1 /*
2 * arch/powerpc/sysdev/qe_lib/qe_ic.c
3 *
4 * Copyright (C) 2006 Freescale Semiconductor, Inc. All rights reserved.
5 *
6 * Author: Li Yang <leoli@freescale.com>
7 * Based on code from Shlomi Gridish <gridish@freescale.com>
8 *
9 * QUICC ENGINE Interrupt Controller
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/errno.h>
20 #include <linux/reboot.h>
21 #include <linux/slab.h>
22 #include <linux/stddef.h>
23 #include <linux/sched.h>
24 #include <linux/signal.h>
25 #include <linux/device.h>
26 #include <linux/spinlock.h>
27 #include <asm/irq.h>
28 #include <asm/io.h>
29 #include <asm/prom.h>
30 #include <asm/qe_ic.h>
31
32 #include "qe_ic.h"
33
34 static DEFINE_RAW_SPINLOCK(qe_ic_lock);
35
36 static struct qe_ic_info qe_ic_info[] = {
37 [1] = {
38 .mask = 0x00008000,
39 .mask_reg = QEIC_CIMR,
40 .pri_code = 0,
41 .pri_reg = QEIC_CIPWCC,
42 },
43 [2] = {
44 .mask = 0x00004000,
45 .mask_reg = QEIC_CIMR,
46 .pri_code = 1,
47 .pri_reg = QEIC_CIPWCC,
48 },
49 [3] = {
50 .mask = 0x00002000,
51 .mask_reg = QEIC_CIMR,
52 .pri_code = 2,
53 .pri_reg = QEIC_CIPWCC,
54 },
55 [10] = {
56 .mask = 0x00000040,
57 .mask_reg = QEIC_CIMR,
58 .pri_code = 1,
59 .pri_reg = QEIC_CIPZCC,
60 },
61 [11] = {
62 .mask = 0x00000020,
63 .mask_reg = QEIC_CIMR,
64 .pri_code = 2,
65 .pri_reg = QEIC_CIPZCC,
66 },
67 [12] = {
68 .mask = 0x00000010,
69 .mask_reg = QEIC_CIMR,
70 .pri_code = 3,
71 .pri_reg = QEIC_CIPZCC,
72 },
73 [13] = {
74 .mask = 0x00000008,
75 .mask_reg = QEIC_CIMR,
76 .pri_code = 4,
77 .pri_reg = QEIC_CIPZCC,
78 },
79 [14] = {
80 .mask = 0x00000004,
81 .mask_reg = QEIC_CIMR,
82 .pri_code = 5,
83 .pri_reg = QEIC_CIPZCC,
84 },
85 [15] = {
86 .mask = 0x00000002,
87 .mask_reg = QEIC_CIMR,
88 .pri_code = 6,
89 .pri_reg = QEIC_CIPZCC,
90 },
91 [20] = {
92 .mask = 0x10000000,
93 .mask_reg = QEIC_CRIMR,
94 .pri_code = 3,
95 .pri_reg = QEIC_CIPRTA,
96 },
97 [25] = {
98 .mask = 0x00800000,
99 .mask_reg = QEIC_CRIMR,
100 .pri_code = 0,
101 .pri_reg = QEIC_CIPRTB,
102 },
103 [26] = {
104 .mask = 0x00400000,
105 .mask_reg = QEIC_CRIMR,
106 .pri_code = 1,
107 .pri_reg = QEIC_CIPRTB,
108 },
109 [27] = {
110 .mask = 0x00200000,
111 .mask_reg = QEIC_CRIMR,
112 .pri_code = 2,
113 .pri_reg = QEIC_CIPRTB,
114 },
115 [28] = {
116 .mask = 0x00100000,
117 .mask_reg = QEIC_CRIMR,
118 .pri_code = 3,
119 .pri_reg = QEIC_CIPRTB,
120 },
121 [32] = {
122 .mask = 0x80000000,
123 .mask_reg = QEIC_CIMR,
124 .pri_code = 0,
125 .pri_reg = QEIC_CIPXCC,
126 },
127 [33] = {
128 .mask = 0x40000000,
129 .mask_reg = QEIC_CIMR,
130 .pri_code = 1,
131 .pri_reg = QEIC_CIPXCC,
132 },
133 [34] = {
134 .mask = 0x20000000,
135 .mask_reg = QEIC_CIMR,
136 .pri_code = 2,
137 .pri_reg = QEIC_CIPXCC,
138 },
139 [35] = {
140 .mask = 0x10000000,
141 .mask_reg = QEIC_CIMR,
142 .pri_code = 3,
143 .pri_reg = QEIC_CIPXCC,
144 },
145 [36] = {
146 .mask = 0x08000000,
147 .mask_reg = QEIC_CIMR,
148 .pri_code = 4,
149 .pri_reg = QEIC_CIPXCC,
150 },
151 [40] = {
152 .mask = 0x00800000,
153 .mask_reg = QEIC_CIMR,
154 .pri_code = 0,
155 .pri_reg = QEIC_CIPYCC,
156 },
157 [41] = {
158 .mask = 0x00400000,
159 .mask_reg = QEIC_CIMR,
160 .pri_code = 1,
161 .pri_reg = QEIC_CIPYCC,
162 },
163 [42] = {
164 .mask = 0x00200000,
165 .mask_reg = QEIC_CIMR,
166 .pri_code = 2,
167 .pri_reg = QEIC_CIPYCC,
168 },
169 [43] = {
170 .mask = 0x00100000,
171 .mask_reg = QEIC_CIMR,
172 .pri_code = 3,
173 .pri_reg = QEIC_CIPYCC,
174 },
175 };
176
qe_ic_read(volatile __be32 __iomem * base,unsigned int reg)177 static inline u32 qe_ic_read(volatile __be32 __iomem * base, unsigned int reg)
178 {
179 return in_be32(base + (reg >> 2));
180 }
181
qe_ic_write(volatile __be32 __iomem * base,unsigned int reg,u32 value)182 static inline void qe_ic_write(volatile __be32 __iomem * base, unsigned int reg,
183 u32 value)
184 {
185 out_be32(base + (reg >> 2), value);
186 }
187
qe_ic_from_irq(unsigned int virq)188 static inline struct qe_ic *qe_ic_from_irq(unsigned int virq)
189 {
190 return irq_get_chip_data(virq);
191 }
192
qe_ic_from_irq_data(struct irq_data * d)193 static inline struct qe_ic *qe_ic_from_irq_data(struct irq_data *d)
194 {
195 return irq_data_get_irq_chip_data(d);
196 }
197
qe_ic_unmask_irq(struct irq_data * d)198 static void qe_ic_unmask_irq(struct irq_data *d)
199 {
200 struct qe_ic *qe_ic = qe_ic_from_irq_data(d);
201 unsigned int src = irqd_to_hwirq(d);
202 unsigned long flags;
203 u32 temp;
204
205 raw_spin_lock_irqsave(&qe_ic_lock, flags);
206
207 temp = qe_ic_read(qe_ic->regs, qe_ic_info[src].mask_reg);
208 qe_ic_write(qe_ic->regs, qe_ic_info[src].mask_reg,
209 temp | qe_ic_info[src].mask);
210
211 raw_spin_unlock_irqrestore(&qe_ic_lock, flags);
212 }
213
qe_ic_mask_irq(struct irq_data * d)214 static void qe_ic_mask_irq(struct irq_data *d)
215 {
216 struct qe_ic *qe_ic = qe_ic_from_irq_data(d);
217 unsigned int src = irqd_to_hwirq(d);
218 unsigned long flags;
219 u32 temp;
220
221 raw_spin_lock_irqsave(&qe_ic_lock, flags);
222
223 temp = qe_ic_read(qe_ic->regs, qe_ic_info[src].mask_reg);
224 qe_ic_write(qe_ic->regs, qe_ic_info[src].mask_reg,
225 temp & ~qe_ic_info[src].mask);
226
227 /* Flush the above write before enabling interrupts; otherwise,
228 * spurious interrupts will sometimes happen. To be 100% sure
229 * that the write has reached the device before interrupts are
230 * enabled, the mask register would have to be read back; however,
231 * this is not required for correctness, only to avoid wasting
232 * time on a large number of spurious interrupts. In testing,
233 * a sync reduced the observed spurious interrupts to zero.
234 */
235 mb();
236
237 raw_spin_unlock_irqrestore(&qe_ic_lock, flags);
238 }
239
240 static struct irq_chip qe_ic_irq_chip = {
241 .name = "QEIC",
242 .irq_unmask = qe_ic_unmask_irq,
243 .irq_mask = qe_ic_mask_irq,
244 .irq_mask_ack = qe_ic_mask_irq,
245 };
246
qe_ic_host_match(struct irq_domain * h,struct device_node * node)247 static int qe_ic_host_match(struct irq_domain *h, struct device_node *node)
248 {
249 /* Exact match, unless qe_ic node is NULL */
250 return h->of_node == NULL || h->of_node == node;
251 }
252
qe_ic_host_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)253 static int qe_ic_host_map(struct irq_domain *h, unsigned int virq,
254 irq_hw_number_t hw)
255 {
256 struct qe_ic *qe_ic = h->host_data;
257 struct irq_chip *chip;
258
259 if (qe_ic_info[hw].mask == 0) {
260 printk(KERN_ERR "Can't map reserved IRQ\n");
261 return -EINVAL;
262 }
263 /* Default chip */
264 chip = &qe_ic->hc_irq;
265
266 irq_set_chip_data(virq, qe_ic);
267 irq_set_status_flags(virq, IRQ_LEVEL);
268
269 irq_set_chip_and_handler(virq, chip, handle_level_irq);
270
271 return 0;
272 }
273
274 static struct irq_domain_ops qe_ic_host_ops = {
275 .match = qe_ic_host_match,
276 .map = qe_ic_host_map,
277 .xlate = irq_domain_xlate_onetwocell,
278 };
279
280 /* Return an interrupt vector or NO_IRQ if no interrupt is pending. */
qe_ic_get_low_irq(struct qe_ic * qe_ic)281 unsigned int qe_ic_get_low_irq(struct qe_ic *qe_ic)
282 {
283 int irq;
284
285 BUG_ON(qe_ic == NULL);
286
287 /* get the interrupt source vector. */
288 irq = qe_ic_read(qe_ic->regs, QEIC_CIVEC) >> 26;
289
290 if (irq == 0)
291 return NO_IRQ;
292
293 return irq_linear_revmap(qe_ic->irqhost, irq);
294 }
295
296 /* Return an interrupt vector or NO_IRQ if no interrupt is pending. */
qe_ic_get_high_irq(struct qe_ic * qe_ic)297 unsigned int qe_ic_get_high_irq(struct qe_ic *qe_ic)
298 {
299 int irq;
300
301 BUG_ON(qe_ic == NULL);
302
303 /* get the interrupt source vector. */
304 irq = qe_ic_read(qe_ic->regs, QEIC_CHIVEC) >> 26;
305
306 if (irq == 0)
307 return NO_IRQ;
308
309 return irq_linear_revmap(qe_ic->irqhost, irq);
310 }
311
qe_ic_init(struct device_node * node,unsigned int flags,void (* low_handler)(unsigned int irq,struct irq_desc * desc),void (* high_handler)(unsigned int irq,struct irq_desc * desc))312 void __init qe_ic_init(struct device_node *node, unsigned int flags,
313 void (*low_handler)(unsigned int irq, struct irq_desc *desc),
314 void (*high_handler)(unsigned int irq, struct irq_desc *desc))
315 {
316 struct qe_ic *qe_ic;
317 struct resource res;
318 u32 temp = 0, ret, high_active = 0;
319
320 ret = of_address_to_resource(node, 0, &res);
321 if (ret)
322 return;
323
324 qe_ic = kzalloc(sizeof(*qe_ic), GFP_KERNEL);
325 if (qe_ic == NULL)
326 return;
327
328 qe_ic->irqhost = irq_domain_add_linear(node, NR_QE_IC_INTS,
329 &qe_ic_host_ops, qe_ic);
330 if (qe_ic->irqhost == NULL) {
331 kfree(qe_ic);
332 return;
333 }
334
335 qe_ic->regs = ioremap(res.start, resource_size(&res));
336
337 qe_ic->hc_irq = qe_ic_irq_chip;
338
339 qe_ic->virq_high = irq_of_parse_and_map(node, 0);
340 qe_ic->virq_low = irq_of_parse_and_map(node, 1);
341
342 if (qe_ic->virq_low == NO_IRQ) {
343 printk(KERN_ERR "Failed to map QE_IC low IRQ\n");
344 kfree(qe_ic);
345 return;
346 }
347
348 /* default priority scheme is grouped. If spread mode is */
349 /* required, configure cicr accordingly. */
350 if (flags & QE_IC_SPREADMODE_GRP_W)
351 temp |= CICR_GWCC;
352 if (flags & QE_IC_SPREADMODE_GRP_X)
353 temp |= CICR_GXCC;
354 if (flags & QE_IC_SPREADMODE_GRP_Y)
355 temp |= CICR_GYCC;
356 if (flags & QE_IC_SPREADMODE_GRP_Z)
357 temp |= CICR_GZCC;
358 if (flags & QE_IC_SPREADMODE_GRP_RISCA)
359 temp |= CICR_GRTA;
360 if (flags & QE_IC_SPREADMODE_GRP_RISCB)
361 temp |= CICR_GRTB;
362
363 /* choose destination signal for highest priority interrupt */
364 if (flags & QE_IC_HIGH_SIGNAL) {
365 temp |= (SIGNAL_HIGH << CICR_HPIT_SHIFT);
366 high_active = 1;
367 }
368
369 qe_ic_write(qe_ic->regs, QEIC_CICR, temp);
370
371 irq_set_handler_data(qe_ic->virq_low, qe_ic);
372 irq_set_chained_handler(qe_ic->virq_low, low_handler);
373
374 if (qe_ic->virq_high != NO_IRQ &&
375 qe_ic->virq_high != qe_ic->virq_low) {
376 irq_set_handler_data(qe_ic->virq_high, qe_ic);
377 irq_set_chained_handler(qe_ic->virq_high, high_handler);
378 }
379 }
380
qe_ic_set_highest_priority(unsigned int virq,int high)381 void qe_ic_set_highest_priority(unsigned int virq, int high)
382 {
383 struct qe_ic *qe_ic = qe_ic_from_irq(virq);
384 unsigned int src = virq_to_hw(virq);
385 u32 temp = 0;
386
387 temp = qe_ic_read(qe_ic->regs, QEIC_CICR);
388
389 temp &= ~CICR_HP_MASK;
390 temp |= src << CICR_HP_SHIFT;
391
392 temp &= ~CICR_HPIT_MASK;
393 temp |= (high ? SIGNAL_HIGH : SIGNAL_LOW) << CICR_HPIT_SHIFT;
394
395 qe_ic_write(qe_ic->regs, QEIC_CICR, temp);
396 }
397
398 /* Set Priority level within its group, from 1 to 8 */
qe_ic_set_priority(unsigned int virq,unsigned int priority)399 int qe_ic_set_priority(unsigned int virq, unsigned int priority)
400 {
401 struct qe_ic *qe_ic = qe_ic_from_irq(virq);
402 unsigned int src = virq_to_hw(virq);
403 u32 temp;
404
405 if (priority > 8 || priority == 0)
406 return -EINVAL;
407 if (src > 127)
408 return -EINVAL;
409 if (qe_ic_info[src].pri_reg == 0)
410 return -EINVAL;
411
412 temp = qe_ic_read(qe_ic->regs, qe_ic_info[src].pri_reg);
413
414 if (priority < 4) {
415 temp &= ~(0x7 << (32 - priority * 3));
416 temp |= qe_ic_info[src].pri_code << (32 - priority * 3);
417 } else {
418 temp &= ~(0x7 << (24 - priority * 3));
419 temp |= qe_ic_info[src].pri_code << (24 - priority * 3);
420 }
421
422 qe_ic_write(qe_ic->regs, qe_ic_info[src].pri_reg, temp);
423
424 return 0;
425 }
426
427 /* Set a QE priority to use high irq, only priority 1~2 can use high irq */
qe_ic_set_high_priority(unsigned int virq,unsigned int priority,int high)428 int qe_ic_set_high_priority(unsigned int virq, unsigned int priority, int high)
429 {
430 struct qe_ic *qe_ic = qe_ic_from_irq(virq);
431 unsigned int src = virq_to_hw(virq);
432 u32 temp, control_reg = QEIC_CICNR, shift = 0;
433
434 if (priority > 2 || priority == 0)
435 return -EINVAL;
436
437 switch (qe_ic_info[src].pri_reg) {
438 case QEIC_CIPZCC:
439 shift = CICNR_ZCC1T_SHIFT;
440 break;
441 case QEIC_CIPWCC:
442 shift = CICNR_WCC1T_SHIFT;
443 break;
444 case QEIC_CIPYCC:
445 shift = CICNR_YCC1T_SHIFT;
446 break;
447 case QEIC_CIPXCC:
448 shift = CICNR_XCC1T_SHIFT;
449 break;
450 case QEIC_CIPRTA:
451 shift = CRICR_RTA1T_SHIFT;
452 control_reg = QEIC_CRICR;
453 break;
454 case QEIC_CIPRTB:
455 shift = CRICR_RTB1T_SHIFT;
456 control_reg = QEIC_CRICR;
457 break;
458 default:
459 return -EINVAL;
460 }
461
462 shift += (2 - priority) * 2;
463 temp = qe_ic_read(qe_ic->regs, control_reg);
464 temp &= ~(SIGNAL_MASK << shift);
465 temp |= (high ? SIGNAL_HIGH : SIGNAL_LOW) << shift;
466 qe_ic_write(qe_ic->regs, control_reg, temp);
467
468 return 0;
469 }
470
471 static struct bus_type qe_ic_subsys = {
472 .name = "qe_ic",
473 .dev_name = "qe_ic",
474 };
475
476 static struct device device_qe_ic = {
477 .id = 0,
478 .bus = &qe_ic_subsys,
479 };
480
init_qe_ic_sysfs(void)481 static int __init init_qe_ic_sysfs(void)
482 {
483 int rc;
484
485 printk(KERN_DEBUG "Registering qe_ic with sysfs...\n");
486
487 rc = subsys_system_register(&qe_ic_subsys, NULL);
488 if (rc) {
489 printk(KERN_ERR "Failed registering qe_ic sys class\n");
490 return -ENODEV;
491 }
492 rc = device_register(&device_qe_ic);
493 if (rc) {
494 printk(KERN_ERR "Failed registering qe_ic sys device\n");
495 return -ENODEV;
496 }
497 return 0;
498 }
499
500 subsys_initcall(init_qe_ic_sysfs);
501