1 /*
2  * Process number limiting controller for cgroups.
3  *
4  * Used to allow a cgroup hierarchy to stop any new processes from fork()ing
5  * after a certain limit is reached.
6  *
7  * Since it is trivial to hit the task limit without hitting any kmemcg limits
8  * in place, PIDs are a fundamental resource. As such, PID exhaustion must be
9  * preventable in the scope of a cgroup hierarchy by allowing resource limiting
10  * of the number of tasks in a cgroup.
11  *
12  * In order to use the `pids` controller, set the maximum number of tasks in
13  * pids.max (this is not available in the root cgroup for obvious reasons). The
14  * number of processes currently in the cgroup is given by pids.current.
15  * Organisational operations are not blocked by cgroup policies, so it is
16  * possible to have pids.current > pids.max. However, it is not possible to
17  * violate a cgroup policy through fork(). fork() will return -EAGAIN if forking
18  * would cause a cgroup policy to be violated.
19  *
20  * To set a cgroup to have no limit, set pids.max to "max". This is the default
21  * for all new cgroups (N.B. that PID limits are hierarchical, so the most
22  * stringent limit in the hierarchy is followed).
23  *
24  * pids.current tracks all child cgroup hierarchies, so parent/pids.current is
25  * a superset of parent/child/pids.current.
26  *
27  * Copyright (C) 2015 Aleksa Sarai <cyphar@cyphar.com>
28  *
29  * This file is subject to the terms and conditions of version 2 of the GNU
30  * General Public License.  See the file COPYING in the main directory of the
31  * Linux distribution for more details.
32  */
33 
34 #include <linux/kernel.h>
35 #include <linux/threads.h>
36 #include <linux/atomic.h>
37 #include <linux/cgroup.h>
38 #include <linux/slab.h>
39 
40 #define PIDS_MAX (PID_MAX_LIMIT + 1ULL)
41 #define PIDS_MAX_STR "max"
42 
43 struct pids_cgroup {
44 	struct cgroup_subsys_state	css;
45 
46 	/*
47 	 * Use 64-bit types so that we can safely represent "max" as
48 	 * %PIDS_MAX = (%PID_MAX_LIMIT + 1).
49 	 */
50 	atomic64_t			counter;
51 	int64_t				limit;
52 };
53 
css_pids(struct cgroup_subsys_state * css)54 static struct pids_cgroup *css_pids(struct cgroup_subsys_state *css)
55 {
56 	return container_of(css, struct pids_cgroup, css);
57 }
58 
parent_pids(struct pids_cgroup * pids)59 static struct pids_cgroup *parent_pids(struct pids_cgroup *pids)
60 {
61 	return css_pids(pids->css.parent);
62 }
63 
64 static struct cgroup_subsys_state *
pids_css_alloc(struct cgroup_subsys_state * parent)65 pids_css_alloc(struct cgroup_subsys_state *parent)
66 {
67 	struct pids_cgroup *pids;
68 
69 	pids = kzalloc(sizeof(struct pids_cgroup), GFP_KERNEL);
70 	if (!pids)
71 		return ERR_PTR(-ENOMEM);
72 
73 	pids->limit = PIDS_MAX;
74 	atomic64_set(&pids->counter, 0);
75 	return &pids->css;
76 }
77 
pids_css_free(struct cgroup_subsys_state * css)78 static void pids_css_free(struct cgroup_subsys_state *css)
79 {
80 	kfree(css_pids(css));
81 }
82 
83 /**
84  * pids_cancel - uncharge the local pid count
85  * @pids: the pid cgroup state
86  * @num: the number of pids to cancel
87  *
88  * This function will WARN if the pid count goes under 0, because such a case is
89  * a bug in the pids controller proper.
90  */
pids_cancel(struct pids_cgroup * pids,int num)91 static void pids_cancel(struct pids_cgroup *pids, int num)
92 {
93 	/*
94 	 * A negative count (or overflow for that matter) is invalid,
95 	 * and indicates a bug in the `pids` controller proper.
96 	 */
97 	WARN_ON_ONCE(atomic64_add_negative(-num, &pids->counter));
98 }
99 
100 /**
101  * pids_uncharge - hierarchically uncharge the pid count
102  * @pids: the pid cgroup state
103  * @num: the number of pids to uncharge
104  */
pids_uncharge(struct pids_cgroup * pids,int num)105 static void pids_uncharge(struct pids_cgroup *pids, int num)
106 {
107 	struct pids_cgroup *p;
108 
109 	for (p = pids; parent_pids(p); p = parent_pids(p))
110 		pids_cancel(p, num);
111 }
112 
113 /**
114  * pids_charge - hierarchically charge the pid count
115  * @pids: the pid cgroup state
116  * @num: the number of pids to charge
117  *
118  * This function does *not* follow the pid limit set. It cannot fail and the new
119  * pid count may exceed the limit. This is only used for reverting failed
120  * attaches, where there is no other way out than violating the limit.
121  */
pids_charge(struct pids_cgroup * pids,int num)122 static void pids_charge(struct pids_cgroup *pids, int num)
123 {
124 	struct pids_cgroup *p;
125 
126 	for (p = pids; parent_pids(p); p = parent_pids(p))
127 		atomic64_add(num, &p->counter);
128 }
129 
130 /**
131  * pids_try_charge - hierarchically try to charge the pid count
132  * @pids: the pid cgroup state
133  * @num: the number of pids to charge
134  *
135  * This function follows the set limit. It will fail if the charge would cause
136  * the new value to exceed the hierarchical limit. Returns 0 if the charge
137  * succeded, otherwise -EAGAIN.
138  */
pids_try_charge(struct pids_cgroup * pids,int num)139 static int pids_try_charge(struct pids_cgroup *pids, int num)
140 {
141 	struct pids_cgroup *p, *q;
142 
143 	for (p = pids; parent_pids(p); p = parent_pids(p)) {
144 		int64_t new = atomic64_add_return(num, &p->counter);
145 
146 		/*
147 		 * Since new is capped to the maximum number of pid_t, if
148 		 * p->limit is %PIDS_MAX then we know that this test will never
149 		 * fail.
150 		 */
151 		if (new > p->limit)
152 			goto revert;
153 	}
154 
155 	return 0;
156 
157 revert:
158 	for (q = pids; q != p; q = parent_pids(q))
159 		pids_cancel(q, num);
160 	pids_cancel(p, num);
161 
162 	return -EAGAIN;
163 }
164 
pids_can_attach(struct cgroup_taskset * tset)165 static int pids_can_attach(struct cgroup_taskset *tset)
166 {
167 	struct task_struct *task;
168 	struct cgroup_subsys_state *dst_css;
169 
170 	cgroup_taskset_for_each(task, dst_css, tset) {
171 		struct pids_cgroup *pids = css_pids(dst_css);
172 		struct cgroup_subsys_state *old_css;
173 		struct pids_cgroup *old_pids;
174 
175 		/*
176 		 * No need to pin @old_css between here and cancel_attach()
177 		 * because cgroup core protects it from being freed before
178 		 * the migration completes or fails.
179 		 */
180 		old_css = task_css(task, pids_cgrp_id);
181 		old_pids = css_pids(old_css);
182 
183 		pids_charge(pids, 1);
184 		pids_uncharge(old_pids, 1);
185 	}
186 
187 	return 0;
188 }
189 
pids_cancel_attach(struct cgroup_taskset * tset)190 static void pids_cancel_attach(struct cgroup_taskset *tset)
191 {
192 	struct task_struct *task;
193 	struct cgroup_subsys_state *dst_css;
194 
195 	cgroup_taskset_for_each(task, dst_css, tset) {
196 		struct pids_cgroup *pids = css_pids(dst_css);
197 		struct cgroup_subsys_state *old_css;
198 		struct pids_cgroup *old_pids;
199 
200 		old_css = task_css(task, pids_cgrp_id);
201 		old_pids = css_pids(old_css);
202 
203 		pids_charge(old_pids, 1);
204 		pids_uncharge(pids, 1);
205 	}
206 }
207 
208 /*
209  * task_css_check(true) in pids_can_fork() and pids_cancel_fork() relies
210  * on threadgroup_change_begin() held by the copy_process().
211  */
pids_can_fork(struct task_struct * task,void ** priv_p)212 static int pids_can_fork(struct task_struct *task, void **priv_p)
213 {
214 	struct cgroup_subsys_state *css;
215 	struct pids_cgroup *pids;
216 
217 	css = task_css_check(current, pids_cgrp_id, true);
218 	pids = css_pids(css);
219 	return pids_try_charge(pids, 1);
220 }
221 
pids_cancel_fork(struct task_struct * task,void * priv)222 static void pids_cancel_fork(struct task_struct *task, void *priv)
223 {
224 	struct cgroup_subsys_state *css;
225 	struct pids_cgroup *pids;
226 
227 	css = task_css_check(current, pids_cgrp_id, true);
228 	pids = css_pids(css);
229 	pids_uncharge(pids, 1);
230 }
231 
pids_free(struct task_struct * task)232 static void pids_free(struct task_struct *task)
233 {
234 	struct pids_cgroup *pids = css_pids(task_css(task, pids_cgrp_id));
235 
236 	pids_uncharge(pids, 1);
237 }
238 
pids_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)239 static ssize_t pids_max_write(struct kernfs_open_file *of, char *buf,
240 			      size_t nbytes, loff_t off)
241 {
242 	struct cgroup_subsys_state *css = of_css(of);
243 	struct pids_cgroup *pids = css_pids(css);
244 	int64_t limit;
245 	int err;
246 
247 	buf = strstrip(buf);
248 	if (!strcmp(buf, PIDS_MAX_STR)) {
249 		limit = PIDS_MAX;
250 		goto set_limit;
251 	}
252 
253 	err = kstrtoll(buf, 0, &limit);
254 	if (err)
255 		return err;
256 
257 	if (limit < 0 || limit >= PIDS_MAX)
258 		return -EINVAL;
259 
260 set_limit:
261 	/*
262 	 * Limit updates don't need to be mutex'd, since it isn't
263 	 * critical that any racing fork()s follow the new limit.
264 	 */
265 	pids->limit = limit;
266 	return nbytes;
267 }
268 
pids_max_show(struct seq_file * sf,void * v)269 static int pids_max_show(struct seq_file *sf, void *v)
270 {
271 	struct cgroup_subsys_state *css = seq_css(sf);
272 	struct pids_cgroup *pids = css_pids(css);
273 	int64_t limit = pids->limit;
274 
275 	if (limit >= PIDS_MAX)
276 		seq_printf(sf, "%s\n", PIDS_MAX_STR);
277 	else
278 		seq_printf(sf, "%lld\n", limit);
279 
280 	return 0;
281 }
282 
pids_current_read(struct cgroup_subsys_state * css,struct cftype * cft)283 static s64 pids_current_read(struct cgroup_subsys_state *css,
284 			     struct cftype *cft)
285 {
286 	struct pids_cgroup *pids = css_pids(css);
287 
288 	return atomic64_read(&pids->counter);
289 }
290 
291 static struct cftype pids_files[] = {
292 	{
293 		.name = "max",
294 		.write = pids_max_write,
295 		.seq_show = pids_max_show,
296 		.flags = CFTYPE_NOT_ON_ROOT,
297 	},
298 	{
299 		.name = "current",
300 		.read_s64 = pids_current_read,
301 		.flags = CFTYPE_NOT_ON_ROOT,
302 	},
303 	{ }	/* terminate */
304 };
305 
306 struct cgroup_subsys pids_cgrp_subsys = {
307 	.css_alloc	= pids_css_alloc,
308 	.css_free	= pids_css_free,
309 	.can_attach 	= pids_can_attach,
310 	.cancel_attach 	= pids_cancel_attach,
311 	.can_fork	= pids_can_fork,
312 	.cancel_fork	= pids_cancel_fork,
313 	.free		= pids_free,
314 	.legacy_cftypes	= pids_files,
315 	.dfl_cftypes	= pids_files,
316 };
317