1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/bitops.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/if_vlan.h>
37 #include <linux/skbuff.h>
38 #include <linux/delay.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <linux/prefetch.h>
42 #include <net/ip6_checksum.h>
43 
44 #include "qlge.h"
45 
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48 
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53 
54 static const u32 default_msg =
55     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER |	*/
57     NETIF_MSG_IFDOWN |
58     NETIF_MSG_IFUP |
59     NETIF_MSG_RX_ERR |
60     NETIF_MSG_TX_ERR |
61 /*  NETIF_MSG_TX_QUEUED | */
62 /*  NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65 
66 static int debug = -1;	/* defaults above */
67 module_param(debug, int, 0664);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69 
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int qlge_irq_type = MSIX_IRQ;
74 module_param(qlge_irq_type, int, 0664);
75 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76 
77 static int qlge_mpi_coredump;
78 module_param(qlge_mpi_coredump, int, 0);
79 MODULE_PARM_DESC(qlge_mpi_coredump,
80 		"Option to enable MPI firmware dump. "
81 		"Default is OFF - Do Not allocate memory. ");
82 
83 static int qlge_force_coredump;
84 module_param(qlge_force_coredump, int, 0);
85 MODULE_PARM_DESC(qlge_force_coredump,
86 		"Option to allow force of firmware core dump. "
87 		"Default is OFF - Do not allow.");
88 
89 static const struct pci_device_id qlge_pci_tbl[] = {
90 	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
91 	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
92 	/* required last entry */
93 	{0,}
94 };
95 
96 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
97 
98 static int ql_wol(struct ql_adapter *);
99 static void qlge_set_multicast_list(struct net_device *);
100 static int ql_adapter_down(struct ql_adapter *);
101 static int ql_adapter_up(struct ql_adapter *);
102 
103 /* This hardware semaphore causes exclusive access to
104  * resources shared between the NIC driver, MPI firmware,
105  * FCOE firmware and the FC driver.
106  */
ql_sem_trylock(struct ql_adapter * qdev,u32 sem_mask)107 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
108 {
109 	u32 sem_bits = 0;
110 
111 	switch (sem_mask) {
112 	case SEM_XGMAC0_MASK:
113 		sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
114 		break;
115 	case SEM_XGMAC1_MASK:
116 		sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
117 		break;
118 	case SEM_ICB_MASK:
119 		sem_bits = SEM_SET << SEM_ICB_SHIFT;
120 		break;
121 	case SEM_MAC_ADDR_MASK:
122 		sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
123 		break;
124 	case SEM_FLASH_MASK:
125 		sem_bits = SEM_SET << SEM_FLASH_SHIFT;
126 		break;
127 	case SEM_PROBE_MASK:
128 		sem_bits = SEM_SET << SEM_PROBE_SHIFT;
129 		break;
130 	case SEM_RT_IDX_MASK:
131 		sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
132 		break;
133 	case SEM_PROC_REG_MASK:
134 		sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
135 		break;
136 	default:
137 		netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
138 		return -EINVAL;
139 	}
140 
141 	ql_write32(qdev, SEM, sem_bits | sem_mask);
142 	return !(ql_read32(qdev, SEM) & sem_bits);
143 }
144 
ql_sem_spinlock(struct ql_adapter * qdev,u32 sem_mask)145 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
146 {
147 	unsigned int wait_count = 30;
148 	do {
149 		if (!ql_sem_trylock(qdev, sem_mask))
150 			return 0;
151 		udelay(100);
152 	} while (--wait_count);
153 	return -ETIMEDOUT;
154 }
155 
ql_sem_unlock(struct ql_adapter * qdev,u32 sem_mask)156 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
157 {
158 	ql_write32(qdev, SEM, sem_mask);
159 	ql_read32(qdev, SEM);	/* flush */
160 }
161 
162 /* This function waits for a specific bit to come ready
163  * in a given register.  It is used mostly by the initialize
164  * process, but is also used in kernel thread API such as
165  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
166  */
ql_wait_reg_rdy(struct ql_adapter * qdev,u32 reg,u32 bit,u32 err_bit)167 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
168 {
169 	u32 temp;
170 	int count = UDELAY_COUNT;
171 
172 	while (count) {
173 		temp = ql_read32(qdev, reg);
174 
175 		/* check for errors */
176 		if (temp & err_bit) {
177 			netif_alert(qdev, probe, qdev->ndev,
178 				    "register 0x%.08x access error, value = 0x%.08x!.\n",
179 				    reg, temp);
180 			return -EIO;
181 		} else if (temp & bit)
182 			return 0;
183 		udelay(UDELAY_DELAY);
184 		count--;
185 	}
186 	netif_alert(qdev, probe, qdev->ndev,
187 		    "Timed out waiting for reg %x to come ready.\n", reg);
188 	return -ETIMEDOUT;
189 }
190 
191 /* The CFG register is used to download TX and RX control blocks
192  * to the chip. This function waits for an operation to complete.
193  */
ql_wait_cfg(struct ql_adapter * qdev,u32 bit)194 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
195 {
196 	int count = UDELAY_COUNT;
197 	u32 temp;
198 
199 	while (count) {
200 		temp = ql_read32(qdev, CFG);
201 		if (temp & CFG_LE)
202 			return -EIO;
203 		if (!(temp & bit))
204 			return 0;
205 		udelay(UDELAY_DELAY);
206 		count--;
207 	}
208 	return -ETIMEDOUT;
209 }
210 
211 
212 /* Used to issue init control blocks to hw. Maps control block,
213  * sets address, triggers download, waits for completion.
214  */
ql_write_cfg(struct ql_adapter * qdev,void * ptr,int size,u32 bit,u16 q_id)215 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
216 		 u16 q_id)
217 {
218 	u64 map;
219 	int status = 0;
220 	int direction;
221 	u32 mask;
222 	u32 value;
223 
224 	direction =
225 	    (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
226 	    PCI_DMA_FROMDEVICE;
227 
228 	map = pci_map_single(qdev->pdev, ptr, size, direction);
229 	if (pci_dma_mapping_error(qdev->pdev, map)) {
230 		netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
231 		return -ENOMEM;
232 	}
233 
234 	status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
235 	if (status)
236 		return status;
237 
238 	status = ql_wait_cfg(qdev, bit);
239 	if (status) {
240 		netif_err(qdev, ifup, qdev->ndev,
241 			  "Timed out waiting for CFG to come ready.\n");
242 		goto exit;
243 	}
244 
245 	ql_write32(qdev, ICB_L, (u32) map);
246 	ql_write32(qdev, ICB_H, (u32) (map >> 32));
247 
248 	mask = CFG_Q_MASK | (bit << 16);
249 	value = bit | (q_id << CFG_Q_SHIFT);
250 	ql_write32(qdev, CFG, (mask | value));
251 
252 	/*
253 	 * Wait for the bit to clear after signaling hw.
254 	 */
255 	status = ql_wait_cfg(qdev, bit);
256 exit:
257 	ql_sem_unlock(qdev, SEM_ICB_MASK);	/* does flush too */
258 	pci_unmap_single(qdev->pdev, map, size, direction);
259 	return status;
260 }
261 
262 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
ql_get_mac_addr_reg(struct ql_adapter * qdev,u32 type,u16 index,u32 * value)263 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
264 			u32 *value)
265 {
266 	u32 offset = 0;
267 	int status;
268 
269 	switch (type) {
270 	case MAC_ADDR_TYPE_MULTI_MAC:
271 	case MAC_ADDR_TYPE_CAM_MAC:
272 		{
273 			status =
274 			    ql_wait_reg_rdy(qdev,
275 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
276 			if (status)
277 				goto exit;
278 			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
279 				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
280 				   MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
281 			status =
282 			    ql_wait_reg_rdy(qdev,
283 				MAC_ADDR_IDX, MAC_ADDR_MR, 0);
284 			if (status)
285 				goto exit;
286 			*value++ = ql_read32(qdev, MAC_ADDR_DATA);
287 			status =
288 			    ql_wait_reg_rdy(qdev,
289 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
290 			if (status)
291 				goto exit;
292 			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293 				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
294 				   MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295 			status =
296 			    ql_wait_reg_rdy(qdev,
297 				MAC_ADDR_IDX, MAC_ADDR_MR, 0);
298 			if (status)
299 				goto exit;
300 			*value++ = ql_read32(qdev, MAC_ADDR_DATA);
301 			if (type == MAC_ADDR_TYPE_CAM_MAC) {
302 				status =
303 				    ql_wait_reg_rdy(qdev,
304 					MAC_ADDR_IDX, MAC_ADDR_MW, 0);
305 				if (status)
306 					goto exit;
307 				ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
308 					   (index << MAC_ADDR_IDX_SHIFT) | /* index */
309 					   MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
310 				status =
311 				    ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
312 						    MAC_ADDR_MR, 0);
313 				if (status)
314 					goto exit;
315 				*value++ = ql_read32(qdev, MAC_ADDR_DATA);
316 			}
317 			break;
318 		}
319 	case MAC_ADDR_TYPE_VLAN:
320 	case MAC_ADDR_TYPE_MULTI_FLTR:
321 	default:
322 		netif_crit(qdev, ifup, qdev->ndev,
323 			   "Address type %d not yet supported.\n", type);
324 		status = -EPERM;
325 	}
326 exit:
327 	return status;
328 }
329 
330 /* Set up a MAC, multicast or VLAN address for the
331  * inbound frame matching.
332  */
ql_set_mac_addr_reg(struct ql_adapter * qdev,u8 * addr,u32 type,u16 index)333 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
334 			       u16 index)
335 {
336 	u32 offset = 0;
337 	int status = 0;
338 
339 	switch (type) {
340 	case MAC_ADDR_TYPE_MULTI_MAC:
341 		{
342 			u32 upper = (addr[0] << 8) | addr[1];
343 			u32 lower = (addr[2] << 24) | (addr[3] << 16) |
344 					(addr[4] << 8) | (addr[5]);
345 
346 			status =
347 				ql_wait_reg_rdy(qdev,
348 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
349 			if (status)
350 				goto exit;
351 			ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
352 				(index << MAC_ADDR_IDX_SHIFT) |
353 				type | MAC_ADDR_E);
354 			ql_write32(qdev, MAC_ADDR_DATA, lower);
355 			status =
356 				ql_wait_reg_rdy(qdev,
357 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
358 			if (status)
359 				goto exit;
360 			ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
361 				(index << MAC_ADDR_IDX_SHIFT) |
362 				type | MAC_ADDR_E);
363 
364 			ql_write32(qdev, MAC_ADDR_DATA, upper);
365 			status =
366 				ql_wait_reg_rdy(qdev,
367 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
368 			if (status)
369 				goto exit;
370 			break;
371 		}
372 	case MAC_ADDR_TYPE_CAM_MAC:
373 		{
374 			u32 cam_output;
375 			u32 upper = (addr[0] << 8) | addr[1];
376 			u32 lower =
377 			    (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
378 			    (addr[5]);
379 			status =
380 			    ql_wait_reg_rdy(qdev,
381 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
382 			if (status)
383 				goto exit;
384 			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
385 				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
386 				   type);	/* type */
387 			ql_write32(qdev, MAC_ADDR_DATA, lower);
388 			status =
389 			    ql_wait_reg_rdy(qdev,
390 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
391 			if (status)
392 				goto exit;
393 			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
394 				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
395 				   type);	/* type */
396 			ql_write32(qdev, MAC_ADDR_DATA, upper);
397 			status =
398 			    ql_wait_reg_rdy(qdev,
399 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
400 			if (status)
401 				goto exit;
402 			ql_write32(qdev, MAC_ADDR_IDX, (offset) |	/* offset */
403 				   (index << MAC_ADDR_IDX_SHIFT) |	/* index */
404 				   type);	/* type */
405 			/* This field should also include the queue id
406 			   and possibly the function id.  Right now we hardcode
407 			   the route field to NIC core.
408 			 */
409 			cam_output = (CAM_OUT_ROUTE_NIC |
410 				      (qdev->
411 				       func << CAM_OUT_FUNC_SHIFT) |
412 					(0 << CAM_OUT_CQ_ID_SHIFT));
413 			if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
414 				cam_output |= CAM_OUT_RV;
415 			/* route to NIC core */
416 			ql_write32(qdev, MAC_ADDR_DATA, cam_output);
417 			break;
418 		}
419 	case MAC_ADDR_TYPE_VLAN:
420 		{
421 			u32 enable_bit = *((u32 *) &addr[0]);
422 			/* For VLAN, the addr actually holds a bit that
423 			 * either enables or disables the vlan id we are
424 			 * addressing. It's either MAC_ADDR_E on or off.
425 			 * That's bit-27 we're talking about.
426 			 */
427 			status =
428 			    ql_wait_reg_rdy(qdev,
429 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
430 			if (status)
431 				goto exit;
432 			ql_write32(qdev, MAC_ADDR_IDX, offset |	/* offset */
433 				   (index << MAC_ADDR_IDX_SHIFT) |	/* index */
434 				   type |	/* type */
435 				   enable_bit);	/* enable/disable */
436 			break;
437 		}
438 	case MAC_ADDR_TYPE_MULTI_FLTR:
439 	default:
440 		netif_crit(qdev, ifup, qdev->ndev,
441 			   "Address type %d not yet supported.\n", type);
442 		status = -EPERM;
443 	}
444 exit:
445 	return status;
446 }
447 
448 /* Set or clear MAC address in hardware. We sometimes
449  * have to clear it to prevent wrong frame routing
450  * especially in a bonding environment.
451  */
ql_set_mac_addr(struct ql_adapter * qdev,int set)452 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
453 {
454 	int status;
455 	char zero_mac_addr[ETH_ALEN];
456 	char *addr;
457 
458 	if (set) {
459 		addr = &qdev->current_mac_addr[0];
460 		netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
461 			     "Set Mac addr %pM\n", addr);
462 	} else {
463 		eth_zero_addr(zero_mac_addr);
464 		addr = &zero_mac_addr[0];
465 		netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
466 			     "Clearing MAC address\n");
467 	}
468 	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
469 	if (status)
470 		return status;
471 	status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
472 			MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
473 	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
474 	if (status)
475 		netif_err(qdev, ifup, qdev->ndev,
476 			  "Failed to init mac address.\n");
477 	return status;
478 }
479 
ql_link_on(struct ql_adapter * qdev)480 void ql_link_on(struct ql_adapter *qdev)
481 {
482 	netif_err(qdev, link, qdev->ndev, "Link is up.\n");
483 	netif_carrier_on(qdev->ndev);
484 	ql_set_mac_addr(qdev, 1);
485 }
486 
ql_link_off(struct ql_adapter * qdev)487 void ql_link_off(struct ql_adapter *qdev)
488 {
489 	netif_err(qdev, link, qdev->ndev, "Link is down.\n");
490 	netif_carrier_off(qdev->ndev);
491 	ql_set_mac_addr(qdev, 0);
492 }
493 
494 /* Get a specific frame routing value from the CAM.
495  * Used for debug and reg dump.
496  */
ql_get_routing_reg(struct ql_adapter * qdev,u32 index,u32 * value)497 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
498 {
499 	int status = 0;
500 
501 	status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
502 	if (status)
503 		goto exit;
504 
505 	ql_write32(qdev, RT_IDX,
506 		   RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
507 	status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
508 	if (status)
509 		goto exit;
510 	*value = ql_read32(qdev, RT_DATA);
511 exit:
512 	return status;
513 }
514 
515 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
516  * to route different frame types to various inbound queues.  We send broadcast/
517  * multicast/error frames to the default queue for slow handling,
518  * and CAM hit/RSS frames to the fast handling queues.
519  */
ql_set_routing_reg(struct ql_adapter * qdev,u32 index,u32 mask,int enable)520 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
521 			      int enable)
522 {
523 	int status = -EINVAL; /* Return error if no mask match. */
524 	u32 value = 0;
525 
526 	switch (mask) {
527 	case RT_IDX_CAM_HIT:
528 		{
529 			value = RT_IDX_DST_CAM_Q |	/* dest */
530 			    RT_IDX_TYPE_NICQ |	/* type */
531 			    (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
532 			break;
533 		}
534 	case RT_IDX_VALID:	/* Promiscuous Mode frames. */
535 		{
536 			value = RT_IDX_DST_DFLT_Q |	/* dest */
537 			    RT_IDX_TYPE_NICQ |	/* type */
538 			    (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
539 			break;
540 		}
541 	case RT_IDX_ERR:	/* Pass up MAC,IP,TCP/UDP error frames. */
542 		{
543 			value = RT_IDX_DST_DFLT_Q |	/* dest */
544 			    RT_IDX_TYPE_NICQ |	/* type */
545 			    (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
546 			break;
547 		}
548 	case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
549 		{
550 			value = RT_IDX_DST_DFLT_Q | /* dest */
551 				RT_IDX_TYPE_NICQ | /* type */
552 				(RT_IDX_IP_CSUM_ERR_SLOT <<
553 				RT_IDX_IDX_SHIFT); /* index */
554 			break;
555 		}
556 	case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
557 		{
558 			value = RT_IDX_DST_DFLT_Q | /* dest */
559 				RT_IDX_TYPE_NICQ | /* type */
560 				(RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
561 				RT_IDX_IDX_SHIFT); /* index */
562 			break;
563 		}
564 	case RT_IDX_BCAST:	/* Pass up Broadcast frames to default Q. */
565 		{
566 			value = RT_IDX_DST_DFLT_Q |	/* dest */
567 			    RT_IDX_TYPE_NICQ |	/* type */
568 			    (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
569 			break;
570 		}
571 	case RT_IDX_MCAST:	/* Pass up All Multicast frames. */
572 		{
573 			value = RT_IDX_DST_DFLT_Q |	/* dest */
574 			    RT_IDX_TYPE_NICQ |	/* type */
575 			    (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
576 			break;
577 		}
578 	case RT_IDX_MCAST_MATCH:	/* Pass up matched Multicast frames. */
579 		{
580 			value = RT_IDX_DST_DFLT_Q |	/* dest */
581 			    RT_IDX_TYPE_NICQ |	/* type */
582 			    (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
583 			break;
584 		}
585 	case RT_IDX_RSS_MATCH:	/* Pass up matched RSS frames. */
586 		{
587 			value = RT_IDX_DST_RSS |	/* dest */
588 			    RT_IDX_TYPE_NICQ |	/* type */
589 			    (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
590 			break;
591 		}
592 	case 0:		/* Clear the E-bit on an entry. */
593 		{
594 			value = RT_IDX_DST_DFLT_Q |	/* dest */
595 			    RT_IDX_TYPE_NICQ |	/* type */
596 			    (index << RT_IDX_IDX_SHIFT);/* index */
597 			break;
598 		}
599 	default:
600 		netif_err(qdev, ifup, qdev->ndev,
601 			  "Mask type %d not yet supported.\n", mask);
602 		status = -EPERM;
603 		goto exit;
604 	}
605 
606 	if (value) {
607 		status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
608 		if (status)
609 			goto exit;
610 		value |= (enable ? RT_IDX_E : 0);
611 		ql_write32(qdev, RT_IDX, value);
612 		ql_write32(qdev, RT_DATA, enable ? mask : 0);
613 	}
614 exit:
615 	return status;
616 }
617 
ql_enable_interrupts(struct ql_adapter * qdev)618 static void ql_enable_interrupts(struct ql_adapter *qdev)
619 {
620 	ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
621 }
622 
ql_disable_interrupts(struct ql_adapter * qdev)623 static void ql_disable_interrupts(struct ql_adapter *qdev)
624 {
625 	ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
626 }
627 
628 /* If we're running with multiple MSI-X vectors then we enable on the fly.
629  * Otherwise, we may have multiple outstanding workers and don't want to
630  * enable until the last one finishes. In this case, the irq_cnt gets
631  * incremented every time we queue a worker and decremented every time
632  * a worker finishes.  Once it hits zero we enable the interrupt.
633  */
ql_enable_completion_interrupt(struct ql_adapter * qdev,u32 intr)634 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
635 {
636 	u32 var = 0;
637 	unsigned long hw_flags = 0;
638 	struct intr_context *ctx = qdev->intr_context + intr;
639 
640 	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
641 		/* Always enable if we're MSIX multi interrupts and
642 		 * it's not the default (zeroeth) interrupt.
643 		 */
644 		ql_write32(qdev, INTR_EN,
645 			   ctx->intr_en_mask);
646 		var = ql_read32(qdev, STS);
647 		return var;
648 	}
649 
650 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
651 	if (atomic_dec_and_test(&ctx->irq_cnt)) {
652 		ql_write32(qdev, INTR_EN,
653 			   ctx->intr_en_mask);
654 		var = ql_read32(qdev, STS);
655 	}
656 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
657 	return var;
658 }
659 
ql_disable_completion_interrupt(struct ql_adapter * qdev,u32 intr)660 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
661 {
662 	u32 var = 0;
663 	struct intr_context *ctx;
664 
665 	/* HW disables for us if we're MSIX multi interrupts and
666 	 * it's not the default (zeroeth) interrupt.
667 	 */
668 	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
669 		return 0;
670 
671 	ctx = qdev->intr_context + intr;
672 	spin_lock(&qdev->hw_lock);
673 	if (!atomic_read(&ctx->irq_cnt)) {
674 		ql_write32(qdev, INTR_EN,
675 		ctx->intr_dis_mask);
676 		var = ql_read32(qdev, STS);
677 	}
678 	atomic_inc(&ctx->irq_cnt);
679 	spin_unlock(&qdev->hw_lock);
680 	return var;
681 }
682 
ql_enable_all_completion_interrupts(struct ql_adapter * qdev)683 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
684 {
685 	int i;
686 	for (i = 0; i < qdev->intr_count; i++) {
687 		/* The enable call does a atomic_dec_and_test
688 		 * and enables only if the result is zero.
689 		 * So we precharge it here.
690 		 */
691 		if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
692 			i == 0))
693 			atomic_set(&qdev->intr_context[i].irq_cnt, 1);
694 		ql_enable_completion_interrupt(qdev, i);
695 	}
696 
697 }
698 
ql_validate_flash(struct ql_adapter * qdev,u32 size,const char * str)699 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
700 {
701 	int status, i;
702 	u16 csum = 0;
703 	__le16 *flash = (__le16 *)&qdev->flash;
704 
705 	status = strncmp((char *)&qdev->flash, str, 4);
706 	if (status) {
707 		netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
708 		return	status;
709 	}
710 
711 	for (i = 0; i < size; i++)
712 		csum += le16_to_cpu(*flash++);
713 
714 	if (csum)
715 		netif_err(qdev, ifup, qdev->ndev,
716 			  "Invalid flash checksum, csum = 0x%.04x.\n", csum);
717 
718 	return csum;
719 }
720 
ql_read_flash_word(struct ql_adapter * qdev,int offset,__le32 * data)721 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
722 {
723 	int status = 0;
724 	/* wait for reg to come ready */
725 	status = ql_wait_reg_rdy(qdev,
726 			FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
727 	if (status)
728 		goto exit;
729 	/* set up for reg read */
730 	ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
731 	/* wait for reg to come ready */
732 	status = ql_wait_reg_rdy(qdev,
733 			FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
734 	if (status)
735 		goto exit;
736 	 /* This data is stored on flash as an array of
737 	 * __le32.  Since ql_read32() returns cpu endian
738 	 * we need to swap it back.
739 	 */
740 	*data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
741 exit:
742 	return status;
743 }
744 
ql_get_8000_flash_params(struct ql_adapter * qdev)745 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
746 {
747 	u32 i, size;
748 	int status;
749 	__le32 *p = (__le32 *)&qdev->flash;
750 	u32 offset;
751 	u8 mac_addr[6];
752 
753 	/* Get flash offset for function and adjust
754 	 * for dword access.
755 	 */
756 	if (!qdev->port)
757 		offset = FUNC0_FLASH_OFFSET / sizeof(u32);
758 	else
759 		offset = FUNC1_FLASH_OFFSET / sizeof(u32);
760 
761 	if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
762 		return -ETIMEDOUT;
763 
764 	size = sizeof(struct flash_params_8000) / sizeof(u32);
765 	for (i = 0; i < size; i++, p++) {
766 		status = ql_read_flash_word(qdev, i+offset, p);
767 		if (status) {
768 			netif_err(qdev, ifup, qdev->ndev,
769 				  "Error reading flash.\n");
770 			goto exit;
771 		}
772 	}
773 
774 	status = ql_validate_flash(qdev,
775 			sizeof(struct flash_params_8000) / sizeof(u16),
776 			"8000");
777 	if (status) {
778 		netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
779 		status = -EINVAL;
780 		goto exit;
781 	}
782 
783 	/* Extract either manufacturer or BOFM modified
784 	 * MAC address.
785 	 */
786 	if (qdev->flash.flash_params_8000.data_type1 == 2)
787 		memcpy(mac_addr,
788 			qdev->flash.flash_params_8000.mac_addr1,
789 			qdev->ndev->addr_len);
790 	else
791 		memcpy(mac_addr,
792 			qdev->flash.flash_params_8000.mac_addr,
793 			qdev->ndev->addr_len);
794 
795 	if (!is_valid_ether_addr(mac_addr)) {
796 		netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
797 		status = -EINVAL;
798 		goto exit;
799 	}
800 
801 	memcpy(qdev->ndev->dev_addr,
802 		mac_addr,
803 		qdev->ndev->addr_len);
804 
805 exit:
806 	ql_sem_unlock(qdev, SEM_FLASH_MASK);
807 	return status;
808 }
809 
ql_get_8012_flash_params(struct ql_adapter * qdev)810 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
811 {
812 	int i;
813 	int status;
814 	__le32 *p = (__le32 *)&qdev->flash;
815 	u32 offset = 0;
816 	u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
817 
818 	/* Second function's parameters follow the first
819 	 * function's.
820 	 */
821 	if (qdev->port)
822 		offset = size;
823 
824 	if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
825 		return -ETIMEDOUT;
826 
827 	for (i = 0; i < size; i++, p++) {
828 		status = ql_read_flash_word(qdev, i+offset, p);
829 		if (status) {
830 			netif_err(qdev, ifup, qdev->ndev,
831 				  "Error reading flash.\n");
832 			goto exit;
833 		}
834 
835 	}
836 
837 	status = ql_validate_flash(qdev,
838 			sizeof(struct flash_params_8012) / sizeof(u16),
839 			"8012");
840 	if (status) {
841 		netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
842 		status = -EINVAL;
843 		goto exit;
844 	}
845 
846 	if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
847 		status = -EINVAL;
848 		goto exit;
849 	}
850 
851 	memcpy(qdev->ndev->dev_addr,
852 		qdev->flash.flash_params_8012.mac_addr,
853 		qdev->ndev->addr_len);
854 
855 exit:
856 	ql_sem_unlock(qdev, SEM_FLASH_MASK);
857 	return status;
858 }
859 
860 /* xgmac register are located behind the xgmac_addr and xgmac_data
861  * register pair.  Each read/write requires us to wait for the ready
862  * bit before reading/writing the data.
863  */
ql_write_xgmac_reg(struct ql_adapter * qdev,u32 reg,u32 data)864 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
865 {
866 	int status;
867 	/* wait for reg to come ready */
868 	status = ql_wait_reg_rdy(qdev,
869 			XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
870 	if (status)
871 		return status;
872 	/* write the data to the data reg */
873 	ql_write32(qdev, XGMAC_DATA, data);
874 	/* trigger the write */
875 	ql_write32(qdev, XGMAC_ADDR, reg);
876 	return status;
877 }
878 
879 /* xgmac register are located behind the xgmac_addr and xgmac_data
880  * register pair.  Each read/write requires us to wait for the ready
881  * bit before reading/writing the data.
882  */
ql_read_xgmac_reg(struct ql_adapter * qdev,u32 reg,u32 * data)883 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
884 {
885 	int status = 0;
886 	/* wait for reg to come ready */
887 	status = ql_wait_reg_rdy(qdev,
888 			XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
889 	if (status)
890 		goto exit;
891 	/* set up for reg read */
892 	ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
893 	/* wait for reg to come ready */
894 	status = ql_wait_reg_rdy(qdev,
895 			XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
896 	if (status)
897 		goto exit;
898 	/* get the data */
899 	*data = ql_read32(qdev, XGMAC_DATA);
900 exit:
901 	return status;
902 }
903 
904 /* This is used for reading the 64-bit statistics regs. */
ql_read_xgmac_reg64(struct ql_adapter * qdev,u32 reg,u64 * data)905 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
906 {
907 	int status = 0;
908 	u32 hi = 0;
909 	u32 lo = 0;
910 
911 	status = ql_read_xgmac_reg(qdev, reg, &lo);
912 	if (status)
913 		goto exit;
914 
915 	status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
916 	if (status)
917 		goto exit;
918 
919 	*data = (u64) lo | ((u64) hi << 32);
920 
921 exit:
922 	return status;
923 }
924 
ql_8000_port_initialize(struct ql_adapter * qdev)925 static int ql_8000_port_initialize(struct ql_adapter *qdev)
926 {
927 	int status;
928 	/*
929 	 * Get MPI firmware version for driver banner
930 	 * and ethool info.
931 	 */
932 	status = ql_mb_about_fw(qdev);
933 	if (status)
934 		goto exit;
935 	status = ql_mb_get_fw_state(qdev);
936 	if (status)
937 		goto exit;
938 	/* Wake up a worker to get/set the TX/RX frame sizes. */
939 	queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
940 exit:
941 	return status;
942 }
943 
944 /* Take the MAC Core out of reset.
945  * Enable statistics counting.
946  * Take the transmitter/receiver out of reset.
947  * This functionality may be done in the MPI firmware at a
948  * later date.
949  */
ql_8012_port_initialize(struct ql_adapter * qdev)950 static int ql_8012_port_initialize(struct ql_adapter *qdev)
951 {
952 	int status = 0;
953 	u32 data;
954 
955 	if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
956 		/* Another function has the semaphore, so
957 		 * wait for the port init bit to come ready.
958 		 */
959 		netif_info(qdev, link, qdev->ndev,
960 			   "Another function has the semaphore, so wait for the port init bit to come ready.\n");
961 		status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
962 		if (status) {
963 			netif_crit(qdev, link, qdev->ndev,
964 				   "Port initialize timed out.\n");
965 		}
966 		return status;
967 	}
968 
969 	netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
970 	/* Set the core reset. */
971 	status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
972 	if (status)
973 		goto end;
974 	data |= GLOBAL_CFG_RESET;
975 	status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
976 	if (status)
977 		goto end;
978 
979 	/* Clear the core reset and turn on jumbo for receiver. */
980 	data &= ~GLOBAL_CFG_RESET;	/* Clear core reset. */
981 	data |= GLOBAL_CFG_JUMBO;	/* Turn on jumbo. */
982 	data |= GLOBAL_CFG_TX_STAT_EN;
983 	data |= GLOBAL_CFG_RX_STAT_EN;
984 	status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
985 	if (status)
986 		goto end;
987 
988 	/* Enable transmitter, and clear it's reset. */
989 	status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
990 	if (status)
991 		goto end;
992 	data &= ~TX_CFG_RESET;	/* Clear the TX MAC reset. */
993 	data |= TX_CFG_EN;	/* Enable the transmitter. */
994 	status = ql_write_xgmac_reg(qdev, TX_CFG, data);
995 	if (status)
996 		goto end;
997 
998 	/* Enable receiver and clear it's reset. */
999 	status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1000 	if (status)
1001 		goto end;
1002 	data &= ~RX_CFG_RESET;	/* Clear the RX MAC reset. */
1003 	data |= RX_CFG_EN;	/* Enable the receiver. */
1004 	status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1005 	if (status)
1006 		goto end;
1007 
1008 	/* Turn on jumbo. */
1009 	status =
1010 	    ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1011 	if (status)
1012 		goto end;
1013 	status =
1014 	    ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1015 	if (status)
1016 		goto end;
1017 
1018 	/* Signal to the world that the port is enabled.        */
1019 	ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1020 end:
1021 	ql_sem_unlock(qdev, qdev->xg_sem_mask);
1022 	return status;
1023 }
1024 
ql_lbq_block_size(struct ql_adapter * qdev)1025 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1026 {
1027 	return PAGE_SIZE << qdev->lbq_buf_order;
1028 }
1029 
1030 /* Get the next large buffer. */
ql_get_curr_lbuf(struct rx_ring * rx_ring)1031 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1032 {
1033 	struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1034 	rx_ring->lbq_curr_idx++;
1035 	if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1036 		rx_ring->lbq_curr_idx = 0;
1037 	rx_ring->lbq_free_cnt++;
1038 	return lbq_desc;
1039 }
1040 
ql_get_curr_lchunk(struct ql_adapter * qdev,struct rx_ring * rx_ring)1041 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1042 		struct rx_ring *rx_ring)
1043 {
1044 	struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1045 
1046 	pci_dma_sync_single_for_cpu(qdev->pdev,
1047 					dma_unmap_addr(lbq_desc, mapaddr),
1048 				    rx_ring->lbq_buf_size,
1049 					PCI_DMA_FROMDEVICE);
1050 
1051 	/* If it's the last chunk of our master page then
1052 	 * we unmap it.
1053 	 */
1054 	if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1055 					== ql_lbq_block_size(qdev))
1056 		pci_unmap_page(qdev->pdev,
1057 				lbq_desc->p.pg_chunk.map,
1058 				ql_lbq_block_size(qdev),
1059 				PCI_DMA_FROMDEVICE);
1060 	return lbq_desc;
1061 }
1062 
1063 /* Get the next small buffer. */
ql_get_curr_sbuf(struct rx_ring * rx_ring)1064 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1065 {
1066 	struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1067 	rx_ring->sbq_curr_idx++;
1068 	if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1069 		rx_ring->sbq_curr_idx = 0;
1070 	rx_ring->sbq_free_cnt++;
1071 	return sbq_desc;
1072 }
1073 
1074 /* Update an rx ring index. */
ql_update_cq(struct rx_ring * rx_ring)1075 static void ql_update_cq(struct rx_ring *rx_ring)
1076 {
1077 	rx_ring->cnsmr_idx++;
1078 	rx_ring->curr_entry++;
1079 	if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1080 		rx_ring->cnsmr_idx = 0;
1081 		rx_ring->curr_entry = rx_ring->cq_base;
1082 	}
1083 }
1084 
ql_write_cq_idx(struct rx_ring * rx_ring)1085 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1086 {
1087 	ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1088 }
1089 
ql_get_next_chunk(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct bq_desc * lbq_desc)1090 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1091 						struct bq_desc *lbq_desc)
1092 {
1093 	if (!rx_ring->pg_chunk.page) {
1094 		u64 map;
1095 		rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1096 						GFP_ATOMIC,
1097 						qdev->lbq_buf_order);
1098 		if (unlikely(!rx_ring->pg_chunk.page)) {
1099 			netif_err(qdev, drv, qdev->ndev,
1100 				  "page allocation failed.\n");
1101 			return -ENOMEM;
1102 		}
1103 		rx_ring->pg_chunk.offset = 0;
1104 		map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1105 					0, ql_lbq_block_size(qdev),
1106 					PCI_DMA_FROMDEVICE);
1107 		if (pci_dma_mapping_error(qdev->pdev, map)) {
1108 			__free_pages(rx_ring->pg_chunk.page,
1109 					qdev->lbq_buf_order);
1110 			rx_ring->pg_chunk.page = NULL;
1111 			netif_err(qdev, drv, qdev->ndev,
1112 				  "PCI mapping failed.\n");
1113 			return -ENOMEM;
1114 		}
1115 		rx_ring->pg_chunk.map = map;
1116 		rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1117 	}
1118 
1119 	/* Copy the current master pg_chunk info
1120 	 * to the current descriptor.
1121 	 */
1122 	lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1123 
1124 	/* Adjust the master page chunk for next
1125 	 * buffer get.
1126 	 */
1127 	rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1128 	if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1129 		rx_ring->pg_chunk.page = NULL;
1130 		lbq_desc->p.pg_chunk.last_flag = 1;
1131 	} else {
1132 		rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1133 		get_page(rx_ring->pg_chunk.page);
1134 		lbq_desc->p.pg_chunk.last_flag = 0;
1135 	}
1136 	return 0;
1137 }
1138 /* Process (refill) a large buffer queue. */
ql_update_lbq(struct ql_adapter * qdev,struct rx_ring * rx_ring)1139 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1140 {
1141 	u32 clean_idx = rx_ring->lbq_clean_idx;
1142 	u32 start_idx = clean_idx;
1143 	struct bq_desc *lbq_desc;
1144 	u64 map;
1145 	int i;
1146 
1147 	while (rx_ring->lbq_free_cnt > 32) {
1148 		for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1149 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1150 				     "lbq: try cleaning clean_idx = %d.\n",
1151 				     clean_idx);
1152 			lbq_desc = &rx_ring->lbq[clean_idx];
1153 			if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1154 				rx_ring->lbq_clean_idx = clean_idx;
1155 				netif_err(qdev, ifup, qdev->ndev,
1156 						"Could not get a page chunk, i=%d, clean_idx =%d .\n",
1157 						i, clean_idx);
1158 				return;
1159 			}
1160 
1161 			map = lbq_desc->p.pg_chunk.map +
1162 				lbq_desc->p.pg_chunk.offset;
1163 				dma_unmap_addr_set(lbq_desc, mapaddr, map);
1164 			dma_unmap_len_set(lbq_desc, maplen,
1165 					rx_ring->lbq_buf_size);
1166 				*lbq_desc->addr = cpu_to_le64(map);
1167 
1168 			pci_dma_sync_single_for_device(qdev->pdev, map,
1169 						rx_ring->lbq_buf_size,
1170 						PCI_DMA_FROMDEVICE);
1171 			clean_idx++;
1172 			if (clean_idx == rx_ring->lbq_len)
1173 				clean_idx = 0;
1174 		}
1175 
1176 		rx_ring->lbq_clean_idx = clean_idx;
1177 		rx_ring->lbq_prod_idx += 16;
1178 		if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1179 			rx_ring->lbq_prod_idx = 0;
1180 		rx_ring->lbq_free_cnt -= 16;
1181 	}
1182 
1183 	if (start_idx != clean_idx) {
1184 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1185 			     "lbq: updating prod idx = %d.\n",
1186 			     rx_ring->lbq_prod_idx);
1187 		ql_write_db_reg(rx_ring->lbq_prod_idx,
1188 				rx_ring->lbq_prod_idx_db_reg);
1189 	}
1190 }
1191 
1192 /* Process (refill) a small buffer queue. */
ql_update_sbq(struct ql_adapter * qdev,struct rx_ring * rx_ring)1193 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1194 {
1195 	u32 clean_idx = rx_ring->sbq_clean_idx;
1196 	u32 start_idx = clean_idx;
1197 	struct bq_desc *sbq_desc;
1198 	u64 map;
1199 	int i;
1200 
1201 	while (rx_ring->sbq_free_cnt > 16) {
1202 		for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1203 			sbq_desc = &rx_ring->sbq[clean_idx];
1204 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1205 				     "sbq: try cleaning clean_idx = %d.\n",
1206 				     clean_idx);
1207 			if (sbq_desc->p.skb == NULL) {
1208 				netif_printk(qdev, rx_status, KERN_DEBUG,
1209 					     qdev->ndev,
1210 					     "sbq: getting new skb for index %d.\n",
1211 					     sbq_desc->index);
1212 				sbq_desc->p.skb =
1213 				    netdev_alloc_skb(qdev->ndev,
1214 						     SMALL_BUFFER_SIZE);
1215 				if (sbq_desc->p.skb == NULL) {
1216 					rx_ring->sbq_clean_idx = clean_idx;
1217 					return;
1218 				}
1219 				skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220 				map = pci_map_single(qdev->pdev,
1221 						     sbq_desc->p.skb->data,
1222 						     rx_ring->sbq_buf_size,
1223 						     PCI_DMA_FROMDEVICE);
1224 				if (pci_dma_mapping_error(qdev->pdev, map)) {
1225 					netif_err(qdev, ifup, qdev->ndev,
1226 						  "PCI mapping failed.\n");
1227 					rx_ring->sbq_clean_idx = clean_idx;
1228 					dev_kfree_skb_any(sbq_desc->p.skb);
1229 					sbq_desc->p.skb = NULL;
1230 					return;
1231 				}
1232 				dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233 				dma_unmap_len_set(sbq_desc, maplen,
1234 						  rx_ring->sbq_buf_size);
1235 				*sbq_desc->addr = cpu_to_le64(map);
1236 			}
1237 
1238 			clean_idx++;
1239 			if (clean_idx == rx_ring->sbq_len)
1240 				clean_idx = 0;
1241 		}
1242 		rx_ring->sbq_clean_idx = clean_idx;
1243 		rx_ring->sbq_prod_idx += 16;
1244 		if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245 			rx_ring->sbq_prod_idx = 0;
1246 		rx_ring->sbq_free_cnt -= 16;
1247 	}
1248 
1249 	if (start_idx != clean_idx) {
1250 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251 			     "sbq: updating prod idx = %d.\n",
1252 			     rx_ring->sbq_prod_idx);
1253 		ql_write_db_reg(rx_ring->sbq_prod_idx,
1254 				rx_ring->sbq_prod_idx_db_reg);
1255 	}
1256 }
1257 
ql_update_buffer_queues(struct ql_adapter * qdev,struct rx_ring * rx_ring)1258 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259 				    struct rx_ring *rx_ring)
1260 {
1261 	ql_update_sbq(qdev, rx_ring);
1262 	ql_update_lbq(qdev, rx_ring);
1263 }
1264 
1265 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1266  * fails at some stage, or from the interrupt when a tx completes.
1267  */
ql_unmap_send(struct ql_adapter * qdev,struct tx_ring_desc * tx_ring_desc,int mapped)1268 static void ql_unmap_send(struct ql_adapter *qdev,
1269 			  struct tx_ring_desc *tx_ring_desc, int mapped)
1270 {
1271 	int i;
1272 	for (i = 0; i < mapped; i++) {
1273 		if (i == 0 || (i == 7 && mapped > 7)) {
1274 			/*
1275 			 * Unmap the skb->data area, or the
1276 			 * external sglist (AKA the Outbound
1277 			 * Address List (OAL)).
1278 			 * If its the zeroeth element, then it's
1279 			 * the skb->data area.  If it's the 7th
1280 			 * element and there is more than 6 frags,
1281 			 * then its an OAL.
1282 			 */
1283 			if (i == 7) {
1284 				netif_printk(qdev, tx_done, KERN_DEBUG,
1285 					     qdev->ndev,
1286 					     "unmapping OAL area.\n");
1287 			}
1288 			pci_unmap_single(qdev->pdev,
1289 					 dma_unmap_addr(&tx_ring_desc->map[i],
1290 							mapaddr),
1291 					 dma_unmap_len(&tx_ring_desc->map[i],
1292 						       maplen),
1293 					 PCI_DMA_TODEVICE);
1294 		} else {
1295 			netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296 				     "unmapping frag %d.\n", i);
1297 			pci_unmap_page(qdev->pdev,
1298 				       dma_unmap_addr(&tx_ring_desc->map[i],
1299 						      mapaddr),
1300 				       dma_unmap_len(&tx_ring_desc->map[i],
1301 						     maplen), PCI_DMA_TODEVICE);
1302 		}
1303 	}
1304 
1305 }
1306 
1307 /* Map the buffers for this transmit.  This will return
1308  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1309  */
ql_map_send(struct ql_adapter * qdev,struct ob_mac_iocb_req * mac_iocb_ptr,struct sk_buff * skb,struct tx_ring_desc * tx_ring_desc)1310 static int ql_map_send(struct ql_adapter *qdev,
1311 		       struct ob_mac_iocb_req *mac_iocb_ptr,
1312 		       struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1313 {
1314 	int len = skb_headlen(skb);
1315 	dma_addr_t map;
1316 	int frag_idx, err, map_idx = 0;
1317 	struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318 	int frag_cnt = skb_shinfo(skb)->nr_frags;
1319 
1320 	if (frag_cnt) {
1321 		netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322 			     "frag_cnt = %d.\n", frag_cnt);
1323 	}
1324 	/*
1325 	 * Map the skb buffer first.
1326 	 */
1327 	map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1328 
1329 	err = pci_dma_mapping_error(qdev->pdev, map);
1330 	if (err) {
1331 		netif_err(qdev, tx_queued, qdev->ndev,
1332 			  "PCI mapping failed with error: %d\n", err);
1333 
1334 		return NETDEV_TX_BUSY;
1335 	}
1336 
1337 	tbd->len = cpu_to_le32(len);
1338 	tbd->addr = cpu_to_le64(map);
1339 	dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340 	dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1341 	map_idx++;
1342 
1343 	/*
1344 	 * This loop fills the remainder of the 8 address descriptors
1345 	 * in the IOCB.  If there are more than 7 fragments, then the
1346 	 * eighth address desc will point to an external list (OAL).
1347 	 * When this happens, the remainder of the frags will be stored
1348 	 * in this list.
1349 	 */
1350 	for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351 		skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1352 		tbd++;
1353 		if (frag_idx == 6 && frag_cnt > 7) {
1354 			/* Let's tack on an sglist.
1355 			 * Our control block will now
1356 			 * look like this:
1357 			 * iocb->seg[0] = skb->data
1358 			 * iocb->seg[1] = frag[0]
1359 			 * iocb->seg[2] = frag[1]
1360 			 * iocb->seg[3] = frag[2]
1361 			 * iocb->seg[4] = frag[3]
1362 			 * iocb->seg[5] = frag[4]
1363 			 * iocb->seg[6] = frag[5]
1364 			 * iocb->seg[7] = ptr to OAL (external sglist)
1365 			 * oal->seg[0] = frag[6]
1366 			 * oal->seg[1] = frag[7]
1367 			 * oal->seg[2] = frag[8]
1368 			 * oal->seg[3] = frag[9]
1369 			 * oal->seg[4] = frag[10]
1370 			 *      etc...
1371 			 */
1372 			/* Tack on the OAL in the eighth segment of IOCB. */
1373 			map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1374 					     sizeof(struct oal),
1375 					     PCI_DMA_TODEVICE);
1376 			err = pci_dma_mapping_error(qdev->pdev, map);
1377 			if (err) {
1378 				netif_err(qdev, tx_queued, qdev->ndev,
1379 					  "PCI mapping outbound address list with error: %d\n",
1380 					  err);
1381 				goto map_error;
1382 			}
1383 
1384 			tbd->addr = cpu_to_le64(map);
1385 			/*
1386 			 * The length is the number of fragments
1387 			 * that remain to be mapped times the length
1388 			 * of our sglist (OAL).
1389 			 */
1390 			tbd->len =
1391 			    cpu_to_le32((sizeof(struct tx_buf_desc) *
1392 					 (frag_cnt - frag_idx)) | TX_DESC_C);
1393 			dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1394 					   map);
1395 			dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1396 					  sizeof(struct oal));
1397 			tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1398 			map_idx++;
1399 		}
1400 
1401 		map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1402 				       DMA_TO_DEVICE);
1403 
1404 		err = dma_mapping_error(&qdev->pdev->dev, map);
1405 		if (err) {
1406 			netif_err(qdev, tx_queued, qdev->ndev,
1407 				  "PCI mapping frags failed with error: %d.\n",
1408 				  err);
1409 			goto map_error;
1410 		}
1411 
1412 		tbd->addr = cpu_to_le64(map);
1413 		tbd->len = cpu_to_le32(skb_frag_size(frag));
1414 		dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415 		dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1416 				  skb_frag_size(frag));
1417 
1418 	}
1419 	/* Save the number of segments we've mapped. */
1420 	tx_ring_desc->map_cnt = map_idx;
1421 	/* Terminate the last segment. */
1422 	tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423 	return NETDEV_TX_OK;
1424 
1425 map_error:
1426 	/*
1427 	 * If the first frag mapping failed, then i will be zero.
1428 	 * This causes the unmap of the skb->data area.  Otherwise
1429 	 * we pass in the number of frags that mapped successfully
1430 	 * so they can be umapped.
1431 	 */
1432 	ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433 	return NETDEV_TX_BUSY;
1434 }
1435 
1436 /* Categorizing receive firmware frame errors */
ql_categorize_rx_err(struct ql_adapter * qdev,u8 rx_err,struct rx_ring * rx_ring)1437 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1438 				 struct rx_ring *rx_ring)
1439 {
1440 	struct nic_stats *stats = &qdev->nic_stats;
1441 
1442 	stats->rx_err_count++;
1443 	rx_ring->rx_errors++;
1444 
1445 	switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1446 	case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1447 		stats->rx_code_err++;
1448 		break;
1449 	case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1450 		stats->rx_oversize_err++;
1451 		break;
1452 	case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1453 		stats->rx_undersize_err++;
1454 		break;
1455 	case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1456 		stats->rx_preamble_err++;
1457 		break;
1458 	case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1459 		stats->rx_frame_len_err++;
1460 		break;
1461 	case IB_MAC_IOCB_RSP_ERR_CRC:
1462 		stats->rx_crc_err++;
1463 	default:
1464 		break;
1465 	}
1466 }
1467 
1468 /**
1469  * ql_update_mac_hdr_len - helper routine to update the mac header length
1470  * based on vlan tags if present
1471  */
ql_update_mac_hdr_len(struct ql_adapter * qdev,struct ib_mac_iocb_rsp * ib_mac_rsp,void * page,size_t * len)1472 static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
1473 				  struct ib_mac_iocb_rsp *ib_mac_rsp,
1474 				  void *page, size_t *len)
1475 {
1476 	u16 *tags;
1477 
1478 	if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1479 		return;
1480 	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
1481 		tags = (u16 *)page;
1482 		/* Look for stacked vlan tags in ethertype field */
1483 		if (tags[6] == ETH_P_8021Q &&
1484 		    tags[8] == ETH_P_8021Q)
1485 			*len += 2 * VLAN_HLEN;
1486 		else
1487 			*len += VLAN_HLEN;
1488 	}
1489 }
1490 
1491 /* Process an inbound completion from an rx ring. */
ql_process_mac_rx_gro_page(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp,u32 length,u16 vlan_id)1492 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1493 					struct rx_ring *rx_ring,
1494 					struct ib_mac_iocb_rsp *ib_mac_rsp,
1495 					u32 length,
1496 					u16 vlan_id)
1497 {
1498 	struct sk_buff *skb;
1499 	struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1500 	struct napi_struct *napi = &rx_ring->napi;
1501 
1502 	/* Frame error, so drop the packet. */
1503 	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1504 		ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1505 		put_page(lbq_desc->p.pg_chunk.page);
1506 		return;
1507 	}
1508 	napi->dev = qdev->ndev;
1509 
1510 	skb = napi_get_frags(napi);
1511 	if (!skb) {
1512 		netif_err(qdev, drv, qdev->ndev,
1513 			  "Couldn't get an skb, exiting.\n");
1514 		rx_ring->rx_dropped++;
1515 		put_page(lbq_desc->p.pg_chunk.page);
1516 		return;
1517 	}
1518 	prefetch(lbq_desc->p.pg_chunk.va);
1519 	__skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1520 			     lbq_desc->p.pg_chunk.page,
1521 			     lbq_desc->p.pg_chunk.offset,
1522 			     length);
1523 
1524 	skb->len += length;
1525 	skb->data_len += length;
1526 	skb->truesize += length;
1527 	skb_shinfo(skb)->nr_frags++;
1528 
1529 	rx_ring->rx_packets++;
1530 	rx_ring->rx_bytes += length;
1531 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1532 	skb_record_rx_queue(skb, rx_ring->cq_id);
1533 	if (vlan_id != 0xffff)
1534 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1535 	napi_gro_frags(napi);
1536 }
1537 
1538 /* Process an inbound completion from an rx ring. */
ql_process_mac_rx_page(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp,u32 length,u16 vlan_id)1539 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1540 					struct rx_ring *rx_ring,
1541 					struct ib_mac_iocb_rsp *ib_mac_rsp,
1542 					u32 length,
1543 					u16 vlan_id)
1544 {
1545 	struct net_device *ndev = qdev->ndev;
1546 	struct sk_buff *skb = NULL;
1547 	void *addr;
1548 	struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1549 	struct napi_struct *napi = &rx_ring->napi;
1550 	size_t hlen = ETH_HLEN;
1551 
1552 	skb = netdev_alloc_skb(ndev, length);
1553 	if (!skb) {
1554 		rx_ring->rx_dropped++;
1555 		put_page(lbq_desc->p.pg_chunk.page);
1556 		return;
1557 	}
1558 
1559 	addr = lbq_desc->p.pg_chunk.va;
1560 	prefetch(addr);
1561 
1562 	/* Frame error, so drop the packet. */
1563 	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1564 		ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1565 		goto err_out;
1566 	}
1567 
1568 	/* Update the MAC header length*/
1569 	ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
1570 
1571 	/* The max framesize filter on this chip is set higher than
1572 	 * MTU since FCoE uses 2k frames.
1573 	 */
1574 	if (skb->len > ndev->mtu + hlen) {
1575 		netif_err(qdev, drv, qdev->ndev,
1576 			  "Segment too small, dropping.\n");
1577 		rx_ring->rx_dropped++;
1578 		goto err_out;
1579 	}
1580 	memcpy(skb_put(skb, hlen), addr, hlen);
1581 	netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1582 		     "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1583 		     length);
1584 	skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1585 				lbq_desc->p.pg_chunk.offset + hlen,
1586 				length - hlen);
1587 	skb->len += length - hlen;
1588 	skb->data_len += length - hlen;
1589 	skb->truesize += length - hlen;
1590 
1591 	rx_ring->rx_packets++;
1592 	rx_ring->rx_bytes += skb->len;
1593 	skb->protocol = eth_type_trans(skb, ndev);
1594 	skb_checksum_none_assert(skb);
1595 
1596 	if ((ndev->features & NETIF_F_RXCSUM) &&
1597 		!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1598 		/* TCP frame. */
1599 		if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1600 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1601 				     "TCP checksum done!\n");
1602 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1603 		} else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1604 				(ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1605 			/* Unfragmented ipv4 UDP frame. */
1606 			struct iphdr *iph =
1607 				(struct iphdr *)((u8 *)addr + hlen);
1608 			if (!(iph->frag_off &
1609 				htons(IP_MF|IP_OFFSET))) {
1610 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1611 				netif_printk(qdev, rx_status, KERN_DEBUG,
1612 					     qdev->ndev,
1613 					     "UDP checksum done!\n");
1614 			}
1615 		}
1616 	}
1617 
1618 	skb_record_rx_queue(skb, rx_ring->cq_id);
1619 	if (vlan_id != 0xffff)
1620 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1621 	if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1622 		napi_gro_receive(napi, skb);
1623 	else
1624 		netif_receive_skb(skb);
1625 	return;
1626 err_out:
1627 	dev_kfree_skb_any(skb);
1628 	put_page(lbq_desc->p.pg_chunk.page);
1629 }
1630 
1631 /* Process an inbound completion from an rx ring. */
ql_process_mac_rx_skb(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp,u32 length,u16 vlan_id)1632 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1633 					struct rx_ring *rx_ring,
1634 					struct ib_mac_iocb_rsp *ib_mac_rsp,
1635 					u32 length,
1636 					u16 vlan_id)
1637 {
1638 	struct net_device *ndev = qdev->ndev;
1639 	struct sk_buff *skb = NULL;
1640 	struct sk_buff *new_skb = NULL;
1641 	struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1642 
1643 	skb = sbq_desc->p.skb;
1644 	/* Allocate new_skb and copy */
1645 	new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1646 	if (new_skb == NULL) {
1647 		rx_ring->rx_dropped++;
1648 		return;
1649 	}
1650 	skb_reserve(new_skb, NET_IP_ALIGN);
1651 
1652 	pci_dma_sync_single_for_cpu(qdev->pdev,
1653 				    dma_unmap_addr(sbq_desc, mapaddr),
1654 				    dma_unmap_len(sbq_desc, maplen),
1655 				    PCI_DMA_FROMDEVICE);
1656 
1657 	memcpy(skb_put(new_skb, length), skb->data, length);
1658 
1659 	pci_dma_sync_single_for_device(qdev->pdev,
1660 				       dma_unmap_addr(sbq_desc, mapaddr),
1661 				       dma_unmap_len(sbq_desc, maplen),
1662 				       PCI_DMA_FROMDEVICE);
1663 	skb = new_skb;
1664 
1665 	/* Frame error, so drop the packet. */
1666 	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1667 		ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1668 		dev_kfree_skb_any(skb);
1669 		return;
1670 	}
1671 
1672 	/* loopback self test for ethtool */
1673 	if (test_bit(QL_SELFTEST, &qdev->flags)) {
1674 		ql_check_lb_frame(qdev, skb);
1675 		dev_kfree_skb_any(skb);
1676 		return;
1677 	}
1678 
1679 	/* The max framesize filter on this chip is set higher than
1680 	 * MTU since FCoE uses 2k frames.
1681 	 */
1682 	if (skb->len > ndev->mtu + ETH_HLEN) {
1683 		dev_kfree_skb_any(skb);
1684 		rx_ring->rx_dropped++;
1685 		return;
1686 	}
1687 
1688 	prefetch(skb->data);
1689 	if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1690 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1691 			     "%s Multicast.\n",
1692 			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1693 			     IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1694 			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1695 			     IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1696 			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1697 			     IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1698 	}
1699 	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1700 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1701 			     "Promiscuous Packet.\n");
1702 
1703 	rx_ring->rx_packets++;
1704 	rx_ring->rx_bytes += skb->len;
1705 	skb->protocol = eth_type_trans(skb, ndev);
1706 	skb_checksum_none_assert(skb);
1707 
1708 	/* If rx checksum is on, and there are no
1709 	 * csum or frame errors.
1710 	 */
1711 	if ((ndev->features & NETIF_F_RXCSUM) &&
1712 		!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1713 		/* TCP frame. */
1714 		if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1715 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1716 				     "TCP checksum done!\n");
1717 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1718 		} else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1719 				(ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1720 			/* Unfragmented ipv4 UDP frame. */
1721 			struct iphdr *iph = (struct iphdr *) skb->data;
1722 			if (!(iph->frag_off &
1723 				htons(IP_MF|IP_OFFSET))) {
1724 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1725 				netif_printk(qdev, rx_status, KERN_DEBUG,
1726 					     qdev->ndev,
1727 					     "UDP checksum done!\n");
1728 			}
1729 		}
1730 	}
1731 
1732 	skb_record_rx_queue(skb, rx_ring->cq_id);
1733 	if (vlan_id != 0xffff)
1734 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1735 	if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1736 		napi_gro_receive(&rx_ring->napi, skb);
1737 	else
1738 		netif_receive_skb(skb);
1739 }
1740 
ql_realign_skb(struct sk_buff * skb,int len)1741 static void ql_realign_skb(struct sk_buff *skb, int len)
1742 {
1743 	void *temp_addr = skb->data;
1744 
1745 	/* Undo the skb_reserve(skb,32) we did before
1746 	 * giving to hardware, and realign data on
1747 	 * a 2-byte boundary.
1748 	 */
1749 	skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1750 	skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1751 	skb_copy_to_linear_data(skb, temp_addr,
1752 		(unsigned int)len);
1753 }
1754 
1755 /*
1756  * This function builds an skb for the given inbound
1757  * completion.  It will be rewritten for readability in the near
1758  * future, but for not it works well.
1759  */
ql_build_rx_skb(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp)1760 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1761 				       struct rx_ring *rx_ring,
1762 				       struct ib_mac_iocb_rsp *ib_mac_rsp)
1763 {
1764 	struct bq_desc *lbq_desc;
1765 	struct bq_desc *sbq_desc;
1766 	struct sk_buff *skb = NULL;
1767 	u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1768 	u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1769 	size_t hlen = ETH_HLEN;
1770 
1771 	/*
1772 	 * Handle the header buffer if present.
1773 	 */
1774 	if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1775 	    ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1776 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1777 			     "Header of %d bytes in small buffer.\n", hdr_len);
1778 		/*
1779 		 * Headers fit nicely into a small buffer.
1780 		 */
1781 		sbq_desc = ql_get_curr_sbuf(rx_ring);
1782 		pci_unmap_single(qdev->pdev,
1783 				dma_unmap_addr(sbq_desc, mapaddr),
1784 				dma_unmap_len(sbq_desc, maplen),
1785 				PCI_DMA_FROMDEVICE);
1786 		skb = sbq_desc->p.skb;
1787 		ql_realign_skb(skb, hdr_len);
1788 		skb_put(skb, hdr_len);
1789 		sbq_desc->p.skb = NULL;
1790 	}
1791 
1792 	/*
1793 	 * Handle the data buffer(s).
1794 	 */
1795 	if (unlikely(!length)) {	/* Is there data too? */
1796 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1797 			     "No Data buffer in this packet.\n");
1798 		return skb;
1799 	}
1800 
1801 	if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1802 		if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1803 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1804 				     "Headers in small, data of %d bytes in small, combine them.\n",
1805 				     length);
1806 			/*
1807 			 * Data is less than small buffer size so it's
1808 			 * stuffed in a small buffer.
1809 			 * For this case we append the data
1810 			 * from the "data" small buffer to the "header" small
1811 			 * buffer.
1812 			 */
1813 			sbq_desc = ql_get_curr_sbuf(rx_ring);
1814 			pci_dma_sync_single_for_cpu(qdev->pdev,
1815 						    dma_unmap_addr
1816 						    (sbq_desc, mapaddr),
1817 						    dma_unmap_len
1818 						    (sbq_desc, maplen),
1819 						    PCI_DMA_FROMDEVICE);
1820 			memcpy(skb_put(skb, length),
1821 			       sbq_desc->p.skb->data, length);
1822 			pci_dma_sync_single_for_device(qdev->pdev,
1823 						       dma_unmap_addr
1824 						       (sbq_desc,
1825 							mapaddr),
1826 						       dma_unmap_len
1827 						       (sbq_desc,
1828 							maplen),
1829 						       PCI_DMA_FROMDEVICE);
1830 		} else {
1831 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1832 				     "%d bytes in a single small buffer.\n",
1833 				     length);
1834 			sbq_desc = ql_get_curr_sbuf(rx_ring);
1835 			skb = sbq_desc->p.skb;
1836 			ql_realign_skb(skb, length);
1837 			skb_put(skb, length);
1838 			pci_unmap_single(qdev->pdev,
1839 					 dma_unmap_addr(sbq_desc,
1840 							mapaddr),
1841 					 dma_unmap_len(sbq_desc,
1842 						       maplen),
1843 					 PCI_DMA_FROMDEVICE);
1844 			sbq_desc->p.skb = NULL;
1845 		}
1846 	} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1847 		if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1848 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1849 				     "Header in small, %d bytes in large. Chain large to small!\n",
1850 				     length);
1851 			/*
1852 			 * The data is in a single large buffer.  We
1853 			 * chain it to the header buffer's skb and let
1854 			 * it rip.
1855 			 */
1856 			lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1857 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1858 				     "Chaining page at offset = %d, for %d bytes  to skb.\n",
1859 				     lbq_desc->p.pg_chunk.offset, length);
1860 			skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1861 						lbq_desc->p.pg_chunk.offset,
1862 						length);
1863 			skb->len += length;
1864 			skb->data_len += length;
1865 			skb->truesize += length;
1866 		} else {
1867 			/*
1868 			 * The headers and data are in a single large buffer. We
1869 			 * copy it to a new skb and let it go. This can happen with
1870 			 * jumbo mtu on a non-TCP/UDP frame.
1871 			 */
1872 			lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1873 			skb = netdev_alloc_skb(qdev->ndev, length);
1874 			if (skb == NULL) {
1875 				netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1876 					     "No skb available, drop the packet.\n");
1877 				return NULL;
1878 			}
1879 			pci_unmap_page(qdev->pdev,
1880 				       dma_unmap_addr(lbq_desc,
1881 						      mapaddr),
1882 				       dma_unmap_len(lbq_desc, maplen),
1883 				       PCI_DMA_FROMDEVICE);
1884 			skb_reserve(skb, NET_IP_ALIGN);
1885 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1886 				     "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1887 				     length);
1888 			skb_fill_page_desc(skb, 0,
1889 						lbq_desc->p.pg_chunk.page,
1890 						lbq_desc->p.pg_chunk.offset,
1891 						length);
1892 			skb->len += length;
1893 			skb->data_len += length;
1894 			skb->truesize += length;
1895 			length -= length;
1896 			ql_update_mac_hdr_len(qdev, ib_mac_rsp,
1897 					      lbq_desc->p.pg_chunk.va,
1898 					      &hlen);
1899 			__pskb_pull_tail(skb, hlen);
1900 		}
1901 	} else {
1902 		/*
1903 		 * The data is in a chain of large buffers
1904 		 * pointed to by a small buffer.  We loop
1905 		 * thru and chain them to the our small header
1906 		 * buffer's skb.
1907 		 * frags:  There are 18 max frags and our small
1908 		 *         buffer will hold 32 of them. The thing is,
1909 		 *         we'll use 3 max for our 9000 byte jumbo
1910 		 *         frames.  If the MTU goes up we could
1911 		 *          eventually be in trouble.
1912 		 */
1913 		int size, i = 0;
1914 		sbq_desc = ql_get_curr_sbuf(rx_ring);
1915 		pci_unmap_single(qdev->pdev,
1916 				 dma_unmap_addr(sbq_desc, mapaddr),
1917 				 dma_unmap_len(sbq_desc, maplen),
1918 				 PCI_DMA_FROMDEVICE);
1919 		if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1920 			/*
1921 			 * This is an non TCP/UDP IP frame, so
1922 			 * the headers aren't split into a small
1923 			 * buffer.  We have to use the small buffer
1924 			 * that contains our sg list as our skb to
1925 			 * send upstairs. Copy the sg list here to
1926 			 * a local buffer and use it to find the
1927 			 * pages to chain.
1928 			 */
1929 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1930 				     "%d bytes of headers & data in chain of large.\n",
1931 				     length);
1932 			skb = sbq_desc->p.skb;
1933 			sbq_desc->p.skb = NULL;
1934 			skb_reserve(skb, NET_IP_ALIGN);
1935 		}
1936 		do {
1937 			lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1938 			size = (length < rx_ring->lbq_buf_size) ? length :
1939 				rx_ring->lbq_buf_size;
1940 
1941 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1942 				     "Adding page %d to skb for %d bytes.\n",
1943 				     i, size);
1944 			skb_fill_page_desc(skb, i,
1945 						lbq_desc->p.pg_chunk.page,
1946 						lbq_desc->p.pg_chunk.offset,
1947 						size);
1948 			skb->len += size;
1949 			skb->data_len += size;
1950 			skb->truesize += size;
1951 			length -= size;
1952 			i++;
1953 		} while (length > 0);
1954 		ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
1955 				      &hlen);
1956 		__pskb_pull_tail(skb, hlen);
1957 	}
1958 	return skb;
1959 }
1960 
1961 /* Process an inbound completion from an rx ring. */
ql_process_mac_split_rx_intr(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp,u16 vlan_id)1962 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1963 				   struct rx_ring *rx_ring,
1964 				   struct ib_mac_iocb_rsp *ib_mac_rsp,
1965 				   u16 vlan_id)
1966 {
1967 	struct net_device *ndev = qdev->ndev;
1968 	struct sk_buff *skb = NULL;
1969 
1970 	QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1971 
1972 	skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1973 	if (unlikely(!skb)) {
1974 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1975 			     "No skb available, drop packet.\n");
1976 		rx_ring->rx_dropped++;
1977 		return;
1978 	}
1979 
1980 	/* Frame error, so drop the packet. */
1981 	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1982 		ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1983 		dev_kfree_skb_any(skb);
1984 		return;
1985 	}
1986 
1987 	/* The max framesize filter on this chip is set higher than
1988 	 * MTU since FCoE uses 2k frames.
1989 	 */
1990 	if (skb->len > ndev->mtu + ETH_HLEN) {
1991 		dev_kfree_skb_any(skb);
1992 		rx_ring->rx_dropped++;
1993 		return;
1994 	}
1995 
1996 	/* loopback self test for ethtool */
1997 	if (test_bit(QL_SELFTEST, &qdev->flags)) {
1998 		ql_check_lb_frame(qdev, skb);
1999 		dev_kfree_skb_any(skb);
2000 		return;
2001 	}
2002 
2003 	prefetch(skb->data);
2004 	if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
2005 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
2006 			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2007 			     IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
2008 			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2009 			     IB_MAC_IOCB_RSP_M_REG ? "Registered" :
2010 			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2011 			     IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
2012 		rx_ring->rx_multicast++;
2013 	}
2014 	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
2015 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2016 			     "Promiscuous Packet.\n");
2017 	}
2018 
2019 	skb->protocol = eth_type_trans(skb, ndev);
2020 	skb_checksum_none_assert(skb);
2021 
2022 	/* If rx checksum is on, and there are no
2023 	 * csum or frame errors.
2024 	 */
2025 	if ((ndev->features & NETIF_F_RXCSUM) &&
2026 		!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2027 		/* TCP frame. */
2028 		if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
2029 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2030 				     "TCP checksum done!\n");
2031 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2032 		} else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2033 				(ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2034 		/* Unfragmented ipv4 UDP frame. */
2035 			struct iphdr *iph = (struct iphdr *) skb->data;
2036 			if (!(iph->frag_off &
2037 				htons(IP_MF|IP_OFFSET))) {
2038 				skb->ip_summed = CHECKSUM_UNNECESSARY;
2039 				netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2040 					     "TCP checksum done!\n");
2041 			}
2042 		}
2043 	}
2044 
2045 	rx_ring->rx_packets++;
2046 	rx_ring->rx_bytes += skb->len;
2047 	skb_record_rx_queue(skb, rx_ring->cq_id);
2048 	if (vlan_id != 0xffff)
2049 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
2050 	if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2051 		napi_gro_receive(&rx_ring->napi, skb);
2052 	else
2053 		netif_receive_skb(skb);
2054 }
2055 
2056 /* Process an inbound completion from an rx ring. */
ql_process_mac_rx_intr(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp)2057 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2058 					struct rx_ring *rx_ring,
2059 					struct ib_mac_iocb_rsp *ib_mac_rsp)
2060 {
2061 	u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2062 	u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2063 			(qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
2064 			((le16_to_cpu(ib_mac_rsp->vlan_id) &
2065 			IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2066 
2067 	QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2068 
2069 	if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2070 		/* The data and headers are split into
2071 		 * separate buffers.
2072 		 */
2073 		ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2074 						vlan_id);
2075 	} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2076 		/* The data fit in a single small buffer.
2077 		 * Allocate a new skb, copy the data and
2078 		 * return the buffer to the free pool.
2079 		 */
2080 		ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2081 						length, vlan_id);
2082 	} else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2083 		!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2084 		(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2085 		/* TCP packet in a page chunk that's been checksummed.
2086 		 * Tack it on to our GRO skb and let it go.
2087 		 */
2088 		ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2089 						length, vlan_id);
2090 	} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2091 		/* Non-TCP packet in a page chunk. Allocate an
2092 		 * skb, tack it on frags, and send it up.
2093 		 */
2094 		ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2095 						length, vlan_id);
2096 	} else {
2097 		/* Non-TCP/UDP large frames that span multiple buffers
2098 		 * can be processed corrrectly by the split frame logic.
2099 		 */
2100 		ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2101 						vlan_id);
2102 	}
2103 
2104 	return (unsigned long)length;
2105 }
2106 
2107 /* Process an outbound completion from an rx ring. */
ql_process_mac_tx_intr(struct ql_adapter * qdev,struct ob_mac_iocb_rsp * mac_rsp)2108 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2109 				   struct ob_mac_iocb_rsp *mac_rsp)
2110 {
2111 	struct tx_ring *tx_ring;
2112 	struct tx_ring_desc *tx_ring_desc;
2113 
2114 	QL_DUMP_OB_MAC_RSP(mac_rsp);
2115 	tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2116 	tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2117 	ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2118 	tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2119 	tx_ring->tx_packets++;
2120 	dev_kfree_skb(tx_ring_desc->skb);
2121 	tx_ring_desc->skb = NULL;
2122 
2123 	if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2124 					OB_MAC_IOCB_RSP_S |
2125 					OB_MAC_IOCB_RSP_L |
2126 					OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2127 		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2128 			netif_warn(qdev, tx_done, qdev->ndev,
2129 				   "Total descriptor length did not match transfer length.\n");
2130 		}
2131 		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2132 			netif_warn(qdev, tx_done, qdev->ndev,
2133 				   "Frame too short to be valid, not sent.\n");
2134 		}
2135 		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2136 			netif_warn(qdev, tx_done, qdev->ndev,
2137 				   "Frame too long, but sent anyway.\n");
2138 		}
2139 		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2140 			netif_warn(qdev, tx_done, qdev->ndev,
2141 				   "PCI backplane error. Frame not sent.\n");
2142 		}
2143 	}
2144 	atomic_inc(&tx_ring->tx_count);
2145 }
2146 
2147 /* Fire up a handler to reset the MPI processor. */
ql_queue_fw_error(struct ql_adapter * qdev)2148 void ql_queue_fw_error(struct ql_adapter *qdev)
2149 {
2150 	ql_link_off(qdev);
2151 	queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2152 }
2153 
ql_queue_asic_error(struct ql_adapter * qdev)2154 void ql_queue_asic_error(struct ql_adapter *qdev)
2155 {
2156 	ql_link_off(qdev);
2157 	ql_disable_interrupts(qdev);
2158 	/* Clear adapter up bit to signal the recovery
2159 	 * process that it shouldn't kill the reset worker
2160 	 * thread
2161 	 */
2162 	clear_bit(QL_ADAPTER_UP, &qdev->flags);
2163 	/* Set asic recovery bit to indicate reset process that we are
2164 	 * in fatal error recovery process rather than normal close
2165 	 */
2166 	set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2167 	queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2168 }
2169 
ql_process_chip_ae_intr(struct ql_adapter * qdev,struct ib_ae_iocb_rsp * ib_ae_rsp)2170 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2171 				    struct ib_ae_iocb_rsp *ib_ae_rsp)
2172 {
2173 	switch (ib_ae_rsp->event) {
2174 	case MGMT_ERR_EVENT:
2175 		netif_err(qdev, rx_err, qdev->ndev,
2176 			  "Management Processor Fatal Error.\n");
2177 		ql_queue_fw_error(qdev);
2178 		return;
2179 
2180 	case CAM_LOOKUP_ERR_EVENT:
2181 		netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2182 		netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2183 		ql_queue_asic_error(qdev);
2184 		return;
2185 
2186 	case SOFT_ECC_ERROR_EVENT:
2187 		netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2188 		ql_queue_asic_error(qdev);
2189 		break;
2190 
2191 	case PCI_ERR_ANON_BUF_RD:
2192 		netdev_err(qdev->ndev, "PCI error occurred when reading "
2193 					"anonymous buffers from rx_ring %d.\n",
2194 					ib_ae_rsp->q_id);
2195 		ql_queue_asic_error(qdev);
2196 		break;
2197 
2198 	default:
2199 		netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2200 			  ib_ae_rsp->event);
2201 		ql_queue_asic_error(qdev);
2202 		break;
2203 	}
2204 }
2205 
ql_clean_outbound_rx_ring(struct rx_ring * rx_ring)2206 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2207 {
2208 	struct ql_adapter *qdev = rx_ring->qdev;
2209 	u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2210 	struct ob_mac_iocb_rsp *net_rsp = NULL;
2211 	int count = 0;
2212 
2213 	struct tx_ring *tx_ring;
2214 	/* While there are entries in the completion queue. */
2215 	while (prod != rx_ring->cnsmr_idx) {
2216 
2217 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2218 			     "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2219 			     rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2220 
2221 		net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2222 		rmb();
2223 		switch (net_rsp->opcode) {
2224 
2225 		case OPCODE_OB_MAC_TSO_IOCB:
2226 		case OPCODE_OB_MAC_IOCB:
2227 			ql_process_mac_tx_intr(qdev, net_rsp);
2228 			break;
2229 		default:
2230 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2231 				     "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2232 				     net_rsp->opcode);
2233 		}
2234 		count++;
2235 		ql_update_cq(rx_ring);
2236 		prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2237 	}
2238 	if (!net_rsp)
2239 		return 0;
2240 	ql_write_cq_idx(rx_ring);
2241 	tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2242 	if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2243 		if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2244 			/*
2245 			 * The queue got stopped because the tx_ring was full.
2246 			 * Wake it up, because it's now at least 25% empty.
2247 			 */
2248 			netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2249 	}
2250 
2251 	return count;
2252 }
2253 
ql_clean_inbound_rx_ring(struct rx_ring * rx_ring,int budget)2254 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2255 {
2256 	struct ql_adapter *qdev = rx_ring->qdev;
2257 	u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2258 	struct ql_net_rsp_iocb *net_rsp;
2259 	int count = 0;
2260 
2261 	/* While there are entries in the completion queue. */
2262 	while (prod != rx_ring->cnsmr_idx) {
2263 
2264 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2265 			     "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2266 			     rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2267 
2268 		net_rsp = rx_ring->curr_entry;
2269 		rmb();
2270 		switch (net_rsp->opcode) {
2271 		case OPCODE_IB_MAC_IOCB:
2272 			ql_process_mac_rx_intr(qdev, rx_ring,
2273 					       (struct ib_mac_iocb_rsp *)
2274 					       net_rsp);
2275 			break;
2276 
2277 		case OPCODE_IB_AE_IOCB:
2278 			ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2279 						net_rsp);
2280 			break;
2281 		default:
2282 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2283 				     "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2284 				     net_rsp->opcode);
2285 			break;
2286 		}
2287 		count++;
2288 		ql_update_cq(rx_ring);
2289 		prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2290 		if (count == budget)
2291 			break;
2292 	}
2293 	ql_update_buffer_queues(qdev, rx_ring);
2294 	ql_write_cq_idx(rx_ring);
2295 	return count;
2296 }
2297 
ql_napi_poll_msix(struct napi_struct * napi,int budget)2298 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2299 {
2300 	struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2301 	struct ql_adapter *qdev = rx_ring->qdev;
2302 	struct rx_ring *trx_ring;
2303 	int i, work_done = 0;
2304 	struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2305 
2306 	netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2307 		     "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2308 
2309 	/* Service the TX rings first.  They start
2310 	 * right after the RSS rings. */
2311 	for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2312 		trx_ring = &qdev->rx_ring[i];
2313 		/* If this TX completion ring belongs to this vector and
2314 		 * it's not empty then service it.
2315 		 */
2316 		if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2317 			(ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2318 					trx_ring->cnsmr_idx)) {
2319 			netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2320 				     "%s: Servicing TX completion ring %d.\n",
2321 				     __func__, trx_ring->cq_id);
2322 			ql_clean_outbound_rx_ring(trx_ring);
2323 		}
2324 	}
2325 
2326 	/*
2327 	 * Now service the RSS ring if it's active.
2328 	 */
2329 	if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2330 					rx_ring->cnsmr_idx) {
2331 		netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2332 			     "%s: Servicing RX completion ring %d.\n",
2333 			     __func__, rx_ring->cq_id);
2334 		work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2335 	}
2336 
2337 	if (work_done < budget) {
2338 		napi_complete(napi);
2339 		ql_enable_completion_interrupt(qdev, rx_ring->irq);
2340 	}
2341 	return work_done;
2342 }
2343 
qlge_vlan_mode(struct net_device * ndev,netdev_features_t features)2344 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2345 {
2346 	struct ql_adapter *qdev = netdev_priv(ndev);
2347 
2348 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2349 		ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2350 				 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2351 	} else {
2352 		ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2353 	}
2354 }
2355 
2356 /**
2357  * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
2358  * based on the features to enable/disable hardware vlan accel
2359  */
qlge_update_hw_vlan_features(struct net_device * ndev,netdev_features_t features)2360 static int qlge_update_hw_vlan_features(struct net_device *ndev,
2361 					netdev_features_t features)
2362 {
2363 	struct ql_adapter *qdev = netdev_priv(ndev);
2364 	int status = 0;
2365 	bool need_restart = netif_running(ndev);
2366 
2367 	if (need_restart) {
2368 		status = ql_adapter_down(qdev);
2369 		if (status) {
2370 			netif_err(qdev, link, qdev->ndev,
2371 				  "Failed to bring down the adapter\n");
2372 			return status;
2373 		}
2374 	}
2375 
2376 	/* update the features with resent change */
2377 	ndev->features = features;
2378 
2379 	if (need_restart) {
2380 		status = ql_adapter_up(qdev);
2381 		if (status) {
2382 			netif_err(qdev, link, qdev->ndev,
2383 				  "Failed to bring up the adapter\n");
2384 			return status;
2385 		}
2386 	}
2387 
2388 	return status;
2389 }
2390 
qlge_fix_features(struct net_device * ndev,netdev_features_t features)2391 static netdev_features_t qlge_fix_features(struct net_device *ndev,
2392 	netdev_features_t features)
2393 {
2394 	int err;
2395 
2396 	/* Update the behavior of vlan accel in the adapter */
2397 	err = qlge_update_hw_vlan_features(ndev, features);
2398 	if (err)
2399 		return err;
2400 
2401 	return features;
2402 }
2403 
qlge_set_features(struct net_device * ndev,netdev_features_t features)2404 static int qlge_set_features(struct net_device *ndev,
2405 	netdev_features_t features)
2406 {
2407 	netdev_features_t changed = ndev->features ^ features;
2408 
2409 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2410 		qlge_vlan_mode(ndev, features);
2411 
2412 	return 0;
2413 }
2414 
__qlge_vlan_rx_add_vid(struct ql_adapter * qdev,u16 vid)2415 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2416 {
2417 	u32 enable_bit = MAC_ADDR_E;
2418 	int err;
2419 
2420 	err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2421 				  MAC_ADDR_TYPE_VLAN, vid);
2422 	if (err)
2423 		netif_err(qdev, ifup, qdev->ndev,
2424 			  "Failed to init vlan address.\n");
2425 	return err;
2426 }
2427 
qlge_vlan_rx_add_vid(struct net_device * ndev,__be16 proto,u16 vid)2428 static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
2429 {
2430 	struct ql_adapter *qdev = netdev_priv(ndev);
2431 	int status;
2432 	int err;
2433 
2434 	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2435 	if (status)
2436 		return status;
2437 
2438 	err = __qlge_vlan_rx_add_vid(qdev, vid);
2439 	set_bit(vid, qdev->active_vlans);
2440 
2441 	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2442 
2443 	return err;
2444 }
2445 
__qlge_vlan_rx_kill_vid(struct ql_adapter * qdev,u16 vid)2446 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2447 {
2448 	u32 enable_bit = 0;
2449 	int err;
2450 
2451 	err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2452 				  MAC_ADDR_TYPE_VLAN, vid);
2453 	if (err)
2454 		netif_err(qdev, ifup, qdev->ndev,
2455 			  "Failed to clear vlan address.\n");
2456 	return err;
2457 }
2458 
qlge_vlan_rx_kill_vid(struct net_device * ndev,__be16 proto,u16 vid)2459 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
2460 {
2461 	struct ql_adapter *qdev = netdev_priv(ndev);
2462 	int status;
2463 	int err;
2464 
2465 	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2466 	if (status)
2467 		return status;
2468 
2469 	err = __qlge_vlan_rx_kill_vid(qdev, vid);
2470 	clear_bit(vid, qdev->active_vlans);
2471 
2472 	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2473 
2474 	return err;
2475 }
2476 
qlge_restore_vlan(struct ql_adapter * qdev)2477 static void qlge_restore_vlan(struct ql_adapter *qdev)
2478 {
2479 	int status;
2480 	u16 vid;
2481 
2482 	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2483 	if (status)
2484 		return;
2485 
2486 	for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2487 		__qlge_vlan_rx_add_vid(qdev, vid);
2488 
2489 	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2490 }
2491 
2492 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
qlge_msix_rx_isr(int irq,void * dev_id)2493 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2494 {
2495 	struct rx_ring *rx_ring = dev_id;
2496 	napi_schedule(&rx_ring->napi);
2497 	return IRQ_HANDLED;
2498 }
2499 
2500 /* This handles a fatal error, MPI activity, and the default
2501  * rx_ring in an MSI-X multiple vector environment.
2502  * In MSI/Legacy environment it also process the rest of
2503  * the rx_rings.
2504  */
qlge_isr(int irq,void * dev_id)2505 static irqreturn_t qlge_isr(int irq, void *dev_id)
2506 {
2507 	struct rx_ring *rx_ring = dev_id;
2508 	struct ql_adapter *qdev = rx_ring->qdev;
2509 	struct intr_context *intr_context = &qdev->intr_context[0];
2510 	u32 var;
2511 	int work_done = 0;
2512 
2513 	spin_lock(&qdev->hw_lock);
2514 	if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2515 		netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2516 			     "Shared Interrupt, Not ours!\n");
2517 		spin_unlock(&qdev->hw_lock);
2518 		return IRQ_NONE;
2519 	}
2520 	spin_unlock(&qdev->hw_lock);
2521 
2522 	var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2523 
2524 	/*
2525 	 * Check for fatal error.
2526 	 */
2527 	if (var & STS_FE) {
2528 		ql_queue_asic_error(qdev);
2529 		netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2530 		var = ql_read32(qdev, ERR_STS);
2531 		netdev_err(qdev->ndev, "Resetting chip. "
2532 					"Error Status Register = 0x%x\n", var);
2533 		return IRQ_HANDLED;
2534 	}
2535 
2536 	/*
2537 	 * Check MPI processor activity.
2538 	 */
2539 	if ((var & STS_PI) &&
2540 		(ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2541 		/*
2542 		 * We've got an async event or mailbox completion.
2543 		 * Handle it and clear the source of the interrupt.
2544 		 */
2545 		netif_err(qdev, intr, qdev->ndev,
2546 			  "Got MPI processor interrupt.\n");
2547 		ql_disable_completion_interrupt(qdev, intr_context->intr);
2548 		ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2549 		queue_delayed_work_on(smp_processor_id(),
2550 				qdev->workqueue, &qdev->mpi_work, 0);
2551 		work_done++;
2552 	}
2553 
2554 	/*
2555 	 * Get the bit-mask that shows the active queues for this
2556 	 * pass.  Compare it to the queues that this irq services
2557 	 * and call napi if there's a match.
2558 	 */
2559 	var = ql_read32(qdev, ISR1);
2560 	if (var & intr_context->irq_mask) {
2561 		netif_info(qdev, intr, qdev->ndev,
2562 			   "Waking handler for rx_ring[0].\n");
2563 		ql_disable_completion_interrupt(qdev, intr_context->intr);
2564 		napi_schedule(&rx_ring->napi);
2565 		work_done++;
2566 	}
2567 	ql_enable_completion_interrupt(qdev, intr_context->intr);
2568 	return work_done ? IRQ_HANDLED : IRQ_NONE;
2569 }
2570 
ql_tso(struct sk_buff * skb,struct ob_mac_tso_iocb_req * mac_iocb_ptr)2571 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2572 {
2573 
2574 	if (skb_is_gso(skb)) {
2575 		int err;
2576 		__be16 l3_proto = vlan_get_protocol(skb);
2577 
2578 		err = skb_cow_head(skb, 0);
2579 		if (err < 0)
2580 			return err;
2581 
2582 		mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2583 		mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2584 		mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2585 		mac_iocb_ptr->total_hdrs_len =
2586 		    cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2587 		mac_iocb_ptr->net_trans_offset =
2588 		    cpu_to_le16(skb_network_offset(skb) |
2589 				skb_transport_offset(skb)
2590 				<< OB_MAC_TRANSPORT_HDR_SHIFT);
2591 		mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2592 		mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2593 		if (likely(l3_proto == htons(ETH_P_IP))) {
2594 			struct iphdr *iph = ip_hdr(skb);
2595 			iph->check = 0;
2596 			mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2597 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2598 								 iph->daddr, 0,
2599 								 IPPROTO_TCP,
2600 								 0);
2601 		} else if (l3_proto == htons(ETH_P_IPV6)) {
2602 			mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2603 			tcp_hdr(skb)->check =
2604 			    ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2605 					     &ipv6_hdr(skb)->daddr,
2606 					     0, IPPROTO_TCP, 0);
2607 		}
2608 		return 1;
2609 	}
2610 	return 0;
2611 }
2612 
ql_hw_csum_setup(struct sk_buff * skb,struct ob_mac_tso_iocb_req * mac_iocb_ptr)2613 static void ql_hw_csum_setup(struct sk_buff *skb,
2614 			     struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2615 {
2616 	int len;
2617 	struct iphdr *iph = ip_hdr(skb);
2618 	__sum16 *check;
2619 	mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2620 	mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2621 	mac_iocb_ptr->net_trans_offset =
2622 		cpu_to_le16(skb_network_offset(skb) |
2623 		skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2624 
2625 	mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2626 	len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2627 	if (likely(iph->protocol == IPPROTO_TCP)) {
2628 		check = &(tcp_hdr(skb)->check);
2629 		mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2630 		mac_iocb_ptr->total_hdrs_len =
2631 		    cpu_to_le16(skb_transport_offset(skb) +
2632 				(tcp_hdr(skb)->doff << 2));
2633 	} else {
2634 		check = &(udp_hdr(skb)->check);
2635 		mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2636 		mac_iocb_ptr->total_hdrs_len =
2637 		    cpu_to_le16(skb_transport_offset(skb) +
2638 				sizeof(struct udphdr));
2639 	}
2640 	*check = ~csum_tcpudp_magic(iph->saddr,
2641 				    iph->daddr, len, iph->protocol, 0);
2642 }
2643 
qlge_send(struct sk_buff * skb,struct net_device * ndev)2644 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2645 {
2646 	struct tx_ring_desc *tx_ring_desc;
2647 	struct ob_mac_iocb_req *mac_iocb_ptr;
2648 	struct ql_adapter *qdev = netdev_priv(ndev);
2649 	int tso;
2650 	struct tx_ring *tx_ring;
2651 	u32 tx_ring_idx = (u32) skb->queue_mapping;
2652 
2653 	tx_ring = &qdev->tx_ring[tx_ring_idx];
2654 
2655 	if (skb_padto(skb, ETH_ZLEN))
2656 		return NETDEV_TX_OK;
2657 
2658 	if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2659 		netif_info(qdev, tx_queued, qdev->ndev,
2660 			   "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2661 			   __func__, tx_ring_idx);
2662 		netif_stop_subqueue(ndev, tx_ring->wq_id);
2663 		tx_ring->tx_errors++;
2664 		return NETDEV_TX_BUSY;
2665 	}
2666 	tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2667 	mac_iocb_ptr = tx_ring_desc->queue_entry;
2668 	memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2669 
2670 	mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2671 	mac_iocb_ptr->tid = tx_ring_desc->index;
2672 	/* We use the upper 32-bits to store the tx queue for this IO.
2673 	 * When we get the completion we can use it to establish the context.
2674 	 */
2675 	mac_iocb_ptr->txq_idx = tx_ring_idx;
2676 	tx_ring_desc->skb = skb;
2677 
2678 	mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2679 
2680 	if (skb_vlan_tag_present(skb)) {
2681 		netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2682 			     "Adding a vlan tag %d.\n", skb_vlan_tag_get(skb));
2683 		mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2684 		mac_iocb_ptr->vlan_tci = cpu_to_le16(skb_vlan_tag_get(skb));
2685 	}
2686 	tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2687 	if (tso < 0) {
2688 		dev_kfree_skb_any(skb);
2689 		return NETDEV_TX_OK;
2690 	} else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2691 		ql_hw_csum_setup(skb,
2692 				 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2693 	}
2694 	if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2695 			NETDEV_TX_OK) {
2696 		netif_err(qdev, tx_queued, qdev->ndev,
2697 			  "Could not map the segments.\n");
2698 		tx_ring->tx_errors++;
2699 		return NETDEV_TX_BUSY;
2700 	}
2701 	QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2702 	tx_ring->prod_idx++;
2703 	if (tx_ring->prod_idx == tx_ring->wq_len)
2704 		tx_ring->prod_idx = 0;
2705 	wmb();
2706 
2707 	ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2708 	netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2709 		     "tx queued, slot %d, len %d\n",
2710 		     tx_ring->prod_idx, skb->len);
2711 
2712 	atomic_dec(&tx_ring->tx_count);
2713 
2714 	if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2715 		netif_stop_subqueue(ndev, tx_ring->wq_id);
2716 		if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2717 			/*
2718 			 * The queue got stopped because the tx_ring was full.
2719 			 * Wake it up, because it's now at least 25% empty.
2720 			 */
2721 			netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2722 	}
2723 	return NETDEV_TX_OK;
2724 }
2725 
2726 
ql_free_shadow_space(struct ql_adapter * qdev)2727 static void ql_free_shadow_space(struct ql_adapter *qdev)
2728 {
2729 	if (qdev->rx_ring_shadow_reg_area) {
2730 		pci_free_consistent(qdev->pdev,
2731 				    PAGE_SIZE,
2732 				    qdev->rx_ring_shadow_reg_area,
2733 				    qdev->rx_ring_shadow_reg_dma);
2734 		qdev->rx_ring_shadow_reg_area = NULL;
2735 	}
2736 	if (qdev->tx_ring_shadow_reg_area) {
2737 		pci_free_consistent(qdev->pdev,
2738 				    PAGE_SIZE,
2739 				    qdev->tx_ring_shadow_reg_area,
2740 				    qdev->tx_ring_shadow_reg_dma);
2741 		qdev->tx_ring_shadow_reg_area = NULL;
2742 	}
2743 }
2744 
ql_alloc_shadow_space(struct ql_adapter * qdev)2745 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2746 {
2747 	qdev->rx_ring_shadow_reg_area =
2748 		pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2749 				      &qdev->rx_ring_shadow_reg_dma);
2750 	if (qdev->rx_ring_shadow_reg_area == NULL) {
2751 		netif_err(qdev, ifup, qdev->ndev,
2752 			  "Allocation of RX shadow space failed.\n");
2753 		return -ENOMEM;
2754 	}
2755 
2756 	qdev->tx_ring_shadow_reg_area =
2757 		pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2758 				      &qdev->tx_ring_shadow_reg_dma);
2759 	if (qdev->tx_ring_shadow_reg_area == NULL) {
2760 		netif_err(qdev, ifup, qdev->ndev,
2761 			  "Allocation of TX shadow space failed.\n");
2762 		goto err_wqp_sh_area;
2763 	}
2764 	return 0;
2765 
2766 err_wqp_sh_area:
2767 	pci_free_consistent(qdev->pdev,
2768 			    PAGE_SIZE,
2769 			    qdev->rx_ring_shadow_reg_area,
2770 			    qdev->rx_ring_shadow_reg_dma);
2771 	return -ENOMEM;
2772 }
2773 
ql_init_tx_ring(struct ql_adapter * qdev,struct tx_ring * tx_ring)2774 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2775 {
2776 	struct tx_ring_desc *tx_ring_desc;
2777 	int i;
2778 	struct ob_mac_iocb_req *mac_iocb_ptr;
2779 
2780 	mac_iocb_ptr = tx_ring->wq_base;
2781 	tx_ring_desc = tx_ring->q;
2782 	for (i = 0; i < tx_ring->wq_len; i++) {
2783 		tx_ring_desc->index = i;
2784 		tx_ring_desc->skb = NULL;
2785 		tx_ring_desc->queue_entry = mac_iocb_ptr;
2786 		mac_iocb_ptr++;
2787 		tx_ring_desc++;
2788 	}
2789 	atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2790 }
2791 
ql_free_tx_resources(struct ql_adapter * qdev,struct tx_ring * tx_ring)2792 static void ql_free_tx_resources(struct ql_adapter *qdev,
2793 				 struct tx_ring *tx_ring)
2794 {
2795 	if (tx_ring->wq_base) {
2796 		pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2797 				    tx_ring->wq_base, tx_ring->wq_base_dma);
2798 		tx_ring->wq_base = NULL;
2799 	}
2800 	kfree(tx_ring->q);
2801 	tx_ring->q = NULL;
2802 }
2803 
ql_alloc_tx_resources(struct ql_adapter * qdev,struct tx_ring * tx_ring)2804 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2805 				 struct tx_ring *tx_ring)
2806 {
2807 	tx_ring->wq_base =
2808 	    pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2809 				 &tx_ring->wq_base_dma);
2810 
2811 	if ((tx_ring->wq_base == NULL) ||
2812 	    tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2813 		goto pci_alloc_err;
2814 
2815 	tx_ring->q =
2816 	    kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2817 	if (tx_ring->q == NULL)
2818 		goto err;
2819 
2820 	return 0;
2821 err:
2822 	pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2823 			    tx_ring->wq_base, tx_ring->wq_base_dma);
2824 	tx_ring->wq_base = NULL;
2825 pci_alloc_err:
2826 	netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2827 	return -ENOMEM;
2828 }
2829 
ql_free_lbq_buffers(struct ql_adapter * qdev,struct rx_ring * rx_ring)2830 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2831 {
2832 	struct bq_desc *lbq_desc;
2833 
2834 	uint32_t  curr_idx, clean_idx;
2835 
2836 	curr_idx = rx_ring->lbq_curr_idx;
2837 	clean_idx = rx_ring->lbq_clean_idx;
2838 	while (curr_idx != clean_idx) {
2839 		lbq_desc = &rx_ring->lbq[curr_idx];
2840 
2841 		if (lbq_desc->p.pg_chunk.last_flag) {
2842 			pci_unmap_page(qdev->pdev,
2843 				lbq_desc->p.pg_chunk.map,
2844 				ql_lbq_block_size(qdev),
2845 				       PCI_DMA_FROMDEVICE);
2846 			lbq_desc->p.pg_chunk.last_flag = 0;
2847 		}
2848 
2849 		put_page(lbq_desc->p.pg_chunk.page);
2850 		lbq_desc->p.pg_chunk.page = NULL;
2851 
2852 		if (++curr_idx == rx_ring->lbq_len)
2853 			curr_idx = 0;
2854 
2855 	}
2856 	if (rx_ring->pg_chunk.page) {
2857 		pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2858 			ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2859 		put_page(rx_ring->pg_chunk.page);
2860 		rx_ring->pg_chunk.page = NULL;
2861 	}
2862 }
2863 
ql_free_sbq_buffers(struct ql_adapter * qdev,struct rx_ring * rx_ring)2864 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2865 {
2866 	int i;
2867 	struct bq_desc *sbq_desc;
2868 
2869 	for (i = 0; i < rx_ring->sbq_len; i++) {
2870 		sbq_desc = &rx_ring->sbq[i];
2871 		if (sbq_desc == NULL) {
2872 			netif_err(qdev, ifup, qdev->ndev,
2873 				  "sbq_desc %d is NULL.\n", i);
2874 			return;
2875 		}
2876 		if (sbq_desc->p.skb) {
2877 			pci_unmap_single(qdev->pdev,
2878 					 dma_unmap_addr(sbq_desc, mapaddr),
2879 					 dma_unmap_len(sbq_desc, maplen),
2880 					 PCI_DMA_FROMDEVICE);
2881 			dev_kfree_skb(sbq_desc->p.skb);
2882 			sbq_desc->p.skb = NULL;
2883 		}
2884 	}
2885 }
2886 
2887 /* Free all large and small rx buffers associated
2888  * with the completion queues for this device.
2889  */
ql_free_rx_buffers(struct ql_adapter * qdev)2890 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2891 {
2892 	int i;
2893 	struct rx_ring *rx_ring;
2894 
2895 	for (i = 0; i < qdev->rx_ring_count; i++) {
2896 		rx_ring = &qdev->rx_ring[i];
2897 		if (rx_ring->lbq)
2898 			ql_free_lbq_buffers(qdev, rx_ring);
2899 		if (rx_ring->sbq)
2900 			ql_free_sbq_buffers(qdev, rx_ring);
2901 	}
2902 }
2903 
ql_alloc_rx_buffers(struct ql_adapter * qdev)2904 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2905 {
2906 	struct rx_ring *rx_ring;
2907 	int i;
2908 
2909 	for (i = 0; i < qdev->rx_ring_count; i++) {
2910 		rx_ring = &qdev->rx_ring[i];
2911 		if (rx_ring->type != TX_Q)
2912 			ql_update_buffer_queues(qdev, rx_ring);
2913 	}
2914 }
2915 
ql_init_lbq_ring(struct ql_adapter * qdev,struct rx_ring * rx_ring)2916 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2917 				struct rx_ring *rx_ring)
2918 {
2919 	int i;
2920 	struct bq_desc *lbq_desc;
2921 	__le64 *bq = rx_ring->lbq_base;
2922 
2923 	memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2924 	for (i = 0; i < rx_ring->lbq_len; i++) {
2925 		lbq_desc = &rx_ring->lbq[i];
2926 		memset(lbq_desc, 0, sizeof(*lbq_desc));
2927 		lbq_desc->index = i;
2928 		lbq_desc->addr = bq;
2929 		bq++;
2930 	}
2931 }
2932 
ql_init_sbq_ring(struct ql_adapter * qdev,struct rx_ring * rx_ring)2933 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2934 				struct rx_ring *rx_ring)
2935 {
2936 	int i;
2937 	struct bq_desc *sbq_desc;
2938 	__le64 *bq = rx_ring->sbq_base;
2939 
2940 	memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2941 	for (i = 0; i < rx_ring->sbq_len; i++) {
2942 		sbq_desc = &rx_ring->sbq[i];
2943 		memset(sbq_desc, 0, sizeof(*sbq_desc));
2944 		sbq_desc->index = i;
2945 		sbq_desc->addr = bq;
2946 		bq++;
2947 	}
2948 }
2949 
ql_free_rx_resources(struct ql_adapter * qdev,struct rx_ring * rx_ring)2950 static void ql_free_rx_resources(struct ql_adapter *qdev,
2951 				 struct rx_ring *rx_ring)
2952 {
2953 	/* Free the small buffer queue. */
2954 	if (rx_ring->sbq_base) {
2955 		pci_free_consistent(qdev->pdev,
2956 				    rx_ring->sbq_size,
2957 				    rx_ring->sbq_base, rx_ring->sbq_base_dma);
2958 		rx_ring->sbq_base = NULL;
2959 	}
2960 
2961 	/* Free the small buffer queue control blocks. */
2962 	kfree(rx_ring->sbq);
2963 	rx_ring->sbq = NULL;
2964 
2965 	/* Free the large buffer queue. */
2966 	if (rx_ring->lbq_base) {
2967 		pci_free_consistent(qdev->pdev,
2968 				    rx_ring->lbq_size,
2969 				    rx_ring->lbq_base, rx_ring->lbq_base_dma);
2970 		rx_ring->lbq_base = NULL;
2971 	}
2972 
2973 	/* Free the large buffer queue control blocks. */
2974 	kfree(rx_ring->lbq);
2975 	rx_ring->lbq = NULL;
2976 
2977 	/* Free the rx queue. */
2978 	if (rx_ring->cq_base) {
2979 		pci_free_consistent(qdev->pdev,
2980 				    rx_ring->cq_size,
2981 				    rx_ring->cq_base, rx_ring->cq_base_dma);
2982 		rx_ring->cq_base = NULL;
2983 	}
2984 }
2985 
2986 /* Allocate queues and buffers for this completions queue based
2987  * on the values in the parameter structure. */
ql_alloc_rx_resources(struct ql_adapter * qdev,struct rx_ring * rx_ring)2988 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2989 				 struct rx_ring *rx_ring)
2990 {
2991 
2992 	/*
2993 	 * Allocate the completion queue for this rx_ring.
2994 	 */
2995 	rx_ring->cq_base =
2996 	    pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2997 				 &rx_ring->cq_base_dma);
2998 
2999 	if (rx_ring->cq_base == NULL) {
3000 		netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
3001 		return -ENOMEM;
3002 	}
3003 
3004 	if (rx_ring->sbq_len) {
3005 		/*
3006 		 * Allocate small buffer queue.
3007 		 */
3008 		rx_ring->sbq_base =
3009 		    pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
3010 					 &rx_ring->sbq_base_dma);
3011 
3012 		if (rx_ring->sbq_base == NULL) {
3013 			netif_err(qdev, ifup, qdev->ndev,
3014 				  "Small buffer queue allocation failed.\n");
3015 			goto err_mem;
3016 		}
3017 
3018 		/*
3019 		 * Allocate small buffer queue control blocks.
3020 		 */
3021 		rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
3022 					     sizeof(struct bq_desc),
3023 					     GFP_KERNEL);
3024 		if (rx_ring->sbq == NULL)
3025 			goto err_mem;
3026 
3027 		ql_init_sbq_ring(qdev, rx_ring);
3028 	}
3029 
3030 	if (rx_ring->lbq_len) {
3031 		/*
3032 		 * Allocate large buffer queue.
3033 		 */
3034 		rx_ring->lbq_base =
3035 		    pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
3036 					 &rx_ring->lbq_base_dma);
3037 
3038 		if (rx_ring->lbq_base == NULL) {
3039 			netif_err(qdev, ifup, qdev->ndev,
3040 				  "Large buffer queue allocation failed.\n");
3041 			goto err_mem;
3042 		}
3043 		/*
3044 		 * Allocate large buffer queue control blocks.
3045 		 */
3046 		rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
3047 					     sizeof(struct bq_desc),
3048 					     GFP_KERNEL);
3049 		if (rx_ring->lbq == NULL)
3050 			goto err_mem;
3051 
3052 		ql_init_lbq_ring(qdev, rx_ring);
3053 	}
3054 
3055 	return 0;
3056 
3057 err_mem:
3058 	ql_free_rx_resources(qdev, rx_ring);
3059 	return -ENOMEM;
3060 }
3061 
ql_tx_ring_clean(struct ql_adapter * qdev)3062 static void ql_tx_ring_clean(struct ql_adapter *qdev)
3063 {
3064 	struct tx_ring *tx_ring;
3065 	struct tx_ring_desc *tx_ring_desc;
3066 	int i, j;
3067 
3068 	/*
3069 	 * Loop through all queues and free
3070 	 * any resources.
3071 	 */
3072 	for (j = 0; j < qdev->tx_ring_count; j++) {
3073 		tx_ring = &qdev->tx_ring[j];
3074 		for (i = 0; i < tx_ring->wq_len; i++) {
3075 			tx_ring_desc = &tx_ring->q[i];
3076 			if (tx_ring_desc && tx_ring_desc->skb) {
3077 				netif_err(qdev, ifdown, qdev->ndev,
3078 					  "Freeing lost SKB %p, from queue %d, index %d.\n",
3079 					  tx_ring_desc->skb, j,
3080 					  tx_ring_desc->index);
3081 				ql_unmap_send(qdev, tx_ring_desc,
3082 					      tx_ring_desc->map_cnt);
3083 				dev_kfree_skb(tx_ring_desc->skb);
3084 				tx_ring_desc->skb = NULL;
3085 			}
3086 		}
3087 	}
3088 }
3089 
ql_free_mem_resources(struct ql_adapter * qdev)3090 static void ql_free_mem_resources(struct ql_adapter *qdev)
3091 {
3092 	int i;
3093 
3094 	for (i = 0; i < qdev->tx_ring_count; i++)
3095 		ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3096 	for (i = 0; i < qdev->rx_ring_count; i++)
3097 		ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3098 	ql_free_shadow_space(qdev);
3099 }
3100 
ql_alloc_mem_resources(struct ql_adapter * qdev)3101 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3102 {
3103 	int i;
3104 
3105 	/* Allocate space for our shadow registers and such. */
3106 	if (ql_alloc_shadow_space(qdev))
3107 		return -ENOMEM;
3108 
3109 	for (i = 0; i < qdev->rx_ring_count; i++) {
3110 		if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3111 			netif_err(qdev, ifup, qdev->ndev,
3112 				  "RX resource allocation failed.\n");
3113 			goto err_mem;
3114 		}
3115 	}
3116 	/* Allocate tx queue resources */
3117 	for (i = 0; i < qdev->tx_ring_count; i++) {
3118 		if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3119 			netif_err(qdev, ifup, qdev->ndev,
3120 				  "TX resource allocation failed.\n");
3121 			goto err_mem;
3122 		}
3123 	}
3124 	return 0;
3125 
3126 err_mem:
3127 	ql_free_mem_resources(qdev);
3128 	return -ENOMEM;
3129 }
3130 
3131 /* Set up the rx ring control block and pass it to the chip.
3132  * The control block is defined as
3133  * "Completion Queue Initialization Control Block", or cqicb.
3134  */
ql_start_rx_ring(struct ql_adapter * qdev,struct rx_ring * rx_ring)3135 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3136 {
3137 	struct cqicb *cqicb = &rx_ring->cqicb;
3138 	void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3139 		(rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3140 	u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3141 		(rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3142 	void __iomem *doorbell_area =
3143 	    qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3144 	int err = 0;
3145 	u16 bq_len;
3146 	u64 tmp;
3147 	__le64 *base_indirect_ptr;
3148 	int page_entries;
3149 
3150 	/* Set up the shadow registers for this ring. */
3151 	rx_ring->prod_idx_sh_reg = shadow_reg;
3152 	rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3153 	*rx_ring->prod_idx_sh_reg = 0;
3154 	shadow_reg += sizeof(u64);
3155 	shadow_reg_dma += sizeof(u64);
3156 	rx_ring->lbq_base_indirect = shadow_reg;
3157 	rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3158 	shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3159 	shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3160 	rx_ring->sbq_base_indirect = shadow_reg;
3161 	rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3162 
3163 	/* PCI doorbell mem area + 0x00 for consumer index register */
3164 	rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3165 	rx_ring->cnsmr_idx = 0;
3166 	rx_ring->curr_entry = rx_ring->cq_base;
3167 
3168 	/* PCI doorbell mem area + 0x04 for valid register */
3169 	rx_ring->valid_db_reg = doorbell_area + 0x04;
3170 
3171 	/* PCI doorbell mem area + 0x18 for large buffer consumer */
3172 	rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3173 
3174 	/* PCI doorbell mem area + 0x1c */
3175 	rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3176 
3177 	memset((void *)cqicb, 0, sizeof(struct cqicb));
3178 	cqicb->msix_vect = rx_ring->irq;
3179 
3180 	bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3181 	cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3182 
3183 	cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3184 
3185 	cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3186 
3187 	/*
3188 	 * Set up the control block load flags.
3189 	 */
3190 	cqicb->flags = FLAGS_LC |	/* Load queue base address */
3191 	    FLAGS_LV |		/* Load MSI-X vector */
3192 	    FLAGS_LI;		/* Load irq delay values */
3193 	if (rx_ring->lbq_len) {
3194 		cqicb->flags |= FLAGS_LL;	/* Load lbq values */
3195 		tmp = (u64)rx_ring->lbq_base_dma;
3196 		base_indirect_ptr = rx_ring->lbq_base_indirect;
3197 		page_entries = 0;
3198 		do {
3199 			*base_indirect_ptr = cpu_to_le64(tmp);
3200 			tmp += DB_PAGE_SIZE;
3201 			base_indirect_ptr++;
3202 			page_entries++;
3203 		} while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3204 		cqicb->lbq_addr =
3205 		    cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3206 		bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3207 			(u16) rx_ring->lbq_buf_size;
3208 		cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3209 		bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3210 			(u16) rx_ring->lbq_len;
3211 		cqicb->lbq_len = cpu_to_le16(bq_len);
3212 		rx_ring->lbq_prod_idx = 0;
3213 		rx_ring->lbq_curr_idx = 0;
3214 		rx_ring->lbq_clean_idx = 0;
3215 		rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3216 	}
3217 	if (rx_ring->sbq_len) {
3218 		cqicb->flags |= FLAGS_LS;	/* Load sbq values */
3219 		tmp = (u64)rx_ring->sbq_base_dma;
3220 		base_indirect_ptr = rx_ring->sbq_base_indirect;
3221 		page_entries = 0;
3222 		do {
3223 			*base_indirect_ptr = cpu_to_le64(tmp);
3224 			tmp += DB_PAGE_SIZE;
3225 			base_indirect_ptr++;
3226 			page_entries++;
3227 		} while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3228 		cqicb->sbq_addr =
3229 		    cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3230 		cqicb->sbq_buf_size =
3231 		    cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3232 		bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3233 			(u16) rx_ring->sbq_len;
3234 		cqicb->sbq_len = cpu_to_le16(bq_len);
3235 		rx_ring->sbq_prod_idx = 0;
3236 		rx_ring->sbq_curr_idx = 0;
3237 		rx_ring->sbq_clean_idx = 0;
3238 		rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3239 	}
3240 	switch (rx_ring->type) {
3241 	case TX_Q:
3242 		cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3243 		cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3244 		break;
3245 	case RX_Q:
3246 		/* Inbound completion handling rx_rings run in
3247 		 * separate NAPI contexts.
3248 		 */
3249 		netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3250 			       64);
3251 		cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3252 		cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3253 		break;
3254 	default:
3255 		netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3256 			     "Invalid rx_ring->type = %d.\n", rx_ring->type);
3257 	}
3258 	err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3259 			   CFG_LCQ, rx_ring->cq_id);
3260 	if (err) {
3261 		netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3262 		return err;
3263 	}
3264 	return err;
3265 }
3266 
ql_start_tx_ring(struct ql_adapter * qdev,struct tx_ring * tx_ring)3267 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3268 {
3269 	struct wqicb *wqicb = (struct wqicb *)tx_ring;
3270 	void __iomem *doorbell_area =
3271 	    qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3272 	void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3273 	    (tx_ring->wq_id * sizeof(u64));
3274 	u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3275 	    (tx_ring->wq_id * sizeof(u64));
3276 	int err = 0;
3277 
3278 	/*
3279 	 * Assign doorbell registers for this tx_ring.
3280 	 */
3281 	/* TX PCI doorbell mem area for tx producer index */
3282 	tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3283 	tx_ring->prod_idx = 0;
3284 	/* TX PCI doorbell mem area + 0x04 */
3285 	tx_ring->valid_db_reg = doorbell_area + 0x04;
3286 
3287 	/*
3288 	 * Assign shadow registers for this tx_ring.
3289 	 */
3290 	tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3291 	tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3292 
3293 	wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3294 	wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3295 				   Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3296 	wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3297 	wqicb->rid = 0;
3298 	wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3299 
3300 	wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3301 
3302 	ql_init_tx_ring(qdev, tx_ring);
3303 
3304 	err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3305 			   (u16) tx_ring->wq_id);
3306 	if (err) {
3307 		netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3308 		return err;
3309 	}
3310 	return err;
3311 }
3312 
ql_disable_msix(struct ql_adapter * qdev)3313 static void ql_disable_msix(struct ql_adapter *qdev)
3314 {
3315 	if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3316 		pci_disable_msix(qdev->pdev);
3317 		clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3318 		kfree(qdev->msi_x_entry);
3319 		qdev->msi_x_entry = NULL;
3320 	} else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3321 		pci_disable_msi(qdev->pdev);
3322 		clear_bit(QL_MSI_ENABLED, &qdev->flags);
3323 	}
3324 }
3325 
3326 /* We start by trying to get the number of vectors
3327  * stored in qdev->intr_count. If we don't get that
3328  * many then we reduce the count and try again.
3329  */
ql_enable_msix(struct ql_adapter * qdev)3330 static void ql_enable_msix(struct ql_adapter *qdev)
3331 {
3332 	int i, err;
3333 
3334 	/* Get the MSIX vectors. */
3335 	if (qlge_irq_type == MSIX_IRQ) {
3336 		/* Try to alloc space for the msix struct,
3337 		 * if it fails then go to MSI/legacy.
3338 		 */
3339 		qdev->msi_x_entry = kcalloc(qdev->intr_count,
3340 					    sizeof(struct msix_entry),
3341 					    GFP_KERNEL);
3342 		if (!qdev->msi_x_entry) {
3343 			qlge_irq_type = MSI_IRQ;
3344 			goto msi;
3345 		}
3346 
3347 		for (i = 0; i < qdev->intr_count; i++)
3348 			qdev->msi_x_entry[i].entry = i;
3349 
3350 		err = pci_enable_msix_range(qdev->pdev, qdev->msi_x_entry,
3351 					    1, qdev->intr_count);
3352 		if (err < 0) {
3353 			kfree(qdev->msi_x_entry);
3354 			qdev->msi_x_entry = NULL;
3355 			netif_warn(qdev, ifup, qdev->ndev,
3356 				   "MSI-X Enable failed, trying MSI.\n");
3357 			qlge_irq_type = MSI_IRQ;
3358 		} else {
3359 			qdev->intr_count = err;
3360 			set_bit(QL_MSIX_ENABLED, &qdev->flags);
3361 			netif_info(qdev, ifup, qdev->ndev,
3362 				   "MSI-X Enabled, got %d vectors.\n",
3363 				   qdev->intr_count);
3364 			return;
3365 		}
3366 	}
3367 msi:
3368 	qdev->intr_count = 1;
3369 	if (qlge_irq_type == MSI_IRQ) {
3370 		if (!pci_enable_msi(qdev->pdev)) {
3371 			set_bit(QL_MSI_ENABLED, &qdev->flags);
3372 			netif_info(qdev, ifup, qdev->ndev,
3373 				   "Running with MSI interrupts.\n");
3374 			return;
3375 		}
3376 	}
3377 	qlge_irq_type = LEG_IRQ;
3378 	netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3379 		     "Running with legacy interrupts.\n");
3380 }
3381 
3382 /* Each vector services 1 RSS ring and and 1 or more
3383  * TX completion rings.  This function loops through
3384  * the TX completion rings and assigns the vector that
3385  * will service it.  An example would be if there are
3386  * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3387  * This would mean that vector 0 would service RSS ring 0
3388  * and TX completion rings 0,1,2 and 3.  Vector 1 would
3389  * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3390  */
ql_set_tx_vect(struct ql_adapter * qdev)3391 static void ql_set_tx_vect(struct ql_adapter *qdev)
3392 {
3393 	int i, j, vect;
3394 	u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3395 
3396 	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3397 		/* Assign irq vectors to TX rx_rings.*/
3398 		for (vect = 0, j = 0, i = qdev->rss_ring_count;
3399 					 i < qdev->rx_ring_count; i++) {
3400 			if (j == tx_rings_per_vector) {
3401 				vect++;
3402 				j = 0;
3403 			}
3404 			qdev->rx_ring[i].irq = vect;
3405 			j++;
3406 		}
3407 	} else {
3408 		/* For single vector all rings have an irq
3409 		 * of zero.
3410 		 */
3411 		for (i = 0; i < qdev->rx_ring_count; i++)
3412 			qdev->rx_ring[i].irq = 0;
3413 	}
3414 }
3415 
3416 /* Set the interrupt mask for this vector.  Each vector
3417  * will service 1 RSS ring and 1 or more TX completion
3418  * rings.  This function sets up a bit mask per vector
3419  * that indicates which rings it services.
3420  */
ql_set_irq_mask(struct ql_adapter * qdev,struct intr_context * ctx)3421 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3422 {
3423 	int j, vect = ctx->intr;
3424 	u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3425 
3426 	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3427 		/* Add the RSS ring serviced by this vector
3428 		 * to the mask.
3429 		 */
3430 		ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3431 		/* Add the TX ring(s) serviced by this vector
3432 		 * to the mask. */
3433 		for (j = 0; j < tx_rings_per_vector; j++) {
3434 			ctx->irq_mask |=
3435 			(1 << qdev->rx_ring[qdev->rss_ring_count +
3436 			(vect * tx_rings_per_vector) + j].cq_id);
3437 		}
3438 	} else {
3439 		/* For single vector we just shift each queue's
3440 		 * ID into the mask.
3441 		 */
3442 		for (j = 0; j < qdev->rx_ring_count; j++)
3443 			ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3444 	}
3445 }
3446 
3447 /*
3448  * Here we build the intr_context structures based on
3449  * our rx_ring count and intr vector count.
3450  * The intr_context structure is used to hook each vector
3451  * to possibly different handlers.
3452  */
ql_resolve_queues_to_irqs(struct ql_adapter * qdev)3453 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3454 {
3455 	int i = 0;
3456 	struct intr_context *intr_context = &qdev->intr_context[0];
3457 
3458 	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3459 		/* Each rx_ring has it's
3460 		 * own intr_context since we have separate
3461 		 * vectors for each queue.
3462 		 */
3463 		for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3464 			qdev->rx_ring[i].irq = i;
3465 			intr_context->intr = i;
3466 			intr_context->qdev = qdev;
3467 			/* Set up this vector's bit-mask that indicates
3468 			 * which queues it services.
3469 			 */
3470 			ql_set_irq_mask(qdev, intr_context);
3471 			/*
3472 			 * We set up each vectors enable/disable/read bits so
3473 			 * there's no bit/mask calculations in the critical path.
3474 			 */
3475 			intr_context->intr_en_mask =
3476 			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3477 			    INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3478 			    | i;
3479 			intr_context->intr_dis_mask =
3480 			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3481 			    INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3482 			    INTR_EN_IHD | i;
3483 			intr_context->intr_read_mask =
3484 			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3485 			    INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3486 			    i;
3487 			if (i == 0) {
3488 				/* The first vector/queue handles
3489 				 * broadcast/multicast, fatal errors,
3490 				 * and firmware events.  This in addition
3491 				 * to normal inbound NAPI processing.
3492 				 */
3493 				intr_context->handler = qlge_isr;
3494 				sprintf(intr_context->name, "%s-rx-%d",
3495 					qdev->ndev->name, i);
3496 			} else {
3497 				/*
3498 				 * Inbound queues handle unicast frames only.
3499 				 */
3500 				intr_context->handler = qlge_msix_rx_isr;
3501 				sprintf(intr_context->name, "%s-rx-%d",
3502 					qdev->ndev->name, i);
3503 			}
3504 		}
3505 	} else {
3506 		/*
3507 		 * All rx_rings use the same intr_context since
3508 		 * there is only one vector.
3509 		 */
3510 		intr_context->intr = 0;
3511 		intr_context->qdev = qdev;
3512 		/*
3513 		 * We set up each vectors enable/disable/read bits so
3514 		 * there's no bit/mask calculations in the critical path.
3515 		 */
3516 		intr_context->intr_en_mask =
3517 		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3518 		intr_context->intr_dis_mask =
3519 		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3520 		    INTR_EN_TYPE_DISABLE;
3521 		intr_context->intr_read_mask =
3522 		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3523 		/*
3524 		 * Single interrupt means one handler for all rings.
3525 		 */
3526 		intr_context->handler = qlge_isr;
3527 		sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3528 		/* Set up this vector's bit-mask that indicates
3529 		 * which queues it services. In this case there is
3530 		 * a single vector so it will service all RSS and
3531 		 * TX completion rings.
3532 		 */
3533 		ql_set_irq_mask(qdev, intr_context);
3534 	}
3535 	/* Tell the TX completion rings which MSIx vector
3536 	 * they will be using.
3537 	 */
3538 	ql_set_tx_vect(qdev);
3539 }
3540 
ql_free_irq(struct ql_adapter * qdev)3541 static void ql_free_irq(struct ql_adapter *qdev)
3542 {
3543 	int i;
3544 	struct intr_context *intr_context = &qdev->intr_context[0];
3545 
3546 	for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3547 		if (intr_context->hooked) {
3548 			if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3549 				free_irq(qdev->msi_x_entry[i].vector,
3550 					 &qdev->rx_ring[i]);
3551 			} else {
3552 				free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3553 			}
3554 		}
3555 	}
3556 	ql_disable_msix(qdev);
3557 }
3558 
ql_request_irq(struct ql_adapter * qdev)3559 static int ql_request_irq(struct ql_adapter *qdev)
3560 {
3561 	int i;
3562 	int status = 0;
3563 	struct pci_dev *pdev = qdev->pdev;
3564 	struct intr_context *intr_context = &qdev->intr_context[0];
3565 
3566 	ql_resolve_queues_to_irqs(qdev);
3567 
3568 	for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3569 		atomic_set(&intr_context->irq_cnt, 0);
3570 		if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3571 			status = request_irq(qdev->msi_x_entry[i].vector,
3572 					     intr_context->handler,
3573 					     0,
3574 					     intr_context->name,
3575 					     &qdev->rx_ring[i]);
3576 			if (status) {
3577 				netif_err(qdev, ifup, qdev->ndev,
3578 					  "Failed request for MSIX interrupt %d.\n",
3579 					  i);
3580 				goto err_irq;
3581 			}
3582 		} else {
3583 			netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3584 				     "trying msi or legacy interrupts.\n");
3585 			netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3586 				     "%s: irq = %d.\n", __func__, pdev->irq);
3587 			netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3588 				     "%s: context->name = %s.\n", __func__,
3589 				     intr_context->name);
3590 			netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3591 				     "%s: dev_id = 0x%p.\n", __func__,
3592 				     &qdev->rx_ring[0]);
3593 			status =
3594 			    request_irq(pdev->irq, qlge_isr,
3595 					test_bit(QL_MSI_ENABLED,
3596 						 &qdev->
3597 						 flags) ? 0 : IRQF_SHARED,
3598 					intr_context->name, &qdev->rx_ring[0]);
3599 			if (status)
3600 				goto err_irq;
3601 
3602 			netif_err(qdev, ifup, qdev->ndev,
3603 				  "Hooked intr %d, queue type %s, with name %s.\n",
3604 				  i,
3605 				  qdev->rx_ring[0].type == DEFAULT_Q ?
3606 				  "DEFAULT_Q" :
3607 				  qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3608 				  qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3609 				  intr_context->name);
3610 		}
3611 		intr_context->hooked = 1;
3612 	}
3613 	return status;
3614 err_irq:
3615 	netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!\n");
3616 	ql_free_irq(qdev);
3617 	return status;
3618 }
3619 
ql_start_rss(struct ql_adapter * qdev)3620 static int ql_start_rss(struct ql_adapter *qdev)
3621 {
3622 	static const u8 init_hash_seed[] = {
3623 		0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3624 		0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3625 		0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3626 		0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3627 		0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3628 	};
3629 	struct ricb *ricb = &qdev->ricb;
3630 	int status = 0;
3631 	int i;
3632 	u8 *hash_id = (u8 *) ricb->hash_cq_id;
3633 
3634 	memset((void *)ricb, 0, sizeof(*ricb));
3635 
3636 	ricb->base_cq = RSS_L4K;
3637 	ricb->flags =
3638 		(RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3639 	ricb->mask = cpu_to_le16((u16)(0x3ff));
3640 
3641 	/*
3642 	 * Fill out the Indirection Table.
3643 	 */
3644 	for (i = 0; i < 1024; i++)
3645 		hash_id[i] = (i & (qdev->rss_ring_count - 1));
3646 
3647 	memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3648 	memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3649 
3650 	status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3651 	if (status) {
3652 		netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3653 		return status;
3654 	}
3655 	return status;
3656 }
3657 
ql_clear_routing_entries(struct ql_adapter * qdev)3658 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3659 {
3660 	int i, status = 0;
3661 
3662 	status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3663 	if (status)
3664 		return status;
3665 	/* Clear all the entries in the routing table. */
3666 	for (i = 0; i < 16; i++) {
3667 		status = ql_set_routing_reg(qdev, i, 0, 0);
3668 		if (status) {
3669 			netif_err(qdev, ifup, qdev->ndev,
3670 				  "Failed to init routing register for CAM packets.\n");
3671 			break;
3672 		}
3673 	}
3674 	ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3675 	return status;
3676 }
3677 
3678 /* Initialize the frame-to-queue routing. */
ql_route_initialize(struct ql_adapter * qdev)3679 static int ql_route_initialize(struct ql_adapter *qdev)
3680 {
3681 	int status = 0;
3682 
3683 	/* Clear all the entries in the routing table. */
3684 	status = ql_clear_routing_entries(qdev);
3685 	if (status)
3686 		return status;
3687 
3688 	status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3689 	if (status)
3690 		return status;
3691 
3692 	status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3693 						RT_IDX_IP_CSUM_ERR, 1);
3694 	if (status) {
3695 		netif_err(qdev, ifup, qdev->ndev,
3696 			"Failed to init routing register "
3697 			"for IP CSUM error packets.\n");
3698 		goto exit;
3699 	}
3700 	status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3701 						RT_IDX_TU_CSUM_ERR, 1);
3702 	if (status) {
3703 		netif_err(qdev, ifup, qdev->ndev,
3704 			"Failed to init routing register "
3705 			"for TCP/UDP CSUM error packets.\n");
3706 		goto exit;
3707 	}
3708 	status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3709 	if (status) {
3710 		netif_err(qdev, ifup, qdev->ndev,
3711 			  "Failed to init routing register for broadcast packets.\n");
3712 		goto exit;
3713 	}
3714 	/* If we have more than one inbound queue, then turn on RSS in the
3715 	 * routing block.
3716 	 */
3717 	if (qdev->rss_ring_count > 1) {
3718 		status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3719 					RT_IDX_RSS_MATCH, 1);
3720 		if (status) {
3721 			netif_err(qdev, ifup, qdev->ndev,
3722 				  "Failed to init routing register for MATCH RSS packets.\n");
3723 			goto exit;
3724 		}
3725 	}
3726 
3727 	status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3728 				    RT_IDX_CAM_HIT, 1);
3729 	if (status)
3730 		netif_err(qdev, ifup, qdev->ndev,
3731 			  "Failed to init routing register for CAM packets.\n");
3732 exit:
3733 	ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3734 	return status;
3735 }
3736 
ql_cam_route_initialize(struct ql_adapter * qdev)3737 int ql_cam_route_initialize(struct ql_adapter *qdev)
3738 {
3739 	int status, set;
3740 
3741 	/* If check if the link is up and use to
3742 	 * determine if we are setting or clearing
3743 	 * the MAC address in the CAM.
3744 	 */
3745 	set = ql_read32(qdev, STS);
3746 	set &= qdev->port_link_up;
3747 	status = ql_set_mac_addr(qdev, set);
3748 	if (status) {
3749 		netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3750 		return status;
3751 	}
3752 
3753 	status = ql_route_initialize(qdev);
3754 	if (status)
3755 		netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3756 
3757 	return status;
3758 }
3759 
ql_adapter_initialize(struct ql_adapter * qdev)3760 static int ql_adapter_initialize(struct ql_adapter *qdev)
3761 {
3762 	u32 value, mask;
3763 	int i;
3764 	int status = 0;
3765 
3766 	/*
3767 	 * Set up the System register to halt on errors.
3768 	 */
3769 	value = SYS_EFE | SYS_FAE;
3770 	mask = value << 16;
3771 	ql_write32(qdev, SYS, mask | value);
3772 
3773 	/* Set the default queue, and VLAN behavior. */
3774 	value = NIC_RCV_CFG_DFQ;
3775 	mask = NIC_RCV_CFG_DFQ_MASK;
3776 	if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3777 		value |= NIC_RCV_CFG_RV;
3778 		mask |= (NIC_RCV_CFG_RV << 16);
3779 	}
3780 	ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3781 
3782 	/* Set the MPI interrupt to enabled. */
3783 	ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3784 
3785 	/* Enable the function, set pagesize, enable error checking. */
3786 	value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3787 	    FSC_EC | FSC_VM_PAGE_4K;
3788 	value |= SPLT_SETTING;
3789 
3790 	/* Set/clear header splitting. */
3791 	mask = FSC_VM_PAGESIZE_MASK |
3792 	    FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3793 	ql_write32(qdev, FSC, mask | value);
3794 
3795 	ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3796 
3797 	/* Set RX packet routing to use port/pci function on which the
3798 	 * packet arrived on in addition to usual frame routing.
3799 	 * This is helpful on bonding where both interfaces can have
3800 	 * the same MAC address.
3801 	 */
3802 	ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3803 	/* Reroute all packets to our Interface.
3804 	 * They may have been routed to MPI firmware
3805 	 * due to WOL.
3806 	 */
3807 	value = ql_read32(qdev, MGMT_RCV_CFG);
3808 	value &= ~MGMT_RCV_CFG_RM;
3809 	mask = 0xffff0000;
3810 
3811 	/* Sticky reg needs clearing due to WOL. */
3812 	ql_write32(qdev, MGMT_RCV_CFG, mask);
3813 	ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3814 
3815 	/* Default WOL is enable on Mezz cards */
3816 	if (qdev->pdev->subsystem_device == 0x0068 ||
3817 			qdev->pdev->subsystem_device == 0x0180)
3818 		qdev->wol = WAKE_MAGIC;
3819 
3820 	/* Start up the rx queues. */
3821 	for (i = 0; i < qdev->rx_ring_count; i++) {
3822 		status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3823 		if (status) {
3824 			netif_err(qdev, ifup, qdev->ndev,
3825 				  "Failed to start rx ring[%d].\n", i);
3826 			return status;
3827 		}
3828 	}
3829 
3830 	/* If there is more than one inbound completion queue
3831 	 * then download a RICB to configure RSS.
3832 	 */
3833 	if (qdev->rss_ring_count > 1) {
3834 		status = ql_start_rss(qdev);
3835 		if (status) {
3836 			netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3837 			return status;
3838 		}
3839 	}
3840 
3841 	/* Start up the tx queues. */
3842 	for (i = 0; i < qdev->tx_ring_count; i++) {
3843 		status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3844 		if (status) {
3845 			netif_err(qdev, ifup, qdev->ndev,
3846 				  "Failed to start tx ring[%d].\n", i);
3847 			return status;
3848 		}
3849 	}
3850 
3851 	/* Initialize the port and set the max framesize. */
3852 	status = qdev->nic_ops->port_initialize(qdev);
3853 	if (status)
3854 		netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3855 
3856 	/* Set up the MAC address and frame routing filter. */
3857 	status = ql_cam_route_initialize(qdev);
3858 	if (status) {
3859 		netif_err(qdev, ifup, qdev->ndev,
3860 			  "Failed to init CAM/Routing tables.\n");
3861 		return status;
3862 	}
3863 
3864 	/* Start NAPI for the RSS queues. */
3865 	for (i = 0; i < qdev->rss_ring_count; i++)
3866 		napi_enable(&qdev->rx_ring[i].napi);
3867 
3868 	return status;
3869 }
3870 
3871 /* Issue soft reset to chip. */
ql_adapter_reset(struct ql_adapter * qdev)3872 static int ql_adapter_reset(struct ql_adapter *qdev)
3873 {
3874 	u32 value;
3875 	int status = 0;
3876 	unsigned long end_jiffies;
3877 
3878 	/* Clear all the entries in the routing table. */
3879 	status = ql_clear_routing_entries(qdev);
3880 	if (status) {
3881 		netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3882 		return status;
3883 	}
3884 
3885 	/* Check if bit is set then skip the mailbox command and
3886 	 * clear the bit, else we are in normal reset process.
3887 	 */
3888 	if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3889 		/* Stop management traffic. */
3890 		ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3891 
3892 		/* Wait for the NIC and MGMNT FIFOs to empty. */
3893 		ql_wait_fifo_empty(qdev);
3894 	} else
3895 		clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3896 
3897 	ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3898 
3899 	end_jiffies = jiffies + usecs_to_jiffies(30);
3900 	do {
3901 		value = ql_read32(qdev, RST_FO);
3902 		if ((value & RST_FO_FR) == 0)
3903 			break;
3904 		cpu_relax();
3905 	} while (time_before(jiffies, end_jiffies));
3906 
3907 	if (value & RST_FO_FR) {
3908 		netif_err(qdev, ifdown, qdev->ndev,
3909 			  "ETIMEDOUT!!! errored out of resetting the chip!\n");
3910 		status = -ETIMEDOUT;
3911 	}
3912 
3913 	/* Resume management traffic. */
3914 	ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3915 	return status;
3916 }
3917 
ql_display_dev_info(struct net_device * ndev)3918 static void ql_display_dev_info(struct net_device *ndev)
3919 {
3920 	struct ql_adapter *qdev = netdev_priv(ndev);
3921 
3922 	netif_info(qdev, probe, qdev->ndev,
3923 		   "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3924 		   "XG Roll = %d, XG Rev = %d.\n",
3925 		   qdev->func,
3926 		   qdev->port,
3927 		   qdev->chip_rev_id & 0x0000000f,
3928 		   qdev->chip_rev_id >> 4 & 0x0000000f,
3929 		   qdev->chip_rev_id >> 8 & 0x0000000f,
3930 		   qdev->chip_rev_id >> 12 & 0x0000000f);
3931 	netif_info(qdev, probe, qdev->ndev,
3932 		   "MAC address %pM\n", ndev->dev_addr);
3933 }
3934 
ql_wol(struct ql_adapter * qdev)3935 static int ql_wol(struct ql_adapter *qdev)
3936 {
3937 	int status = 0;
3938 	u32 wol = MB_WOL_DISABLE;
3939 
3940 	/* The CAM is still intact after a reset, but if we
3941 	 * are doing WOL, then we may need to program the
3942 	 * routing regs. We would also need to issue the mailbox
3943 	 * commands to instruct the MPI what to do per the ethtool
3944 	 * settings.
3945 	 */
3946 
3947 	if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3948 			WAKE_MCAST | WAKE_BCAST)) {
3949 		netif_err(qdev, ifdown, qdev->ndev,
3950 			  "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3951 			  qdev->wol);
3952 		return -EINVAL;
3953 	}
3954 
3955 	if (qdev->wol & WAKE_MAGIC) {
3956 		status = ql_mb_wol_set_magic(qdev, 1);
3957 		if (status) {
3958 			netif_err(qdev, ifdown, qdev->ndev,
3959 				  "Failed to set magic packet on %s.\n",
3960 				  qdev->ndev->name);
3961 			return status;
3962 		} else
3963 			netif_info(qdev, drv, qdev->ndev,
3964 				   "Enabled magic packet successfully on %s.\n",
3965 				   qdev->ndev->name);
3966 
3967 		wol |= MB_WOL_MAGIC_PKT;
3968 	}
3969 
3970 	if (qdev->wol) {
3971 		wol |= MB_WOL_MODE_ON;
3972 		status = ql_mb_wol_mode(qdev, wol);
3973 		netif_err(qdev, drv, qdev->ndev,
3974 			  "WOL %s (wol code 0x%x) on %s\n",
3975 			  (status == 0) ? "Successfully set" : "Failed",
3976 			  wol, qdev->ndev->name);
3977 	}
3978 
3979 	return status;
3980 }
3981 
ql_cancel_all_work_sync(struct ql_adapter * qdev)3982 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3983 {
3984 
3985 	/* Don't kill the reset worker thread if we
3986 	 * are in the process of recovery.
3987 	 */
3988 	if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3989 		cancel_delayed_work_sync(&qdev->asic_reset_work);
3990 	cancel_delayed_work_sync(&qdev->mpi_reset_work);
3991 	cancel_delayed_work_sync(&qdev->mpi_work);
3992 	cancel_delayed_work_sync(&qdev->mpi_idc_work);
3993 	cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3994 	cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3995 }
3996 
ql_adapter_down(struct ql_adapter * qdev)3997 static int ql_adapter_down(struct ql_adapter *qdev)
3998 {
3999 	int i, status = 0;
4000 
4001 	ql_link_off(qdev);
4002 
4003 	ql_cancel_all_work_sync(qdev);
4004 
4005 	for (i = 0; i < qdev->rss_ring_count; i++)
4006 		napi_disable(&qdev->rx_ring[i].napi);
4007 
4008 	clear_bit(QL_ADAPTER_UP, &qdev->flags);
4009 
4010 	ql_disable_interrupts(qdev);
4011 
4012 	ql_tx_ring_clean(qdev);
4013 
4014 	/* Call netif_napi_del() from common point.
4015 	 */
4016 	for (i = 0; i < qdev->rss_ring_count; i++)
4017 		netif_napi_del(&qdev->rx_ring[i].napi);
4018 
4019 	status = ql_adapter_reset(qdev);
4020 	if (status)
4021 		netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
4022 			  qdev->func);
4023 	ql_free_rx_buffers(qdev);
4024 
4025 	return status;
4026 }
4027 
ql_adapter_up(struct ql_adapter * qdev)4028 static int ql_adapter_up(struct ql_adapter *qdev)
4029 {
4030 	int err = 0;
4031 
4032 	err = ql_adapter_initialize(qdev);
4033 	if (err) {
4034 		netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
4035 		goto err_init;
4036 	}
4037 	set_bit(QL_ADAPTER_UP, &qdev->flags);
4038 	ql_alloc_rx_buffers(qdev);
4039 	/* If the port is initialized and the
4040 	 * link is up the turn on the carrier.
4041 	 */
4042 	if ((ql_read32(qdev, STS) & qdev->port_init) &&
4043 			(ql_read32(qdev, STS) & qdev->port_link_up))
4044 		ql_link_on(qdev);
4045 	/* Restore rx mode. */
4046 	clear_bit(QL_ALLMULTI, &qdev->flags);
4047 	clear_bit(QL_PROMISCUOUS, &qdev->flags);
4048 	qlge_set_multicast_list(qdev->ndev);
4049 
4050 	/* Restore vlan setting. */
4051 	qlge_restore_vlan(qdev);
4052 
4053 	ql_enable_interrupts(qdev);
4054 	ql_enable_all_completion_interrupts(qdev);
4055 	netif_tx_start_all_queues(qdev->ndev);
4056 
4057 	return 0;
4058 err_init:
4059 	ql_adapter_reset(qdev);
4060 	return err;
4061 }
4062 
ql_release_adapter_resources(struct ql_adapter * qdev)4063 static void ql_release_adapter_resources(struct ql_adapter *qdev)
4064 {
4065 	ql_free_mem_resources(qdev);
4066 	ql_free_irq(qdev);
4067 }
4068 
ql_get_adapter_resources(struct ql_adapter * qdev)4069 static int ql_get_adapter_resources(struct ql_adapter *qdev)
4070 {
4071 	int status = 0;
4072 
4073 	if (ql_alloc_mem_resources(qdev)) {
4074 		netif_err(qdev, ifup, qdev->ndev, "Unable to  allocate memory.\n");
4075 		return -ENOMEM;
4076 	}
4077 	status = ql_request_irq(qdev);
4078 	return status;
4079 }
4080 
qlge_close(struct net_device * ndev)4081 static int qlge_close(struct net_device *ndev)
4082 {
4083 	struct ql_adapter *qdev = netdev_priv(ndev);
4084 
4085 	/* If we hit pci_channel_io_perm_failure
4086 	 * failure condition, then we already
4087 	 * brought the adapter down.
4088 	 */
4089 	if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4090 		netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4091 		clear_bit(QL_EEH_FATAL, &qdev->flags);
4092 		return 0;
4093 	}
4094 
4095 	/*
4096 	 * Wait for device to recover from a reset.
4097 	 * (Rarely happens, but possible.)
4098 	 */
4099 	while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4100 		msleep(1);
4101 	ql_adapter_down(qdev);
4102 	ql_release_adapter_resources(qdev);
4103 	return 0;
4104 }
4105 
ql_configure_rings(struct ql_adapter * qdev)4106 static int ql_configure_rings(struct ql_adapter *qdev)
4107 {
4108 	int i;
4109 	struct rx_ring *rx_ring;
4110 	struct tx_ring *tx_ring;
4111 	int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4112 	unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4113 		LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4114 
4115 	qdev->lbq_buf_order = get_order(lbq_buf_len);
4116 
4117 	/* In a perfect world we have one RSS ring for each CPU
4118 	 * and each has it's own vector.  To do that we ask for
4119 	 * cpu_cnt vectors.  ql_enable_msix() will adjust the
4120 	 * vector count to what we actually get.  We then
4121 	 * allocate an RSS ring for each.
4122 	 * Essentially, we are doing min(cpu_count, msix_vector_count).
4123 	 */
4124 	qdev->intr_count = cpu_cnt;
4125 	ql_enable_msix(qdev);
4126 	/* Adjust the RSS ring count to the actual vector count. */
4127 	qdev->rss_ring_count = qdev->intr_count;
4128 	qdev->tx_ring_count = cpu_cnt;
4129 	qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4130 
4131 	for (i = 0; i < qdev->tx_ring_count; i++) {
4132 		tx_ring = &qdev->tx_ring[i];
4133 		memset((void *)tx_ring, 0, sizeof(*tx_ring));
4134 		tx_ring->qdev = qdev;
4135 		tx_ring->wq_id = i;
4136 		tx_ring->wq_len = qdev->tx_ring_size;
4137 		tx_ring->wq_size =
4138 		    tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4139 
4140 		/*
4141 		 * The completion queue ID for the tx rings start
4142 		 * immediately after the rss rings.
4143 		 */
4144 		tx_ring->cq_id = qdev->rss_ring_count + i;
4145 	}
4146 
4147 	for (i = 0; i < qdev->rx_ring_count; i++) {
4148 		rx_ring = &qdev->rx_ring[i];
4149 		memset((void *)rx_ring, 0, sizeof(*rx_ring));
4150 		rx_ring->qdev = qdev;
4151 		rx_ring->cq_id = i;
4152 		rx_ring->cpu = i % cpu_cnt;	/* CPU to run handler on. */
4153 		if (i < qdev->rss_ring_count) {
4154 			/*
4155 			 * Inbound (RSS) queues.
4156 			 */
4157 			rx_ring->cq_len = qdev->rx_ring_size;
4158 			rx_ring->cq_size =
4159 			    rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4160 			rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4161 			rx_ring->lbq_size =
4162 			    rx_ring->lbq_len * sizeof(__le64);
4163 			rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4164 			rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4165 			rx_ring->sbq_size =
4166 			    rx_ring->sbq_len * sizeof(__le64);
4167 			rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4168 			rx_ring->type = RX_Q;
4169 		} else {
4170 			/*
4171 			 * Outbound queue handles outbound completions only.
4172 			 */
4173 			/* outbound cq is same size as tx_ring it services. */
4174 			rx_ring->cq_len = qdev->tx_ring_size;
4175 			rx_ring->cq_size =
4176 			    rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4177 			rx_ring->lbq_len = 0;
4178 			rx_ring->lbq_size = 0;
4179 			rx_ring->lbq_buf_size = 0;
4180 			rx_ring->sbq_len = 0;
4181 			rx_ring->sbq_size = 0;
4182 			rx_ring->sbq_buf_size = 0;
4183 			rx_ring->type = TX_Q;
4184 		}
4185 	}
4186 	return 0;
4187 }
4188 
qlge_open(struct net_device * ndev)4189 static int qlge_open(struct net_device *ndev)
4190 {
4191 	int err = 0;
4192 	struct ql_adapter *qdev = netdev_priv(ndev);
4193 
4194 	err = ql_adapter_reset(qdev);
4195 	if (err)
4196 		return err;
4197 
4198 	err = ql_configure_rings(qdev);
4199 	if (err)
4200 		return err;
4201 
4202 	err = ql_get_adapter_resources(qdev);
4203 	if (err)
4204 		goto error_up;
4205 
4206 	err = ql_adapter_up(qdev);
4207 	if (err)
4208 		goto error_up;
4209 
4210 	return err;
4211 
4212 error_up:
4213 	ql_release_adapter_resources(qdev);
4214 	return err;
4215 }
4216 
ql_change_rx_buffers(struct ql_adapter * qdev)4217 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4218 {
4219 	struct rx_ring *rx_ring;
4220 	int i, status;
4221 	u32 lbq_buf_len;
4222 
4223 	/* Wait for an outstanding reset to complete. */
4224 	if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4225 		int i = 4;
4226 
4227 		while (--i && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4228 			netif_err(qdev, ifup, qdev->ndev,
4229 				  "Waiting for adapter UP...\n");
4230 			ssleep(1);
4231 		}
4232 
4233 		if (!i) {
4234 			netif_err(qdev, ifup, qdev->ndev,
4235 				  "Timed out waiting for adapter UP\n");
4236 			return -ETIMEDOUT;
4237 		}
4238 	}
4239 
4240 	status = ql_adapter_down(qdev);
4241 	if (status)
4242 		goto error;
4243 
4244 	/* Get the new rx buffer size. */
4245 	lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4246 		LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4247 	qdev->lbq_buf_order = get_order(lbq_buf_len);
4248 
4249 	for (i = 0; i < qdev->rss_ring_count; i++) {
4250 		rx_ring = &qdev->rx_ring[i];
4251 		/* Set the new size. */
4252 		rx_ring->lbq_buf_size = lbq_buf_len;
4253 	}
4254 
4255 	status = ql_adapter_up(qdev);
4256 	if (status)
4257 		goto error;
4258 
4259 	return status;
4260 error:
4261 	netif_alert(qdev, ifup, qdev->ndev,
4262 		    "Driver up/down cycle failed, closing device.\n");
4263 	set_bit(QL_ADAPTER_UP, &qdev->flags);
4264 	dev_close(qdev->ndev);
4265 	return status;
4266 }
4267 
qlge_change_mtu(struct net_device * ndev,int new_mtu)4268 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4269 {
4270 	struct ql_adapter *qdev = netdev_priv(ndev);
4271 	int status;
4272 
4273 	if (ndev->mtu == 1500 && new_mtu == 9000) {
4274 		netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4275 	} else if (ndev->mtu == 9000 && new_mtu == 1500) {
4276 		netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4277 	} else
4278 		return -EINVAL;
4279 
4280 	queue_delayed_work(qdev->workqueue,
4281 			&qdev->mpi_port_cfg_work, 3*HZ);
4282 
4283 	ndev->mtu = new_mtu;
4284 
4285 	if (!netif_running(qdev->ndev)) {
4286 		return 0;
4287 	}
4288 
4289 	status = ql_change_rx_buffers(qdev);
4290 	if (status) {
4291 		netif_err(qdev, ifup, qdev->ndev,
4292 			  "Changing MTU failed.\n");
4293 	}
4294 
4295 	return status;
4296 }
4297 
qlge_get_stats(struct net_device * ndev)4298 static struct net_device_stats *qlge_get_stats(struct net_device
4299 					       *ndev)
4300 {
4301 	struct ql_adapter *qdev = netdev_priv(ndev);
4302 	struct rx_ring *rx_ring = &qdev->rx_ring[0];
4303 	struct tx_ring *tx_ring = &qdev->tx_ring[0];
4304 	unsigned long pkts, mcast, dropped, errors, bytes;
4305 	int i;
4306 
4307 	/* Get RX stats. */
4308 	pkts = mcast = dropped = errors = bytes = 0;
4309 	for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4310 			pkts += rx_ring->rx_packets;
4311 			bytes += rx_ring->rx_bytes;
4312 			dropped += rx_ring->rx_dropped;
4313 			errors += rx_ring->rx_errors;
4314 			mcast += rx_ring->rx_multicast;
4315 	}
4316 	ndev->stats.rx_packets = pkts;
4317 	ndev->stats.rx_bytes = bytes;
4318 	ndev->stats.rx_dropped = dropped;
4319 	ndev->stats.rx_errors = errors;
4320 	ndev->stats.multicast = mcast;
4321 
4322 	/* Get TX stats. */
4323 	pkts = errors = bytes = 0;
4324 	for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4325 			pkts += tx_ring->tx_packets;
4326 			bytes += tx_ring->tx_bytes;
4327 			errors += tx_ring->tx_errors;
4328 	}
4329 	ndev->stats.tx_packets = pkts;
4330 	ndev->stats.tx_bytes = bytes;
4331 	ndev->stats.tx_errors = errors;
4332 	return &ndev->stats;
4333 }
4334 
qlge_set_multicast_list(struct net_device * ndev)4335 static void qlge_set_multicast_list(struct net_device *ndev)
4336 {
4337 	struct ql_adapter *qdev = netdev_priv(ndev);
4338 	struct netdev_hw_addr *ha;
4339 	int i, status;
4340 
4341 	status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4342 	if (status)
4343 		return;
4344 	/*
4345 	 * Set or clear promiscuous mode if a
4346 	 * transition is taking place.
4347 	 */
4348 	if (ndev->flags & IFF_PROMISC) {
4349 		if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4350 			if (ql_set_routing_reg
4351 			    (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4352 				netif_err(qdev, hw, qdev->ndev,
4353 					  "Failed to set promiscuous mode.\n");
4354 			} else {
4355 				set_bit(QL_PROMISCUOUS, &qdev->flags);
4356 			}
4357 		}
4358 	} else {
4359 		if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4360 			if (ql_set_routing_reg
4361 			    (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4362 				netif_err(qdev, hw, qdev->ndev,
4363 					  "Failed to clear promiscuous mode.\n");
4364 			} else {
4365 				clear_bit(QL_PROMISCUOUS, &qdev->flags);
4366 			}
4367 		}
4368 	}
4369 
4370 	/*
4371 	 * Set or clear all multicast mode if a
4372 	 * transition is taking place.
4373 	 */
4374 	if ((ndev->flags & IFF_ALLMULTI) ||
4375 	    (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4376 		if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4377 			if (ql_set_routing_reg
4378 			    (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4379 				netif_err(qdev, hw, qdev->ndev,
4380 					  "Failed to set all-multi mode.\n");
4381 			} else {
4382 				set_bit(QL_ALLMULTI, &qdev->flags);
4383 			}
4384 		}
4385 	} else {
4386 		if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4387 			if (ql_set_routing_reg
4388 			    (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4389 				netif_err(qdev, hw, qdev->ndev,
4390 					  "Failed to clear all-multi mode.\n");
4391 			} else {
4392 				clear_bit(QL_ALLMULTI, &qdev->flags);
4393 			}
4394 		}
4395 	}
4396 
4397 	if (!netdev_mc_empty(ndev)) {
4398 		status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4399 		if (status)
4400 			goto exit;
4401 		i = 0;
4402 		netdev_for_each_mc_addr(ha, ndev) {
4403 			if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4404 						MAC_ADDR_TYPE_MULTI_MAC, i)) {
4405 				netif_err(qdev, hw, qdev->ndev,
4406 					  "Failed to loadmulticast address.\n");
4407 				ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4408 				goto exit;
4409 			}
4410 			i++;
4411 		}
4412 		ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4413 		if (ql_set_routing_reg
4414 		    (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4415 			netif_err(qdev, hw, qdev->ndev,
4416 				  "Failed to set multicast match mode.\n");
4417 		} else {
4418 			set_bit(QL_ALLMULTI, &qdev->flags);
4419 		}
4420 	}
4421 exit:
4422 	ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4423 }
4424 
qlge_set_mac_address(struct net_device * ndev,void * p)4425 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4426 {
4427 	struct ql_adapter *qdev = netdev_priv(ndev);
4428 	struct sockaddr *addr = p;
4429 	int status;
4430 
4431 	if (!is_valid_ether_addr(addr->sa_data))
4432 		return -EADDRNOTAVAIL;
4433 	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4434 	/* Update local copy of current mac address. */
4435 	memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4436 
4437 	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4438 	if (status)
4439 		return status;
4440 	status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4441 			MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4442 	if (status)
4443 		netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4444 	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4445 	return status;
4446 }
4447 
qlge_tx_timeout(struct net_device * ndev)4448 static void qlge_tx_timeout(struct net_device *ndev)
4449 {
4450 	struct ql_adapter *qdev = netdev_priv(ndev);
4451 	ql_queue_asic_error(qdev);
4452 }
4453 
ql_asic_reset_work(struct work_struct * work)4454 static void ql_asic_reset_work(struct work_struct *work)
4455 {
4456 	struct ql_adapter *qdev =
4457 	    container_of(work, struct ql_adapter, asic_reset_work.work);
4458 	int status;
4459 	rtnl_lock();
4460 	status = ql_adapter_down(qdev);
4461 	if (status)
4462 		goto error;
4463 
4464 	status = ql_adapter_up(qdev);
4465 	if (status)
4466 		goto error;
4467 
4468 	/* Restore rx mode. */
4469 	clear_bit(QL_ALLMULTI, &qdev->flags);
4470 	clear_bit(QL_PROMISCUOUS, &qdev->flags);
4471 	qlge_set_multicast_list(qdev->ndev);
4472 
4473 	rtnl_unlock();
4474 	return;
4475 error:
4476 	netif_alert(qdev, ifup, qdev->ndev,
4477 		    "Driver up/down cycle failed, closing device\n");
4478 
4479 	set_bit(QL_ADAPTER_UP, &qdev->flags);
4480 	dev_close(qdev->ndev);
4481 	rtnl_unlock();
4482 }
4483 
4484 static const struct nic_operations qla8012_nic_ops = {
4485 	.get_flash		= ql_get_8012_flash_params,
4486 	.port_initialize	= ql_8012_port_initialize,
4487 };
4488 
4489 static const struct nic_operations qla8000_nic_ops = {
4490 	.get_flash		= ql_get_8000_flash_params,
4491 	.port_initialize	= ql_8000_port_initialize,
4492 };
4493 
4494 /* Find the pcie function number for the other NIC
4495  * on this chip.  Since both NIC functions share a
4496  * common firmware we have the lowest enabled function
4497  * do any common work.  Examples would be resetting
4498  * after a fatal firmware error, or doing a firmware
4499  * coredump.
4500  */
ql_get_alt_pcie_func(struct ql_adapter * qdev)4501 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4502 {
4503 	int status = 0;
4504 	u32 temp;
4505 	u32 nic_func1, nic_func2;
4506 
4507 	status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4508 			&temp);
4509 	if (status)
4510 		return status;
4511 
4512 	nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4513 			MPI_TEST_NIC_FUNC_MASK);
4514 	nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4515 			MPI_TEST_NIC_FUNC_MASK);
4516 
4517 	if (qdev->func == nic_func1)
4518 		qdev->alt_func = nic_func2;
4519 	else if (qdev->func == nic_func2)
4520 		qdev->alt_func = nic_func1;
4521 	else
4522 		status = -EIO;
4523 
4524 	return status;
4525 }
4526 
ql_get_board_info(struct ql_adapter * qdev)4527 static int ql_get_board_info(struct ql_adapter *qdev)
4528 {
4529 	int status;
4530 	qdev->func =
4531 	    (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4532 	if (qdev->func > 3)
4533 		return -EIO;
4534 
4535 	status = ql_get_alt_pcie_func(qdev);
4536 	if (status)
4537 		return status;
4538 
4539 	qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4540 	if (qdev->port) {
4541 		qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4542 		qdev->port_link_up = STS_PL1;
4543 		qdev->port_init = STS_PI1;
4544 		qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4545 		qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4546 	} else {
4547 		qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4548 		qdev->port_link_up = STS_PL0;
4549 		qdev->port_init = STS_PI0;
4550 		qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4551 		qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4552 	}
4553 	qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4554 	qdev->device_id = qdev->pdev->device;
4555 	if (qdev->device_id == QLGE_DEVICE_ID_8012)
4556 		qdev->nic_ops = &qla8012_nic_ops;
4557 	else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4558 		qdev->nic_ops = &qla8000_nic_ops;
4559 	return status;
4560 }
4561 
ql_release_all(struct pci_dev * pdev)4562 static void ql_release_all(struct pci_dev *pdev)
4563 {
4564 	struct net_device *ndev = pci_get_drvdata(pdev);
4565 	struct ql_adapter *qdev = netdev_priv(ndev);
4566 
4567 	if (qdev->workqueue) {
4568 		destroy_workqueue(qdev->workqueue);
4569 		qdev->workqueue = NULL;
4570 	}
4571 
4572 	if (qdev->reg_base)
4573 		iounmap(qdev->reg_base);
4574 	if (qdev->doorbell_area)
4575 		iounmap(qdev->doorbell_area);
4576 	vfree(qdev->mpi_coredump);
4577 	pci_release_regions(pdev);
4578 }
4579 
ql_init_device(struct pci_dev * pdev,struct net_device * ndev,int cards_found)4580 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4581 			  int cards_found)
4582 {
4583 	struct ql_adapter *qdev = netdev_priv(ndev);
4584 	int err = 0;
4585 
4586 	memset((void *)qdev, 0, sizeof(*qdev));
4587 	err = pci_enable_device(pdev);
4588 	if (err) {
4589 		dev_err(&pdev->dev, "PCI device enable failed.\n");
4590 		return err;
4591 	}
4592 
4593 	qdev->ndev = ndev;
4594 	qdev->pdev = pdev;
4595 	pci_set_drvdata(pdev, ndev);
4596 
4597 	/* Set PCIe read request size */
4598 	err = pcie_set_readrq(pdev, 4096);
4599 	if (err) {
4600 		dev_err(&pdev->dev, "Set readrq failed.\n");
4601 		goto err_out1;
4602 	}
4603 
4604 	err = pci_request_regions(pdev, DRV_NAME);
4605 	if (err) {
4606 		dev_err(&pdev->dev, "PCI region request failed.\n");
4607 		return err;
4608 	}
4609 
4610 	pci_set_master(pdev);
4611 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4612 		set_bit(QL_DMA64, &qdev->flags);
4613 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4614 	} else {
4615 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4616 		if (!err)
4617 		       err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4618 	}
4619 
4620 	if (err) {
4621 		dev_err(&pdev->dev, "No usable DMA configuration.\n");
4622 		goto err_out2;
4623 	}
4624 
4625 	/* Set PCIe reset type for EEH to fundamental. */
4626 	pdev->needs_freset = 1;
4627 	pci_save_state(pdev);
4628 	qdev->reg_base =
4629 	    ioremap_nocache(pci_resource_start(pdev, 1),
4630 			    pci_resource_len(pdev, 1));
4631 	if (!qdev->reg_base) {
4632 		dev_err(&pdev->dev, "Register mapping failed.\n");
4633 		err = -ENOMEM;
4634 		goto err_out2;
4635 	}
4636 
4637 	qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4638 	qdev->doorbell_area =
4639 	    ioremap_nocache(pci_resource_start(pdev, 3),
4640 			    pci_resource_len(pdev, 3));
4641 	if (!qdev->doorbell_area) {
4642 		dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4643 		err = -ENOMEM;
4644 		goto err_out2;
4645 	}
4646 
4647 	err = ql_get_board_info(qdev);
4648 	if (err) {
4649 		dev_err(&pdev->dev, "Register access failed.\n");
4650 		err = -EIO;
4651 		goto err_out2;
4652 	}
4653 	qdev->msg_enable = netif_msg_init(debug, default_msg);
4654 	spin_lock_init(&qdev->hw_lock);
4655 	spin_lock_init(&qdev->stats_lock);
4656 
4657 	if (qlge_mpi_coredump) {
4658 		qdev->mpi_coredump =
4659 			vmalloc(sizeof(struct ql_mpi_coredump));
4660 		if (qdev->mpi_coredump == NULL) {
4661 			err = -ENOMEM;
4662 			goto err_out2;
4663 		}
4664 		if (qlge_force_coredump)
4665 			set_bit(QL_FRC_COREDUMP, &qdev->flags);
4666 	}
4667 	/* make sure the EEPROM is good */
4668 	err = qdev->nic_ops->get_flash(qdev);
4669 	if (err) {
4670 		dev_err(&pdev->dev, "Invalid FLASH.\n");
4671 		goto err_out2;
4672 	}
4673 
4674 	/* Keep local copy of current mac address. */
4675 	memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4676 
4677 	/* Set up the default ring sizes. */
4678 	qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4679 	qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4680 
4681 	/* Set up the coalescing parameters. */
4682 	qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4683 	qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4684 	qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4685 	qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4686 
4687 	/*
4688 	 * Set up the operating parameters.
4689 	 */
4690 	qdev->workqueue = create_singlethread_workqueue(ndev->name);
4691 	INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4692 	INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4693 	INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4694 	INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4695 	INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4696 	INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4697 	init_completion(&qdev->ide_completion);
4698 	mutex_init(&qdev->mpi_mutex);
4699 
4700 	if (!cards_found) {
4701 		dev_info(&pdev->dev, "%s\n", DRV_STRING);
4702 		dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4703 			 DRV_NAME, DRV_VERSION);
4704 	}
4705 	return 0;
4706 err_out2:
4707 	ql_release_all(pdev);
4708 err_out1:
4709 	pci_disable_device(pdev);
4710 	return err;
4711 }
4712 
4713 static const struct net_device_ops qlge_netdev_ops = {
4714 	.ndo_open		= qlge_open,
4715 	.ndo_stop		= qlge_close,
4716 	.ndo_start_xmit		= qlge_send,
4717 	.ndo_change_mtu		= qlge_change_mtu,
4718 	.ndo_get_stats		= qlge_get_stats,
4719 	.ndo_set_rx_mode	= qlge_set_multicast_list,
4720 	.ndo_set_mac_address	= qlge_set_mac_address,
4721 	.ndo_validate_addr	= eth_validate_addr,
4722 	.ndo_tx_timeout		= qlge_tx_timeout,
4723 	.ndo_fix_features	= qlge_fix_features,
4724 	.ndo_set_features	= qlge_set_features,
4725 	.ndo_vlan_rx_add_vid	= qlge_vlan_rx_add_vid,
4726 	.ndo_vlan_rx_kill_vid	= qlge_vlan_rx_kill_vid,
4727 };
4728 
ql_timer(unsigned long data)4729 static void ql_timer(unsigned long data)
4730 {
4731 	struct ql_adapter *qdev = (struct ql_adapter *)data;
4732 	u32 var = 0;
4733 
4734 	var = ql_read32(qdev, STS);
4735 	if (pci_channel_offline(qdev->pdev)) {
4736 		netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4737 		return;
4738 	}
4739 
4740 	mod_timer(&qdev->timer, jiffies + (5*HZ));
4741 }
4742 
qlge_probe(struct pci_dev * pdev,const struct pci_device_id * pci_entry)4743 static int qlge_probe(struct pci_dev *pdev,
4744 		      const struct pci_device_id *pci_entry)
4745 {
4746 	struct net_device *ndev = NULL;
4747 	struct ql_adapter *qdev = NULL;
4748 	static int cards_found = 0;
4749 	int err = 0;
4750 
4751 	ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4752 			min(MAX_CPUS, netif_get_num_default_rss_queues()));
4753 	if (!ndev)
4754 		return -ENOMEM;
4755 
4756 	err = ql_init_device(pdev, ndev, cards_found);
4757 	if (err < 0) {
4758 		free_netdev(ndev);
4759 		return err;
4760 	}
4761 
4762 	qdev = netdev_priv(ndev);
4763 	SET_NETDEV_DEV(ndev, &pdev->dev);
4764 	ndev->hw_features = NETIF_F_SG |
4765 			    NETIF_F_IP_CSUM |
4766 			    NETIF_F_TSO |
4767 			    NETIF_F_TSO_ECN |
4768 			    NETIF_F_HW_VLAN_CTAG_TX |
4769 			    NETIF_F_HW_VLAN_CTAG_RX |
4770 			    NETIF_F_HW_VLAN_CTAG_FILTER |
4771 			    NETIF_F_RXCSUM;
4772 	ndev->features = ndev->hw_features;
4773 	ndev->vlan_features = ndev->hw_features;
4774 	/* vlan gets same features (except vlan filter) */
4775 	ndev->vlan_features &= ~(NETIF_F_HW_VLAN_CTAG_FILTER |
4776 				 NETIF_F_HW_VLAN_CTAG_TX |
4777 				 NETIF_F_HW_VLAN_CTAG_RX);
4778 
4779 	if (test_bit(QL_DMA64, &qdev->flags))
4780 		ndev->features |= NETIF_F_HIGHDMA;
4781 
4782 	/*
4783 	 * Set up net_device structure.
4784 	 */
4785 	ndev->tx_queue_len = qdev->tx_ring_size;
4786 	ndev->irq = pdev->irq;
4787 
4788 	ndev->netdev_ops = &qlge_netdev_ops;
4789 	ndev->ethtool_ops = &qlge_ethtool_ops;
4790 	ndev->watchdog_timeo = 10 * HZ;
4791 
4792 	err = register_netdev(ndev);
4793 	if (err) {
4794 		dev_err(&pdev->dev, "net device registration failed.\n");
4795 		ql_release_all(pdev);
4796 		pci_disable_device(pdev);
4797 		free_netdev(ndev);
4798 		return err;
4799 	}
4800 	/* Start up the timer to trigger EEH if
4801 	 * the bus goes dead
4802 	 */
4803 	init_timer_deferrable(&qdev->timer);
4804 	qdev->timer.data = (unsigned long)qdev;
4805 	qdev->timer.function = ql_timer;
4806 	qdev->timer.expires = jiffies + (5*HZ);
4807 	add_timer(&qdev->timer);
4808 	ql_link_off(qdev);
4809 	ql_display_dev_info(ndev);
4810 	atomic_set(&qdev->lb_count, 0);
4811 	cards_found++;
4812 	return 0;
4813 }
4814 
ql_lb_send(struct sk_buff * skb,struct net_device * ndev)4815 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4816 {
4817 	return qlge_send(skb, ndev);
4818 }
4819 
ql_clean_lb_rx_ring(struct rx_ring * rx_ring,int budget)4820 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4821 {
4822 	return ql_clean_inbound_rx_ring(rx_ring, budget);
4823 }
4824 
qlge_remove(struct pci_dev * pdev)4825 static void qlge_remove(struct pci_dev *pdev)
4826 {
4827 	struct net_device *ndev = pci_get_drvdata(pdev);
4828 	struct ql_adapter *qdev = netdev_priv(ndev);
4829 	del_timer_sync(&qdev->timer);
4830 	ql_cancel_all_work_sync(qdev);
4831 	unregister_netdev(ndev);
4832 	ql_release_all(pdev);
4833 	pci_disable_device(pdev);
4834 	free_netdev(ndev);
4835 }
4836 
4837 /* Clean up resources without touching hardware. */
ql_eeh_close(struct net_device * ndev)4838 static void ql_eeh_close(struct net_device *ndev)
4839 {
4840 	int i;
4841 	struct ql_adapter *qdev = netdev_priv(ndev);
4842 
4843 	if (netif_carrier_ok(ndev)) {
4844 		netif_carrier_off(ndev);
4845 		netif_stop_queue(ndev);
4846 	}
4847 
4848 	/* Disabling the timer */
4849 	del_timer_sync(&qdev->timer);
4850 	ql_cancel_all_work_sync(qdev);
4851 
4852 	for (i = 0; i < qdev->rss_ring_count; i++)
4853 		netif_napi_del(&qdev->rx_ring[i].napi);
4854 
4855 	clear_bit(QL_ADAPTER_UP, &qdev->flags);
4856 	ql_tx_ring_clean(qdev);
4857 	ql_free_rx_buffers(qdev);
4858 	ql_release_adapter_resources(qdev);
4859 }
4860 
4861 /*
4862  * This callback is called by the PCI subsystem whenever
4863  * a PCI bus error is detected.
4864  */
qlge_io_error_detected(struct pci_dev * pdev,enum pci_channel_state state)4865 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4866 					       enum pci_channel_state state)
4867 {
4868 	struct net_device *ndev = pci_get_drvdata(pdev);
4869 	struct ql_adapter *qdev = netdev_priv(ndev);
4870 
4871 	switch (state) {
4872 	case pci_channel_io_normal:
4873 		return PCI_ERS_RESULT_CAN_RECOVER;
4874 	case pci_channel_io_frozen:
4875 		netif_device_detach(ndev);
4876 		if (netif_running(ndev))
4877 			ql_eeh_close(ndev);
4878 		pci_disable_device(pdev);
4879 		return PCI_ERS_RESULT_NEED_RESET;
4880 	case pci_channel_io_perm_failure:
4881 		dev_err(&pdev->dev,
4882 			"%s: pci_channel_io_perm_failure.\n", __func__);
4883 		ql_eeh_close(ndev);
4884 		set_bit(QL_EEH_FATAL, &qdev->flags);
4885 		return PCI_ERS_RESULT_DISCONNECT;
4886 	}
4887 
4888 	/* Request a slot reset. */
4889 	return PCI_ERS_RESULT_NEED_RESET;
4890 }
4891 
4892 /*
4893  * This callback is called after the PCI buss has been reset.
4894  * Basically, this tries to restart the card from scratch.
4895  * This is a shortened version of the device probe/discovery code,
4896  * it resembles the first-half of the () routine.
4897  */
qlge_io_slot_reset(struct pci_dev * pdev)4898 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4899 {
4900 	struct net_device *ndev = pci_get_drvdata(pdev);
4901 	struct ql_adapter *qdev = netdev_priv(ndev);
4902 
4903 	pdev->error_state = pci_channel_io_normal;
4904 
4905 	pci_restore_state(pdev);
4906 	if (pci_enable_device(pdev)) {
4907 		netif_err(qdev, ifup, qdev->ndev,
4908 			  "Cannot re-enable PCI device after reset.\n");
4909 		return PCI_ERS_RESULT_DISCONNECT;
4910 	}
4911 	pci_set_master(pdev);
4912 
4913 	if (ql_adapter_reset(qdev)) {
4914 		netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4915 		set_bit(QL_EEH_FATAL, &qdev->flags);
4916 		return PCI_ERS_RESULT_DISCONNECT;
4917 	}
4918 
4919 	return PCI_ERS_RESULT_RECOVERED;
4920 }
4921 
qlge_io_resume(struct pci_dev * pdev)4922 static void qlge_io_resume(struct pci_dev *pdev)
4923 {
4924 	struct net_device *ndev = pci_get_drvdata(pdev);
4925 	struct ql_adapter *qdev = netdev_priv(ndev);
4926 	int err = 0;
4927 
4928 	if (netif_running(ndev)) {
4929 		err = qlge_open(ndev);
4930 		if (err) {
4931 			netif_err(qdev, ifup, qdev->ndev,
4932 				  "Device initialization failed after reset.\n");
4933 			return;
4934 		}
4935 	} else {
4936 		netif_err(qdev, ifup, qdev->ndev,
4937 			  "Device was not running prior to EEH.\n");
4938 	}
4939 	mod_timer(&qdev->timer, jiffies + (5*HZ));
4940 	netif_device_attach(ndev);
4941 }
4942 
4943 static const struct pci_error_handlers qlge_err_handler = {
4944 	.error_detected = qlge_io_error_detected,
4945 	.slot_reset = qlge_io_slot_reset,
4946 	.resume = qlge_io_resume,
4947 };
4948 
qlge_suspend(struct pci_dev * pdev,pm_message_t state)4949 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4950 {
4951 	struct net_device *ndev = pci_get_drvdata(pdev);
4952 	struct ql_adapter *qdev = netdev_priv(ndev);
4953 	int err;
4954 
4955 	netif_device_detach(ndev);
4956 	del_timer_sync(&qdev->timer);
4957 
4958 	if (netif_running(ndev)) {
4959 		err = ql_adapter_down(qdev);
4960 		if (!err)
4961 			return err;
4962 	}
4963 
4964 	ql_wol(qdev);
4965 	err = pci_save_state(pdev);
4966 	if (err)
4967 		return err;
4968 
4969 	pci_disable_device(pdev);
4970 
4971 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
4972 
4973 	return 0;
4974 }
4975 
4976 #ifdef CONFIG_PM
qlge_resume(struct pci_dev * pdev)4977 static int qlge_resume(struct pci_dev *pdev)
4978 {
4979 	struct net_device *ndev = pci_get_drvdata(pdev);
4980 	struct ql_adapter *qdev = netdev_priv(ndev);
4981 	int err;
4982 
4983 	pci_set_power_state(pdev, PCI_D0);
4984 	pci_restore_state(pdev);
4985 	err = pci_enable_device(pdev);
4986 	if (err) {
4987 		netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4988 		return err;
4989 	}
4990 	pci_set_master(pdev);
4991 
4992 	pci_enable_wake(pdev, PCI_D3hot, 0);
4993 	pci_enable_wake(pdev, PCI_D3cold, 0);
4994 
4995 	if (netif_running(ndev)) {
4996 		err = ql_adapter_up(qdev);
4997 		if (err)
4998 			return err;
4999 	}
5000 
5001 	mod_timer(&qdev->timer, jiffies + (5*HZ));
5002 	netif_device_attach(ndev);
5003 
5004 	return 0;
5005 }
5006 #endif /* CONFIG_PM */
5007 
qlge_shutdown(struct pci_dev * pdev)5008 static void qlge_shutdown(struct pci_dev *pdev)
5009 {
5010 	qlge_suspend(pdev, PMSG_SUSPEND);
5011 }
5012 
5013 static struct pci_driver qlge_driver = {
5014 	.name = DRV_NAME,
5015 	.id_table = qlge_pci_tbl,
5016 	.probe = qlge_probe,
5017 	.remove = qlge_remove,
5018 #ifdef CONFIG_PM
5019 	.suspend = qlge_suspend,
5020 	.resume = qlge_resume,
5021 #endif
5022 	.shutdown = qlge_shutdown,
5023 	.err_handler = &qlge_err_handler
5024 };
5025 
5026 module_pci_driver(qlge_driver);
5027