1 /*
2  *  linux/fs/proc/base.c
3  *
4  *  Copyright (C) 1991, 1992 Linus Torvalds
5  *
6  *  proc base directory handling functions
7  *
8  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9  *  Instead of using magical inumbers to determine the kind of object
10  *  we allocate and fill in-core inodes upon lookup. They don't even
11  *  go into icache. We cache the reference to task_struct upon lookup too.
12  *  Eventually it should become a filesystem in its own. We don't use the
13  *  rest of procfs anymore.
14  *
15  *
16  *  Changelog:
17  *  17-Jan-2005
18  *  Allan Bezerra
19  *  Bruna Moreira <bruna.moreira@indt.org.br>
20  *  Edjard Mota <edjard.mota@indt.org.br>
21  *  Ilias Biris <ilias.biris@indt.org.br>
22  *  Mauricio Lin <mauricio.lin@indt.org.br>
23  *
24  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25  *
26  *  A new process specific entry (smaps) included in /proc. It shows the
27  *  size of rss for each memory area. The maps entry lacks information
28  *  about physical memory size (rss) for each mapped file, i.e.,
29  *  rss information for executables and library files.
30  *  This additional information is useful for any tools that need to know
31  *  about physical memory consumption for a process specific library.
32  *
33  *  Changelog:
34  *  21-Feb-2005
35  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36  *  Pud inclusion in the page table walking.
37  *
38  *  ChangeLog:
39  *  10-Mar-2005
40  *  10LE Instituto Nokia de Tecnologia - INdT:
41  *  A better way to walks through the page table as suggested by Hugh Dickins.
42  *
43  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
44  *  Smaps information related to shared, private, clean and dirty pages.
45  *
46  *  Paul Mundt <paul.mundt@nokia.com>:
47  *  Overall revision about smaps.
48  */
49 
50 #include <asm/uaccess.h>
51 
52 #include <linux/errno.h>
53 #include <linux/time.h>
54 #include <linux/proc_fs.h>
55 #include <linux/stat.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/init.h>
58 #include <linux/capability.h>
59 #include <linux/file.h>
60 #include <linux/fdtable.h>
61 #include <linux/string.h>
62 #include <linux/seq_file.h>
63 #include <linux/namei.h>
64 #include <linux/mnt_namespace.h>
65 #include <linux/mm.h>
66 #include <linux/swap.h>
67 #include <linux/rcupdate.h>
68 #include <linux/kallsyms.h>
69 #include <linux/stacktrace.h>
70 #include <linux/resource.h>
71 #include <linux/module.h>
72 #include <linux/mount.h>
73 #include <linux/security.h>
74 #include <linux/ptrace.h>
75 #include <linux/tracehook.h>
76 #include <linux/printk.h>
77 #include <linux/cgroup.h>
78 #include <linux/cpuset.h>
79 #include <linux/audit.h>
80 #include <linux/poll.h>
81 #include <linux/nsproxy.h>
82 #include <linux/oom.h>
83 #include <linux/elf.h>
84 #include <linux/pid_namespace.h>
85 #include <linux/user_namespace.h>
86 #include <linux/fs_struct.h>
87 #include <linux/slab.h>
88 #include <linux/flex_array.h>
89 #include <linux/posix-timers.h>
90 #ifdef CONFIG_HARDWALL
91 #include <asm/hardwall.h>
92 #endif
93 #include <trace/events/oom.h>
94 #include "internal.h"
95 #include "fd.h"
96 
97 /* NOTE:
98  *	Implementing inode permission operations in /proc is almost
99  *	certainly an error.  Permission checks need to happen during
100  *	each system call not at open time.  The reason is that most of
101  *	what we wish to check for permissions in /proc varies at runtime.
102  *
103  *	The classic example of a problem is opening file descriptors
104  *	in /proc for a task before it execs a suid executable.
105  */
106 
107 struct pid_entry {
108 	const char *name;
109 	int len;
110 	umode_t mode;
111 	const struct inode_operations *iop;
112 	const struct file_operations *fop;
113 	union proc_op op;
114 };
115 
116 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
117 	.name = (NAME),					\
118 	.len  = sizeof(NAME) - 1,			\
119 	.mode = MODE,					\
120 	.iop  = IOP,					\
121 	.fop  = FOP,					\
122 	.op   = OP,					\
123 }
124 
125 #define DIR(NAME, MODE, iops, fops)	\
126 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
127 #define LNK(NAME, get_link)					\
128 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
129 		&proc_pid_link_inode_operations, NULL,		\
130 		{ .proc_get_link = get_link } )
131 #define REG(NAME, MODE, fops)				\
132 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
133 #define ONE(NAME, MODE, show)				\
134 	NOD(NAME, (S_IFREG|(MODE)), 			\
135 		NULL, &proc_single_file_operations,	\
136 		{ .proc_show = show } )
137 
138 /*
139  * Count the number of hardlinks for the pid_entry table, excluding the .
140  * and .. links.
141  */
pid_entry_count_dirs(const struct pid_entry * entries,unsigned int n)142 static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
143 	unsigned int n)
144 {
145 	unsigned int i;
146 	unsigned int count;
147 
148 	count = 0;
149 	for (i = 0; i < n; ++i) {
150 		if (S_ISDIR(entries[i].mode))
151 			++count;
152 	}
153 
154 	return count;
155 }
156 
get_task_root(struct task_struct * task,struct path * root)157 static int get_task_root(struct task_struct *task, struct path *root)
158 {
159 	int result = -ENOENT;
160 
161 	task_lock(task);
162 	if (task->fs) {
163 		get_fs_root(task->fs, root);
164 		result = 0;
165 	}
166 	task_unlock(task);
167 	return result;
168 }
169 
proc_cwd_link(struct dentry * dentry,struct path * path)170 static int proc_cwd_link(struct dentry *dentry, struct path *path)
171 {
172 	struct task_struct *task = get_proc_task(d_inode(dentry));
173 	int result = -ENOENT;
174 
175 	if (task) {
176 		task_lock(task);
177 		if (task->fs) {
178 			get_fs_pwd(task->fs, path);
179 			result = 0;
180 		}
181 		task_unlock(task);
182 		put_task_struct(task);
183 	}
184 	return result;
185 }
186 
proc_root_link(struct dentry * dentry,struct path * path)187 static int proc_root_link(struct dentry *dentry, struct path *path)
188 {
189 	struct task_struct *task = get_proc_task(d_inode(dentry));
190 	int result = -ENOENT;
191 
192 	if (task) {
193 		result = get_task_root(task, path);
194 		put_task_struct(task);
195 	}
196 	return result;
197 }
198 
proc_pid_cmdline(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)199 static int proc_pid_cmdline(struct seq_file *m, struct pid_namespace *ns,
200 			    struct pid *pid, struct task_struct *task)
201 {
202 	/*
203 	 * Rely on struct seq_operations::show() being called once
204 	 * per internal buffer allocation. See single_open(), traverse().
205 	 */
206 	BUG_ON(m->size < PAGE_SIZE);
207 	m->count += get_cmdline(task, m->buf, PAGE_SIZE);
208 	return 0;
209 }
210 
proc_pid_auxv(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)211 static int proc_pid_auxv(struct seq_file *m, struct pid_namespace *ns,
212 			 struct pid *pid, struct task_struct *task)
213 {
214 	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
215 	if (mm && !IS_ERR(mm)) {
216 		unsigned int nwords = 0;
217 		do {
218 			nwords += 2;
219 		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
220 		seq_write(m, mm->saved_auxv, nwords * sizeof(mm->saved_auxv[0]));
221 		mmput(mm);
222 		return 0;
223 	} else
224 		return PTR_ERR(mm);
225 }
226 
227 
228 #ifdef CONFIG_KALLSYMS
229 /*
230  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
231  * Returns the resolved symbol.  If that fails, simply return the address.
232  */
proc_pid_wchan(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)233 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
234 			  struct pid *pid, struct task_struct *task)
235 {
236 	unsigned long wchan;
237 	char symname[KSYM_NAME_LEN];
238 
239 	wchan = get_wchan(task);
240 
241 	if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
242 			&& !lookup_symbol_name(wchan, symname))
243 		seq_printf(m, "%s", symname);
244 	else
245 		seq_putc(m, '0');
246 
247 	return 0;
248 }
249 #endif /* CONFIG_KALLSYMS */
250 
lock_trace(struct task_struct * task)251 static int lock_trace(struct task_struct *task)
252 {
253 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
254 	if (err)
255 		return err;
256 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
257 		mutex_unlock(&task->signal->cred_guard_mutex);
258 		return -EPERM;
259 	}
260 	return 0;
261 }
262 
unlock_trace(struct task_struct * task)263 static void unlock_trace(struct task_struct *task)
264 {
265 	mutex_unlock(&task->signal->cred_guard_mutex);
266 }
267 
268 #ifdef CONFIG_STACKTRACE
269 
270 #define MAX_STACK_TRACE_DEPTH	64
271 
proc_pid_stack(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)272 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
273 			  struct pid *pid, struct task_struct *task)
274 {
275 	struct stack_trace trace;
276 	unsigned long *entries;
277 	int err;
278 	int i;
279 
280 	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
281 	if (!entries)
282 		return -ENOMEM;
283 
284 	trace.nr_entries	= 0;
285 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
286 	trace.entries		= entries;
287 	trace.skip		= 0;
288 
289 	err = lock_trace(task);
290 	if (!err) {
291 		save_stack_trace_tsk(task, &trace);
292 
293 		for (i = 0; i < trace.nr_entries; i++) {
294 			seq_printf(m, "[<%pK>] %pS\n",
295 				   (void *)entries[i], (void *)entries[i]);
296 		}
297 		unlock_trace(task);
298 	}
299 	kfree(entries);
300 
301 	return err;
302 }
303 #endif
304 
305 #ifdef CONFIG_SCHEDSTATS
306 /*
307  * Provides /proc/PID/schedstat
308  */
proc_pid_schedstat(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)309 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
310 			      struct pid *pid, struct task_struct *task)
311 {
312 	seq_printf(m, "%llu %llu %lu\n",
313 		   (unsigned long long)task->se.sum_exec_runtime,
314 		   (unsigned long long)task->sched_info.run_delay,
315 		   task->sched_info.pcount);
316 
317 	return 0;
318 }
319 #endif
320 
321 #ifdef CONFIG_LATENCYTOP
lstats_show_proc(struct seq_file * m,void * v)322 static int lstats_show_proc(struct seq_file *m, void *v)
323 {
324 	int i;
325 	struct inode *inode = m->private;
326 	struct task_struct *task = get_proc_task(inode);
327 
328 	if (!task)
329 		return -ESRCH;
330 	seq_puts(m, "Latency Top version : v0.1\n");
331 	for (i = 0; i < 32; i++) {
332 		struct latency_record *lr = &task->latency_record[i];
333 		if (lr->backtrace[0]) {
334 			int q;
335 			seq_printf(m, "%i %li %li",
336 				   lr->count, lr->time, lr->max);
337 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
338 				unsigned long bt = lr->backtrace[q];
339 				if (!bt)
340 					break;
341 				if (bt == ULONG_MAX)
342 					break;
343 				seq_printf(m, " %ps", (void *)bt);
344 			}
345 			seq_putc(m, '\n');
346 		}
347 
348 	}
349 	put_task_struct(task);
350 	return 0;
351 }
352 
lstats_open(struct inode * inode,struct file * file)353 static int lstats_open(struct inode *inode, struct file *file)
354 {
355 	return single_open(file, lstats_show_proc, inode);
356 }
357 
lstats_write(struct file * file,const char __user * buf,size_t count,loff_t * offs)358 static ssize_t lstats_write(struct file *file, const char __user *buf,
359 			    size_t count, loff_t *offs)
360 {
361 	struct task_struct *task = get_proc_task(file_inode(file));
362 
363 	if (!task)
364 		return -ESRCH;
365 	clear_all_latency_tracing(task);
366 	put_task_struct(task);
367 
368 	return count;
369 }
370 
371 static const struct file_operations proc_lstats_operations = {
372 	.open		= lstats_open,
373 	.read		= seq_read,
374 	.write		= lstats_write,
375 	.llseek		= seq_lseek,
376 	.release	= single_release,
377 };
378 
379 #endif
380 
proc_oom_score(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)381 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
382 			  struct pid *pid, struct task_struct *task)
383 {
384 	unsigned long totalpages = totalram_pages + total_swap_pages;
385 	unsigned long points = 0;
386 
387 	read_lock(&tasklist_lock);
388 	if (pid_alive(task))
389 		points = oom_badness(task, NULL, NULL, totalpages) *
390 						1000 / totalpages;
391 	read_unlock(&tasklist_lock);
392 	seq_printf(m, "%lu\n", points);
393 
394 	return 0;
395 }
396 
397 struct limit_names {
398 	const char *name;
399 	const char *unit;
400 };
401 
402 static const struct limit_names lnames[RLIM_NLIMITS] = {
403 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
404 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
405 	[RLIMIT_DATA] = {"Max data size", "bytes"},
406 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
407 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
408 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
409 	[RLIMIT_NPROC] = {"Max processes", "processes"},
410 	[RLIMIT_NOFILE] = {"Max open files", "files"},
411 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
412 	[RLIMIT_AS] = {"Max address space", "bytes"},
413 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
414 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
415 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
416 	[RLIMIT_NICE] = {"Max nice priority", NULL},
417 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
418 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
419 };
420 
421 /* Display limits for a process */
proc_pid_limits(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)422 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
423 			   struct pid *pid, struct task_struct *task)
424 {
425 	unsigned int i;
426 	unsigned long flags;
427 
428 	struct rlimit rlim[RLIM_NLIMITS];
429 
430 	if (!lock_task_sighand(task, &flags))
431 		return 0;
432 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
433 	unlock_task_sighand(task, &flags);
434 
435 	/*
436 	 * print the file header
437 	 */
438        seq_printf(m, "%-25s %-20s %-20s %-10s\n",
439 		  "Limit", "Soft Limit", "Hard Limit", "Units");
440 
441 	for (i = 0; i < RLIM_NLIMITS; i++) {
442 		if (rlim[i].rlim_cur == RLIM_INFINITY)
443 			seq_printf(m, "%-25s %-20s ",
444 				   lnames[i].name, "unlimited");
445 		else
446 			seq_printf(m, "%-25s %-20lu ",
447 				   lnames[i].name, rlim[i].rlim_cur);
448 
449 		if (rlim[i].rlim_max == RLIM_INFINITY)
450 			seq_printf(m, "%-20s ", "unlimited");
451 		else
452 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
453 
454 		if (lnames[i].unit)
455 			seq_printf(m, "%-10s\n", lnames[i].unit);
456 		else
457 			seq_putc(m, '\n');
458 	}
459 
460 	return 0;
461 }
462 
463 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
proc_pid_syscall(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)464 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
465 			    struct pid *pid, struct task_struct *task)
466 {
467 	long nr;
468 	unsigned long args[6], sp, pc;
469 	int res;
470 
471 	res = lock_trace(task);
472 	if (res)
473 		return res;
474 
475 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
476 		seq_puts(m, "running\n");
477 	else if (nr < 0)
478 		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
479 	else
480 		seq_printf(m,
481 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
482 		       nr,
483 		       args[0], args[1], args[2], args[3], args[4], args[5],
484 		       sp, pc);
485 	unlock_trace(task);
486 
487 	return 0;
488 }
489 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
490 
491 /************************************************************************/
492 /*                       Here the fs part begins                        */
493 /************************************************************************/
494 
495 /* permission checks */
proc_fd_access_allowed(struct inode * inode)496 static int proc_fd_access_allowed(struct inode *inode)
497 {
498 	struct task_struct *task;
499 	int allowed = 0;
500 	/* Allow access to a task's file descriptors if it is us or we
501 	 * may use ptrace attach to the process and find out that
502 	 * information.
503 	 */
504 	task = get_proc_task(inode);
505 	if (task) {
506 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
507 		put_task_struct(task);
508 	}
509 	return allowed;
510 }
511 
proc_setattr(struct dentry * dentry,struct iattr * attr)512 int proc_setattr(struct dentry *dentry, struct iattr *attr)
513 {
514 	int error;
515 	struct inode *inode = d_inode(dentry);
516 
517 	if (attr->ia_valid & ATTR_MODE)
518 		return -EPERM;
519 
520 	error = inode_change_ok(inode, attr);
521 	if (error)
522 		return error;
523 
524 	setattr_copy(inode, attr);
525 	mark_inode_dirty(inode);
526 	return 0;
527 }
528 
529 /*
530  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
531  * or euid/egid (for hide_pid_min=2)?
532  */
has_pid_permissions(struct pid_namespace * pid,struct task_struct * task,int hide_pid_min)533 static bool has_pid_permissions(struct pid_namespace *pid,
534 				 struct task_struct *task,
535 				 int hide_pid_min)
536 {
537 	if (pid->hide_pid < hide_pid_min)
538 		return true;
539 	if (in_group_p(pid->pid_gid))
540 		return true;
541 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
542 }
543 
544 
proc_pid_permission(struct inode * inode,int mask)545 static int proc_pid_permission(struct inode *inode, int mask)
546 {
547 	struct pid_namespace *pid = inode->i_sb->s_fs_info;
548 	struct task_struct *task;
549 	bool has_perms;
550 
551 	task = get_proc_task(inode);
552 	if (!task)
553 		return -ESRCH;
554 	has_perms = has_pid_permissions(pid, task, 1);
555 	put_task_struct(task);
556 
557 	if (!has_perms) {
558 		if (pid->hide_pid == 2) {
559 			/*
560 			 * Let's make getdents(), stat(), and open()
561 			 * consistent with each other.  If a process
562 			 * may not stat() a file, it shouldn't be seen
563 			 * in procfs at all.
564 			 */
565 			return -ENOENT;
566 		}
567 
568 		return -EPERM;
569 	}
570 	return generic_permission(inode, mask);
571 }
572 
573 
574 
575 static const struct inode_operations proc_def_inode_operations = {
576 	.setattr	= proc_setattr,
577 };
578 
proc_single_show(struct seq_file * m,void * v)579 static int proc_single_show(struct seq_file *m, void *v)
580 {
581 	struct inode *inode = m->private;
582 	struct pid_namespace *ns;
583 	struct pid *pid;
584 	struct task_struct *task;
585 	int ret;
586 
587 	ns = inode->i_sb->s_fs_info;
588 	pid = proc_pid(inode);
589 	task = get_pid_task(pid, PIDTYPE_PID);
590 	if (!task)
591 		return -ESRCH;
592 
593 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
594 
595 	put_task_struct(task);
596 	return ret;
597 }
598 
proc_single_open(struct inode * inode,struct file * filp)599 static int proc_single_open(struct inode *inode, struct file *filp)
600 {
601 	return single_open(filp, proc_single_show, inode);
602 }
603 
604 static const struct file_operations proc_single_file_operations = {
605 	.open		= proc_single_open,
606 	.read		= seq_read,
607 	.llseek		= seq_lseek,
608 	.release	= single_release,
609 };
610 
611 
proc_mem_open(struct inode * inode,unsigned int mode)612 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
613 {
614 	struct task_struct *task = get_proc_task(inode);
615 	struct mm_struct *mm = ERR_PTR(-ESRCH);
616 
617 	if (task) {
618 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
619 		put_task_struct(task);
620 
621 		if (!IS_ERR_OR_NULL(mm)) {
622 			/* ensure this mm_struct can't be freed */
623 			atomic_inc(&mm->mm_count);
624 			/* but do not pin its memory */
625 			mmput(mm);
626 		}
627 	}
628 
629 	return mm;
630 }
631 
__mem_open(struct inode * inode,struct file * file,unsigned int mode)632 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
633 {
634 	struct mm_struct *mm = proc_mem_open(inode, mode);
635 
636 	if (IS_ERR(mm))
637 		return PTR_ERR(mm);
638 
639 	file->private_data = mm;
640 	return 0;
641 }
642 
mem_open(struct inode * inode,struct file * file)643 static int mem_open(struct inode *inode, struct file *file)
644 {
645 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
646 
647 	/* OK to pass negative loff_t, we can catch out-of-range */
648 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
649 
650 	return ret;
651 }
652 
mem_rw(struct file * file,char __user * buf,size_t count,loff_t * ppos,int write)653 static ssize_t mem_rw(struct file *file, char __user *buf,
654 			size_t count, loff_t *ppos, int write)
655 {
656 	struct mm_struct *mm = file->private_data;
657 	unsigned long addr = *ppos;
658 	ssize_t copied;
659 	char *page;
660 
661 	if (!mm)
662 		return 0;
663 
664 	page = (char *)__get_free_page(GFP_TEMPORARY);
665 	if (!page)
666 		return -ENOMEM;
667 
668 	copied = 0;
669 	if (!atomic_inc_not_zero(&mm->mm_users))
670 		goto free;
671 
672 	while (count > 0) {
673 		int this_len = min_t(int, count, PAGE_SIZE);
674 
675 		if (write && copy_from_user(page, buf, this_len)) {
676 			copied = -EFAULT;
677 			break;
678 		}
679 
680 		this_len = access_remote_vm(mm, addr, page, this_len, write);
681 		if (!this_len) {
682 			if (!copied)
683 				copied = -EIO;
684 			break;
685 		}
686 
687 		if (!write && copy_to_user(buf, page, this_len)) {
688 			copied = -EFAULT;
689 			break;
690 		}
691 
692 		buf += this_len;
693 		addr += this_len;
694 		copied += this_len;
695 		count -= this_len;
696 	}
697 	*ppos = addr;
698 
699 	mmput(mm);
700 free:
701 	free_page((unsigned long) page);
702 	return copied;
703 }
704 
mem_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)705 static ssize_t mem_read(struct file *file, char __user *buf,
706 			size_t count, loff_t *ppos)
707 {
708 	return mem_rw(file, buf, count, ppos, 0);
709 }
710 
mem_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)711 static ssize_t mem_write(struct file *file, const char __user *buf,
712 			 size_t count, loff_t *ppos)
713 {
714 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
715 }
716 
mem_lseek(struct file * file,loff_t offset,int orig)717 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
718 {
719 	switch (orig) {
720 	case 0:
721 		file->f_pos = offset;
722 		break;
723 	case 1:
724 		file->f_pos += offset;
725 		break;
726 	default:
727 		return -EINVAL;
728 	}
729 	force_successful_syscall_return();
730 	return file->f_pos;
731 }
732 
mem_release(struct inode * inode,struct file * file)733 static int mem_release(struct inode *inode, struct file *file)
734 {
735 	struct mm_struct *mm = file->private_data;
736 	if (mm)
737 		mmdrop(mm);
738 	return 0;
739 }
740 
741 static const struct file_operations proc_mem_operations = {
742 	.llseek		= mem_lseek,
743 	.read		= mem_read,
744 	.write		= mem_write,
745 	.open		= mem_open,
746 	.release	= mem_release,
747 };
748 
environ_open(struct inode * inode,struct file * file)749 static int environ_open(struct inode *inode, struct file *file)
750 {
751 	return __mem_open(inode, file, PTRACE_MODE_READ);
752 }
753 
environ_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)754 static ssize_t environ_read(struct file *file, char __user *buf,
755 			size_t count, loff_t *ppos)
756 {
757 	char *page;
758 	unsigned long src = *ppos;
759 	int ret = 0;
760 	struct mm_struct *mm = file->private_data;
761 
762 	if (!mm)
763 		return 0;
764 
765 	page = (char *)__get_free_page(GFP_TEMPORARY);
766 	if (!page)
767 		return -ENOMEM;
768 
769 	ret = 0;
770 	if (!atomic_inc_not_zero(&mm->mm_users))
771 		goto free;
772 	while (count > 0) {
773 		size_t this_len, max_len;
774 		int retval;
775 
776 		if (src >= (mm->env_end - mm->env_start))
777 			break;
778 
779 		this_len = mm->env_end - (mm->env_start + src);
780 
781 		max_len = min_t(size_t, PAGE_SIZE, count);
782 		this_len = min(max_len, this_len);
783 
784 		retval = access_remote_vm(mm, (mm->env_start + src),
785 			page, this_len, 0);
786 
787 		if (retval <= 0) {
788 			ret = retval;
789 			break;
790 		}
791 
792 		if (copy_to_user(buf, page, retval)) {
793 			ret = -EFAULT;
794 			break;
795 		}
796 
797 		ret += retval;
798 		src += retval;
799 		buf += retval;
800 		count -= retval;
801 	}
802 	*ppos = src;
803 	mmput(mm);
804 
805 free:
806 	free_page((unsigned long) page);
807 	return ret;
808 }
809 
810 static const struct file_operations proc_environ_operations = {
811 	.open		= environ_open,
812 	.read		= environ_read,
813 	.llseek		= generic_file_llseek,
814 	.release	= mem_release,
815 };
816 
oom_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)817 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
818 			    loff_t *ppos)
819 {
820 	struct task_struct *task = get_proc_task(file_inode(file));
821 	char buffer[PROC_NUMBUF];
822 	int oom_adj = OOM_ADJUST_MIN;
823 	size_t len;
824 	unsigned long flags;
825 
826 	if (!task)
827 		return -ESRCH;
828 	if (lock_task_sighand(task, &flags)) {
829 		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
830 			oom_adj = OOM_ADJUST_MAX;
831 		else
832 			oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
833 				  OOM_SCORE_ADJ_MAX;
834 		unlock_task_sighand(task, &flags);
835 	}
836 	put_task_struct(task);
837 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
838 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
839 }
840 
oom_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)841 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
842 			     size_t count, loff_t *ppos)
843 {
844 	struct task_struct *task;
845 	char buffer[PROC_NUMBUF];
846 	int oom_adj;
847 	unsigned long flags;
848 	int err;
849 
850 	memset(buffer, 0, sizeof(buffer));
851 	if (count > sizeof(buffer) - 1)
852 		count = sizeof(buffer) - 1;
853 	if (copy_from_user(buffer, buf, count)) {
854 		err = -EFAULT;
855 		goto out;
856 	}
857 
858 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
859 	if (err)
860 		goto out;
861 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
862 	     oom_adj != OOM_DISABLE) {
863 		err = -EINVAL;
864 		goto out;
865 	}
866 
867 	task = get_proc_task(file_inode(file));
868 	if (!task) {
869 		err = -ESRCH;
870 		goto out;
871 	}
872 
873 	task_lock(task);
874 	if (!task->mm) {
875 		err = -EINVAL;
876 		goto err_task_lock;
877 	}
878 
879 	if (!lock_task_sighand(task, &flags)) {
880 		err = -ESRCH;
881 		goto err_task_lock;
882 	}
883 
884 	/*
885 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
886 	 * value is always attainable.
887 	 */
888 	if (oom_adj == OOM_ADJUST_MAX)
889 		oom_adj = OOM_SCORE_ADJ_MAX;
890 	else
891 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
892 
893 	if (oom_adj < task->signal->oom_score_adj &&
894 	    !capable(CAP_SYS_RESOURCE)) {
895 		err = -EACCES;
896 		goto err_sighand;
897 	}
898 
899 	/*
900 	 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
901 	 * /proc/pid/oom_score_adj instead.
902 	 */
903 	pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
904 		  current->comm, task_pid_nr(current), task_pid_nr(task),
905 		  task_pid_nr(task));
906 
907 	task->signal->oom_score_adj = oom_adj;
908 	trace_oom_score_adj_update(task);
909 err_sighand:
910 	unlock_task_sighand(task, &flags);
911 err_task_lock:
912 	task_unlock(task);
913 	put_task_struct(task);
914 out:
915 	return err < 0 ? err : count;
916 }
917 
918 static const struct file_operations proc_oom_adj_operations = {
919 	.read		= oom_adj_read,
920 	.write		= oom_adj_write,
921 	.llseek		= generic_file_llseek,
922 };
923 
oom_score_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)924 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
925 					size_t count, loff_t *ppos)
926 {
927 	struct task_struct *task = get_proc_task(file_inode(file));
928 	char buffer[PROC_NUMBUF];
929 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
930 	unsigned long flags;
931 	size_t len;
932 
933 	if (!task)
934 		return -ESRCH;
935 	if (lock_task_sighand(task, &flags)) {
936 		oom_score_adj = task->signal->oom_score_adj;
937 		unlock_task_sighand(task, &flags);
938 	}
939 	put_task_struct(task);
940 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
941 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
942 }
943 
oom_score_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)944 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
945 					size_t count, loff_t *ppos)
946 {
947 	struct task_struct *task;
948 	char buffer[PROC_NUMBUF];
949 	unsigned long flags;
950 	int oom_score_adj;
951 	int err;
952 
953 	memset(buffer, 0, sizeof(buffer));
954 	if (count > sizeof(buffer) - 1)
955 		count = sizeof(buffer) - 1;
956 	if (copy_from_user(buffer, buf, count)) {
957 		err = -EFAULT;
958 		goto out;
959 	}
960 
961 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
962 	if (err)
963 		goto out;
964 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
965 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
966 		err = -EINVAL;
967 		goto out;
968 	}
969 
970 	task = get_proc_task(file_inode(file));
971 	if (!task) {
972 		err = -ESRCH;
973 		goto out;
974 	}
975 
976 	task_lock(task);
977 	if (!task->mm) {
978 		err = -EINVAL;
979 		goto err_task_lock;
980 	}
981 
982 	if (!lock_task_sighand(task, &flags)) {
983 		err = -ESRCH;
984 		goto err_task_lock;
985 	}
986 
987 	if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
988 			!capable(CAP_SYS_RESOURCE)) {
989 		err = -EACCES;
990 		goto err_sighand;
991 	}
992 
993 	task->signal->oom_score_adj = (short)oom_score_adj;
994 	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
995 		task->signal->oom_score_adj_min = (short)oom_score_adj;
996 	trace_oom_score_adj_update(task);
997 
998 err_sighand:
999 	unlock_task_sighand(task, &flags);
1000 err_task_lock:
1001 	task_unlock(task);
1002 	put_task_struct(task);
1003 out:
1004 	return err < 0 ? err : count;
1005 }
1006 
1007 static const struct file_operations proc_oom_score_adj_operations = {
1008 	.read		= oom_score_adj_read,
1009 	.write		= oom_score_adj_write,
1010 	.llseek		= default_llseek,
1011 };
1012 
1013 #ifdef CONFIG_AUDITSYSCALL
1014 #define TMPBUFLEN 21
proc_loginuid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1015 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1016 				  size_t count, loff_t *ppos)
1017 {
1018 	struct inode * inode = file_inode(file);
1019 	struct task_struct *task = get_proc_task(inode);
1020 	ssize_t length;
1021 	char tmpbuf[TMPBUFLEN];
1022 
1023 	if (!task)
1024 		return -ESRCH;
1025 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1026 			   from_kuid(file->f_cred->user_ns,
1027 				     audit_get_loginuid(task)));
1028 	put_task_struct(task);
1029 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1030 }
1031 
proc_loginuid_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1032 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1033 				   size_t count, loff_t *ppos)
1034 {
1035 	struct inode * inode = file_inode(file);
1036 	char *page, *tmp;
1037 	ssize_t length;
1038 	uid_t loginuid;
1039 	kuid_t kloginuid;
1040 
1041 	rcu_read_lock();
1042 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1043 		rcu_read_unlock();
1044 		return -EPERM;
1045 	}
1046 	rcu_read_unlock();
1047 
1048 	if (count >= PAGE_SIZE)
1049 		count = PAGE_SIZE - 1;
1050 
1051 	if (*ppos != 0) {
1052 		/* No partial writes. */
1053 		return -EINVAL;
1054 	}
1055 	page = (char*)__get_free_page(GFP_TEMPORARY);
1056 	if (!page)
1057 		return -ENOMEM;
1058 	length = -EFAULT;
1059 	if (copy_from_user(page, buf, count))
1060 		goto out_free_page;
1061 
1062 	page[count] = '\0';
1063 	loginuid = simple_strtoul(page, &tmp, 10);
1064 	if (tmp == page) {
1065 		length = -EINVAL;
1066 		goto out_free_page;
1067 
1068 	}
1069 
1070 	/* is userspace tring to explicitly UNSET the loginuid? */
1071 	if (loginuid == AUDIT_UID_UNSET) {
1072 		kloginuid = INVALID_UID;
1073 	} else {
1074 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1075 		if (!uid_valid(kloginuid)) {
1076 			length = -EINVAL;
1077 			goto out_free_page;
1078 		}
1079 	}
1080 
1081 	length = audit_set_loginuid(kloginuid);
1082 	if (likely(length == 0))
1083 		length = count;
1084 
1085 out_free_page:
1086 	free_page((unsigned long) page);
1087 	return length;
1088 }
1089 
1090 static const struct file_operations proc_loginuid_operations = {
1091 	.read		= proc_loginuid_read,
1092 	.write		= proc_loginuid_write,
1093 	.llseek		= generic_file_llseek,
1094 };
1095 
proc_sessionid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1096 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1097 				  size_t count, loff_t *ppos)
1098 {
1099 	struct inode * inode = file_inode(file);
1100 	struct task_struct *task = get_proc_task(inode);
1101 	ssize_t length;
1102 	char tmpbuf[TMPBUFLEN];
1103 
1104 	if (!task)
1105 		return -ESRCH;
1106 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1107 				audit_get_sessionid(task));
1108 	put_task_struct(task);
1109 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1110 }
1111 
1112 static const struct file_operations proc_sessionid_operations = {
1113 	.read		= proc_sessionid_read,
1114 	.llseek		= generic_file_llseek,
1115 };
1116 #endif
1117 
1118 #ifdef CONFIG_FAULT_INJECTION
proc_fault_inject_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1119 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1120 				      size_t count, loff_t *ppos)
1121 {
1122 	struct task_struct *task = get_proc_task(file_inode(file));
1123 	char buffer[PROC_NUMBUF];
1124 	size_t len;
1125 	int make_it_fail;
1126 
1127 	if (!task)
1128 		return -ESRCH;
1129 	make_it_fail = task->make_it_fail;
1130 	put_task_struct(task);
1131 
1132 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1133 
1134 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1135 }
1136 
proc_fault_inject_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1137 static ssize_t proc_fault_inject_write(struct file * file,
1138 			const char __user * buf, size_t count, loff_t *ppos)
1139 {
1140 	struct task_struct *task;
1141 	char buffer[PROC_NUMBUF], *end;
1142 	int make_it_fail;
1143 
1144 	if (!capable(CAP_SYS_RESOURCE))
1145 		return -EPERM;
1146 	memset(buffer, 0, sizeof(buffer));
1147 	if (count > sizeof(buffer) - 1)
1148 		count = sizeof(buffer) - 1;
1149 	if (copy_from_user(buffer, buf, count))
1150 		return -EFAULT;
1151 	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1152 	if (*end)
1153 		return -EINVAL;
1154 	if (make_it_fail < 0 || make_it_fail > 1)
1155 		return -EINVAL;
1156 
1157 	task = get_proc_task(file_inode(file));
1158 	if (!task)
1159 		return -ESRCH;
1160 	task->make_it_fail = make_it_fail;
1161 	put_task_struct(task);
1162 
1163 	return count;
1164 }
1165 
1166 static const struct file_operations proc_fault_inject_operations = {
1167 	.read		= proc_fault_inject_read,
1168 	.write		= proc_fault_inject_write,
1169 	.llseek		= generic_file_llseek,
1170 };
1171 #endif
1172 
1173 
1174 #ifdef CONFIG_SCHED_DEBUG
1175 /*
1176  * Print out various scheduling related per-task fields:
1177  */
sched_show(struct seq_file * m,void * v)1178 static int sched_show(struct seq_file *m, void *v)
1179 {
1180 	struct inode *inode = m->private;
1181 	struct task_struct *p;
1182 
1183 	p = get_proc_task(inode);
1184 	if (!p)
1185 		return -ESRCH;
1186 	proc_sched_show_task(p, m);
1187 
1188 	put_task_struct(p);
1189 
1190 	return 0;
1191 }
1192 
1193 static ssize_t
sched_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1194 sched_write(struct file *file, const char __user *buf,
1195 	    size_t count, loff_t *offset)
1196 {
1197 	struct inode *inode = file_inode(file);
1198 	struct task_struct *p;
1199 
1200 	p = get_proc_task(inode);
1201 	if (!p)
1202 		return -ESRCH;
1203 	proc_sched_set_task(p);
1204 
1205 	put_task_struct(p);
1206 
1207 	return count;
1208 }
1209 
sched_open(struct inode * inode,struct file * filp)1210 static int sched_open(struct inode *inode, struct file *filp)
1211 {
1212 	return single_open(filp, sched_show, inode);
1213 }
1214 
1215 static const struct file_operations proc_pid_sched_operations = {
1216 	.open		= sched_open,
1217 	.read		= seq_read,
1218 	.write		= sched_write,
1219 	.llseek		= seq_lseek,
1220 	.release	= single_release,
1221 };
1222 
1223 #endif
1224 
1225 #ifdef CONFIG_SCHED_AUTOGROUP
1226 /*
1227  * Print out autogroup related information:
1228  */
sched_autogroup_show(struct seq_file * m,void * v)1229 static int sched_autogroup_show(struct seq_file *m, void *v)
1230 {
1231 	struct inode *inode = m->private;
1232 	struct task_struct *p;
1233 
1234 	p = get_proc_task(inode);
1235 	if (!p)
1236 		return -ESRCH;
1237 	proc_sched_autogroup_show_task(p, m);
1238 
1239 	put_task_struct(p);
1240 
1241 	return 0;
1242 }
1243 
1244 static ssize_t
sched_autogroup_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1245 sched_autogroup_write(struct file *file, const char __user *buf,
1246 	    size_t count, loff_t *offset)
1247 {
1248 	struct inode *inode = file_inode(file);
1249 	struct task_struct *p;
1250 	char buffer[PROC_NUMBUF];
1251 	int nice;
1252 	int err;
1253 
1254 	memset(buffer, 0, sizeof(buffer));
1255 	if (count > sizeof(buffer) - 1)
1256 		count = sizeof(buffer) - 1;
1257 	if (copy_from_user(buffer, buf, count))
1258 		return -EFAULT;
1259 
1260 	err = kstrtoint(strstrip(buffer), 0, &nice);
1261 	if (err < 0)
1262 		return err;
1263 
1264 	p = get_proc_task(inode);
1265 	if (!p)
1266 		return -ESRCH;
1267 
1268 	err = proc_sched_autogroup_set_nice(p, nice);
1269 	if (err)
1270 		count = err;
1271 
1272 	put_task_struct(p);
1273 
1274 	return count;
1275 }
1276 
sched_autogroup_open(struct inode * inode,struct file * filp)1277 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1278 {
1279 	int ret;
1280 
1281 	ret = single_open(filp, sched_autogroup_show, NULL);
1282 	if (!ret) {
1283 		struct seq_file *m = filp->private_data;
1284 
1285 		m->private = inode;
1286 	}
1287 	return ret;
1288 }
1289 
1290 static const struct file_operations proc_pid_sched_autogroup_operations = {
1291 	.open		= sched_autogroup_open,
1292 	.read		= seq_read,
1293 	.write		= sched_autogroup_write,
1294 	.llseek		= seq_lseek,
1295 	.release	= single_release,
1296 };
1297 
1298 #endif /* CONFIG_SCHED_AUTOGROUP */
1299 
comm_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1300 static ssize_t comm_write(struct file *file, const char __user *buf,
1301 				size_t count, loff_t *offset)
1302 {
1303 	struct inode *inode = file_inode(file);
1304 	struct task_struct *p;
1305 	char buffer[TASK_COMM_LEN];
1306 	const size_t maxlen = sizeof(buffer) - 1;
1307 
1308 	memset(buffer, 0, sizeof(buffer));
1309 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1310 		return -EFAULT;
1311 
1312 	p = get_proc_task(inode);
1313 	if (!p)
1314 		return -ESRCH;
1315 
1316 	if (same_thread_group(current, p))
1317 		set_task_comm(p, buffer);
1318 	else
1319 		count = -EINVAL;
1320 
1321 	put_task_struct(p);
1322 
1323 	return count;
1324 }
1325 
comm_show(struct seq_file * m,void * v)1326 static int comm_show(struct seq_file *m, void *v)
1327 {
1328 	struct inode *inode = m->private;
1329 	struct task_struct *p;
1330 
1331 	p = get_proc_task(inode);
1332 	if (!p)
1333 		return -ESRCH;
1334 
1335 	task_lock(p);
1336 	seq_printf(m, "%s\n", p->comm);
1337 	task_unlock(p);
1338 
1339 	put_task_struct(p);
1340 
1341 	return 0;
1342 }
1343 
comm_open(struct inode * inode,struct file * filp)1344 static int comm_open(struct inode *inode, struct file *filp)
1345 {
1346 	return single_open(filp, comm_show, inode);
1347 }
1348 
1349 static const struct file_operations proc_pid_set_comm_operations = {
1350 	.open		= comm_open,
1351 	.read		= seq_read,
1352 	.write		= comm_write,
1353 	.llseek		= seq_lseek,
1354 	.release	= single_release,
1355 };
1356 
proc_exe_link(struct dentry * dentry,struct path * exe_path)1357 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1358 {
1359 	struct task_struct *task;
1360 	struct mm_struct *mm;
1361 	struct file *exe_file;
1362 
1363 	task = get_proc_task(d_inode(dentry));
1364 	if (!task)
1365 		return -ENOENT;
1366 	mm = get_task_mm(task);
1367 	put_task_struct(task);
1368 	if (!mm)
1369 		return -ENOENT;
1370 	exe_file = get_mm_exe_file(mm);
1371 	mmput(mm);
1372 	if (exe_file) {
1373 		*exe_path = exe_file->f_path;
1374 		path_get(&exe_file->f_path);
1375 		fput(exe_file);
1376 		return 0;
1377 	} else
1378 		return -ENOENT;
1379 }
1380 
proc_pid_follow_link(struct dentry * dentry,struct nameidata * nd)1381 static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1382 {
1383 	struct inode *inode = d_inode(dentry);
1384 	struct path path;
1385 	int error = -EACCES;
1386 
1387 	/* Are we allowed to snoop on the tasks file descriptors? */
1388 	if (!proc_fd_access_allowed(inode))
1389 		goto out;
1390 
1391 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1392 	if (error)
1393 		goto out;
1394 
1395 	nd_jump_link(nd, &path);
1396 	return NULL;
1397 out:
1398 	return ERR_PTR(error);
1399 }
1400 
do_proc_readlink(struct path * path,char __user * buffer,int buflen)1401 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1402 {
1403 	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1404 	char *pathname;
1405 	int len;
1406 
1407 	if (!tmp)
1408 		return -ENOMEM;
1409 
1410 	pathname = d_path(path, tmp, PAGE_SIZE);
1411 	len = PTR_ERR(pathname);
1412 	if (IS_ERR(pathname))
1413 		goto out;
1414 	len = tmp + PAGE_SIZE - 1 - pathname;
1415 
1416 	if (len > buflen)
1417 		len = buflen;
1418 	if (copy_to_user(buffer, pathname, len))
1419 		len = -EFAULT;
1420  out:
1421 	free_page((unsigned long)tmp);
1422 	return len;
1423 }
1424 
proc_pid_readlink(struct dentry * dentry,char __user * buffer,int buflen)1425 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1426 {
1427 	int error = -EACCES;
1428 	struct inode *inode = d_inode(dentry);
1429 	struct path path;
1430 
1431 	/* Are we allowed to snoop on the tasks file descriptors? */
1432 	if (!proc_fd_access_allowed(inode))
1433 		goto out;
1434 
1435 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1436 	if (error)
1437 		goto out;
1438 
1439 	error = do_proc_readlink(&path, buffer, buflen);
1440 	path_put(&path);
1441 out:
1442 	return error;
1443 }
1444 
1445 const struct inode_operations proc_pid_link_inode_operations = {
1446 	.readlink	= proc_pid_readlink,
1447 	.follow_link	= proc_pid_follow_link,
1448 	.setattr	= proc_setattr,
1449 };
1450 
1451 
1452 /* building an inode */
1453 
proc_pid_make_inode(struct super_block * sb,struct task_struct * task)1454 struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1455 {
1456 	struct inode * inode;
1457 	struct proc_inode *ei;
1458 	const struct cred *cred;
1459 
1460 	/* We need a new inode */
1461 
1462 	inode = new_inode(sb);
1463 	if (!inode)
1464 		goto out;
1465 
1466 	/* Common stuff */
1467 	ei = PROC_I(inode);
1468 	inode->i_ino = get_next_ino();
1469 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1470 	inode->i_op = &proc_def_inode_operations;
1471 
1472 	/*
1473 	 * grab the reference to task.
1474 	 */
1475 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1476 	if (!ei->pid)
1477 		goto out_unlock;
1478 
1479 	if (task_dumpable(task)) {
1480 		rcu_read_lock();
1481 		cred = __task_cred(task);
1482 		inode->i_uid = cred->euid;
1483 		inode->i_gid = cred->egid;
1484 		rcu_read_unlock();
1485 	}
1486 	security_task_to_inode(task, inode);
1487 
1488 out:
1489 	return inode;
1490 
1491 out_unlock:
1492 	iput(inode);
1493 	return NULL;
1494 }
1495 
pid_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)1496 int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1497 {
1498 	struct inode *inode = d_inode(dentry);
1499 	struct task_struct *task;
1500 	const struct cred *cred;
1501 	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1502 
1503 	generic_fillattr(inode, stat);
1504 
1505 	rcu_read_lock();
1506 	stat->uid = GLOBAL_ROOT_UID;
1507 	stat->gid = GLOBAL_ROOT_GID;
1508 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1509 	if (task) {
1510 		if (!has_pid_permissions(pid, task, 2)) {
1511 			rcu_read_unlock();
1512 			/*
1513 			 * This doesn't prevent learning whether PID exists,
1514 			 * it only makes getattr() consistent with readdir().
1515 			 */
1516 			return -ENOENT;
1517 		}
1518 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1519 		    task_dumpable(task)) {
1520 			cred = __task_cred(task);
1521 			stat->uid = cred->euid;
1522 			stat->gid = cred->egid;
1523 		}
1524 	}
1525 	rcu_read_unlock();
1526 	return 0;
1527 }
1528 
1529 /* dentry stuff */
1530 
1531 /*
1532  *	Exceptional case: normally we are not allowed to unhash a busy
1533  * directory. In this case, however, we can do it - no aliasing problems
1534  * due to the way we treat inodes.
1535  *
1536  * Rewrite the inode's ownerships here because the owning task may have
1537  * performed a setuid(), etc.
1538  *
1539  * Before the /proc/pid/status file was created the only way to read
1540  * the effective uid of a /process was to stat /proc/pid.  Reading
1541  * /proc/pid/status is slow enough that procps and other packages
1542  * kept stating /proc/pid.  To keep the rules in /proc simple I have
1543  * made this apply to all per process world readable and executable
1544  * directories.
1545  */
pid_revalidate(struct dentry * dentry,unsigned int flags)1546 int pid_revalidate(struct dentry *dentry, unsigned int flags)
1547 {
1548 	struct inode *inode;
1549 	struct task_struct *task;
1550 	const struct cred *cred;
1551 
1552 	if (flags & LOOKUP_RCU)
1553 		return -ECHILD;
1554 
1555 	inode = d_inode(dentry);
1556 	task = get_proc_task(inode);
1557 
1558 	if (task) {
1559 		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1560 		    task_dumpable(task)) {
1561 			rcu_read_lock();
1562 			cred = __task_cred(task);
1563 			inode->i_uid = cred->euid;
1564 			inode->i_gid = cred->egid;
1565 			rcu_read_unlock();
1566 		} else {
1567 			inode->i_uid = GLOBAL_ROOT_UID;
1568 			inode->i_gid = GLOBAL_ROOT_GID;
1569 		}
1570 		inode->i_mode &= ~(S_ISUID | S_ISGID);
1571 		security_task_to_inode(task, inode);
1572 		put_task_struct(task);
1573 		return 1;
1574 	}
1575 	return 0;
1576 }
1577 
proc_inode_is_dead(struct inode * inode)1578 static inline bool proc_inode_is_dead(struct inode *inode)
1579 {
1580 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1581 }
1582 
pid_delete_dentry(const struct dentry * dentry)1583 int pid_delete_dentry(const struct dentry *dentry)
1584 {
1585 	/* Is the task we represent dead?
1586 	 * If so, then don't put the dentry on the lru list,
1587 	 * kill it immediately.
1588 	 */
1589 	return proc_inode_is_dead(d_inode(dentry));
1590 }
1591 
1592 const struct dentry_operations pid_dentry_operations =
1593 {
1594 	.d_revalidate	= pid_revalidate,
1595 	.d_delete	= pid_delete_dentry,
1596 };
1597 
1598 /* Lookups */
1599 
1600 /*
1601  * Fill a directory entry.
1602  *
1603  * If possible create the dcache entry and derive our inode number and
1604  * file type from dcache entry.
1605  *
1606  * Since all of the proc inode numbers are dynamically generated, the inode
1607  * numbers do not exist until the inode is cache.  This means creating the
1608  * the dcache entry in readdir is necessary to keep the inode numbers
1609  * reported by readdir in sync with the inode numbers reported
1610  * by stat.
1611  */
proc_fill_cache(struct file * file,struct dir_context * ctx,const char * name,int len,instantiate_t instantiate,struct task_struct * task,const void * ptr)1612 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1613 	const char *name, int len,
1614 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1615 {
1616 	struct dentry *child, *dir = file->f_path.dentry;
1617 	struct qstr qname = QSTR_INIT(name, len);
1618 	struct inode *inode;
1619 	unsigned type;
1620 	ino_t ino;
1621 
1622 	child = d_hash_and_lookup(dir, &qname);
1623 	if (!child) {
1624 		child = d_alloc(dir, &qname);
1625 		if (!child)
1626 			goto end_instantiate;
1627 		if (instantiate(d_inode(dir), child, task, ptr) < 0) {
1628 			dput(child);
1629 			goto end_instantiate;
1630 		}
1631 	}
1632 	inode = d_inode(child);
1633 	ino = inode->i_ino;
1634 	type = inode->i_mode >> 12;
1635 	dput(child);
1636 	return dir_emit(ctx, name, len, ino, type);
1637 
1638 end_instantiate:
1639 	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1640 }
1641 
1642 #ifdef CONFIG_CHECKPOINT_RESTORE
1643 
1644 /*
1645  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1646  * which represent vma start and end addresses.
1647  */
dname_to_vma_addr(struct dentry * dentry,unsigned long * start,unsigned long * end)1648 static int dname_to_vma_addr(struct dentry *dentry,
1649 			     unsigned long *start, unsigned long *end)
1650 {
1651 	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1652 		return -EINVAL;
1653 
1654 	return 0;
1655 }
1656 
map_files_d_revalidate(struct dentry * dentry,unsigned int flags)1657 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1658 {
1659 	unsigned long vm_start, vm_end;
1660 	bool exact_vma_exists = false;
1661 	struct mm_struct *mm = NULL;
1662 	struct task_struct *task;
1663 	const struct cred *cred;
1664 	struct inode *inode;
1665 	int status = 0;
1666 
1667 	if (flags & LOOKUP_RCU)
1668 		return -ECHILD;
1669 
1670 	if (!capable(CAP_SYS_ADMIN)) {
1671 		status = -EPERM;
1672 		goto out_notask;
1673 	}
1674 
1675 	inode = d_inode(dentry);
1676 	task = get_proc_task(inode);
1677 	if (!task)
1678 		goto out_notask;
1679 
1680 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1681 	if (IS_ERR_OR_NULL(mm))
1682 		goto out;
1683 
1684 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1685 		down_read(&mm->mmap_sem);
1686 		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1687 		up_read(&mm->mmap_sem);
1688 	}
1689 
1690 	mmput(mm);
1691 
1692 	if (exact_vma_exists) {
1693 		if (task_dumpable(task)) {
1694 			rcu_read_lock();
1695 			cred = __task_cred(task);
1696 			inode->i_uid = cred->euid;
1697 			inode->i_gid = cred->egid;
1698 			rcu_read_unlock();
1699 		} else {
1700 			inode->i_uid = GLOBAL_ROOT_UID;
1701 			inode->i_gid = GLOBAL_ROOT_GID;
1702 		}
1703 		security_task_to_inode(task, inode);
1704 		status = 1;
1705 	}
1706 
1707 out:
1708 	put_task_struct(task);
1709 
1710 out_notask:
1711 	return status;
1712 }
1713 
1714 static const struct dentry_operations tid_map_files_dentry_operations = {
1715 	.d_revalidate	= map_files_d_revalidate,
1716 	.d_delete	= pid_delete_dentry,
1717 };
1718 
proc_map_files_get_link(struct dentry * dentry,struct path * path)1719 static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1720 {
1721 	unsigned long vm_start, vm_end;
1722 	struct vm_area_struct *vma;
1723 	struct task_struct *task;
1724 	struct mm_struct *mm;
1725 	int rc;
1726 
1727 	rc = -ENOENT;
1728 	task = get_proc_task(d_inode(dentry));
1729 	if (!task)
1730 		goto out;
1731 
1732 	mm = get_task_mm(task);
1733 	put_task_struct(task);
1734 	if (!mm)
1735 		goto out;
1736 
1737 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1738 	if (rc)
1739 		goto out_mmput;
1740 
1741 	rc = -ENOENT;
1742 	down_read(&mm->mmap_sem);
1743 	vma = find_exact_vma(mm, vm_start, vm_end);
1744 	if (vma && vma->vm_file) {
1745 		*path = vma->vm_file->f_path;
1746 		path_get(path);
1747 		rc = 0;
1748 	}
1749 	up_read(&mm->mmap_sem);
1750 
1751 out_mmput:
1752 	mmput(mm);
1753 out:
1754 	return rc;
1755 }
1756 
1757 struct map_files_info {
1758 	fmode_t		mode;
1759 	unsigned long	len;
1760 	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1761 };
1762 
1763 static int
proc_map_files_instantiate(struct inode * dir,struct dentry * dentry,struct task_struct * task,const void * ptr)1764 proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1765 			   struct task_struct *task, const void *ptr)
1766 {
1767 	fmode_t mode = (fmode_t)(unsigned long)ptr;
1768 	struct proc_inode *ei;
1769 	struct inode *inode;
1770 
1771 	inode = proc_pid_make_inode(dir->i_sb, task);
1772 	if (!inode)
1773 		return -ENOENT;
1774 
1775 	ei = PROC_I(inode);
1776 	ei->op.proc_get_link = proc_map_files_get_link;
1777 
1778 	inode->i_op = &proc_pid_link_inode_operations;
1779 	inode->i_size = 64;
1780 	inode->i_mode = S_IFLNK;
1781 
1782 	if (mode & FMODE_READ)
1783 		inode->i_mode |= S_IRUSR;
1784 	if (mode & FMODE_WRITE)
1785 		inode->i_mode |= S_IWUSR;
1786 
1787 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
1788 	d_add(dentry, inode);
1789 
1790 	return 0;
1791 }
1792 
proc_map_files_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1793 static struct dentry *proc_map_files_lookup(struct inode *dir,
1794 		struct dentry *dentry, unsigned int flags)
1795 {
1796 	unsigned long vm_start, vm_end;
1797 	struct vm_area_struct *vma;
1798 	struct task_struct *task;
1799 	int result;
1800 	struct mm_struct *mm;
1801 
1802 	result = -EPERM;
1803 	if (!capable(CAP_SYS_ADMIN))
1804 		goto out;
1805 
1806 	result = -ENOENT;
1807 	task = get_proc_task(dir);
1808 	if (!task)
1809 		goto out;
1810 
1811 	result = -EACCES;
1812 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
1813 		goto out_put_task;
1814 
1815 	result = -ENOENT;
1816 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
1817 		goto out_put_task;
1818 
1819 	mm = get_task_mm(task);
1820 	if (!mm)
1821 		goto out_put_task;
1822 
1823 	down_read(&mm->mmap_sem);
1824 	vma = find_exact_vma(mm, vm_start, vm_end);
1825 	if (!vma)
1826 		goto out_no_vma;
1827 
1828 	if (vma->vm_file)
1829 		result = proc_map_files_instantiate(dir, dentry, task,
1830 				(void *)(unsigned long)vma->vm_file->f_mode);
1831 
1832 out_no_vma:
1833 	up_read(&mm->mmap_sem);
1834 	mmput(mm);
1835 out_put_task:
1836 	put_task_struct(task);
1837 out:
1838 	return ERR_PTR(result);
1839 }
1840 
1841 static const struct inode_operations proc_map_files_inode_operations = {
1842 	.lookup		= proc_map_files_lookup,
1843 	.permission	= proc_fd_permission,
1844 	.setattr	= proc_setattr,
1845 };
1846 
1847 static int
proc_map_files_readdir(struct file * file,struct dir_context * ctx)1848 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
1849 {
1850 	struct vm_area_struct *vma;
1851 	struct task_struct *task;
1852 	struct mm_struct *mm;
1853 	unsigned long nr_files, pos, i;
1854 	struct flex_array *fa = NULL;
1855 	struct map_files_info info;
1856 	struct map_files_info *p;
1857 	int ret;
1858 
1859 	ret = -EPERM;
1860 	if (!capable(CAP_SYS_ADMIN))
1861 		goto out;
1862 
1863 	ret = -ENOENT;
1864 	task = get_proc_task(file_inode(file));
1865 	if (!task)
1866 		goto out;
1867 
1868 	ret = -EACCES;
1869 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
1870 		goto out_put_task;
1871 
1872 	ret = 0;
1873 	if (!dir_emit_dots(file, ctx))
1874 		goto out_put_task;
1875 
1876 	mm = get_task_mm(task);
1877 	if (!mm)
1878 		goto out_put_task;
1879 	down_read(&mm->mmap_sem);
1880 
1881 	nr_files = 0;
1882 
1883 	/*
1884 	 * We need two passes here:
1885 	 *
1886 	 *  1) Collect vmas of mapped files with mmap_sem taken
1887 	 *  2) Release mmap_sem and instantiate entries
1888 	 *
1889 	 * otherwise we get lockdep complained, since filldir()
1890 	 * routine might require mmap_sem taken in might_fault().
1891 	 */
1892 
1893 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
1894 		if (vma->vm_file && ++pos > ctx->pos)
1895 			nr_files++;
1896 	}
1897 
1898 	if (nr_files) {
1899 		fa = flex_array_alloc(sizeof(info), nr_files,
1900 					GFP_KERNEL);
1901 		if (!fa || flex_array_prealloc(fa, 0, nr_files,
1902 						GFP_KERNEL)) {
1903 			ret = -ENOMEM;
1904 			if (fa)
1905 				flex_array_free(fa);
1906 			up_read(&mm->mmap_sem);
1907 			mmput(mm);
1908 			goto out_put_task;
1909 		}
1910 		for (i = 0, vma = mm->mmap, pos = 2; vma;
1911 				vma = vma->vm_next) {
1912 			if (!vma->vm_file)
1913 				continue;
1914 			if (++pos <= ctx->pos)
1915 				continue;
1916 
1917 			info.mode = vma->vm_file->f_mode;
1918 			info.len = snprintf(info.name,
1919 					sizeof(info.name), "%lx-%lx",
1920 					vma->vm_start, vma->vm_end);
1921 			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
1922 				BUG();
1923 		}
1924 	}
1925 	up_read(&mm->mmap_sem);
1926 
1927 	for (i = 0; i < nr_files; i++) {
1928 		p = flex_array_get(fa, i);
1929 		if (!proc_fill_cache(file, ctx,
1930 				      p->name, p->len,
1931 				      proc_map_files_instantiate,
1932 				      task,
1933 				      (void *)(unsigned long)p->mode))
1934 			break;
1935 		ctx->pos++;
1936 	}
1937 	if (fa)
1938 		flex_array_free(fa);
1939 	mmput(mm);
1940 
1941 out_put_task:
1942 	put_task_struct(task);
1943 out:
1944 	return ret;
1945 }
1946 
1947 static const struct file_operations proc_map_files_operations = {
1948 	.read		= generic_read_dir,
1949 	.iterate	= proc_map_files_readdir,
1950 	.llseek		= default_llseek,
1951 };
1952 
1953 struct timers_private {
1954 	struct pid *pid;
1955 	struct task_struct *task;
1956 	struct sighand_struct *sighand;
1957 	struct pid_namespace *ns;
1958 	unsigned long flags;
1959 };
1960 
timers_start(struct seq_file * m,loff_t * pos)1961 static void *timers_start(struct seq_file *m, loff_t *pos)
1962 {
1963 	struct timers_private *tp = m->private;
1964 
1965 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
1966 	if (!tp->task)
1967 		return ERR_PTR(-ESRCH);
1968 
1969 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
1970 	if (!tp->sighand)
1971 		return ERR_PTR(-ESRCH);
1972 
1973 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
1974 }
1975 
timers_next(struct seq_file * m,void * v,loff_t * pos)1976 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
1977 {
1978 	struct timers_private *tp = m->private;
1979 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
1980 }
1981 
timers_stop(struct seq_file * m,void * v)1982 static void timers_stop(struct seq_file *m, void *v)
1983 {
1984 	struct timers_private *tp = m->private;
1985 
1986 	if (tp->sighand) {
1987 		unlock_task_sighand(tp->task, &tp->flags);
1988 		tp->sighand = NULL;
1989 	}
1990 
1991 	if (tp->task) {
1992 		put_task_struct(tp->task);
1993 		tp->task = NULL;
1994 	}
1995 }
1996 
show_timer(struct seq_file * m,void * v)1997 static int show_timer(struct seq_file *m, void *v)
1998 {
1999 	struct k_itimer *timer;
2000 	struct timers_private *tp = m->private;
2001 	int notify;
2002 	static const char * const nstr[] = {
2003 		[SIGEV_SIGNAL] = "signal",
2004 		[SIGEV_NONE] = "none",
2005 		[SIGEV_THREAD] = "thread",
2006 	};
2007 
2008 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2009 	notify = timer->it_sigev_notify;
2010 
2011 	seq_printf(m, "ID: %d\n", timer->it_id);
2012 	seq_printf(m, "signal: %d/%p\n",
2013 		   timer->sigq->info.si_signo,
2014 		   timer->sigq->info.si_value.sival_ptr);
2015 	seq_printf(m, "notify: %s/%s.%d\n",
2016 		   nstr[notify & ~SIGEV_THREAD_ID],
2017 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2018 		   pid_nr_ns(timer->it_pid, tp->ns));
2019 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2020 
2021 	return 0;
2022 }
2023 
2024 static const struct seq_operations proc_timers_seq_ops = {
2025 	.start	= timers_start,
2026 	.next	= timers_next,
2027 	.stop	= timers_stop,
2028 	.show	= show_timer,
2029 };
2030 
proc_timers_open(struct inode * inode,struct file * file)2031 static int proc_timers_open(struct inode *inode, struct file *file)
2032 {
2033 	struct timers_private *tp;
2034 
2035 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2036 			sizeof(struct timers_private));
2037 	if (!tp)
2038 		return -ENOMEM;
2039 
2040 	tp->pid = proc_pid(inode);
2041 	tp->ns = inode->i_sb->s_fs_info;
2042 	return 0;
2043 }
2044 
2045 static const struct file_operations proc_timers_operations = {
2046 	.open		= proc_timers_open,
2047 	.read		= seq_read,
2048 	.llseek		= seq_lseek,
2049 	.release	= seq_release_private,
2050 };
2051 #endif /* CONFIG_CHECKPOINT_RESTORE */
2052 
proc_pident_instantiate(struct inode * dir,struct dentry * dentry,struct task_struct * task,const void * ptr)2053 static int proc_pident_instantiate(struct inode *dir,
2054 	struct dentry *dentry, struct task_struct *task, const void *ptr)
2055 {
2056 	const struct pid_entry *p = ptr;
2057 	struct inode *inode;
2058 	struct proc_inode *ei;
2059 
2060 	inode = proc_pid_make_inode(dir->i_sb, task);
2061 	if (!inode)
2062 		goto out;
2063 
2064 	ei = PROC_I(inode);
2065 	inode->i_mode = p->mode;
2066 	if (S_ISDIR(inode->i_mode))
2067 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2068 	if (p->iop)
2069 		inode->i_op = p->iop;
2070 	if (p->fop)
2071 		inode->i_fop = p->fop;
2072 	ei->op = p->op;
2073 	d_set_d_op(dentry, &pid_dentry_operations);
2074 	d_add(dentry, inode);
2075 	/* Close the race of the process dying before we return the dentry */
2076 	if (pid_revalidate(dentry, 0))
2077 		return 0;
2078 out:
2079 	return -ENOENT;
2080 }
2081 
proc_pident_lookup(struct inode * dir,struct dentry * dentry,const struct pid_entry * ents,unsigned int nents)2082 static struct dentry *proc_pident_lookup(struct inode *dir,
2083 					 struct dentry *dentry,
2084 					 const struct pid_entry *ents,
2085 					 unsigned int nents)
2086 {
2087 	int error;
2088 	struct task_struct *task = get_proc_task(dir);
2089 	const struct pid_entry *p, *last;
2090 
2091 	error = -ENOENT;
2092 
2093 	if (!task)
2094 		goto out_no_task;
2095 
2096 	/*
2097 	 * Yes, it does not scale. And it should not. Don't add
2098 	 * new entries into /proc/<tgid>/ without very good reasons.
2099 	 */
2100 	last = &ents[nents - 1];
2101 	for (p = ents; p <= last; p++) {
2102 		if (p->len != dentry->d_name.len)
2103 			continue;
2104 		if (!memcmp(dentry->d_name.name, p->name, p->len))
2105 			break;
2106 	}
2107 	if (p > last)
2108 		goto out;
2109 
2110 	error = proc_pident_instantiate(dir, dentry, task, p);
2111 out:
2112 	put_task_struct(task);
2113 out_no_task:
2114 	return ERR_PTR(error);
2115 }
2116 
proc_pident_readdir(struct file * file,struct dir_context * ctx,const struct pid_entry * ents,unsigned int nents)2117 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2118 		const struct pid_entry *ents, unsigned int nents)
2119 {
2120 	struct task_struct *task = get_proc_task(file_inode(file));
2121 	const struct pid_entry *p;
2122 
2123 	if (!task)
2124 		return -ENOENT;
2125 
2126 	if (!dir_emit_dots(file, ctx))
2127 		goto out;
2128 
2129 	if (ctx->pos >= nents + 2)
2130 		goto out;
2131 
2132 	for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2133 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2134 				proc_pident_instantiate, task, p))
2135 			break;
2136 		ctx->pos++;
2137 	}
2138 out:
2139 	put_task_struct(task);
2140 	return 0;
2141 }
2142 
2143 #ifdef CONFIG_SECURITY
proc_pid_attr_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2144 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2145 				  size_t count, loff_t *ppos)
2146 {
2147 	struct inode * inode = file_inode(file);
2148 	char *p = NULL;
2149 	ssize_t length;
2150 	struct task_struct *task = get_proc_task(inode);
2151 
2152 	if (!task)
2153 		return -ESRCH;
2154 
2155 	length = security_getprocattr(task,
2156 				      (char*)file->f_path.dentry->d_name.name,
2157 				      &p);
2158 	put_task_struct(task);
2159 	if (length > 0)
2160 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2161 	kfree(p);
2162 	return length;
2163 }
2164 
proc_pid_attr_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2165 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2166 				   size_t count, loff_t *ppos)
2167 {
2168 	struct inode * inode = file_inode(file);
2169 	char *page;
2170 	ssize_t length;
2171 	struct task_struct *task = get_proc_task(inode);
2172 
2173 	length = -ESRCH;
2174 	if (!task)
2175 		goto out_no_task;
2176 	if (count > PAGE_SIZE)
2177 		count = PAGE_SIZE;
2178 
2179 	/* No partial writes. */
2180 	length = -EINVAL;
2181 	if (*ppos != 0)
2182 		goto out;
2183 
2184 	length = -ENOMEM;
2185 	page = (char*)__get_free_page(GFP_TEMPORARY);
2186 	if (!page)
2187 		goto out;
2188 
2189 	length = -EFAULT;
2190 	if (copy_from_user(page, buf, count))
2191 		goto out_free;
2192 
2193 	/* Guard against adverse ptrace interaction */
2194 	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2195 	if (length < 0)
2196 		goto out_free;
2197 
2198 	length = security_setprocattr(task,
2199 				      (char*)file->f_path.dentry->d_name.name,
2200 				      (void*)page, count);
2201 	mutex_unlock(&task->signal->cred_guard_mutex);
2202 out_free:
2203 	free_page((unsigned long) page);
2204 out:
2205 	put_task_struct(task);
2206 out_no_task:
2207 	return length;
2208 }
2209 
2210 static const struct file_operations proc_pid_attr_operations = {
2211 	.read		= proc_pid_attr_read,
2212 	.write		= proc_pid_attr_write,
2213 	.llseek		= generic_file_llseek,
2214 };
2215 
2216 static const struct pid_entry attr_dir_stuff[] = {
2217 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2218 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2219 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2220 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2221 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2222 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2223 };
2224 
proc_attr_dir_readdir(struct file * file,struct dir_context * ctx)2225 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2226 {
2227 	return proc_pident_readdir(file, ctx,
2228 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2229 }
2230 
2231 static const struct file_operations proc_attr_dir_operations = {
2232 	.read		= generic_read_dir,
2233 	.iterate	= proc_attr_dir_readdir,
2234 	.llseek		= default_llseek,
2235 };
2236 
proc_attr_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2237 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2238 				struct dentry *dentry, unsigned int flags)
2239 {
2240 	return proc_pident_lookup(dir, dentry,
2241 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2242 }
2243 
2244 static const struct inode_operations proc_attr_dir_inode_operations = {
2245 	.lookup		= proc_attr_dir_lookup,
2246 	.getattr	= pid_getattr,
2247 	.setattr	= proc_setattr,
2248 };
2249 
2250 #endif
2251 
2252 #ifdef CONFIG_ELF_CORE
proc_coredump_filter_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2253 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2254 					 size_t count, loff_t *ppos)
2255 {
2256 	struct task_struct *task = get_proc_task(file_inode(file));
2257 	struct mm_struct *mm;
2258 	char buffer[PROC_NUMBUF];
2259 	size_t len;
2260 	int ret;
2261 
2262 	if (!task)
2263 		return -ESRCH;
2264 
2265 	ret = 0;
2266 	mm = get_task_mm(task);
2267 	if (mm) {
2268 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2269 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2270 				MMF_DUMP_FILTER_SHIFT));
2271 		mmput(mm);
2272 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2273 	}
2274 
2275 	put_task_struct(task);
2276 
2277 	return ret;
2278 }
2279 
proc_coredump_filter_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2280 static ssize_t proc_coredump_filter_write(struct file *file,
2281 					  const char __user *buf,
2282 					  size_t count,
2283 					  loff_t *ppos)
2284 {
2285 	struct task_struct *task;
2286 	struct mm_struct *mm;
2287 	char buffer[PROC_NUMBUF], *end;
2288 	unsigned int val;
2289 	int ret;
2290 	int i;
2291 	unsigned long mask;
2292 
2293 	ret = -EFAULT;
2294 	memset(buffer, 0, sizeof(buffer));
2295 	if (count > sizeof(buffer) - 1)
2296 		count = sizeof(buffer) - 1;
2297 	if (copy_from_user(buffer, buf, count))
2298 		goto out_no_task;
2299 
2300 	ret = -EINVAL;
2301 	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2302 	if (*end == '\n')
2303 		end++;
2304 	if (end - buffer == 0)
2305 		goto out_no_task;
2306 
2307 	ret = -ESRCH;
2308 	task = get_proc_task(file_inode(file));
2309 	if (!task)
2310 		goto out_no_task;
2311 
2312 	ret = end - buffer;
2313 	mm = get_task_mm(task);
2314 	if (!mm)
2315 		goto out_no_mm;
2316 
2317 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2318 		if (val & mask)
2319 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2320 		else
2321 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2322 	}
2323 
2324 	mmput(mm);
2325  out_no_mm:
2326 	put_task_struct(task);
2327  out_no_task:
2328 	return ret;
2329 }
2330 
2331 static const struct file_operations proc_coredump_filter_operations = {
2332 	.read		= proc_coredump_filter_read,
2333 	.write		= proc_coredump_filter_write,
2334 	.llseek		= generic_file_llseek,
2335 };
2336 #endif
2337 
2338 #ifdef CONFIG_TASK_IO_ACCOUNTING
do_io_accounting(struct task_struct * task,struct seq_file * m,int whole)2339 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2340 {
2341 	struct task_io_accounting acct = task->ioac;
2342 	unsigned long flags;
2343 	int result;
2344 
2345 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2346 	if (result)
2347 		return result;
2348 
2349 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2350 		result = -EACCES;
2351 		goto out_unlock;
2352 	}
2353 
2354 	if (whole && lock_task_sighand(task, &flags)) {
2355 		struct task_struct *t = task;
2356 
2357 		task_io_accounting_add(&acct, &task->signal->ioac);
2358 		while_each_thread(task, t)
2359 			task_io_accounting_add(&acct, &t->ioac);
2360 
2361 		unlock_task_sighand(task, &flags);
2362 	}
2363 	seq_printf(m,
2364 		   "rchar: %llu\n"
2365 		   "wchar: %llu\n"
2366 		   "syscr: %llu\n"
2367 		   "syscw: %llu\n"
2368 		   "read_bytes: %llu\n"
2369 		   "write_bytes: %llu\n"
2370 		   "cancelled_write_bytes: %llu\n",
2371 		   (unsigned long long)acct.rchar,
2372 		   (unsigned long long)acct.wchar,
2373 		   (unsigned long long)acct.syscr,
2374 		   (unsigned long long)acct.syscw,
2375 		   (unsigned long long)acct.read_bytes,
2376 		   (unsigned long long)acct.write_bytes,
2377 		   (unsigned long long)acct.cancelled_write_bytes);
2378 	result = 0;
2379 
2380 out_unlock:
2381 	mutex_unlock(&task->signal->cred_guard_mutex);
2382 	return result;
2383 }
2384 
proc_tid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)2385 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2386 				  struct pid *pid, struct task_struct *task)
2387 {
2388 	return do_io_accounting(task, m, 0);
2389 }
2390 
proc_tgid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)2391 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2392 				   struct pid *pid, struct task_struct *task)
2393 {
2394 	return do_io_accounting(task, m, 1);
2395 }
2396 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2397 
2398 #ifdef CONFIG_USER_NS
proc_id_map_open(struct inode * inode,struct file * file,const struct seq_operations * seq_ops)2399 static int proc_id_map_open(struct inode *inode, struct file *file,
2400 	const struct seq_operations *seq_ops)
2401 {
2402 	struct user_namespace *ns = NULL;
2403 	struct task_struct *task;
2404 	struct seq_file *seq;
2405 	int ret = -EINVAL;
2406 
2407 	task = get_proc_task(inode);
2408 	if (task) {
2409 		rcu_read_lock();
2410 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2411 		rcu_read_unlock();
2412 		put_task_struct(task);
2413 	}
2414 	if (!ns)
2415 		goto err;
2416 
2417 	ret = seq_open(file, seq_ops);
2418 	if (ret)
2419 		goto err_put_ns;
2420 
2421 	seq = file->private_data;
2422 	seq->private = ns;
2423 
2424 	return 0;
2425 err_put_ns:
2426 	put_user_ns(ns);
2427 err:
2428 	return ret;
2429 }
2430 
proc_id_map_release(struct inode * inode,struct file * file)2431 static int proc_id_map_release(struct inode *inode, struct file *file)
2432 {
2433 	struct seq_file *seq = file->private_data;
2434 	struct user_namespace *ns = seq->private;
2435 	put_user_ns(ns);
2436 	return seq_release(inode, file);
2437 }
2438 
proc_uid_map_open(struct inode * inode,struct file * file)2439 static int proc_uid_map_open(struct inode *inode, struct file *file)
2440 {
2441 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2442 }
2443 
proc_gid_map_open(struct inode * inode,struct file * file)2444 static int proc_gid_map_open(struct inode *inode, struct file *file)
2445 {
2446 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2447 }
2448 
proc_projid_map_open(struct inode * inode,struct file * file)2449 static int proc_projid_map_open(struct inode *inode, struct file *file)
2450 {
2451 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2452 }
2453 
2454 static const struct file_operations proc_uid_map_operations = {
2455 	.open		= proc_uid_map_open,
2456 	.write		= proc_uid_map_write,
2457 	.read		= seq_read,
2458 	.llseek		= seq_lseek,
2459 	.release	= proc_id_map_release,
2460 };
2461 
2462 static const struct file_operations proc_gid_map_operations = {
2463 	.open		= proc_gid_map_open,
2464 	.write		= proc_gid_map_write,
2465 	.read		= seq_read,
2466 	.llseek		= seq_lseek,
2467 	.release	= proc_id_map_release,
2468 };
2469 
2470 static const struct file_operations proc_projid_map_operations = {
2471 	.open		= proc_projid_map_open,
2472 	.write		= proc_projid_map_write,
2473 	.read		= seq_read,
2474 	.llseek		= seq_lseek,
2475 	.release	= proc_id_map_release,
2476 };
2477 
proc_setgroups_open(struct inode * inode,struct file * file)2478 static int proc_setgroups_open(struct inode *inode, struct file *file)
2479 {
2480 	struct user_namespace *ns = NULL;
2481 	struct task_struct *task;
2482 	int ret;
2483 
2484 	ret = -ESRCH;
2485 	task = get_proc_task(inode);
2486 	if (task) {
2487 		rcu_read_lock();
2488 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2489 		rcu_read_unlock();
2490 		put_task_struct(task);
2491 	}
2492 	if (!ns)
2493 		goto err;
2494 
2495 	if (file->f_mode & FMODE_WRITE) {
2496 		ret = -EACCES;
2497 		if (!ns_capable(ns, CAP_SYS_ADMIN))
2498 			goto err_put_ns;
2499 	}
2500 
2501 	ret = single_open(file, &proc_setgroups_show, ns);
2502 	if (ret)
2503 		goto err_put_ns;
2504 
2505 	return 0;
2506 err_put_ns:
2507 	put_user_ns(ns);
2508 err:
2509 	return ret;
2510 }
2511 
proc_setgroups_release(struct inode * inode,struct file * file)2512 static int proc_setgroups_release(struct inode *inode, struct file *file)
2513 {
2514 	struct seq_file *seq = file->private_data;
2515 	struct user_namespace *ns = seq->private;
2516 	int ret = single_release(inode, file);
2517 	put_user_ns(ns);
2518 	return ret;
2519 }
2520 
2521 static const struct file_operations proc_setgroups_operations = {
2522 	.open		= proc_setgroups_open,
2523 	.write		= proc_setgroups_write,
2524 	.read		= seq_read,
2525 	.llseek		= seq_lseek,
2526 	.release	= proc_setgroups_release,
2527 };
2528 #endif /* CONFIG_USER_NS */
2529 
proc_pid_personality(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)2530 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2531 				struct pid *pid, struct task_struct *task)
2532 {
2533 	int err = lock_trace(task);
2534 	if (!err) {
2535 		seq_printf(m, "%08x\n", task->personality);
2536 		unlock_trace(task);
2537 	}
2538 	return err;
2539 }
2540 
2541 /*
2542  * Thread groups
2543  */
2544 static const struct file_operations proc_task_operations;
2545 static const struct inode_operations proc_task_inode_operations;
2546 
2547 static const struct pid_entry tgid_base_stuff[] = {
2548 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2549 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2550 #ifdef CONFIG_CHECKPOINT_RESTORE
2551 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2552 #endif
2553 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2554 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2555 #ifdef CONFIG_NET
2556 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2557 #endif
2558 	REG("environ",    S_IRUSR, proc_environ_operations),
2559 	ONE("auxv",       S_IRUSR, proc_pid_auxv),
2560 	ONE("status",     S_IRUGO, proc_pid_status),
2561 	ONE("personality", S_IRUSR, proc_pid_personality),
2562 	ONE("limits",	  S_IRUGO, proc_pid_limits),
2563 #ifdef CONFIG_SCHED_DEBUG
2564 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2565 #endif
2566 #ifdef CONFIG_SCHED_AUTOGROUP
2567 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2568 #endif
2569 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2570 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2571 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2572 #endif
2573 	ONE("cmdline",    S_IRUGO, proc_pid_cmdline),
2574 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2575 	ONE("statm",      S_IRUGO, proc_pid_statm),
2576 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2577 #ifdef CONFIG_NUMA
2578 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2579 #endif
2580 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2581 	LNK("cwd",        proc_cwd_link),
2582 	LNK("root",       proc_root_link),
2583 	LNK("exe",        proc_exe_link),
2584 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2585 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2586 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2587 #ifdef CONFIG_PROC_PAGE_MONITOR
2588 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2589 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2590 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2591 #endif
2592 #ifdef CONFIG_SECURITY
2593 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2594 #endif
2595 #ifdef CONFIG_KALLSYMS
2596 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2597 #endif
2598 #ifdef CONFIG_STACKTRACE
2599 	ONE("stack",      S_IRUSR, proc_pid_stack),
2600 #endif
2601 #ifdef CONFIG_SCHEDSTATS
2602 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2603 #endif
2604 #ifdef CONFIG_LATENCYTOP
2605 	REG("latency",  S_IRUGO, proc_lstats_operations),
2606 #endif
2607 #ifdef CONFIG_PROC_PID_CPUSET
2608 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2609 #endif
2610 #ifdef CONFIG_CGROUPS
2611 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2612 #endif
2613 	ONE("oom_score",  S_IRUGO, proc_oom_score),
2614 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2615 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2616 #ifdef CONFIG_AUDITSYSCALL
2617 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2618 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2619 #endif
2620 #ifdef CONFIG_FAULT_INJECTION
2621 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2622 #endif
2623 #ifdef CONFIG_ELF_CORE
2624 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2625 #endif
2626 #ifdef CONFIG_TASK_IO_ACCOUNTING
2627 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2628 #endif
2629 #ifdef CONFIG_HARDWALL
2630 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2631 #endif
2632 #ifdef CONFIG_USER_NS
2633 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2634 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2635 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2636 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2637 #endif
2638 #ifdef CONFIG_CHECKPOINT_RESTORE
2639 	REG("timers",	  S_IRUGO, proc_timers_operations),
2640 #endif
2641 };
2642 
proc_tgid_base_readdir(struct file * file,struct dir_context * ctx)2643 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2644 {
2645 	return proc_pident_readdir(file, ctx,
2646 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2647 }
2648 
2649 static const struct file_operations proc_tgid_base_operations = {
2650 	.read		= generic_read_dir,
2651 	.iterate	= proc_tgid_base_readdir,
2652 	.llseek		= default_llseek,
2653 };
2654 
proc_tgid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2655 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2656 {
2657 	return proc_pident_lookup(dir, dentry,
2658 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2659 }
2660 
2661 static const struct inode_operations proc_tgid_base_inode_operations = {
2662 	.lookup		= proc_tgid_base_lookup,
2663 	.getattr	= pid_getattr,
2664 	.setattr	= proc_setattr,
2665 	.permission	= proc_pid_permission,
2666 };
2667 
proc_flush_task_mnt(struct vfsmount * mnt,pid_t pid,pid_t tgid)2668 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2669 {
2670 	struct dentry *dentry, *leader, *dir;
2671 	char buf[PROC_NUMBUF];
2672 	struct qstr name;
2673 
2674 	name.name = buf;
2675 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2676 	/* no ->d_hash() rejects on procfs */
2677 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2678 	if (dentry) {
2679 		d_invalidate(dentry);
2680 		dput(dentry);
2681 	}
2682 
2683 	if (pid == tgid)
2684 		return;
2685 
2686 	name.name = buf;
2687 	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2688 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2689 	if (!leader)
2690 		goto out;
2691 
2692 	name.name = "task";
2693 	name.len = strlen(name.name);
2694 	dir = d_hash_and_lookup(leader, &name);
2695 	if (!dir)
2696 		goto out_put_leader;
2697 
2698 	name.name = buf;
2699 	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2700 	dentry = d_hash_and_lookup(dir, &name);
2701 	if (dentry) {
2702 		d_invalidate(dentry);
2703 		dput(dentry);
2704 	}
2705 
2706 	dput(dir);
2707 out_put_leader:
2708 	dput(leader);
2709 out:
2710 	return;
2711 }
2712 
2713 /**
2714  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2715  * @task: task that should be flushed.
2716  *
2717  * When flushing dentries from proc, one needs to flush them from global
2718  * proc (proc_mnt) and from all the namespaces' procs this task was seen
2719  * in. This call is supposed to do all of this job.
2720  *
2721  * Looks in the dcache for
2722  * /proc/@pid
2723  * /proc/@tgid/task/@pid
2724  * if either directory is present flushes it and all of it'ts children
2725  * from the dcache.
2726  *
2727  * It is safe and reasonable to cache /proc entries for a task until
2728  * that task exits.  After that they just clog up the dcache with
2729  * useless entries, possibly causing useful dcache entries to be
2730  * flushed instead.  This routine is proved to flush those useless
2731  * dcache entries at process exit time.
2732  *
2733  * NOTE: This routine is just an optimization so it does not guarantee
2734  *       that no dcache entries will exist at process exit time it
2735  *       just makes it very unlikely that any will persist.
2736  */
2737 
proc_flush_task(struct task_struct * task)2738 void proc_flush_task(struct task_struct *task)
2739 {
2740 	int i;
2741 	struct pid *pid, *tgid;
2742 	struct upid *upid;
2743 
2744 	pid = task_pid(task);
2745 	tgid = task_tgid(task);
2746 
2747 	for (i = 0; i <= pid->level; i++) {
2748 		upid = &pid->numbers[i];
2749 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2750 					tgid->numbers[i].nr);
2751 	}
2752 }
2753 
proc_pid_instantiate(struct inode * dir,struct dentry * dentry,struct task_struct * task,const void * ptr)2754 static int proc_pid_instantiate(struct inode *dir,
2755 				   struct dentry * dentry,
2756 				   struct task_struct *task, const void *ptr)
2757 {
2758 	struct inode *inode;
2759 
2760 	inode = proc_pid_make_inode(dir->i_sb, task);
2761 	if (!inode)
2762 		goto out;
2763 
2764 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2765 	inode->i_op = &proc_tgid_base_inode_operations;
2766 	inode->i_fop = &proc_tgid_base_operations;
2767 	inode->i_flags|=S_IMMUTABLE;
2768 
2769 	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2770 						  ARRAY_SIZE(tgid_base_stuff)));
2771 
2772 	d_set_d_op(dentry, &pid_dentry_operations);
2773 
2774 	d_add(dentry, inode);
2775 	/* Close the race of the process dying before we return the dentry */
2776 	if (pid_revalidate(dentry, 0))
2777 		return 0;
2778 out:
2779 	return -ENOENT;
2780 }
2781 
proc_pid_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2782 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2783 {
2784 	int result = -ENOENT;
2785 	struct task_struct *task;
2786 	unsigned tgid;
2787 	struct pid_namespace *ns;
2788 
2789 	tgid = name_to_int(&dentry->d_name);
2790 	if (tgid == ~0U)
2791 		goto out;
2792 
2793 	ns = dentry->d_sb->s_fs_info;
2794 	rcu_read_lock();
2795 	task = find_task_by_pid_ns(tgid, ns);
2796 	if (task)
2797 		get_task_struct(task);
2798 	rcu_read_unlock();
2799 	if (!task)
2800 		goto out;
2801 
2802 	result = proc_pid_instantiate(dir, dentry, task, NULL);
2803 	put_task_struct(task);
2804 out:
2805 	return ERR_PTR(result);
2806 }
2807 
2808 /*
2809  * Find the first task with tgid >= tgid
2810  *
2811  */
2812 struct tgid_iter {
2813 	unsigned int tgid;
2814 	struct task_struct *task;
2815 };
next_tgid(struct pid_namespace * ns,struct tgid_iter iter)2816 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2817 {
2818 	struct pid *pid;
2819 
2820 	if (iter.task)
2821 		put_task_struct(iter.task);
2822 	rcu_read_lock();
2823 retry:
2824 	iter.task = NULL;
2825 	pid = find_ge_pid(iter.tgid, ns);
2826 	if (pid) {
2827 		iter.tgid = pid_nr_ns(pid, ns);
2828 		iter.task = pid_task(pid, PIDTYPE_PID);
2829 		/* What we to know is if the pid we have find is the
2830 		 * pid of a thread_group_leader.  Testing for task
2831 		 * being a thread_group_leader is the obvious thing
2832 		 * todo but there is a window when it fails, due to
2833 		 * the pid transfer logic in de_thread.
2834 		 *
2835 		 * So we perform the straight forward test of seeing
2836 		 * if the pid we have found is the pid of a thread
2837 		 * group leader, and don't worry if the task we have
2838 		 * found doesn't happen to be a thread group leader.
2839 		 * As we don't care in the case of readdir.
2840 		 */
2841 		if (!iter.task || !has_group_leader_pid(iter.task)) {
2842 			iter.tgid += 1;
2843 			goto retry;
2844 		}
2845 		get_task_struct(iter.task);
2846 	}
2847 	rcu_read_unlock();
2848 	return iter;
2849 }
2850 
2851 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
2852 
2853 /* for the /proc/ directory itself, after non-process stuff has been done */
proc_pid_readdir(struct file * file,struct dir_context * ctx)2854 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
2855 {
2856 	struct tgid_iter iter;
2857 	struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
2858 	loff_t pos = ctx->pos;
2859 
2860 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
2861 		return 0;
2862 
2863 	if (pos == TGID_OFFSET - 2) {
2864 		struct inode *inode = d_inode(ns->proc_self);
2865 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
2866 			return 0;
2867 		ctx->pos = pos = pos + 1;
2868 	}
2869 	if (pos == TGID_OFFSET - 1) {
2870 		struct inode *inode = d_inode(ns->proc_thread_self);
2871 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
2872 			return 0;
2873 		ctx->pos = pos = pos + 1;
2874 	}
2875 	iter.tgid = pos - TGID_OFFSET;
2876 	iter.task = NULL;
2877 	for (iter = next_tgid(ns, iter);
2878 	     iter.task;
2879 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2880 		char name[PROC_NUMBUF];
2881 		int len;
2882 		if (!has_pid_permissions(ns, iter.task, 2))
2883 			continue;
2884 
2885 		len = snprintf(name, sizeof(name), "%d", iter.tgid);
2886 		ctx->pos = iter.tgid + TGID_OFFSET;
2887 		if (!proc_fill_cache(file, ctx, name, len,
2888 				     proc_pid_instantiate, iter.task, NULL)) {
2889 			put_task_struct(iter.task);
2890 			return 0;
2891 		}
2892 	}
2893 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
2894 	return 0;
2895 }
2896 
2897 /*
2898  * Tasks
2899  */
2900 static const struct pid_entry tid_base_stuff[] = {
2901 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2902 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2903 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2904 #ifdef CONFIG_NET
2905 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2906 #endif
2907 	REG("environ",   S_IRUSR, proc_environ_operations),
2908 	ONE("auxv",      S_IRUSR, proc_pid_auxv),
2909 	ONE("status",    S_IRUGO, proc_pid_status),
2910 	ONE("personality", S_IRUSR, proc_pid_personality),
2911 	ONE("limits",	 S_IRUGO, proc_pid_limits),
2912 #ifdef CONFIG_SCHED_DEBUG
2913 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2914 #endif
2915 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2916 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2917 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
2918 #endif
2919 	ONE("cmdline",   S_IRUGO, proc_pid_cmdline),
2920 	ONE("stat",      S_IRUGO, proc_tid_stat),
2921 	ONE("statm",     S_IRUGO, proc_pid_statm),
2922 	REG("maps",      S_IRUGO, proc_tid_maps_operations),
2923 #ifdef CONFIG_CHECKPOINT_RESTORE
2924 	REG("children",  S_IRUGO, proc_tid_children_operations),
2925 #endif
2926 #ifdef CONFIG_NUMA
2927 	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
2928 #endif
2929 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
2930 	LNK("cwd",       proc_cwd_link),
2931 	LNK("root",      proc_root_link),
2932 	LNK("exe",       proc_exe_link),
2933 	REG("mounts",    S_IRUGO, proc_mounts_operations),
2934 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2935 #ifdef CONFIG_PROC_PAGE_MONITOR
2936 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2937 	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
2938 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2939 #endif
2940 #ifdef CONFIG_SECURITY
2941 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2942 #endif
2943 #ifdef CONFIG_KALLSYMS
2944 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
2945 #endif
2946 #ifdef CONFIG_STACKTRACE
2947 	ONE("stack",      S_IRUSR, proc_pid_stack),
2948 #endif
2949 #ifdef CONFIG_SCHEDSTATS
2950 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
2951 #endif
2952 #ifdef CONFIG_LATENCYTOP
2953 	REG("latency",  S_IRUGO, proc_lstats_operations),
2954 #endif
2955 #ifdef CONFIG_PROC_PID_CPUSET
2956 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
2957 #endif
2958 #ifdef CONFIG_CGROUPS
2959 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2960 #endif
2961 	ONE("oom_score", S_IRUGO, proc_oom_score),
2962 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2963 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2964 #ifdef CONFIG_AUDITSYSCALL
2965 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
2966 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2967 #endif
2968 #ifdef CONFIG_FAULT_INJECTION
2969 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2970 #endif
2971 #ifdef CONFIG_TASK_IO_ACCOUNTING
2972 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
2973 #endif
2974 #ifdef CONFIG_HARDWALL
2975 	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2976 #endif
2977 #ifdef CONFIG_USER_NS
2978 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2979 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2980 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2981 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2982 #endif
2983 };
2984 
proc_tid_base_readdir(struct file * file,struct dir_context * ctx)2985 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
2986 {
2987 	return proc_pident_readdir(file, ctx,
2988 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2989 }
2990 
proc_tid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2991 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2992 {
2993 	return proc_pident_lookup(dir, dentry,
2994 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2995 }
2996 
2997 static const struct file_operations proc_tid_base_operations = {
2998 	.read		= generic_read_dir,
2999 	.iterate	= proc_tid_base_readdir,
3000 	.llseek		= default_llseek,
3001 };
3002 
3003 static const struct inode_operations proc_tid_base_inode_operations = {
3004 	.lookup		= proc_tid_base_lookup,
3005 	.getattr	= pid_getattr,
3006 	.setattr	= proc_setattr,
3007 };
3008 
proc_task_instantiate(struct inode * dir,struct dentry * dentry,struct task_struct * task,const void * ptr)3009 static int proc_task_instantiate(struct inode *dir,
3010 	struct dentry *dentry, struct task_struct *task, const void *ptr)
3011 {
3012 	struct inode *inode;
3013 	inode = proc_pid_make_inode(dir->i_sb, task);
3014 
3015 	if (!inode)
3016 		goto out;
3017 	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3018 	inode->i_op = &proc_tid_base_inode_operations;
3019 	inode->i_fop = &proc_tid_base_operations;
3020 	inode->i_flags|=S_IMMUTABLE;
3021 
3022 	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3023 						  ARRAY_SIZE(tid_base_stuff)));
3024 
3025 	d_set_d_op(dentry, &pid_dentry_operations);
3026 
3027 	d_add(dentry, inode);
3028 	/* Close the race of the process dying before we return the dentry */
3029 	if (pid_revalidate(dentry, 0))
3030 		return 0;
3031 out:
3032 	return -ENOENT;
3033 }
3034 
proc_task_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3035 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3036 {
3037 	int result = -ENOENT;
3038 	struct task_struct *task;
3039 	struct task_struct *leader = get_proc_task(dir);
3040 	unsigned tid;
3041 	struct pid_namespace *ns;
3042 
3043 	if (!leader)
3044 		goto out_no_task;
3045 
3046 	tid = name_to_int(&dentry->d_name);
3047 	if (tid == ~0U)
3048 		goto out;
3049 
3050 	ns = dentry->d_sb->s_fs_info;
3051 	rcu_read_lock();
3052 	task = find_task_by_pid_ns(tid, ns);
3053 	if (task)
3054 		get_task_struct(task);
3055 	rcu_read_unlock();
3056 	if (!task)
3057 		goto out;
3058 	if (!same_thread_group(leader, task))
3059 		goto out_drop_task;
3060 
3061 	result = proc_task_instantiate(dir, dentry, task, NULL);
3062 out_drop_task:
3063 	put_task_struct(task);
3064 out:
3065 	put_task_struct(leader);
3066 out_no_task:
3067 	return ERR_PTR(result);
3068 }
3069 
3070 /*
3071  * Find the first tid of a thread group to return to user space.
3072  *
3073  * Usually this is just the thread group leader, but if the users
3074  * buffer was too small or there was a seek into the middle of the
3075  * directory we have more work todo.
3076  *
3077  * In the case of a short read we start with find_task_by_pid.
3078  *
3079  * In the case of a seek we start with the leader and walk nr
3080  * threads past it.
3081  */
first_tid(struct pid * pid,int tid,loff_t f_pos,struct pid_namespace * ns)3082 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3083 					struct pid_namespace *ns)
3084 {
3085 	struct task_struct *pos, *task;
3086 	unsigned long nr = f_pos;
3087 
3088 	if (nr != f_pos)	/* 32bit overflow? */
3089 		return NULL;
3090 
3091 	rcu_read_lock();
3092 	task = pid_task(pid, PIDTYPE_PID);
3093 	if (!task)
3094 		goto fail;
3095 
3096 	/* Attempt to start with the tid of a thread */
3097 	if (tid && nr) {
3098 		pos = find_task_by_pid_ns(tid, ns);
3099 		if (pos && same_thread_group(pos, task))
3100 			goto found;
3101 	}
3102 
3103 	/* If nr exceeds the number of threads there is nothing todo */
3104 	if (nr >= get_nr_threads(task))
3105 		goto fail;
3106 
3107 	/* If we haven't found our starting place yet start
3108 	 * with the leader and walk nr threads forward.
3109 	 */
3110 	pos = task = task->group_leader;
3111 	do {
3112 		if (!nr--)
3113 			goto found;
3114 	} while_each_thread(task, pos);
3115 fail:
3116 	pos = NULL;
3117 	goto out;
3118 found:
3119 	get_task_struct(pos);
3120 out:
3121 	rcu_read_unlock();
3122 	return pos;
3123 }
3124 
3125 /*
3126  * Find the next thread in the thread list.
3127  * Return NULL if there is an error or no next thread.
3128  *
3129  * The reference to the input task_struct is released.
3130  */
next_tid(struct task_struct * start)3131 static struct task_struct *next_tid(struct task_struct *start)
3132 {
3133 	struct task_struct *pos = NULL;
3134 	rcu_read_lock();
3135 	if (pid_alive(start)) {
3136 		pos = next_thread(start);
3137 		if (thread_group_leader(pos))
3138 			pos = NULL;
3139 		else
3140 			get_task_struct(pos);
3141 	}
3142 	rcu_read_unlock();
3143 	put_task_struct(start);
3144 	return pos;
3145 }
3146 
3147 /* for the /proc/TGID/task/ directories */
proc_task_readdir(struct file * file,struct dir_context * ctx)3148 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3149 {
3150 	struct inode *inode = file_inode(file);
3151 	struct task_struct *task;
3152 	struct pid_namespace *ns;
3153 	int tid;
3154 
3155 	if (proc_inode_is_dead(inode))
3156 		return -ENOENT;
3157 
3158 	if (!dir_emit_dots(file, ctx))
3159 		return 0;
3160 
3161 	/* f_version caches the tgid value that the last readdir call couldn't
3162 	 * return. lseek aka telldir automagically resets f_version to 0.
3163 	 */
3164 	ns = inode->i_sb->s_fs_info;
3165 	tid = (int)file->f_version;
3166 	file->f_version = 0;
3167 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3168 	     task;
3169 	     task = next_tid(task), ctx->pos++) {
3170 		char name[PROC_NUMBUF];
3171 		int len;
3172 		tid = task_pid_nr_ns(task, ns);
3173 		len = snprintf(name, sizeof(name), "%d", tid);
3174 		if (!proc_fill_cache(file, ctx, name, len,
3175 				proc_task_instantiate, task, NULL)) {
3176 			/* returning this tgid failed, save it as the first
3177 			 * pid for the next readir call */
3178 			file->f_version = (u64)tid;
3179 			put_task_struct(task);
3180 			break;
3181 		}
3182 	}
3183 
3184 	return 0;
3185 }
3186 
proc_task_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)3187 static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3188 {
3189 	struct inode *inode = d_inode(dentry);
3190 	struct task_struct *p = get_proc_task(inode);
3191 	generic_fillattr(inode, stat);
3192 
3193 	if (p) {
3194 		stat->nlink += get_nr_threads(p);
3195 		put_task_struct(p);
3196 	}
3197 
3198 	return 0;
3199 }
3200 
3201 static const struct inode_operations proc_task_inode_operations = {
3202 	.lookup		= proc_task_lookup,
3203 	.getattr	= proc_task_getattr,
3204 	.setattr	= proc_setattr,
3205 	.permission	= proc_pid_permission,
3206 };
3207 
3208 static const struct file_operations proc_task_operations = {
3209 	.read		= generic_read_dir,
3210 	.iterate	= proc_task_readdir,
3211 	.llseek		= default_llseek,
3212 };
3213