1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2010, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  */
36 
37 #define DEBUG_SUBSYSTEM S_RPC
38 #include "../include/obd_support.h"
39 #include "../include/obd_class.h"
40 #include "../include/lustre_net.h"
41 #include "../include/lu_object.h"
42 #include "../../include/linux/lnet/types.h"
43 #include "ptlrpc_internal.h"
44 
45 /* The following are visible and mutable through /sys/module/ptlrpc */
46 int test_req_buffer_pressure = 0;
47 module_param(test_req_buffer_pressure, int, 0444);
48 MODULE_PARM_DESC(test_req_buffer_pressure, "set non-zero to put pressure on request buffer pools");
49 module_param(at_min, int, 0644);
50 MODULE_PARM_DESC(at_min, "Adaptive timeout minimum (sec)");
51 module_param(at_max, int, 0644);
52 MODULE_PARM_DESC(at_max, "Adaptive timeout maximum (sec)");
53 module_param(at_history, int, 0644);
54 MODULE_PARM_DESC(at_history,
55 		 "Adaptive timeouts remember the slowest event that took place within this period (sec)");
56 module_param(at_early_margin, int, 0644);
57 MODULE_PARM_DESC(at_early_margin, "How soon before an RPC deadline to send an early reply");
58 module_param(at_extra, int, 0644);
59 MODULE_PARM_DESC(at_extra, "How much extra time to give with each early reply");
60 
61 
62 /* forward ref */
63 static int ptlrpc_server_post_idle_rqbds(struct ptlrpc_service_part *svcpt);
64 static void ptlrpc_server_hpreq_fini(struct ptlrpc_request *req);
65 static void ptlrpc_at_remove_timed(struct ptlrpc_request *req);
66 
67 /** Holds a list of all PTLRPC services */
68 LIST_HEAD(ptlrpc_all_services);
69 /** Used to protect the \e ptlrpc_all_services list */
70 struct mutex ptlrpc_all_services_mutex;
71 
72 struct ptlrpc_request_buffer_desc *
ptlrpc_alloc_rqbd(struct ptlrpc_service_part * svcpt)73 ptlrpc_alloc_rqbd(struct ptlrpc_service_part *svcpt)
74 {
75 	struct ptlrpc_service		  *svc = svcpt->scp_service;
76 	struct ptlrpc_request_buffer_desc *rqbd;
77 
78 	OBD_CPT_ALLOC_PTR(rqbd, svc->srv_cptable, svcpt->scp_cpt);
79 	if (rqbd == NULL)
80 		return NULL;
81 
82 	rqbd->rqbd_svcpt = svcpt;
83 	rqbd->rqbd_refcount = 0;
84 	rqbd->rqbd_cbid.cbid_fn = request_in_callback;
85 	rqbd->rqbd_cbid.cbid_arg = rqbd;
86 	INIT_LIST_HEAD(&rqbd->rqbd_reqs);
87 	OBD_CPT_ALLOC_LARGE(rqbd->rqbd_buffer, svc->srv_cptable,
88 			    svcpt->scp_cpt, svc->srv_buf_size);
89 	if (rqbd->rqbd_buffer == NULL) {
90 		OBD_FREE_PTR(rqbd);
91 		return NULL;
92 	}
93 
94 	spin_lock(&svcpt->scp_lock);
95 	list_add(&rqbd->rqbd_list, &svcpt->scp_rqbd_idle);
96 	svcpt->scp_nrqbds_total++;
97 	spin_unlock(&svcpt->scp_lock);
98 
99 	return rqbd;
100 }
101 
102 void
ptlrpc_free_rqbd(struct ptlrpc_request_buffer_desc * rqbd)103 ptlrpc_free_rqbd(struct ptlrpc_request_buffer_desc *rqbd)
104 {
105 	struct ptlrpc_service_part *svcpt = rqbd->rqbd_svcpt;
106 
107 	LASSERT(rqbd->rqbd_refcount == 0);
108 	LASSERT(list_empty(&rqbd->rqbd_reqs));
109 
110 	spin_lock(&svcpt->scp_lock);
111 	list_del(&rqbd->rqbd_list);
112 	svcpt->scp_nrqbds_total--;
113 	spin_unlock(&svcpt->scp_lock);
114 
115 	OBD_FREE_LARGE(rqbd->rqbd_buffer, svcpt->scp_service->srv_buf_size);
116 	OBD_FREE_PTR(rqbd);
117 }
118 
119 int
ptlrpc_grow_req_bufs(struct ptlrpc_service_part * svcpt,int post)120 ptlrpc_grow_req_bufs(struct ptlrpc_service_part *svcpt, int post)
121 {
122 	struct ptlrpc_service		  *svc = svcpt->scp_service;
123 	struct ptlrpc_request_buffer_desc *rqbd;
124 	int				rc = 0;
125 	int				i;
126 
127 	if (svcpt->scp_rqbd_allocating)
128 		goto try_post;
129 
130 	spin_lock(&svcpt->scp_lock);
131 	/* check again with lock */
132 	if (svcpt->scp_rqbd_allocating) {
133 		/* NB: we might allow more than one thread in the future */
134 		LASSERT(svcpt->scp_rqbd_allocating == 1);
135 		spin_unlock(&svcpt->scp_lock);
136 		goto try_post;
137 	}
138 
139 	svcpt->scp_rqbd_allocating++;
140 	spin_unlock(&svcpt->scp_lock);
141 
142 
143 	for (i = 0; i < svc->srv_nbuf_per_group; i++) {
144 		/* NB: another thread might have recycled enough rqbds, we
145 		 * need to make sure it wouldn't over-allocate, see LU-1212. */
146 		if (svcpt->scp_nrqbds_posted >= svc->srv_nbuf_per_group)
147 			break;
148 
149 		rqbd = ptlrpc_alloc_rqbd(svcpt);
150 
151 		if (rqbd == NULL) {
152 			CERROR("%s: Can't allocate request buffer\n",
153 			       svc->srv_name);
154 			rc = -ENOMEM;
155 			break;
156 		}
157 	}
158 
159 	spin_lock(&svcpt->scp_lock);
160 
161 	LASSERT(svcpt->scp_rqbd_allocating == 1);
162 	svcpt->scp_rqbd_allocating--;
163 
164 	spin_unlock(&svcpt->scp_lock);
165 
166 	CDEBUG(D_RPCTRACE,
167 	       "%s: allocate %d new %d-byte reqbufs (%d/%d left), rc = %d\n",
168 	       svc->srv_name, i, svc->srv_buf_size, svcpt->scp_nrqbds_posted,
169 	       svcpt->scp_nrqbds_total, rc);
170 
171  try_post:
172 	if (post && rc == 0)
173 		rc = ptlrpc_server_post_idle_rqbds(svcpt);
174 
175 	return rc;
176 }
177 
178 /**
179  * Part of Rep-Ack logic.
180  * Puts a lock and its mode into reply state associated to request reply.
181  */
182 void
ptlrpc_save_lock(struct ptlrpc_request * req,struct lustre_handle * lock,int mode,int no_ack)183 ptlrpc_save_lock(struct ptlrpc_request *req,
184 		 struct lustre_handle *lock, int mode, int no_ack)
185 {
186 	struct ptlrpc_reply_state *rs = req->rq_reply_state;
187 	int			idx;
188 
189 	LASSERT(rs != NULL);
190 	LASSERT(rs->rs_nlocks < RS_MAX_LOCKS);
191 
192 	if (req->rq_export->exp_disconnected) {
193 		ldlm_lock_decref(lock, mode);
194 	} else {
195 		idx = rs->rs_nlocks++;
196 		rs->rs_locks[idx] = *lock;
197 		rs->rs_modes[idx] = mode;
198 		rs->rs_difficult = 1;
199 		rs->rs_no_ack = !!no_ack;
200 	}
201 }
202 EXPORT_SYMBOL(ptlrpc_save_lock);
203 
204 
205 struct ptlrpc_hr_partition;
206 
207 struct ptlrpc_hr_thread {
208 	int				hrt_id;		/* thread ID */
209 	spinlock_t			hrt_lock;
210 	wait_queue_head_t			hrt_waitq;
211 	struct list_head			hrt_queue;	/* RS queue */
212 	struct ptlrpc_hr_partition	*hrt_partition;
213 };
214 
215 struct ptlrpc_hr_partition {
216 	/* # of started threads */
217 	atomic_t			hrp_nstarted;
218 	/* # of stopped threads */
219 	atomic_t			hrp_nstopped;
220 	/* cpu partition id */
221 	int				hrp_cpt;
222 	/* round-robin rotor for choosing thread */
223 	int				hrp_rotor;
224 	/* total number of threads on this partition */
225 	int				hrp_nthrs;
226 	/* threads table */
227 	struct ptlrpc_hr_thread		*hrp_thrs;
228 };
229 
230 #define HRT_RUNNING 0
231 #define HRT_STOPPING 1
232 
233 struct ptlrpc_hr_service {
234 	/* CPU partition table, it's just cfs_cpt_table for now */
235 	struct cfs_cpt_table		*hr_cpt_table;
236 	/** controller sleep waitq */
237 	wait_queue_head_t			hr_waitq;
238 	unsigned int			hr_stopping;
239 	/** roundrobin rotor for non-affinity service */
240 	unsigned int			hr_rotor;
241 	/* partition data */
242 	struct ptlrpc_hr_partition	**hr_partitions;
243 };
244 
245 struct rs_batch {
246 	struct list_head			rsb_replies;
247 	unsigned int			rsb_n_replies;
248 	struct ptlrpc_service_part	*rsb_svcpt;
249 };
250 
251 /** reply handling service. */
252 static struct ptlrpc_hr_service		ptlrpc_hr;
253 
254 /**
255  * maximum number of replies scheduled in one batch
256  */
257 #define MAX_SCHEDULED 256
258 
259 /**
260  * Initialize a reply batch.
261  *
262  * \param b batch
263  */
rs_batch_init(struct rs_batch * b)264 static void rs_batch_init(struct rs_batch *b)
265 {
266 	memset(b, 0, sizeof(*b));
267 	INIT_LIST_HEAD(&b->rsb_replies);
268 }
269 
270 /**
271  * Choose an hr thread to dispatch requests to.
272  */
273 static struct ptlrpc_hr_thread *
ptlrpc_hr_select(struct ptlrpc_service_part * svcpt)274 ptlrpc_hr_select(struct ptlrpc_service_part *svcpt)
275 {
276 	struct ptlrpc_hr_partition	*hrp;
277 	unsigned int			rotor;
278 
279 	if (svcpt->scp_cpt >= 0 &&
280 	    svcpt->scp_service->srv_cptable == ptlrpc_hr.hr_cpt_table) {
281 		/* directly match partition */
282 		hrp = ptlrpc_hr.hr_partitions[svcpt->scp_cpt];
283 
284 	} else {
285 		rotor = ptlrpc_hr.hr_rotor++;
286 		rotor %= cfs_cpt_number(ptlrpc_hr.hr_cpt_table);
287 
288 		hrp = ptlrpc_hr.hr_partitions[rotor];
289 	}
290 
291 	rotor = hrp->hrp_rotor++;
292 	return &hrp->hrp_thrs[rotor % hrp->hrp_nthrs];
293 }
294 
295 /**
296  * Dispatch all replies accumulated in the batch to one from
297  * dedicated reply handling threads.
298  *
299  * \param b batch
300  */
rs_batch_dispatch(struct rs_batch * b)301 static void rs_batch_dispatch(struct rs_batch *b)
302 {
303 	if (b->rsb_n_replies != 0) {
304 		struct ptlrpc_hr_thread	*hrt;
305 
306 		hrt = ptlrpc_hr_select(b->rsb_svcpt);
307 
308 		spin_lock(&hrt->hrt_lock);
309 		list_splice_init(&b->rsb_replies, &hrt->hrt_queue);
310 		spin_unlock(&hrt->hrt_lock);
311 
312 		wake_up(&hrt->hrt_waitq);
313 		b->rsb_n_replies = 0;
314 	}
315 }
316 
317 /**
318  * Add a reply to a batch.
319  * Add one reply object to a batch, schedule batched replies if overload.
320  *
321  * \param b batch
322  * \param rs reply
323  */
rs_batch_add(struct rs_batch * b,struct ptlrpc_reply_state * rs)324 static void rs_batch_add(struct rs_batch *b, struct ptlrpc_reply_state *rs)
325 {
326 	struct ptlrpc_service_part *svcpt = rs->rs_svcpt;
327 
328 	if (svcpt != b->rsb_svcpt || b->rsb_n_replies >= MAX_SCHEDULED) {
329 		if (b->rsb_svcpt != NULL) {
330 			rs_batch_dispatch(b);
331 			spin_unlock(&b->rsb_svcpt->scp_rep_lock);
332 		}
333 		spin_lock(&svcpt->scp_rep_lock);
334 		b->rsb_svcpt = svcpt;
335 	}
336 	spin_lock(&rs->rs_lock);
337 	rs->rs_scheduled_ever = 1;
338 	if (rs->rs_scheduled == 0) {
339 		list_move(&rs->rs_list, &b->rsb_replies);
340 		rs->rs_scheduled = 1;
341 		b->rsb_n_replies++;
342 	}
343 	rs->rs_committed = 1;
344 	spin_unlock(&rs->rs_lock);
345 }
346 
347 /**
348  * Reply batch finalization.
349  * Dispatch remaining replies from the batch
350  * and release remaining spinlock.
351  *
352  * \param b batch
353  */
rs_batch_fini(struct rs_batch * b)354 static void rs_batch_fini(struct rs_batch *b)
355 {
356 	if (b->rsb_svcpt != NULL) {
357 		rs_batch_dispatch(b);
358 		spin_unlock(&b->rsb_svcpt->scp_rep_lock);
359 	}
360 }
361 
362 #define DECLARE_RS_BATCH(b)     struct rs_batch b
363 
364 
365 /**
366  * Put reply state into a queue for processing because we received
367  * ACK from the client
368  */
ptlrpc_dispatch_difficult_reply(struct ptlrpc_reply_state * rs)369 void ptlrpc_dispatch_difficult_reply(struct ptlrpc_reply_state *rs)
370 {
371 	struct ptlrpc_hr_thread *hrt;
372 
373 	LASSERT(list_empty(&rs->rs_list));
374 
375 	hrt = ptlrpc_hr_select(rs->rs_svcpt);
376 
377 	spin_lock(&hrt->hrt_lock);
378 	list_add_tail(&rs->rs_list, &hrt->hrt_queue);
379 	spin_unlock(&hrt->hrt_lock);
380 
381 	wake_up(&hrt->hrt_waitq);
382 }
383 
384 void
ptlrpc_schedule_difficult_reply(struct ptlrpc_reply_state * rs)385 ptlrpc_schedule_difficult_reply(struct ptlrpc_reply_state *rs)
386 {
387 	assert_spin_locked(&rs->rs_svcpt->scp_rep_lock);
388 	assert_spin_locked(&rs->rs_lock);
389 	LASSERT(rs->rs_difficult);
390 	rs->rs_scheduled_ever = 1;  /* flag any notification attempt */
391 
392 	if (rs->rs_scheduled) {     /* being set up or already notified */
393 		return;
394 	}
395 
396 	rs->rs_scheduled = 1;
397 	list_del_init(&rs->rs_list);
398 	ptlrpc_dispatch_difficult_reply(rs);
399 }
400 EXPORT_SYMBOL(ptlrpc_schedule_difficult_reply);
401 
ptlrpc_commit_replies(struct obd_export * exp)402 void ptlrpc_commit_replies(struct obd_export *exp)
403 {
404 	struct ptlrpc_reply_state *rs, *nxt;
405 	DECLARE_RS_BATCH(batch);
406 
407 	rs_batch_init(&batch);
408 	/* Find any replies that have been committed and get their service
409 	 * to attend to complete them. */
410 
411 	/* CAVEAT EMPTOR: spinlock ordering!!! */
412 	spin_lock(&exp->exp_uncommitted_replies_lock);
413 	list_for_each_entry_safe(rs, nxt, &exp->exp_uncommitted_replies,
414 				     rs_obd_list) {
415 		LASSERT(rs->rs_difficult);
416 		/* VBR: per-export last_committed */
417 		LASSERT(rs->rs_export);
418 		if (rs->rs_transno <= exp->exp_last_committed) {
419 			list_del_init(&rs->rs_obd_list);
420 			rs_batch_add(&batch, rs);
421 		}
422 	}
423 	spin_unlock(&exp->exp_uncommitted_replies_lock);
424 	rs_batch_fini(&batch);
425 }
426 EXPORT_SYMBOL(ptlrpc_commit_replies);
427 
428 static int
ptlrpc_server_post_idle_rqbds(struct ptlrpc_service_part * svcpt)429 ptlrpc_server_post_idle_rqbds(struct ptlrpc_service_part *svcpt)
430 {
431 	struct ptlrpc_request_buffer_desc *rqbd;
432 	int				  rc;
433 	int				  posted = 0;
434 
435 	for (;;) {
436 		spin_lock(&svcpt->scp_lock);
437 
438 		if (list_empty(&svcpt->scp_rqbd_idle)) {
439 			spin_unlock(&svcpt->scp_lock);
440 			return posted;
441 		}
442 
443 		rqbd = list_entry(svcpt->scp_rqbd_idle.next,
444 				      struct ptlrpc_request_buffer_desc,
445 				      rqbd_list);
446 		list_del(&rqbd->rqbd_list);
447 
448 		/* assume we will post successfully */
449 		svcpt->scp_nrqbds_posted++;
450 		list_add(&rqbd->rqbd_list, &svcpt->scp_rqbd_posted);
451 
452 		spin_unlock(&svcpt->scp_lock);
453 
454 		rc = ptlrpc_register_rqbd(rqbd);
455 		if (rc != 0)
456 			break;
457 
458 		posted = 1;
459 	}
460 
461 	spin_lock(&svcpt->scp_lock);
462 
463 	svcpt->scp_nrqbds_posted--;
464 	list_del(&rqbd->rqbd_list);
465 	list_add_tail(&rqbd->rqbd_list, &svcpt->scp_rqbd_idle);
466 
467 	/* Don't complain if no request buffers are posted right now; LNET
468 	 * won't drop requests because we set the portal lazy! */
469 
470 	spin_unlock(&svcpt->scp_lock);
471 
472 	return -1;
473 }
474 
ptlrpc_at_timer(unsigned long castmeharder)475 static void ptlrpc_at_timer(unsigned long castmeharder)
476 {
477 	struct ptlrpc_service_part *svcpt;
478 
479 	svcpt = (struct ptlrpc_service_part *)castmeharder;
480 
481 	svcpt->scp_at_check = 1;
482 	svcpt->scp_at_checktime = cfs_time_current();
483 	wake_up(&svcpt->scp_waitq);
484 }
485 
486 static void
ptlrpc_server_nthreads_check(struct ptlrpc_service * svc,struct ptlrpc_service_conf * conf)487 ptlrpc_server_nthreads_check(struct ptlrpc_service *svc,
488 			     struct ptlrpc_service_conf *conf)
489 {
490 	struct ptlrpc_service_thr_conf	*tc = &conf->psc_thr;
491 	unsigned			init;
492 	unsigned			total;
493 	unsigned			nthrs;
494 	int				weight;
495 
496 	/*
497 	 * Common code for estimating & validating threads number.
498 	 * CPT affinity service could have percpt thread-pool instead
499 	 * of a global thread-pool, which means user might not always
500 	 * get the threads number they give it in conf::tc_nthrs_user
501 	 * even they did set. It's because we need to validate threads
502 	 * number for each CPT to guarantee each pool will have enough
503 	 * threads to keep the service healthy.
504 	 */
505 	init = PTLRPC_NTHRS_INIT + (svc->srv_ops.so_hpreq_handler != NULL);
506 	init = max_t(int, init, tc->tc_nthrs_init);
507 
508 	/* NB: please see comments in lustre_lnet.h for definition
509 	 * details of these members */
510 	LASSERT(tc->tc_nthrs_max != 0);
511 
512 	if (tc->tc_nthrs_user != 0) {
513 		/* In case there is a reason to test a service with many
514 		 * threads, we give a less strict check here, it can
515 		 * be up to 8 * nthrs_max */
516 		total = min(tc->tc_nthrs_max * 8, tc->tc_nthrs_user);
517 		nthrs = total / svc->srv_ncpts;
518 		init  = max(init, nthrs);
519 		goto out;
520 	}
521 
522 	total = tc->tc_nthrs_max;
523 	if (tc->tc_nthrs_base == 0) {
524 		/* don't care about base threads number per partition,
525 		 * this is most for non-affinity service */
526 		nthrs = total / svc->srv_ncpts;
527 		goto out;
528 	}
529 
530 	nthrs = tc->tc_nthrs_base;
531 	if (svc->srv_ncpts == 1) {
532 		int	i;
533 
534 		/* NB: Increase the base number if it's single partition
535 		 * and total number of cores/HTs is larger or equal to 4.
536 		 * result will always < 2 * nthrs_base */
537 		weight = cfs_cpt_weight(svc->srv_cptable, CFS_CPT_ANY);
538 		for (i = 1; (weight >> (i + 1)) != 0 && /* >= 4 cores/HTs */
539 			    (tc->tc_nthrs_base >> i) != 0; i++)
540 			nthrs += tc->tc_nthrs_base >> i;
541 	}
542 
543 	if (tc->tc_thr_factor != 0) {
544 		int	  factor = tc->tc_thr_factor;
545 		const int fade = 4;
546 
547 		/*
548 		 * User wants to increase number of threads with for
549 		 * each CPU core/HT, most likely the factor is larger then
550 		 * one thread/core because service threads are supposed to
551 		 * be blocked by lock or wait for IO.
552 		 */
553 		/*
554 		 * Amdahl's law says that adding processors wouldn't give
555 		 * a linear increasing of parallelism, so it's nonsense to
556 		 * have too many threads no matter how many cores/HTs
557 		 * there are.
558 		 */
559 		/* weight is # of HTs */
560 		if (cpumask_weight(topology_thread_cpumask(0)) > 1) {
561 			/* depress thread factor for hyper-thread */
562 			factor = factor - (factor >> 1) + (factor >> 3);
563 		}
564 
565 		weight = cfs_cpt_weight(svc->srv_cptable, 0);
566 		LASSERT(weight > 0);
567 
568 		for (; factor > 0 && weight > 0; factor--, weight -= fade)
569 			nthrs += min(weight, fade) * factor;
570 	}
571 
572 	if (nthrs * svc->srv_ncpts > tc->tc_nthrs_max) {
573 		nthrs = max(tc->tc_nthrs_base,
574 			    tc->tc_nthrs_max / svc->srv_ncpts);
575 	}
576  out:
577 	nthrs = max(nthrs, tc->tc_nthrs_init);
578 	svc->srv_nthrs_cpt_limit = nthrs;
579 	svc->srv_nthrs_cpt_init = init;
580 
581 	if (nthrs * svc->srv_ncpts > tc->tc_nthrs_max) {
582 		CDEBUG(D_OTHER, "%s: This service may have more threads (%d) than the given soft limit (%d)\n",
583 		       svc->srv_name, nthrs * svc->srv_ncpts,
584 		       tc->tc_nthrs_max);
585 	}
586 }
587 
588 /**
589  * Initialize percpt data for a service
590  */
591 static int
ptlrpc_service_part_init(struct ptlrpc_service * svc,struct ptlrpc_service_part * svcpt,int cpt)592 ptlrpc_service_part_init(struct ptlrpc_service *svc,
593 			 struct ptlrpc_service_part *svcpt, int cpt)
594 {
595 	struct ptlrpc_at_array	*array;
596 	int			size;
597 	int			index;
598 	int			rc;
599 
600 	svcpt->scp_cpt = cpt;
601 	INIT_LIST_HEAD(&svcpt->scp_threads);
602 
603 	/* rqbd and incoming request queue */
604 	spin_lock_init(&svcpt->scp_lock);
605 	INIT_LIST_HEAD(&svcpt->scp_rqbd_idle);
606 	INIT_LIST_HEAD(&svcpt->scp_rqbd_posted);
607 	INIT_LIST_HEAD(&svcpt->scp_req_incoming);
608 	init_waitqueue_head(&svcpt->scp_waitq);
609 	/* history request & rqbd list */
610 	INIT_LIST_HEAD(&svcpt->scp_hist_reqs);
611 	INIT_LIST_HEAD(&svcpt->scp_hist_rqbds);
612 
613 	/* active requests and hp requests */
614 	spin_lock_init(&svcpt->scp_req_lock);
615 
616 	/* reply states */
617 	spin_lock_init(&svcpt->scp_rep_lock);
618 	INIT_LIST_HEAD(&svcpt->scp_rep_active);
619 	INIT_LIST_HEAD(&svcpt->scp_rep_idle);
620 	init_waitqueue_head(&svcpt->scp_rep_waitq);
621 	atomic_set(&svcpt->scp_nreps_difficult, 0);
622 
623 	/* adaptive timeout */
624 	spin_lock_init(&svcpt->scp_at_lock);
625 	array = &svcpt->scp_at_array;
626 
627 	size = at_est2timeout(at_max);
628 	array->paa_size     = size;
629 	array->paa_count    = 0;
630 	array->paa_deadline = -1;
631 
632 	/* allocate memory for scp_at_array (ptlrpc_at_array) */
633 	OBD_CPT_ALLOC(array->paa_reqs_array,
634 		      svc->srv_cptable, cpt, sizeof(struct list_head) * size);
635 	if (array->paa_reqs_array == NULL)
636 		return -ENOMEM;
637 
638 	for (index = 0; index < size; index++)
639 		INIT_LIST_HEAD(&array->paa_reqs_array[index]);
640 
641 	OBD_CPT_ALLOC(array->paa_reqs_count,
642 		      svc->srv_cptable, cpt, sizeof(__u32) * size);
643 	if (array->paa_reqs_count == NULL)
644 		goto failed;
645 
646 	cfs_timer_init(&svcpt->scp_at_timer, ptlrpc_at_timer, svcpt);
647 	/* At SOW, service time should be quick; 10s seems generous. If client
648 	 * timeout is less than this, we'll be sending an early reply. */
649 	at_init(&svcpt->scp_at_estimate, 10, 0);
650 
651 	/* assign this before call ptlrpc_grow_req_bufs */
652 	svcpt->scp_service = svc;
653 	/* Now allocate the request buffers, but don't post them now */
654 	rc = ptlrpc_grow_req_bufs(svcpt, 0);
655 	/* We shouldn't be under memory pressure at startup, so
656 	 * fail if we can't allocate all our buffers at this time. */
657 	if (rc != 0)
658 		goto failed;
659 
660 	return 0;
661 
662  failed:
663 	if (array->paa_reqs_count != NULL) {
664 		OBD_FREE(array->paa_reqs_count, sizeof(__u32) * size);
665 		array->paa_reqs_count = NULL;
666 	}
667 
668 	if (array->paa_reqs_array != NULL) {
669 		OBD_FREE(array->paa_reqs_array,
670 			 sizeof(struct list_head) * array->paa_size);
671 		array->paa_reqs_array = NULL;
672 	}
673 
674 	return -ENOMEM;
675 }
676 
677 /**
678  * Initialize service on a given portal.
679  * This includes starting serving threads , allocating and posting rqbds and
680  * so on.
681  */
682 struct ptlrpc_service *
ptlrpc_register_service(struct ptlrpc_service_conf * conf,struct proc_dir_entry * proc_entry)683 ptlrpc_register_service(struct ptlrpc_service_conf *conf,
684 			struct proc_dir_entry *proc_entry)
685 {
686 	struct ptlrpc_service_cpt_conf	*cconf = &conf->psc_cpt;
687 	struct ptlrpc_service		*service;
688 	struct ptlrpc_service_part	*svcpt;
689 	struct cfs_cpt_table		*cptable;
690 	__u32				*cpts = NULL;
691 	int				ncpts;
692 	int				cpt;
693 	int				rc;
694 	int				i;
695 
696 	LASSERT(conf->psc_buf.bc_nbufs > 0);
697 	LASSERT(conf->psc_buf.bc_buf_size >=
698 		conf->psc_buf.bc_req_max_size + SPTLRPC_MAX_PAYLOAD);
699 	LASSERT(conf->psc_thr.tc_ctx_tags != 0);
700 
701 	cptable = cconf->cc_cptable;
702 	if (cptable == NULL)
703 		cptable = cfs_cpt_table;
704 
705 	if (!conf->psc_thr.tc_cpu_affinity) {
706 		ncpts = 1;
707 	} else {
708 		ncpts = cfs_cpt_number(cptable);
709 		if (cconf->cc_pattern != NULL) {
710 			struct cfs_expr_list	*el;
711 
712 			rc = cfs_expr_list_parse(cconf->cc_pattern,
713 						 strlen(cconf->cc_pattern),
714 						 0, ncpts - 1, &el);
715 			if (rc != 0) {
716 				CERROR("%s: invalid CPT pattern string: %s",
717 				       conf->psc_name, cconf->cc_pattern);
718 				return ERR_PTR(-EINVAL);
719 			}
720 
721 			rc = cfs_expr_list_values(el, ncpts, &cpts);
722 			cfs_expr_list_free(el);
723 			if (rc <= 0) {
724 				CERROR("%s: failed to parse CPT array %s: %d\n",
725 				       conf->psc_name, cconf->cc_pattern, rc);
726 				if (cpts != NULL)
727 					OBD_FREE(cpts, sizeof(*cpts) * ncpts);
728 				return ERR_PTR(rc < 0 ? rc : -EINVAL);
729 			}
730 			ncpts = rc;
731 		}
732 	}
733 
734 	OBD_ALLOC(service, offsetof(struct ptlrpc_service, srv_parts[ncpts]));
735 	if (service == NULL) {
736 		if (cpts != NULL)
737 			OBD_FREE(cpts, sizeof(*cpts) * ncpts);
738 		return ERR_PTR(-ENOMEM);
739 	}
740 
741 	service->srv_cptable		= cptable;
742 	service->srv_cpts		= cpts;
743 	service->srv_ncpts		= ncpts;
744 
745 	service->srv_cpt_bits = 0; /* it's zero already, easy to read... */
746 	while ((1 << service->srv_cpt_bits) < cfs_cpt_number(cptable))
747 		service->srv_cpt_bits++;
748 
749 	/* public members */
750 	spin_lock_init(&service->srv_lock);
751 	service->srv_name		= conf->psc_name;
752 	service->srv_watchdog_factor	= conf->psc_watchdog_factor;
753 	INIT_LIST_HEAD(&service->srv_list); /* for safety of cleanup */
754 
755 	/* buffer configuration */
756 	service->srv_nbuf_per_group	= test_req_buffer_pressure ?
757 					  1 : conf->psc_buf.bc_nbufs;
758 	service->srv_max_req_size	= conf->psc_buf.bc_req_max_size +
759 					  SPTLRPC_MAX_PAYLOAD;
760 	service->srv_buf_size		= conf->psc_buf.bc_buf_size;
761 	service->srv_rep_portal		= conf->psc_buf.bc_rep_portal;
762 	service->srv_req_portal		= conf->psc_buf.bc_req_portal;
763 
764 	/* Increase max reply size to next power of two */
765 	service->srv_max_reply_size = 1;
766 	while (service->srv_max_reply_size <
767 	       conf->psc_buf.bc_rep_max_size + SPTLRPC_MAX_PAYLOAD)
768 		service->srv_max_reply_size <<= 1;
769 
770 	service->srv_thread_name	= conf->psc_thr.tc_thr_name;
771 	service->srv_ctx_tags		= conf->psc_thr.tc_ctx_tags;
772 	service->srv_hpreq_ratio	= PTLRPC_SVC_HP_RATIO;
773 	service->srv_ops		= conf->psc_ops;
774 
775 	for (i = 0; i < ncpts; i++) {
776 		if (!conf->psc_thr.tc_cpu_affinity)
777 			cpt = CFS_CPT_ANY;
778 		else
779 			cpt = cpts != NULL ? cpts[i] : i;
780 
781 		OBD_CPT_ALLOC(svcpt, cptable, cpt, sizeof(*svcpt));
782 		if (svcpt == NULL) {
783 			rc = -ENOMEM;
784 			goto failed;
785 		}
786 
787 		service->srv_parts[i] = svcpt;
788 		rc = ptlrpc_service_part_init(service, svcpt, cpt);
789 		if (rc != 0)
790 			goto failed;
791 	}
792 
793 	ptlrpc_server_nthreads_check(service, conf);
794 
795 	rc = LNetSetLazyPortal(service->srv_req_portal);
796 	LASSERT(rc == 0);
797 
798 	mutex_lock(&ptlrpc_all_services_mutex);
799 	list_add(&service->srv_list, &ptlrpc_all_services);
800 	mutex_unlock(&ptlrpc_all_services_mutex);
801 
802 	if (proc_entry != NULL)
803 		ptlrpc_lprocfs_register_service(proc_entry, service);
804 
805 	rc = ptlrpc_service_nrs_setup(service);
806 	if (rc != 0)
807 		goto failed;
808 
809 	CDEBUG(D_NET, "%s: Started, listening on portal %d\n",
810 	       service->srv_name, service->srv_req_portal);
811 
812 	rc = ptlrpc_start_threads(service);
813 	if (rc != 0) {
814 		CERROR("Failed to start threads for service %s: %d\n",
815 		       service->srv_name, rc);
816 		goto failed;
817 	}
818 
819 	return service;
820 failed:
821 	ptlrpc_unregister_service(service);
822 	return ERR_PTR(rc);
823 }
824 EXPORT_SYMBOL(ptlrpc_register_service);
825 
826 /**
827  * to actually free the request, must be called without holding svc_lock.
828  * note it's caller's responsibility to unlink req->rq_list.
829  */
ptlrpc_server_free_request(struct ptlrpc_request * req)830 static void ptlrpc_server_free_request(struct ptlrpc_request *req)
831 {
832 	LASSERT(atomic_read(&req->rq_refcount) == 0);
833 	LASSERT(list_empty(&req->rq_timed_list));
834 
835 	 /* DEBUG_REQ() assumes the reply state of a request with a valid
836 	  * ref will not be destroyed until that reference is dropped. */
837 	ptlrpc_req_drop_rs(req);
838 
839 	sptlrpc_svc_ctx_decref(req);
840 
841 	if (req != &req->rq_rqbd->rqbd_req) {
842 		/* NB request buffers use an embedded
843 		 * req if the incoming req unlinked the
844 		 * MD; this isn't one of them! */
845 		ptlrpc_request_cache_free(req);
846 	}
847 }
848 
849 /**
850  * drop a reference count of the request. if it reaches 0, we either
851  * put it into history list, or free it immediately.
852  */
ptlrpc_server_drop_request(struct ptlrpc_request * req)853 void ptlrpc_server_drop_request(struct ptlrpc_request *req)
854 {
855 	struct ptlrpc_request_buffer_desc *rqbd = req->rq_rqbd;
856 	struct ptlrpc_service_part	  *svcpt = rqbd->rqbd_svcpt;
857 	struct ptlrpc_service		  *svc = svcpt->scp_service;
858 	int				refcount;
859 	struct list_head			*tmp;
860 	struct list_head			*nxt;
861 
862 	if (!atomic_dec_and_test(&req->rq_refcount))
863 		return;
864 
865 	if (req->rq_at_linked) {
866 		spin_lock(&svcpt->scp_at_lock);
867 		/* recheck with lock, in case it's unlinked by
868 		 * ptlrpc_at_check_timed() */
869 		if (likely(req->rq_at_linked))
870 			ptlrpc_at_remove_timed(req);
871 		spin_unlock(&svcpt->scp_at_lock);
872 	}
873 
874 	LASSERT(list_empty(&req->rq_timed_list));
875 
876 	/* finalize request */
877 	if (req->rq_export) {
878 		class_export_put(req->rq_export);
879 		req->rq_export = NULL;
880 	}
881 
882 	spin_lock(&svcpt->scp_lock);
883 
884 	list_add(&req->rq_list, &rqbd->rqbd_reqs);
885 
886 	refcount = --(rqbd->rqbd_refcount);
887 	if (refcount == 0) {
888 		/* request buffer is now idle: add to history */
889 		list_del(&rqbd->rqbd_list);
890 
891 		list_add_tail(&rqbd->rqbd_list, &svcpt->scp_hist_rqbds);
892 		svcpt->scp_hist_nrqbds++;
893 
894 		/* cull some history?
895 		 * I expect only about 1 or 2 rqbds need to be recycled here */
896 		while (svcpt->scp_hist_nrqbds > svc->srv_hist_nrqbds_cpt_max) {
897 			rqbd = list_entry(svcpt->scp_hist_rqbds.next,
898 					      struct ptlrpc_request_buffer_desc,
899 					      rqbd_list);
900 
901 			list_del(&rqbd->rqbd_list);
902 			svcpt->scp_hist_nrqbds--;
903 
904 			/* remove rqbd's reqs from svc's req history while
905 			 * I've got the service lock */
906 			list_for_each(tmp, &rqbd->rqbd_reqs) {
907 				req = list_entry(tmp, struct ptlrpc_request,
908 						     rq_list);
909 				/* Track the highest culled req seq */
910 				if (req->rq_history_seq >
911 				    svcpt->scp_hist_seq_culled) {
912 					svcpt->scp_hist_seq_culled =
913 						req->rq_history_seq;
914 				}
915 				list_del(&req->rq_history_list);
916 			}
917 
918 			spin_unlock(&svcpt->scp_lock);
919 
920 			list_for_each_safe(tmp, nxt, &rqbd->rqbd_reqs) {
921 				req = list_entry(rqbd->rqbd_reqs.next,
922 						     struct ptlrpc_request,
923 						     rq_list);
924 				list_del(&req->rq_list);
925 				ptlrpc_server_free_request(req);
926 			}
927 
928 			spin_lock(&svcpt->scp_lock);
929 			/*
930 			 * now all reqs including the embedded req has been
931 			 * disposed, schedule request buffer for re-use.
932 			 */
933 			LASSERT(atomic_read(&rqbd->rqbd_req.rq_refcount) ==
934 				0);
935 			list_add_tail(&rqbd->rqbd_list,
936 					  &svcpt->scp_rqbd_idle);
937 		}
938 
939 		spin_unlock(&svcpt->scp_lock);
940 	} else if (req->rq_reply_state && req->rq_reply_state->rs_prealloc) {
941 		/* If we are low on memory, we are not interested in history */
942 		list_del(&req->rq_list);
943 		list_del_init(&req->rq_history_list);
944 
945 		/* Track the highest culled req seq */
946 		if (req->rq_history_seq > svcpt->scp_hist_seq_culled)
947 			svcpt->scp_hist_seq_culled = req->rq_history_seq;
948 
949 		spin_unlock(&svcpt->scp_lock);
950 
951 		ptlrpc_server_free_request(req);
952 	} else {
953 		spin_unlock(&svcpt->scp_lock);
954 	}
955 }
956 
957 /** Change request export and move hp request from old export to new */
ptlrpc_request_change_export(struct ptlrpc_request * req,struct obd_export * export)958 void ptlrpc_request_change_export(struct ptlrpc_request *req,
959 				  struct obd_export *export)
960 {
961 	if (req->rq_export != NULL) {
962 		if (!list_empty(&req->rq_exp_list)) {
963 			/* remove rq_exp_list from last export */
964 			spin_lock_bh(&req->rq_export->exp_rpc_lock);
965 			list_del_init(&req->rq_exp_list);
966 			spin_unlock_bh(&req->rq_export->exp_rpc_lock);
967 
968 			/* export has one reference already, so it`s safe to
969 			 * add req to export queue here and get another
970 			 * reference for request later */
971 			spin_lock_bh(&export->exp_rpc_lock);
972 			list_add(&req->rq_exp_list, &export->exp_hp_rpcs);
973 			spin_unlock_bh(&export->exp_rpc_lock);
974 		}
975 		class_export_rpc_dec(req->rq_export);
976 		class_export_put(req->rq_export);
977 	}
978 
979 	/* request takes one export refcount */
980 	req->rq_export = class_export_get(export);
981 	class_export_rpc_inc(export);
982 
983 	return;
984 }
985 
986 /**
987  * to finish a request: stop sending more early replies, and release
988  * the request.
989  */
ptlrpc_server_finish_request(struct ptlrpc_service_part * svcpt,struct ptlrpc_request * req)990 static void ptlrpc_server_finish_request(struct ptlrpc_service_part *svcpt,
991 					 struct ptlrpc_request *req)
992 {
993 	ptlrpc_server_hpreq_fini(req);
994 
995 	ptlrpc_server_drop_request(req);
996 }
997 
998 /**
999  * to finish a active request: stop sending more early replies, and release
1000  * the request. should be called after we finished handling the request.
1001  */
ptlrpc_server_finish_active_request(struct ptlrpc_service_part * svcpt,struct ptlrpc_request * req)1002 static void ptlrpc_server_finish_active_request(
1003 					struct ptlrpc_service_part *svcpt,
1004 					struct ptlrpc_request *req)
1005 {
1006 	spin_lock(&svcpt->scp_req_lock);
1007 	ptlrpc_nrs_req_stop_nolock(req);
1008 	svcpt->scp_nreqs_active--;
1009 	if (req->rq_hp)
1010 		svcpt->scp_nhreqs_active--;
1011 	spin_unlock(&svcpt->scp_req_lock);
1012 
1013 	ptlrpc_nrs_req_finalize(req);
1014 
1015 	if (req->rq_export != NULL)
1016 		class_export_rpc_dec(req->rq_export);
1017 
1018 	ptlrpc_server_finish_request(svcpt, req);
1019 }
1020 
1021 /**
1022  * This function makes sure dead exports are evicted in a timely manner.
1023  * This function is only called when some export receives a message (i.e.,
1024  * the network is up.)
1025  */
ptlrpc_update_export_timer(struct obd_export * exp,long extra_delay)1026 static void ptlrpc_update_export_timer(struct obd_export *exp, long extra_delay)
1027 {
1028 	struct obd_export *oldest_exp;
1029 	time_t oldest_time, new_time;
1030 
1031 	LASSERT(exp);
1032 
1033 	/* Compensate for slow machines, etc, by faking our request time
1034 	   into the future.  Although this can break the strict time-ordering
1035 	   of the list, we can be really lazy here - we don't have to evict
1036 	   at the exact right moment.  Eventually, all silent exports
1037 	   will make it to the top of the list. */
1038 
1039 	/* Do not pay attention on 1sec or smaller renewals. */
1040 	new_time = get_seconds() + extra_delay;
1041 	if (exp->exp_last_request_time + 1 /*second */ >= new_time)
1042 		return;
1043 
1044 	exp->exp_last_request_time = new_time;
1045 
1046 	/* exports may get disconnected from the chain even though the
1047 	   export has references, so we must keep the spin lock while
1048 	   manipulating the lists */
1049 	spin_lock(&exp->exp_obd->obd_dev_lock);
1050 
1051 	if (list_empty(&exp->exp_obd_chain_timed)) {
1052 		/* this one is not timed */
1053 		spin_unlock(&exp->exp_obd->obd_dev_lock);
1054 		return;
1055 	}
1056 
1057 	list_move_tail(&exp->exp_obd_chain_timed,
1058 			   &exp->exp_obd->obd_exports_timed);
1059 
1060 	oldest_exp = list_entry(exp->exp_obd->obd_exports_timed.next,
1061 				    struct obd_export, exp_obd_chain_timed);
1062 	oldest_time = oldest_exp->exp_last_request_time;
1063 	spin_unlock(&exp->exp_obd->obd_dev_lock);
1064 
1065 	if (exp->exp_obd->obd_recovering) {
1066 		/* be nice to everyone during recovery */
1067 		return;
1068 	}
1069 
1070 	/* Note - racing to start/reset the obd_eviction timer is safe */
1071 	if (exp->exp_obd->obd_eviction_timer == 0) {
1072 		/* Check if the oldest entry is expired. */
1073 		if (get_seconds() > (oldest_time + PING_EVICT_TIMEOUT +
1074 					      extra_delay)) {
1075 			/* We need a second timer, in case the net was down and
1076 			 * it just came back. Since the pinger may skip every
1077 			 * other PING_INTERVAL (see note in ptlrpc_pinger_main),
1078 			 * we better wait for 3. */
1079 			exp->exp_obd->obd_eviction_timer =
1080 				get_seconds() + 3 * PING_INTERVAL;
1081 			CDEBUG(D_HA, "%s: Think about evicting %s from "CFS_TIME_T"\n",
1082 			       exp->exp_obd->obd_name,
1083 			       obd_export_nid2str(oldest_exp), oldest_time);
1084 		}
1085 	} else {
1086 		if (get_seconds() >
1087 		    (exp->exp_obd->obd_eviction_timer + extra_delay)) {
1088 			/* The evictor won't evict anyone who we've heard from
1089 			 * recently, so we don't have to check before we start
1090 			 * it. */
1091 			if (!ping_evictor_wake(exp))
1092 				exp->exp_obd->obd_eviction_timer = 0;
1093 		}
1094 	}
1095 }
1096 
1097 /**
1098  * Sanity check request \a req.
1099  * Return 0 if all is ok, error code otherwise.
1100  */
ptlrpc_check_req(struct ptlrpc_request * req)1101 static int ptlrpc_check_req(struct ptlrpc_request *req)
1102 {
1103 	struct obd_device *obd = req->rq_export->exp_obd;
1104 	int rc = 0;
1105 
1106 	if (unlikely(lustre_msg_get_conn_cnt(req->rq_reqmsg) <
1107 		     req->rq_export->exp_conn_cnt)) {
1108 		DEBUG_REQ(D_RPCTRACE, req,
1109 			  "DROPPING req from old connection %d < %d",
1110 			  lustre_msg_get_conn_cnt(req->rq_reqmsg),
1111 			  req->rq_export->exp_conn_cnt);
1112 		return -EEXIST;
1113 	}
1114 	if (unlikely(obd == NULL || obd->obd_fail)) {
1115 		/*
1116 		 * Failing over, don't handle any more reqs, send
1117 		 * error response instead.
1118 		 */
1119 		CDEBUG(D_RPCTRACE, "Dropping req %p for failed obd %s\n",
1120 		       req, (obd != NULL) ? obd->obd_name : "unknown");
1121 		rc = -ENODEV;
1122 	} else if (lustre_msg_get_flags(req->rq_reqmsg) &
1123 		   (MSG_REPLAY | MSG_REQ_REPLAY_DONE) &&
1124 		   !obd->obd_recovering) {
1125 			DEBUG_REQ(D_ERROR, req,
1126 				  "Invalid replay without recovery");
1127 			class_fail_export(req->rq_export);
1128 			rc = -ENODEV;
1129 	} else if (lustre_msg_get_transno(req->rq_reqmsg) != 0 &&
1130 		   !obd->obd_recovering) {
1131 			DEBUG_REQ(D_ERROR, req, "Invalid req with transno %llu without recovery",
1132 				  lustre_msg_get_transno(req->rq_reqmsg));
1133 			class_fail_export(req->rq_export);
1134 			rc = -ENODEV;
1135 	}
1136 
1137 	if (unlikely(rc < 0)) {
1138 		req->rq_status = rc;
1139 		ptlrpc_error(req);
1140 	}
1141 	return rc;
1142 }
1143 
ptlrpc_at_set_timer(struct ptlrpc_service_part * svcpt)1144 static void ptlrpc_at_set_timer(struct ptlrpc_service_part *svcpt)
1145 {
1146 	struct ptlrpc_at_array *array = &svcpt->scp_at_array;
1147 	__s32 next;
1148 
1149 	if (array->paa_count == 0) {
1150 		cfs_timer_disarm(&svcpt->scp_at_timer);
1151 		return;
1152 	}
1153 
1154 	/* Set timer for closest deadline */
1155 	next = (__s32)(array->paa_deadline - get_seconds() -
1156 		       at_early_margin);
1157 	if (next <= 0) {
1158 		ptlrpc_at_timer((unsigned long)svcpt);
1159 	} else {
1160 		cfs_timer_arm(&svcpt->scp_at_timer, cfs_time_shift(next));
1161 		CDEBUG(D_INFO, "armed %s at %+ds\n",
1162 		       svcpt->scp_service->srv_name, next);
1163 	}
1164 }
1165 
1166 /* Add rpc to early reply check list */
ptlrpc_at_add_timed(struct ptlrpc_request * req)1167 static int ptlrpc_at_add_timed(struct ptlrpc_request *req)
1168 {
1169 	struct ptlrpc_service_part *svcpt = req->rq_rqbd->rqbd_svcpt;
1170 	struct ptlrpc_at_array *array = &svcpt->scp_at_array;
1171 	struct ptlrpc_request *rq = NULL;
1172 	__u32 index;
1173 
1174 	if (AT_OFF)
1175 		return 0;
1176 
1177 	if (req->rq_no_reply)
1178 		return 0;
1179 
1180 	if ((lustre_msghdr_get_flags(req->rq_reqmsg) & MSGHDR_AT_SUPPORT) == 0)
1181 		return -ENOSYS;
1182 
1183 	spin_lock(&svcpt->scp_at_lock);
1184 	LASSERT(list_empty(&req->rq_timed_list));
1185 
1186 	index = (unsigned long)req->rq_deadline % array->paa_size;
1187 	if (array->paa_reqs_count[index] > 0) {
1188 		/* latest rpcs will have the latest deadlines in the list,
1189 		 * so search backward. */
1190 		list_for_each_entry_reverse(rq,
1191 						&array->paa_reqs_array[index],
1192 						rq_timed_list) {
1193 			if (req->rq_deadline >= rq->rq_deadline) {
1194 				list_add(&req->rq_timed_list,
1195 					     &rq->rq_timed_list);
1196 				break;
1197 			}
1198 		}
1199 	}
1200 
1201 	/* Add the request at the head of the list */
1202 	if (list_empty(&req->rq_timed_list))
1203 		list_add(&req->rq_timed_list,
1204 			     &array->paa_reqs_array[index]);
1205 
1206 	spin_lock(&req->rq_lock);
1207 	req->rq_at_linked = 1;
1208 	spin_unlock(&req->rq_lock);
1209 	req->rq_at_index = index;
1210 	array->paa_reqs_count[index]++;
1211 	array->paa_count++;
1212 	if (array->paa_count == 1 || array->paa_deadline > req->rq_deadline) {
1213 		array->paa_deadline = req->rq_deadline;
1214 		ptlrpc_at_set_timer(svcpt);
1215 	}
1216 	spin_unlock(&svcpt->scp_at_lock);
1217 
1218 	return 0;
1219 }
1220 
1221 static void
ptlrpc_at_remove_timed(struct ptlrpc_request * req)1222 ptlrpc_at_remove_timed(struct ptlrpc_request *req)
1223 {
1224 	struct ptlrpc_at_array *array;
1225 
1226 	array = &req->rq_rqbd->rqbd_svcpt->scp_at_array;
1227 
1228 	/* NB: must call with hold svcpt::scp_at_lock */
1229 	LASSERT(!list_empty(&req->rq_timed_list));
1230 	list_del_init(&req->rq_timed_list);
1231 
1232 	spin_lock(&req->rq_lock);
1233 	req->rq_at_linked = 0;
1234 	spin_unlock(&req->rq_lock);
1235 
1236 	array->paa_reqs_count[req->rq_at_index]--;
1237 	array->paa_count--;
1238 }
1239 
ptlrpc_at_send_early_reply(struct ptlrpc_request * req)1240 static int ptlrpc_at_send_early_reply(struct ptlrpc_request *req)
1241 {
1242 	struct ptlrpc_service_part *svcpt = req->rq_rqbd->rqbd_svcpt;
1243 	struct ptlrpc_request *reqcopy;
1244 	struct lustre_msg *reqmsg;
1245 	long olddl = req->rq_deadline - get_seconds();
1246 	time_t newdl;
1247 	int rc;
1248 
1249 	/* deadline is when the client expects us to reply, margin is the
1250 	   difference between clients' and servers' expectations */
1251 	DEBUG_REQ(D_ADAPTTO, req,
1252 		  "%ssending early reply (deadline %+lds, margin %+lds) for %d+%d",
1253 		  AT_OFF ? "AT off - not " : "",
1254 		  olddl, olddl - at_get(&svcpt->scp_at_estimate),
1255 		  at_get(&svcpt->scp_at_estimate), at_extra);
1256 
1257 	if (AT_OFF)
1258 		return 0;
1259 
1260 	if (olddl < 0) {
1261 		DEBUG_REQ(D_WARNING, req, "Already past deadline (%+lds), not sending early reply. Consider increasing at_early_margin (%d)?",
1262 			  olddl, at_early_margin);
1263 
1264 		/* Return an error so we're not re-added to the timed list. */
1265 		return -ETIMEDOUT;
1266 	}
1267 
1268 	if (!(lustre_msghdr_get_flags(req->rq_reqmsg) & MSGHDR_AT_SUPPORT)) {
1269 		DEBUG_REQ(D_INFO, req, "Wanted to ask client for more time, but no AT support");
1270 		return -ENOSYS;
1271 	}
1272 
1273 	if (req->rq_export &&
1274 	    lustre_msg_get_flags(req->rq_reqmsg) &
1275 	    (MSG_REPLAY | MSG_REQ_REPLAY_DONE | MSG_LOCK_REPLAY_DONE)) {
1276 		/* During recovery, we don't want to send too many early
1277 		 * replies, but on the other hand we want to make sure the
1278 		 * client has enough time to resend if the rpc is lost. So
1279 		 * during the recovery period send at least 4 early replies,
1280 		 * spacing them every at_extra if we can. at_estimate should
1281 		 * always equal this fixed value during recovery. */
1282 		at_measured(&svcpt->scp_at_estimate, min(at_extra,
1283 			    req->rq_export->exp_obd->obd_recovery_timeout / 4));
1284 	} else {
1285 		/* Fake our processing time into the future to ask the clients
1286 		 * for some extra amount of time */
1287 		at_measured(&svcpt->scp_at_estimate, at_extra +
1288 			    get_seconds() -
1289 			    req->rq_arrival_time.tv_sec);
1290 
1291 		/* Check to see if we've actually increased the deadline -
1292 		 * we may be past adaptive_max */
1293 		if (req->rq_deadline >= req->rq_arrival_time.tv_sec +
1294 		    at_get(&svcpt->scp_at_estimate)) {
1295 			DEBUG_REQ(D_WARNING, req, "Couldn't add any time (%ld/%ld), not sending early reply\n",
1296 				  olddl, req->rq_arrival_time.tv_sec +
1297 				  at_get(&svcpt->scp_at_estimate) -
1298 				  get_seconds());
1299 			return -ETIMEDOUT;
1300 		}
1301 	}
1302 	newdl = get_seconds() + at_get(&svcpt->scp_at_estimate);
1303 
1304 	reqcopy = ptlrpc_request_cache_alloc(GFP_NOFS);
1305 	if (reqcopy == NULL)
1306 		return -ENOMEM;
1307 	OBD_ALLOC_LARGE(reqmsg, req->rq_reqlen);
1308 	if (!reqmsg) {
1309 		rc = -ENOMEM;
1310 		goto out_free;
1311 	}
1312 
1313 	*reqcopy = *req;
1314 	reqcopy->rq_reply_state = NULL;
1315 	reqcopy->rq_rep_swab_mask = 0;
1316 	reqcopy->rq_pack_bulk = 0;
1317 	reqcopy->rq_pack_udesc = 0;
1318 	reqcopy->rq_packed_final = 0;
1319 	sptlrpc_svc_ctx_addref(reqcopy);
1320 	/* We only need the reqmsg for the magic */
1321 	reqcopy->rq_reqmsg = reqmsg;
1322 	memcpy(reqmsg, req->rq_reqmsg, req->rq_reqlen);
1323 
1324 	LASSERT(atomic_read(&req->rq_refcount));
1325 	/** if it is last refcount then early reply isn't needed */
1326 	if (atomic_read(&req->rq_refcount) == 1) {
1327 		DEBUG_REQ(D_ADAPTTO, reqcopy, "Normal reply already sent out, abort sending early reply\n");
1328 		rc = -EINVAL;
1329 		goto out;
1330 	}
1331 
1332 	/* Connection ref */
1333 	reqcopy->rq_export = class_conn2export(
1334 				     lustre_msg_get_handle(reqcopy->rq_reqmsg));
1335 	if (reqcopy->rq_export == NULL) {
1336 		rc = -ENODEV;
1337 		goto out;
1338 	}
1339 
1340 	/* RPC ref */
1341 	class_export_rpc_inc(reqcopy->rq_export);
1342 	if (reqcopy->rq_export->exp_obd &&
1343 	    reqcopy->rq_export->exp_obd->obd_fail) {
1344 		rc = -ENODEV;
1345 		goto out_put;
1346 	}
1347 
1348 	rc = lustre_pack_reply_flags(reqcopy, 1, NULL, NULL, LPRFL_EARLY_REPLY);
1349 	if (rc)
1350 		goto out_put;
1351 
1352 	rc = ptlrpc_send_reply(reqcopy, PTLRPC_REPLY_EARLY);
1353 
1354 	if (!rc) {
1355 		/* Adjust our own deadline to what we told the client */
1356 		req->rq_deadline = newdl;
1357 		req->rq_early_count++; /* number sent, server side */
1358 	} else {
1359 		DEBUG_REQ(D_ERROR, req, "Early reply send failed %d", rc);
1360 	}
1361 
1362 	/* Free the (early) reply state from lustre_pack_reply.
1363 	   (ptlrpc_send_reply takes it's own rs ref, so this is safe here) */
1364 	ptlrpc_req_drop_rs(reqcopy);
1365 
1366 out_put:
1367 	class_export_rpc_dec(reqcopy->rq_export);
1368 	class_export_put(reqcopy->rq_export);
1369 out:
1370 	sptlrpc_svc_ctx_decref(reqcopy);
1371 	OBD_FREE_LARGE(reqmsg, req->rq_reqlen);
1372 out_free:
1373 	ptlrpc_request_cache_free(reqcopy);
1374 	return rc;
1375 }
1376 
1377 /* Send early replies to everybody expiring within at_early_margin
1378    asking for at_extra time */
ptlrpc_at_check_timed(struct ptlrpc_service_part * svcpt)1379 static int ptlrpc_at_check_timed(struct ptlrpc_service_part *svcpt)
1380 {
1381 	struct ptlrpc_at_array *array = &svcpt->scp_at_array;
1382 	struct ptlrpc_request *rq, *n;
1383 	struct list_head work_list;
1384 	__u32  index, count;
1385 	time_t deadline;
1386 	time_t now = get_seconds();
1387 	long delay;
1388 	int first, counter = 0;
1389 
1390 	spin_lock(&svcpt->scp_at_lock);
1391 	if (svcpt->scp_at_check == 0) {
1392 		spin_unlock(&svcpt->scp_at_lock);
1393 		return 0;
1394 	}
1395 	delay = cfs_time_sub(cfs_time_current(), svcpt->scp_at_checktime);
1396 	svcpt->scp_at_check = 0;
1397 
1398 	if (array->paa_count == 0) {
1399 		spin_unlock(&svcpt->scp_at_lock);
1400 		return 0;
1401 	}
1402 
1403 	/* The timer went off, but maybe the nearest rpc already completed. */
1404 	first = array->paa_deadline - now;
1405 	if (first > at_early_margin) {
1406 		/* We've still got plenty of time.  Reset the timer. */
1407 		ptlrpc_at_set_timer(svcpt);
1408 		spin_unlock(&svcpt->scp_at_lock);
1409 		return 0;
1410 	}
1411 
1412 	/* We're close to a timeout, and we don't know how much longer the
1413 	   server will take. Send early replies to everyone expiring soon. */
1414 	INIT_LIST_HEAD(&work_list);
1415 	deadline = -1;
1416 	index = (unsigned long)array->paa_deadline % array->paa_size;
1417 	count = array->paa_count;
1418 	while (count > 0) {
1419 		count -= array->paa_reqs_count[index];
1420 		list_for_each_entry_safe(rq, n,
1421 					     &array->paa_reqs_array[index],
1422 					     rq_timed_list) {
1423 			if (rq->rq_deadline > now + at_early_margin) {
1424 				/* update the earliest deadline */
1425 				if (deadline == -1 ||
1426 				    rq->rq_deadline < deadline)
1427 					deadline = rq->rq_deadline;
1428 				break;
1429 			}
1430 
1431 			ptlrpc_at_remove_timed(rq);
1432 			/**
1433 			 * ptlrpc_server_drop_request() may drop
1434 			 * refcount to 0 already. Let's check this and
1435 			 * don't add entry to work_list
1436 			 */
1437 			if (likely(atomic_inc_not_zero(&rq->rq_refcount)))
1438 				list_add(&rq->rq_timed_list, &work_list);
1439 			counter++;
1440 		}
1441 
1442 		if (++index >= array->paa_size)
1443 			index = 0;
1444 	}
1445 	array->paa_deadline = deadline;
1446 	/* we have a new earliest deadline, restart the timer */
1447 	ptlrpc_at_set_timer(svcpt);
1448 
1449 	spin_unlock(&svcpt->scp_at_lock);
1450 
1451 	CDEBUG(D_ADAPTTO, "timeout in %+ds, asking for %d secs on %d early replies\n",
1452 	       first, at_extra, counter);
1453 	if (first < 0) {
1454 		/* We're already past request deadlines before we even get a
1455 		   chance to send early replies */
1456 		LCONSOLE_WARN("%s: This server is not able to keep up with request traffic (cpu-bound).\n",
1457 			      svcpt->scp_service->srv_name);
1458 		CWARN("earlyQ=%d reqQ=%d recA=%d, svcEst=%d, delay=" CFS_DURATION_T "(jiff)\n",
1459 		      counter, svcpt->scp_nreqs_incoming,
1460 		      svcpt->scp_nreqs_active,
1461 		      at_get(&svcpt->scp_at_estimate), delay);
1462 	}
1463 
1464 	/* we took additional refcount so entries can't be deleted from list, no
1465 	 * locking is needed */
1466 	while (!list_empty(&work_list)) {
1467 		rq = list_entry(work_list.next, struct ptlrpc_request,
1468 				    rq_timed_list);
1469 		list_del_init(&rq->rq_timed_list);
1470 
1471 		if (ptlrpc_at_send_early_reply(rq) == 0)
1472 			ptlrpc_at_add_timed(rq);
1473 
1474 		ptlrpc_server_drop_request(rq);
1475 	}
1476 
1477 	return 1; /* return "did_something" for liblustre */
1478 }
1479 
1480 /**
1481  * Put the request to the export list if the request may become
1482  * a high priority one.
1483  */
ptlrpc_server_hpreq_init(struct ptlrpc_service_part * svcpt,struct ptlrpc_request * req)1484 static int ptlrpc_server_hpreq_init(struct ptlrpc_service_part *svcpt,
1485 				    struct ptlrpc_request *req)
1486 {
1487 	int rc = 0;
1488 
1489 	if (svcpt->scp_service->srv_ops.so_hpreq_handler) {
1490 		rc = svcpt->scp_service->srv_ops.so_hpreq_handler(req);
1491 		if (rc < 0)
1492 			return rc;
1493 		LASSERT(rc == 0);
1494 	}
1495 	if (req->rq_export && req->rq_ops) {
1496 		/* Perform request specific check. We should do this check
1497 		 * before the request is added into exp_hp_rpcs list otherwise
1498 		 * it may hit swab race at LU-1044. */
1499 		if (req->rq_ops->hpreq_check) {
1500 			rc = req->rq_ops->hpreq_check(req);
1501 			/**
1502 			 * XXX: Out of all current
1503 			 * ptlrpc_hpreq_ops::hpreq_check(), only
1504 			 * ldlm_cancel_hpreq_check() can return an error code;
1505 			 * other functions assert in similar places, which seems
1506 			 * odd. What also does not seem right is that handlers
1507 			 * for those RPCs do not assert on the same checks, but
1508 			 * rather handle the error cases. e.g. see
1509 			 * ost_rw_hpreq_check(), and ost_brw_read(),
1510 			 * ost_brw_write().
1511 			 */
1512 			if (rc < 0)
1513 				return rc;
1514 			LASSERT(rc == 0 || rc == 1);
1515 		}
1516 
1517 		spin_lock_bh(&req->rq_export->exp_rpc_lock);
1518 		list_add(&req->rq_exp_list,
1519 			     &req->rq_export->exp_hp_rpcs);
1520 		spin_unlock_bh(&req->rq_export->exp_rpc_lock);
1521 	}
1522 
1523 	ptlrpc_nrs_req_initialize(svcpt, req, rc);
1524 
1525 	return rc;
1526 }
1527 
1528 /** Remove the request from the export list. */
ptlrpc_server_hpreq_fini(struct ptlrpc_request * req)1529 static void ptlrpc_server_hpreq_fini(struct ptlrpc_request *req)
1530 {
1531 	if (req->rq_export && req->rq_ops) {
1532 		/* refresh lock timeout again so that client has more
1533 		 * room to send lock cancel RPC. */
1534 		if (req->rq_ops->hpreq_fini)
1535 			req->rq_ops->hpreq_fini(req);
1536 
1537 		spin_lock_bh(&req->rq_export->exp_rpc_lock);
1538 		list_del_init(&req->rq_exp_list);
1539 		spin_unlock_bh(&req->rq_export->exp_rpc_lock);
1540 	}
1541 }
1542 
ptlrpc_hpreq_check(struct ptlrpc_request * req)1543 static int ptlrpc_hpreq_check(struct ptlrpc_request *req)
1544 {
1545 	return 1;
1546 }
1547 
1548 static struct ptlrpc_hpreq_ops ptlrpc_hpreq_common = {
1549 	.hpreq_check       = ptlrpc_hpreq_check,
1550 };
1551 
1552 /* Hi-Priority RPC check by RPC operation code. */
ptlrpc_hpreq_handler(struct ptlrpc_request * req)1553 int ptlrpc_hpreq_handler(struct ptlrpc_request *req)
1554 {
1555 	int opc = lustre_msg_get_opc(req->rq_reqmsg);
1556 
1557 	/* Check for export to let only reconnects for not yet evicted
1558 	 * export to become a HP rpc. */
1559 	if ((req->rq_export != NULL) &&
1560 	    (opc == OBD_PING || opc == MDS_CONNECT || opc == OST_CONNECT))
1561 		req->rq_ops = &ptlrpc_hpreq_common;
1562 
1563 	return 0;
1564 }
1565 EXPORT_SYMBOL(ptlrpc_hpreq_handler);
1566 
ptlrpc_server_request_add(struct ptlrpc_service_part * svcpt,struct ptlrpc_request * req)1567 static int ptlrpc_server_request_add(struct ptlrpc_service_part *svcpt,
1568 				     struct ptlrpc_request *req)
1569 {
1570 	int	rc;
1571 
1572 	rc = ptlrpc_server_hpreq_init(svcpt, req);
1573 	if (rc < 0)
1574 		return rc;
1575 
1576 	ptlrpc_nrs_req_add(svcpt, req, !!rc);
1577 
1578 	return 0;
1579 }
1580 
1581 /**
1582  * Allow to handle high priority request
1583  * User can call it w/o any lock but need to hold
1584  * ptlrpc_service_part::scp_req_lock to get reliable result
1585  */
ptlrpc_server_allow_high(struct ptlrpc_service_part * svcpt,bool force)1586 static bool ptlrpc_server_allow_high(struct ptlrpc_service_part *svcpt,
1587 				     bool force)
1588 {
1589 	int running = svcpt->scp_nthrs_running;
1590 
1591 	if (!nrs_svcpt_has_hp(svcpt))
1592 		return false;
1593 
1594 	if (force)
1595 		return true;
1596 
1597 	if (unlikely(svcpt->scp_service->srv_req_portal == MDS_REQUEST_PORTAL &&
1598 		     CFS_FAIL_PRECHECK(OBD_FAIL_PTLRPC_CANCEL_RESEND))) {
1599 		/* leave just 1 thread for normal RPCs */
1600 		running = PTLRPC_NTHRS_INIT;
1601 		if (svcpt->scp_service->srv_ops.so_hpreq_handler != NULL)
1602 			running += 1;
1603 	}
1604 
1605 	if (svcpt->scp_nreqs_active >= running - 1)
1606 		return false;
1607 
1608 	if (svcpt->scp_nhreqs_active == 0)
1609 		return true;
1610 
1611 	return !ptlrpc_nrs_req_pending_nolock(svcpt, false) ||
1612 	       svcpt->scp_hreq_count < svcpt->scp_service->srv_hpreq_ratio;
1613 }
1614 
ptlrpc_server_high_pending(struct ptlrpc_service_part * svcpt,bool force)1615 static bool ptlrpc_server_high_pending(struct ptlrpc_service_part *svcpt,
1616 				       bool force)
1617 {
1618 	return ptlrpc_server_allow_high(svcpt, force) &&
1619 	       ptlrpc_nrs_req_pending_nolock(svcpt, true);
1620 }
1621 
1622 /**
1623  * Only allow normal priority requests on a service that has a high-priority
1624  * queue if forced (i.e. cleanup), if there are other high priority requests
1625  * already being processed (i.e. those threads can service more high-priority
1626  * requests), or if there are enough idle threads that a later thread can do
1627  * a high priority request.
1628  * User can call it w/o any lock but need to hold
1629  * ptlrpc_service_part::scp_req_lock to get reliable result
1630  */
ptlrpc_server_allow_normal(struct ptlrpc_service_part * svcpt,bool force)1631 static bool ptlrpc_server_allow_normal(struct ptlrpc_service_part *svcpt,
1632 				       bool force)
1633 {
1634 	int running = svcpt->scp_nthrs_running;
1635 	if (unlikely(svcpt->scp_service->srv_req_portal == MDS_REQUEST_PORTAL &&
1636 		     CFS_FAIL_PRECHECK(OBD_FAIL_PTLRPC_CANCEL_RESEND))) {
1637 		/* leave just 1 thread for normal RPCs */
1638 		running = PTLRPC_NTHRS_INIT;
1639 		if (svcpt->scp_service->srv_ops.so_hpreq_handler != NULL)
1640 			running += 1;
1641 	}
1642 
1643 	if (force ||
1644 	    svcpt->scp_nreqs_active < running - 2)
1645 		return true;
1646 
1647 	if (svcpt->scp_nreqs_active >= running - 1)
1648 		return false;
1649 
1650 	return svcpt->scp_nhreqs_active > 0 || !nrs_svcpt_has_hp(svcpt);
1651 }
1652 
ptlrpc_server_normal_pending(struct ptlrpc_service_part * svcpt,bool force)1653 static bool ptlrpc_server_normal_pending(struct ptlrpc_service_part *svcpt,
1654 					 bool force)
1655 {
1656 	return ptlrpc_server_allow_normal(svcpt, force) &&
1657 	       ptlrpc_nrs_req_pending_nolock(svcpt, false);
1658 }
1659 
1660 /**
1661  * Returns true if there are requests available in incoming
1662  * request queue for processing and it is allowed to fetch them.
1663  * User can call it w/o any lock but need to hold ptlrpc_service::scp_req_lock
1664  * to get reliable result
1665  * \see ptlrpc_server_allow_normal
1666  * \see ptlrpc_server_allow high
1667  */
1668 static inline bool
ptlrpc_server_request_pending(struct ptlrpc_service_part * svcpt,bool force)1669 ptlrpc_server_request_pending(struct ptlrpc_service_part *svcpt, bool force)
1670 {
1671 	return ptlrpc_server_high_pending(svcpt, force) ||
1672 	       ptlrpc_server_normal_pending(svcpt, force);
1673 }
1674 
1675 /**
1676  * Fetch a request for processing from queue of unprocessed requests.
1677  * Favors high-priority requests.
1678  * Returns a pointer to fetched request.
1679  */
1680 static struct ptlrpc_request *
ptlrpc_server_request_get(struct ptlrpc_service_part * svcpt,bool force)1681 ptlrpc_server_request_get(struct ptlrpc_service_part *svcpt, bool force)
1682 {
1683 	struct ptlrpc_request *req = NULL;
1684 
1685 	spin_lock(&svcpt->scp_req_lock);
1686 
1687 	if (ptlrpc_server_high_pending(svcpt, force)) {
1688 		req = ptlrpc_nrs_req_get_nolock(svcpt, true, force);
1689 		if (req != NULL) {
1690 			svcpt->scp_hreq_count++;
1691 			goto got_request;
1692 		}
1693 	}
1694 
1695 	if (ptlrpc_server_normal_pending(svcpt, force)) {
1696 		req = ptlrpc_nrs_req_get_nolock(svcpt, false, force);
1697 		if (req != NULL) {
1698 			svcpt->scp_hreq_count = 0;
1699 			goto got_request;
1700 		}
1701 	}
1702 
1703 	spin_unlock(&svcpt->scp_req_lock);
1704 	return NULL;
1705 
1706 got_request:
1707 	svcpt->scp_nreqs_active++;
1708 	if (req->rq_hp)
1709 		svcpt->scp_nhreqs_active++;
1710 
1711 	spin_unlock(&svcpt->scp_req_lock);
1712 
1713 	if (likely(req->rq_export))
1714 		class_export_rpc_inc(req->rq_export);
1715 
1716 	return req;
1717 }
1718 
1719 /**
1720  * Handle freshly incoming reqs, add to timed early reply list,
1721  * pass on to regular request queue.
1722  * All incoming requests pass through here before getting into
1723  * ptlrpc_server_handle_req later on.
1724  */
1725 static int
ptlrpc_server_handle_req_in(struct ptlrpc_service_part * svcpt,struct ptlrpc_thread * thread)1726 ptlrpc_server_handle_req_in(struct ptlrpc_service_part *svcpt,
1727 			    struct ptlrpc_thread *thread)
1728 {
1729 	struct ptlrpc_service	*svc = svcpt->scp_service;
1730 	struct ptlrpc_request	*req;
1731 	__u32			deadline;
1732 	int			rc;
1733 
1734 	spin_lock(&svcpt->scp_lock);
1735 	if (list_empty(&svcpt->scp_req_incoming)) {
1736 		spin_unlock(&svcpt->scp_lock);
1737 		return 0;
1738 	}
1739 
1740 	req = list_entry(svcpt->scp_req_incoming.next,
1741 			     struct ptlrpc_request, rq_list);
1742 	list_del_init(&req->rq_list);
1743 	svcpt->scp_nreqs_incoming--;
1744 	/* Consider this still a "queued" request as far as stats are
1745 	 * concerned */
1746 	spin_unlock(&svcpt->scp_lock);
1747 
1748 	/* go through security check/transform */
1749 	rc = sptlrpc_svc_unwrap_request(req);
1750 	switch (rc) {
1751 	case SECSVC_OK:
1752 		break;
1753 	case SECSVC_COMPLETE:
1754 		target_send_reply(req, 0, OBD_FAIL_MDS_ALL_REPLY_NET);
1755 		goto err_req;
1756 	case SECSVC_DROP:
1757 		goto err_req;
1758 	default:
1759 		LBUG();
1760 	}
1761 
1762 	/*
1763 	 * for null-flavored rpc, msg has been unpacked by sptlrpc, although
1764 	 * redo it wouldn't be harmful.
1765 	 */
1766 	if (SPTLRPC_FLVR_POLICY(req->rq_flvr.sf_rpc) != SPTLRPC_POLICY_NULL) {
1767 		rc = ptlrpc_unpack_req_msg(req, req->rq_reqlen);
1768 		if (rc != 0) {
1769 			CERROR("error unpacking request: ptl %d from %s x%llu\n",
1770 			       svc->srv_req_portal, libcfs_id2str(req->rq_peer),
1771 			       req->rq_xid);
1772 			goto err_req;
1773 		}
1774 	}
1775 
1776 	rc = lustre_unpack_req_ptlrpc_body(req, MSG_PTLRPC_BODY_OFF);
1777 	if (rc) {
1778 		CERROR("error unpacking ptlrpc body: ptl %d from %s x%llu\n",
1779 		       svc->srv_req_portal, libcfs_id2str(req->rq_peer),
1780 		       req->rq_xid);
1781 		goto err_req;
1782 	}
1783 
1784 	if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_DROP_REQ_OPC) &&
1785 	    lustre_msg_get_opc(req->rq_reqmsg) == cfs_fail_val) {
1786 		CERROR("drop incoming rpc opc %u, x%llu\n",
1787 		       cfs_fail_val, req->rq_xid);
1788 		goto err_req;
1789 	}
1790 
1791 	rc = -EINVAL;
1792 	if (lustre_msg_get_type(req->rq_reqmsg) != PTL_RPC_MSG_REQUEST) {
1793 		CERROR("wrong packet type received (type=%u) from %s\n",
1794 		       lustre_msg_get_type(req->rq_reqmsg),
1795 		       libcfs_id2str(req->rq_peer));
1796 		goto err_req;
1797 	}
1798 
1799 	switch (lustre_msg_get_opc(req->rq_reqmsg)) {
1800 	case MDS_WRITEPAGE:
1801 	case OST_WRITE:
1802 		req->rq_bulk_write = 1;
1803 		break;
1804 	case MDS_READPAGE:
1805 	case OST_READ:
1806 	case MGS_CONFIG_READ:
1807 		req->rq_bulk_read = 1;
1808 		break;
1809 	}
1810 
1811 	CDEBUG(D_RPCTRACE, "got req x%llu\n", req->rq_xid);
1812 
1813 	req->rq_export = class_conn2export(
1814 		lustre_msg_get_handle(req->rq_reqmsg));
1815 	if (req->rq_export) {
1816 		rc = ptlrpc_check_req(req);
1817 		if (rc == 0) {
1818 			rc = sptlrpc_target_export_check(req->rq_export, req);
1819 			if (rc)
1820 				DEBUG_REQ(D_ERROR, req, "DROPPING req with illegal security flavor,");
1821 		}
1822 
1823 		if (rc)
1824 			goto err_req;
1825 		ptlrpc_update_export_timer(req->rq_export, 0);
1826 	}
1827 
1828 	/* req_in handling should/must be fast */
1829 	if (get_seconds() - req->rq_arrival_time.tv_sec > 5)
1830 		DEBUG_REQ(D_WARNING, req, "Slow req_in handling "CFS_DURATION_T"s",
1831 			  cfs_time_sub(get_seconds(),
1832 				       req->rq_arrival_time.tv_sec));
1833 
1834 	/* Set rpc server deadline and add it to the timed list */
1835 	deadline = (lustre_msghdr_get_flags(req->rq_reqmsg) &
1836 		    MSGHDR_AT_SUPPORT) ?
1837 		   /* The max time the client expects us to take */
1838 		   lustre_msg_get_timeout(req->rq_reqmsg) : obd_timeout;
1839 	req->rq_deadline = req->rq_arrival_time.tv_sec + deadline;
1840 	if (unlikely(deadline == 0)) {
1841 		DEBUG_REQ(D_ERROR, req, "Dropping request with 0 timeout");
1842 		goto err_req;
1843 	}
1844 
1845 	req->rq_svc_thread = thread;
1846 
1847 	ptlrpc_at_add_timed(req);
1848 
1849 	/* Move it over to the request processing queue */
1850 	rc = ptlrpc_server_request_add(svcpt, req);
1851 	if (rc)
1852 		goto err_req;
1853 
1854 	wake_up(&svcpt->scp_waitq);
1855 	return 1;
1856 
1857 err_req:
1858 	ptlrpc_server_finish_request(svcpt, req);
1859 
1860 	return 1;
1861 }
1862 
1863 /**
1864  * Main incoming request handling logic.
1865  * Calls handler function from service to do actual processing.
1866  */
1867 static int
ptlrpc_server_handle_request(struct ptlrpc_service_part * svcpt,struct ptlrpc_thread * thread)1868 ptlrpc_server_handle_request(struct ptlrpc_service_part *svcpt,
1869 			     struct ptlrpc_thread *thread)
1870 {
1871 	struct ptlrpc_service *svc = svcpt->scp_service;
1872 	struct ptlrpc_request *request;
1873 	struct timeval	 work_start;
1874 	struct timeval	 work_end;
1875 	long		   timediff;
1876 	int		    rc;
1877 	int		    fail_opc = 0;
1878 
1879 	request = ptlrpc_server_request_get(svcpt, false);
1880 	if (request == NULL)
1881 		return 0;
1882 
1883 	if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_HPREQ_NOTIMEOUT))
1884 		fail_opc = OBD_FAIL_PTLRPC_HPREQ_NOTIMEOUT;
1885 	else if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_HPREQ_TIMEOUT))
1886 		fail_opc = OBD_FAIL_PTLRPC_HPREQ_TIMEOUT;
1887 
1888 	if (unlikely(fail_opc)) {
1889 		if (request->rq_export && request->rq_ops)
1890 			OBD_FAIL_TIMEOUT(fail_opc, 4);
1891 	}
1892 
1893 	ptlrpc_rqphase_move(request, RQ_PHASE_INTERPRET);
1894 
1895 	if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_DUMP_LOG))
1896 		libcfs_debug_dumplog();
1897 
1898 	do_gettimeofday(&work_start);
1899 	timediff = cfs_timeval_sub(&work_start, &request->rq_arrival_time,
1900 				   NULL);
1901 	if (likely(svc->srv_stats != NULL)) {
1902 		lprocfs_counter_add(svc->srv_stats, PTLRPC_REQWAIT_CNTR,
1903 				    timediff);
1904 		lprocfs_counter_add(svc->srv_stats, PTLRPC_REQQDEPTH_CNTR,
1905 				    svcpt->scp_nreqs_incoming);
1906 		lprocfs_counter_add(svc->srv_stats, PTLRPC_REQACTIVE_CNTR,
1907 				    svcpt->scp_nreqs_active);
1908 		lprocfs_counter_add(svc->srv_stats, PTLRPC_TIMEOUT,
1909 				    at_get(&svcpt->scp_at_estimate));
1910 	}
1911 
1912 	rc = lu_context_init(&request->rq_session, LCT_SESSION | LCT_NOREF);
1913 	if (rc) {
1914 		CERROR("Failure to initialize session: %d\n", rc);
1915 		goto out_req;
1916 	}
1917 	request->rq_session.lc_thread = thread;
1918 	request->rq_session.lc_cookie = 0x5;
1919 	lu_context_enter(&request->rq_session);
1920 
1921 	CDEBUG(D_NET, "got req %llu\n", request->rq_xid);
1922 
1923 	request->rq_svc_thread = thread;
1924 	if (thread)
1925 		request->rq_svc_thread->t_env->le_ses = &request->rq_session;
1926 
1927 	if (likely(request->rq_export)) {
1928 		if (unlikely(ptlrpc_check_req(request)))
1929 			goto put_conn;
1930 		ptlrpc_update_export_timer(request->rq_export, timediff >> 19);
1931 	}
1932 
1933 	/* Discard requests queued for longer than the deadline.
1934 	   The deadline is increased if we send an early reply. */
1935 	if (get_seconds() > request->rq_deadline) {
1936 		DEBUG_REQ(D_ERROR, request, "Dropping timed-out request from %s: deadline " CFS_DURATION_T ":" CFS_DURATION_T "s ago\n",
1937 			  libcfs_id2str(request->rq_peer),
1938 			  cfs_time_sub(request->rq_deadline,
1939 				       request->rq_arrival_time.tv_sec),
1940 			  cfs_time_sub(get_seconds(),
1941 				       request->rq_deadline));
1942 		goto put_conn;
1943 	}
1944 
1945 	CDEBUG(D_RPCTRACE, "Handling RPC pname:cluuid+ref:pid:xid:nid:opc %s:%s+%d:%d:x%llu:%s:%d\n",
1946 	       current_comm(),
1947 	       (request->rq_export ?
1948 		(char *)request->rq_export->exp_client_uuid.uuid : "0"),
1949 	       (request->rq_export ?
1950 		atomic_read(&request->rq_export->exp_refcount) : -99),
1951 	       lustre_msg_get_status(request->rq_reqmsg), request->rq_xid,
1952 	       libcfs_id2str(request->rq_peer),
1953 	       lustre_msg_get_opc(request->rq_reqmsg));
1954 
1955 	if (lustre_msg_get_opc(request->rq_reqmsg) != OBD_PING)
1956 		CFS_FAIL_TIMEOUT_MS(OBD_FAIL_PTLRPC_PAUSE_REQ, cfs_fail_val);
1957 
1958 	rc = svc->srv_ops.so_req_handler(request);
1959 
1960 	ptlrpc_rqphase_move(request, RQ_PHASE_COMPLETE);
1961 
1962 put_conn:
1963 	lu_context_exit(&request->rq_session);
1964 	lu_context_fini(&request->rq_session);
1965 
1966 	if (unlikely(get_seconds() > request->rq_deadline)) {
1967 		DEBUG_REQ(D_WARNING, request,
1968 			  "Request took longer than estimated ("
1969 				CFS_DURATION_T":"CFS_DURATION_T
1970 				"s); client may timeout.",
1971 			  cfs_time_sub(request->rq_deadline,
1972 				       request->rq_arrival_time.tv_sec),
1973 			  cfs_time_sub(get_seconds(),
1974 				       request->rq_deadline));
1975 	}
1976 
1977 	do_gettimeofday(&work_end);
1978 	timediff = cfs_timeval_sub(&work_end, &work_start, NULL);
1979 	CDEBUG(D_RPCTRACE, "Handled RPC pname:cluuid+ref:pid:xid:nid:opc %s:%s+%d:%d:x%llu:%s:%d Request processed in %ldus (%ldus total) trans %llu rc %d/%d\n",
1980 	       current_comm(),
1981 	       (request->rq_export ?
1982 		(char *)request->rq_export->exp_client_uuid.uuid : "0"),
1983 	       (request->rq_export ?
1984 		atomic_read(&request->rq_export->exp_refcount) : -99),
1985 	       lustre_msg_get_status(request->rq_reqmsg),
1986 	       request->rq_xid,
1987 	       libcfs_id2str(request->rq_peer),
1988 	       lustre_msg_get_opc(request->rq_reqmsg),
1989 	       timediff,
1990 	       cfs_timeval_sub(&work_end, &request->rq_arrival_time, NULL),
1991 	       (request->rq_repmsg ?
1992 		lustre_msg_get_transno(request->rq_repmsg) :
1993 		request->rq_transno),
1994 	       request->rq_status,
1995 	       (request->rq_repmsg ?
1996 		lustre_msg_get_status(request->rq_repmsg) : -999));
1997 	if (likely(svc->srv_stats != NULL && request->rq_reqmsg != NULL)) {
1998 		__u32 op = lustre_msg_get_opc(request->rq_reqmsg);
1999 		int opc = opcode_offset(op);
2000 		if (opc > 0 && !(op == LDLM_ENQUEUE || op == MDS_REINT)) {
2001 			LASSERT(opc < LUSTRE_MAX_OPCODES);
2002 			lprocfs_counter_add(svc->srv_stats,
2003 					    opc + EXTRA_MAX_OPCODES,
2004 					    timediff);
2005 		}
2006 	}
2007 	if (unlikely(request->rq_early_count)) {
2008 		DEBUG_REQ(D_ADAPTTO, request,
2009 			  "sent %d early replies before finishing in "
2010 			  CFS_DURATION_T"s",
2011 			  request->rq_early_count,
2012 			  cfs_time_sub(work_end.tv_sec,
2013 			  request->rq_arrival_time.tv_sec));
2014 	}
2015 
2016 out_req:
2017 	ptlrpc_server_finish_active_request(svcpt, request);
2018 
2019 	return 1;
2020 }
2021 
2022 /**
2023  * An internal function to process a single reply state object.
2024  */
2025 static int
ptlrpc_handle_rs(struct ptlrpc_reply_state * rs)2026 ptlrpc_handle_rs(struct ptlrpc_reply_state *rs)
2027 {
2028 	struct ptlrpc_service_part *svcpt = rs->rs_svcpt;
2029 	struct ptlrpc_service     *svc = svcpt->scp_service;
2030 	struct obd_export	 *exp;
2031 	int			nlocks;
2032 	int			been_handled;
2033 
2034 	exp = rs->rs_export;
2035 
2036 	LASSERT(rs->rs_difficult);
2037 	LASSERT(rs->rs_scheduled);
2038 	LASSERT(list_empty(&rs->rs_list));
2039 
2040 	spin_lock(&exp->exp_lock);
2041 	/* Noop if removed already */
2042 	list_del_init(&rs->rs_exp_list);
2043 	spin_unlock(&exp->exp_lock);
2044 
2045 	/* The disk commit callback holds exp_uncommitted_replies_lock while it
2046 	 * iterates over newly committed replies, removing them from
2047 	 * exp_uncommitted_replies.  It then drops this lock and schedules the
2048 	 * replies it found for handling here.
2049 	 *
2050 	 * We can avoid contention for exp_uncommitted_replies_lock between the
2051 	 * HRT threads and further commit callbacks by checking rs_committed
2052 	 * which is set in the commit callback while it holds both
2053 	 * rs_lock and exp_uncommitted_reples.
2054 	 *
2055 	 * If we see rs_committed clear, the commit callback _may_ not have
2056 	 * handled this reply yet and we race with it to grab
2057 	 * exp_uncommitted_replies_lock before removing the reply from
2058 	 * exp_uncommitted_replies.  Note that if we lose the race and the
2059 	 * reply has already been removed, list_del_init() is a noop.
2060 	 *
2061 	 * If we see rs_committed set, we know the commit callback is handling,
2062 	 * or has handled this reply since store reordering might allow us to
2063 	 * see rs_committed set out of sequence.  But since this is done
2064 	 * holding rs_lock, we can be sure it has all completed once we hold
2065 	 * rs_lock, which we do right next.
2066 	 */
2067 	if (!rs->rs_committed) {
2068 		spin_lock(&exp->exp_uncommitted_replies_lock);
2069 		list_del_init(&rs->rs_obd_list);
2070 		spin_unlock(&exp->exp_uncommitted_replies_lock);
2071 	}
2072 
2073 	spin_lock(&rs->rs_lock);
2074 
2075 	been_handled = rs->rs_handled;
2076 	rs->rs_handled = 1;
2077 
2078 	nlocks = rs->rs_nlocks;		 /* atomic "steal", but */
2079 	rs->rs_nlocks = 0;		      /* locks still on rs_locks! */
2080 
2081 	if (nlocks == 0 && !been_handled) {
2082 		/* If we see this, we should already have seen the warning
2083 		 * in mds_steal_ack_locks()  */
2084 		CDEBUG(D_HA, "All locks stolen from rs %p x%lld.t%lld o%d NID %s\n",
2085 		       rs,
2086 		       rs->rs_xid, rs->rs_transno, rs->rs_opc,
2087 		       libcfs_nid2str(exp->exp_connection->c_peer.nid));
2088 	}
2089 
2090 	if ((!been_handled && rs->rs_on_net) || nlocks > 0) {
2091 		spin_unlock(&rs->rs_lock);
2092 
2093 		if (!been_handled && rs->rs_on_net) {
2094 			LNetMDUnlink(rs->rs_md_h);
2095 			/* Ignore return code; we're racing with completion */
2096 		}
2097 
2098 		while (nlocks-- > 0)
2099 			ldlm_lock_decref(&rs->rs_locks[nlocks],
2100 					 rs->rs_modes[nlocks]);
2101 
2102 		spin_lock(&rs->rs_lock);
2103 	}
2104 
2105 	rs->rs_scheduled = 0;
2106 
2107 	if (!rs->rs_on_net) {
2108 		/* Off the net */
2109 		spin_unlock(&rs->rs_lock);
2110 
2111 		class_export_put(exp);
2112 		rs->rs_export = NULL;
2113 		ptlrpc_rs_decref(rs);
2114 		if (atomic_dec_and_test(&svcpt->scp_nreps_difficult) &&
2115 		    svc->srv_is_stopping)
2116 			wake_up_all(&svcpt->scp_waitq);
2117 		return 1;
2118 	}
2119 
2120 	/* still on the net; callback will schedule */
2121 	spin_unlock(&rs->rs_lock);
2122 	return 1;
2123 }
2124 
2125 
2126 static void
ptlrpc_check_rqbd_pool(struct ptlrpc_service_part * svcpt)2127 ptlrpc_check_rqbd_pool(struct ptlrpc_service_part *svcpt)
2128 {
2129 	int avail = svcpt->scp_nrqbds_posted;
2130 	int low_water = test_req_buffer_pressure ? 0 :
2131 			svcpt->scp_service->srv_nbuf_per_group / 2;
2132 
2133 	/* NB I'm not locking; just looking. */
2134 
2135 	/* CAVEAT EMPTOR: We might be allocating buffers here because we've
2136 	 * allowed the request history to grow out of control.  We could put a
2137 	 * sanity check on that here and cull some history if we need the
2138 	 * space. */
2139 
2140 	if (avail <= low_water)
2141 		ptlrpc_grow_req_bufs(svcpt, 1);
2142 
2143 	if (svcpt->scp_service->srv_stats) {
2144 		lprocfs_counter_add(svcpt->scp_service->srv_stats,
2145 				    PTLRPC_REQBUF_AVAIL_CNTR, avail);
2146 	}
2147 }
2148 
2149 static int
ptlrpc_retry_rqbds(void * arg)2150 ptlrpc_retry_rqbds(void *arg)
2151 {
2152 	struct ptlrpc_service_part *svcpt = (struct ptlrpc_service_part *)arg;
2153 
2154 	svcpt->scp_rqbd_timeout = 0;
2155 	return -ETIMEDOUT;
2156 }
2157 
2158 static inline int
ptlrpc_threads_enough(struct ptlrpc_service_part * svcpt)2159 ptlrpc_threads_enough(struct ptlrpc_service_part *svcpt)
2160 {
2161 	return svcpt->scp_nreqs_active <
2162 	       svcpt->scp_nthrs_running - 1 -
2163 	       (svcpt->scp_service->srv_ops.so_hpreq_handler != NULL);
2164 }
2165 
2166 /**
2167  * allowed to create more threads
2168  * user can call it w/o any lock but need to hold
2169  * ptlrpc_service_part::scp_lock to get reliable result
2170  */
2171 static inline int
ptlrpc_threads_increasable(struct ptlrpc_service_part * svcpt)2172 ptlrpc_threads_increasable(struct ptlrpc_service_part *svcpt)
2173 {
2174 	return svcpt->scp_nthrs_running +
2175 	       svcpt->scp_nthrs_starting <
2176 	       svcpt->scp_service->srv_nthrs_cpt_limit;
2177 }
2178 
2179 /**
2180  * too many requests and allowed to create more threads
2181  */
2182 static inline int
ptlrpc_threads_need_create(struct ptlrpc_service_part * svcpt)2183 ptlrpc_threads_need_create(struct ptlrpc_service_part *svcpt)
2184 {
2185 	return !ptlrpc_threads_enough(svcpt) &&
2186 		ptlrpc_threads_increasable(svcpt);
2187 }
2188 
2189 static inline int
ptlrpc_thread_stopping(struct ptlrpc_thread * thread)2190 ptlrpc_thread_stopping(struct ptlrpc_thread *thread)
2191 {
2192 	return thread_is_stopping(thread) ||
2193 	       thread->t_svcpt->scp_service->srv_is_stopping;
2194 }
2195 
2196 static inline int
ptlrpc_rqbd_pending(struct ptlrpc_service_part * svcpt)2197 ptlrpc_rqbd_pending(struct ptlrpc_service_part *svcpt)
2198 {
2199 	return !list_empty(&svcpt->scp_rqbd_idle) &&
2200 	       svcpt->scp_rqbd_timeout == 0;
2201 }
2202 
2203 static inline int
ptlrpc_at_check(struct ptlrpc_service_part * svcpt)2204 ptlrpc_at_check(struct ptlrpc_service_part *svcpt)
2205 {
2206 	return svcpt->scp_at_check;
2207 }
2208 
2209 /**
2210  * requests wait on preprocessing
2211  * user can call it w/o any lock but need to hold
2212  * ptlrpc_service_part::scp_lock to get reliable result
2213  */
2214 static inline int
ptlrpc_server_request_incoming(struct ptlrpc_service_part * svcpt)2215 ptlrpc_server_request_incoming(struct ptlrpc_service_part *svcpt)
2216 {
2217 	return !list_empty(&svcpt->scp_req_incoming);
2218 }
2219 
2220 static __attribute__((__noinline__)) int
ptlrpc_wait_event(struct ptlrpc_service_part * svcpt,struct ptlrpc_thread * thread)2221 ptlrpc_wait_event(struct ptlrpc_service_part *svcpt,
2222 		  struct ptlrpc_thread *thread)
2223 {
2224 	/* Don't exit while there are replies to be handled */
2225 	struct l_wait_info lwi = LWI_TIMEOUT(svcpt->scp_rqbd_timeout,
2226 					     ptlrpc_retry_rqbds, svcpt);
2227 
2228 	/* XXX: Add this back when libcfs watchdog is merged upstream
2229 	lc_watchdog_disable(thread->t_watchdog);
2230 	 */
2231 
2232 	cond_resched();
2233 
2234 	l_wait_event_exclusive_head(svcpt->scp_waitq,
2235 				ptlrpc_thread_stopping(thread) ||
2236 				ptlrpc_server_request_incoming(svcpt) ||
2237 				ptlrpc_server_request_pending(svcpt, false) ||
2238 				ptlrpc_rqbd_pending(svcpt) ||
2239 				ptlrpc_at_check(svcpt), &lwi);
2240 
2241 	if (ptlrpc_thread_stopping(thread))
2242 		return -EINTR;
2243 
2244 	/*
2245 	lc_watchdog_touch(thread->t_watchdog,
2246 			  ptlrpc_server_get_timeout(svcpt));
2247 	 */
2248 	return 0;
2249 }
2250 
2251 /**
2252  * Main thread body for service threads.
2253  * Waits in a loop waiting for new requests to process to appear.
2254  * Every time an incoming requests is added to its queue, a waitq
2255  * is woken up and one of the threads will handle it.
2256  */
ptlrpc_main(void * arg)2257 static int ptlrpc_main(void *arg)
2258 {
2259 	struct ptlrpc_thread		*thread = (struct ptlrpc_thread *)arg;
2260 	struct ptlrpc_service_part	*svcpt = thread->t_svcpt;
2261 	struct ptlrpc_service		*svc = svcpt->scp_service;
2262 	struct ptlrpc_reply_state	*rs;
2263 	struct group_info *ginfo = NULL;
2264 	struct lu_env *env;
2265 	int counter = 0, rc = 0;
2266 
2267 	thread->t_pid = current_pid();
2268 	unshare_fs_struct();
2269 
2270 	/* NB: we will call cfs_cpt_bind() for all threads, because we
2271 	 * might want to run lustre server only on a subset of system CPUs,
2272 	 * in that case ->scp_cpt is CFS_CPT_ANY */
2273 	rc = cfs_cpt_bind(svc->srv_cptable, svcpt->scp_cpt);
2274 	if (rc != 0) {
2275 		CWARN("%s: failed to bind %s on CPT %d\n",
2276 		      svc->srv_name, thread->t_name, svcpt->scp_cpt);
2277 	}
2278 
2279 	ginfo = groups_alloc(0);
2280 	if (!ginfo) {
2281 		rc = -ENOMEM;
2282 		goto out;
2283 	}
2284 
2285 	set_current_groups(ginfo);
2286 	put_group_info(ginfo);
2287 
2288 	if (svc->srv_ops.so_thr_init != NULL) {
2289 		rc = svc->srv_ops.so_thr_init(thread);
2290 		if (rc)
2291 			goto out;
2292 	}
2293 
2294 	OBD_ALLOC_PTR(env);
2295 	if (env == NULL) {
2296 		rc = -ENOMEM;
2297 		goto out_srv_fini;
2298 	}
2299 
2300 	rc = lu_context_init(&env->le_ctx,
2301 			     svc->srv_ctx_tags|LCT_REMEMBER|LCT_NOREF);
2302 	if (rc)
2303 		goto out_srv_fini;
2304 
2305 	thread->t_env = env;
2306 	env->le_ctx.lc_thread = thread;
2307 	env->le_ctx.lc_cookie = 0x6;
2308 
2309 	while (!list_empty(&svcpt->scp_rqbd_idle)) {
2310 		rc = ptlrpc_server_post_idle_rqbds(svcpt);
2311 		if (rc >= 0)
2312 			continue;
2313 
2314 		CERROR("Failed to post rqbd for %s on CPT %d: %d\n",
2315 			svc->srv_name, svcpt->scp_cpt, rc);
2316 		goto out_srv_fini;
2317 	}
2318 
2319 	/* Alloc reply state structure for this one */
2320 	OBD_ALLOC_LARGE(rs, svc->srv_max_reply_size);
2321 	if (!rs) {
2322 		rc = -ENOMEM;
2323 		goto out_srv_fini;
2324 	}
2325 
2326 	spin_lock(&svcpt->scp_lock);
2327 
2328 	LASSERT(thread_is_starting(thread));
2329 	thread_clear_flags(thread, SVC_STARTING);
2330 
2331 	LASSERT(svcpt->scp_nthrs_starting == 1);
2332 	svcpt->scp_nthrs_starting--;
2333 
2334 	/* SVC_STOPPING may already be set here if someone else is trying
2335 	 * to stop the service while this new thread has been dynamically
2336 	 * forked. We still set SVC_RUNNING to let our creator know that
2337 	 * we are now running, however we will exit as soon as possible */
2338 	thread_add_flags(thread, SVC_RUNNING);
2339 	svcpt->scp_nthrs_running++;
2340 	spin_unlock(&svcpt->scp_lock);
2341 
2342 	/* wake up our creator in case he's still waiting. */
2343 	wake_up(&thread->t_ctl_waitq);
2344 
2345 	/*
2346 	thread->t_watchdog = lc_watchdog_add(ptlrpc_server_get_timeout(svcpt),
2347 					     NULL, NULL);
2348 	 */
2349 
2350 	spin_lock(&svcpt->scp_rep_lock);
2351 	list_add(&rs->rs_list, &svcpt->scp_rep_idle);
2352 	wake_up(&svcpt->scp_rep_waitq);
2353 	spin_unlock(&svcpt->scp_rep_lock);
2354 
2355 	CDEBUG(D_NET, "service thread %d (#%d) started\n", thread->t_id,
2356 	       svcpt->scp_nthrs_running);
2357 
2358 	/* XXX maintain a list of all managed devices: insert here */
2359 	while (!ptlrpc_thread_stopping(thread)) {
2360 		if (ptlrpc_wait_event(svcpt, thread))
2361 			break;
2362 
2363 		ptlrpc_check_rqbd_pool(svcpt);
2364 
2365 		if (ptlrpc_threads_need_create(svcpt)) {
2366 			/* Ignore return code - we tried... */
2367 			ptlrpc_start_thread(svcpt, 0);
2368 		}
2369 
2370 		/* Process all incoming reqs before handling any */
2371 		if (ptlrpc_server_request_incoming(svcpt)) {
2372 			lu_context_enter(&env->le_ctx);
2373 			env->le_ses = NULL;
2374 			ptlrpc_server_handle_req_in(svcpt, thread);
2375 			lu_context_exit(&env->le_ctx);
2376 
2377 			/* but limit ourselves in case of flood */
2378 			if (counter++ < 100)
2379 				continue;
2380 			counter = 0;
2381 		}
2382 
2383 		if (ptlrpc_at_check(svcpt))
2384 			ptlrpc_at_check_timed(svcpt);
2385 
2386 		if (ptlrpc_server_request_pending(svcpt, false)) {
2387 			lu_context_enter(&env->le_ctx);
2388 			ptlrpc_server_handle_request(svcpt, thread);
2389 			lu_context_exit(&env->le_ctx);
2390 		}
2391 
2392 		if (ptlrpc_rqbd_pending(svcpt) &&
2393 		    ptlrpc_server_post_idle_rqbds(svcpt) < 0) {
2394 			/* I just failed to repost request buffers.
2395 			 * Wait for a timeout (unless something else
2396 			 * happens) before I try again */
2397 			svcpt->scp_rqbd_timeout = cfs_time_seconds(1) / 10;
2398 			CDEBUG(D_RPCTRACE, "Posted buffers: %d\n",
2399 			       svcpt->scp_nrqbds_posted);
2400 		}
2401 	}
2402 
2403 	/*
2404 	lc_watchdog_delete(thread->t_watchdog);
2405 	thread->t_watchdog = NULL;
2406 	*/
2407 
2408 out_srv_fini:
2409 	/*
2410 	 * deconstruct service specific state created by ptlrpc_start_thread()
2411 	 */
2412 	if (svc->srv_ops.so_thr_done != NULL)
2413 		svc->srv_ops.so_thr_done(thread);
2414 
2415 	if (env != NULL) {
2416 		lu_context_fini(&env->le_ctx);
2417 		OBD_FREE_PTR(env);
2418 	}
2419 out:
2420 	CDEBUG(D_RPCTRACE, "service thread [ %p : %u ] %d exiting: rc %d\n",
2421 	       thread, thread->t_pid, thread->t_id, rc);
2422 
2423 	spin_lock(&svcpt->scp_lock);
2424 	if (thread_test_and_clear_flags(thread, SVC_STARTING))
2425 		svcpt->scp_nthrs_starting--;
2426 
2427 	if (thread_test_and_clear_flags(thread, SVC_RUNNING)) {
2428 		/* must know immediately */
2429 		svcpt->scp_nthrs_running--;
2430 	}
2431 
2432 	thread->t_id = rc;
2433 	thread_add_flags(thread, SVC_STOPPED);
2434 
2435 	wake_up(&thread->t_ctl_waitq);
2436 	spin_unlock(&svcpt->scp_lock);
2437 
2438 	return rc;
2439 }
2440 
hrt_dont_sleep(struct ptlrpc_hr_thread * hrt,struct list_head * replies)2441 static int hrt_dont_sleep(struct ptlrpc_hr_thread *hrt,
2442 			  struct list_head *replies)
2443 {
2444 	int result;
2445 
2446 	spin_lock(&hrt->hrt_lock);
2447 
2448 	list_splice_init(&hrt->hrt_queue, replies);
2449 	result = ptlrpc_hr.hr_stopping || !list_empty(replies);
2450 
2451 	spin_unlock(&hrt->hrt_lock);
2452 	return result;
2453 }
2454 
2455 /**
2456  * Main body of "handle reply" function.
2457  * It processes acked reply states
2458  */
ptlrpc_hr_main(void * arg)2459 static int ptlrpc_hr_main(void *arg)
2460 {
2461 	struct ptlrpc_hr_thread		*hrt = (struct ptlrpc_hr_thread *)arg;
2462 	struct ptlrpc_hr_partition	*hrp = hrt->hrt_partition;
2463 	LIST_HEAD			(replies);
2464 	char				threadname[20];
2465 	int				rc;
2466 
2467 	snprintf(threadname, sizeof(threadname), "ptlrpc_hr%02d_%03d",
2468 		 hrp->hrp_cpt, hrt->hrt_id);
2469 	unshare_fs_struct();
2470 
2471 	rc = cfs_cpt_bind(ptlrpc_hr.hr_cpt_table, hrp->hrp_cpt);
2472 	if (rc != 0) {
2473 		CWARN("Failed to bind %s on CPT %d of CPT table %p: rc = %d\n",
2474 		      threadname, hrp->hrp_cpt, ptlrpc_hr.hr_cpt_table, rc);
2475 	}
2476 
2477 	atomic_inc(&hrp->hrp_nstarted);
2478 	wake_up(&ptlrpc_hr.hr_waitq);
2479 
2480 	while (!ptlrpc_hr.hr_stopping) {
2481 		l_wait_condition(hrt->hrt_waitq, hrt_dont_sleep(hrt, &replies));
2482 
2483 		while (!list_empty(&replies)) {
2484 			struct ptlrpc_reply_state *rs;
2485 
2486 			rs = list_entry(replies.prev,
2487 					    struct ptlrpc_reply_state,
2488 					    rs_list);
2489 			list_del_init(&rs->rs_list);
2490 			ptlrpc_handle_rs(rs);
2491 		}
2492 	}
2493 
2494 	atomic_inc(&hrp->hrp_nstopped);
2495 	wake_up(&ptlrpc_hr.hr_waitq);
2496 
2497 	return 0;
2498 }
2499 
ptlrpc_stop_hr_threads(void)2500 static void ptlrpc_stop_hr_threads(void)
2501 {
2502 	struct ptlrpc_hr_partition	*hrp;
2503 	int				i;
2504 	int				j;
2505 
2506 	ptlrpc_hr.hr_stopping = 1;
2507 
2508 	cfs_percpt_for_each(hrp, i, ptlrpc_hr.hr_partitions) {
2509 		if (hrp->hrp_thrs == NULL)
2510 			continue; /* uninitialized */
2511 		for (j = 0; j < hrp->hrp_nthrs; j++)
2512 			wake_up_all(&hrp->hrp_thrs[j].hrt_waitq);
2513 	}
2514 
2515 	cfs_percpt_for_each(hrp, i, ptlrpc_hr.hr_partitions) {
2516 		if (hrp->hrp_thrs == NULL)
2517 			continue; /* uninitialized */
2518 		wait_event(ptlrpc_hr.hr_waitq,
2519 			       atomic_read(&hrp->hrp_nstopped) ==
2520 			       atomic_read(&hrp->hrp_nstarted));
2521 	}
2522 }
2523 
ptlrpc_start_hr_threads(void)2524 static int ptlrpc_start_hr_threads(void)
2525 {
2526 	struct ptlrpc_hr_partition	*hrp;
2527 	int				i;
2528 	int				j;
2529 
2530 	cfs_percpt_for_each(hrp, i, ptlrpc_hr.hr_partitions) {
2531 		int	rc = 0;
2532 
2533 		for (j = 0; j < hrp->hrp_nthrs; j++) {
2534 			struct	ptlrpc_hr_thread *hrt = &hrp->hrp_thrs[j];
2535 			rc = PTR_ERR(kthread_run(ptlrpc_hr_main,
2536 						 &hrp->hrp_thrs[j],
2537 						 "ptlrpc_hr%02d_%03d",
2538 						 hrp->hrp_cpt,
2539 						 hrt->hrt_id));
2540 			if (IS_ERR_VALUE(rc))
2541 				break;
2542 		}
2543 		wait_event(ptlrpc_hr.hr_waitq,
2544 			       atomic_read(&hrp->hrp_nstarted) == j);
2545 		if (!IS_ERR_VALUE(rc))
2546 			continue;
2547 
2548 		CERROR("Reply handling thread %d:%d Failed on starting: rc = %d\n",
2549 		       i, j, rc);
2550 		ptlrpc_stop_hr_threads();
2551 		return rc;
2552 	}
2553 	return 0;
2554 }
2555 
ptlrpc_svcpt_stop_threads(struct ptlrpc_service_part * svcpt)2556 static void ptlrpc_svcpt_stop_threads(struct ptlrpc_service_part *svcpt)
2557 {
2558 	struct l_wait_info	lwi = { 0 };
2559 	struct ptlrpc_thread	*thread;
2560 	LIST_HEAD		(zombie);
2561 
2562 	CDEBUG(D_INFO, "Stopping threads for service %s\n",
2563 	       svcpt->scp_service->srv_name);
2564 
2565 	spin_lock(&svcpt->scp_lock);
2566 	/* let the thread know that we would like it to stop asap */
2567 	list_for_each_entry(thread, &svcpt->scp_threads, t_link) {
2568 		CDEBUG(D_INFO, "Stopping thread %s #%u\n",
2569 		       svcpt->scp_service->srv_thread_name, thread->t_id);
2570 		thread_add_flags(thread, SVC_STOPPING);
2571 	}
2572 
2573 	wake_up_all(&svcpt->scp_waitq);
2574 
2575 	while (!list_empty(&svcpt->scp_threads)) {
2576 		thread = list_entry(svcpt->scp_threads.next,
2577 					struct ptlrpc_thread, t_link);
2578 		if (thread_is_stopped(thread)) {
2579 			list_del(&thread->t_link);
2580 			list_add(&thread->t_link, &zombie);
2581 			continue;
2582 		}
2583 		spin_unlock(&svcpt->scp_lock);
2584 
2585 		CDEBUG(D_INFO, "waiting for stopping-thread %s #%u\n",
2586 		       svcpt->scp_service->srv_thread_name, thread->t_id);
2587 		l_wait_event(thread->t_ctl_waitq,
2588 			     thread_is_stopped(thread), &lwi);
2589 
2590 		spin_lock(&svcpt->scp_lock);
2591 	}
2592 
2593 	spin_unlock(&svcpt->scp_lock);
2594 
2595 	while (!list_empty(&zombie)) {
2596 		thread = list_entry(zombie.next,
2597 					struct ptlrpc_thread, t_link);
2598 		list_del(&thread->t_link);
2599 		OBD_FREE_PTR(thread);
2600 	}
2601 }
2602 
2603 /**
2604  * Stops all threads of a particular service \a svc
2605  */
ptlrpc_stop_all_threads(struct ptlrpc_service * svc)2606 void ptlrpc_stop_all_threads(struct ptlrpc_service *svc)
2607 {
2608 	struct ptlrpc_service_part *svcpt;
2609 	int			   i;
2610 
2611 	ptlrpc_service_for_each_part(svcpt, i, svc) {
2612 		if (svcpt->scp_service != NULL)
2613 			ptlrpc_svcpt_stop_threads(svcpt);
2614 	}
2615 }
2616 EXPORT_SYMBOL(ptlrpc_stop_all_threads);
2617 
ptlrpc_start_threads(struct ptlrpc_service * svc)2618 int ptlrpc_start_threads(struct ptlrpc_service *svc)
2619 {
2620 	int	rc = 0;
2621 	int	i;
2622 	int	j;
2623 
2624 	/* We require 2 threads min, see note in ptlrpc_server_handle_request */
2625 	LASSERT(svc->srv_nthrs_cpt_init >= PTLRPC_NTHRS_INIT);
2626 
2627 	for (i = 0; i < svc->srv_ncpts; i++) {
2628 		for (j = 0; j < svc->srv_nthrs_cpt_init; j++) {
2629 			rc = ptlrpc_start_thread(svc->srv_parts[i], 1);
2630 			if (rc == 0)
2631 				continue;
2632 
2633 			if (rc != -EMFILE)
2634 				goto failed;
2635 			/* We have enough threads, don't start more. b=15759 */
2636 			break;
2637 		}
2638 	}
2639 
2640 	return 0;
2641  failed:
2642 	CERROR("cannot start %s thread #%d_%d: rc %d\n",
2643 	       svc->srv_thread_name, i, j, rc);
2644 	ptlrpc_stop_all_threads(svc);
2645 	return rc;
2646 }
2647 EXPORT_SYMBOL(ptlrpc_start_threads);
2648 
ptlrpc_start_thread(struct ptlrpc_service_part * svcpt,int wait)2649 int ptlrpc_start_thread(struct ptlrpc_service_part *svcpt, int wait)
2650 {
2651 	struct l_wait_info	lwi = { 0 };
2652 	struct ptlrpc_thread	*thread;
2653 	struct ptlrpc_service	*svc;
2654 	int			rc;
2655 
2656 	LASSERT(svcpt != NULL);
2657 
2658 	svc = svcpt->scp_service;
2659 
2660 	CDEBUG(D_RPCTRACE, "%s[%d] started %d min %d max %d\n",
2661 	       svc->srv_name, svcpt->scp_cpt, svcpt->scp_nthrs_running,
2662 	       svc->srv_nthrs_cpt_init, svc->srv_nthrs_cpt_limit);
2663 
2664  again:
2665 	if (unlikely(svc->srv_is_stopping))
2666 		return -ESRCH;
2667 
2668 	if (!ptlrpc_threads_increasable(svcpt) ||
2669 	    (OBD_FAIL_CHECK(OBD_FAIL_TGT_TOOMANY_THREADS) &&
2670 	     svcpt->scp_nthrs_running == svc->srv_nthrs_cpt_init - 1))
2671 		return -EMFILE;
2672 
2673 	OBD_CPT_ALLOC_PTR(thread, svc->srv_cptable, svcpt->scp_cpt);
2674 	if (thread == NULL)
2675 		return -ENOMEM;
2676 	init_waitqueue_head(&thread->t_ctl_waitq);
2677 
2678 	spin_lock(&svcpt->scp_lock);
2679 	if (!ptlrpc_threads_increasable(svcpt)) {
2680 		spin_unlock(&svcpt->scp_lock);
2681 		OBD_FREE_PTR(thread);
2682 		return -EMFILE;
2683 	}
2684 
2685 	if (svcpt->scp_nthrs_starting != 0) {
2686 		/* serialize starting because some modules (obdfilter)
2687 		 * might require unique and contiguous t_id */
2688 		LASSERT(svcpt->scp_nthrs_starting == 1);
2689 		spin_unlock(&svcpt->scp_lock);
2690 		OBD_FREE_PTR(thread);
2691 		if (wait) {
2692 			CDEBUG(D_INFO, "Waiting for creating thread %s #%d\n",
2693 			       svc->srv_thread_name, svcpt->scp_thr_nextid);
2694 			schedule();
2695 			goto again;
2696 		}
2697 
2698 		CDEBUG(D_INFO, "Creating thread %s #%d race, retry later\n",
2699 		       svc->srv_thread_name, svcpt->scp_thr_nextid);
2700 		return -EAGAIN;
2701 	}
2702 
2703 	svcpt->scp_nthrs_starting++;
2704 	thread->t_id = svcpt->scp_thr_nextid++;
2705 	thread_add_flags(thread, SVC_STARTING);
2706 	thread->t_svcpt = svcpt;
2707 
2708 	list_add(&thread->t_link, &svcpt->scp_threads);
2709 	spin_unlock(&svcpt->scp_lock);
2710 
2711 	if (svcpt->scp_cpt >= 0) {
2712 		snprintf(thread->t_name, sizeof(thread->t_name), "%s%02d_%03d",
2713 			 svc->srv_thread_name, svcpt->scp_cpt, thread->t_id);
2714 	} else {
2715 		snprintf(thread->t_name, sizeof(thread->t_name), "%s_%04d",
2716 			 svc->srv_thread_name, thread->t_id);
2717 	}
2718 
2719 	CDEBUG(D_RPCTRACE, "starting thread '%s'\n", thread->t_name);
2720 	rc = PTR_ERR(kthread_run(ptlrpc_main, thread, "%s", thread->t_name));
2721 	if (IS_ERR_VALUE(rc)) {
2722 		CERROR("cannot start thread '%s': rc %d\n",
2723 		       thread->t_name, rc);
2724 		spin_lock(&svcpt->scp_lock);
2725 		--svcpt->scp_nthrs_starting;
2726 		if (thread_is_stopping(thread)) {
2727 			/* this ptlrpc_thread is being handled
2728 			 * by ptlrpc_svcpt_stop_threads now
2729 			 */
2730 			thread_add_flags(thread, SVC_STOPPED);
2731 			wake_up(&thread->t_ctl_waitq);
2732 			spin_unlock(&svcpt->scp_lock);
2733 		} else {
2734 			list_del(&thread->t_link);
2735 			spin_unlock(&svcpt->scp_lock);
2736 			OBD_FREE_PTR(thread);
2737 		}
2738 		return rc;
2739 	}
2740 
2741 	if (!wait)
2742 		return 0;
2743 
2744 	l_wait_event(thread->t_ctl_waitq,
2745 		     thread_is_running(thread) || thread_is_stopped(thread),
2746 		     &lwi);
2747 
2748 	rc = thread_is_stopped(thread) ? thread->t_id : 0;
2749 	return rc;
2750 }
2751 
ptlrpc_hr_init(void)2752 int ptlrpc_hr_init(void)
2753 {
2754 	struct ptlrpc_hr_partition	*hrp;
2755 	struct ptlrpc_hr_thread		*hrt;
2756 	int				rc;
2757 	int				i;
2758 	int				j;
2759 	int				weight;
2760 
2761 	memset(&ptlrpc_hr, 0, sizeof(ptlrpc_hr));
2762 	ptlrpc_hr.hr_cpt_table = cfs_cpt_table;
2763 
2764 	ptlrpc_hr.hr_partitions = cfs_percpt_alloc(ptlrpc_hr.hr_cpt_table,
2765 						   sizeof(*hrp));
2766 	if (ptlrpc_hr.hr_partitions == NULL)
2767 		return -ENOMEM;
2768 
2769 	init_waitqueue_head(&ptlrpc_hr.hr_waitq);
2770 
2771 	weight = cpumask_weight(topology_thread_cpumask(0));
2772 
2773 	cfs_percpt_for_each(hrp, i, ptlrpc_hr.hr_partitions) {
2774 		hrp->hrp_cpt = i;
2775 
2776 		atomic_set(&hrp->hrp_nstarted, 0);
2777 		atomic_set(&hrp->hrp_nstopped, 0);
2778 
2779 		hrp->hrp_nthrs = cfs_cpt_weight(ptlrpc_hr.hr_cpt_table, i);
2780 		hrp->hrp_nthrs /= weight;
2781 
2782 		LASSERT(hrp->hrp_nthrs > 0);
2783 		OBD_CPT_ALLOC(hrp->hrp_thrs, ptlrpc_hr.hr_cpt_table, i,
2784 			      hrp->hrp_nthrs * sizeof(*hrt));
2785 		if (hrp->hrp_thrs == NULL) {
2786 			rc = -ENOMEM;
2787 			goto out;
2788 		}
2789 
2790 		for (j = 0; j < hrp->hrp_nthrs; j++) {
2791 			hrt = &hrp->hrp_thrs[j];
2792 
2793 			hrt->hrt_id = j;
2794 			hrt->hrt_partition = hrp;
2795 			init_waitqueue_head(&hrt->hrt_waitq);
2796 			spin_lock_init(&hrt->hrt_lock);
2797 			INIT_LIST_HEAD(&hrt->hrt_queue);
2798 		}
2799 	}
2800 
2801 	rc = ptlrpc_start_hr_threads();
2802 out:
2803 	if (rc != 0)
2804 		ptlrpc_hr_fini();
2805 	return rc;
2806 }
2807 
ptlrpc_hr_fini(void)2808 void ptlrpc_hr_fini(void)
2809 {
2810 	struct ptlrpc_hr_partition	*hrp;
2811 	int				i;
2812 
2813 	if (ptlrpc_hr.hr_partitions == NULL)
2814 		return;
2815 
2816 	ptlrpc_stop_hr_threads();
2817 
2818 	cfs_percpt_for_each(hrp, i, ptlrpc_hr.hr_partitions) {
2819 		if (hrp->hrp_thrs != NULL) {
2820 			OBD_FREE(hrp->hrp_thrs,
2821 				 hrp->hrp_nthrs * sizeof(hrp->hrp_thrs[0]));
2822 		}
2823 	}
2824 
2825 	cfs_percpt_free(ptlrpc_hr.hr_partitions);
2826 	ptlrpc_hr.hr_partitions = NULL;
2827 }
2828 
2829 
2830 /**
2831  * Wait until all already scheduled replies are processed.
2832  */
ptlrpc_wait_replies(struct ptlrpc_service_part * svcpt)2833 static void ptlrpc_wait_replies(struct ptlrpc_service_part *svcpt)
2834 {
2835 	while (1) {
2836 		int rc;
2837 		struct l_wait_info lwi = LWI_TIMEOUT(cfs_time_seconds(10),
2838 						     NULL, NULL);
2839 
2840 		rc = l_wait_event(svcpt->scp_waitq,
2841 		     atomic_read(&svcpt->scp_nreps_difficult) == 0, &lwi);
2842 		if (rc == 0)
2843 			break;
2844 		CWARN("Unexpectedly long timeout %s %p\n",
2845 		      svcpt->scp_service->srv_name, svcpt->scp_service);
2846 	}
2847 }
2848 
2849 static void
ptlrpc_service_del_atimer(struct ptlrpc_service * svc)2850 ptlrpc_service_del_atimer(struct ptlrpc_service *svc)
2851 {
2852 	struct ptlrpc_service_part	*svcpt;
2853 	int				i;
2854 
2855 	/* early disarm AT timer... */
2856 	ptlrpc_service_for_each_part(svcpt, i, svc) {
2857 		if (svcpt->scp_service != NULL)
2858 			cfs_timer_disarm(&svcpt->scp_at_timer);
2859 	}
2860 }
2861 
2862 static void
ptlrpc_service_unlink_rqbd(struct ptlrpc_service * svc)2863 ptlrpc_service_unlink_rqbd(struct ptlrpc_service *svc)
2864 {
2865 	struct ptlrpc_service_part	  *svcpt;
2866 	struct ptlrpc_request_buffer_desc *rqbd;
2867 	struct l_wait_info		  lwi;
2868 	int				  rc;
2869 	int				  i;
2870 
2871 	/* All history will be culled when the next request buffer is
2872 	 * freed in ptlrpc_service_purge_all() */
2873 	svc->srv_hist_nrqbds_cpt_max = 0;
2874 
2875 	rc = LNetClearLazyPortal(svc->srv_req_portal);
2876 	LASSERT(rc == 0);
2877 
2878 	ptlrpc_service_for_each_part(svcpt, i, svc) {
2879 		if (svcpt->scp_service == NULL)
2880 			break;
2881 
2882 		/* Unlink all the request buffers.  This forces a 'final'
2883 		 * event with its 'unlink' flag set for each posted rqbd */
2884 		list_for_each_entry(rqbd, &svcpt->scp_rqbd_posted,
2885 					rqbd_list) {
2886 			rc = LNetMDUnlink(rqbd->rqbd_md_h);
2887 			LASSERT(rc == 0 || rc == -ENOENT);
2888 		}
2889 	}
2890 
2891 	ptlrpc_service_for_each_part(svcpt, i, svc) {
2892 		if (svcpt->scp_service == NULL)
2893 			break;
2894 
2895 		/* Wait for the network to release any buffers
2896 		 * it's currently filling */
2897 		spin_lock(&svcpt->scp_lock);
2898 		while (svcpt->scp_nrqbds_posted != 0) {
2899 			spin_unlock(&svcpt->scp_lock);
2900 			/* Network access will complete in finite time but
2901 			 * the HUGE timeout lets us CWARN for visibility
2902 			 * of sluggish NALs */
2903 			lwi = LWI_TIMEOUT_INTERVAL(
2904 					cfs_time_seconds(LONG_UNLINK),
2905 					cfs_time_seconds(1), NULL, NULL);
2906 			rc = l_wait_event(svcpt->scp_waitq,
2907 					  svcpt->scp_nrqbds_posted == 0, &lwi);
2908 			if (rc == -ETIMEDOUT) {
2909 				CWARN("Service %s waiting for request buffers\n",
2910 				      svcpt->scp_service->srv_name);
2911 			}
2912 			spin_lock(&svcpt->scp_lock);
2913 		}
2914 		spin_unlock(&svcpt->scp_lock);
2915 	}
2916 }
2917 
2918 static void
ptlrpc_service_purge_all(struct ptlrpc_service * svc)2919 ptlrpc_service_purge_all(struct ptlrpc_service *svc)
2920 {
2921 	struct ptlrpc_service_part		*svcpt;
2922 	struct ptlrpc_request_buffer_desc	*rqbd;
2923 	struct ptlrpc_request			*req;
2924 	struct ptlrpc_reply_state		*rs;
2925 	int					i;
2926 
2927 	ptlrpc_service_for_each_part(svcpt, i, svc) {
2928 		if (svcpt->scp_service == NULL)
2929 			break;
2930 
2931 		spin_lock(&svcpt->scp_rep_lock);
2932 		while (!list_empty(&svcpt->scp_rep_active)) {
2933 			rs = list_entry(svcpt->scp_rep_active.next,
2934 					    struct ptlrpc_reply_state, rs_list);
2935 			spin_lock(&rs->rs_lock);
2936 			ptlrpc_schedule_difficult_reply(rs);
2937 			spin_unlock(&rs->rs_lock);
2938 		}
2939 		spin_unlock(&svcpt->scp_rep_lock);
2940 
2941 		/* purge the request queue.  NB No new replies (rqbds
2942 		 * all unlinked) and no service threads, so I'm the only
2943 		 * thread noodling the request queue now */
2944 		while (!list_empty(&svcpt->scp_req_incoming)) {
2945 			req = list_entry(svcpt->scp_req_incoming.next,
2946 					     struct ptlrpc_request, rq_list);
2947 
2948 			list_del(&req->rq_list);
2949 			svcpt->scp_nreqs_incoming--;
2950 			ptlrpc_server_finish_request(svcpt, req);
2951 		}
2952 
2953 		while (ptlrpc_server_request_pending(svcpt, true)) {
2954 			req = ptlrpc_server_request_get(svcpt, true);
2955 			ptlrpc_server_finish_active_request(svcpt, req);
2956 		}
2957 
2958 		LASSERT(list_empty(&svcpt->scp_rqbd_posted));
2959 		LASSERT(svcpt->scp_nreqs_incoming == 0);
2960 		LASSERT(svcpt->scp_nreqs_active == 0);
2961 		/* history should have been culled by
2962 		 * ptlrpc_server_finish_request */
2963 		LASSERT(svcpt->scp_hist_nrqbds == 0);
2964 
2965 		/* Now free all the request buffers since nothing
2966 		 * references them any more... */
2967 
2968 		while (!list_empty(&svcpt->scp_rqbd_idle)) {
2969 			rqbd = list_entry(svcpt->scp_rqbd_idle.next,
2970 					      struct ptlrpc_request_buffer_desc,
2971 					      rqbd_list);
2972 			ptlrpc_free_rqbd(rqbd);
2973 		}
2974 		ptlrpc_wait_replies(svcpt);
2975 
2976 		while (!list_empty(&svcpt->scp_rep_idle)) {
2977 			rs = list_entry(svcpt->scp_rep_idle.next,
2978 					    struct ptlrpc_reply_state,
2979 					    rs_list);
2980 			list_del(&rs->rs_list);
2981 			OBD_FREE_LARGE(rs, svc->srv_max_reply_size);
2982 		}
2983 	}
2984 }
2985 
2986 static void
ptlrpc_service_free(struct ptlrpc_service * svc)2987 ptlrpc_service_free(struct ptlrpc_service *svc)
2988 {
2989 	struct ptlrpc_service_part	*svcpt;
2990 	struct ptlrpc_at_array		*array;
2991 	int				i;
2992 
2993 	ptlrpc_service_for_each_part(svcpt, i, svc) {
2994 		if (svcpt->scp_service == NULL)
2995 			break;
2996 
2997 		/* In case somebody rearmed this in the meantime */
2998 		cfs_timer_disarm(&svcpt->scp_at_timer);
2999 		array = &svcpt->scp_at_array;
3000 
3001 		if (array->paa_reqs_array != NULL) {
3002 			OBD_FREE(array->paa_reqs_array,
3003 				 sizeof(struct list_head) * array->paa_size);
3004 			array->paa_reqs_array = NULL;
3005 		}
3006 
3007 		if (array->paa_reqs_count != NULL) {
3008 			OBD_FREE(array->paa_reqs_count,
3009 				 sizeof(__u32) * array->paa_size);
3010 			array->paa_reqs_count = NULL;
3011 		}
3012 	}
3013 
3014 	ptlrpc_service_for_each_part(svcpt, i, svc)
3015 		OBD_FREE_PTR(svcpt);
3016 
3017 	if (svc->srv_cpts != NULL)
3018 		cfs_expr_list_values_free(svc->srv_cpts, svc->srv_ncpts);
3019 
3020 	OBD_FREE(svc, offsetof(struct ptlrpc_service,
3021 			       srv_parts[svc->srv_ncpts]));
3022 }
3023 
ptlrpc_unregister_service(struct ptlrpc_service * service)3024 int ptlrpc_unregister_service(struct ptlrpc_service *service)
3025 {
3026 	CDEBUG(D_NET, "%s: tearing down\n", service->srv_name);
3027 
3028 	service->srv_is_stopping = 1;
3029 
3030 	mutex_lock(&ptlrpc_all_services_mutex);
3031 	list_del_init(&service->srv_list);
3032 	mutex_unlock(&ptlrpc_all_services_mutex);
3033 
3034 	ptlrpc_service_del_atimer(service);
3035 	ptlrpc_stop_all_threads(service);
3036 
3037 	ptlrpc_service_unlink_rqbd(service);
3038 	ptlrpc_service_purge_all(service);
3039 	ptlrpc_service_nrs_cleanup(service);
3040 
3041 	ptlrpc_lprocfs_unregister_service(service);
3042 
3043 	ptlrpc_service_free(service);
3044 
3045 	return 0;
3046 }
3047 EXPORT_SYMBOL(ptlrpc_unregister_service);
3048 
3049 /**
3050  * Returns 0 if the service is healthy.
3051  *
3052  * Right now, it just checks to make sure that requests aren't languishing
3053  * in the queue.  We'll use this health check to govern whether a node needs
3054  * to be shot, so it's intentionally non-aggressive. */
ptlrpc_svcpt_health_check(struct ptlrpc_service_part * svcpt)3055 int ptlrpc_svcpt_health_check(struct ptlrpc_service_part *svcpt)
3056 {
3057 	struct ptlrpc_request		*request = NULL;
3058 	struct timeval			right_now;
3059 	long				timediff;
3060 
3061 	do_gettimeofday(&right_now);
3062 
3063 	spin_lock(&svcpt->scp_req_lock);
3064 	/* How long has the next entry been waiting? */
3065 	if (ptlrpc_server_high_pending(svcpt, true))
3066 		request = ptlrpc_nrs_req_peek_nolock(svcpt, true);
3067 	else if (ptlrpc_server_normal_pending(svcpt, true))
3068 		request = ptlrpc_nrs_req_peek_nolock(svcpt, false);
3069 
3070 	if (request == NULL) {
3071 		spin_unlock(&svcpt->scp_req_lock);
3072 		return 0;
3073 	}
3074 
3075 	timediff = cfs_timeval_sub(&right_now, &request->rq_arrival_time, NULL);
3076 	spin_unlock(&svcpt->scp_req_lock);
3077 
3078 	if ((timediff / ONE_MILLION) >
3079 	    (AT_OFF ? obd_timeout * 3 / 2 : at_max)) {
3080 		CERROR("%s: unhealthy - request has been waiting %lds\n",
3081 		       svcpt->scp_service->srv_name, timediff / ONE_MILLION);
3082 		return -1;
3083 	}
3084 
3085 	return 0;
3086 }
3087 
3088 int
ptlrpc_service_health_check(struct ptlrpc_service * svc)3089 ptlrpc_service_health_check(struct ptlrpc_service *svc)
3090 {
3091 	struct ptlrpc_service_part	*svcpt;
3092 	int				i;
3093 
3094 	if (svc == NULL)
3095 		return 0;
3096 
3097 	ptlrpc_service_for_each_part(svcpt, i, svc) {
3098 		int rc = ptlrpc_svcpt_health_check(svcpt);
3099 
3100 		if (rc != 0)
3101 			return rc;
3102 	}
3103 	return 0;
3104 }
3105 EXPORT_SYMBOL(ptlrpc_service_health_check);
3106