1 /*
2 * Block driver for media (i.e., flash cards)
3 *
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
6 *
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
10 *
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
14 *
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
16 *
17 * Author: Andrew Christian
18 * 28 May 2002
19 */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37 #include <linux/pm_runtime.h>
38
39 #include <linux/mmc/ioctl.h>
40 #include <linux/mmc/card.h>
41 #include <linux/mmc/host.h>
42 #include <linux/mmc/mmc.h>
43 #include <linux/mmc/sd.h>
44
45 #include <asm/uaccess.h>
46
47 #include "queue.h"
48
49 MODULE_ALIAS("mmc:block");
50 #ifdef MODULE_PARAM_PREFIX
51 #undef MODULE_PARAM_PREFIX
52 #endif
53 #define MODULE_PARAM_PREFIX "mmcblk."
54
55 #define INAND_CMD38_ARG_EXT_CSD 113
56 #define INAND_CMD38_ARG_ERASE 0x00
57 #define INAND_CMD38_ARG_TRIM 0x01
58 #define INAND_CMD38_ARG_SECERASE 0x80
59 #define INAND_CMD38_ARG_SECTRIM1 0x81
60 #define INAND_CMD38_ARG_SECTRIM2 0x88
61 #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
62 #define MMC_SANITIZE_REQ_TIMEOUT 240000
63 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
64
65 #define mmc_req_rel_wr(req) (((req->cmd_flags & REQ_FUA) || \
66 (req->cmd_flags & REQ_META)) && \
67 (rq_data_dir(req) == WRITE))
68 #define PACKED_CMD_VER 0x01
69 #define PACKED_CMD_WR 0x02
70
71 static DEFINE_MUTEX(block_mutex);
72
73 /*
74 * The defaults come from config options but can be overriden by module
75 * or bootarg options.
76 */
77 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
78
79 /*
80 * We've only got one major, so number of mmcblk devices is
81 * limited to (1 << 20) / number of minors per device. It is also
82 * currently limited by the size of the static bitmaps below.
83 */
84 static int max_devices;
85
86 #define MAX_DEVICES 256
87
88 /* TODO: Replace these with struct ida */
89 static DECLARE_BITMAP(dev_use, MAX_DEVICES);
90 static DECLARE_BITMAP(name_use, MAX_DEVICES);
91
92 /*
93 * There is one mmc_blk_data per slot.
94 */
95 struct mmc_blk_data {
96 spinlock_t lock;
97 struct gendisk *disk;
98 struct mmc_queue queue;
99 struct list_head part;
100
101 unsigned int flags;
102 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
103 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
104 #define MMC_BLK_PACKED_CMD (1 << 2) /* MMC packed command support */
105
106 unsigned int usage;
107 unsigned int read_only;
108 unsigned int part_type;
109 unsigned int name_idx;
110 unsigned int reset_done;
111 #define MMC_BLK_READ BIT(0)
112 #define MMC_BLK_WRITE BIT(1)
113 #define MMC_BLK_DISCARD BIT(2)
114 #define MMC_BLK_SECDISCARD BIT(3)
115
116 /*
117 * Only set in main mmc_blk_data associated
118 * with mmc_card with dev_set_drvdata, and keeps
119 * track of the current selected device partition.
120 */
121 unsigned int part_curr;
122 struct device_attribute force_ro;
123 struct device_attribute power_ro_lock;
124 int area_type;
125 };
126
127 static DEFINE_MUTEX(open_lock);
128
129 enum {
130 MMC_PACKED_NR_IDX = -1,
131 MMC_PACKED_NR_ZERO,
132 MMC_PACKED_NR_SINGLE,
133 };
134
135 module_param(perdev_minors, int, 0444);
136 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
137
138 static inline int mmc_blk_part_switch(struct mmc_card *card,
139 struct mmc_blk_data *md);
140 static int get_card_status(struct mmc_card *card, u32 *status, int retries);
141
mmc_blk_clear_packed(struct mmc_queue_req * mqrq)142 static inline void mmc_blk_clear_packed(struct mmc_queue_req *mqrq)
143 {
144 struct mmc_packed *packed = mqrq->packed;
145
146 BUG_ON(!packed);
147
148 mqrq->cmd_type = MMC_PACKED_NONE;
149 packed->nr_entries = MMC_PACKED_NR_ZERO;
150 packed->idx_failure = MMC_PACKED_NR_IDX;
151 packed->retries = 0;
152 packed->blocks = 0;
153 }
154
mmc_blk_get(struct gendisk * disk)155 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
156 {
157 struct mmc_blk_data *md;
158
159 mutex_lock(&open_lock);
160 md = disk->private_data;
161 if (md && md->usage == 0)
162 md = NULL;
163 if (md)
164 md->usage++;
165 mutex_unlock(&open_lock);
166
167 return md;
168 }
169
mmc_get_devidx(struct gendisk * disk)170 static inline int mmc_get_devidx(struct gendisk *disk)
171 {
172 int devmaj = MAJOR(disk_devt(disk));
173 int devidx = MINOR(disk_devt(disk)) / perdev_minors;
174
175 if (!devmaj)
176 devidx = disk->first_minor / perdev_minors;
177 return devidx;
178 }
179
mmc_blk_put(struct mmc_blk_data * md)180 static void mmc_blk_put(struct mmc_blk_data *md)
181 {
182 mutex_lock(&open_lock);
183 md->usage--;
184 if (md->usage == 0) {
185 int devidx = mmc_get_devidx(md->disk);
186 blk_cleanup_queue(md->queue.queue);
187
188 __clear_bit(devidx, dev_use);
189
190 put_disk(md->disk);
191 kfree(md);
192 }
193 mutex_unlock(&open_lock);
194 }
195
power_ro_lock_show(struct device * dev,struct device_attribute * attr,char * buf)196 static ssize_t power_ro_lock_show(struct device *dev,
197 struct device_attribute *attr, char *buf)
198 {
199 int ret;
200 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
201 struct mmc_card *card = md->queue.card;
202 int locked = 0;
203
204 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
205 locked = 2;
206 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
207 locked = 1;
208
209 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
210
211 mmc_blk_put(md);
212
213 return ret;
214 }
215
power_ro_lock_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)216 static ssize_t power_ro_lock_store(struct device *dev,
217 struct device_attribute *attr, const char *buf, size_t count)
218 {
219 int ret;
220 struct mmc_blk_data *md, *part_md;
221 struct mmc_card *card;
222 unsigned long set;
223
224 if (kstrtoul(buf, 0, &set))
225 return -EINVAL;
226
227 if (set != 1)
228 return count;
229
230 md = mmc_blk_get(dev_to_disk(dev));
231 card = md->queue.card;
232
233 mmc_get_card(card);
234
235 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
236 card->ext_csd.boot_ro_lock |
237 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
238 card->ext_csd.part_time);
239 if (ret)
240 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
241 else
242 card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
243
244 mmc_put_card(card);
245
246 if (!ret) {
247 pr_info("%s: Locking boot partition ro until next power on\n",
248 md->disk->disk_name);
249 set_disk_ro(md->disk, 1);
250
251 list_for_each_entry(part_md, &md->part, part)
252 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
253 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
254 set_disk_ro(part_md->disk, 1);
255 }
256 }
257
258 mmc_blk_put(md);
259 return count;
260 }
261
force_ro_show(struct device * dev,struct device_attribute * attr,char * buf)262 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
263 char *buf)
264 {
265 int ret;
266 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
267
268 ret = snprintf(buf, PAGE_SIZE, "%d\n",
269 get_disk_ro(dev_to_disk(dev)) ^
270 md->read_only);
271 mmc_blk_put(md);
272 return ret;
273 }
274
force_ro_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)275 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
276 const char *buf, size_t count)
277 {
278 int ret;
279 char *end;
280 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
281 unsigned long set = simple_strtoul(buf, &end, 0);
282 if (end == buf) {
283 ret = -EINVAL;
284 goto out;
285 }
286
287 set_disk_ro(dev_to_disk(dev), set || md->read_only);
288 ret = count;
289 out:
290 mmc_blk_put(md);
291 return ret;
292 }
293
mmc_blk_open(struct block_device * bdev,fmode_t mode)294 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
295 {
296 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
297 int ret = -ENXIO;
298
299 mutex_lock(&block_mutex);
300 if (md) {
301 if (md->usage == 2)
302 check_disk_change(bdev);
303 ret = 0;
304
305 if ((mode & FMODE_WRITE) && md->read_only) {
306 mmc_blk_put(md);
307 ret = -EROFS;
308 }
309 }
310 mutex_unlock(&block_mutex);
311
312 return ret;
313 }
314
mmc_blk_release(struct gendisk * disk,fmode_t mode)315 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
316 {
317 struct mmc_blk_data *md = disk->private_data;
318
319 mutex_lock(&block_mutex);
320 mmc_blk_put(md);
321 mutex_unlock(&block_mutex);
322 }
323
324 static int
mmc_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)325 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
326 {
327 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
328 geo->heads = 4;
329 geo->sectors = 16;
330 return 0;
331 }
332
333 struct mmc_blk_ioc_data {
334 struct mmc_ioc_cmd ic;
335 unsigned char *buf;
336 u64 buf_bytes;
337 };
338
mmc_blk_ioctl_copy_from_user(struct mmc_ioc_cmd __user * user)339 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
340 struct mmc_ioc_cmd __user *user)
341 {
342 struct mmc_blk_ioc_data *idata;
343 int err;
344
345 idata = kzalloc(sizeof(*idata), GFP_KERNEL);
346 if (!idata) {
347 err = -ENOMEM;
348 goto out;
349 }
350
351 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
352 err = -EFAULT;
353 goto idata_err;
354 }
355
356 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
357 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
358 err = -EOVERFLOW;
359 goto idata_err;
360 }
361
362 if (!idata->buf_bytes)
363 return idata;
364
365 idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL);
366 if (!idata->buf) {
367 err = -ENOMEM;
368 goto idata_err;
369 }
370
371 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
372 idata->ic.data_ptr, idata->buf_bytes)) {
373 err = -EFAULT;
374 goto copy_err;
375 }
376
377 return idata;
378
379 copy_err:
380 kfree(idata->buf);
381 idata_err:
382 kfree(idata);
383 out:
384 return ERR_PTR(err);
385 }
386
ioctl_rpmb_card_status_poll(struct mmc_card * card,u32 * status,u32 retries_max)387 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
388 u32 retries_max)
389 {
390 int err;
391 u32 retry_count = 0;
392
393 if (!status || !retries_max)
394 return -EINVAL;
395
396 do {
397 err = get_card_status(card, status, 5);
398 if (err)
399 break;
400
401 if (!R1_STATUS(*status) &&
402 (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
403 break; /* RPMB programming operation complete */
404
405 /*
406 * Rechedule to give the MMC device a chance to continue
407 * processing the previous command without being polled too
408 * frequently.
409 */
410 usleep_range(1000, 5000);
411 } while (++retry_count < retries_max);
412
413 if (retry_count == retries_max)
414 err = -EPERM;
415
416 return err;
417 }
418
ioctl_do_sanitize(struct mmc_card * card)419 static int ioctl_do_sanitize(struct mmc_card *card)
420 {
421 int err;
422
423 if (!mmc_can_sanitize(card)) {
424 pr_warn("%s: %s - SANITIZE is not supported\n",
425 mmc_hostname(card->host), __func__);
426 err = -EOPNOTSUPP;
427 goto out;
428 }
429
430 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
431 mmc_hostname(card->host), __func__);
432
433 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
434 EXT_CSD_SANITIZE_START, 1,
435 MMC_SANITIZE_REQ_TIMEOUT);
436
437 if (err)
438 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
439 mmc_hostname(card->host), __func__, err);
440
441 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
442 __func__);
443 out:
444 return err;
445 }
446
mmc_blk_ioctl_cmd(struct block_device * bdev,struct mmc_ioc_cmd __user * ic_ptr)447 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
448 struct mmc_ioc_cmd __user *ic_ptr)
449 {
450 struct mmc_blk_ioc_data *idata;
451 struct mmc_blk_data *md;
452 struct mmc_card *card;
453 struct mmc_command cmd = {0};
454 struct mmc_data data = {0};
455 struct mmc_request mrq = {NULL};
456 struct scatterlist sg;
457 int err;
458 int is_rpmb = false;
459 u32 status = 0;
460
461 /*
462 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
463 * whole block device, not on a partition. This prevents overspray
464 * between sibling partitions.
465 */
466 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
467 return -EPERM;
468
469 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
470 if (IS_ERR(idata))
471 return PTR_ERR(idata);
472
473 md = mmc_blk_get(bdev->bd_disk);
474 if (!md) {
475 err = -EINVAL;
476 goto cmd_err;
477 }
478
479 if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
480 is_rpmb = true;
481
482 card = md->queue.card;
483 if (IS_ERR(card)) {
484 err = PTR_ERR(card);
485 goto cmd_done;
486 }
487
488 cmd.opcode = idata->ic.opcode;
489 cmd.arg = idata->ic.arg;
490 cmd.flags = idata->ic.flags;
491
492 if (idata->buf_bytes) {
493 data.sg = &sg;
494 data.sg_len = 1;
495 data.blksz = idata->ic.blksz;
496 data.blocks = idata->ic.blocks;
497
498 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
499
500 if (idata->ic.write_flag)
501 data.flags = MMC_DATA_WRITE;
502 else
503 data.flags = MMC_DATA_READ;
504
505 /* data.flags must already be set before doing this. */
506 mmc_set_data_timeout(&data, card);
507
508 /* Allow overriding the timeout_ns for empirical tuning. */
509 if (idata->ic.data_timeout_ns)
510 data.timeout_ns = idata->ic.data_timeout_ns;
511
512 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
513 /*
514 * Pretend this is a data transfer and rely on the
515 * host driver to compute timeout. When all host
516 * drivers support cmd.cmd_timeout for R1B, this
517 * can be changed to:
518 *
519 * mrq.data = NULL;
520 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
521 */
522 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
523 }
524
525 mrq.data = &data;
526 }
527
528 mrq.cmd = &cmd;
529
530 mmc_get_card(card);
531
532 err = mmc_blk_part_switch(card, md);
533 if (err)
534 goto cmd_rel_host;
535
536 if (idata->ic.is_acmd) {
537 err = mmc_app_cmd(card->host, card);
538 if (err)
539 goto cmd_rel_host;
540 }
541
542 if (is_rpmb) {
543 err = mmc_set_blockcount(card, data.blocks,
544 idata->ic.write_flag & (1 << 31));
545 if (err)
546 goto cmd_rel_host;
547 }
548
549 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
550 (cmd.opcode == MMC_SWITCH)) {
551 err = ioctl_do_sanitize(card);
552
553 if (err)
554 pr_err("%s: ioctl_do_sanitize() failed. err = %d",
555 __func__, err);
556
557 goto cmd_rel_host;
558 }
559
560 mmc_wait_for_req(card->host, &mrq);
561
562 if (cmd.error) {
563 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
564 __func__, cmd.error);
565 err = cmd.error;
566 goto cmd_rel_host;
567 }
568 if (data.error) {
569 dev_err(mmc_dev(card->host), "%s: data error %d\n",
570 __func__, data.error);
571 err = data.error;
572 goto cmd_rel_host;
573 }
574
575 /*
576 * According to the SD specs, some commands require a delay after
577 * issuing the command.
578 */
579 if (idata->ic.postsleep_min_us)
580 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
581
582 if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) {
583 err = -EFAULT;
584 goto cmd_rel_host;
585 }
586
587 if (!idata->ic.write_flag) {
588 if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr,
589 idata->buf, idata->buf_bytes)) {
590 err = -EFAULT;
591 goto cmd_rel_host;
592 }
593 }
594
595 if (is_rpmb) {
596 /*
597 * Ensure RPMB command has completed by polling CMD13
598 * "Send Status".
599 */
600 err = ioctl_rpmb_card_status_poll(card, &status, 5);
601 if (err)
602 dev_err(mmc_dev(card->host),
603 "%s: Card Status=0x%08X, error %d\n",
604 __func__, status, err);
605 }
606
607 cmd_rel_host:
608 mmc_put_card(card);
609
610 cmd_done:
611 mmc_blk_put(md);
612 cmd_err:
613 kfree(idata->buf);
614 kfree(idata);
615 return err;
616 }
617
mmc_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)618 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
619 unsigned int cmd, unsigned long arg)
620 {
621 int ret = -EINVAL;
622 if (cmd == MMC_IOC_CMD)
623 ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg);
624 return ret;
625 }
626
627 #ifdef CONFIG_COMPAT
mmc_blk_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)628 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
629 unsigned int cmd, unsigned long arg)
630 {
631 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
632 }
633 #endif
634
635 static const struct block_device_operations mmc_bdops = {
636 .open = mmc_blk_open,
637 .release = mmc_blk_release,
638 .getgeo = mmc_blk_getgeo,
639 .owner = THIS_MODULE,
640 .ioctl = mmc_blk_ioctl,
641 #ifdef CONFIG_COMPAT
642 .compat_ioctl = mmc_blk_compat_ioctl,
643 #endif
644 };
645
mmc_blk_part_switch(struct mmc_card * card,struct mmc_blk_data * md)646 static inline int mmc_blk_part_switch(struct mmc_card *card,
647 struct mmc_blk_data *md)
648 {
649 int ret;
650 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
651
652 if (main_md->part_curr == md->part_type)
653 return 0;
654
655 if (mmc_card_mmc(card)) {
656 u8 part_config = card->ext_csd.part_config;
657
658 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
659 part_config |= md->part_type;
660
661 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
662 EXT_CSD_PART_CONFIG, part_config,
663 card->ext_csd.part_time);
664 if (ret)
665 return ret;
666
667 card->ext_csd.part_config = part_config;
668 }
669
670 main_md->part_curr = md->part_type;
671 return 0;
672 }
673
mmc_sd_num_wr_blocks(struct mmc_card * card)674 static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
675 {
676 int err;
677 u32 result;
678 __be32 *blocks;
679
680 struct mmc_request mrq = {NULL};
681 struct mmc_command cmd = {0};
682 struct mmc_data data = {0};
683
684 struct scatterlist sg;
685
686 cmd.opcode = MMC_APP_CMD;
687 cmd.arg = card->rca << 16;
688 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
689
690 err = mmc_wait_for_cmd(card->host, &cmd, 0);
691 if (err)
692 return (u32)-1;
693 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
694 return (u32)-1;
695
696 memset(&cmd, 0, sizeof(struct mmc_command));
697
698 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
699 cmd.arg = 0;
700 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
701
702 data.blksz = 4;
703 data.blocks = 1;
704 data.flags = MMC_DATA_READ;
705 data.sg = &sg;
706 data.sg_len = 1;
707 mmc_set_data_timeout(&data, card);
708
709 mrq.cmd = &cmd;
710 mrq.data = &data;
711
712 blocks = kmalloc(4, GFP_KERNEL);
713 if (!blocks)
714 return (u32)-1;
715
716 sg_init_one(&sg, blocks, 4);
717
718 mmc_wait_for_req(card->host, &mrq);
719
720 result = ntohl(*blocks);
721 kfree(blocks);
722
723 if (cmd.error || data.error)
724 result = (u32)-1;
725
726 return result;
727 }
728
get_card_status(struct mmc_card * card,u32 * status,int retries)729 static int get_card_status(struct mmc_card *card, u32 *status, int retries)
730 {
731 struct mmc_command cmd = {0};
732 int err;
733
734 cmd.opcode = MMC_SEND_STATUS;
735 if (!mmc_host_is_spi(card->host))
736 cmd.arg = card->rca << 16;
737 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
738 err = mmc_wait_for_cmd(card->host, &cmd, retries);
739 if (err == 0)
740 *status = cmd.resp[0];
741 return err;
742 }
743
card_busy_detect(struct mmc_card * card,unsigned int timeout_ms,bool hw_busy_detect,struct request * req,int * gen_err)744 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
745 bool hw_busy_detect, struct request *req, int *gen_err)
746 {
747 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
748 int err = 0;
749 u32 status;
750
751 do {
752 err = get_card_status(card, &status, 5);
753 if (err) {
754 pr_err("%s: error %d requesting status\n",
755 req->rq_disk->disk_name, err);
756 return err;
757 }
758
759 if (status & R1_ERROR) {
760 pr_err("%s: %s: error sending status cmd, status %#x\n",
761 req->rq_disk->disk_name, __func__, status);
762 *gen_err = 1;
763 }
764
765 /* We may rely on the host hw to handle busy detection.*/
766 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
767 hw_busy_detect)
768 break;
769
770 /*
771 * Timeout if the device never becomes ready for data and never
772 * leaves the program state.
773 */
774 if (time_after(jiffies, timeout)) {
775 pr_err("%s: Card stuck in programming state! %s %s\n",
776 mmc_hostname(card->host),
777 req->rq_disk->disk_name, __func__);
778 return -ETIMEDOUT;
779 }
780
781 /*
782 * Some cards mishandle the status bits,
783 * so make sure to check both the busy
784 * indication and the card state.
785 */
786 } while (!(status & R1_READY_FOR_DATA) ||
787 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
788
789 return err;
790 }
791
send_stop(struct mmc_card * card,unsigned int timeout_ms,struct request * req,int * gen_err,u32 * stop_status)792 static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
793 struct request *req, int *gen_err, u32 *stop_status)
794 {
795 struct mmc_host *host = card->host;
796 struct mmc_command cmd = {0};
797 int err;
798 bool use_r1b_resp = rq_data_dir(req) == WRITE;
799
800 /*
801 * Normally we use R1B responses for WRITE, but in cases where the host
802 * has specified a max_busy_timeout we need to validate it. A failure
803 * means we need to prevent the host from doing hw busy detection, which
804 * is done by converting to a R1 response instead.
805 */
806 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
807 use_r1b_resp = false;
808
809 cmd.opcode = MMC_STOP_TRANSMISSION;
810 if (use_r1b_resp) {
811 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
812 cmd.busy_timeout = timeout_ms;
813 } else {
814 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
815 }
816
817 err = mmc_wait_for_cmd(host, &cmd, 5);
818 if (err)
819 return err;
820
821 *stop_status = cmd.resp[0];
822
823 /* No need to check card status in case of READ. */
824 if (rq_data_dir(req) == READ)
825 return 0;
826
827 if (!mmc_host_is_spi(host) &&
828 (*stop_status & R1_ERROR)) {
829 pr_err("%s: %s: general error sending stop command, resp %#x\n",
830 req->rq_disk->disk_name, __func__, *stop_status);
831 *gen_err = 1;
832 }
833
834 return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
835 }
836
837 #define ERR_NOMEDIUM 3
838 #define ERR_RETRY 2
839 #define ERR_ABORT 1
840 #define ERR_CONTINUE 0
841
mmc_blk_cmd_error(struct request * req,const char * name,int error,bool status_valid,u32 status)842 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
843 bool status_valid, u32 status)
844 {
845 switch (error) {
846 case -EILSEQ:
847 /* response crc error, retry the r/w cmd */
848 pr_err("%s: %s sending %s command, card status %#x\n",
849 req->rq_disk->disk_name, "response CRC error",
850 name, status);
851 return ERR_RETRY;
852
853 case -ETIMEDOUT:
854 pr_err("%s: %s sending %s command, card status %#x\n",
855 req->rq_disk->disk_name, "timed out", name, status);
856
857 /* If the status cmd initially failed, retry the r/w cmd */
858 if (!status_valid)
859 return ERR_RETRY;
860
861 /*
862 * If it was a r/w cmd crc error, or illegal command
863 * (eg, issued in wrong state) then retry - we should
864 * have corrected the state problem above.
865 */
866 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND))
867 return ERR_RETRY;
868
869 /* Otherwise abort the command */
870 return ERR_ABORT;
871
872 default:
873 /* We don't understand the error code the driver gave us */
874 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
875 req->rq_disk->disk_name, error, status);
876 return ERR_ABORT;
877 }
878 }
879
880 /*
881 * Initial r/w and stop cmd error recovery.
882 * We don't know whether the card received the r/w cmd or not, so try to
883 * restore things back to a sane state. Essentially, we do this as follows:
884 * - Obtain card status. If the first attempt to obtain card status fails,
885 * the status word will reflect the failed status cmd, not the failed
886 * r/w cmd. If we fail to obtain card status, it suggests we can no
887 * longer communicate with the card.
888 * - Check the card state. If the card received the cmd but there was a
889 * transient problem with the response, it might still be in a data transfer
890 * mode. Try to send it a stop command. If this fails, we can't recover.
891 * - If the r/w cmd failed due to a response CRC error, it was probably
892 * transient, so retry the cmd.
893 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
894 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
895 * illegal cmd, retry.
896 * Otherwise we don't understand what happened, so abort.
897 */
mmc_blk_cmd_recovery(struct mmc_card * card,struct request * req,struct mmc_blk_request * brq,int * ecc_err,int * gen_err)898 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
899 struct mmc_blk_request *brq, int *ecc_err, int *gen_err)
900 {
901 bool prev_cmd_status_valid = true;
902 u32 status, stop_status = 0;
903 int err, retry;
904
905 if (mmc_card_removed(card))
906 return ERR_NOMEDIUM;
907
908 /*
909 * Try to get card status which indicates both the card state
910 * and why there was no response. If the first attempt fails,
911 * we can't be sure the returned status is for the r/w command.
912 */
913 for (retry = 2; retry >= 0; retry--) {
914 err = get_card_status(card, &status, 0);
915 if (!err)
916 break;
917
918 prev_cmd_status_valid = false;
919 pr_err("%s: error %d sending status command, %sing\n",
920 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
921 }
922
923 /* We couldn't get a response from the card. Give up. */
924 if (err) {
925 /* Check if the card is removed */
926 if (mmc_detect_card_removed(card->host))
927 return ERR_NOMEDIUM;
928 return ERR_ABORT;
929 }
930
931 /* Flag ECC errors */
932 if ((status & R1_CARD_ECC_FAILED) ||
933 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
934 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
935 *ecc_err = 1;
936
937 /* Flag General errors */
938 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
939 if ((status & R1_ERROR) ||
940 (brq->stop.resp[0] & R1_ERROR)) {
941 pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
942 req->rq_disk->disk_name, __func__,
943 brq->stop.resp[0], status);
944 *gen_err = 1;
945 }
946
947 /*
948 * Check the current card state. If it is in some data transfer
949 * mode, tell it to stop (and hopefully transition back to TRAN.)
950 */
951 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
952 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
953 err = send_stop(card,
954 DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
955 req, gen_err, &stop_status);
956 if (err) {
957 pr_err("%s: error %d sending stop command\n",
958 req->rq_disk->disk_name, err);
959 /*
960 * If the stop cmd also timed out, the card is probably
961 * not present, so abort. Other errors are bad news too.
962 */
963 return ERR_ABORT;
964 }
965
966 if (stop_status & R1_CARD_ECC_FAILED)
967 *ecc_err = 1;
968 }
969
970 /* Check for set block count errors */
971 if (brq->sbc.error)
972 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
973 prev_cmd_status_valid, status);
974
975 /* Check for r/w command errors */
976 if (brq->cmd.error)
977 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
978 prev_cmd_status_valid, status);
979
980 /* Data errors */
981 if (!brq->stop.error)
982 return ERR_CONTINUE;
983
984 /* Now for stop errors. These aren't fatal to the transfer. */
985 pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
986 req->rq_disk->disk_name, brq->stop.error,
987 brq->cmd.resp[0], status);
988
989 /*
990 * Subsitute in our own stop status as this will give the error
991 * state which happened during the execution of the r/w command.
992 */
993 if (stop_status) {
994 brq->stop.resp[0] = stop_status;
995 brq->stop.error = 0;
996 }
997 return ERR_CONTINUE;
998 }
999
mmc_blk_reset(struct mmc_blk_data * md,struct mmc_host * host,int type)1000 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1001 int type)
1002 {
1003 int err;
1004
1005 if (md->reset_done & type)
1006 return -EEXIST;
1007
1008 md->reset_done |= type;
1009 err = mmc_hw_reset(host);
1010 /* Ensure we switch back to the correct partition */
1011 if (err != -EOPNOTSUPP) {
1012 struct mmc_blk_data *main_md =
1013 dev_get_drvdata(&host->card->dev);
1014 int part_err;
1015
1016 main_md->part_curr = main_md->part_type;
1017 part_err = mmc_blk_part_switch(host->card, md);
1018 if (part_err) {
1019 /*
1020 * We have failed to get back into the correct
1021 * partition, so we need to abort the whole request.
1022 */
1023 return -ENODEV;
1024 }
1025 }
1026 return err;
1027 }
1028
mmc_blk_reset_success(struct mmc_blk_data * md,int type)1029 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1030 {
1031 md->reset_done &= ~type;
1032 }
1033
mmc_access_rpmb(struct mmc_queue * mq)1034 int mmc_access_rpmb(struct mmc_queue *mq)
1035 {
1036 struct mmc_blk_data *md = mq->data;
1037 /*
1038 * If this is a RPMB partition access, return ture
1039 */
1040 if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
1041 return true;
1042
1043 return false;
1044 }
1045
mmc_blk_issue_discard_rq(struct mmc_queue * mq,struct request * req)1046 static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1047 {
1048 struct mmc_blk_data *md = mq->data;
1049 struct mmc_card *card = md->queue.card;
1050 unsigned int from, nr, arg;
1051 int err = 0, type = MMC_BLK_DISCARD;
1052
1053 if (!mmc_can_erase(card)) {
1054 err = -EOPNOTSUPP;
1055 goto out;
1056 }
1057
1058 from = blk_rq_pos(req);
1059 nr = blk_rq_sectors(req);
1060
1061 if (mmc_can_discard(card))
1062 arg = MMC_DISCARD_ARG;
1063 else if (mmc_can_trim(card))
1064 arg = MMC_TRIM_ARG;
1065 else
1066 arg = MMC_ERASE_ARG;
1067 retry:
1068 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1069 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1070 INAND_CMD38_ARG_EXT_CSD,
1071 arg == MMC_TRIM_ARG ?
1072 INAND_CMD38_ARG_TRIM :
1073 INAND_CMD38_ARG_ERASE,
1074 0);
1075 if (err)
1076 goto out;
1077 }
1078 err = mmc_erase(card, from, nr, arg);
1079 out:
1080 if (err == -EIO && !mmc_blk_reset(md, card->host, type))
1081 goto retry;
1082 if (!err)
1083 mmc_blk_reset_success(md, type);
1084 blk_end_request(req, err, blk_rq_bytes(req));
1085
1086 return err ? 0 : 1;
1087 }
1088
mmc_blk_issue_secdiscard_rq(struct mmc_queue * mq,struct request * req)1089 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1090 struct request *req)
1091 {
1092 struct mmc_blk_data *md = mq->data;
1093 struct mmc_card *card = md->queue.card;
1094 unsigned int from, nr, arg;
1095 int err = 0, type = MMC_BLK_SECDISCARD;
1096
1097 if (!(mmc_can_secure_erase_trim(card))) {
1098 err = -EOPNOTSUPP;
1099 goto out;
1100 }
1101
1102 from = blk_rq_pos(req);
1103 nr = blk_rq_sectors(req);
1104
1105 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1106 arg = MMC_SECURE_TRIM1_ARG;
1107 else
1108 arg = MMC_SECURE_ERASE_ARG;
1109
1110 retry:
1111 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1112 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1113 INAND_CMD38_ARG_EXT_CSD,
1114 arg == MMC_SECURE_TRIM1_ARG ?
1115 INAND_CMD38_ARG_SECTRIM1 :
1116 INAND_CMD38_ARG_SECERASE,
1117 0);
1118 if (err)
1119 goto out_retry;
1120 }
1121
1122 err = mmc_erase(card, from, nr, arg);
1123 if (err == -EIO)
1124 goto out_retry;
1125 if (err)
1126 goto out;
1127
1128 if (arg == MMC_SECURE_TRIM1_ARG) {
1129 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1130 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1131 INAND_CMD38_ARG_EXT_CSD,
1132 INAND_CMD38_ARG_SECTRIM2,
1133 0);
1134 if (err)
1135 goto out_retry;
1136 }
1137
1138 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1139 if (err == -EIO)
1140 goto out_retry;
1141 if (err)
1142 goto out;
1143 }
1144
1145 out_retry:
1146 if (err && !mmc_blk_reset(md, card->host, type))
1147 goto retry;
1148 if (!err)
1149 mmc_blk_reset_success(md, type);
1150 out:
1151 blk_end_request(req, err, blk_rq_bytes(req));
1152
1153 return err ? 0 : 1;
1154 }
1155
mmc_blk_issue_flush(struct mmc_queue * mq,struct request * req)1156 static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1157 {
1158 struct mmc_blk_data *md = mq->data;
1159 struct mmc_card *card = md->queue.card;
1160 int ret = 0;
1161
1162 ret = mmc_flush_cache(card);
1163 if (ret)
1164 ret = -EIO;
1165
1166 blk_end_request_all(req, ret);
1167
1168 return ret ? 0 : 1;
1169 }
1170
1171 /*
1172 * Reformat current write as a reliable write, supporting
1173 * both legacy and the enhanced reliable write MMC cards.
1174 * In each transfer we'll handle only as much as a single
1175 * reliable write can handle, thus finish the request in
1176 * partial completions.
1177 */
mmc_apply_rel_rw(struct mmc_blk_request * brq,struct mmc_card * card,struct request * req)1178 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1179 struct mmc_card *card,
1180 struct request *req)
1181 {
1182 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1183 /* Legacy mode imposes restrictions on transfers. */
1184 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
1185 brq->data.blocks = 1;
1186
1187 if (brq->data.blocks > card->ext_csd.rel_sectors)
1188 brq->data.blocks = card->ext_csd.rel_sectors;
1189 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1190 brq->data.blocks = 1;
1191 }
1192 }
1193
1194 #define CMD_ERRORS \
1195 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
1196 R1_ADDRESS_ERROR | /* Misaligned address */ \
1197 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1198 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1199 R1_CC_ERROR | /* Card controller error */ \
1200 R1_ERROR) /* General/unknown error */
1201
mmc_blk_err_check(struct mmc_card * card,struct mmc_async_req * areq)1202 static int mmc_blk_err_check(struct mmc_card *card,
1203 struct mmc_async_req *areq)
1204 {
1205 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1206 mmc_active);
1207 struct mmc_blk_request *brq = &mq_mrq->brq;
1208 struct request *req = mq_mrq->req;
1209 int ecc_err = 0, gen_err = 0;
1210
1211 /*
1212 * sbc.error indicates a problem with the set block count
1213 * command. No data will have been transferred.
1214 *
1215 * cmd.error indicates a problem with the r/w command. No
1216 * data will have been transferred.
1217 *
1218 * stop.error indicates a problem with the stop command. Data
1219 * may have been transferred, or may still be transferring.
1220 */
1221 if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1222 brq->data.error) {
1223 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1224 case ERR_RETRY:
1225 return MMC_BLK_RETRY;
1226 case ERR_ABORT:
1227 return MMC_BLK_ABORT;
1228 case ERR_NOMEDIUM:
1229 return MMC_BLK_NOMEDIUM;
1230 case ERR_CONTINUE:
1231 break;
1232 }
1233 }
1234
1235 /*
1236 * Check for errors relating to the execution of the
1237 * initial command - such as address errors. No data
1238 * has been transferred.
1239 */
1240 if (brq->cmd.resp[0] & CMD_ERRORS) {
1241 pr_err("%s: r/w command failed, status = %#x\n",
1242 req->rq_disk->disk_name, brq->cmd.resp[0]);
1243 return MMC_BLK_ABORT;
1244 }
1245
1246 /*
1247 * Everything else is either success, or a data error of some
1248 * kind. If it was a write, we may have transitioned to
1249 * program mode, which we have to wait for it to complete.
1250 */
1251 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1252 int err;
1253
1254 /* Check stop command response */
1255 if (brq->stop.resp[0] & R1_ERROR) {
1256 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1257 req->rq_disk->disk_name, __func__,
1258 brq->stop.resp[0]);
1259 gen_err = 1;
1260 }
1261
1262 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1263 &gen_err);
1264 if (err)
1265 return MMC_BLK_CMD_ERR;
1266 }
1267
1268 /* if general error occurs, retry the write operation. */
1269 if (gen_err) {
1270 pr_warn("%s: retrying write for general error\n",
1271 req->rq_disk->disk_name);
1272 return MMC_BLK_RETRY;
1273 }
1274
1275 if (brq->data.error) {
1276 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1277 req->rq_disk->disk_name, brq->data.error,
1278 (unsigned)blk_rq_pos(req),
1279 (unsigned)blk_rq_sectors(req),
1280 brq->cmd.resp[0], brq->stop.resp[0]);
1281
1282 if (rq_data_dir(req) == READ) {
1283 if (ecc_err)
1284 return MMC_BLK_ECC_ERR;
1285 return MMC_BLK_DATA_ERR;
1286 } else {
1287 return MMC_BLK_CMD_ERR;
1288 }
1289 }
1290
1291 if (!brq->data.bytes_xfered)
1292 return MMC_BLK_RETRY;
1293
1294 if (mmc_packed_cmd(mq_mrq->cmd_type)) {
1295 if (unlikely(brq->data.blocks << 9 != brq->data.bytes_xfered))
1296 return MMC_BLK_PARTIAL;
1297 else
1298 return MMC_BLK_SUCCESS;
1299 }
1300
1301 if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1302 return MMC_BLK_PARTIAL;
1303
1304 return MMC_BLK_SUCCESS;
1305 }
1306
mmc_blk_packed_err_check(struct mmc_card * card,struct mmc_async_req * areq)1307 static int mmc_blk_packed_err_check(struct mmc_card *card,
1308 struct mmc_async_req *areq)
1309 {
1310 struct mmc_queue_req *mq_rq = container_of(areq, struct mmc_queue_req,
1311 mmc_active);
1312 struct request *req = mq_rq->req;
1313 struct mmc_packed *packed = mq_rq->packed;
1314 int err, check, status;
1315 u8 *ext_csd;
1316
1317 BUG_ON(!packed);
1318
1319 packed->retries--;
1320 check = mmc_blk_err_check(card, areq);
1321 err = get_card_status(card, &status, 0);
1322 if (err) {
1323 pr_err("%s: error %d sending status command\n",
1324 req->rq_disk->disk_name, err);
1325 return MMC_BLK_ABORT;
1326 }
1327
1328 if (status & R1_EXCEPTION_EVENT) {
1329 err = mmc_get_ext_csd(card, &ext_csd);
1330 if (err) {
1331 pr_err("%s: error %d sending ext_csd\n",
1332 req->rq_disk->disk_name, err);
1333 return MMC_BLK_ABORT;
1334 }
1335
1336 if ((ext_csd[EXT_CSD_EXP_EVENTS_STATUS] &
1337 EXT_CSD_PACKED_FAILURE) &&
1338 (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1339 EXT_CSD_PACKED_GENERIC_ERROR)) {
1340 if (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
1341 EXT_CSD_PACKED_INDEXED_ERROR) {
1342 packed->idx_failure =
1343 ext_csd[EXT_CSD_PACKED_FAILURE_INDEX] - 1;
1344 check = MMC_BLK_PARTIAL;
1345 }
1346 pr_err("%s: packed cmd failed, nr %u, sectors %u, "
1347 "failure index: %d\n",
1348 req->rq_disk->disk_name, packed->nr_entries,
1349 packed->blocks, packed->idx_failure);
1350 }
1351 kfree(ext_csd);
1352 }
1353
1354 return check;
1355 }
1356
mmc_blk_rw_rq_prep(struct mmc_queue_req * mqrq,struct mmc_card * card,int disable_multi,struct mmc_queue * mq)1357 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1358 struct mmc_card *card,
1359 int disable_multi,
1360 struct mmc_queue *mq)
1361 {
1362 u32 readcmd, writecmd;
1363 struct mmc_blk_request *brq = &mqrq->brq;
1364 struct request *req = mqrq->req;
1365 struct mmc_blk_data *md = mq->data;
1366 bool do_data_tag;
1367
1368 /*
1369 * Reliable writes are used to implement Forced Unit Access and
1370 * REQ_META accesses, and are supported only on MMCs.
1371 *
1372 * XXX: this really needs a good explanation of why REQ_META
1373 * is treated special.
1374 */
1375 bool do_rel_wr = ((req->cmd_flags & REQ_FUA) ||
1376 (req->cmd_flags & REQ_META)) &&
1377 (rq_data_dir(req) == WRITE) &&
1378 (md->flags & MMC_BLK_REL_WR);
1379
1380 memset(brq, 0, sizeof(struct mmc_blk_request));
1381 brq->mrq.cmd = &brq->cmd;
1382 brq->mrq.data = &brq->data;
1383
1384 brq->cmd.arg = blk_rq_pos(req);
1385 if (!mmc_card_blockaddr(card))
1386 brq->cmd.arg <<= 9;
1387 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1388 brq->data.blksz = 512;
1389 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1390 brq->stop.arg = 0;
1391 brq->data.blocks = blk_rq_sectors(req);
1392
1393 /*
1394 * The block layer doesn't support all sector count
1395 * restrictions, so we need to be prepared for too big
1396 * requests.
1397 */
1398 if (brq->data.blocks > card->host->max_blk_count)
1399 brq->data.blocks = card->host->max_blk_count;
1400
1401 if (brq->data.blocks > 1) {
1402 /*
1403 * After a read error, we redo the request one sector
1404 * at a time in order to accurately determine which
1405 * sectors can be read successfully.
1406 */
1407 if (disable_multi)
1408 brq->data.blocks = 1;
1409
1410 /*
1411 * Some controllers have HW issues while operating
1412 * in multiple I/O mode
1413 */
1414 if (card->host->ops->multi_io_quirk)
1415 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1416 (rq_data_dir(req) == READ) ?
1417 MMC_DATA_READ : MMC_DATA_WRITE,
1418 brq->data.blocks);
1419 }
1420
1421 if (brq->data.blocks > 1 || do_rel_wr) {
1422 /* SPI multiblock writes terminate using a special
1423 * token, not a STOP_TRANSMISSION request.
1424 */
1425 if (!mmc_host_is_spi(card->host) ||
1426 rq_data_dir(req) == READ)
1427 brq->mrq.stop = &brq->stop;
1428 readcmd = MMC_READ_MULTIPLE_BLOCK;
1429 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1430 } else {
1431 brq->mrq.stop = NULL;
1432 readcmd = MMC_READ_SINGLE_BLOCK;
1433 writecmd = MMC_WRITE_BLOCK;
1434 }
1435 if (rq_data_dir(req) == READ) {
1436 brq->cmd.opcode = readcmd;
1437 brq->data.flags |= MMC_DATA_READ;
1438 if (brq->mrq.stop)
1439 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 |
1440 MMC_CMD_AC;
1441 } else {
1442 brq->cmd.opcode = writecmd;
1443 brq->data.flags |= MMC_DATA_WRITE;
1444 if (brq->mrq.stop)
1445 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B |
1446 MMC_CMD_AC;
1447 }
1448
1449 if (do_rel_wr)
1450 mmc_apply_rel_rw(brq, card, req);
1451
1452 /*
1453 * Data tag is used only during writing meta data to speed
1454 * up write and any subsequent read of this meta data
1455 */
1456 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1457 (req->cmd_flags & REQ_META) &&
1458 (rq_data_dir(req) == WRITE) &&
1459 ((brq->data.blocks * brq->data.blksz) >=
1460 card->ext_csd.data_tag_unit_size);
1461
1462 /*
1463 * Pre-defined multi-block transfers are preferable to
1464 * open ended-ones (and necessary for reliable writes).
1465 * However, it is not sufficient to just send CMD23,
1466 * and avoid the final CMD12, as on an error condition
1467 * CMD12 (stop) needs to be sent anyway. This, coupled
1468 * with Auto-CMD23 enhancements provided by some
1469 * hosts, means that the complexity of dealing
1470 * with this is best left to the host. If CMD23 is
1471 * supported by card and host, we'll fill sbc in and let
1472 * the host deal with handling it correctly. This means
1473 * that for hosts that don't expose MMC_CAP_CMD23, no
1474 * change of behavior will be observed.
1475 *
1476 * N.B: Some MMC cards experience perf degradation.
1477 * We'll avoid using CMD23-bounded multiblock writes for
1478 * these, while retaining features like reliable writes.
1479 */
1480 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1481 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1482 do_data_tag)) {
1483 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1484 brq->sbc.arg = brq->data.blocks |
1485 (do_rel_wr ? (1 << 31) : 0) |
1486 (do_data_tag ? (1 << 29) : 0);
1487 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1488 brq->mrq.sbc = &brq->sbc;
1489 }
1490
1491 mmc_set_data_timeout(&brq->data, card);
1492
1493 brq->data.sg = mqrq->sg;
1494 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1495
1496 /*
1497 * Adjust the sg list so it is the same size as the
1498 * request.
1499 */
1500 if (brq->data.blocks != blk_rq_sectors(req)) {
1501 int i, data_size = brq->data.blocks << 9;
1502 struct scatterlist *sg;
1503
1504 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1505 data_size -= sg->length;
1506 if (data_size <= 0) {
1507 sg->length += data_size;
1508 i++;
1509 break;
1510 }
1511 }
1512 brq->data.sg_len = i;
1513 }
1514
1515 mqrq->mmc_active.mrq = &brq->mrq;
1516 mqrq->mmc_active.err_check = mmc_blk_err_check;
1517
1518 mmc_queue_bounce_pre(mqrq);
1519 }
1520
mmc_calc_packed_hdr_segs(struct request_queue * q,struct mmc_card * card)1521 static inline u8 mmc_calc_packed_hdr_segs(struct request_queue *q,
1522 struct mmc_card *card)
1523 {
1524 unsigned int hdr_sz = mmc_large_sector(card) ? 4096 : 512;
1525 unsigned int max_seg_sz = queue_max_segment_size(q);
1526 unsigned int len, nr_segs = 0;
1527
1528 do {
1529 len = min(hdr_sz, max_seg_sz);
1530 hdr_sz -= len;
1531 nr_segs++;
1532 } while (hdr_sz);
1533
1534 return nr_segs;
1535 }
1536
mmc_blk_prep_packed_list(struct mmc_queue * mq,struct request * req)1537 static u8 mmc_blk_prep_packed_list(struct mmc_queue *mq, struct request *req)
1538 {
1539 struct request_queue *q = mq->queue;
1540 struct mmc_card *card = mq->card;
1541 struct request *cur = req, *next = NULL;
1542 struct mmc_blk_data *md = mq->data;
1543 struct mmc_queue_req *mqrq = mq->mqrq_cur;
1544 bool en_rel_wr = card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN;
1545 unsigned int req_sectors = 0, phys_segments = 0;
1546 unsigned int max_blk_count, max_phys_segs;
1547 bool put_back = true;
1548 u8 max_packed_rw = 0;
1549 u8 reqs = 0;
1550
1551 if (!(md->flags & MMC_BLK_PACKED_CMD))
1552 goto no_packed;
1553
1554 if ((rq_data_dir(cur) == WRITE) &&
1555 mmc_host_packed_wr(card->host))
1556 max_packed_rw = card->ext_csd.max_packed_writes;
1557
1558 if (max_packed_rw == 0)
1559 goto no_packed;
1560
1561 if (mmc_req_rel_wr(cur) &&
1562 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1563 goto no_packed;
1564
1565 if (mmc_large_sector(card) &&
1566 !IS_ALIGNED(blk_rq_sectors(cur), 8))
1567 goto no_packed;
1568
1569 mmc_blk_clear_packed(mqrq);
1570
1571 max_blk_count = min(card->host->max_blk_count,
1572 card->host->max_req_size >> 9);
1573 if (unlikely(max_blk_count > 0xffff))
1574 max_blk_count = 0xffff;
1575
1576 max_phys_segs = queue_max_segments(q);
1577 req_sectors += blk_rq_sectors(cur);
1578 phys_segments += cur->nr_phys_segments;
1579
1580 if (rq_data_dir(cur) == WRITE) {
1581 req_sectors += mmc_large_sector(card) ? 8 : 1;
1582 phys_segments += mmc_calc_packed_hdr_segs(q, card);
1583 }
1584
1585 do {
1586 if (reqs >= max_packed_rw - 1) {
1587 put_back = false;
1588 break;
1589 }
1590
1591 spin_lock_irq(q->queue_lock);
1592 next = blk_fetch_request(q);
1593 spin_unlock_irq(q->queue_lock);
1594 if (!next) {
1595 put_back = false;
1596 break;
1597 }
1598
1599 if (mmc_large_sector(card) &&
1600 !IS_ALIGNED(blk_rq_sectors(next), 8))
1601 break;
1602
1603 if (next->cmd_flags & REQ_DISCARD ||
1604 next->cmd_flags & REQ_FLUSH)
1605 break;
1606
1607 if (rq_data_dir(cur) != rq_data_dir(next))
1608 break;
1609
1610 if (mmc_req_rel_wr(next) &&
1611 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
1612 break;
1613
1614 req_sectors += blk_rq_sectors(next);
1615 if (req_sectors > max_blk_count)
1616 break;
1617
1618 phys_segments += next->nr_phys_segments;
1619 if (phys_segments > max_phys_segs)
1620 break;
1621
1622 list_add_tail(&next->queuelist, &mqrq->packed->list);
1623 cur = next;
1624 reqs++;
1625 } while (1);
1626
1627 if (put_back) {
1628 spin_lock_irq(q->queue_lock);
1629 blk_requeue_request(q, next);
1630 spin_unlock_irq(q->queue_lock);
1631 }
1632
1633 if (reqs > 0) {
1634 list_add(&req->queuelist, &mqrq->packed->list);
1635 mqrq->packed->nr_entries = ++reqs;
1636 mqrq->packed->retries = reqs;
1637 return reqs;
1638 }
1639
1640 no_packed:
1641 mqrq->cmd_type = MMC_PACKED_NONE;
1642 return 0;
1643 }
1644
mmc_blk_packed_hdr_wrq_prep(struct mmc_queue_req * mqrq,struct mmc_card * card,struct mmc_queue * mq)1645 static void mmc_blk_packed_hdr_wrq_prep(struct mmc_queue_req *mqrq,
1646 struct mmc_card *card,
1647 struct mmc_queue *mq)
1648 {
1649 struct mmc_blk_request *brq = &mqrq->brq;
1650 struct request *req = mqrq->req;
1651 struct request *prq;
1652 struct mmc_blk_data *md = mq->data;
1653 struct mmc_packed *packed = mqrq->packed;
1654 bool do_rel_wr, do_data_tag;
1655 u32 *packed_cmd_hdr;
1656 u8 hdr_blocks;
1657 u8 i = 1;
1658
1659 BUG_ON(!packed);
1660
1661 mqrq->cmd_type = MMC_PACKED_WRITE;
1662 packed->blocks = 0;
1663 packed->idx_failure = MMC_PACKED_NR_IDX;
1664
1665 packed_cmd_hdr = packed->cmd_hdr;
1666 memset(packed_cmd_hdr, 0, sizeof(packed->cmd_hdr));
1667 packed_cmd_hdr[0] = (packed->nr_entries << 16) |
1668 (PACKED_CMD_WR << 8) | PACKED_CMD_VER;
1669 hdr_blocks = mmc_large_sector(card) ? 8 : 1;
1670
1671 /*
1672 * Argument for each entry of packed group
1673 */
1674 list_for_each_entry(prq, &packed->list, queuelist) {
1675 do_rel_wr = mmc_req_rel_wr(prq) && (md->flags & MMC_BLK_REL_WR);
1676 do_data_tag = (card->ext_csd.data_tag_unit_size) &&
1677 (prq->cmd_flags & REQ_META) &&
1678 (rq_data_dir(prq) == WRITE) &&
1679 ((brq->data.blocks * brq->data.blksz) >=
1680 card->ext_csd.data_tag_unit_size);
1681 /* Argument of CMD23 */
1682 packed_cmd_hdr[(i * 2)] =
1683 (do_rel_wr ? MMC_CMD23_ARG_REL_WR : 0) |
1684 (do_data_tag ? MMC_CMD23_ARG_TAG_REQ : 0) |
1685 blk_rq_sectors(prq);
1686 /* Argument of CMD18 or CMD25 */
1687 packed_cmd_hdr[((i * 2)) + 1] =
1688 mmc_card_blockaddr(card) ?
1689 blk_rq_pos(prq) : blk_rq_pos(prq) << 9;
1690 packed->blocks += blk_rq_sectors(prq);
1691 i++;
1692 }
1693
1694 memset(brq, 0, sizeof(struct mmc_blk_request));
1695 brq->mrq.cmd = &brq->cmd;
1696 brq->mrq.data = &brq->data;
1697 brq->mrq.sbc = &brq->sbc;
1698 brq->mrq.stop = &brq->stop;
1699
1700 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1701 brq->sbc.arg = MMC_CMD23_ARG_PACKED | (packed->blocks + hdr_blocks);
1702 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1703
1704 brq->cmd.opcode = MMC_WRITE_MULTIPLE_BLOCK;
1705 brq->cmd.arg = blk_rq_pos(req);
1706 if (!mmc_card_blockaddr(card))
1707 brq->cmd.arg <<= 9;
1708 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1709
1710 brq->data.blksz = 512;
1711 brq->data.blocks = packed->blocks + hdr_blocks;
1712 brq->data.flags |= MMC_DATA_WRITE;
1713
1714 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1715 brq->stop.arg = 0;
1716 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1717
1718 mmc_set_data_timeout(&brq->data, card);
1719
1720 brq->data.sg = mqrq->sg;
1721 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1722
1723 mqrq->mmc_active.mrq = &brq->mrq;
1724 mqrq->mmc_active.err_check = mmc_blk_packed_err_check;
1725
1726 mmc_queue_bounce_pre(mqrq);
1727 }
1728
mmc_blk_cmd_err(struct mmc_blk_data * md,struct mmc_card * card,struct mmc_blk_request * brq,struct request * req,int ret)1729 static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1730 struct mmc_blk_request *brq, struct request *req,
1731 int ret)
1732 {
1733 struct mmc_queue_req *mq_rq;
1734 mq_rq = container_of(brq, struct mmc_queue_req, brq);
1735
1736 /*
1737 * If this is an SD card and we're writing, we can first
1738 * mark the known good sectors as ok.
1739 *
1740 * If the card is not SD, we can still ok written sectors
1741 * as reported by the controller (which might be less than
1742 * the real number of written sectors, but never more).
1743 */
1744 if (mmc_card_sd(card)) {
1745 u32 blocks;
1746
1747 blocks = mmc_sd_num_wr_blocks(card);
1748 if (blocks != (u32)-1) {
1749 ret = blk_end_request(req, 0, blocks << 9);
1750 }
1751 } else {
1752 if (!mmc_packed_cmd(mq_rq->cmd_type))
1753 ret = blk_end_request(req, 0, brq->data.bytes_xfered);
1754 }
1755 return ret;
1756 }
1757
mmc_blk_end_packed_req(struct mmc_queue_req * mq_rq)1758 static int mmc_blk_end_packed_req(struct mmc_queue_req *mq_rq)
1759 {
1760 struct request *prq;
1761 struct mmc_packed *packed = mq_rq->packed;
1762 int idx = packed->idx_failure, i = 0;
1763 int ret = 0;
1764
1765 BUG_ON(!packed);
1766
1767 while (!list_empty(&packed->list)) {
1768 prq = list_entry_rq(packed->list.next);
1769 if (idx == i) {
1770 /* retry from error index */
1771 packed->nr_entries -= idx;
1772 mq_rq->req = prq;
1773 ret = 1;
1774
1775 if (packed->nr_entries == MMC_PACKED_NR_SINGLE) {
1776 list_del_init(&prq->queuelist);
1777 mmc_blk_clear_packed(mq_rq);
1778 }
1779 return ret;
1780 }
1781 list_del_init(&prq->queuelist);
1782 blk_end_request(prq, 0, blk_rq_bytes(prq));
1783 i++;
1784 }
1785
1786 mmc_blk_clear_packed(mq_rq);
1787 return ret;
1788 }
1789
mmc_blk_abort_packed_req(struct mmc_queue_req * mq_rq)1790 static void mmc_blk_abort_packed_req(struct mmc_queue_req *mq_rq)
1791 {
1792 struct request *prq;
1793 struct mmc_packed *packed = mq_rq->packed;
1794
1795 BUG_ON(!packed);
1796
1797 while (!list_empty(&packed->list)) {
1798 prq = list_entry_rq(packed->list.next);
1799 list_del_init(&prq->queuelist);
1800 blk_end_request(prq, -EIO, blk_rq_bytes(prq));
1801 }
1802
1803 mmc_blk_clear_packed(mq_rq);
1804 }
1805
mmc_blk_revert_packed_req(struct mmc_queue * mq,struct mmc_queue_req * mq_rq)1806 static void mmc_blk_revert_packed_req(struct mmc_queue *mq,
1807 struct mmc_queue_req *mq_rq)
1808 {
1809 struct request *prq;
1810 struct request_queue *q = mq->queue;
1811 struct mmc_packed *packed = mq_rq->packed;
1812
1813 BUG_ON(!packed);
1814
1815 while (!list_empty(&packed->list)) {
1816 prq = list_entry_rq(packed->list.prev);
1817 if (prq->queuelist.prev != &packed->list) {
1818 list_del_init(&prq->queuelist);
1819 spin_lock_irq(q->queue_lock);
1820 blk_requeue_request(mq->queue, prq);
1821 spin_unlock_irq(q->queue_lock);
1822 } else {
1823 list_del_init(&prq->queuelist);
1824 }
1825 }
1826
1827 mmc_blk_clear_packed(mq_rq);
1828 }
1829
mmc_blk_issue_rw_rq(struct mmc_queue * mq,struct request * rqc)1830 static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1831 {
1832 struct mmc_blk_data *md = mq->data;
1833 struct mmc_card *card = md->queue.card;
1834 struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1835 int ret = 1, disable_multi = 0, retry = 0, type;
1836 enum mmc_blk_status status;
1837 struct mmc_queue_req *mq_rq;
1838 struct request *req = rqc;
1839 struct mmc_async_req *areq;
1840 const u8 packed_nr = 2;
1841 u8 reqs = 0;
1842
1843 if (!rqc && !mq->mqrq_prev->req)
1844 return 0;
1845
1846 if (rqc)
1847 reqs = mmc_blk_prep_packed_list(mq, rqc);
1848
1849 do {
1850 if (rqc) {
1851 /*
1852 * When 4KB native sector is enabled, only 8 blocks
1853 * multiple read or write is allowed
1854 */
1855 if ((brq->data.blocks & 0x07) &&
1856 (card->ext_csd.data_sector_size == 4096)) {
1857 pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1858 req->rq_disk->disk_name);
1859 mq_rq = mq->mqrq_cur;
1860 goto cmd_abort;
1861 }
1862
1863 if (reqs >= packed_nr)
1864 mmc_blk_packed_hdr_wrq_prep(mq->mqrq_cur,
1865 card, mq);
1866 else
1867 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1868 areq = &mq->mqrq_cur->mmc_active;
1869 } else
1870 areq = NULL;
1871 areq = mmc_start_req(card->host, areq, (int *) &status);
1872 if (!areq) {
1873 if (status == MMC_BLK_NEW_REQUEST)
1874 mq->flags |= MMC_QUEUE_NEW_REQUEST;
1875 return 0;
1876 }
1877
1878 mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1879 brq = &mq_rq->brq;
1880 req = mq_rq->req;
1881 type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1882 mmc_queue_bounce_post(mq_rq);
1883
1884 switch (status) {
1885 case MMC_BLK_SUCCESS:
1886 case MMC_BLK_PARTIAL:
1887 /*
1888 * A block was successfully transferred.
1889 */
1890 mmc_blk_reset_success(md, type);
1891
1892 if (mmc_packed_cmd(mq_rq->cmd_type)) {
1893 ret = mmc_blk_end_packed_req(mq_rq);
1894 break;
1895 } else {
1896 ret = blk_end_request(req, 0,
1897 brq->data.bytes_xfered);
1898 }
1899
1900 /*
1901 * If the blk_end_request function returns non-zero even
1902 * though all data has been transferred and no errors
1903 * were returned by the host controller, it's a bug.
1904 */
1905 if (status == MMC_BLK_SUCCESS && ret) {
1906 pr_err("%s BUG rq_tot %d d_xfer %d\n",
1907 __func__, blk_rq_bytes(req),
1908 brq->data.bytes_xfered);
1909 rqc = NULL;
1910 goto cmd_abort;
1911 }
1912 break;
1913 case MMC_BLK_CMD_ERR:
1914 ret = mmc_blk_cmd_err(md, card, brq, req, ret);
1915 if (mmc_blk_reset(md, card->host, type))
1916 goto cmd_abort;
1917 if (!ret)
1918 goto start_new_req;
1919 break;
1920 case MMC_BLK_RETRY:
1921 if (retry++ < 5)
1922 break;
1923 /* Fall through */
1924 case MMC_BLK_ABORT:
1925 if (!mmc_blk_reset(md, card->host, type))
1926 break;
1927 goto cmd_abort;
1928 case MMC_BLK_DATA_ERR: {
1929 int err;
1930
1931 err = mmc_blk_reset(md, card->host, type);
1932 if (!err)
1933 break;
1934 if (err == -ENODEV ||
1935 mmc_packed_cmd(mq_rq->cmd_type))
1936 goto cmd_abort;
1937 /* Fall through */
1938 }
1939 case MMC_BLK_ECC_ERR:
1940 if (brq->data.blocks > 1) {
1941 /* Redo read one sector at a time */
1942 pr_warn("%s: retrying using single block read\n",
1943 req->rq_disk->disk_name);
1944 disable_multi = 1;
1945 break;
1946 }
1947 /*
1948 * After an error, we redo I/O one sector at a
1949 * time, so we only reach here after trying to
1950 * read a single sector.
1951 */
1952 ret = blk_end_request(req, -EIO,
1953 brq->data.blksz);
1954 if (!ret)
1955 goto start_new_req;
1956 break;
1957 case MMC_BLK_NOMEDIUM:
1958 goto cmd_abort;
1959 default:
1960 pr_err("%s: Unhandled return value (%d)",
1961 req->rq_disk->disk_name, status);
1962 goto cmd_abort;
1963 }
1964
1965 if (ret) {
1966 if (mmc_packed_cmd(mq_rq->cmd_type)) {
1967 if (!mq_rq->packed->retries)
1968 goto cmd_abort;
1969 mmc_blk_packed_hdr_wrq_prep(mq_rq, card, mq);
1970 mmc_start_req(card->host,
1971 &mq_rq->mmc_active, NULL);
1972 } else {
1973
1974 /*
1975 * In case of a incomplete request
1976 * prepare it again and resend.
1977 */
1978 mmc_blk_rw_rq_prep(mq_rq, card,
1979 disable_multi, mq);
1980 mmc_start_req(card->host,
1981 &mq_rq->mmc_active, NULL);
1982 }
1983 }
1984 } while (ret);
1985
1986 return 1;
1987
1988 cmd_abort:
1989 if (mmc_packed_cmd(mq_rq->cmd_type)) {
1990 mmc_blk_abort_packed_req(mq_rq);
1991 } else {
1992 if (mmc_card_removed(card))
1993 req->cmd_flags |= REQ_QUIET;
1994 while (ret)
1995 ret = blk_end_request(req, -EIO,
1996 blk_rq_cur_bytes(req));
1997 }
1998
1999 start_new_req:
2000 if (rqc) {
2001 if (mmc_card_removed(card)) {
2002 rqc->cmd_flags |= REQ_QUIET;
2003 blk_end_request_all(rqc, -EIO);
2004 } else {
2005 /*
2006 * If current request is packed, it needs to put back.
2007 */
2008 if (mmc_packed_cmd(mq->mqrq_cur->cmd_type))
2009 mmc_blk_revert_packed_req(mq, mq->mqrq_cur);
2010
2011 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
2012 mmc_start_req(card->host,
2013 &mq->mqrq_cur->mmc_active, NULL);
2014 }
2015 }
2016
2017 return 0;
2018 }
2019
mmc_blk_issue_rq(struct mmc_queue * mq,struct request * req)2020 static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
2021 {
2022 int ret;
2023 struct mmc_blk_data *md = mq->data;
2024 struct mmc_card *card = md->queue.card;
2025 struct mmc_host *host = card->host;
2026 unsigned long flags;
2027 unsigned int cmd_flags = req ? req->cmd_flags : 0;
2028
2029 if (req && !mq->mqrq_prev->req)
2030 /* claim host only for the first request */
2031 mmc_get_card(card);
2032
2033 ret = mmc_blk_part_switch(card, md);
2034 if (ret) {
2035 if (req) {
2036 blk_end_request_all(req, -EIO);
2037 }
2038 ret = 0;
2039 goto out;
2040 }
2041
2042 mq->flags &= ~MMC_QUEUE_NEW_REQUEST;
2043 if (cmd_flags & REQ_DISCARD) {
2044 /* complete ongoing async transfer before issuing discard */
2045 if (card->host->areq)
2046 mmc_blk_issue_rw_rq(mq, NULL);
2047 if (req->cmd_flags & REQ_SECURE)
2048 ret = mmc_blk_issue_secdiscard_rq(mq, req);
2049 else
2050 ret = mmc_blk_issue_discard_rq(mq, req);
2051 } else if (cmd_flags & REQ_FLUSH) {
2052 /* complete ongoing async transfer before issuing flush */
2053 if (card->host->areq)
2054 mmc_blk_issue_rw_rq(mq, NULL);
2055 ret = mmc_blk_issue_flush(mq, req);
2056 } else {
2057 if (!req && host->areq) {
2058 spin_lock_irqsave(&host->context_info.lock, flags);
2059 host->context_info.is_waiting_last_req = true;
2060 spin_unlock_irqrestore(&host->context_info.lock, flags);
2061 }
2062 ret = mmc_blk_issue_rw_rq(mq, req);
2063 }
2064
2065 out:
2066 if ((!req && !(mq->flags & MMC_QUEUE_NEW_REQUEST)) ||
2067 (cmd_flags & MMC_REQ_SPECIAL_MASK))
2068 /*
2069 * Release host when there are no more requests
2070 * and after special request(discard, flush) is done.
2071 * In case sepecial request, there is no reentry to
2072 * the 'mmc_blk_issue_rq' with 'mqrq_prev->req'.
2073 */
2074 mmc_put_card(card);
2075 return ret;
2076 }
2077
mmc_blk_readonly(struct mmc_card * card)2078 static inline int mmc_blk_readonly(struct mmc_card *card)
2079 {
2080 return mmc_card_readonly(card) ||
2081 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2082 }
2083
mmc_blk_alloc_req(struct mmc_card * card,struct device * parent,sector_t size,bool default_ro,const char * subname,int area_type)2084 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2085 struct device *parent,
2086 sector_t size,
2087 bool default_ro,
2088 const char *subname,
2089 int area_type)
2090 {
2091 struct mmc_blk_data *md;
2092 int devidx, ret;
2093
2094 devidx = find_first_zero_bit(dev_use, max_devices);
2095 if (devidx >= max_devices)
2096 return ERR_PTR(-ENOSPC);
2097 __set_bit(devidx, dev_use);
2098
2099 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2100 if (!md) {
2101 ret = -ENOMEM;
2102 goto out;
2103 }
2104
2105 /*
2106 * !subname implies we are creating main mmc_blk_data that will be
2107 * associated with mmc_card with dev_set_drvdata. Due to device
2108 * partitions, devidx will not coincide with a per-physical card
2109 * index anymore so we keep track of a name index.
2110 */
2111 if (!subname) {
2112 md->name_idx = find_first_zero_bit(name_use, max_devices);
2113 __set_bit(md->name_idx, name_use);
2114 } else
2115 md->name_idx = ((struct mmc_blk_data *)
2116 dev_to_disk(parent)->private_data)->name_idx;
2117
2118 md->area_type = area_type;
2119
2120 /*
2121 * Set the read-only status based on the supported commands
2122 * and the write protect switch.
2123 */
2124 md->read_only = mmc_blk_readonly(card);
2125
2126 md->disk = alloc_disk(perdev_minors);
2127 if (md->disk == NULL) {
2128 ret = -ENOMEM;
2129 goto err_kfree;
2130 }
2131
2132 spin_lock_init(&md->lock);
2133 INIT_LIST_HEAD(&md->part);
2134 md->usage = 1;
2135
2136 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2137 if (ret)
2138 goto err_putdisk;
2139
2140 md->queue.issue_fn = mmc_blk_issue_rq;
2141 md->queue.data = md;
2142
2143 md->disk->major = MMC_BLOCK_MAJOR;
2144 md->disk->first_minor = devidx * perdev_minors;
2145 md->disk->fops = &mmc_bdops;
2146 md->disk->private_data = md;
2147 md->disk->queue = md->queue.queue;
2148 md->disk->driverfs_dev = parent;
2149 set_disk_ro(md->disk, md->read_only || default_ro);
2150 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2151 md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2152
2153 /*
2154 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2155 *
2156 * - be set for removable media with permanent block devices
2157 * - be unset for removable block devices with permanent media
2158 *
2159 * Since MMC block devices clearly fall under the second
2160 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2161 * should use the block device creation/destruction hotplug
2162 * messages to tell when the card is present.
2163 */
2164
2165 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2166 "mmcblk%u%s", md->name_idx, subname ? subname : "");
2167
2168 if (mmc_card_mmc(card))
2169 blk_queue_logical_block_size(md->queue.queue,
2170 card->ext_csd.data_sector_size);
2171 else
2172 blk_queue_logical_block_size(md->queue.queue, 512);
2173
2174 set_capacity(md->disk, size);
2175
2176 if (mmc_host_cmd23(card->host)) {
2177 if (mmc_card_mmc(card) ||
2178 (mmc_card_sd(card) &&
2179 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2180 md->flags |= MMC_BLK_CMD23;
2181 }
2182
2183 if (mmc_card_mmc(card) &&
2184 md->flags & MMC_BLK_CMD23 &&
2185 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2186 card->ext_csd.rel_sectors)) {
2187 md->flags |= MMC_BLK_REL_WR;
2188 blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
2189 }
2190
2191 if (mmc_card_mmc(card) &&
2192 (area_type == MMC_BLK_DATA_AREA_MAIN) &&
2193 (md->flags & MMC_BLK_CMD23) &&
2194 card->ext_csd.packed_event_en) {
2195 if (!mmc_packed_init(&md->queue, card))
2196 md->flags |= MMC_BLK_PACKED_CMD;
2197 }
2198
2199 return md;
2200
2201 err_putdisk:
2202 put_disk(md->disk);
2203 err_kfree:
2204 kfree(md);
2205 out:
2206 return ERR_PTR(ret);
2207 }
2208
mmc_blk_alloc(struct mmc_card * card)2209 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2210 {
2211 sector_t size;
2212
2213 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2214 /*
2215 * The EXT_CSD sector count is in number or 512 byte
2216 * sectors.
2217 */
2218 size = card->ext_csd.sectors;
2219 } else {
2220 /*
2221 * The CSD capacity field is in units of read_blkbits.
2222 * set_capacity takes units of 512 bytes.
2223 */
2224 size = card->csd.capacity << (card->csd.read_blkbits - 9);
2225 }
2226
2227 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2228 MMC_BLK_DATA_AREA_MAIN);
2229 }
2230
mmc_blk_alloc_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_type,sector_t size,bool default_ro,const char * subname,int area_type)2231 static int mmc_blk_alloc_part(struct mmc_card *card,
2232 struct mmc_blk_data *md,
2233 unsigned int part_type,
2234 sector_t size,
2235 bool default_ro,
2236 const char *subname,
2237 int area_type)
2238 {
2239 char cap_str[10];
2240 struct mmc_blk_data *part_md;
2241
2242 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2243 subname, area_type);
2244 if (IS_ERR(part_md))
2245 return PTR_ERR(part_md);
2246 part_md->part_type = part_type;
2247 list_add(&part_md->part, &md->part);
2248
2249 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2250 cap_str, sizeof(cap_str));
2251 pr_info("%s: %s %s partition %u %s\n",
2252 part_md->disk->disk_name, mmc_card_id(card),
2253 mmc_card_name(card), part_md->part_type, cap_str);
2254 return 0;
2255 }
2256
2257 /* MMC Physical partitions consist of two boot partitions and
2258 * up to four general purpose partitions.
2259 * For each partition enabled in EXT_CSD a block device will be allocatedi
2260 * to provide access to the partition.
2261 */
2262
mmc_blk_alloc_parts(struct mmc_card * card,struct mmc_blk_data * md)2263 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2264 {
2265 int idx, ret = 0;
2266
2267 if (!mmc_card_mmc(card))
2268 return 0;
2269
2270 for (idx = 0; idx < card->nr_parts; idx++) {
2271 if (card->part[idx].size) {
2272 ret = mmc_blk_alloc_part(card, md,
2273 card->part[idx].part_cfg,
2274 card->part[idx].size >> 9,
2275 card->part[idx].force_ro,
2276 card->part[idx].name,
2277 card->part[idx].area_type);
2278 if (ret)
2279 return ret;
2280 }
2281 }
2282
2283 return ret;
2284 }
2285
mmc_blk_remove_req(struct mmc_blk_data * md)2286 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2287 {
2288 struct mmc_card *card;
2289
2290 if (md) {
2291 /*
2292 * Flush remaining requests and free queues. It
2293 * is freeing the queue that stops new requests
2294 * from being accepted.
2295 */
2296 card = md->queue.card;
2297 mmc_cleanup_queue(&md->queue);
2298 if (md->flags & MMC_BLK_PACKED_CMD)
2299 mmc_packed_clean(&md->queue);
2300 if (md->disk->flags & GENHD_FL_UP) {
2301 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2302 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2303 card->ext_csd.boot_ro_lockable)
2304 device_remove_file(disk_to_dev(md->disk),
2305 &md->power_ro_lock);
2306
2307 del_gendisk(md->disk);
2308 }
2309 mmc_blk_put(md);
2310 }
2311 }
2312
mmc_blk_remove_parts(struct mmc_card * card,struct mmc_blk_data * md)2313 static void mmc_blk_remove_parts(struct mmc_card *card,
2314 struct mmc_blk_data *md)
2315 {
2316 struct list_head *pos, *q;
2317 struct mmc_blk_data *part_md;
2318
2319 __clear_bit(md->name_idx, name_use);
2320 list_for_each_safe(pos, q, &md->part) {
2321 part_md = list_entry(pos, struct mmc_blk_data, part);
2322 list_del(pos);
2323 mmc_blk_remove_req(part_md);
2324 }
2325 }
2326
mmc_add_disk(struct mmc_blk_data * md)2327 static int mmc_add_disk(struct mmc_blk_data *md)
2328 {
2329 int ret;
2330 struct mmc_card *card = md->queue.card;
2331
2332 add_disk(md->disk);
2333 md->force_ro.show = force_ro_show;
2334 md->force_ro.store = force_ro_store;
2335 sysfs_attr_init(&md->force_ro.attr);
2336 md->force_ro.attr.name = "force_ro";
2337 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2338 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2339 if (ret)
2340 goto force_ro_fail;
2341
2342 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2343 card->ext_csd.boot_ro_lockable) {
2344 umode_t mode;
2345
2346 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2347 mode = S_IRUGO;
2348 else
2349 mode = S_IRUGO | S_IWUSR;
2350
2351 md->power_ro_lock.show = power_ro_lock_show;
2352 md->power_ro_lock.store = power_ro_lock_store;
2353 sysfs_attr_init(&md->power_ro_lock.attr);
2354 md->power_ro_lock.attr.mode = mode;
2355 md->power_ro_lock.attr.name =
2356 "ro_lock_until_next_power_on";
2357 ret = device_create_file(disk_to_dev(md->disk),
2358 &md->power_ro_lock);
2359 if (ret)
2360 goto power_ro_lock_fail;
2361 }
2362 return ret;
2363
2364 power_ro_lock_fail:
2365 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2366 force_ro_fail:
2367 del_gendisk(md->disk);
2368
2369 return ret;
2370 }
2371
2372 #define CID_MANFID_SANDISK 0x2
2373 #define CID_MANFID_TOSHIBA 0x11
2374 #define CID_MANFID_MICRON 0x13
2375 #define CID_MANFID_SAMSUNG 0x15
2376
2377 static const struct mmc_fixup blk_fixups[] =
2378 {
2379 MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
2380 MMC_QUIRK_INAND_CMD38),
2381 MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
2382 MMC_QUIRK_INAND_CMD38),
2383 MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
2384 MMC_QUIRK_INAND_CMD38),
2385 MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
2386 MMC_QUIRK_INAND_CMD38),
2387 MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
2388 MMC_QUIRK_INAND_CMD38),
2389
2390 /*
2391 * Some MMC cards experience performance degradation with CMD23
2392 * instead of CMD12-bounded multiblock transfers. For now we'll
2393 * black list what's bad...
2394 * - Certain Toshiba cards.
2395 *
2396 * N.B. This doesn't affect SD cards.
2397 */
2398 MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2399 MMC_QUIRK_BLK_NO_CMD23),
2400 MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2401 MMC_QUIRK_BLK_NO_CMD23),
2402 MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2403 MMC_QUIRK_BLK_NO_CMD23),
2404
2405 /*
2406 * Some MMC cards need longer data read timeout than indicated in CSD.
2407 */
2408 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
2409 MMC_QUIRK_LONG_READ_TIME),
2410 MMC_FIXUP("008GE0", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
2411 MMC_QUIRK_LONG_READ_TIME),
2412
2413 /*
2414 * On these Samsung MoviNAND parts, performing secure erase or
2415 * secure trim can result in unrecoverable corruption due to a
2416 * firmware bug.
2417 */
2418 MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2419 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2420 MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2421 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2422 MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2423 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2424 MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2425 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2426 MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2427 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2428 MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2429 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2430 MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2431 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2432 MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
2433 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
2434
2435 END_FIXUP
2436 };
2437
mmc_blk_probe(struct mmc_card * card)2438 static int mmc_blk_probe(struct mmc_card *card)
2439 {
2440 struct mmc_blk_data *md, *part_md;
2441 char cap_str[10];
2442
2443 /*
2444 * Check that the card supports the command class(es) we need.
2445 */
2446 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2447 return -ENODEV;
2448
2449 mmc_fixup_device(card, blk_fixups);
2450
2451 md = mmc_blk_alloc(card);
2452 if (IS_ERR(md))
2453 return PTR_ERR(md);
2454
2455 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2456 cap_str, sizeof(cap_str));
2457 pr_info("%s: %s %s %s %s\n",
2458 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2459 cap_str, md->read_only ? "(ro)" : "");
2460
2461 if (mmc_blk_alloc_parts(card, md))
2462 goto out;
2463
2464 dev_set_drvdata(&card->dev, md);
2465
2466 if (mmc_add_disk(md))
2467 goto out;
2468
2469 list_for_each_entry(part_md, &md->part, part) {
2470 if (mmc_add_disk(part_md))
2471 goto out;
2472 }
2473
2474 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2475 pm_runtime_use_autosuspend(&card->dev);
2476
2477 /*
2478 * Don't enable runtime PM for SD-combo cards here. Leave that
2479 * decision to be taken during the SDIO init sequence instead.
2480 */
2481 if (card->type != MMC_TYPE_SD_COMBO) {
2482 pm_runtime_set_active(&card->dev);
2483 pm_runtime_enable(&card->dev);
2484 }
2485
2486 return 0;
2487
2488 out:
2489 mmc_blk_remove_parts(card, md);
2490 mmc_blk_remove_req(md);
2491 return 0;
2492 }
2493
mmc_blk_remove(struct mmc_card * card)2494 static void mmc_blk_remove(struct mmc_card *card)
2495 {
2496 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2497
2498 mmc_blk_remove_parts(card, md);
2499 pm_runtime_get_sync(&card->dev);
2500 mmc_claim_host(card->host);
2501 mmc_blk_part_switch(card, md);
2502 mmc_release_host(card->host);
2503 if (card->type != MMC_TYPE_SD_COMBO)
2504 pm_runtime_disable(&card->dev);
2505 pm_runtime_put_noidle(&card->dev);
2506 mmc_blk_remove_req(md);
2507 dev_set_drvdata(&card->dev, NULL);
2508 }
2509
_mmc_blk_suspend(struct mmc_card * card)2510 static int _mmc_blk_suspend(struct mmc_card *card)
2511 {
2512 struct mmc_blk_data *part_md;
2513 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2514
2515 if (md) {
2516 mmc_queue_suspend(&md->queue);
2517 list_for_each_entry(part_md, &md->part, part) {
2518 mmc_queue_suspend(&part_md->queue);
2519 }
2520 }
2521 return 0;
2522 }
2523
mmc_blk_shutdown(struct mmc_card * card)2524 static void mmc_blk_shutdown(struct mmc_card *card)
2525 {
2526 _mmc_blk_suspend(card);
2527 }
2528
2529 #ifdef CONFIG_PM_SLEEP
mmc_blk_suspend(struct device * dev)2530 static int mmc_blk_suspend(struct device *dev)
2531 {
2532 struct mmc_card *card = mmc_dev_to_card(dev);
2533
2534 return _mmc_blk_suspend(card);
2535 }
2536
mmc_blk_resume(struct device * dev)2537 static int mmc_blk_resume(struct device *dev)
2538 {
2539 struct mmc_blk_data *part_md;
2540 struct mmc_blk_data *md = dev_get_drvdata(dev);
2541
2542 if (md) {
2543 /*
2544 * Resume involves the card going into idle state,
2545 * so current partition is always the main one.
2546 */
2547 md->part_curr = md->part_type;
2548 mmc_queue_resume(&md->queue);
2549 list_for_each_entry(part_md, &md->part, part) {
2550 mmc_queue_resume(&part_md->queue);
2551 }
2552 }
2553 return 0;
2554 }
2555 #endif
2556
2557 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
2558
2559 static struct mmc_driver mmc_driver = {
2560 .drv = {
2561 .name = "mmcblk",
2562 .pm = &mmc_blk_pm_ops,
2563 },
2564 .probe = mmc_blk_probe,
2565 .remove = mmc_blk_remove,
2566 .shutdown = mmc_blk_shutdown,
2567 };
2568
mmc_blk_init(void)2569 static int __init mmc_blk_init(void)
2570 {
2571 int res;
2572
2573 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2574 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2575
2576 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
2577
2578 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2579 if (res)
2580 goto out;
2581
2582 res = mmc_register_driver(&mmc_driver);
2583 if (res)
2584 goto out2;
2585
2586 return 0;
2587 out2:
2588 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2589 out:
2590 return res;
2591 }
2592
mmc_blk_exit(void)2593 static void __exit mmc_blk_exit(void)
2594 {
2595 mmc_unregister_driver(&mmc_driver);
2596 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2597 }
2598
2599 module_init(mmc_blk_init);
2600 module_exit(mmc_blk_exit);
2601
2602 MODULE_LICENSE("GPL");
2603 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
2604
2605