->desc->ops->list_voltage ==
2594 regulator_list_voltage_linear_range)
2595 ret = regulator_map_voltage_linear_range(rdev,
2596 min_uV, max_uV);
2597 else
2598 ret = regulator_map_voltage_iterate(rdev,
2599 min_uV, max_uV);
2600 }
2601
2602 if (ret >= 0) {
2603 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2604 if (min_uV <= best_val && max_uV >= best_val) {
2605 selector = ret;
2606 if (old_selector == selector)
2607 ret = 0;
2608 else
2609 ret = _regulator_call_set_voltage_sel(
2610 rdev, best_val, selector);
2611 } else {
2612 ret = -EINVAL;
2613 }
2614 }
2615 } else {
2616 ret = -EINVAL;
2617 }
2618
2619 /* Call set_voltage_time_sel if successfully obtained old_selector */
2620 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2621 && old_selector != selector) {
2622
2623 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2624 old_selector, selector);
2625 if (delay < 0) {
2626 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2627 delay);
2628 delay = 0;
2629 }
2630
2631 /* Insert any necessary delays */
2632 if (delay >= 1000) {
2633 mdelay(delay / 1000);
2634 udelay(delay % 1000);
2635 } else if (delay) {
2636 udelay(delay);
2637 }
2638 }
2639
2640 if (ret == 0 && best_val >= 0) {
2641 unsigned long data = best_val;
2642
2643 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2644 (void *)data);
2645 }
2646
2647 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2648
2649 return ret;
2650 }
2651
2652 /**
2653 * regulator_set_voltage - set regulator output voltage
2654 * @regulator: regulator source
2655 * @min_uV: Minimum required voltage in uV
2656 * @max_uV: Maximum acceptable voltage in uV
2657 *
2658 * Sets a voltage regulator to the desired output voltage. This can be set
2659 * during any regulator state. IOW, regulator can be disabled or enabled.
2660 *
2661 * If the regulator is enabled then the voltage will change to the new value
2662 * immediately otherwise if the regulator is disabled the regulator will
2663 * output at the new voltage when enabled.
2664 *
2665 * NOTE: If the regulator is shared between several devices then the lowest
2666 * request voltage that meets the system constraints will be used.
2667 * Regulator system constraints must be set for this regulator before
2668 * calling this function otherwise this call will fail.
2669 */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)2670 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2671 {
2672 struct regulator_dev *rdev = regulator->rdev;
2673 int ret = 0;
2674 int old_min_uV, old_max_uV;
2675 int current_uV;
2676
2677 mutex_lock(&rdev->mutex);
2678
2679 /* If we're setting the same range as last time the change
2680 * should be a noop (some cpufreq implementations use the same
2681 * voltage for multiple frequencies, for example).
2682 */
2683 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2684 goto out;
2685
2686 /* If we're trying to set a range that overlaps the current voltage,
2687 * return succesfully even though the regulator does not support
2688 * changing the voltage.
2689 */
2690 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2691 current_uV = _regulator_get_voltage(rdev);
2692 if (min_uV <= current_uV && current_uV <= max_uV) {
2693 regulator->min_uV = min_uV;
2694 regulator->max_uV = max_uV;
2695 goto out;
2696 }
2697 }
2698
2699 /* sanity check */
2700 if (!rdev->desc->ops->set_voltage &&
2701 !rdev->desc->ops->set_voltage_sel) {
2702 ret = -EINVAL;
2703 goto out;
2704 }
2705
2706 /* constraints check */
2707 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2708 if (ret < 0)
2709 goto out;
2710
2711 /* restore original values in case of error */
2712 old_min_uV = regulator->min_uV;
2713 old_max_uV = regulator->max_uV;
2714 regulator->min_uV = min_uV;
2715 regulator->max_uV = max_uV;
2716
2717 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2718 if (ret < 0)
2719 goto out2;
2720
2721 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2722 if (ret < 0)
2723 goto out2;
2724
2725 out:
2726 mutex_unlock(&rdev->mutex);
2727 return ret;
2728 out2:
2729 regulator->min_uV = old_min_uV;
2730 regulator->max_uV = old_max_uV;
2731 mutex_unlock(&rdev->mutex);
2732 return ret;
2733 }
2734 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2735
2736 /**
2737 * regulator_set_voltage_time - get raise/fall time
2738 * @regulator: regulator source
2739 * @old_uV: starting voltage in microvolts
2740 * @new_uV: target voltage in microvolts
2741 *
2742 * Provided with the starting and ending voltage, this function attempts to
2743 * calculate the time in microseconds required to rise or fall to this new
2744 * voltage.
2745 */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)2746 int regulator_set_voltage_time(struct regulator *regulator,
2747 int old_uV, int new_uV)
2748 {
2749 struct regulator_dev *rdev = regulator->rdev;
2750 const struct regulator_ops *ops = rdev->desc->ops;
2751 int old_sel = -1;
2752 int new_sel = -1;
2753 int voltage;
2754 int i;
2755
2756 /* Currently requires operations to do this */
2757 if (!ops->list_voltage || !ops->set_voltage_time_sel
2758 || !rdev->desc->n_voltages)
2759 return -EINVAL;
2760
2761 for (i = 0; i < rdev->desc->n_voltages; i++) {
2762 /* We only look for exact voltage matches here */
2763 voltage = regulator_list_voltage(regulator, i);
2764 if (voltage < 0)
2765 return -EINVAL;
2766 if (voltage == 0)
2767 continue;
2768 if (voltage == old_uV)
2769 old_sel = i;
2770 if (voltage == new_uV)
2771 new_sel = i;
2772 }
2773
2774 if (old_sel < 0 || new_sel < 0)
2775 return -EINVAL;
2776
2777 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2778 }
2779 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2780
2781 /**
2782 * regulator_set_voltage_time_sel - get raise/fall time
2783 * @rdev: regulator source device
2784 * @old_selector: selector for starting voltage
2785 * @new_selector: selector for target voltage
2786 *
2787 * Provided with the starting and target voltage selectors, this function
2788 * returns time in microseconds required to rise or fall to this new voltage
2789 *
2790 * Drivers providing ramp_delay in regulation_constraints can use this as their
2791 * set_voltage_time_sel() operation.
2792 */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)2793 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2794 unsigned int old_selector,
2795 unsigned int new_selector)
2796 {
2797 unsigned int ramp_delay = 0;
2798 int old_volt, new_volt;
2799
2800 if (rdev->constraints->ramp_delay)
2801 ramp_delay = rdev->constraints->ramp_delay;
2802 else if (rdev->desc->ramp_delay)
2803 ramp_delay = rdev->desc->ramp_delay;
2804
2805 if (ramp_delay == 0) {
2806 rdev_warn(rdev, "ramp_delay not set\n");
2807 return 0;
2808 }
2809
2810 /* sanity check */
2811 if (!rdev->desc->ops->list_voltage)
2812 return -EINVAL;
2813
2814 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2815 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2816
2817 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2818 }
2819 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2820
2821 /**
2822 * regulator_sync_voltage - re-apply last regulator output voltage
2823 * @regulator: regulator source
2824 *
2825 * Re-apply the last configured voltage. This is intended to be used
2826 * where some external control source the consumer is cooperating with
2827 * has caused the configured voltage to change.
2828 */
regulator_sync_voltage(struct regulator * regulator)2829 int regulator_sync_voltage(struct regulator *regulator)
2830 {
2831 struct regulator_dev *rdev = regulator->rdev;
2832 int ret, min_uV, max_uV;
2833
2834 mutex_lock(&rdev->mutex);
2835
2836 if (!rdev->desc->ops->set_voltage &&
2837 !rdev->desc->ops->set_voltage_sel) {
2838 ret = -EINVAL;
2839 goto out;
2840 }
2841
2842 /* This is only going to work if we've had a voltage configured. */
2843 if (!regulator->min_uV && !regulator->max_uV) {
2844 ret = -EINVAL;
2845 goto out;
2846 }
2847
2848 min_uV = regulator->min_uV;
2849 max_uV = regulator->max_uV;
2850
2851 /* This should be a paranoia check... */
2852 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2853 if (ret < 0)
2854 goto out;
2855
2856 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2857 if (ret < 0)
2858 goto out;
2859
2860 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2861
2862 out:
2863 mutex_unlock(&rdev->mutex);
2864 return ret;
2865 }
2866 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2867
_regulator_get_voltage(struct regulator_dev * rdev)2868 static int _regulator_get_voltage(struct regulator_dev *rdev)
2869 {
2870 int sel, ret;
2871
2872 if (rdev->desc->ops->get_voltage_sel) {
2873 sel = rdev->desc->ops->get_voltage_sel(rdev);
2874 if (sel < 0)
2875 return sel;
2876 ret = rdev->desc->ops->list_voltage(rdev, sel);
2877 } else if (rdev->desc->ops->get_voltage) {
2878 ret = rdev->desc->ops->get_voltage(rdev);
2879 } else if (rdev->desc->ops->list_voltage) {
2880 ret = rdev->desc->ops->list_voltage(rdev, 0);
2881 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2882 ret = rdev->desc->fixed_uV;
2883 } else if (rdev->supply) {
2884 ret = regulator_get_voltage(rdev->supply);
2885 } else {
2886 return -EINVAL;
2887 }
2888
2889 if (ret < 0)
2890 return ret;
2891 return ret - rdev->constraints->uV_offset;
2892 }
2893
2894 /**
2895 * regulator_get_voltage - get regulator output voltage
2896 * @regulator: regulator source
2897 *
2898 * This returns the current regulator voltage in uV.
2899 *
2900 * NOTE: If the regulator is disabled it will return the voltage value. This
2901 * function should not be used to determine regulator state.
2902 */
regulator_get_voltage(struct regulator * regulator)2903 int regulator_get_voltage(struct regulator *regulator)
2904 {
2905 int ret;
2906
2907 mutex_lock(®ulator->rdev->mutex);
2908
2909 ret = _regulator_get_voltage(regulator->rdev);
2910
2911 mutex_unlock(®ulator->rdev->mutex);
2912
2913 return ret;
2914 }
2915 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2916
2917 /**
2918 * regulator_set_current_limit - set regulator output current limit
2919 * @regulator: regulator source
2920 * @min_uA: Minimum supported current in uA
2921 * @max_uA: Maximum supported current in uA
2922 *
2923 * Sets current sink to the desired output current. This can be set during
2924 * any regulator state. IOW, regulator can be disabled or enabled.
2925 *
2926 * If the regulator is enabled then the current will change to the new value
2927 * immediately otherwise if the regulator is disabled the regulator will
2928 * output at the new current when enabled.
2929 *
2930 * NOTE: Regulator system constraints must be set for this regulator before
2931 * calling this function otherwise this call will fail.
2932 */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)2933 int regulator_set_current_limit(struct regulator *regulator,
2934 int min_uA, int max_uA)
2935 {
2936 struct regulator_dev *rdev = regulator->rdev;
2937 int ret;
2938
2939 mutex_lock(&rdev->mutex);
2940
2941 /* sanity check */
2942 if (!rdev->desc->ops->set_current_limit) {
2943 ret = -EINVAL;
2944 goto out;
2945 }
2946
2947 /* constraints check */
2948 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2949 if (ret < 0)
2950 goto out;
2951
2952 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2953 out:
2954 mutex_unlock(&rdev->mutex);
2955 return ret;
2956 }
2957 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2958
_regulator_get_current_limit(struct regulator_dev * rdev)2959 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2960 {
2961 int ret;
2962
2963 mutex_lock(&rdev->mutex);
2964
2965 /* sanity check */
2966 if (!rdev->desc->ops->get_current_limit) {
2967 ret = -EINVAL;
2968 goto out;
2969 }
2970
2971 ret = rdev->desc->ops->get_current_limit(rdev);
2972 out:
2973 mutex_unlock(&rdev->mutex);
2974 return ret;
2975 }
2976
2977 /**
2978 * regulator_get_current_limit - get regulator output current
2979 * @regulator: regulator source
2980 *
2981 * This returns the current supplied by the specified current sink in uA.
2982 *
2983 * NOTE: If the regulator is disabled it will return the current value. This
2984 * function should not be used to determine regulator state.
2985 */
regulator_get_current_limit(struct regulator * regulator)2986 int regulator_get_current_limit(struct regulator *regulator)
2987 {
2988 return _regulator_get_current_limit(regulator->rdev);
2989 }
2990 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2991
2992 /**
2993 * regulator_set_mode - set regulator operating mode
2994 * @regulator: regulator source
2995 * @mode: operating mode - one of the REGULATOR_MODE constants
2996 *
2997 * Set regulator operating mode to increase regulator efficiency or improve
2998 * regulation performance.
2999 *
3000 * NOTE: Regulator system constraints must be set for this regulator before
3001 * calling this function otherwise this call will fail.
3002 */
regulator_set_mode(struct regulator * regulator,unsigned int mode)3003 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3004 {
3005 struct regulator_dev *rdev = regulator->rdev;
3006 int ret;
3007 int regulator_curr_mode;
3008
3009 mutex_lock(&rdev->mutex);
3010
3011 /* sanity check */
3012 if (!rdev->desc->ops->set_mode) {
3013 ret = -EINVAL;
3014 goto out;
3015 }
3016
3017 /* return if the same mode is requested */
3018 if (rdev->desc->ops->get_mode) {
3019 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3020 if (regulator_curr_mode == mode) {
3021 ret = 0;
3022 goto out;
3023 }
3024 }
3025
3026 /* constraints check */
3027 ret = regulator_mode_constrain(rdev, &mode);
3028 if (ret < 0)
3029 goto out;
3030
3031 ret = rdev->desc->ops->set_mode(rdev, mode);
3032 out:
3033 mutex_unlock(&rdev->mutex);
3034 return ret;
3035 }
3036 EXPORT_SYMBOL_GPL(regulator_set_mode);
3037
_regulator_get_mode(struct regulator_dev * rdev)3038 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3039 {
3040 int ret;
3041
3042 mutex_lock(&rdev->mutex);
3043
3044 /* sanity check */
3045 if (!rdev->desc->ops->get_mode) {
3046 ret = -EINVAL;
3047 goto out;
3048 }
3049
3050 ret = rdev->desc->ops->get_mode(rdev);
3051 out:
3052 mutex_unlock(&rdev->mutex);
3053 return ret;
3054 }
3055
3056 /**
3057 * regulator_get_mode - get regulator operating mode
3058 * @regulator: regulator source
3059 *
3060 * Get the current regulator operating mode.
3061 */
regulator_get_mode(struct regulator * regulator)3062 unsigned int regulator_get_mode(struct regulator *regulator)
3063 {
3064 return _regulator_get_mode(regulator->rdev);
3065 }
3066 EXPORT_SYMBOL_GPL(regulator_get_mode);
3067
3068 /**
3069 * regulator_set_load - set regulator load
3070 * @regulator: regulator source
3071 * @uA_load: load current
3072 *
3073 * Notifies the regulator core of a new device load. This is then used by
3074 * DRMS (if enabled by constraints) to set the most efficient regulator
3075 * operating mode for the new regulator loading.
3076 *
3077 * Consumer devices notify their supply regulator of the maximum power
3078 * they will require (can be taken from device datasheet in the power
3079 * consumption tables) when they change operational status and hence power
3080 * state. Examples of operational state changes that can affect power
3081 * consumption are :-
3082 *
3083 * o Device is opened / closed.
3084 * o Device I/O is about to begin or has just finished.
3085 * o Device is idling in between work.
3086 *
3087 * This information is also exported via sysfs to userspace.
3088 *
3089 * DRMS will sum the total requested load on the regulator and change
3090 * to the most efficient operating mode if platform constraints allow.
3091 *
3092 * On error a negative errno is returned.
3093 */
regulator_set_load(struct regulator * regulator,int uA_load)3094 int regulator_set_load(struct regulator *regulator, int uA_load)
3095 {
3096 struct regulator_dev *rdev = regulator->rdev;
3097 int ret;
3098
3099 mutex_lock(&rdev->mutex);
3100 regulator->uA_load = uA_load;
3101 ret = drms_uA_update(rdev);
3102 mutex_unlock(&rdev->mutex);
3103
3104 return ret;
3105 }
3106 EXPORT_SYMBOL_GPL(regulator_set_load);
3107
3108 /**
3109 * regulator_allow_bypass - allow the regulator to go into bypass mode
3110 *
3111 * @regulator: Regulator to configure
3112 * @enable: enable or disable bypass mode
3113 *
3114 * Allow the regulator to go into bypass mode if all other consumers
3115 * for the regulator also enable bypass mode and the machine
3116 * constraints allow this. Bypass mode means that the regulator is
3117 * simply passing the input directly to the output with no regulation.
3118 */
regulator_allow_bypass(struct regulator * regulator,bool enable)3119 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3120 {
3121 struct regulator_dev *rdev = regulator->rdev;
3122 int ret = 0;
3123
3124 if (!rdev->desc->ops->set_bypass)
3125 return 0;
3126
3127 if (rdev->constraints &&
3128 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3129 return 0;
3130
3131 mutex_lock(&rdev->mutex);
3132
3133 if (enable && !regulator->bypass) {
3134 rdev->bypass_count++;
3135
3136 if (rdev->bypass_count == rdev->open_count) {
3137 ret = rdev->desc->ops->set_bypass(rdev, enable);
3138 if (ret != 0)
3139 rdev->bypass_count--;
3140 }
3141
3142 } else if (!enable && regulator->bypass) {
3143 rdev->bypass_count--;
3144
3145 if (rdev->bypass_count != rdev->open_count) {
3146 ret = rdev->desc->ops->set_bypass(rdev, enable);
3147 if (ret != 0)
3148 rdev->bypass_count++;
3149 }
3150 }
3151
3152 if (ret == 0)
3153 regulator->bypass = enable;
3154
3155 mutex_unlock(&rdev->mutex);
3156
3157 return ret;
3158 }
3159 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3160
3161 /**
3162 * regulator_register_notifier - register regulator event notifier
3163 * @regulator: regulator source
3164 * @nb: notifier block
3165 *
3166 * Register notifier block to receive regulator events.
3167 */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)3168 int regulator_register_notifier(struct regulator *regulator,
3169 struct notifier_block *nb)
3170 {
3171 return blocking_notifier_chain_register(®ulator->rdev->notifier,
3172 nb);
3173 }
3174 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3175
3176 /**
3177 * regulator_unregister_notifier - unregister regulator event notifier
3178 * @regulator: regulator source
3179 * @nb: notifier block
3180 *
3181 * Unregister regulator event notifier block.
3182 */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)3183 int regulator_unregister_notifier(struct regulator *regulator,
3184 struct notifier_block *nb)
3185 {
3186 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
3187 nb);
3188 }
3189 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3190
3191 /* notify regulator consumers and downstream regulator consumers.
3192 * Note mutex must be held by caller.
3193 */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)3194 static int _notifier_call_chain(struct regulator_dev *rdev,
3195 unsigned long event, void *data)
3196 {
3197 /* call rdev chain first */
3198 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3199 }
3200
3201 /**
3202 * regulator_bulk_get - get multiple regulator consumers
3203 *
3204 * @dev: Device to supply
3205 * @num_consumers: Number of consumers to register
3206 * @consumers: Configuration of consumers; clients are stored here.
3207 *
3208 * @return 0 on success, an errno on failure.
3209 *
3210 * This helper function allows drivers to get several regulator
3211 * consumers in one operation. If any of the regulators cannot be
3212 * acquired then any regulators that were allocated will be freed
3213 * before returning to the caller.
3214 */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)3215 int regulator_bulk_get(struct device *dev, int num_consumers,
3216 struct regulator_bulk_data *consumers)
3217 {
3218 int i;
3219 int ret;
3220
3221 for (i = 0; i < num_consumers; i++)
3222 consumers[i].consumer = NULL;
3223
3224 for (i = 0; i < num_consumers; i++) {
3225 consumers[i].consumer = regulator_get(dev,
3226 consumers[i].supply);
3227 if (IS_ERR(consumers[i].consumer)) {
3228 ret = PTR_ERR(consumers[i].consumer);
3229 dev_err(dev, "Failed to get supply '%s': %d\n",
3230 consumers[i].supply, ret);
3231 consumers[i].consumer = NULL;
3232 goto err;
3233 }
3234 }
3235
3236 return 0;
3237
3238 err:
3239 while (--i >= 0)
3240 regulator_put(consumers[i].consumer);
3241
3242 return ret;
3243 }
3244 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3245
regulator_bulk_enable_async(void * data,async_cookie_t cookie)3246 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3247 {
3248 struct regulator_bulk_data *bulk = data;
3249
3250 bulk->ret = regulator_enable(bulk->consumer);
3251 }
3252
3253 /**
3254 * regulator_bulk_enable - enable multiple regulator consumers
3255 *
3256 * @num_consumers: Number of consumers
3257 * @consumers: Consumer data; clients are stored here.
3258 * @return 0 on success, an errno on failure
3259 *
3260 * This convenience API allows consumers to enable multiple regulator
3261 * clients in a single API call. If any consumers cannot be enabled
3262 * then any others that were enabled will be disabled again prior to
3263 * return.
3264 */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)3265 int regulator_bulk_enable(int num_consumers,
3266 struct regulator_bulk_data *consumers)
3267 {
3268 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3269 int i;
3270 int ret = 0;
3271
3272 for (i = 0; i < num_consumers; i++) {
3273 if (consumers[i].consumer->always_on)
3274 consumers[i].ret = 0;
3275 else
3276 async_schedule_domain(regulator_bulk_enable_async,
3277 &consumers[i], &async_domain);
3278 }
3279
3280 async_synchronize_full_domain(&async_domain);
3281
3282 /* If any consumer failed we need to unwind any that succeeded */
3283 for (i = 0; i < num_consumers; i++) {
3284 if (consumers[i].ret != 0) {
3285 ret = consumers[i].ret;
3286 goto err;
3287 }
3288 }
3289
3290 return 0;
3291
3292 err:
3293 for (i = 0; i < num_consumers; i++) {
3294 if (consumers[i].ret < 0)
3295 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3296 consumers[i].ret);
3297 else
3298 regulator_disable(consumers[i].consumer);
3299 }
3300
3301 return ret;
3302 }
3303 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3304
3305 /**
3306 * regulator_bulk_disable - disable multiple regulator consumers
3307 *
3308 * @num_consumers: Number of consumers
3309 * @consumers: Consumer data; clients are stored here.
3310 * @return 0 on success, an errno on failure
3311 *
3312 * This convenience API allows consumers to disable multiple regulator
3313 * clients in a single API call. If any consumers cannot be disabled
3314 * then any others that were disabled will be enabled again prior to
3315 * return.
3316 */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)3317 int regulator_bulk_disable(int num_consumers,
3318 struct regulator_bulk_data *consumers)
3319 {
3320 int i;
3321 int ret, r;
3322
3323 for (i = num_consumers - 1; i >= 0; --i) {
3324 ret = regulator_disable(consumers[i].consumer);
3325 if (ret != 0)
3326 goto err;
3327 }
3328
3329 return 0;
3330
3331 err:
3332 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3333 for (++i; i < num_consumers; ++i) {
3334 r = regulator_enable(consumers[i].consumer);
3335 if (r != 0)
3336 pr_err("Failed to reename %s: %d\n",
3337 consumers[i].supply, r);
3338 }
3339
3340 return ret;
3341 }
3342 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3343
3344 /**
3345 * regulator_bulk_force_disable - force disable multiple regulator consumers
3346 *
3347 * @num_consumers: Number of consumers
3348 * @consumers: Consumer data; clients are stored here.
3349 * @return 0 on success, an errno on failure
3350 *
3351 * This convenience API allows consumers to forcibly disable multiple regulator
3352 * clients in a single API call.
3353 * NOTE: This should be used for situations when device damage will
3354 * likely occur if the regulators are not disabled (e.g. over temp).
3355 * Although regulator_force_disable function call for some consumers can
3356 * return error numbers, the function is called for all consumers.
3357 */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)3358 int regulator_bulk_force_disable(int num_consumers,
3359 struct regulator_bulk_data *consumers)
3360 {
3361 int i;
3362 int ret;
3363
3364 for (i = 0; i < num_consumers; i++)
3365 consumers[i].ret =
3366 regulator_force_disable(consumers[i].consumer);
3367
3368 for (i = 0; i < num_consumers; i++) {
3369 if (consumers[i].ret != 0) {
3370 ret = consumers[i].ret;
3371 goto out;
3372 }
3373 }
3374
3375 return 0;
3376 out:
3377 return ret;
3378 }
3379 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3380
3381 /**
3382 * regulator_bulk_free - free multiple regulator consumers
3383 *
3384 * @num_consumers: Number of consumers
3385 * @consumers: Consumer data; clients are stored here.
3386 *
3387 * This convenience API allows consumers to free multiple regulator
3388 * clients in a single API call.
3389 */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)3390 void regulator_bulk_free(int num_consumers,
3391 struct regulator_bulk_data *consumers)
3392 {
3393 int i;
3394
3395 for (i = 0; i < num_consumers; i++) {
3396 regulator_put(consumers[i].consumer);
3397 consumers[i].consumer = NULL;
3398 }
3399 }
3400 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3401
3402 /**
3403 * regulator_notifier_call_chain - call regulator event notifier
3404 * @rdev: regulator source
3405 * @event: notifier block
3406 * @data: callback-specific data.
3407 *
3408 * Called by regulator drivers to notify clients a regulator event has
3409 * occurred. We also notify regulator clients downstream.
3410 * Note lock must be held by caller.
3411 */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)3412 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3413 unsigned long event, void *data)
3414 {
3415 _notifier_call_chain(rdev, event, data);
3416 return NOTIFY_DONE;
3417
3418 }
3419 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3420
3421 /**
3422 * regulator_mode_to_status - convert a regulator mode into a status
3423 *
3424 * @mode: Mode to convert
3425 *
3426 * Convert a regulator mode into a status.
3427 */
regulator_mode_to_status(unsigned int mode)3428 int regulator_mode_to_status(unsigned int mode)
3429 {
3430 switch (mode) {
3431 case REGULATOR_MODE_FAST:
3432 return REGULATOR_STATUS_FAST;
3433 case REGULATOR_MODE_NORMAL:
3434 return REGULATOR_STATUS_NORMAL;
3435 case REGULATOR_MODE_IDLE:
3436 return REGULATOR_STATUS_IDLE;
3437 case REGULATOR_MODE_STANDBY:
3438 return REGULATOR_STATUS_STANDBY;
3439 default:
3440 return REGULATOR_STATUS_UNDEFINED;
3441 }
3442 }
3443 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3444
3445 static struct attribute *regulator_dev_attrs[] = {
3446 &dev_attr_name.attr,
3447 &dev_attr_num_users.attr,
3448 &dev_attr_type.attr,
3449 &dev_attr_microvolts.attr,
3450 &dev_attr_microamps.attr,
3451 &dev_attr_opmode.attr,
3452 &dev_attr_state.attr,
3453 &dev_attr_status.attr,
3454 &dev_attr_bypass.attr,
3455 &dev_attr_requested_microamps.attr,
3456 &dev_attr_min_microvolts.attr,
3457 &dev_attr_max_microvolts.attr,
3458 &dev_attr_min_microamps.attr,
3459 &dev_attr_max_microamps.attr,
3460 &dev_attr_suspend_standby_state.attr,
3461 &dev_attr_suspend_mem_state.attr,
3462 &dev_attr_suspend_disk_state.attr,
3463 &dev_attr_suspend_standby_microvolts.attr,
3464 &dev_attr_suspend_mem_microvolts.attr,
3465 &dev_attr_suspend_disk_microvolts.attr,
3466 &dev_attr_suspend_standby_mode.attr,
3467 &dev_attr_suspend_mem_mode.attr,
3468 &dev_attr_suspend_disk_mode.attr,
3469 NULL
3470 };
3471
3472 /*
3473 * To avoid cluttering sysfs (and memory) with useless state, only
3474 * create attributes that can be meaningfully displayed.
3475 */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)3476 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3477 struct attribute *attr, int idx)
3478 {
3479 struct device *dev = kobj_to_dev(kobj);
3480 struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3481 const struct regulator_ops *ops = rdev->desc->ops;
3482 umode_t mode = attr->mode;
3483
3484 /* these three are always present */
3485 if (attr == &dev_attr_name.attr ||
3486 attr == &dev_attr_num_users.attr ||
3487 attr == &dev_attr_type.attr)
3488 return mode;
3489
3490 /* some attributes need specific methods to be displayed */
3491 if (attr == &dev_attr_microvolts.attr) {
3492 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3493 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3494 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3495 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3496 return mode;
3497 return 0;
3498 }
3499
3500 if (attr == &dev_attr_microamps.attr)
3501 return ops->get_current_limit ? mode : 0;
3502
3503 if (attr == &dev_attr_opmode.attr)
3504 return ops->get_mode ? mode : 0;
3505
3506 if (attr == &dev_attr_state.attr)
3507 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3508
3509 if (attr == &dev_attr_status.attr)
3510 return ops->get_status ? mode : 0;
3511
3512 if (attr == &dev_attr_bypass.attr)
3513 return ops->get_bypass ? mode : 0;
3514
3515 /* some attributes are type-specific */
3516 if (attr == &dev_attr_requested_microamps.attr)
3517 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3518
3519 /* constraints need specific supporting methods */
3520 if (attr == &dev_attr_min_microvolts.attr ||
3521 attr == &dev_attr_max_microvolts.attr)
3522 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3523
3524 if (attr == &dev_attr_min_microamps.attr ||
3525 attr == &dev_attr_max_microamps.attr)
3526 return ops->set_current_limit ? mode : 0;
3527
3528 if (attr == &dev_attr_suspend_standby_state.attr ||
3529 attr == &dev_attr_suspend_mem_state.attr ||
3530 attr == &dev_attr_suspend_disk_state.attr)
3531 return mode;
3532
3533 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3534 attr == &dev_attr_suspend_mem_microvolts.attr ||
3535 attr == &dev_attr_suspend_disk_microvolts.attr)
3536 return ops->set_suspend_voltage ? mode : 0;
3537
3538 if (attr == &dev_attr_suspend_standby_mode.attr ||
3539 attr == &dev_attr_suspend_mem_mode.attr ||
3540 attr == &dev_attr_suspend_disk_mode.attr)
3541 return ops->set_suspend_mode ? mode : 0;
3542
3543 return mode;
3544 }
3545
3546 static const struct attribute_group regulator_dev_group = {
3547 .attrs = regulator_dev_attrs,
3548 .is_visible = regulator_attr_is_visible,
3549 };
3550
3551 static const struct attribute_group *regulator_dev_groups[] = {
3552 ®ulator_dev_group,
3553 NULL
3554 };
3555
regulator_dev_release(struct device * dev)3556 static void regulator_dev_release(struct device *dev)
3557 {
3558 struct regulator_dev *rdev = dev_get_drvdata(dev);
3559 kfree(rdev);
3560 }
3561
3562 static struct class regulator_class = {
3563 .name = "regulator",
3564 .dev_release = regulator_dev_release,
3565 .dev_groups = regulator_dev_groups,
3566 };
3567
rdev_init_debugfs(struct regulator_dev * rdev)3568 static void rdev_init_debugfs(struct regulator_dev *rdev)
3569 {
3570 struct device *parent = rdev->dev.parent;
3571 const char *rname = rdev_get_name(rdev);
3572 char name[NAME_MAX];
3573
3574 /* Avoid duplicate debugfs directory names */
3575 if (parent && rname == rdev->desc->name) {
3576 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3577 rname);
3578 rname = name;
3579 }
3580
3581 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3582 if (!rdev->debugfs) {
3583 rdev_warn(rdev, "Failed to create debugfs directory\n");
3584 return;
3585 }
3586
3587 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3588 &rdev->use_count);
3589 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3590 &rdev->open_count);
3591 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3592 &rdev->bypass_count);
3593 }
3594
regulator_register_resolve_supply(struct device * dev,void * data)3595 static int regulator_register_resolve_supply(struct device *dev, void *data)
3596 {
3597 return regulator_resolve_supply(dev_to_rdev(dev));
3598 }
3599
3600 /**
3601 * regulator_register - register regulator
3602 * @regulator_desc: regulator to register
3603 * @cfg: runtime configuration for regulator
3604 *
3605 * Called by regulator drivers to register a regulator.
3606 * Returns a valid pointer to struct regulator_dev on success
3607 * or an ERR_PTR() on error.
3608 */
3609 struct regulator_dev *
regulator_register(const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)3610 regulator_register(const struct regulator_desc *regulator_desc,
3611 const struct regulator_config *cfg)
3612 {
3613 const struct regulation_constraints *constraints = NULL;
3614 const struct regulator_init_data *init_data;
3615 struct regulator_config *config = NULL;
3616 static atomic_t regulator_no = ATOMIC_INIT(-1);
3617 struct regulator_dev *rdev;
3618 struct device *dev;
3619 int ret, i;
3620
3621 if (regulator_desc == NULL || cfg == NULL)
3622 return ERR_PTR(-EINVAL);
3623
3624 dev = cfg->dev;
3625 WARN_ON(!dev);
3626
3627 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3628 return ERR_PTR(-EINVAL);
3629
3630 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3631 regulator_desc->type != REGULATOR_CURRENT)
3632 return ERR_PTR(-EINVAL);
3633
3634 /* Only one of each should be implemented */
3635 WARN_ON(regulator_desc->ops->get_voltage &&
3636 regulator_desc->ops->get_voltage_sel);
3637 WARN_ON(regulator_desc->ops->set_voltage &&
3638 regulator_desc->ops->set_voltage_sel);
3639
3640 /* If we're using selectors we must implement list_voltage. */
3641 if (regulator_desc->ops->get_voltage_sel &&
3642 !regulator_desc->ops->list_voltage) {
3643 return ERR_PTR(-EINVAL);
3644 }
3645 if (regulator_desc->ops->set_voltage_sel &&
3646 !regulator_desc->ops->list_voltage) {
3647 return ERR_PTR(-EINVAL);
3648 }
3649
3650 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3651 if (rdev == NULL)
3652 return ERR_PTR(-ENOMEM);
3653
3654 /*
3655 * Duplicate the config so the driver could override it after
3656 * parsing init data.
3657 */
3658 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3659 if (config == NULL) {
3660 kfree(rdev);
3661 return ERR_PTR(-ENOMEM);
3662 }
3663
3664 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3665 &rdev->dev.of_node);
3666 if (!init_data) {
3667 init_data = config->init_data;
3668 rdev->dev.of_node = of_node_get(config->of_node);
3669 }
3670
3671 mutex_lock(®ulator_list_mutex);
3672
3673 mutex_init(&rdev->mutex);
3674 rdev->reg_data = config->driver_data;
3675 rdev->owner = regulator_desc->owner;
3676 rdev->desc = regulator_desc;
3677 if (config->regmap)
3678 rdev->regmap = config->regmap;
3679 else if (dev_get_regmap(dev, NULL))
3680 rdev->regmap = dev_get_regmap(dev, NULL);
3681 else if (dev->parent)
3682 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3683 INIT_LIST_HEAD(&rdev->consumer_list);
3684 INIT_LIST_HEAD(&rdev->list);
3685 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3686 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3687
3688 /* preform any regulator specific init */
3689 if (init_data && init_data->regulator_init) {
3690 ret = init_data->regulator_init(rdev->reg_data);
3691 if (ret < 0)
3692 goto clean;
3693 }
3694
3695 /* register with sysfs */
3696 rdev->dev.class = ®ulator_class;
3697 rdev->dev.parent = dev;
3698 dev_set_name(&rdev->dev, "regulator.%lu",
3699 (unsigned long) atomic_inc_return(®ulator_no));
3700 ret = device_register(&rdev->dev);
3701 if (ret != 0) {
3702 put_device(&rdev->dev);
3703 goto clean;
3704 }
3705
3706 dev_set_drvdata(&rdev->dev, rdev);
3707
3708 if ((config->ena_gpio || config->ena_gpio_initialized) &&
3709 gpio_is_valid(config->ena_gpio)) {
3710 ret = regulator_ena_gpio_request(rdev, config);
3711 if (ret != 0) {
3712 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3713 config->ena_gpio, ret);
3714 goto wash;
3715 }
3716 }
3717
3718 /* set regulator constraints */
3719 if (init_data)
3720 constraints = &init_data->constraints;
3721
3722 ret = set_machine_constraints(rdev, constraints);
3723 if (ret < 0)
3724 goto scrub;
3725
3726 if (init_data && init_data->supply_regulator)
3727 rdev->supply_name = init_data->supply_regulator;
3728 else if (regulator_desc->supply_name)
3729 rdev->supply_name = regulator_desc->supply_name;
3730
3731 /* add consumers devices */
3732 if (init_data) {
3733 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3734 ret = set_consumer_device_supply(rdev,
3735 init_data->consumer_supplies[i].dev_name,
3736 init_data->consumer_supplies[i].supply);
3737 if (ret < 0) {
3738 dev_err(dev, "Failed to set supply %s\n",
3739 init_data->consumer_supplies[i].supply);
3740 goto unset_supplies;
3741 }
3742 }
3743 }
3744
3745 list_add(&rdev->list, ®ulator_list);
3746
3747 rdev_init_debugfs(rdev);
3748
3749 /* try to resolve regulators supply since a new one was registered */
3750 class_for_each_device(®ulator_class, NULL, NULL,
3751 regulator_register_resolve_supply);
3752 out:
3753 mutex_unlock(®ulator_list_mutex);
3754 kfree(config);
3755 return rdev;
3756
3757 unset_supplies:
3758 unset_regulator_supplies(rdev);
3759
3760 scrub:
3761 regulator_ena_gpio_free(rdev);
3762 kfree(rdev->constraints);
3763 wash:
3764 device_unregister(&rdev->dev);
3765 /* device core frees rdev */
3766 rdev = ERR_PTR(ret);
3767 goto out;
3768
3769 clean:
3770 kfree(rdev);
3771 rdev = ERR_PTR(ret);
3772 goto out;
3773 }
3774 EXPORT_SYMBOL_GPL(regulator_register);
3775
3776 /**
3777 * regulator_unregister - unregister regulator
3778 * @rdev: regulator to unregister
3779 *
3780 * Called by regulator drivers to unregister a regulator.
3781 */
regulator_unregister(struct regulator_dev * rdev)3782 void regulator_unregister(struct regulator_dev *rdev)
3783 {
3784 if (rdev == NULL)
3785 return;
3786
3787 if (rdev->supply) {
3788 while (rdev->use_count--)
3789 regulator_disable(rdev->supply);
3790 regulator_put(rdev->supply);
3791 }
3792 mutex_lock(®ulator_list_mutex);
3793 debugfs_remove_recursive(rdev->debugfs);
3794 flush_work(&rdev->disable_work.work);
3795 WARN_ON(rdev->open_count);
3796 unset_regulator_supplies(rdev);
3797 list_del(&rdev->list);
3798 kfree(rdev->constraints);
3799 regulator_ena_gpio_free(rdev);
3800 of_node_put(rdev->dev.of_node);
3801 device_unregister(&rdev->dev);
3802 mutex_unlock(®ulator_list_mutex);
3803 }
3804 EXPORT_SYMBOL_GPL(regulator_unregister);
3805
3806 /**
3807 * regulator_suspend_prepare - prepare regulators for system wide suspend
3808 * @state: system suspend state
3809 *
3810 * Configure each regulator with it's suspend operating parameters for state.
3811 * This will usually be called by machine suspend code prior to supending.
3812 */
regulator_suspend_prepare(suspend_state_t state)3813 int regulator_suspend_prepare(suspend_state_t state)
3814 {
3815 struct regulator_dev *rdev;
3816 int ret = 0;
3817
3818 /* ON is handled by regulator active state */
3819 if (state == PM_SUSPEND_ON)
3820 return -EINVAL;
3821
3822 mutex_lock(®ulator_list_mutex);
3823 list_for_each_entry(rdev, ®ulator_list, list) {
3824
3825 mutex_lock(&rdev->mutex);
3826 ret = suspend_prepare(rdev, state);
3827 mutex_unlock(&rdev->mutex);
3828
3829 if (ret < 0) {
3830 rdev_err(rdev, "failed to prepare\n");
3831 goto out;
3832 }
3833 }
3834 out:
3835 mutex_unlock(®ulator_list_mutex);
3836 return ret;
3837 }
3838 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3839
3840 /**
3841 * regulator_suspend_finish - resume regulators from system wide suspend
3842 *
3843 * Turn on regulators that might be turned off by regulator_suspend_prepare
3844 * and that should be turned on according to the regulators properties.
3845 */
regulator_suspend_finish(void)3846 int regulator_suspend_finish(void)
3847 {
3848 struct regulator_dev *rdev;
3849 int ret = 0, error;
3850
3851 mutex_lock(®ulator_list_mutex);
3852 list_for_each_entry(rdev, ®ulator_list, list) {
3853 mutex_lock(&rdev->mutex);
3854 if (rdev->use_count > 0 || rdev->constraints->always_on) {
3855 if (!_regulator_is_enabled(rdev)) {
3856 error = _regulator_do_enable(rdev);
3857 if (error)
3858 ret = error;
3859 }
3860 } else {
3861 if (!have_full_constraints())
3862 goto unlock;
3863 if (!_regulator_is_enabled(rdev))
3864 goto unlock;
3865
3866 error = _regulator_do_disable(rdev);
3867 if (error)
3868 ret = error;
3869 }
3870 unlock:
3871 mutex_unlock(&rdev->mutex);
3872 }
3873 mutex_unlock(®ulator_list_mutex);
3874 return ret;
3875 }
3876 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3877
3878 /**
3879 * regulator_has_full_constraints - the system has fully specified constraints
3880 *
3881 * Calling this function will cause the regulator API to disable all
3882 * regulators which have a zero use count and don't have an always_on
3883 * constraint in a late_initcall.
3884 *
3885 * The intention is that this will become the default behaviour in a
3886 * future kernel release so users are encouraged to use this facility
3887 * now.
3888 */
regulator_has_full_constraints(void)3889 void regulator_has_full_constraints(void)
3890 {
3891 has_full_constraints = 1;
3892 }
3893 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3894
3895 /**
3896 * rdev_get_drvdata - get rdev regulator driver data
3897 * @rdev: regulator
3898 *
3899 * Get rdev regulator driver private data. This call can be used in the
3900 * regulator driver context.
3901 */
rdev_get_drvdata(struct regulator_dev * rdev)3902 void *rdev_get_drvdata(struct regulator_dev *rdev)
3903 {
3904 return rdev->reg_data;
3905 }
3906 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3907
3908 /**
3909 * regulator_get_drvdata - get regulator driver data
3910 * @regulator: regulator
3911 *
3912 * Get regulator driver private data. This call can be used in the consumer
3913 * driver context when non API regulator specific functions need to be called.
3914 */
regulator_get_drvdata(struct regulator * regulator)3915 void *regulator_get_drvdata(struct regulator *regulator)
3916 {
3917 return regulator->rdev->reg_data;
3918 }
3919 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3920
3921 /**
3922 * regulator_set_drvdata - set regulator driver data
3923 * @regulator: regulator
3924 * @data: data
3925 */
regulator_set_drvdata(struct regulator * regulator,void * data)3926 void regulator_set_drvdata(struct regulator *regulator, void *data)
3927 {
3928 regulator->rdev->reg_data = data;
3929 }
3930 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3931
3932 /**
3933 * regulator_get_id - get regulator ID
3934 * @rdev: regulator
3935 */
rdev_get_id(struct regulator_dev * rdev)3936 int rdev_get_id(struct regulator_dev *rdev)
3937 {
3938 return rdev->desc->id;
3939 }
3940 EXPORT_SYMBOL_GPL(rdev_get_id);
3941
rdev_get_dev(struct regulator_dev * rdev)3942 struct device *rdev_get_dev(struct regulator_dev *rdev)
3943 {
3944 return &rdev->dev;
3945 }
3946 EXPORT_SYMBOL_GPL(rdev_get_dev);
3947
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)3948 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3949 {
3950 return reg_init_data->driver_data;
3951 }
3952 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3953
3954 #ifdef CONFIG_DEBUG_FS
supply_map_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)3955 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3956 size_t count, loff_t *ppos)
3957 {
3958 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3959 ssize_t len, ret = 0;
3960 struct regulator_map *map;
3961
3962 if (!buf)
3963 return -ENOMEM;
3964
3965 list_for_each_entry(map, ®ulator_map_list, list) {
3966 len = snprintf(buf + ret, PAGE_SIZE - ret,
3967 "%s -> %s.%s\n",
3968 rdev_get_name(map->regulator), map->dev_name,
3969 map->supply);
3970 if (len >= 0)
3971 ret += len;
3972 if (ret > PAGE_SIZE) {
3973 ret = PAGE_SIZE;
3974 break;
3975 }
3976 }
3977
3978 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3979
3980 kfree(buf);
3981
3982 return ret;
3983 }
3984 #endif
3985
3986 static const struct file_operations supply_map_fops = {
3987 #ifdef CONFIG_DEBUG_FS
3988 .read = supply_map_read_file,
3989 .llseek = default_llseek,
3990 #endif
3991 };
3992
3993 #ifdef CONFIG_DEBUG_FS
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)3994 static void regulator_summary_show_subtree(struct seq_file *s,
3995 struct regulator_dev *rdev,
3996 int level)
3997 {
3998 struct list_head *list = s->private;
3999 struct regulator_dev *child;
4000 struct regulation_constraints *c;
4001 struct regulator *consumer;
4002
4003 if (!rdev)
4004 return;
4005
4006 seq_printf(s, "%*s%-*s %3d %4d %6d ",
4007 level * 3 + 1, "",
4008 30 - level * 3, rdev_get_name(rdev),
4009 rdev->use_count, rdev->open_count, rdev->bypass_count);
4010
4011 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4012 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4013
4014 c = rdev->constraints;
4015 if (c) {
4016 switch (rdev->desc->type) {
4017 case REGULATOR_VOLTAGE:
4018 seq_printf(s, "%5dmV %5dmV ",
4019 c->min_uV / 1000, c->max_uV / 1000);
4020 break;
4021 case REGULATOR_CURRENT:
4022 seq_printf(s, "%5dmA %5dmA ",
4023 c->min_uA / 1000, c->max_uA / 1000);
4024 break;
4025 }
4026 }
4027
4028 seq_puts(s, "\n");
4029
4030 list_for_each_entry(consumer, &rdev->consumer_list, list) {
4031 if (consumer->dev->class == ®ulator_class)
4032 continue;
4033
4034 seq_printf(s, "%*s%-*s ",
4035 (level + 1) * 3 + 1, "",
4036 30 - (level + 1) * 3, dev_name(consumer->dev));
4037
4038 switch (rdev->desc->type) {
4039 case REGULATOR_VOLTAGE:
4040 seq_printf(s, "%37dmV %5dmV",
4041 consumer->min_uV / 1000,
4042 consumer->max_uV / 1000);
4043 break;
4044 case REGULATOR_CURRENT:
4045 break;
4046 }
4047
4048 seq_puts(s, "\n");
4049 }
4050
4051 list_for_each_entry(child, list, list) {
4052 /* handle only non-root regulators supplied by current rdev */
4053 if (!child->supply || child->supply->rdev != rdev)
4054 continue;
4055
4056 regulator_summary_show_subtree(s, child, level + 1);
4057 }
4058 }
4059
regulator_summary_show(struct seq_file * s,void * data)4060 static int regulator_summary_show(struct seq_file *s, void *data)
4061 {
4062 struct list_head *list = s->private;
4063 struct regulator_dev *rdev;
4064
4065 seq_puts(s, " regulator use open bypass voltage current min max\n");
4066 seq_puts(s, "-------------------------------------------------------------------------------\n");
4067
4068 mutex_lock(®ulator_list_mutex);
4069
4070 list_for_each_entry(rdev, list, list) {
4071 if (rdev->supply)
4072 continue;
4073
4074 regulator_summary_show_subtree(s, rdev, 0);
4075 }
4076
4077 mutex_unlock(®ulator_list_mutex);
4078
4079 return 0;
4080 }
4081
regulator_summary_open(struct inode * inode,struct file * file)4082 static int regulator_summary_open(struct inode *inode, struct file *file)
4083 {
4084 return single_open(file, regulator_summary_show, inode->i_private);
4085 }
4086 #endif
4087
4088 static const struct file_operations regulator_summary_fops = {
4089 #ifdef CONFIG_DEBUG_FS
4090 .open = regulator_summary_open,
4091 .read = seq_read,
4092 .llseek = seq_lseek,
4093 .release = single_release,
4094 #endif
4095 };
4096
regulator_init(void)4097 static int __init regulator_init(void)
4098 {
4099 int ret;
4100
4101 ret = class_register(®ulator_class);
4102
4103 debugfs_root = debugfs_create_dir("regulator", NULL);
4104 if (!debugfs_root)
4105 pr_warn("regulator: Failed to create debugfs directory\n");
4106
4107 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4108 &supply_map_fops);
4109
4110 debugfs_create_file("regulator_summary", 0444, debugfs_root,
4111 ®ulator_list, ®ulator_summary_fops);
4112
4113 regulator_dummy_init();
4114
4115 return ret;
4116 }
4117
4118 /* init early to allow our consumers to complete system booting */
4119 core_initcall(regulator_init);
4120
regulator_late_cleanup(struct device * dev,void * data)4121 static int __init regulator_late_cleanup(struct device *dev, void *data)
4122 {
4123 struct regulator_dev *rdev = dev_to_rdev(dev);
4124 const struct regulator_ops *ops = rdev->desc->ops;
4125 struct regulation_constraints *c = rdev->constraints;
4126 int enabled, ret;
4127
4128 if (c && c->always_on)
4129 return 0;
4130
4131 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4132 return 0;
4133
4134 mutex_lock(&rdev->mutex);
4135
4136 if (rdev->use_count)
4137 goto unlock;
4138
4139 /* If we can't read the status assume it's on. */
4140 if (ops->is_enabled)
4141 enabled = ops->is_enabled(rdev);
4142 else
4143 enabled = 1;
4144
4145 if (!enabled)
4146 goto unlock;
4147
4148 if (have_full_constraints()) {
4149 /* We log since this may kill the system if it goes
4150 * wrong. */
4151 rdev_info(rdev, "disabling\n");
4152 ret = _regulator_do_disable(rdev);
4153 if (ret != 0)
4154 rdev_err(rdev, "couldn't disable: %d\n", ret);
4155 } else {
4156 /* The intention is that in future we will
4157 * assume that full constraints are provided
4158 * so warn even if we aren't going to do
4159 * anything here.
4160 */
4161 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4162 }
4163
4164 unlock:
4165 mutex_unlock(&rdev->mutex);
4166
4167 return 0;
4168 }
4169
regulator_init_complete(void)4170 static int __init regulator_init_complete(void)
4171 {
4172 /*
4173 * Since DT doesn't provide an idiomatic mechanism for
4174 * enabling full constraints and since it's much more natural
4175 * with DT to provide them just assume that a DT enabled
4176 * system has full constraints.
4177 */
4178 if (of_have_populated_dt())
4179 has_full_constraints = true;
4180
4181 /* If we have a full configuration then disable any regulators
4182 * we have permission to change the status for and which are
4183 * not in use or always_on. This is effectively the default
4184 * for DT and ACPI as they have full constraints.
4185 */
4186 class_for_each_device(®ulator_class, NULL, NULL,
4187 regulator_late_cleanup);
4188
4189 return 0;
4190 }
4191 late_initcall_sync(regulator_init_complete);
4192