1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38 
39 #include "dummy.h"
40 #include "internal.h"
41 
42 #define rdev_crit(rdev, fmt, ...)					\
43 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)					\
45 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)					\
47 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)					\
49 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)					\
51 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52 
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59 
60 static struct dentry *debugfs_root;
61 
62 /*
63  * struct regulator_map
64  *
65  * Used to provide symbolic supply names to devices.
66  */
67 struct regulator_map {
68 	struct list_head list;
69 	const char *dev_name;   /* The dev_name() for the consumer */
70 	const char *supply;
71 	struct regulator_dev *regulator;
72 };
73 
74 /*
75  * struct regulator_enable_gpio
76  *
77  * Management for shared enable GPIO pin
78  */
79 struct regulator_enable_gpio {
80 	struct list_head list;
81 	struct gpio_desc *gpiod;
82 	u32 enable_count;	/* a number of enabled shared GPIO */
83 	u32 request_count;	/* a number of requested shared GPIO */
84 	unsigned int ena_gpio_invert:1;
85 };
86 
87 /*
88  * struct regulator_supply_alias
89  *
90  * Used to map lookups for a supply onto an alternative device.
91  */
92 struct regulator_supply_alias {
93 	struct list_head list;
94 	struct device *src_dev;
95 	const char *src_supply;
96 	struct device *alias_dev;
97 	const char *alias_supply;
98 };
99 
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106 				  unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108 				     int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110 					  struct device *dev,
111 					  const char *supply_name);
112 
dev_to_rdev(struct device * dev)113 static struct regulator_dev *dev_to_rdev(struct device *dev)
114 {
115 	return container_of(dev, struct regulator_dev, dev);
116 }
117 
rdev_get_name(struct regulator_dev * rdev)118 static const char *rdev_get_name(struct regulator_dev *rdev)
119 {
120 	if (rdev->constraints && rdev->constraints->name)
121 		return rdev->constraints->name;
122 	else if (rdev->desc->name)
123 		return rdev->desc->name;
124 	else
125 		return "";
126 }
127 
have_full_constraints(void)128 static bool have_full_constraints(void)
129 {
130 	return has_full_constraints || of_have_populated_dt();
131 }
132 
133 /**
134  * of_get_regulator - get a regulator device node based on supply name
135  * @dev: Device pointer for the consumer (of regulator) device
136  * @supply: regulator supply name
137  *
138  * Extract the regulator device node corresponding to the supply name.
139  * returns the device node corresponding to the regulator if found, else
140  * returns NULL.
141  */
of_get_regulator(struct device * dev,const char * supply)142 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
143 {
144 	struct device_node *regnode = NULL;
145 	char prop_name[32]; /* 32 is max size of property name */
146 
147 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
148 
149 	snprintf(prop_name, 32, "%s-supply", supply);
150 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
151 
152 	if (!regnode) {
153 		dev_dbg(dev, "Looking up %s property in node %s failed",
154 				prop_name, dev->of_node->full_name);
155 		return NULL;
156 	}
157 	return regnode;
158 }
159 
_regulator_can_change_status(struct regulator_dev * rdev)160 static int _regulator_can_change_status(struct regulator_dev *rdev)
161 {
162 	if (!rdev->constraints)
163 		return 0;
164 
165 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
166 		return 1;
167 	else
168 		return 0;
169 }
170 
171 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)172 static int regulator_check_voltage(struct regulator_dev *rdev,
173 				   int *min_uV, int *max_uV)
174 {
175 	BUG_ON(*min_uV > *max_uV);
176 
177 	if (!rdev->constraints) {
178 		rdev_err(rdev, "no constraints\n");
179 		return -ENODEV;
180 	}
181 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
182 		rdev_err(rdev, "operation not allowed\n");
183 		return -EPERM;
184 	}
185 
186 	if (*max_uV > rdev->constraints->max_uV)
187 		*max_uV = rdev->constraints->max_uV;
188 	if (*min_uV < rdev->constraints->min_uV)
189 		*min_uV = rdev->constraints->min_uV;
190 
191 	if (*min_uV > *max_uV) {
192 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
193 			 *min_uV, *max_uV);
194 		return -EINVAL;
195 	}
196 
197 	return 0;
198 }
199 
200 /* Make sure we select a voltage that suits the needs of all
201  * regulator consumers
202  */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV)203 static int regulator_check_consumers(struct regulator_dev *rdev,
204 				     int *min_uV, int *max_uV)
205 {
206 	struct regulator *regulator;
207 
208 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
209 		/*
210 		 * Assume consumers that didn't say anything are OK
211 		 * with anything in the constraint range.
212 		 */
213 		if (!regulator->min_uV && !regulator->max_uV)
214 			continue;
215 
216 		if (*max_uV > regulator->max_uV)
217 			*max_uV = regulator->max_uV;
218 		if (*min_uV < regulator->min_uV)
219 			*min_uV = regulator->min_uV;
220 	}
221 
222 	if (*min_uV > *max_uV) {
223 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
224 			*min_uV, *max_uV);
225 		return -EINVAL;
226 	}
227 
228 	return 0;
229 }
230 
231 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)232 static int regulator_check_current_limit(struct regulator_dev *rdev,
233 					int *min_uA, int *max_uA)
234 {
235 	BUG_ON(*min_uA > *max_uA);
236 
237 	if (!rdev->constraints) {
238 		rdev_err(rdev, "no constraints\n");
239 		return -ENODEV;
240 	}
241 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
242 		rdev_err(rdev, "operation not allowed\n");
243 		return -EPERM;
244 	}
245 
246 	if (*max_uA > rdev->constraints->max_uA)
247 		*max_uA = rdev->constraints->max_uA;
248 	if (*min_uA < rdev->constraints->min_uA)
249 		*min_uA = rdev->constraints->min_uA;
250 
251 	if (*min_uA > *max_uA) {
252 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
253 			 *min_uA, *max_uA);
254 		return -EINVAL;
255 	}
256 
257 	return 0;
258 }
259 
260 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,int * mode)261 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
262 {
263 	switch (*mode) {
264 	case REGULATOR_MODE_FAST:
265 	case REGULATOR_MODE_NORMAL:
266 	case REGULATOR_MODE_IDLE:
267 	case REGULATOR_MODE_STANDBY:
268 		break;
269 	default:
270 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
271 		return -EINVAL;
272 	}
273 
274 	if (!rdev->constraints) {
275 		rdev_err(rdev, "no constraints\n");
276 		return -ENODEV;
277 	}
278 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
279 		rdev_err(rdev, "operation not allowed\n");
280 		return -EPERM;
281 	}
282 
283 	/* The modes are bitmasks, the most power hungry modes having
284 	 * the lowest values. If the requested mode isn't supported
285 	 * try higher modes. */
286 	while (*mode) {
287 		if (rdev->constraints->valid_modes_mask & *mode)
288 			return 0;
289 		*mode /= 2;
290 	}
291 
292 	return -EINVAL;
293 }
294 
295 /* dynamic regulator mode switching constraint check */
regulator_check_drms(struct regulator_dev * rdev)296 static int regulator_check_drms(struct regulator_dev *rdev)
297 {
298 	if (!rdev->constraints) {
299 		rdev_err(rdev, "no constraints\n");
300 		return -ENODEV;
301 	}
302 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
303 		rdev_err(rdev, "operation not allowed\n");
304 		return -EPERM;
305 	}
306 	return 0;
307 }
308 
regulator_uV_show(struct device * dev,struct device_attribute * attr,char * buf)309 static ssize_t regulator_uV_show(struct device *dev,
310 				struct device_attribute *attr, char *buf)
311 {
312 	struct regulator_dev *rdev = dev_get_drvdata(dev);
313 	ssize_t ret;
314 
315 	mutex_lock(&rdev->mutex);
316 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
317 	mutex_unlock(&rdev->mutex);
318 
319 	return ret;
320 }
321 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
322 
regulator_uA_show(struct device * dev,struct device_attribute * attr,char * buf)323 static ssize_t regulator_uA_show(struct device *dev,
324 				struct device_attribute *attr, char *buf)
325 {
326 	struct regulator_dev *rdev = dev_get_drvdata(dev);
327 
328 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
329 }
330 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
331 
name_show(struct device * dev,struct device_attribute * attr,char * buf)332 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
333 			 char *buf)
334 {
335 	struct regulator_dev *rdev = dev_get_drvdata(dev);
336 
337 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
338 }
339 static DEVICE_ATTR_RO(name);
340 
regulator_print_opmode(char * buf,int mode)341 static ssize_t regulator_print_opmode(char *buf, int mode)
342 {
343 	switch (mode) {
344 	case REGULATOR_MODE_FAST:
345 		return sprintf(buf, "fast\n");
346 	case REGULATOR_MODE_NORMAL:
347 		return sprintf(buf, "normal\n");
348 	case REGULATOR_MODE_IDLE:
349 		return sprintf(buf, "idle\n");
350 	case REGULATOR_MODE_STANDBY:
351 		return sprintf(buf, "standby\n");
352 	}
353 	return sprintf(buf, "unknown\n");
354 }
355 
regulator_opmode_show(struct device * dev,struct device_attribute * attr,char * buf)356 static ssize_t regulator_opmode_show(struct device *dev,
357 				    struct device_attribute *attr, char *buf)
358 {
359 	struct regulator_dev *rdev = dev_get_drvdata(dev);
360 
361 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
362 }
363 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
364 
regulator_print_state(char * buf,int state)365 static ssize_t regulator_print_state(char *buf, int state)
366 {
367 	if (state > 0)
368 		return sprintf(buf, "enabled\n");
369 	else if (state == 0)
370 		return sprintf(buf, "disabled\n");
371 	else
372 		return sprintf(buf, "unknown\n");
373 }
374 
regulator_state_show(struct device * dev,struct device_attribute * attr,char * buf)375 static ssize_t regulator_state_show(struct device *dev,
376 				   struct device_attribute *attr, char *buf)
377 {
378 	struct regulator_dev *rdev = dev_get_drvdata(dev);
379 	ssize_t ret;
380 
381 	mutex_lock(&rdev->mutex);
382 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
383 	mutex_unlock(&rdev->mutex);
384 
385 	return ret;
386 }
387 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
388 
regulator_status_show(struct device * dev,struct device_attribute * attr,char * buf)389 static ssize_t regulator_status_show(struct device *dev,
390 				   struct device_attribute *attr, char *buf)
391 {
392 	struct regulator_dev *rdev = dev_get_drvdata(dev);
393 	int status;
394 	char *label;
395 
396 	status = rdev->desc->ops->get_status(rdev);
397 	if (status < 0)
398 		return status;
399 
400 	switch (status) {
401 	case REGULATOR_STATUS_OFF:
402 		label = "off";
403 		break;
404 	case REGULATOR_STATUS_ON:
405 		label = "on";
406 		break;
407 	case REGULATOR_STATUS_ERROR:
408 		label = "error";
409 		break;
410 	case REGULATOR_STATUS_FAST:
411 		label = "fast";
412 		break;
413 	case REGULATOR_STATUS_NORMAL:
414 		label = "normal";
415 		break;
416 	case REGULATOR_STATUS_IDLE:
417 		label = "idle";
418 		break;
419 	case REGULATOR_STATUS_STANDBY:
420 		label = "standby";
421 		break;
422 	case REGULATOR_STATUS_BYPASS:
423 		label = "bypass";
424 		break;
425 	case REGULATOR_STATUS_UNDEFINED:
426 		label = "undefined";
427 		break;
428 	default:
429 		return -ERANGE;
430 	}
431 
432 	return sprintf(buf, "%s\n", label);
433 }
434 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
435 
regulator_min_uA_show(struct device * dev,struct device_attribute * attr,char * buf)436 static ssize_t regulator_min_uA_show(struct device *dev,
437 				    struct device_attribute *attr, char *buf)
438 {
439 	struct regulator_dev *rdev = dev_get_drvdata(dev);
440 
441 	if (!rdev->constraints)
442 		return sprintf(buf, "constraint not defined\n");
443 
444 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
445 }
446 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
447 
regulator_max_uA_show(struct device * dev,struct device_attribute * attr,char * buf)448 static ssize_t regulator_max_uA_show(struct device *dev,
449 				    struct device_attribute *attr, char *buf)
450 {
451 	struct regulator_dev *rdev = dev_get_drvdata(dev);
452 
453 	if (!rdev->constraints)
454 		return sprintf(buf, "constraint not defined\n");
455 
456 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
457 }
458 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
459 
regulator_min_uV_show(struct device * dev,struct device_attribute * attr,char * buf)460 static ssize_t regulator_min_uV_show(struct device *dev,
461 				    struct device_attribute *attr, char *buf)
462 {
463 	struct regulator_dev *rdev = dev_get_drvdata(dev);
464 
465 	if (!rdev->constraints)
466 		return sprintf(buf, "constraint not defined\n");
467 
468 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
469 }
470 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
471 
regulator_max_uV_show(struct device * dev,struct device_attribute * attr,char * buf)472 static ssize_t regulator_max_uV_show(struct device *dev,
473 				    struct device_attribute *attr, char *buf)
474 {
475 	struct regulator_dev *rdev = dev_get_drvdata(dev);
476 
477 	if (!rdev->constraints)
478 		return sprintf(buf, "constraint not defined\n");
479 
480 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
481 }
482 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
483 
regulator_total_uA_show(struct device * dev,struct device_attribute * attr,char * buf)484 static ssize_t regulator_total_uA_show(struct device *dev,
485 				      struct device_attribute *attr, char *buf)
486 {
487 	struct regulator_dev *rdev = dev_get_drvdata(dev);
488 	struct regulator *regulator;
489 	int uA = 0;
490 
491 	mutex_lock(&rdev->mutex);
492 	list_for_each_entry(regulator, &rdev->consumer_list, list)
493 		uA += regulator->uA_load;
494 	mutex_unlock(&rdev->mutex);
495 	return sprintf(buf, "%d\n", uA);
496 }
497 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
498 
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)499 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
500 			      char *buf)
501 {
502 	struct regulator_dev *rdev = dev_get_drvdata(dev);
503 	return sprintf(buf, "%d\n", rdev->use_count);
504 }
505 static DEVICE_ATTR_RO(num_users);
506 
type_show(struct device * dev,struct device_attribute * attr,char * buf)507 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
508 			 char *buf)
509 {
510 	struct regulator_dev *rdev = dev_get_drvdata(dev);
511 
512 	switch (rdev->desc->type) {
513 	case REGULATOR_VOLTAGE:
514 		return sprintf(buf, "voltage\n");
515 	case REGULATOR_CURRENT:
516 		return sprintf(buf, "current\n");
517 	}
518 	return sprintf(buf, "unknown\n");
519 }
520 static DEVICE_ATTR_RO(type);
521 
regulator_suspend_mem_uV_show(struct device * dev,struct device_attribute * attr,char * buf)522 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
523 				struct device_attribute *attr, char *buf)
524 {
525 	struct regulator_dev *rdev = dev_get_drvdata(dev);
526 
527 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
528 }
529 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
530 		regulator_suspend_mem_uV_show, NULL);
531 
regulator_suspend_disk_uV_show(struct device * dev,struct device_attribute * attr,char * buf)532 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
533 				struct device_attribute *attr, char *buf)
534 {
535 	struct regulator_dev *rdev = dev_get_drvdata(dev);
536 
537 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
538 }
539 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
540 		regulator_suspend_disk_uV_show, NULL);
541 
regulator_suspend_standby_uV_show(struct device * dev,struct device_attribute * attr,char * buf)542 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
543 				struct device_attribute *attr, char *buf)
544 {
545 	struct regulator_dev *rdev = dev_get_drvdata(dev);
546 
547 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
548 }
549 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
550 		regulator_suspend_standby_uV_show, NULL);
551 
regulator_suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)552 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
553 				struct device_attribute *attr, char *buf)
554 {
555 	struct regulator_dev *rdev = dev_get_drvdata(dev);
556 
557 	return regulator_print_opmode(buf,
558 		rdev->constraints->state_mem.mode);
559 }
560 static DEVICE_ATTR(suspend_mem_mode, 0444,
561 		regulator_suspend_mem_mode_show, NULL);
562 
regulator_suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)563 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
564 				struct device_attribute *attr, char *buf)
565 {
566 	struct regulator_dev *rdev = dev_get_drvdata(dev);
567 
568 	return regulator_print_opmode(buf,
569 		rdev->constraints->state_disk.mode);
570 }
571 static DEVICE_ATTR(suspend_disk_mode, 0444,
572 		regulator_suspend_disk_mode_show, NULL);
573 
regulator_suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)574 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
575 				struct device_attribute *attr, char *buf)
576 {
577 	struct regulator_dev *rdev = dev_get_drvdata(dev);
578 
579 	return regulator_print_opmode(buf,
580 		rdev->constraints->state_standby.mode);
581 }
582 static DEVICE_ATTR(suspend_standby_mode, 0444,
583 		regulator_suspend_standby_mode_show, NULL);
584 
regulator_suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)585 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
586 				   struct device_attribute *attr, char *buf)
587 {
588 	struct regulator_dev *rdev = dev_get_drvdata(dev);
589 
590 	return regulator_print_state(buf,
591 			rdev->constraints->state_mem.enabled);
592 }
593 static DEVICE_ATTR(suspend_mem_state, 0444,
594 		regulator_suspend_mem_state_show, NULL);
595 
regulator_suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)596 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
597 				   struct device_attribute *attr, char *buf)
598 {
599 	struct regulator_dev *rdev = dev_get_drvdata(dev);
600 
601 	return regulator_print_state(buf,
602 			rdev->constraints->state_disk.enabled);
603 }
604 static DEVICE_ATTR(suspend_disk_state, 0444,
605 		regulator_suspend_disk_state_show, NULL);
606 
regulator_suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)607 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
608 				   struct device_attribute *attr, char *buf)
609 {
610 	struct regulator_dev *rdev = dev_get_drvdata(dev);
611 
612 	return regulator_print_state(buf,
613 			rdev->constraints->state_standby.enabled);
614 }
615 static DEVICE_ATTR(suspend_standby_state, 0444,
616 		regulator_suspend_standby_state_show, NULL);
617 
regulator_bypass_show(struct device * dev,struct device_attribute * attr,char * buf)618 static ssize_t regulator_bypass_show(struct device *dev,
619 				     struct device_attribute *attr, char *buf)
620 {
621 	struct regulator_dev *rdev = dev_get_drvdata(dev);
622 	const char *report;
623 	bool bypass;
624 	int ret;
625 
626 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
627 
628 	if (ret != 0)
629 		report = "unknown";
630 	else if (bypass)
631 		report = "enabled";
632 	else
633 		report = "disabled";
634 
635 	return sprintf(buf, "%s\n", report);
636 }
637 static DEVICE_ATTR(bypass, 0444,
638 		   regulator_bypass_show, NULL);
639 
640 /* Calculate the new optimum regulator operating mode based on the new total
641  * consumer load. All locks held by caller */
drms_uA_update(struct regulator_dev * rdev)642 static int drms_uA_update(struct regulator_dev *rdev)
643 {
644 	struct regulator *sibling;
645 	int current_uA = 0, output_uV, input_uV, err;
646 	unsigned int mode;
647 
648 	/*
649 	 * first check to see if we can set modes at all, otherwise just
650 	 * tell the consumer everything is OK.
651 	 */
652 	err = regulator_check_drms(rdev);
653 	if (err < 0)
654 		return 0;
655 
656 	if (!rdev->desc->ops->get_optimum_mode &&
657 	    !rdev->desc->ops->set_load)
658 		return 0;
659 
660 	if (!rdev->desc->ops->set_mode &&
661 	    !rdev->desc->ops->set_load)
662 		return -EINVAL;
663 
664 	/* get output voltage */
665 	output_uV = _regulator_get_voltage(rdev);
666 	if (output_uV <= 0) {
667 		rdev_err(rdev, "invalid output voltage found\n");
668 		return -EINVAL;
669 	}
670 
671 	/* get input voltage */
672 	input_uV = 0;
673 	if (rdev->supply)
674 		input_uV = regulator_get_voltage(rdev->supply);
675 	if (input_uV <= 0)
676 		input_uV = rdev->constraints->input_uV;
677 	if (input_uV <= 0) {
678 		rdev_err(rdev, "invalid input voltage found\n");
679 		return -EINVAL;
680 	}
681 
682 	/* calc total requested load */
683 	list_for_each_entry(sibling, &rdev->consumer_list, list)
684 		current_uA += sibling->uA_load;
685 
686 	if (rdev->desc->ops->set_load) {
687 		/* set the optimum mode for our new total regulator load */
688 		err = rdev->desc->ops->set_load(rdev, current_uA);
689 		if (err < 0)
690 			rdev_err(rdev, "failed to set load %d\n", current_uA);
691 	} else {
692 		/* now get the optimum mode for our new total regulator load */
693 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
694 							 output_uV, current_uA);
695 
696 		/* check the new mode is allowed */
697 		err = regulator_mode_constrain(rdev, &mode);
698 		if (err < 0) {
699 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
700 				 current_uA, input_uV, output_uV);
701 			return err;
702 		}
703 
704 		err = rdev->desc->ops->set_mode(rdev, mode);
705 		if (err < 0)
706 			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
707 	}
708 
709 	return err;
710 }
711 
suspend_set_state(struct regulator_dev * rdev,struct regulator_state * rstate)712 static int suspend_set_state(struct regulator_dev *rdev,
713 	struct regulator_state *rstate)
714 {
715 	int ret = 0;
716 
717 	/* If we have no suspend mode configration don't set anything;
718 	 * only warn if the driver implements set_suspend_voltage or
719 	 * set_suspend_mode callback.
720 	 */
721 	if (!rstate->enabled && !rstate->disabled) {
722 		if (rdev->desc->ops->set_suspend_voltage ||
723 		    rdev->desc->ops->set_suspend_mode)
724 			rdev_warn(rdev, "No configuration\n");
725 		return 0;
726 	}
727 
728 	if (rstate->enabled && rstate->disabled) {
729 		rdev_err(rdev, "invalid configuration\n");
730 		return -EINVAL;
731 	}
732 
733 	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
734 		ret = rdev->desc->ops->set_suspend_enable(rdev);
735 	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
736 		ret = rdev->desc->ops->set_suspend_disable(rdev);
737 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
738 		ret = 0;
739 
740 	if (ret < 0) {
741 		rdev_err(rdev, "failed to enabled/disable\n");
742 		return ret;
743 	}
744 
745 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
746 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
747 		if (ret < 0) {
748 			rdev_err(rdev, "failed to set voltage\n");
749 			return ret;
750 		}
751 	}
752 
753 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
754 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
755 		if (ret < 0) {
756 			rdev_err(rdev, "failed to set mode\n");
757 			return ret;
758 		}
759 	}
760 	return ret;
761 }
762 
763 /* locks held by caller */
suspend_prepare(struct regulator_dev * rdev,suspend_state_t state)764 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
765 {
766 	if (!rdev->constraints)
767 		return -EINVAL;
768 
769 	switch (state) {
770 	case PM_SUSPEND_STANDBY:
771 		return suspend_set_state(rdev,
772 			&rdev->constraints->state_standby);
773 	case PM_SUSPEND_MEM:
774 		return suspend_set_state(rdev,
775 			&rdev->constraints->state_mem);
776 	case PM_SUSPEND_MAX:
777 		return suspend_set_state(rdev,
778 			&rdev->constraints->state_disk);
779 	default:
780 		return -EINVAL;
781 	}
782 }
783 
print_constraints(struct regulator_dev * rdev)784 static void print_constraints(struct regulator_dev *rdev)
785 {
786 	struct regulation_constraints *constraints = rdev->constraints;
787 	char buf[160] = "";
788 	int count = 0;
789 	int ret;
790 
791 	if (constraints->min_uV && constraints->max_uV) {
792 		if (constraints->min_uV == constraints->max_uV)
793 			count += sprintf(buf + count, "%d mV ",
794 					 constraints->min_uV / 1000);
795 		else
796 			count += sprintf(buf + count, "%d <--> %d mV ",
797 					 constraints->min_uV / 1000,
798 					 constraints->max_uV / 1000);
799 	}
800 
801 	if (!constraints->min_uV ||
802 	    constraints->min_uV != constraints->max_uV) {
803 		ret = _regulator_get_voltage(rdev);
804 		if (ret > 0)
805 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
806 	}
807 
808 	if (constraints->uV_offset)
809 		count += sprintf(buf, "%dmV offset ",
810 				 constraints->uV_offset / 1000);
811 
812 	if (constraints->min_uA && constraints->max_uA) {
813 		if (constraints->min_uA == constraints->max_uA)
814 			count += sprintf(buf + count, "%d mA ",
815 					 constraints->min_uA / 1000);
816 		else
817 			count += sprintf(buf + count, "%d <--> %d mA ",
818 					 constraints->min_uA / 1000,
819 					 constraints->max_uA / 1000);
820 	}
821 
822 	if (!constraints->min_uA ||
823 	    constraints->min_uA != constraints->max_uA) {
824 		ret = _regulator_get_current_limit(rdev);
825 		if (ret > 0)
826 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
827 	}
828 
829 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
830 		count += sprintf(buf + count, "fast ");
831 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
832 		count += sprintf(buf + count, "normal ");
833 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
834 		count += sprintf(buf + count, "idle ");
835 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
836 		count += sprintf(buf + count, "standby");
837 
838 	if (!count)
839 		sprintf(buf, "no parameters");
840 
841 	rdev_dbg(rdev, "%s\n", buf);
842 
843 	if ((constraints->min_uV != constraints->max_uV) &&
844 	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
845 		rdev_warn(rdev,
846 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
847 }
848 
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)849 static int machine_constraints_voltage(struct regulator_dev *rdev,
850 	struct regulation_constraints *constraints)
851 {
852 	const struct regulator_ops *ops = rdev->desc->ops;
853 	int ret;
854 
855 	/* do we need to apply the constraint voltage */
856 	if (rdev->constraints->apply_uV &&
857 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
858 		int current_uV = _regulator_get_voltage(rdev);
859 		if (current_uV < 0) {
860 			rdev_err(rdev,
861 				 "failed to get the current voltage(%d)\n",
862 				 current_uV);
863 			return current_uV;
864 		}
865 		if (current_uV < rdev->constraints->min_uV ||
866 		    current_uV > rdev->constraints->max_uV) {
867 			ret = _regulator_do_set_voltage(
868 				rdev, rdev->constraints->min_uV,
869 				rdev->constraints->max_uV);
870 			if (ret < 0) {
871 				rdev_err(rdev,
872 					"failed to apply %duV constraint(%d)\n",
873 					rdev->constraints->min_uV, ret);
874 				return ret;
875 			}
876 		}
877 	}
878 
879 	/* constrain machine-level voltage specs to fit
880 	 * the actual range supported by this regulator.
881 	 */
882 	if (ops->list_voltage && rdev->desc->n_voltages) {
883 		int	count = rdev->desc->n_voltages;
884 		int	i;
885 		int	min_uV = INT_MAX;
886 		int	max_uV = INT_MIN;
887 		int	cmin = constraints->min_uV;
888 		int	cmax = constraints->max_uV;
889 
890 		/* it's safe to autoconfigure fixed-voltage supplies
891 		   and the constraints are used by list_voltage. */
892 		if (count == 1 && !cmin) {
893 			cmin = 1;
894 			cmax = INT_MAX;
895 			constraints->min_uV = cmin;
896 			constraints->max_uV = cmax;
897 		}
898 
899 		/* voltage constraints are optional */
900 		if ((cmin == 0) && (cmax == 0))
901 			return 0;
902 
903 		/* else require explicit machine-level constraints */
904 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
905 			rdev_err(rdev, "invalid voltage constraints\n");
906 			return -EINVAL;
907 		}
908 
909 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
910 		for (i = 0; i < count; i++) {
911 			int	value;
912 
913 			value = ops->list_voltage(rdev, i);
914 			if (value <= 0)
915 				continue;
916 
917 			/* maybe adjust [min_uV..max_uV] */
918 			if (value >= cmin && value < min_uV)
919 				min_uV = value;
920 			if (value <= cmax && value > max_uV)
921 				max_uV = value;
922 		}
923 
924 		/* final: [min_uV..max_uV] valid iff constraints valid */
925 		if (max_uV < min_uV) {
926 			rdev_err(rdev,
927 				 "unsupportable voltage constraints %u-%uuV\n",
928 				 min_uV, max_uV);
929 			return -EINVAL;
930 		}
931 
932 		/* use regulator's subset of machine constraints */
933 		if (constraints->min_uV < min_uV) {
934 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
935 				 constraints->min_uV, min_uV);
936 			constraints->min_uV = min_uV;
937 		}
938 		if (constraints->max_uV > max_uV) {
939 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
940 				 constraints->max_uV, max_uV);
941 			constraints->max_uV = max_uV;
942 		}
943 	}
944 
945 	return 0;
946 }
947 
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)948 static int machine_constraints_current(struct regulator_dev *rdev,
949 	struct regulation_constraints *constraints)
950 {
951 	const struct regulator_ops *ops = rdev->desc->ops;
952 	int ret;
953 
954 	if (!constraints->min_uA && !constraints->max_uA)
955 		return 0;
956 
957 	if (constraints->min_uA > constraints->max_uA) {
958 		rdev_err(rdev, "Invalid current constraints\n");
959 		return -EINVAL;
960 	}
961 
962 	if (!ops->set_current_limit || !ops->get_current_limit) {
963 		rdev_warn(rdev, "Operation of current configuration missing\n");
964 		return 0;
965 	}
966 
967 	/* Set regulator current in constraints range */
968 	ret = ops->set_current_limit(rdev, constraints->min_uA,
969 			constraints->max_uA);
970 	if (ret < 0) {
971 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
972 		return ret;
973 	}
974 
975 	return 0;
976 }
977 
978 static int _regulator_do_enable(struct regulator_dev *rdev);
979 
980 /**
981  * set_machine_constraints - sets regulator constraints
982  * @rdev: regulator source
983  * @constraints: constraints to apply
984  *
985  * Allows platform initialisation code to define and constrain
986  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
987  * Constraints *must* be set by platform code in order for some
988  * regulator operations to proceed i.e. set_voltage, set_current_limit,
989  * set_mode.
990  */
set_machine_constraints(struct regulator_dev * rdev,const struct regulation_constraints * constraints)991 static int set_machine_constraints(struct regulator_dev *rdev,
992 	const struct regulation_constraints *constraints)
993 {
994 	int ret = 0;
995 	const struct regulator_ops *ops = rdev->desc->ops;
996 
997 	if (constraints)
998 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
999 					    GFP_KERNEL);
1000 	else
1001 		rdev->constraints = kzalloc(sizeof(*constraints),
1002 					    GFP_KERNEL);
1003 	if (!rdev->constraints)
1004 		return -ENOMEM;
1005 
1006 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1007 	if (ret != 0)
1008 		goto out;
1009 
1010 	ret = machine_constraints_current(rdev, rdev->constraints);
1011 	if (ret != 0)
1012 		goto out;
1013 
1014 	/* do we need to setup our suspend state */
1015 	if (rdev->constraints->initial_state) {
1016 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1017 		if (ret < 0) {
1018 			rdev_err(rdev, "failed to set suspend state\n");
1019 			goto out;
1020 		}
1021 	}
1022 
1023 	if (rdev->constraints->initial_mode) {
1024 		if (!ops->set_mode) {
1025 			rdev_err(rdev, "no set_mode operation\n");
1026 			ret = -EINVAL;
1027 			goto out;
1028 		}
1029 
1030 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1031 		if (ret < 0) {
1032 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1033 			goto out;
1034 		}
1035 	}
1036 
1037 	/* If the constraints say the regulator should be on at this point
1038 	 * and we have control then make sure it is enabled.
1039 	 */
1040 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1041 		ret = _regulator_do_enable(rdev);
1042 		if (ret < 0 && ret != -EINVAL) {
1043 			rdev_err(rdev, "failed to enable\n");
1044 			goto out;
1045 		}
1046 	}
1047 
1048 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1049 		&& ops->set_ramp_delay) {
1050 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1051 		if (ret < 0) {
1052 			rdev_err(rdev, "failed to set ramp_delay\n");
1053 			goto out;
1054 		}
1055 	}
1056 
1057 	print_constraints(rdev);
1058 	return 0;
1059 out:
1060 	kfree(rdev->constraints);
1061 	rdev->constraints = NULL;
1062 	return ret;
1063 }
1064 
1065 /**
1066  * set_supply - set regulator supply regulator
1067  * @rdev: regulator name
1068  * @supply_rdev: supply regulator name
1069  *
1070  * Called by platform initialisation code to set the supply regulator for this
1071  * regulator. This ensures that a regulators supply will also be enabled by the
1072  * core if it's child is enabled.
1073  */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1074 static int set_supply(struct regulator_dev *rdev,
1075 		      struct regulator_dev *supply_rdev)
1076 {
1077 	int err;
1078 
1079 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1080 
1081 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1082 	if (rdev->supply == NULL) {
1083 		err = -ENOMEM;
1084 		return err;
1085 	}
1086 	supply_rdev->open_count++;
1087 
1088 	return 0;
1089 }
1090 
1091 /**
1092  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1093  * @rdev:         regulator source
1094  * @consumer_dev_name: dev_name() string for device supply applies to
1095  * @supply:       symbolic name for supply
1096  *
1097  * Allows platform initialisation code to map physical regulator
1098  * sources to symbolic names for supplies for use by devices.  Devices
1099  * should use these symbolic names to request regulators, avoiding the
1100  * need to provide board-specific regulator names as platform data.
1101  */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1102 static int set_consumer_device_supply(struct regulator_dev *rdev,
1103 				      const char *consumer_dev_name,
1104 				      const char *supply)
1105 {
1106 	struct regulator_map *node;
1107 	int has_dev;
1108 
1109 	if (supply == NULL)
1110 		return -EINVAL;
1111 
1112 	if (consumer_dev_name != NULL)
1113 		has_dev = 1;
1114 	else
1115 		has_dev = 0;
1116 
1117 	list_for_each_entry(node, &regulator_map_list, list) {
1118 		if (node->dev_name && consumer_dev_name) {
1119 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1120 				continue;
1121 		} else if (node->dev_name || consumer_dev_name) {
1122 			continue;
1123 		}
1124 
1125 		if (strcmp(node->supply, supply) != 0)
1126 			continue;
1127 
1128 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1129 			 consumer_dev_name,
1130 			 dev_name(&node->regulator->dev),
1131 			 node->regulator->desc->name,
1132 			 supply,
1133 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1134 		return -EBUSY;
1135 	}
1136 
1137 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1138 	if (node == NULL)
1139 		return -ENOMEM;
1140 
1141 	node->regulator = rdev;
1142 	node->supply = supply;
1143 
1144 	if (has_dev) {
1145 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1146 		if (node->dev_name == NULL) {
1147 			kfree(node);
1148 			return -ENOMEM;
1149 		}
1150 	}
1151 
1152 	list_add(&node->list, &regulator_map_list);
1153 	return 0;
1154 }
1155 
unset_regulator_supplies(struct regulator_dev * rdev)1156 static void unset_regulator_supplies(struct regulator_dev *rdev)
1157 {
1158 	struct regulator_map *node, *n;
1159 
1160 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1161 		if (rdev == node->regulator) {
1162 			list_del(&node->list);
1163 			kfree(node->dev_name);
1164 			kfree(node);
1165 		}
1166 	}
1167 }
1168 
1169 #define REG_STR_SIZE	64
1170 
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1171 static struct regulator *create_regulator(struct regulator_dev *rdev,
1172 					  struct device *dev,
1173 					  const char *supply_name)
1174 {
1175 	struct regulator *regulator;
1176 	char buf[REG_STR_SIZE];
1177 	int err, size;
1178 
1179 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1180 	if (regulator == NULL)
1181 		return NULL;
1182 
1183 	mutex_lock(&rdev->mutex);
1184 	regulator->rdev = rdev;
1185 	list_add(&regulator->list, &rdev->consumer_list);
1186 
1187 	if (dev) {
1188 		regulator->dev = dev;
1189 
1190 		/* Add a link to the device sysfs entry */
1191 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1192 				 dev->kobj.name, supply_name);
1193 		if (size >= REG_STR_SIZE)
1194 			goto overflow_err;
1195 
1196 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1197 		if (regulator->supply_name == NULL)
1198 			goto overflow_err;
1199 
1200 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1201 					buf);
1202 		if (err) {
1203 			rdev_warn(rdev, "could not add device link %s err %d\n",
1204 				  dev->kobj.name, err);
1205 			/* non-fatal */
1206 		}
1207 	} else {
1208 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1209 		if (regulator->supply_name == NULL)
1210 			goto overflow_err;
1211 	}
1212 
1213 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1214 						rdev->debugfs);
1215 	if (!regulator->debugfs) {
1216 		rdev_warn(rdev, "Failed to create debugfs directory\n");
1217 	} else {
1218 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1219 				   &regulator->uA_load);
1220 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1221 				   &regulator->min_uV);
1222 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1223 				   &regulator->max_uV);
1224 	}
1225 
1226 	/*
1227 	 * Check now if the regulator is an always on regulator - if
1228 	 * it is then we don't need to do nearly so much work for
1229 	 * enable/disable calls.
1230 	 */
1231 	if (!_regulator_can_change_status(rdev) &&
1232 	    _regulator_is_enabled(rdev))
1233 		regulator->always_on = true;
1234 
1235 	mutex_unlock(&rdev->mutex);
1236 	return regulator;
1237 overflow_err:
1238 	list_del(&regulator->list);
1239 	kfree(regulator);
1240 	mutex_unlock(&rdev->mutex);
1241 	return NULL;
1242 }
1243 
_regulator_get_enable_time(struct regulator_dev * rdev)1244 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1245 {
1246 	if (rdev->constraints && rdev->constraints->enable_time)
1247 		return rdev->constraints->enable_time;
1248 	if (!rdev->desc->ops->enable_time)
1249 		return rdev->desc->enable_time;
1250 	return rdev->desc->ops->enable_time(rdev);
1251 }
1252 
regulator_find_supply_alias(struct device * dev,const char * supply)1253 static struct regulator_supply_alias *regulator_find_supply_alias(
1254 		struct device *dev, const char *supply)
1255 {
1256 	struct regulator_supply_alias *map;
1257 
1258 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1259 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1260 			return map;
1261 
1262 	return NULL;
1263 }
1264 
regulator_supply_alias(struct device ** dev,const char ** supply)1265 static void regulator_supply_alias(struct device **dev, const char **supply)
1266 {
1267 	struct regulator_supply_alias *map;
1268 
1269 	map = regulator_find_supply_alias(*dev, *supply);
1270 	if (map) {
1271 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1272 				*supply, map->alias_supply,
1273 				dev_name(map->alias_dev));
1274 		*dev = map->alias_dev;
1275 		*supply = map->alias_supply;
1276 	}
1277 }
1278 
regulator_dev_lookup(struct device * dev,const char * supply,int * ret)1279 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1280 						  const char *supply,
1281 						  int *ret)
1282 {
1283 	struct regulator_dev *r;
1284 	struct device_node *node;
1285 	struct regulator_map *map;
1286 	const char *devname = NULL;
1287 
1288 	regulator_supply_alias(&dev, &supply);
1289 
1290 	/* first do a dt based lookup */
1291 	if (dev && dev->of_node) {
1292 		node = of_get_regulator(dev, supply);
1293 		if (node) {
1294 			list_for_each_entry(r, &regulator_list, list)
1295 				if (r->dev.parent &&
1296 					node == r->dev.of_node)
1297 					return r;
1298 			*ret = -EPROBE_DEFER;
1299 			return NULL;
1300 		} else {
1301 			/*
1302 			 * If we couldn't even get the node then it's
1303 			 * not just that the device didn't register
1304 			 * yet, there's no node and we'll never
1305 			 * succeed.
1306 			 */
1307 			*ret = -ENODEV;
1308 		}
1309 	}
1310 
1311 	/* if not found, try doing it non-dt way */
1312 	if (dev)
1313 		devname = dev_name(dev);
1314 
1315 	list_for_each_entry(r, &regulator_list, list)
1316 		if (strcmp(rdev_get_name(r), supply) == 0)
1317 			return r;
1318 
1319 	list_for_each_entry(map, &regulator_map_list, list) {
1320 		/* If the mapping has a device set up it must match */
1321 		if (map->dev_name &&
1322 		    (!devname || strcmp(map->dev_name, devname)))
1323 			continue;
1324 
1325 		if (strcmp(map->supply, supply) == 0)
1326 			return map->regulator;
1327 	}
1328 
1329 
1330 	return NULL;
1331 }
1332 
regulator_resolve_supply(struct regulator_dev * rdev)1333 static int regulator_resolve_supply(struct regulator_dev *rdev)
1334 {
1335 	struct regulator_dev *r;
1336 	struct device *dev = rdev->dev.parent;
1337 	int ret;
1338 
1339 	/* No supply to resovle? */
1340 	if (!rdev->supply_name)
1341 		return 0;
1342 
1343 	/* Supply already resolved? */
1344 	if (rdev->supply)
1345 		return 0;
1346 
1347 	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1348 	if (ret == -ENODEV) {
1349 		/*
1350 		 * No supply was specified for this regulator and
1351 		 * there will never be one.
1352 		 */
1353 		return 0;
1354 	}
1355 
1356 	if (!r) {
1357 		dev_err(dev, "Failed to resolve %s-supply for %s\n",
1358 			rdev->supply_name, rdev->desc->name);
1359 		return -EPROBE_DEFER;
1360 	}
1361 
1362 	/* Recursively resolve the supply of the supply */
1363 	ret = regulator_resolve_supply(r);
1364 	if (ret < 0)
1365 		return ret;
1366 
1367 	ret = set_supply(rdev, r);
1368 	if (ret < 0)
1369 		return ret;
1370 
1371 	/* Cascade always-on state to supply */
1372 	if (_regulator_is_enabled(rdev)) {
1373 		ret = regulator_enable(rdev->supply);
1374 		if (ret < 0)
1375 			return ret;
1376 	}
1377 
1378 	return 0;
1379 }
1380 
1381 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,bool exclusive,bool allow_dummy)1382 static struct regulator *_regulator_get(struct device *dev, const char *id,
1383 					bool exclusive, bool allow_dummy)
1384 {
1385 	struct regulator_dev *rdev;
1386 	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1387 	const char *devname = NULL;
1388 	int ret;
1389 
1390 	if (id == NULL) {
1391 		pr_err("get() with no identifier\n");
1392 		return ERR_PTR(-EINVAL);
1393 	}
1394 
1395 	if (dev)
1396 		devname = dev_name(dev);
1397 
1398 	if (have_full_constraints())
1399 		ret = -ENODEV;
1400 	else
1401 		ret = -EPROBE_DEFER;
1402 
1403 	mutex_lock(&regulator_list_mutex);
1404 
1405 	rdev = regulator_dev_lookup(dev, id, &ret);
1406 	if (rdev)
1407 		goto found;
1408 
1409 	regulator = ERR_PTR(ret);
1410 
1411 	/*
1412 	 * If we have return value from dev_lookup fail, we do not expect to
1413 	 * succeed, so, quit with appropriate error value
1414 	 */
1415 	if (ret && ret != -ENODEV)
1416 		goto out;
1417 
1418 	if (!devname)
1419 		devname = "deviceless";
1420 
1421 	/*
1422 	 * Assume that a regulator is physically present and enabled
1423 	 * even if it isn't hooked up and just provide a dummy.
1424 	 */
1425 	if (have_full_constraints() && allow_dummy) {
1426 		pr_warn("%s supply %s not found, using dummy regulator\n",
1427 			devname, id);
1428 
1429 		rdev = dummy_regulator_rdev;
1430 		goto found;
1431 	/* Don't log an error when called from regulator_get_optional() */
1432 	} else if (!have_full_constraints() || exclusive) {
1433 		dev_warn(dev, "dummy supplies not allowed\n");
1434 	}
1435 
1436 	mutex_unlock(&regulator_list_mutex);
1437 	return regulator;
1438 
1439 found:
1440 	if (rdev->exclusive) {
1441 		regulator = ERR_PTR(-EPERM);
1442 		goto out;
1443 	}
1444 
1445 	if (exclusive && rdev->open_count) {
1446 		regulator = ERR_PTR(-EBUSY);
1447 		goto out;
1448 	}
1449 
1450 	ret = regulator_resolve_supply(rdev);
1451 	if (ret < 0) {
1452 		regulator = ERR_PTR(ret);
1453 		goto out;
1454 	}
1455 
1456 	if (!try_module_get(rdev->owner))
1457 		goto out;
1458 
1459 	regulator = create_regulator(rdev, dev, id);
1460 	if (regulator == NULL) {
1461 		regulator = ERR_PTR(-ENOMEM);
1462 		module_put(rdev->owner);
1463 		goto out;
1464 	}
1465 
1466 	rdev->open_count++;
1467 	if (exclusive) {
1468 		rdev->exclusive = 1;
1469 
1470 		ret = _regulator_is_enabled(rdev);
1471 		if (ret > 0)
1472 			rdev->use_count = 1;
1473 		else
1474 			rdev->use_count = 0;
1475 	}
1476 
1477 out:
1478 	mutex_unlock(&regulator_list_mutex);
1479 
1480 	return regulator;
1481 }
1482 
1483 /**
1484  * regulator_get - lookup and obtain a reference to a regulator.
1485  * @dev: device for regulator "consumer"
1486  * @id: Supply name or regulator ID.
1487  *
1488  * Returns a struct regulator corresponding to the regulator producer,
1489  * or IS_ERR() condition containing errno.
1490  *
1491  * Use of supply names configured via regulator_set_device_supply() is
1492  * strongly encouraged.  It is recommended that the supply name used
1493  * should match the name used for the supply and/or the relevant
1494  * device pins in the datasheet.
1495  */
regulator_get(struct device * dev,const char * id)1496 struct regulator *regulator_get(struct device *dev, const char *id)
1497 {
1498 	return _regulator_get(dev, id, false, true);
1499 }
1500 EXPORT_SYMBOL_GPL(regulator_get);
1501 
1502 /**
1503  * regulator_get_exclusive - obtain exclusive access to a regulator.
1504  * @dev: device for regulator "consumer"
1505  * @id: Supply name or regulator ID.
1506  *
1507  * Returns a struct regulator corresponding to the regulator producer,
1508  * or IS_ERR() condition containing errno.  Other consumers will be
1509  * unable to obtain this regulator while this reference is held and the
1510  * use count for the regulator will be initialised to reflect the current
1511  * state of the regulator.
1512  *
1513  * This is intended for use by consumers which cannot tolerate shared
1514  * use of the regulator such as those which need to force the
1515  * regulator off for correct operation of the hardware they are
1516  * controlling.
1517  *
1518  * Use of supply names configured via regulator_set_device_supply() is
1519  * strongly encouraged.  It is recommended that the supply name used
1520  * should match the name used for the supply and/or the relevant
1521  * device pins in the datasheet.
1522  */
regulator_get_exclusive(struct device * dev,const char * id)1523 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1524 {
1525 	return _regulator_get(dev, id, true, false);
1526 }
1527 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1528 
1529 /**
1530  * regulator_get_optional - obtain optional access to a regulator.
1531  * @dev: device for regulator "consumer"
1532  * @id: Supply name or regulator ID.
1533  *
1534  * Returns a struct regulator corresponding to the regulator producer,
1535  * or IS_ERR() condition containing errno.
1536  *
1537  * This is intended for use by consumers for devices which can have
1538  * some supplies unconnected in normal use, such as some MMC devices.
1539  * It can allow the regulator core to provide stub supplies for other
1540  * supplies requested using normal regulator_get() calls without
1541  * disrupting the operation of drivers that can handle absent
1542  * supplies.
1543  *
1544  * Use of supply names configured via regulator_set_device_supply() is
1545  * strongly encouraged.  It is recommended that the supply name used
1546  * should match the name used for the supply and/or the relevant
1547  * device pins in the datasheet.
1548  */
regulator_get_optional(struct device * dev,const char * id)1549 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1550 {
1551 	return _regulator_get(dev, id, false, false);
1552 }
1553 EXPORT_SYMBOL_GPL(regulator_get_optional);
1554 
1555 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)1556 static void _regulator_put(struct regulator *regulator)
1557 {
1558 	struct regulator_dev *rdev;
1559 
1560 	if (regulator == NULL || IS_ERR(regulator))
1561 		return;
1562 
1563 	rdev = regulator->rdev;
1564 
1565 	debugfs_remove_recursive(regulator->debugfs);
1566 
1567 	/* remove any sysfs entries */
1568 	if (regulator->dev)
1569 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1570 	mutex_lock(&rdev->mutex);
1571 	kfree(regulator->supply_name);
1572 	list_del(&regulator->list);
1573 	kfree(regulator);
1574 
1575 	rdev->open_count--;
1576 	rdev->exclusive = 0;
1577 	mutex_unlock(&rdev->mutex);
1578 
1579 	module_put(rdev->owner);
1580 }
1581 
1582 /**
1583  * regulator_put - "free" the regulator source
1584  * @regulator: regulator source
1585  *
1586  * Note: drivers must ensure that all regulator_enable calls made on this
1587  * regulator source are balanced by regulator_disable calls prior to calling
1588  * this function.
1589  */
regulator_put(struct regulator * regulator)1590 void regulator_put(struct regulator *regulator)
1591 {
1592 	mutex_lock(&regulator_list_mutex);
1593 	_regulator_put(regulator);
1594 	mutex_unlock(&regulator_list_mutex);
1595 }
1596 EXPORT_SYMBOL_GPL(regulator_put);
1597 
1598 /**
1599  * regulator_register_supply_alias - Provide device alias for supply lookup
1600  *
1601  * @dev: device that will be given as the regulator "consumer"
1602  * @id: Supply name or regulator ID
1603  * @alias_dev: device that should be used to lookup the supply
1604  * @alias_id: Supply name or regulator ID that should be used to lookup the
1605  * supply
1606  *
1607  * All lookups for id on dev will instead be conducted for alias_id on
1608  * alias_dev.
1609  */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)1610 int regulator_register_supply_alias(struct device *dev, const char *id,
1611 				    struct device *alias_dev,
1612 				    const char *alias_id)
1613 {
1614 	struct regulator_supply_alias *map;
1615 
1616 	map = regulator_find_supply_alias(dev, id);
1617 	if (map)
1618 		return -EEXIST;
1619 
1620 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1621 	if (!map)
1622 		return -ENOMEM;
1623 
1624 	map->src_dev = dev;
1625 	map->src_supply = id;
1626 	map->alias_dev = alias_dev;
1627 	map->alias_supply = alias_id;
1628 
1629 	list_add(&map->list, &regulator_supply_alias_list);
1630 
1631 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1632 		id, dev_name(dev), alias_id, dev_name(alias_dev));
1633 
1634 	return 0;
1635 }
1636 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1637 
1638 /**
1639  * regulator_unregister_supply_alias - Remove device alias
1640  *
1641  * @dev: device that will be given as the regulator "consumer"
1642  * @id: Supply name or regulator ID
1643  *
1644  * Remove a lookup alias if one exists for id on dev.
1645  */
regulator_unregister_supply_alias(struct device * dev,const char * id)1646 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1647 {
1648 	struct regulator_supply_alias *map;
1649 
1650 	map = regulator_find_supply_alias(dev, id);
1651 	if (map) {
1652 		list_del(&map->list);
1653 		kfree(map);
1654 	}
1655 }
1656 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1657 
1658 /**
1659  * regulator_bulk_register_supply_alias - register multiple aliases
1660  *
1661  * @dev: device that will be given as the regulator "consumer"
1662  * @id: List of supply names or regulator IDs
1663  * @alias_dev: device that should be used to lookup the supply
1664  * @alias_id: List of supply names or regulator IDs that should be used to
1665  * lookup the supply
1666  * @num_id: Number of aliases to register
1667  *
1668  * @return 0 on success, an errno on failure.
1669  *
1670  * This helper function allows drivers to register several supply
1671  * aliases in one operation.  If any of the aliases cannot be
1672  * registered any aliases that were registered will be removed
1673  * before returning to the caller.
1674  */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)1675 int regulator_bulk_register_supply_alias(struct device *dev,
1676 					 const char *const *id,
1677 					 struct device *alias_dev,
1678 					 const char *const *alias_id,
1679 					 int num_id)
1680 {
1681 	int i;
1682 	int ret;
1683 
1684 	for (i = 0; i < num_id; ++i) {
1685 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1686 						      alias_id[i]);
1687 		if (ret < 0)
1688 			goto err;
1689 	}
1690 
1691 	return 0;
1692 
1693 err:
1694 	dev_err(dev,
1695 		"Failed to create supply alias %s,%s -> %s,%s\n",
1696 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1697 
1698 	while (--i >= 0)
1699 		regulator_unregister_supply_alias(dev, id[i]);
1700 
1701 	return ret;
1702 }
1703 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1704 
1705 /**
1706  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1707  *
1708  * @dev: device that will be given as the regulator "consumer"
1709  * @id: List of supply names or regulator IDs
1710  * @num_id: Number of aliases to unregister
1711  *
1712  * This helper function allows drivers to unregister several supply
1713  * aliases in one operation.
1714  */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)1715 void regulator_bulk_unregister_supply_alias(struct device *dev,
1716 					    const char *const *id,
1717 					    int num_id)
1718 {
1719 	int i;
1720 
1721 	for (i = 0; i < num_id; ++i)
1722 		regulator_unregister_supply_alias(dev, id[i]);
1723 }
1724 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1725 
1726 
1727 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)1728 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1729 				const struct regulator_config *config)
1730 {
1731 	struct regulator_enable_gpio *pin;
1732 	struct gpio_desc *gpiod;
1733 	int ret;
1734 
1735 	gpiod = gpio_to_desc(config->ena_gpio);
1736 
1737 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1738 		if (pin->gpiod == gpiod) {
1739 			rdev_dbg(rdev, "GPIO %d is already used\n",
1740 				config->ena_gpio);
1741 			goto update_ena_gpio_to_rdev;
1742 		}
1743 	}
1744 
1745 	ret = gpio_request_one(config->ena_gpio,
1746 				GPIOF_DIR_OUT | config->ena_gpio_flags,
1747 				rdev_get_name(rdev));
1748 	if (ret)
1749 		return ret;
1750 
1751 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1752 	if (pin == NULL) {
1753 		gpio_free(config->ena_gpio);
1754 		return -ENOMEM;
1755 	}
1756 
1757 	pin->gpiod = gpiod;
1758 	pin->ena_gpio_invert = config->ena_gpio_invert;
1759 	list_add(&pin->list, &regulator_ena_gpio_list);
1760 
1761 update_ena_gpio_to_rdev:
1762 	pin->request_count++;
1763 	rdev->ena_pin = pin;
1764 	return 0;
1765 }
1766 
regulator_ena_gpio_free(struct regulator_dev * rdev)1767 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1768 {
1769 	struct regulator_enable_gpio *pin, *n;
1770 
1771 	if (!rdev->ena_pin)
1772 		return;
1773 
1774 	/* Free the GPIO only in case of no use */
1775 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1776 		if (pin->gpiod == rdev->ena_pin->gpiod) {
1777 			if (pin->request_count <= 1) {
1778 				pin->request_count = 0;
1779 				gpiod_put(pin->gpiod);
1780 				list_del(&pin->list);
1781 				kfree(pin);
1782 				rdev->ena_pin = NULL;
1783 				return;
1784 			} else {
1785 				pin->request_count--;
1786 			}
1787 		}
1788 	}
1789 }
1790 
1791 /**
1792  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1793  * @rdev: regulator_dev structure
1794  * @enable: enable GPIO at initial use?
1795  *
1796  * GPIO is enabled in case of initial use. (enable_count is 0)
1797  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1798  */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)1799 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1800 {
1801 	struct regulator_enable_gpio *pin = rdev->ena_pin;
1802 
1803 	if (!pin)
1804 		return -EINVAL;
1805 
1806 	if (enable) {
1807 		/* Enable GPIO at initial use */
1808 		if (pin->enable_count == 0)
1809 			gpiod_set_value_cansleep(pin->gpiod,
1810 						 !pin->ena_gpio_invert);
1811 
1812 		pin->enable_count++;
1813 	} else {
1814 		if (pin->enable_count > 1) {
1815 			pin->enable_count--;
1816 			return 0;
1817 		}
1818 
1819 		/* Disable GPIO if not used */
1820 		if (pin->enable_count <= 1) {
1821 			gpiod_set_value_cansleep(pin->gpiod,
1822 						 pin->ena_gpio_invert);
1823 			pin->enable_count = 0;
1824 		}
1825 	}
1826 
1827 	return 0;
1828 }
1829 
1830 /**
1831  * _regulator_enable_delay - a delay helper function
1832  * @delay: time to delay in microseconds
1833  *
1834  * Delay for the requested amount of time as per the guidelines in:
1835  *
1836  *     Documentation/timers/timers-howto.txt
1837  *
1838  * The assumption here is that regulators will never be enabled in
1839  * atomic context and therefore sleeping functions can be used.
1840  */
_regulator_enable_delay(unsigned int delay)1841 static void _regulator_enable_delay(unsigned int delay)
1842 {
1843 	unsigned int ms = delay / 1000;
1844 	unsigned int us = delay % 1000;
1845 
1846 	if (ms > 0) {
1847 		/*
1848 		 * For small enough values, handle super-millisecond
1849 		 * delays in the usleep_range() call below.
1850 		 */
1851 		if (ms < 20)
1852 			us += ms * 1000;
1853 		else
1854 			msleep(ms);
1855 	}
1856 
1857 	/*
1858 	 * Give the scheduler some room to coalesce with any other
1859 	 * wakeup sources. For delays shorter than 10 us, don't even
1860 	 * bother setting up high-resolution timers and just busy-
1861 	 * loop.
1862 	 */
1863 	if (us >= 10)
1864 		usleep_range(us, us + 100);
1865 	else
1866 		udelay(us);
1867 }
1868 
_regulator_do_enable(struct regulator_dev * rdev)1869 static int _regulator_do_enable(struct regulator_dev *rdev)
1870 {
1871 	int ret, delay;
1872 
1873 	/* Query before enabling in case configuration dependent.  */
1874 	ret = _regulator_get_enable_time(rdev);
1875 	if (ret >= 0) {
1876 		delay = ret;
1877 	} else {
1878 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1879 		delay = 0;
1880 	}
1881 
1882 	trace_regulator_enable(rdev_get_name(rdev));
1883 
1884 	if (rdev->desc->off_on_delay) {
1885 		/* if needed, keep a distance of off_on_delay from last time
1886 		 * this regulator was disabled.
1887 		 */
1888 		unsigned long start_jiffy = jiffies;
1889 		unsigned long intended, max_delay, remaining;
1890 
1891 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1892 		intended = rdev->last_off_jiffy + max_delay;
1893 
1894 		if (time_before(start_jiffy, intended)) {
1895 			/* calc remaining jiffies to deal with one-time
1896 			 * timer wrapping.
1897 			 * in case of multiple timer wrapping, either it can be
1898 			 * detected by out-of-range remaining, or it cannot be
1899 			 * detected and we gets a panelty of
1900 			 * _regulator_enable_delay().
1901 			 */
1902 			remaining = intended - start_jiffy;
1903 			if (remaining <= max_delay)
1904 				_regulator_enable_delay(
1905 						jiffies_to_usecs(remaining));
1906 		}
1907 	}
1908 
1909 	if (rdev->ena_pin) {
1910 		if (!rdev->ena_gpio_state) {
1911 			ret = regulator_ena_gpio_ctrl(rdev, true);
1912 			if (ret < 0)
1913 				return ret;
1914 			rdev->ena_gpio_state = 1;
1915 		}
1916 	} else if (rdev->desc->ops->enable) {
1917 		ret = rdev->desc->ops->enable(rdev);
1918 		if (ret < 0)
1919 			return ret;
1920 	} else {
1921 		return -EINVAL;
1922 	}
1923 
1924 	/* Allow the regulator to ramp; it would be useful to extend
1925 	 * this for bulk operations so that the regulators can ramp
1926 	 * together.  */
1927 	trace_regulator_enable_delay(rdev_get_name(rdev));
1928 
1929 	_regulator_enable_delay(delay);
1930 
1931 	trace_regulator_enable_complete(rdev_get_name(rdev));
1932 
1933 	return 0;
1934 }
1935 
1936 /* locks held by regulator_enable() */
_regulator_enable(struct regulator_dev * rdev)1937 static int _regulator_enable(struct regulator_dev *rdev)
1938 {
1939 	int ret;
1940 
1941 	/* check voltage and requested load before enabling */
1942 	if (rdev->constraints &&
1943 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1944 		drms_uA_update(rdev);
1945 
1946 	if (rdev->use_count == 0) {
1947 		/* The regulator may on if it's not switchable or left on */
1948 		ret = _regulator_is_enabled(rdev);
1949 		if (ret == -EINVAL || ret == 0) {
1950 			if (!_regulator_can_change_status(rdev))
1951 				return -EPERM;
1952 
1953 			ret = _regulator_do_enable(rdev);
1954 			if (ret < 0)
1955 				return ret;
1956 
1957 		} else if (ret < 0) {
1958 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1959 			return ret;
1960 		}
1961 		/* Fallthrough on positive return values - already enabled */
1962 	}
1963 
1964 	rdev->use_count++;
1965 
1966 	return 0;
1967 }
1968 
1969 /**
1970  * regulator_enable - enable regulator output
1971  * @regulator: regulator source
1972  *
1973  * Request that the regulator be enabled with the regulator output at
1974  * the predefined voltage or current value.  Calls to regulator_enable()
1975  * must be balanced with calls to regulator_disable().
1976  *
1977  * NOTE: the output value can be set by other drivers, boot loader or may be
1978  * hardwired in the regulator.
1979  */
regulator_enable(struct regulator * regulator)1980 int regulator_enable(struct regulator *regulator)
1981 {
1982 	struct regulator_dev *rdev = regulator->rdev;
1983 	int ret = 0;
1984 
1985 	if (regulator->always_on)
1986 		return 0;
1987 
1988 	if (rdev->supply) {
1989 		ret = regulator_enable(rdev->supply);
1990 		if (ret != 0)
1991 			return ret;
1992 	}
1993 
1994 	mutex_lock(&rdev->mutex);
1995 	ret = _regulator_enable(rdev);
1996 	mutex_unlock(&rdev->mutex);
1997 
1998 	if (ret != 0 && rdev->supply)
1999 		regulator_disable(rdev->supply);
2000 
2001 	return ret;
2002 }
2003 EXPORT_SYMBOL_GPL(regulator_enable);
2004 
_regulator_do_disable(struct regulator_dev * rdev)2005 static int _regulator_do_disable(struct regulator_dev *rdev)
2006 {
2007 	int ret;
2008 
2009 	trace_regulator_disable(rdev_get_name(rdev));
2010 
2011 	if (rdev->ena_pin) {
2012 		if (rdev->ena_gpio_state) {
2013 			ret = regulator_ena_gpio_ctrl(rdev, false);
2014 			if (ret < 0)
2015 				return ret;
2016 			rdev->ena_gpio_state = 0;
2017 		}
2018 
2019 	} else if (rdev->desc->ops->disable) {
2020 		ret = rdev->desc->ops->disable(rdev);
2021 		if (ret != 0)
2022 			return ret;
2023 	}
2024 
2025 	/* cares about last_off_jiffy only if off_on_delay is required by
2026 	 * device.
2027 	 */
2028 	if (rdev->desc->off_on_delay)
2029 		rdev->last_off_jiffy = jiffies;
2030 
2031 	trace_regulator_disable_complete(rdev_get_name(rdev));
2032 
2033 	return 0;
2034 }
2035 
2036 /* locks held by regulator_disable() */
_regulator_disable(struct regulator_dev * rdev)2037 static int _regulator_disable(struct regulator_dev *rdev)
2038 {
2039 	int ret = 0;
2040 
2041 	if (WARN(rdev->use_count <= 0,
2042 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2043 		return -EIO;
2044 
2045 	/* are we the last user and permitted to disable ? */
2046 	if (rdev->use_count == 1 &&
2047 	    (rdev->constraints && !rdev->constraints->always_on)) {
2048 
2049 		/* we are last user */
2050 		if (_regulator_can_change_status(rdev)) {
2051 			ret = _notifier_call_chain(rdev,
2052 						   REGULATOR_EVENT_PRE_DISABLE,
2053 						   NULL);
2054 			if (ret & NOTIFY_STOP_MASK)
2055 				return -EINVAL;
2056 
2057 			ret = _regulator_do_disable(rdev);
2058 			if (ret < 0) {
2059 				rdev_err(rdev, "failed to disable\n");
2060 				_notifier_call_chain(rdev,
2061 						REGULATOR_EVENT_ABORT_DISABLE,
2062 						NULL);
2063 				return ret;
2064 			}
2065 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2066 					NULL);
2067 		}
2068 
2069 		rdev->use_count = 0;
2070 	} else if (rdev->use_count > 1) {
2071 
2072 		if (rdev->constraints &&
2073 			(rdev->constraints->valid_ops_mask &
2074 			REGULATOR_CHANGE_DRMS))
2075 			drms_uA_update(rdev);
2076 
2077 		rdev->use_count--;
2078 	}
2079 
2080 	return ret;
2081 }
2082 
2083 /**
2084  * regulator_disable - disable regulator output
2085  * @regulator: regulator source
2086  *
2087  * Disable the regulator output voltage or current.  Calls to
2088  * regulator_enable() must be balanced with calls to
2089  * regulator_disable().
2090  *
2091  * NOTE: this will only disable the regulator output if no other consumer
2092  * devices have it enabled, the regulator device supports disabling and
2093  * machine constraints permit this operation.
2094  */
regulator_disable(struct regulator * regulator)2095 int regulator_disable(struct regulator *regulator)
2096 {
2097 	struct regulator_dev *rdev = regulator->rdev;
2098 	int ret = 0;
2099 
2100 	if (regulator->always_on)
2101 		return 0;
2102 
2103 	mutex_lock(&rdev->mutex);
2104 	ret = _regulator_disable(rdev);
2105 	mutex_unlock(&rdev->mutex);
2106 
2107 	if (ret == 0 && rdev->supply)
2108 		regulator_disable(rdev->supply);
2109 
2110 	return ret;
2111 }
2112 EXPORT_SYMBOL_GPL(regulator_disable);
2113 
2114 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)2115 static int _regulator_force_disable(struct regulator_dev *rdev)
2116 {
2117 	int ret = 0;
2118 
2119 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2120 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2121 	if (ret & NOTIFY_STOP_MASK)
2122 		return -EINVAL;
2123 
2124 	ret = _regulator_do_disable(rdev);
2125 	if (ret < 0) {
2126 		rdev_err(rdev, "failed to force disable\n");
2127 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2128 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2129 		return ret;
2130 	}
2131 
2132 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2133 			REGULATOR_EVENT_DISABLE, NULL);
2134 
2135 	return 0;
2136 }
2137 
2138 /**
2139  * regulator_force_disable - force disable regulator output
2140  * @regulator: regulator source
2141  *
2142  * Forcibly disable the regulator output voltage or current.
2143  * NOTE: this *will* disable the regulator output even if other consumer
2144  * devices have it enabled. This should be used for situations when device
2145  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2146  */
regulator_force_disable(struct regulator * regulator)2147 int regulator_force_disable(struct regulator *regulator)
2148 {
2149 	struct regulator_dev *rdev = regulator->rdev;
2150 	int ret;
2151 
2152 	mutex_lock(&rdev->mutex);
2153 	regulator->uA_load = 0;
2154 	ret = _regulator_force_disable(regulator->rdev);
2155 	mutex_unlock(&rdev->mutex);
2156 
2157 	if (rdev->supply)
2158 		while (rdev->open_count--)
2159 			regulator_disable(rdev->supply);
2160 
2161 	return ret;
2162 }
2163 EXPORT_SYMBOL_GPL(regulator_force_disable);
2164 
regulator_disable_work(struct work_struct * work)2165 static void regulator_disable_work(struct work_struct *work)
2166 {
2167 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2168 						  disable_work.work);
2169 	int count, i, ret;
2170 
2171 	mutex_lock(&rdev->mutex);
2172 
2173 	BUG_ON(!rdev->deferred_disables);
2174 
2175 	count = rdev->deferred_disables;
2176 	rdev->deferred_disables = 0;
2177 
2178 	for (i = 0; i < count; i++) {
2179 		ret = _regulator_disable(rdev);
2180 		if (ret != 0)
2181 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2182 	}
2183 
2184 	mutex_unlock(&rdev->mutex);
2185 
2186 	if (rdev->supply) {
2187 		for (i = 0; i < count; i++) {
2188 			ret = regulator_disable(rdev->supply);
2189 			if (ret != 0) {
2190 				rdev_err(rdev,
2191 					 "Supply disable failed: %d\n", ret);
2192 			}
2193 		}
2194 	}
2195 }
2196 
2197 /**
2198  * regulator_disable_deferred - disable regulator output with delay
2199  * @regulator: regulator source
2200  * @ms: miliseconds until the regulator is disabled
2201  *
2202  * Execute regulator_disable() on the regulator after a delay.  This
2203  * is intended for use with devices that require some time to quiesce.
2204  *
2205  * NOTE: this will only disable the regulator output if no other consumer
2206  * devices have it enabled, the regulator device supports disabling and
2207  * machine constraints permit this operation.
2208  */
regulator_disable_deferred(struct regulator * regulator,int ms)2209 int regulator_disable_deferred(struct regulator *regulator, int ms)
2210 {
2211 	struct regulator_dev *rdev = regulator->rdev;
2212 	int ret;
2213 
2214 	if (regulator->always_on)
2215 		return 0;
2216 
2217 	if (!ms)
2218 		return regulator_disable(regulator);
2219 
2220 	mutex_lock(&rdev->mutex);
2221 	rdev->deferred_disables++;
2222 	mutex_unlock(&rdev->mutex);
2223 
2224 	ret = queue_delayed_work(system_power_efficient_wq,
2225 				 &rdev->disable_work,
2226 				 msecs_to_jiffies(ms));
2227 	if (ret < 0)
2228 		return ret;
2229 	else
2230 		return 0;
2231 }
2232 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2233 
_regulator_is_enabled(struct regulator_dev * rdev)2234 static int _regulator_is_enabled(struct regulator_dev *rdev)
2235 {
2236 	/* A GPIO control always takes precedence */
2237 	if (rdev->ena_pin)
2238 		return rdev->ena_gpio_state;
2239 
2240 	/* If we don't know then assume that the regulator is always on */
2241 	if (!rdev->desc->ops->is_enabled)
2242 		return 1;
2243 
2244 	return rdev->desc->ops->is_enabled(rdev);
2245 }
2246 
2247 /**
2248  * regulator_is_enabled - is the regulator output enabled
2249  * @regulator: regulator source
2250  *
2251  * Returns positive if the regulator driver backing the source/client
2252  * has requested that the device be enabled, zero if it hasn't, else a
2253  * negative errno code.
2254  *
2255  * Note that the device backing this regulator handle can have multiple
2256  * users, so it might be enabled even if regulator_enable() was never
2257  * called for this particular source.
2258  */
regulator_is_enabled(struct regulator * regulator)2259 int regulator_is_enabled(struct regulator *regulator)
2260 {
2261 	int ret;
2262 
2263 	if (regulator->always_on)
2264 		return 1;
2265 
2266 	mutex_lock(&regulator->rdev->mutex);
2267 	ret = _regulator_is_enabled(regulator->rdev);
2268 	mutex_unlock(&regulator->rdev->mutex);
2269 
2270 	return ret;
2271 }
2272 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2273 
2274 /**
2275  * regulator_can_change_voltage - check if regulator can change voltage
2276  * @regulator: regulator source
2277  *
2278  * Returns positive if the regulator driver backing the source/client
2279  * can change its voltage, false otherwise. Useful for detecting fixed
2280  * or dummy regulators and disabling voltage change logic in the client
2281  * driver.
2282  */
regulator_can_change_voltage(struct regulator * regulator)2283 int regulator_can_change_voltage(struct regulator *regulator)
2284 {
2285 	struct regulator_dev	*rdev = regulator->rdev;
2286 
2287 	if (rdev->constraints &&
2288 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2289 		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2290 			return 1;
2291 
2292 		if (rdev->desc->continuous_voltage_range &&
2293 		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2294 		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2295 			return 1;
2296 	}
2297 
2298 	return 0;
2299 }
2300 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2301 
2302 /**
2303  * regulator_count_voltages - count regulator_list_voltage() selectors
2304  * @regulator: regulator source
2305  *
2306  * Returns number of selectors, or negative errno.  Selectors are
2307  * numbered starting at zero, and typically correspond to bitfields
2308  * in hardware registers.
2309  */
regulator_count_voltages(struct regulator * regulator)2310 int regulator_count_voltages(struct regulator *regulator)
2311 {
2312 	struct regulator_dev	*rdev = regulator->rdev;
2313 
2314 	if (rdev->desc->n_voltages)
2315 		return rdev->desc->n_voltages;
2316 
2317 	if (!rdev->supply)
2318 		return -EINVAL;
2319 
2320 	return regulator_count_voltages(rdev->supply);
2321 }
2322 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2323 
2324 /**
2325  * regulator_list_voltage - enumerate supported voltages
2326  * @regulator: regulator source
2327  * @selector: identify voltage to list
2328  * Context: can sleep
2329  *
2330  * Returns a voltage that can be passed to @regulator_set_voltage(),
2331  * zero if this selector code can't be used on this system, or a
2332  * negative errno.
2333  */
regulator_list_voltage(struct regulator * regulator,unsigned selector)2334 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2335 {
2336 	struct regulator_dev *rdev = regulator->rdev;
2337 	const struct regulator_ops *ops = rdev->desc->ops;
2338 	int ret;
2339 
2340 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2341 		return rdev->desc->fixed_uV;
2342 
2343 	if (ops->list_voltage) {
2344 		if (selector >= rdev->desc->n_voltages)
2345 			return -EINVAL;
2346 		mutex_lock(&rdev->mutex);
2347 		ret = ops->list_voltage(rdev, selector);
2348 		mutex_unlock(&rdev->mutex);
2349 	} else if (rdev->supply) {
2350 		ret = regulator_list_voltage(rdev->supply, selector);
2351 	} else {
2352 		return -EINVAL;
2353 	}
2354 
2355 	if (ret > 0) {
2356 		if (ret < rdev->constraints->min_uV)
2357 			ret = 0;
2358 		else if (ret > rdev->constraints->max_uV)
2359 			ret = 0;
2360 	}
2361 
2362 	return ret;
2363 }
2364 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2365 
2366 /**
2367  * regulator_get_regmap - get the regulator's register map
2368  * @regulator: regulator source
2369  *
2370  * Returns the register map for the given regulator, or an ERR_PTR value
2371  * if the regulator doesn't use regmap.
2372  */
regulator_get_regmap(struct regulator * regulator)2373 struct regmap *regulator_get_regmap(struct regulator *regulator)
2374 {
2375 	struct regmap *map = regulator->rdev->regmap;
2376 
2377 	return map ? map : ERR_PTR(-EOPNOTSUPP);
2378 }
2379 
2380 /**
2381  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2382  * @regulator: regulator source
2383  * @vsel_reg: voltage selector register, output parameter
2384  * @vsel_mask: mask for voltage selector bitfield, output parameter
2385  *
2386  * Returns the hardware register offset and bitmask used for setting the
2387  * regulator voltage. This might be useful when configuring voltage-scaling
2388  * hardware or firmware that can make I2C requests behind the kernel's back,
2389  * for example.
2390  *
2391  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2392  * and 0 is returned, otherwise a negative errno is returned.
2393  */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)2394 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2395 					 unsigned *vsel_reg,
2396 					 unsigned *vsel_mask)
2397 {
2398 	struct regulator_dev *rdev = regulator->rdev;
2399 	const struct regulator_ops *ops = rdev->desc->ops;
2400 
2401 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2402 		return -EOPNOTSUPP;
2403 
2404 	 *vsel_reg = rdev->desc->vsel_reg;
2405 	 *vsel_mask = rdev->desc->vsel_mask;
2406 
2407 	 return 0;
2408 }
2409 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2410 
2411 /**
2412  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2413  * @regulator: regulator source
2414  * @selector: identify voltage to list
2415  *
2416  * Converts the selector to a hardware-specific voltage selector that can be
2417  * directly written to the regulator registers. The address of the voltage
2418  * register can be determined by calling @regulator_get_hardware_vsel_register.
2419  *
2420  * On error a negative errno is returned.
2421  */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)2422 int regulator_list_hardware_vsel(struct regulator *regulator,
2423 				 unsigned selector)
2424 {
2425 	struct regulator_dev *rdev = regulator->rdev;
2426 	const struct regulator_ops *ops = rdev->desc->ops;
2427 
2428 	if (selector >= rdev->desc->n_voltages)
2429 		return -EINVAL;
2430 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2431 		return -EOPNOTSUPP;
2432 
2433 	return selector;
2434 }
2435 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2436 
2437 /**
2438  * regulator_get_linear_step - return the voltage step size between VSEL values
2439  * @regulator: regulator source
2440  *
2441  * Returns the voltage step size between VSEL values for linear
2442  * regulators, or return 0 if the regulator isn't a linear regulator.
2443  */
regulator_get_linear_step(struct regulator * regulator)2444 unsigned int regulator_get_linear_step(struct regulator *regulator)
2445 {
2446 	struct regulator_dev *rdev = regulator->rdev;
2447 
2448 	return rdev->desc->uV_step;
2449 }
2450 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2451 
2452 /**
2453  * regulator_is_supported_voltage - check if a voltage range can be supported
2454  *
2455  * @regulator: Regulator to check.
2456  * @min_uV: Minimum required voltage in uV.
2457  * @max_uV: Maximum required voltage in uV.
2458  *
2459  * Returns a boolean or a negative error code.
2460  */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)2461 int regulator_is_supported_voltage(struct regulator *regulator,
2462 				   int min_uV, int max_uV)
2463 {
2464 	struct regulator_dev *rdev = regulator->rdev;
2465 	int i, voltages, ret;
2466 
2467 	/* If we can't change voltage check the current voltage */
2468 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2469 		ret = regulator_get_voltage(regulator);
2470 		if (ret >= 0)
2471 			return min_uV <= ret && ret <= max_uV;
2472 		else
2473 			return ret;
2474 	}
2475 
2476 	/* Any voltage within constrains range is fine? */
2477 	if (rdev->desc->continuous_voltage_range)
2478 		return min_uV >= rdev->constraints->min_uV &&
2479 				max_uV <= rdev->constraints->max_uV;
2480 
2481 	ret = regulator_count_voltages(regulator);
2482 	if (ret < 0)
2483 		return ret;
2484 	voltages = ret;
2485 
2486 	for (i = 0; i < voltages; i++) {
2487 		ret = regulator_list_voltage(regulator, i);
2488 
2489 		if (ret >= min_uV && ret <= max_uV)
2490 			return 1;
2491 	}
2492 
2493 	return 0;
2494 }
2495 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2496 
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)2497 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2498 				       int min_uV, int max_uV,
2499 				       unsigned *selector)
2500 {
2501 	struct pre_voltage_change_data data;
2502 	int ret;
2503 
2504 	data.old_uV = _regulator_get_voltage(rdev);
2505 	data.min_uV = min_uV;
2506 	data.max_uV = max_uV;
2507 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2508 				   &data);
2509 	if (ret & NOTIFY_STOP_MASK)
2510 		return -EINVAL;
2511 
2512 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2513 	if (ret >= 0)
2514 		return ret;
2515 
2516 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2517 			     (void *)data.old_uV);
2518 
2519 	return ret;
2520 }
2521 
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)2522 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2523 					   int uV, unsigned selector)
2524 {
2525 	struct pre_voltage_change_data data;
2526 	int ret;
2527 
2528 	data.old_uV = _regulator_get_voltage(rdev);
2529 	data.min_uV = uV;
2530 	data.max_uV = uV;
2531 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2532 				   &data);
2533 	if (ret & NOTIFY_STOP_MASK)
2534 		return -EINVAL;
2535 
2536 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2537 	if (ret >= 0)
2538 		return ret;
2539 
2540 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2541 			     (void *)data.old_uV);
2542 
2543 	return ret;
2544 }
2545 
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)2546 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2547 				     int min_uV, int max_uV)
2548 {
2549 	int ret;
2550 	int delay = 0;
2551 	int best_val = 0;
2552 	unsigned int selector;
2553 	int old_selector = -1;
2554 
2555 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2556 
2557 	min_uV += rdev->constraints->uV_offset;
2558 	max_uV += rdev->constraints->uV_offset;
2559 
2560 	/*
2561 	 * If we can't obtain the old selector there is not enough
2562 	 * info to call set_voltage_time_sel().
2563 	 */
2564 	if (_regulator_is_enabled(rdev) &&
2565 	    rdev->desc->ops->set_voltage_time_sel &&
2566 	    rdev->desc->ops->get_voltage_sel) {
2567 		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2568 		if (old_selector < 0)
2569 			return old_selector;
2570 	}
2571 
2572 	if (rdev->desc->ops->set_voltage) {
2573 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2574 						  &selector);
2575 
2576 		if (ret >= 0) {
2577 			if (rdev->desc->ops->list_voltage)
2578 				best_val = rdev->desc->ops->list_voltage(rdev,
2579 									 selector);
2580 			else
2581 				best_val = _regulator_get_voltage(rdev);
2582 		}
2583 
2584 	} else if (rdev->desc->ops->set_voltage_sel) {
2585 		if (rdev->desc->ops->map_voltage) {
2586 			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2587 							   max_uV);
2588 		} else {
2589 			if (rdev->desc->ops->list_voltage ==
2590 			    regulator_list_voltage_linear)
2591 				ret = regulator_map_voltage_linear(rdev,
2592 								min_uV, max_uV);
2593 			else if (rdev->desc->ops->list_voltage ==
2594 				 regulator_list_voltage_linear_range)
2595 				ret = regulator_map_voltage_linear_range(rdev,
2596 								min_uV, max_uV);
2597 			else
2598 				ret = regulator_map_voltage_iterate(rdev,
2599 								min_uV, max_uV);
2600 		}
2601 
2602 		if (ret >= 0) {
2603 			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2604 			if (min_uV <= best_val && max_uV >= best_val) {
2605 				selector = ret;
2606 				if (old_selector == selector)
2607 					ret = 0;
2608 				else
2609 					ret = _regulator_call_set_voltage_sel(
2610 						rdev, best_val, selector);
2611 			} else {
2612 				ret = -EINVAL;
2613 			}
2614 		}
2615 	} else {
2616 		ret = -EINVAL;
2617 	}
2618 
2619 	/* Call set_voltage_time_sel if successfully obtained old_selector */
2620 	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2621 		&& old_selector != selector) {
2622 
2623 		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2624 						old_selector, selector);
2625 		if (delay < 0) {
2626 			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2627 				  delay);
2628 			delay = 0;
2629 		}
2630 
2631 		/* Insert any necessary delays */
2632 		if (delay >= 1000) {
2633 			mdelay(delay / 1000);
2634 			udelay(delay % 1000);
2635 		} else if (delay) {
2636 			udelay(delay);
2637 		}
2638 	}
2639 
2640 	if (ret == 0 && best_val >= 0) {
2641 		unsigned long data = best_val;
2642 
2643 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2644 				     (void *)data);
2645 	}
2646 
2647 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2648 
2649 	return ret;
2650 }
2651 
2652 /**
2653  * regulator_set_voltage - set regulator output voltage
2654  * @regulator: regulator source
2655  * @min_uV: Minimum required voltage in uV
2656  * @max_uV: Maximum acceptable voltage in uV
2657  *
2658  * Sets a voltage regulator to the desired output voltage. This can be set
2659  * during any regulator state. IOW, regulator can be disabled or enabled.
2660  *
2661  * If the regulator is enabled then the voltage will change to the new value
2662  * immediately otherwise if the regulator is disabled the regulator will
2663  * output at the new voltage when enabled.
2664  *
2665  * NOTE: If the regulator is shared between several devices then the lowest
2666  * request voltage that meets the system constraints will be used.
2667  * Regulator system constraints must be set for this regulator before
2668  * calling this function otherwise this call will fail.
2669  */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)2670 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2671 {
2672 	struct regulator_dev *rdev = regulator->rdev;
2673 	int ret = 0;
2674 	int old_min_uV, old_max_uV;
2675 	int current_uV;
2676 
2677 	mutex_lock(&rdev->mutex);
2678 
2679 	/* If we're setting the same range as last time the change
2680 	 * should be a noop (some cpufreq implementations use the same
2681 	 * voltage for multiple frequencies, for example).
2682 	 */
2683 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2684 		goto out;
2685 
2686 	/* If we're trying to set a range that overlaps the current voltage,
2687 	 * return succesfully even though the regulator does not support
2688 	 * changing the voltage.
2689 	 */
2690 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2691 		current_uV = _regulator_get_voltage(rdev);
2692 		if (min_uV <= current_uV && current_uV <= max_uV) {
2693 			regulator->min_uV = min_uV;
2694 			regulator->max_uV = max_uV;
2695 			goto out;
2696 		}
2697 	}
2698 
2699 	/* sanity check */
2700 	if (!rdev->desc->ops->set_voltage &&
2701 	    !rdev->desc->ops->set_voltage_sel) {
2702 		ret = -EINVAL;
2703 		goto out;
2704 	}
2705 
2706 	/* constraints check */
2707 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2708 	if (ret < 0)
2709 		goto out;
2710 
2711 	/* restore original values in case of error */
2712 	old_min_uV = regulator->min_uV;
2713 	old_max_uV = regulator->max_uV;
2714 	regulator->min_uV = min_uV;
2715 	regulator->max_uV = max_uV;
2716 
2717 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2718 	if (ret < 0)
2719 		goto out2;
2720 
2721 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2722 	if (ret < 0)
2723 		goto out2;
2724 
2725 out:
2726 	mutex_unlock(&rdev->mutex);
2727 	return ret;
2728 out2:
2729 	regulator->min_uV = old_min_uV;
2730 	regulator->max_uV = old_max_uV;
2731 	mutex_unlock(&rdev->mutex);
2732 	return ret;
2733 }
2734 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2735 
2736 /**
2737  * regulator_set_voltage_time - get raise/fall time
2738  * @regulator: regulator source
2739  * @old_uV: starting voltage in microvolts
2740  * @new_uV: target voltage in microvolts
2741  *
2742  * Provided with the starting and ending voltage, this function attempts to
2743  * calculate the time in microseconds required to rise or fall to this new
2744  * voltage.
2745  */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)2746 int regulator_set_voltage_time(struct regulator *regulator,
2747 			       int old_uV, int new_uV)
2748 {
2749 	struct regulator_dev *rdev = regulator->rdev;
2750 	const struct regulator_ops *ops = rdev->desc->ops;
2751 	int old_sel = -1;
2752 	int new_sel = -1;
2753 	int voltage;
2754 	int i;
2755 
2756 	/* Currently requires operations to do this */
2757 	if (!ops->list_voltage || !ops->set_voltage_time_sel
2758 	    || !rdev->desc->n_voltages)
2759 		return -EINVAL;
2760 
2761 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2762 		/* We only look for exact voltage matches here */
2763 		voltage = regulator_list_voltage(regulator, i);
2764 		if (voltage < 0)
2765 			return -EINVAL;
2766 		if (voltage == 0)
2767 			continue;
2768 		if (voltage == old_uV)
2769 			old_sel = i;
2770 		if (voltage == new_uV)
2771 			new_sel = i;
2772 	}
2773 
2774 	if (old_sel < 0 || new_sel < 0)
2775 		return -EINVAL;
2776 
2777 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2778 }
2779 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2780 
2781 /**
2782  * regulator_set_voltage_time_sel - get raise/fall time
2783  * @rdev: regulator source device
2784  * @old_selector: selector for starting voltage
2785  * @new_selector: selector for target voltage
2786  *
2787  * Provided with the starting and target voltage selectors, this function
2788  * returns time in microseconds required to rise or fall to this new voltage
2789  *
2790  * Drivers providing ramp_delay in regulation_constraints can use this as their
2791  * set_voltage_time_sel() operation.
2792  */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)2793 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2794 				   unsigned int old_selector,
2795 				   unsigned int new_selector)
2796 {
2797 	unsigned int ramp_delay = 0;
2798 	int old_volt, new_volt;
2799 
2800 	if (rdev->constraints->ramp_delay)
2801 		ramp_delay = rdev->constraints->ramp_delay;
2802 	else if (rdev->desc->ramp_delay)
2803 		ramp_delay = rdev->desc->ramp_delay;
2804 
2805 	if (ramp_delay == 0) {
2806 		rdev_warn(rdev, "ramp_delay not set\n");
2807 		return 0;
2808 	}
2809 
2810 	/* sanity check */
2811 	if (!rdev->desc->ops->list_voltage)
2812 		return -EINVAL;
2813 
2814 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2815 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2816 
2817 	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2818 }
2819 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2820 
2821 /**
2822  * regulator_sync_voltage - re-apply last regulator output voltage
2823  * @regulator: regulator source
2824  *
2825  * Re-apply the last configured voltage.  This is intended to be used
2826  * where some external control source the consumer is cooperating with
2827  * has caused the configured voltage to change.
2828  */
regulator_sync_voltage(struct regulator * regulator)2829 int regulator_sync_voltage(struct regulator *regulator)
2830 {
2831 	struct regulator_dev *rdev = regulator->rdev;
2832 	int ret, min_uV, max_uV;
2833 
2834 	mutex_lock(&rdev->mutex);
2835 
2836 	if (!rdev->desc->ops->set_voltage &&
2837 	    !rdev->desc->ops->set_voltage_sel) {
2838 		ret = -EINVAL;
2839 		goto out;
2840 	}
2841 
2842 	/* This is only going to work if we've had a voltage configured. */
2843 	if (!regulator->min_uV && !regulator->max_uV) {
2844 		ret = -EINVAL;
2845 		goto out;
2846 	}
2847 
2848 	min_uV = regulator->min_uV;
2849 	max_uV = regulator->max_uV;
2850 
2851 	/* This should be a paranoia check... */
2852 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2853 	if (ret < 0)
2854 		goto out;
2855 
2856 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2857 	if (ret < 0)
2858 		goto out;
2859 
2860 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2861 
2862 out:
2863 	mutex_unlock(&rdev->mutex);
2864 	return ret;
2865 }
2866 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2867 
_regulator_get_voltage(struct regulator_dev * rdev)2868 static int _regulator_get_voltage(struct regulator_dev *rdev)
2869 {
2870 	int sel, ret;
2871 
2872 	if (rdev->desc->ops->get_voltage_sel) {
2873 		sel = rdev->desc->ops->get_voltage_sel(rdev);
2874 		if (sel < 0)
2875 			return sel;
2876 		ret = rdev->desc->ops->list_voltage(rdev, sel);
2877 	} else if (rdev->desc->ops->get_voltage) {
2878 		ret = rdev->desc->ops->get_voltage(rdev);
2879 	} else if (rdev->desc->ops->list_voltage) {
2880 		ret = rdev->desc->ops->list_voltage(rdev, 0);
2881 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2882 		ret = rdev->desc->fixed_uV;
2883 	} else if (rdev->supply) {
2884 		ret = regulator_get_voltage(rdev->supply);
2885 	} else {
2886 		return -EINVAL;
2887 	}
2888 
2889 	if (ret < 0)
2890 		return ret;
2891 	return ret - rdev->constraints->uV_offset;
2892 }
2893 
2894 /**
2895  * regulator_get_voltage - get regulator output voltage
2896  * @regulator: regulator source
2897  *
2898  * This returns the current regulator voltage in uV.
2899  *
2900  * NOTE: If the regulator is disabled it will return the voltage value. This
2901  * function should not be used to determine regulator state.
2902  */
regulator_get_voltage(struct regulator * regulator)2903 int regulator_get_voltage(struct regulator *regulator)
2904 {
2905 	int ret;
2906 
2907 	mutex_lock(&regulator->rdev->mutex);
2908 
2909 	ret = _regulator_get_voltage(regulator->rdev);
2910 
2911 	mutex_unlock(&regulator->rdev->mutex);
2912 
2913 	return ret;
2914 }
2915 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2916 
2917 /**
2918  * regulator_set_current_limit - set regulator output current limit
2919  * @regulator: regulator source
2920  * @min_uA: Minimum supported current in uA
2921  * @max_uA: Maximum supported current in uA
2922  *
2923  * Sets current sink to the desired output current. This can be set during
2924  * any regulator state. IOW, regulator can be disabled or enabled.
2925  *
2926  * If the regulator is enabled then the current will change to the new value
2927  * immediately otherwise if the regulator is disabled the regulator will
2928  * output at the new current when enabled.
2929  *
2930  * NOTE: Regulator system constraints must be set for this regulator before
2931  * calling this function otherwise this call will fail.
2932  */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)2933 int regulator_set_current_limit(struct regulator *regulator,
2934 			       int min_uA, int max_uA)
2935 {
2936 	struct regulator_dev *rdev = regulator->rdev;
2937 	int ret;
2938 
2939 	mutex_lock(&rdev->mutex);
2940 
2941 	/* sanity check */
2942 	if (!rdev->desc->ops->set_current_limit) {
2943 		ret = -EINVAL;
2944 		goto out;
2945 	}
2946 
2947 	/* constraints check */
2948 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2949 	if (ret < 0)
2950 		goto out;
2951 
2952 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2953 out:
2954 	mutex_unlock(&rdev->mutex);
2955 	return ret;
2956 }
2957 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2958 
_regulator_get_current_limit(struct regulator_dev * rdev)2959 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2960 {
2961 	int ret;
2962 
2963 	mutex_lock(&rdev->mutex);
2964 
2965 	/* sanity check */
2966 	if (!rdev->desc->ops->get_current_limit) {
2967 		ret = -EINVAL;
2968 		goto out;
2969 	}
2970 
2971 	ret = rdev->desc->ops->get_current_limit(rdev);
2972 out:
2973 	mutex_unlock(&rdev->mutex);
2974 	return ret;
2975 }
2976 
2977 /**
2978  * regulator_get_current_limit - get regulator output current
2979  * @regulator: regulator source
2980  *
2981  * This returns the current supplied by the specified current sink in uA.
2982  *
2983  * NOTE: If the regulator is disabled it will return the current value. This
2984  * function should not be used to determine regulator state.
2985  */
regulator_get_current_limit(struct regulator * regulator)2986 int regulator_get_current_limit(struct regulator *regulator)
2987 {
2988 	return _regulator_get_current_limit(regulator->rdev);
2989 }
2990 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2991 
2992 /**
2993  * regulator_set_mode - set regulator operating mode
2994  * @regulator: regulator source
2995  * @mode: operating mode - one of the REGULATOR_MODE constants
2996  *
2997  * Set regulator operating mode to increase regulator efficiency or improve
2998  * regulation performance.
2999  *
3000  * NOTE: Regulator system constraints must be set for this regulator before
3001  * calling this function otherwise this call will fail.
3002  */
regulator_set_mode(struct regulator * regulator,unsigned int mode)3003 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3004 {
3005 	struct regulator_dev *rdev = regulator->rdev;
3006 	int ret;
3007 	int regulator_curr_mode;
3008 
3009 	mutex_lock(&rdev->mutex);
3010 
3011 	/* sanity check */
3012 	if (!rdev->desc->ops->set_mode) {
3013 		ret = -EINVAL;
3014 		goto out;
3015 	}
3016 
3017 	/* return if the same mode is requested */
3018 	if (rdev->desc->ops->get_mode) {
3019 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3020 		if (regulator_curr_mode == mode) {
3021 			ret = 0;
3022 			goto out;
3023 		}
3024 	}
3025 
3026 	/* constraints check */
3027 	ret = regulator_mode_constrain(rdev, &mode);
3028 	if (ret < 0)
3029 		goto out;
3030 
3031 	ret = rdev->desc->ops->set_mode(rdev, mode);
3032 out:
3033 	mutex_unlock(&rdev->mutex);
3034 	return ret;
3035 }
3036 EXPORT_SYMBOL_GPL(regulator_set_mode);
3037 
_regulator_get_mode(struct regulator_dev * rdev)3038 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3039 {
3040 	int ret;
3041 
3042 	mutex_lock(&rdev->mutex);
3043 
3044 	/* sanity check */
3045 	if (!rdev->desc->ops->get_mode) {
3046 		ret = -EINVAL;
3047 		goto out;
3048 	}
3049 
3050 	ret = rdev->desc->ops->get_mode(rdev);
3051 out:
3052 	mutex_unlock(&rdev->mutex);
3053 	return ret;
3054 }
3055 
3056 /**
3057  * regulator_get_mode - get regulator operating mode
3058  * @regulator: regulator source
3059  *
3060  * Get the current regulator operating mode.
3061  */
regulator_get_mode(struct regulator * regulator)3062 unsigned int regulator_get_mode(struct regulator *regulator)
3063 {
3064 	return _regulator_get_mode(regulator->rdev);
3065 }
3066 EXPORT_SYMBOL_GPL(regulator_get_mode);
3067 
3068 /**
3069  * regulator_set_load - set regulator load
3070  * @regulator: regulator source
3071  * @uA_load: load current
3072  *
3073  * Notifies the regulator core of a new device load. This is then used by
3074  * DRMS (if enabled by constraints) to set the most efficient regulator
3075  * operating mode for the new regulator loading.
3076  *
3077  * Consumer devices notify their supply regulator of the maximum power
3078  * they will require (can be taken from device datasheet in the power
3079  * consumption tables) when they change operational status and hence power
3080  * state. Examples of operational state changes that can affect power
3081  * consumption are :-
3082  *
3083  *    o Device is opened / closed.
3084  *    o Device I/O is about to begin or has just finished.
3085  *    o Device is idling in between work.
3086  *
3087  * This information is also exported via sysfs to userspace.
3088  *
3089  * DRMS will sum the total requested load on the regulator and change
3090  * to the most efficient operating mode if platform constraints allow.
3091  *
3092  * On error a negative errno is returned.
3093  */
regulator_set_load(struct regulator * regulator,int uA_load)3094 int regulator_set_load(struct regulator *regulator, int uA_load)
3095 {
3096 	struct regulator_dev *rdev = regulator->rdev;
3097 	int ret;
3098 
3099 	mutex_lock(&rdev->mutex);
3100 	regulator->uA_load = uA_load;
3101 	ret = drms_uA_update(rdev);
3102 	mutex_unlock(&rdev->mutex);
3103 
3104 	return ret;
3105 }
3106 EXPORT_SYMBOL_GPL(regulator_set_load);
3107 
3108 /**
3109  * regulator_allow_bypass - allow the regulator to go into bypass mode
3110  *
3111  * @regulator: Regulator to configure
3112  * @enable: enable or disable bypass mode
3113  *
3114  * Allow the regulator to go into bypass mode if all other consumers
3115  * for the regulator also enable bypass mode and the machine
3116  * constraints allow this.  Bypass mode means that the regulator is
3117  * simply passing the input directly to the output with no regulation.
3118  */
regulator_allow_bypass(struct regulator * regulator,bool enable)3119 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3120 {
3121 	struct regulator_dev *rdev = regulator->rdev;
3122 	int ret = 0;
3123 
3124 	if (!rdev->desc->ops->set_bypass)
3125 		return 0;
3126 
3127 	if (rdev->constraints &&
3128 	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3129 		return 0;
3130 
3131 	mutex_lock(&rdev->mutex);
3132 
3133 	if (enable && !regulator->bypass) {
3134 		rdev->bypass_count++;
3135 
3136 		if (rdev->bypass_count == rdev->open_count) {
3137 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3138 			if (ret != 0)
3139 				rdev->bypass_count--;
3140 		}
3141 
3142 	} else if (!enable && regulator->bypass) {
3143 		rdev->bypass_count--;
3144 
3145 		if (rdev->bypass_count != rdev->open_count) {
3146 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3147 			if (ret != 0)
3148 				rdev->bypass_count++;
3149 		}
3150 	}
3151 
3152 	if (ret == 0)
3153 		regulator->bypass = enable;
3154 
3155 	mutex_unlock(&rdev->mutex);
3156 
3157 	return ret;
3158 }
3159 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3160 
3161 /**
3162  * regulator_register_notifier - register regulator event notifier
3163  * @regulator: regulator source
3164  * @nb: notifier block
3165  *
3166  * Register notifier block to receive regulator events.
3167  */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)3168 int regulator_register_notifier(struct regulator *regulator,
3169 			      struct notifier_block *nb)
3170 {
3171 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3172 						nb);
3173 }
3174 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3175 
3176 /**
3177  * regulator_unregister_notifier - unregister regulator event notifier
3178  * @regulator: regulator source
3179  * @nb: notifier block
3180  *
3181  * Unregister regulator event notifier block.
3182  */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)3183 int regulator_unregister_notifier(struct regulator *regulator,
3184 				struct notifier_block *nb)
3185 {
3186 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3187 						  nb);
3188 }
3189 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3190 
3191 /* notify regulator consumers and downstream regulator consumers.
3192  * Note mutex must be held by caller.
3193  */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)3194 static int _notifier_call_chain(struct regulator_dev *rdev,
3195 				  unsigned long event, void *data)
3196 {
3197 	/* call rdev chain first */
3198 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3199 }
3200 
3201 /**
3202  * regulator_bulk_get - get multiple regulator consumers
3203  *
3204  * @dev:           Device to supply
3205  * @num_consumers: Number of consumers to register
3206  * @consumers:     Configuration of consumers; clients are stored here.
3207  *
3208  * @return 0 on success, an errno on failure.
3209  *
3210  * This helper function allows drivers to get several regulator
3211  * consumers in one operation.  If any of the regulators cannot be
3212  * acquired then any regulators that were allocated will be freed
3213  * before returning to the caller.
3214  */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)3215 int regulator_bulk_get(struct device *dev, int num_consumers,
3216 		       struct regulator_bulk_data *consumers)
3217 {
3218 	int i;
3219 	int ret;
3220 
3221 	for (i = 0; i < num_consumers; i++)
3222 		consumers[i].consumer = NULL;
3223 
3224 	for (i = 0; i < num_consumers; i++) {
3225 		consumers[i].consumer = regulator_get(dev,
3226 						      consumers[i].supply);
3227 		if (IS_ERR(consumers[i].consumer)) {
3228 			ret = PTR_ERR(consumers[i].consumer);
3229 			dev_err(dev, "Failed to get supply '%s': %d\n",
3230 				consumers[i].supply, ret);
3231 			consumers[i].consumer = NULL;
3232 			goto err;
3233 		}
3234 	}
3235 
3236 	return 0;
3237 
3238 err:
3239 	while (--i >= 0)
3240 		regulator_put(consumers[i].consumer);
3241 
3242 	return ret;
3243 }
3244 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3245 
regulator_bulk_enable_async(void * data,async_cookie_t cookie)3246 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3247 {
3248 	struct regulator_bulk_data *bulk = data;
3249 
3250 	bulk->ret = regulator_enable(bulk->consumer);
3251 }
3252 
3253 /**
3254  * regulator_bulk_enable - enable multiple regulator consumers
3255  *
3256  * @num_consumers: Number of consumers
3257  * @consumers:     Consumer data; clients are stored here.
3258  * @return         0 on success, an errno on failure
3259  *
3260  * This convenience API allows consumers to enable multiple regulator
3261  * clients in a single API call.  If any consumers cannot be enabled
3262  * then any others that were enabled will be disabled again prior to
3263  * return.
3264  */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)3265 int regulator_bulk_enable(int num_consumers,
3266 			  struct regulator_bulk_data *consumers)
3267 {
3268 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3269 	int i;
3270 	int ret = 0;
3271 
3272 	for (i = 0; i < num_consumers; i++) {
3273 		if (consumers[i].consumer->always_on)
3274 			consumers[i].ret = 0;
3275 		else
3276 			async_schedule_domain(regulator_bulk_enable_async,
3277 					      &consumers[i], &async_domain);
3278 	}
3279 
3280 	async_synchronize_full_domain(&async_domain);
3281 
3282 	/* If any consumer failed we need to unwind any that succeeded */
3283 	for (i = 0; i < num_consumers; i++) {
3284 		if (consumers[i].ret != 0) {
3285 			ret = consumers[i].ret;
3286 			goto err;
3287 		}
3288 	}
3289 
3290 	return 0;
3291 
3292 err:
3293 	for (i = 0; i < num_consumers; i++) {
3294 		if (consumers[i].ret < 0)
3295 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3296 			       consumers[i].ret);
3297 		else
3298 			regulator_disable(consumers[i].consumer);
3299 	}
3300 
3301 	return ret;
3302 }
3303 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3304 
3305 /**
3306  * regulator_bulk_disable - disable multiple regulator consumers
3307  *
3308  * @num_consumers: Number of consumers
3309  * @consumers:     Consumer data; clients are stored here.
3310  * @return         0 on success, an errno on failure
3311  *
3312  * This convenience API allows consumers to disable multiple regulator
3313  * clients in a single API call.  If any consumers cannot be disabled
3314  * then any others that were disabled will be enabled again prior to
3315  * return.
3316  */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)3317 int regulator_bulk_disable(int num_consumers,
3318 			   struct regulator_bulk_data *consumers)
3319 {
3320 	int i;
3321 	int ret, r;
3322 
3323 	for (i = num_consumers - 1; i >= 0; --i) {
3324 		ret = regulator_disable(consumers[i].consumer);
3325 		if (ret != 0)
3326 			goto err;
3327 	}
3328 
3329 	return 0;
3330 
3331 err:
3332 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3333 	for (++i; i < num_consumers; ++i) {
3334 		r = regulator_enable(consumers[i].consumer);
3335 		if (r != 0)
3336 			pr_err("Failed to reename %s: %d\n",
3337 			       consumers[i].supply, r);
3338 	}
3339 
3340 	return ret;
3341 }
3342 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3343 
3344 /**
3345  * regulator_bulk_force_disable - force disable multiple regulator consumers
3346  *
3347  * @num_consumers: Number of consumers
3348  * @consumers:     Consumer data; clients are stored here.
3349  * @return         0 on success, an errno on failure
3350  *
3351  * This convenience API allows consumers to forcibly disable multiple regulator
3352  * clients in a single API call.
3353  * NOTE: This should be used for situations when device damage will
3354  * likely occur if the regulators are not disabled (e.g. over temp).
3355  * Although regulator_force_disable function call for some consumers can
3356  * return error numbers, the function is called for all consumers.
3357  */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)3358 int regulator_bulk_force_disable(int num_consumers,
3359 			   struct regulator_bulk_data *consumers)
3360 {
3361 	int i;
3362 	int ret;
3363 
3364 	for (i = 0; i < num_consumers; i++)
3365 		consumers[i].ret =
3366 			    regulator_force_disable(consumers[i].consumer);
3367 
3368 	for (i = 0; i < num_consumers; i++) {
3369 		if (consumers[i].ret != 0) {
3370 			ret = consumers[i].ret;
3371 			goto out;
3372 		}
3373 	}
3374 
3375 	return 0;
3376 out:
3377 	return ret;
3378 }
3379 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3380 
3381 /**
3382  * regulator_bulk_free - free multiple regulator consumers
3383  *
3384  * @num_consumers: Number of consumers
3385  * @consumers:     Consumer data; clients are stored here.
3386  *
3387  * This convenience API allows consumers to free multiple regulator
3388  * clients in a single API call.
3389  */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)3390 void regulator_bulk_free(int num_consumers,
3391 			 struct regulator_bulk_data *consumers)
3392 {
3393 	int i;
3394 
3395 	for (i = 0; i < num_consumers; i++) {
3396 		regulator_put(consumers[i].consumer);
3397 		consumers[i].consumer = NULL;
3398 	}
3399 }
3400 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3401 
3402 /**
3403  * regulator_notifier_call_chain - call regulator event notifier
3404  * @rdev: regulator source
3405  * @event: notifier block
3406  * @data: callback-specific data.
3407  *
3408  * Called by regulator drivers to notify clients a regulator event has
3409  * occurred. We also notify regulator clients downstream.
3410  * Note lock must be held by caller.
3411  */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)3412 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3413 				  unsigned long event, void *data)
3414 {
3415 	_notifier_call_chain(rdev, event, data);
3416 	return NOTIFY_DONE;
3417 
3418 }
3419 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3420 
3421 /**
3422  * regulator_mode_to_status - convert a regulator mode into a status
3423  *
3424  * @mode: Mode to convert
3425  *
3426  * Convert a regulator mode into a status.
3427  */
regulator_mode_to_status(unsigned int mode)3428 int regulator_mode_to_status(unsigned int mode)
3429 {
3430 	switch (mode) {
3431 	case REGULATOR_MODE_FAST:
3432 		return REGULATOR_STATUS_FAST;
3433 	case REGULATOR_MODE_NORMAL:
3434 		return REGULATOR_STATUS_NORMAL;
3435 	case REGULATOR_MODE_IDLE:
3436 		return REGULATOR_STATUS_IDLE;
3437 	case REGULATOR_MODE_STANDBY:
3438 		return REGULATOR_STATUS_STANDBY;
3439 	default:
3440 		return REGULATOR_STATUS_UNDEFINED;
3441 	}
3442 }
3443 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3444 
3445 static struct attribute *regulator_dev_attrs[] = {
3446 	&dev_attr_name.attr,
3447 	&dev_attr_num_users.attr,
3448 	&dev_attr_type.attr,
3449 	&dev_attr_microvolts.attr,
3450 	&dev_attr_microamps.attr,
3451 	&dev_attr_opmode.attr,
3452 	&dev_attr_state.attr,
3453 	&dev_attr_status.attr,
3454 	&dev_attr_bypass.attr,
3455 	&dev_attr_requested_microamps.attr,
3456 	&dev_attr_min_microvolts.attr,
3457 	&dev_attr_max_microvolts.attr,
3458 	&dev_attr_min_microamps.attr,
3459 	&dev_attr_max_microamps.attr,
3460 	&dev_attr_suspend_standby_state.attr,
3461 	&dev_attr_suspend_mem_state.attr,
3462 	&dev_attr_suspend_disk_state.attr,
3463 	&dev_attr_suspend_standby_microvolts.attr,
3464 	&dev_attr_suspend_mem_microvolts.attr,
3465 	&dev_attr_suspend_disk_microvolts.attr,
3466 	&dev_attr_suspend_standby_mode.attr,
3467 	&dev_attr_suspend_mem_mode.attr,
3468 	&dev_attr_suspend_disk_mode.attr,
3469 	NULL
3470 };
3471 
3472 /*
3473  * To avoid cluttering sysfs (and memory) with useless state, only
3474  * create attributes that can be meaningfully displayed.
3475  */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)3476 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3477 					 struct attribute *attr, int idx)
3478 {
3479 	struct device *dev = kobj_to_dev(kobj);
3480 	struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3481 	const struct regulator_ops *ops = rdev->desc->ops;
3482 	umode_t mode = attr->mode;
3483 
3484 	/* these three are always present */
3485 	if (attr == &dev_attr_name.attr ||
3486 	    attr == &dev_attr_num_users.attr ||
3487 	    attr == &dev_attr_type.attr)
3488 		return mode;
3489 
3490 	/* some attributes need specific methods to be displayed */
3491 	if (attr == &dev_attr_microvolts.attr) {
3492 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3493 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3494 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3495 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3496 			return mode;
3497 		return 0;
3498 	}
3499 
3500 	if (attr == &dev_attr_microamps.attr)
3501 		return ops->get_current_limit ? mode : 0;
3502 
3503 	if (attr == &dev_attr_opmode.attr)
3504 		return ops->get_mode ? mode : 0;
3505 
3506 	if (attr == &dev_attr_state.attr)
3507 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3508 
3509 	if (attr == &dev_attr_status.attr)
3510 		return ops->get_status ? mode : 0;
3511 
3512 	if (attr == &dev_attr_bypass.attr)
3513 		return ops->get_bypass ? mode : 0;
3514 
3515 	/* some attributes are type-specific */
3516 	if (attr == &dev_attr_requested_microamps.attr)
3517 		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3518 
3519 	/* constraints need specific supporting methods */
3520 	if (attr == &dev_attr_min_microvolts.attr ||
3521 	    attr == &dev_attr_max_microvolts.attr)
3522 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3523 
3524 	if (attr == &dev_attr_min_microamps.attr ||
3525 	    attr == &dev_attr_max_microamps.attr)
3526 		return ops->set_current_limit ? mode : 0;
3527 
3528 	if (attr == &dev_attr_suspend_standby_state.attr ||
3529 	    attr == &dev_attr_suspend_mem_state.attr ||
3530 	    attr == &dev_attr_suspend_disk_state.attr)
3531 		return mode;
3532 
3533 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3534 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
3535 	    attr == &dev_attr_suspend_disk_microvolts.attr)
3536 		return ops->set_suspend_voltage ? mode : 0;
3537 
3538 	if (attr == &dev_attr_suspend_standby_mode.attr ||
3539 	    attr == &dev_attr_suspend_mem_mode.attr ||
3540 	    attr == &dev_attr_suspend_disk_mode.attr)
3541 		return ops->set_suspend_mode ? mode : 0;
3542 
3543 	return mode;
3544 }
3545 
3546 static const struct attribute_group regulator_dev_group = {
3547 	.attrs = regulator_dev_attrs,
3548 	.is_visible = regulator_attr_is_visible,
3549 };
3550 
3551 static const struct attribute_group *regulator_dev_groups[] = {
3552 	&regulator_dev_group,
3553 	NULL
3554 };
3555 
regulator_dev_release(struct device * dev)3556 static void regulator_dev_release(struct device *dev)
3557 {
3558 	struct regulator_dev *rdev = dev_get_drvdata(dev);
3559 	kfree(rdev);
3560 }
3561 
3562 static struct class regulator_class = {
3563 	.name = "regulator",
3564 	.dev_release = regulator_dev_release,
3565 	.dev_groups = regulator_dev_groups,
3566 };
3567 
rdev_init_debugfs(struct regulator_dev * rdev)3568 static void rdev_init_debugfs(struct regulator_dev *rdev)
3569 {
3570 	struct device *parent = rdev->dev.parent;
3571 	const char *rname = rdev_get_name(rdev);
3572 	char name[NAME_MAX];
3573 
3574 	/* Avoid duplicate debugfs directory names */
3575 	if (parent && rname == rdev->desc->name) {
3576 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3577 			 rname);
3578 		rname = name;
3579 	}
3580 
3581 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3582 	if (!rdev->debugfs) {
3583 		rdev_warn(rdev, "Failed to create debugfs directory\n");
3584 		return;
3585 	}
3586 
3587 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3588 			   &rdev->use_count);
3589 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3590 			   &rdev->open_count);
3591 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3592 			   &rdev->bypass_count);
3593 }
3594 
regulator_register_resolve_supply(struct device * dev,void * data)3595 static int regulator_register_resolve_supply(struct device *dev, void *data)
3596 {
3597 	return regulator_resolve_supply(dev_to_rdev(dev));
3598 }
3599 
3600 /**
3601  * regulator_register - register regulator
3602  * @regulator_desc: regulator to register
3603  * @cfg: runtime configuration for regulator
3604  *
3605  * Called by regulator drivers to register a regulator.
3606  * Returns a valid pointer to struct regulator_dev on success
3607  * or an ERR_PTR() on error.
3608  */
3609 struct regulator_dev *
regulator_register(const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)3610 regulator_register(const struct regulator_desc *regulator_desc,
3611 		   const struct regulator_config *cfg)
3612 {
3613 	const struct regulation_constraints *constraints = NULL;
3614 	const struct regulator_init_data *init_data;
3615 	struct regulator_config *config = NULL;
3616 	static atomic_t regulator_no = ATOMIC_INIT(-1);
3617 	struct regulator_dev *rdev;
3618 	struct device *dev;
3619 	int ret, i;
3620 
3621 	if (regulator_desc == NULL || cfg == NULL)
3622 		return ERR_PTR(-EINVAL);
3623 
3624 	dev = cfg->dev;
3625 	WARN_ON(!dev);
3626 
3627 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3628 		return ERR_PTR(-EINVAL);
3629 
3630 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3631 	    regulator_desc->type != REGULATOR_CURRENT)
3632 		return ERR_PTR(-EINVAL);
3633 
3634 	/* Only one of each should be implemented */
3635 	WARN_ON(regulator_desc->ops->get_voltage &&
3636 		regulator_desc->ops->get_voltage_sel);
3637 	WARN_ON(regulator_desc->ops->set_voltage &&
3638 		regulator_desc->ops->set_voltage_sel);
3639 
3640 	/* If we're using selectors we must implement list_voltage. */
3641 	if (regulator_desc->ops->get_voltage_sel &&
3642 	    !regulator_desc->ops->list_voltage) {
3643 		return ERR_PTR(-EINVAL);
3644 	}
3645 	if (regulator_desc->ops->set_voltage_sel &&
3646 	    !regulator_desc->ops->list_voltage) {
3647 		return ERR_PTR(-EINVAL);
3648 	}
3649 
3650 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3651 	if (rdev == NULL)
3652 		return ERR_PTR(-ENOMEM);
3653 
3654 	/*
3655 	 * Duplicate the config so the driver could override it after
3656 	 * parsing init data.
3657 	 */
3658 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3659 	if (config == NULL) {
3660 		kfree(rdev);
3661 		return ERR_PTR(-ENOMEM);
3662 	}
3663 
3664 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3665 					       &rdev->dev.of_node);
3666 	if (!init_data) {
3667 		init_data = config->init_data;
3668 		rdev->dev.of_node = of_node_get(config->of_node);
3669 	}
3670 
3671 	mutex_lock(&regulator_list_mutex);
3672 
3673 	mutex_init(&rdev->mutex);
3674 	rdev->reg_data = config->driver_data;
3675 	rdev->owner = regulator_desc->owner;
3676 	rdev->desc = regulator_desc;
3677 	if (config->regmap)
3678 		rdev->regmap = config->regmap;
3679 	else if (dev_get_regmap(dev, NULL))
3680 		rdev->regmap = dev_get_regmap(dev, NULL);
3681 	else if (dev->parent)
3682 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3683 	INIT_LIST_HEAD(&rdev->consumer_list);
3684 	INIT_LIST_HEAD(&rdev->list);
3685 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3686 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3687 
3688 	/* preform any regulator specific init */
3689 	if (init_data && init_data->regulator_init) {
3690 		ret = init_data->regulator_init(rdev->reg_data);
3691 		if (ret < 0)
3692 			goto clean;
3693 	}
3694 
3695 	/* register with sysfs */
3696 	rdev->dev.class = &regulator_class;
3697 	rdev->dev.parent = dev;
3698 	dev_set_name(&rdev->dev, "regulator.%lu",
3699 		    (unsigned long) atomic_inc_return(&regulator_no));
3700 	ret = device_register(&rdev->dev);
3701 	if (ret != 0) {
3702 		put_device(&rdev->dev);
3703 		goto clean;
3704 	}
3705 
3706 	dev_set_drvdata(&rdev->dev, rdev);
3707 
3708 	if ((config->ena_gpio || config->ena_gpio_initialized) &&
3709 	    gpio_is_valid(config->ena_gpio)) {
3710 		ret = regulator_ena_gpio_request(rdev, config);
3711 		if (ret != 0) {
3712 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3713 				 config->ena_gpio, ret);
3714 			goto wash;
3715 		}
3716 	}
3717 
3718 	/* set regulator constraints */
3719 	if (init_data)
3720 		constraints = &init_data->constraints;
3721 
3722 	ret = set_machine_constraints(rdev, constraints);
3723 	if (ret < 0)
3724 		goto scrub;
3725 
3726 	if (init_data && init_data->supply_regulator)
3727 		rdev->supply_name = init_data->supply_regulator;
3728 	else if (regulator_desc->supply_name)
3729 		rdev->supply_name = regulator_desc->supply_name;
3730 
3731 	/* add consumers devices */
3732 	if (init_data) {
3733 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3734 			ret = set_consumer_device_supply(rdev,
3735 				init_data->consumer_supplies[i].dev_name,
3736 				init_data->consumer_supplies[i].supply);
3737 			if (ret < 0) {
3738 				dev_err(dev, "Failed to set supply %s\n",
3739 					init_data->consumer_supplies[i].supply);
3740 				goto unset_supplies;
3741 			}
3742 		}
3743 	}
3744 
3745 	list_add(&rdev->list, &regulator_list);
3746 
3747 	rdev_init_debugfs(rdev);
3748 
3749 	/* try to resolve regulators supply since a new one was registered */
3750 	class_for_each_device(&regulator_class, NULL, NULL,
3751 			      regulator_register_resolve_supply);
3752 out:
3753 	mutex_unlock(&regulator_list_mutex);
3754 	kfree(config);
3755 	return rdev;
3756 
3757 unset_supplies:
3758 	unset_regulator_supplies(rdev);
3759 
3760 scrub:
3761 	regulator_ena_gpio_free(rdev);
3762 	kfree(rdev->constraints);
3763 wash:
3764 	device_unregister(&rdev->dev);
3765 	/* device core frees rdev */
3766 	rdev = ERR_PTR(ret);
3767 	goto out;
3768 
3769 clean:
3770 	kfree(rdev);
3771 	rdev = ERR_PTR(ret);
3772 	goto out;
3773 }
3774 EXPORT_SYMBOL_GPL(regulator_register);
3775 
3776 /**
3777  * regulator_unregister - unregister regulator
3778  * @rdev: regulator to unregister
3779  *
3780  * Called by regulator drivers to unregister a regulator.
3781  */
regulator_unregister(struct regulator_dev * rdev)3782 void regulator_unregister(struct regulator_dev *rdev)
3783 {
3784 	if (rdev == NULL)
3785 		return;
3786 
3787 	if (rdev->supply) {
3788 		while (rdev->use_count--)
3789 			regulator_disable(rdev->supply);
3790 		regulator_put(rdev->supply);
3791 	}
3792 	mutex_lock(&regulator_list_mutex);
3793 	debugfs_remove_recursive(rdev->debugfs);
3794 	flush_work(&rdev->disable_work.work);
3795 	WARN_ON(rdev->open_count);
3796 	unset_regulator_supplies(rdev);
3797 	list_del(&rdev->list);
3798 	kfree(rdev->constraints);
3799 	regulator_ena_gpio_free(rdev);
3800 	of_node_put(rdev->dev.of_node);
3801 	device_unregister(&rdev->dev);
3802 	mutex_unlock(&regulator_list_mutex);
3803 }
3804 EXPORT_SYMBOL_GPL(regulator_unregister);
3805 
3806 /**
3807  * regulator_suspend_prepare - prepare regulators for system wide suspend
3808  * @state: system suspend state
3809  *
3810  * Configure each regulator with it's suspend operating parameters for state.
3811  * This will usually be called by machine suspend code prior to supending.
3812  */
regulator_suspend_prepare(suspend_state_t state)3813 int regulator_suspend_prepare(suspend_state_t state)
3814 {
3815 	struct regulator_dev *rdev;
3816 	int ret = 0;
3817 
3818 	/* ON is handled by regulator active state */
3819 	if (state == PM_SUSPEND_ON)
3820 		return -EINVAL;
3821 
3822 	mutex_lock(&regulator_list_mutex);
3823 	list_for_each_entry(rdev, &regulator_list, list) {
3824 
3825 		mutex_lock(&rdev->mutex);
3826 		ret = suspend_prepare(rdev, state);
3827 		mutex_unlock(&rdev->mutex);
3828 
3829 		if (ret < 0) {
3830 			rdev_err(rdev, "failed to prepare\n");
3831 			goto out;
3832 		}
3833 	}
3834 out:
3835 	mutex_unlock(&regulator_list_mutex);
3836 	return ret;
3837 }
3838 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3839 
3840 /**
3841  * regulator_suspend_finish - resume regulators from system wide suspend
3842  *
3843  * Turn on regulators that might be turned off by regulator_suspend_prepare
3844  * and that should be turned on according to the regulators properties.
3845  */
regulator_suspend_finish(void)3846 int regulator_suspend_finish(void)
3847 {
3848 	struct regulator_dev *rdev;
3849 	int ret = 0, error;
3850 
3851 	mutex_lock(&regulator_list_mutex);
3852 	list_for_each_entry(rdev, &regulator_list, list) {
3853 		mutex_lock(&rdev->mutex);
3854 		if (rdev->use_count > 0  || rdev->constraints->always_on) {
3855 			if (!_regulator_is_enabled(rdev)) {
3856 				error = _regulator_do_enable(rdev);
3857 				if (error)
3858 					ret = error;
3859 			}
3860 		} else {
3861 			if (!have_full_constraints())
3862 				goto unlock;
3863 			if (!_regulator_is_enabled(rdev))
3864 				goto unlock;
3865 
3866 			error = _regulator_do_disable(rdev);
3867 			if (error)
3868 				ret = error;
3869 		}
3870 unlock:
3871 		mutex_unlock(&rdev->mutex);
3872 	}
3873 	mutex_unlock(&regulator_list_mutex);
3874 	return ret;
3875 }
3876 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3877 
3878 /**
3879  * regulator_has_full_constraints - the system has fully specified constraints
3880  *
3881  * Calling this function will cause the regulator API to disable all
3882  * regulators which have a zero use count and don't have an always_on
3883  * constraint in a late_initcall.
3884  *
3885  * The intention is that this will become the default behaviour in a
3886  * future kernel release so users are encouraged to use this facility
3887  * now.
3888  */
regulator_has_full_constraints(void)3889 void regulator_has_full_constraints(void)
3890 {
3891 	has_full_constraints = 1;
3892 }
3893 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3894 
3895 /**
3896  * rdev_get_drvdata - get rdev regulator driver data
3897  * @rdev: regulator
3898  *
3899  * Get rdev regulator driver private data. This call can be used in the
3900  * regulator driver context.
3901  */
rdev_get_drvdata(struct regulator_dev * rdev)3902 void *rdev_get_drvdata(struct regulator_dev *rdev)
3903 {
3904 	return rdev->reg_data;
3905 }
3906 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3907 
3908 /**
3909  * regulator_get_drvdata - get regulator driver data
3910  * @regulator: regulator
3911  *
3912  * Get regulator driver private data. This call can be used in the consumer
3913  * driver context when non API regulator specific functions need to be called.
3914  */
regulator_get_drvdata(struct regulator * regulator)3915 void *regulator_get_drvdata(struct regulator *regulator)
3916 {
3917 	return regulator->rdev->reg_data;
3918 }
3919 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3920 
3921 /**
3922  * regulator_set_drvdata - set regulator driver data
3923  * @regulator: regulator
3924  * @data: data
3925  */
regulator_set_drvdata(struct regulator * regulator,void * data)3926 void regulator_set_drvdata(struct regulator *regulator, void *data)
3927 {
3928 	regulator->rdev->reg_data = data;
3929 }
3930 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3931 
3932 /**
3933  * regulator_get_id - get regulator ID
3934  * @rdev: regulator
3935  */
rdev_get_id(struct regulator_dev * rdev)3936 int rdev_get_id(struct regulator_dev *rdev)
3937 {
3938 	return rdev->desc->id;
3939 }
3940 EXPORT_SYMBOL_GPL(rdev_get_id);
3941 
rdev_get_dev(struct regulator_dev * rdev)3942 struct device *rdev_get_dev(struct regulator_dev *rdev)
3943 {
3944 	return &rdev->dev;
3945 }
3946 EXPORT_SYMBOL_GPL(rdev_get_dev);
3947 
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)3948 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3949 {
3950 	return reg_init_data->driver_data;
3951 }
3952 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3953 
3954 #ifdef CONFIG_DEBUG_FS
supply_map_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)3955 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3956 				    size_t count, loff_t *ppos)
3957 {
3958 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3959 	ssize_t len, ret = 0;
3960 	struct regulator_map *map;
3961 
3962 	if (!buf)
3963 		return -ENOMEM;
3964 
3965 	list_for_each_entry(map, &regulator_map_list, list) {
3966 		len = snprintf(buf + ret, PAGE_SIZE - ret,
3967 			       "%s -> %s.%s\n",
3968 			       rdev_get_name(map->regulator), map->dev_name,
3969 			       map->supply);
3970 		if (len >= 0)
3971 			ret += len;
3972 		if (ret > PAGE_SIZE) {
3973 			ret = PAGE_SIZE;
3974 			break;
3975 		}
3976 	}
3977 
3978 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3979 
3980 	kfree(buf);
3981 
3982 	return ret;
3983 }
3984 #endif
3985 
3986 static const struct file_operations supply_map_fops = {
3987 #ifdef CONFIG_DEBUG_FS
3988 	.read = supply_map_read_file,
3989 	.llseek = default_llseek,
3990 #endif
3991 };
3992 
3993 #ifdef CONFIG_DEBUG_FS
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)3994 static void regulator_summary_show_subtree(struct seq_file *s,
3995 					   struct regulator_dev *rdev,
3996 					   int level)
3997 {
3998 	struct list_head *list = s->private;
3999 	struct regulator_dev *child;
4000 	struct regulation_constraints *c;
4001 	struct regulator *consumer;
4002 
4003 	if (!rdev)
4004 		return;
4005 
4006 	seq_printf(s, "%*s%-*s %3d %4d %6d ",
4007 		   level * 3 + 1, "",
4008 		   30 - level * 3, rdev_get_name(rdev),
4009 		   rdev->use_count, rdev->open_count, rdev->bypass_count);
4010 
4011 	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4012 	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4013 
4014 	c = rdev->constraints;
4015 	if (c) {
4016 		switch (rdev->desc->type) {
4017 		case REGULATOR_VOLTAGE:
4018 			seq_printf(s, "%5dmV %5dmV ",
4019 				   c->min_uV / 1000, c->max_uV / 1000);
4020 			break;
4021 		case REGULATOR_CURRENT:
4022 			seq_printf(s, "%5dmA %5dmA ",
4023 				   c->min_uA / 1000, c->max_uA / 1000);
4024 			break;
4025 		}
4026 	}
4027 
4028 	seq_puts(s, "\n");
4029 
4030 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4031 		if (consumer->dev->class == &regulator_class)
4032 			continue;
4033 
4034 		seq_printf(s, "%*s%-*s ",
4035 			   (level + 1) * 3 + 1, "",
4036 			   30 - (level + 1) * 3, dev_name(consumer->dev));
4037 
4038 		switch (rdev->desc->type) {
4039 		case REGULATOR_VOLTAGE:
4040 			seq_printf(s, "%37dmV %5dmV",
4041 				   consumer->min_uV / 1000,
4042 				   consumer->max_uV / 1000);
4043 			break;
4044 		case REGULATOR_CURRENT:
4045 			break;
4046 		}
4047 
4048 		seq_puts(s, "\n");
4049 	}
4050 
4051 	list_for_each_entry(child, list, list) {
4052 		/* handle only non-root regulators supplied by current rdev */
4053 		if (!child->supply || child->supply->rdev != rdev)
4054 			continue;
4055 
4056 		regulator_summary_show_subtree(s, child, level + 1);
4057 	}
4058 }
4059 
regulator_summary_show(struct seq_file * s,void * data)4060 static int regulator_summary_show(struct seq_file *s, void *data)
4061 {
4062 	struct list_head *list = s->private;
4063 	struct regulator_dev *rdev;
4064 
4065 	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4066 	seq_puts(s, "-------------------------------------------------------------------------------\n");
4067 
4068 	mutex_lock(&regulator_list_mutex);
4069 
4070 	list_for_each_entry(rdev, list, list) {
4071 		if (rdev->supply)
4072 			continue;
4073 
4074 		regulator_summary_show_subtree(s, rdev, 0);
4075 	}
4076 
4077 	mutex_unlock(&regulator_list_mutex);
4078 
4079 	return 0;
4080 }
4081 
regulator_summary_open(struct inode * inode,struct file * file)4082 static int regulator_summary_open(struct inode *inode, struct file *file)
4083 {
4084 	return single_open(file, regulator_summary_show, inode->i_private);
4085 }
4086 #endif
4087 
4088 static const struct file_operations regulator_summary_fops = {
4089 #ifdef CONFIG_DEBUG_FS
4090 	.open		= regulator_summary_open,
4091 	.read		= seq_read,
4092 	.llseek		= seq_lseek,
4093 	.release	= single_release,
4094 #endif
4095 };
4096 
regulator_init(void)4097 static int __init regulator_init(void)
4098 {
4099 	int ret;
4100 
4101 	ret = class_register(&regulator_class);
4102 
4103 	debugfs_root = debugfs_create_dir("regulator", NULL);
4104 	if (!debugfs_root)
4105 		pr_warn("regulator: Failed to create debugfs directory\n");
4106 
4107 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4108 			    &supply_map_fops);
4109 
4110 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4111 			    &regulator_list, &regulator_summary_fops);
4112 
4113 	regulator_dummy_init();
4114 
4115 	return ret;
4116 }
4117 
4118 /* init early to allow our consumers to complete system booting */
4119 core_initcall(regulator_init);
4120 
regulator_late_cleanup(struct device * dev,void * data)4121 static int __init regulator_late_cleanup(struct device *dev, void *data)
4122 {
4123 	struct regulator_dev *rdev = dev_to_rdev(dev);
4124 	const struct regulator_ops *ops = rdev->desc->ops;
4125 	struct regulation_constraints *c = rdev->constraints;
4126 	int enabled, ret;
4127 
4128 	if (c && c->always_on)
4129 		return 0;
4130 
4131 	if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4132 		return 0;
4133 
4134 	mutex_lock(&rdev->mutex);
4135 
4136 	if (rdev->use_count)
4137 		goto unlock;
4138 
4139 	/* If we can't read the status assume it's on. */
4140 	if (ops->is_enabled)
4141 		enabled = ops->is_enabled(rdev);
4142 	else
4143 		enabled = 1;
4144 
4145 	if (!enabled)
4146 		goto unlock;
4147 
4148 	if (have_full_constraints()) {
4149 		/* We log since this may kill the system if it goes
4150 		 * wrong. */
4151 		rdev_info(rdev, "disabling\n");
4152 		ret = _regulator_do_disable(rdev);
4153 		if (ret != 0)
4154 			rdev_err(rdev, "couldn't disable: %d\n", ret);
4155 	} else {
4156 		/* The intention is that in future we will
4157 		 * assume that full constraints are provided
4158 		 * so warn even if we aren't going to do
4159 		 * anything here.
4160 		 */
4161 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4162 	}
4163 
4164 unlock:
4165 	mutex_unlock(&rdev->mutex);
4166 
4167 	return 0;
4168 }
4169 
regulator_init_complete(void)4170 static int __init regulator_init_complete(void)
4171 {
4172 	/*
4173 	 * Since DT doesn't provide an idiomatic mechanism for
4174 	 * enabling full constraints and since it's much more natural
4175 	 * with DT to provide them just assume that a DT enabled
4176 	 * system has full constraints.
4177 	 */
4178 	if (of_have_populated_dt())
4179 		has_full_constraints = true;
4180 
4181 	/* If we have a full configuration then disable any regulators
4182 	 * we have permission to change the status for and which are
4183 	 * not in use or always_on.  This is effectively the default
4184 	 * for DT and ACPI as they have full constraints.
4185 	 */
4186 	class_for_each_device(&regulator_class, NULL, NULL,
4187 			      regulator_late_cleanup);
4188 
4189 	return 0;
4190 }
4191 late_initcall_sync(regulator_init_complete);
4192