1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  */
36 /*
37  * This file is part of Lustre, http://www.lustre.org/
38  * Lustre is a trademark of Sun Microsystems, Inc.
39  *
40  * Internal interfaces of LOV layer.
41  *
42  *   Author: Nikita Danilov <nikita.danilov@sun.com>
43  *   Author: Jinshan Xiong <jinshan.xiong@intel.com>
44  */
45 
46 #ifndef LOV_CL_INTERNAL_H
47 #define LOV_CL_INTERNAL_H
48 
49 #include "../../include/linux/libcfs/libcfs.h"
50 
51 #include "../include/obd.h"
52 #include "../include/cl_object.h"
53 #include "lov_internal.h"
54 
55 /** \defgroup lov lov
56  * Logical object volume layer. This layer implements data striping (raid0).
57  *
58  * At the lov layer top-entity (object, page, lock, io) is connected to one or
59  * more sub-entities: top-object, representing a file is connected to a set of
60  * sub-objects, each representing a stripe, file-level top-lock is connected
61  * to a set of per-stripe sub-locks, top-page is connected to a (single)
62  * sub-page, and a top-level IO is connected to a set of (potentially
63  * concurrent) sub-IO's.
64  *
65  * Sub-object, sub-page, and sub-io have well-defined top-object and top-page
66  * respectively, while a single sub-lock can be part of multiple top-locks.
67  *
68  * Reference counting models are different for different types of entities:
69  *
70  *     - top-object keeps a reference to its sub-objects, and destroys them
71  *       when it is destroyed.
72  *
73  *     - top-page keeps a reference to its sub-page, and destroys it when it
74  *       is destroyed.
75  *
76  *     - sub-lock keep a reference to its top-locks. Top-lock keeps a
77  *       reference (and a hold, see cl_lock_hold()) on its sub-locks when it
78  *       actively using them (that is, in cl_lock_state::CLS_QUEUING,
79  *       cl_lock_state::CLS_ENQUEUED, cl_lock_state::CLS_HELD states). When
80  *       moving into cl_lock_state::CLS_CACHED state, top-lock releases a
81  *       hold. From this moment top-lock has only a 'weak' reference to its
82  *       sub-locks. This reference is protected by top-lock
83  *       cl_lock::cll_guard, and will be automatically cleared by the sub-lock
84  *       when the latter is destroyed. When a sub-lock is canceled, a
85  *       reference to it is removed from the top-lock array, and top-lock is
86  *       moved into CLS_NEW state. It is guaranteed that all sub-locks exist
87  *       while their top-lock is in CLS_HELD or CLS_CACHED states.
88  *
89  *     - IO's are not reference counted.
90  *
91  * To implement a connection between top and sub entities, lov layer is split
92  * into two pieces: lov ("upper half"), and lovsub ("bottom half"), both
93  * implementing full set of cl-interfaces. For example, top-object has vvp and
94  * lov layers, and it's sub-object has lovsub and osc layers. lovsub layer is
95  * used to track child-parent relationship.
96  *
97  * @{
98  */
99 
100 struct lovsub_device;
101 struct lovsub_object;
102 struct lovsub_lock;
103 
104 enum lov_device_flags {
105 	LOV_DEV_INITIALIZED = 1 << 0
106 };
107 
108 /*
109  * Upper half.
110  */
111 
112 /**
113  * Resources that are used in memory-cleaning path, and whose allocation
114  * cannot fail even when memory is tight. They are preallocated in sufficient
115  * quantities in lov_device::ld_emerg[], and access to them is serialized
116  * lov_device::ld_mutex.
117  */
118 struct lov_device_emerg {
119 	/**
120 	 * Page list used to submit IO when memory is in pressure.
121 	 */
122 	struct cl_page_list emrg_page_list;
123 	/**
124 	 * sub-io's shared by all threads accessing this device when memory is
125 	 * too low to allocate sub-io's dynamically.
126 	 */
127 	struct cl_io	emrg_subio;
128 	/**
129 	 * Environments used by sub-io's in
130 	 * lov_device_emerg::emrg_subio.
131 	 */
132 	struct lu_env      *emrg_env;
133 	/**
134 	 * Refchecks for lov_device_emerg::emrg_env.
135 	 *
136 	 * \see cl_env_get()
137 	 */
138 	int		 emrg_refcheck;
139 };
140 
141 struct lov_device {
142 	/*
143 	 * XXX Locking of lov-private data is missing.
144 	 */
145 	struct cl_device	  ld_cl;
146 	struct lov_obd	   *ld_lov;
147 	/** size of lov_device::ld_target[] array */
148 	__u32		     ld_target_nr;
149 	struct lovsub_device    **ld_target;
150 	__u32		     ld_flags;
151 
152 	/** Emergency resources used in memory-cleansing paths. */
153 	struct lov_device_emerg **ld_emrg;
154 	/**
155 	 * Serializes access to lov_device::ld_emrg in low-memory
156 	 * conditions.
157 	 */
158 	struct mutex		  ld_mutex;
159 };
160 
161 /**
162  * Layout type.
163  */
164 enum lov_layout_type {
165 	LLT_EMPTY,	/** empty file without body (mknod + truncate) */
166 	LLT_RAID0,	/** striped file */
167 	LLT_RELEASED,	/** file with no objects (data in HSM) */
168 	LLT_NR
169 };
170 
llt2str(enum lov_layout_type llt)171 static inline char *llt2str(enum lov_layout_type llt)
172 {
173 	switch (llt) {
174 	case LLT_EMPTY:
175 		return "EMPTY";
176 	case LLT_RAID0:
177 		return "RAID0";
178 	case LLT_RELEASED:
179 		return "RELEASED";
180 	case LLT_NR:
181 		LBUG();
182 	}
183 	LBUG();
184 	return "";
185 }
186 
187 /**
188  * lov-specific file state.
189  *
190  * lov object has particular layout type, determining how top-object is built
191  * on top of sub-objects. Layout type can change dynamically. When this
192  * happens, lov_object::lo_type_guard semaphore is taken in exclusive mode,
193  * all state pertaining to the old layout type is destroyed, and new state is
194  * constructed. All object methods take said semaphore in the shared mode,
195  * providing serialization against transition between layout types.
196  *
197  * To avoid multiple `if' or `switch' statements, selecting behavior for the
198  * current layout type, object methods perform double-dispatch, invoking
199  * function corresponding to the current layout type.
200  */
201 struct lov_object {
202 	struct cl_object       lo_cl;
203 	/**
204 	 * Serializes object operations with transitions between layout types.
205 	 *
206 	 * This semaphore is taken in shared mode by all object methods, and
207 	 * is taken in exclusive mode when object type is changed.
208 	 *
209 	 * \see lov_object::lo_type
210 	 */
211 	struct rw_semaphore	lo_type_guard;
212 	/**
213 	 * Type of an object. Protected by lov_object::lo_type_guard.
214 	 */
215 	enum lov_layout_type	lo_type;
216 	/**
217 	 * True if layout is invalid. This bit is cleared when layout lock
218 	 * is lost.
219 	 */
220 	bool			lo_layout_invalid;
221 	/**
222 	 * How many IOs are on going on this object. Layout can be changed
223 	 * only if there is no active IO.
224 	 */
225 	atomic_t	       lo_active_ios;
226 	/**
227 	 * Waitq - wait for no one else is using lo_lsm
228 	 */
229 	wait_queue_head_t	       lo_waitq;
230 	/**
231 	 * Layout metadata. NULL if empty layout.
232 	 */
233 	struct lov_stripe_md  *lo_lsm;
234 
235 	union lov_layout_state {
236 		struct lov_layout_raid0 {
237 			unsigned	       lo_nr;
238 			/**
239 			 * When this is true, lov_object::lo_attr contains
240 			 * valid up to date attributes for a top-level
241 			 * object. This field is reset to 0 when attributes of
242 			 * any sub-object change.
243 			 */
244 			int		       lo_attr_valid;
245 			/**
246 			 * Array of sub-objects. Allocated when top-object is
247 			 * created (lov_init_raid0()).
248 			 *
249 			 * Top-object is a strict master of its sub-objects:
250 			 * it is created before them, and outlives its
251 			 * children (this later is necessary so that basic
252 			 * functions like cl_object_top() always
253 			 * work). Top-object keeps a reference on every
254 			 * sub-object.
255 			 *
256 			 * When top-object is destroyed (lov_delete_raid0())
257 			 * it releases its reference to a sub-object and waits
258 			 * until the latter is finally destroyed.
259 			 */
260 			struct lovsub_object **lo_sub;
261 			/**
262 			 * protect lo_sub
263 			 */
264 			spinlock_t		lo_sub_lock;
265 			/**
266 			 * Cached object attribute, built from sub-object
267 			 * attributes.
268 			 */
269 			struct cl_attr	 lo_attr;
270 		} raid0;
271 		struct lov_layout_state_empty {
272 		} empty;
273 		struct lov_layout_state_released {
274 		} released;
275 	} u;
276 	/**
277 	 * Thread that acquired lov_object::lo_type_guard in an exclusive
278 	 * mode.
279 	 */
280 	struct task_struct	*lo_owner;
281 };
282 
283 /**
284  * Flags that top-lock can set on each of its sub-locks.
285  */
286 enum lov_sub_flags {
287 	/** Top-lock acquired a hold (cl_lock_hold()) on a sub-lock. */
288 	LSF_HELD = 1 << 0
289 };
290 
291 /**
292  * State lov_lock keeps for each sub-lock.
293  */
294 struct lov_lock_sub {
295 	/** sub-lock itself */
296 	struct lovsub_lock  *sub_lock;
297 	/** An array of per-sub-lock flags, taken from enum lov_sub_flags */
298 	unsigned	     sub_flags;
299 	int		  sub_stripe;
300 	struct cl_lock_descr sub_descr;
301 	struct cl_lock_descr sub_got;
302 };
303 
304 /**
305  * lov-specific lock state.
306  */
307 struct lov_lock {
308 	struct cl_lock_slice   lls_cl;
309 	/** Number of sub-locks in this lock */
310 	int		    lls_nr;
311 	/**
312 	 * Number of existing sub-locks.
313 	 */
314 	unsigned	       lls_nr_filled;
315 	/**
316 	 * Set when sub-lock was canceled, while top-lock was being
317 	 * used, or unused.
318 	 */
319 	unsigned int	       lls_cancel_race:1;
320 	/**
321 	 * An array of sub-locks
322 	 *
323 	 * There are two issues with managing sub-locks:
324 	 *
325 	 *     - sub-locks are concurrently canceled, and
326 	 *
327 	 *     - sub-locks are shared with other top-locks.
328 	 *
329 	 * To manage cancellation, top-lock acquires a hold on a sublock
330 	 * (lov_sublock_adopt()) when the latter is inserted into
331 	 * lov_lock::lls_sub[]. This hold is released (lov_sublock_release())
332 	 * when top-lock is going into CLS_CACHED state or destroyed. Hold
333 	 * prevents sub-lock from cancellation.
334 	 *
335 	 * Sub-lock sharing means, among other things, that top-lock that is
336 	 * in the process of creation (i.e., not yet inserted into lock list)
337 	 * is already accessible to other threads once at least one of its
338 	 * sub-locks is created, see lov_lock_sub_init().
339 	 *
340 	 * Sub-lock can be in one of the following states:
341 	 *
342 	 *     - doesn't exist, lov_lock::lls_sub[]::sub_lock == NULL. Such
343 	 *       sub-lock was either never created (top-lock is in CLS_NEW
344 	 *       state), or it was created, then canceled, then destroyed
345 	 *       (lov_lock_unlink() cleared sub-lock pointer in the top-lock).
346 	 *
347 	 *     - sub-lock exists and is on
348 	 *       hold. (lov_lock::lls_sub[]::sub_flags & LSF_HELD). This is a
349 	 *       normal state of a sub-lock in CLS_HELD and CLS_CACHED states
350 	 *       of a top-lock.
351 	 *
352 	 *     - sub-lock exists, but is not held by the top-lock. This
353 	 *       happens after top-lock released a hold on sub-locks before
354 	 *       going into cache (lov_lock_unuse()).
355 	 *
356 	 * \todo To support wide-striping, array has to be replaced with a set
357 	 * of queues to avoid scanning.
358 	 */
359 	struct lov_lock_sub   *lls_sub;
360 	/**
361 	 * Original description with which lock was enqueued.
362 	 */
363 	struct cl_lock_descr   lls_orig;
364 };
365 
366 struct lov_page {
367 	struct cl_page_slice lps_cl;
368 	int		  lps_invalid;
369 };
370 
371 /*
372  * Bottom half.
373  */
374 
375 struct lovsub_device {
376 	struct cl_device   acid_cl;
377 	struct lov_device *acid_super;
378 	int		acid_idx;
379 	struct cl_device  *acid_next;
380 };
381 
382 struct lovsub_object {
383 	struct cl_object_header lso_header;
384 	struct cl_object	lso_cl;
385 	struct lov_object      *lso_super;
386 	int		     lso_index;
387 };
388 
389 /**
390  * A link between a top-lock and a sub-lock. Separate data-structure is
391  * necessary, because top-locks and sub-locks are in M:N relationship.
392  *
393  * \todo This can be optimized for a (by far) most frequent case of a single
394  * top-lock per sub-lock.
395  */
396 struct lov_lock_link {
397 	struct lov_lock *lll_super;
398 	/** An index within parent lock. */
399 	int	      lll_idx;
400 	/**
401 	 * A linkage into per sub-lock list of all corresponding top-locks,
402 	 * hanging off lovsub_lock::lss_parents.
403 	 */
404 	struct list_head       lll_list;
405 };
406 
407 /**
408  * Lock state at lovsub layer.
409  */
410 struct lovsub_lock {
411 	struct cl_lock_slice  lss_cl;
412 	/**
413 	 * List of top-locks that have given sub-lock as their part. Protected
414 	 * by cl_lock::cll_guard mutex.
415 	 */
416 	struct list_head	    lss_parents;
417 	/**
418 	 * Top-lock that initiated current operation on this sub-lock. This is
419 	 * only set during top-to-bottom lock operations like enqueue, and is
420 	 * used to optimize state change notification. Protected by
421 	 * cl_lock::cll_guard mutex.
422 	 *
423 	 * \see lovsub_lock_state_one().
424 	 */
425 	struct cl_lock       *lss_active;
426 };
427 
428 /**
429  * Describe the environment settings for sublocks.
430  */
431 struct lov_sublock_env {
432 	const struct lu_env *lse_env;
433 	struct cl_io	*lse_io;
434 	struct lov_io_sub   *lse_sub;
435 };
436 
437 struct lovsub_page {
438 	struct cl_page_slice lsb_cl;
439 };
440 
441 struct lov_thread_info {
442 	struct cl_object_conf   lti_stripe_conf;
443 	struct lu_fid	   lti_fid;
444 	struct cl_lock_descr    lti_ldescr;
445 	struct ost_lvb	  lti_lvb;
446 	struct cl_2queue	lti_cl2q;
447 	struct cl_lock_closure  lti_closure;
448 	wait_queue_t	  lti_waiter;
449 };
450 
451 /**
452  * State that lov_io maintains for every sub-io.
453  */
454 struct lov_io_sub {
455 	int		  sub_stripe;
456 	/**
457 	 * sub-io for a stripe. Ideally sub-io's can be stopped and resumed
458 	 * independently, with lov acting as a scheduler to maximize overall
459 	 * throughput.
460 	 */
461 	struct cl_io	*sub_io;
462 	/**
463 	 * Linkage into a list (hanging off lov_io::lis_active) of all
464 	 * sub-io's active for the current IO iteration.
465 	 */
466 	struct list_head	   sub_linkage;
467 	/**
468 	 * true, iff cl_io_init() was successfully executed against
469 	 * lov_io_sub::sub_io.
470 	 */
471 	int		  sub_io_initialized;
472 	/**
473 	 * True, iff lov_io_sub::sub_io and lov_io_sub::sub_env weren't
474 	 * allocated, but borrowed from a per-device emergency pool.
475 	 */
476 	int		  sub_borrowed;
477 	/**
478 	 * environment, in which sub-io executes.
479 	 */
480 	struct lu_env *sub_env;
481 	/**
482 	 * environment's refcheck.
483 	 *
484 	 * \see cl_env_get()
485 	 */
486 	int		  sub_refcheck;
487 	int		  sub_refcheck2;
488 	int		  sub_reenter;
489 	void		*sub_cookie;
490 };
491 
492 /**
493  * IO state private for LOV.
494  */
495 struct lov_io {
496 	/** super-class */
497 	struct cl_io_slice lis_cl;
498 	/**
499 	 * Pointer to the object slice. This is a duplicate of
500 	 * lov_io::lis_cl::cis_object.
501 	 */
502 	struct lov_object *lis_object;
503 	/**
504 	 * Original end-of-io position for this IO, set by the upper layer as
505 	 * cl_io::u::ci_rw::pos + cl_io::u::ci_rw::count. lov remembers this,
506 	 * changes pos and count to fit IO into a single stripe and uses saved
507 	 * value to determine when IO iterations have to stop.
508 	 *
509 	 * This is used only for CIT_READ and CIT_WRITE io's.
510 	 */
511 	loff_t	     lis_io_endpos;
512 
513 	/**
514 	 * starting position within a file, for the current io loop iteration
515 	 * (stripe), used by ci_io_loop().
516 	 */
517 	u64	    lis_pos;
518 	/**
519 	 * end position with in a file, for the current stripe io. This is
520 	 * exclusive (i.e., next offset after last byte affected by io).
521 	 */
522 	u64	    lis_endpos;
523 
524 	int		lis_mem_frozen;
525 	int		lis_stripe_count;
526 	int		lis_active_subios;
527 
528 	/**
529 	 * the index of ls_single_subio in ls_subios array
530 	 */
531 	int		lis_single_subio_index;
532 	struct cl_io       lis_single_subio;
533 
534 	/**
535 	 * size of ls_subios array, actually the highest stripe #
536 	 */
537 	int		lis_nr_subios;
538 	struct lov_io_sub *lis_subs;
539 	/**
540 	 * List of active sub-io's.
541 	 */
542 	struct list_head	 lis_active;
543 };
544 
545 struct lov_session {
546 	struct lov_io	  ls_io;
547 	struct lov_sublock_env ls_subenv;
548 };
549 
550 /**
551  * State of transfer for lov.
552  */
553 struct lov_req {
554 	struct cl_req_slice lr_cl;
555 };
556 
557 /**
558  * State of transfer for lovsub.
559  */
560 struct lovsub_req {
561 	struct cl_req_slice lsrq_cl;
562 };
563 
564 extern struct lu_device_type lov_device_type;
565 extern struct lu_device_type lovsub_device_type;
566 
567 extern struct lu_context_key lov_key;
568 extern struct lu_context_key lov_session_key;
569 
570 extern struct kmem_cache *lov_lock_kmem;
571 extern struct kmem_cache *lov_object_kmem;
572 extern struct kmem_cache *lov_thread_kmem;
573 extern struct kmem_cache *lov_session_kmem;
574 extern struct kmem_cache *lov_req_kmem;
575 
576 extern struct kmem_cache *lovsub_lock_kmem;
577 extern struct kmem_cache *lovsub_object_kmem;
578 extern struct kmem_cache *lovsub_req_kmem;
579 
580 extern struct kmem_cache *lov_lock_link_kmem;
581 
582 int   lov_object_init(const struct lu_env *env, struct lu_object *obj,
583 			   const struct lu_object_conf *conf);
584 int   lovsub_object_init(const struct lu_env *env, struct lu_object *obj,
585 			   const struct lu_object_conf *conf);
586 int   lov_lock_init(const struct lu_env *env, struct cl_object *obj,
587 			   struct cl_lock *lock, const struct cl_io *io);
588 int   lov_io_init(const struct lu_env *env, struct cl_object *obj,
589 			   struct cl_io *io);
590 int   lovsub_lock_init(const struct lu_env *env, struct cl_object *obj,
591 			   struct cl_lock *lock, const struct cl_io *io);
592 
593 int   lov_lock_init_raid0(const struct lu_env *env, struct cl_object *obj,
594 			   struct cl_lock *lock, const struct cl_io *io);
595 int   lov_lock_init_empty(const struct lu_env *env, struct cl_object *obj,
596 			   struct cl_lock *lock, const struct cl_io *io);
597 int   lov_io_init_raid0(const struct lu_env *env, struct cl_object *obj,
598 			   struct cl_io *io);
599 int   lov_io_init_empty(const struct lu_env *env, struct cl_object *obj,
600 			   struct cl_io *io);
601 int   lov_io_init_released(const struct lu_env *env, struct cl_object *obj,
602 			   struct cl_io *io);
603 void  lov_lock_unlink(const struct lu_env *env, struct lov_lock_link *link,
604 			   struct lovsub_lock *sub);
605 
606 struct lov_io_sub *lov_sub_get(const struct lu_env *env, struct lov_io *lio,
607 			       int stripe);
608 void  lov_sub_put(struct lov_io_sub *sub);
609 int   lov_sublock_modify(const struct lu_env *env, struct lov_lock *lov,
610 			   struct lovsub_lock *sublock,
611 			   const struct cl_lock_descr *d, int idx);
612 
613 int   lov_page_init(const struct lu_env *env, struct cl_object *ob,
614 			   struct cl_page *page, struct page *vmpage);
615 int   lovsub_page_init(const struct lu_env *env, struct cl_object *ob,
616 			   struct cl_page *page, struct page *vmpage);
617 
618 int   lov_page_init_empty(const struct lu_env *env,
619 			   struct cl_object *obj,
620 			   struct cl_page *page, struct page *vmpage);
621 int   lov_page_init_raid0(const struct lu_env *env,
622 			   struct cl_object *obj,
623 			   struct cl_page *page, struct page *vmpage);
624 struct lu_object *lov_object_alloc(const struct lu_env *env,
625 				      const struct lu_object_header *hdr,
626 				      struct lu_device *dev);
627 struct lu_object *lovsub_object_alloc(const struct lu_env *env,
628 				      const struct lu_object_header *hdr,
629 				      struct lu_device *dev);
630 
631 struct lov_lock_link *lov_lock_link_find(const struct lu_env *env,
632 					 struct lov_lock *lck,
633 					 struct lovsub_lock *sub);
634 struct lov_io_sub    *lov_page_subio(const struct lu_env *env,
635 					 struct lov_io *lio,
636 					 const struct cl_page_slice *slice);
637 
638 #define lov_foreach_target(lov, var)		    \
639 	for (var = 0; var < lov_targets_nr(lov); ++var)
640 
641 /*****************************************************************************
642  *
643  * Type conversions.
644  *
645  * Accessors.
646  *
647  */
648 
lov_env_session(const struct lu_env * env)649 static inline struct lov_session *lov_env_session(const struct lu_env *env)
650 {
651 	struct lov_session *ses;
652 
653 	ses = lu_context_key_get(env->le_ses, &lov_session_key);
654 	LASSERT(ses != NULL);
655 	return ses;
656 }
657 
lov_env_io(const struct lu_env * env)658 static inline struct lov_io *lov_env_io(const struct lu_env *env)
659 {
660 	return &lov_env_session(env)->ls_io;
661 }
662 
lov_is_object(const struct lu_object * obj)663 static inline int lov_is_object(const struct lu_object *obj)
664 {
665 	return obj->lo_dev->ld_type == &lov_device_type;
666 }
667 
lovsub_is_object(const struct lu_object * obj)668 static inline int lovsub_is_object(const struct lu_object *obj)
669 {
670 	return obj->lo_dev->ld_type == &lovsub_device_type;
671 }
672 
lov2lu_dev(struct lov_device * lov)673 static inline struct lu_device *lov2lu_dev(struct lov_device *lov)
674 {
675 	return &lov->ld_cl.cd_lu_dev;
676 }
677 
lu2lov_dev(const struct lu_device * d)678 static inline struct lov_device *lu2lov_dev(const struct lu_device *d)
679 {
680 	LINVRNT(d->ld_type == &lov_device_type);
681 	return container_of0(d, struct lov_device, ld_cl.cd_lu_dev);
682 }
683 
lovsub2cl_dev(struct lovsub_device * lovsub)684 static inline struct cl_device *lovsub2cl_dev(struct lovsub_device *lovsub)
685 {
686 	return &lovsub->acid_cl;
687 }
688 
lovsub2lu_dev(struct lovsub_device * lovsub)689 static inline struct lu_device *lovsub2lu_dev(struct lovsub_device *lovsub)
690 {
691 	return &lovsub2cl_dev(lovsub)->cd_lu_dev;
692 }
693 
lu2lovsub_dev(const struct lu_device * d)694 static inline struct lovsub_device *lu2lovsub_dev(const struct lu_device *d)
695 {
696 	LINVRNT(d->ld_type == &lovsub_device_type);
697 	return container_of0(d, struct lovsub_device, acid_cl.cd_lu_dev);
698 }
699 
cl2lovsub_dev(const struct cl_device * d)700 static inline struct lovsub_device *cl2lovsub_dev(const struct cl_device *d)
701 {
702 	LINVRNT(d->cd_lu_dev.ld_type == &lovsub_device_type);
703 	return container_of0(d, struct lovsub_device, acid_cl);
704 }
705 
lov2lu(struct lov_object * lov)706 static inline struct lu_object *lov2lu(struct lov_object *lov)
707 {
708 	return &lov->lo_cl.co_lu;
709 }
710 
lov2cl(struct lov_object * lov)711 static inline struct cl_object *lov2cl(struct lov_object *lov)
712 {
713 	return &lov->lo_cl;
714 }
715 
lu2lov(const struct lu_object * obj)716 static inline struct lov_object *lu2lov(const struct lu_object *obj)
717 {
718 	LINVRNT(lov_is_object(obj));
719 	return container_of0(obj, struct lov_object, lo_cl.co_lu);
720 }
721 
cl2lov(const struct cl_object * obj)722 static inline struct lov_object *cl2lov(const struct cl_object *obj)
723 {
724 	LINVRNT(lov_is_object(&obj->co_lu));
725 	return container_of0(obj, struct lov_object, lo_cl);
726 }
727 
lovsub2lu(struct lovsub_object * los)728 static inline struct lu_object *lovsub2lu(struct lovsub_object *los)
729 {
730 	return &los->lso_cl.co_lu;
731 }
732 
lovsub2cl(struct lovsub_object * los)733 static inline struct cl_object *lovsub2cl(struct lovsub_object *los)
734 {
735 	return &los->lso_cl;
736 }
737 
cl2lovsub(const struct cl_object * obj)738 static inline struct lovsub_object *cl2lovsub(const struct cl_object *obj)
739 {
740 	LINVRNT(lovsub_is_object(&obj->co_lu));
741 	return container_of0(obj, struct lovsub_object, lso_cl);
742 }
743 
lu2lovsub(const struct lu_object * obj)744 static inline struct lovsub_object *lu2lovsub(const struct lu_object *obj)
745 {
746 	LINVRNT(lovsub_is_object(obj));
747 	return container_of0(obj, struct lovsub_object, lso_cl.co_lu);
748 }
749 
750 static inline struct lovsub_lock *
cl2lovsub_lock(const struct cl_lock_slice * slice)751 cl2lovsub_lock(const struct cl_lock_slice *slice)
752 {
753 	LINVRNT(lovsub_is_object(&slice->cls_obj->co_lu));
754 	return container_of(slice, struct lovsub_lock, lss_cl);
755 }
756 
cl2sub_lock(const struct cl_lock * lock)757 static inline struct lovsub_lock *cl2sub_lock(const struct cl_lock *lock)
758 {
759 	const struct cl_lock_slice *slice;
760 
761 	slice = cl_lock_at(lock, &lovsub_device_type);
762 	LASSERT(slice != NULL);
763 	return cl2lovsub_lock(slice);
764 }
765 
cl2lov_lock(const struct cl_lock_slice * slice)766 static inline struct lov_lock *cl2lov_lock(const struct cl_lock_slice *slice)
767 {
768 	LINVRNT(lov_is_object(&slice->cls_obj->co_lu));
769 	return container_of(slice, struct lov_lock, lls_cl);
770 }
771 
cl2lov_page(const struct cl_page_slice * slice)772 static inline struct lov_page *cl2lov_page(const struct cl_page_slice *slice)
773 {
774 	LINVRNT(lov_is_object(&slice->cpl_obj->co_lu));
775 	return container_of0(slice, struct lov_page, lps_cl);
776 }
777 
cl2lov_req(const struct cl_req_slice * slice)778 static inline struct lov_req *cl2lov_req(const struct cl_req_slice *slice)
779 {
780 	return container_of0(slice, struct lov_req, lr_cl);
781 }
782 
783 static inline struct lovsub_page *
cl2lovsub_page(const struct cl_page_slice * slice)784 cl2lovsub_page(const struct cl_page_slice *slice)
785 {
786 	LINVRNT(lovsub_is_object(&slice->cpl_obj->co_lu));
787 	return container_of0(slice, struct lovsub_page, lsb_cl);
788 }
789 
cl2lovsub_req(const struct cl_req_slice * slice)790 static inline struct lovsub_req *cl2lovsub_req(const struct cl_req_slice *slice)
791 {
792 	return container_of0(slice, struct lovsub_req, lsrq_cl);
793 }
794 
lov_sub_page(const struct cl_page_slice * slice)795 static inline struct cl_page *lov_sub_page(const struct cl_page_slice *slice)
796 {
797 	return slice->cpl_page->cp_child;
798 }
799 
cl2lov_io(const struct lu_env * env,const struct cl_io_slice * ios)800 static inline struct lov_io *cl2lov_io(const struct lu_env *env,
801 				const struct cl_io_slice *ios)
802 {
803 	struct lov_io *lio;
804 
805 	lio = container_of(ios, struct lov_io, lis_cl);
806 	LASSERT(lio == lov_env_io(env));
807 	return lio;
808 }
809 
lov_targets_nr(const struct lov_device * lov)810 static inline int lov_targets_nr(const struct lov_device *lov)
811 {
812 	return lov->ld_lov->desc.ld_tgt_count;
813 }
814 
lov_env_info(const struct lu_env * env)815 static inline struct lov_thread_info *lov_env_info(const struct lu_env *env)
816 {
817 	struct lov_thread_info *info;
818 
819 	info = lu_context_key_get(&env->le_ctx, &lov_key);
820 	LASSERT(info != NULL);
821 	return info;
822 }
823 
lov_r0(struct lov_object * lov)824 static inline struct lov_layout_raid0 *lov_r0(struct lov_object *lov)
825 {
826 	LASSERT(lov->lo_type == LLT_RAID0);
827 	LASSERT(lov->lo_lsm->lsm_wire.lw_magic == LOV_MAGIC ||
828 		lov->lo_lsm->lsm_wire.lw_magic == LOV_MAGIC_V3);
829 	return &lov->u.raid0;
830 }
831 
832 /** @} lov */
833 
834 #endif
835