1 #define pr_fmt(fmt) "SMP alternatives: " fmt
2 
3 #include <linux/module.h>
4 #include <linux/sched.h>
5 #include <linux/mutex.h>
6 #include <linux/list.h>
7 #include <linux/stringify.h>
8 #include <linux/mm.h>
9 #include <linux/vmalloc.h>
10 #include <linux/memory.h>
11 #include <linux/stop_machine.h>
12 #include <linux/slab.h>
13 #include <linux/kdebug.h>
14 #include <asm/alternative.h>
15 #include <asm/sections.h>
16 #include <asm/pgtable.h>
17 #include <asm/mce.h>
18 #include <asm/nmi.h>
19 #include <asm/cacheflush.h>
20 #include <asm/tlbflush.h>
21 #include <asm/io.h>
22 #include <asm/fixmap.h>
23 
24 #define MAX_PATCH_LEN (255-1)
25 
26 static int __initdata_or_module debug_alternative;
27 
debug_alt(char * str)28 static int __init debug_alt(char *str)
29 {
30 	debug_alternative = 1;
31 	return 1;
32 }
33 __setup("debug-alternative", debug_alt);
34 
35 static int noreplace_smp;
36 
setup_noreplace_smp(char * str)37 static int __init setup_noreplace_smp(char *str)
38 {
39 	noreplace_smp = 1;
40 	return 1;
41 }
42 __setup("noreplace-smp", setup_noreplace_smp);
43 
44 #ifdef CONFIG_PARAVIRT
45 static int __initdata_or_module noreplace_paravirt = 0;
46 
setup_noreplace_paravirt(char * str)47 static int __init setup_noreplace_paravirt(char *str)
48 {
49 	noreplace_paravirt = 1;
50 	return 1;
51 }
52 __setup("noreplace-paravirt", setup_noreplace_paravirt);
53 #endif
54 
55 #define DPRINTK(fmt, args...)						\
56 do {									\
57 	if (debug_alternative)						\
58 		printk(KERN_DEBUG "%s: " fmt "\n", __func__, ##args);	\
59 } while (0)
60 
61 #define DUMP_BYTES(buf, len, fmt, args...)				\
62 do {									\
63 	if (unlikely(debug_alternative)) {				\
64 		int j;							\
65 									\
66 		if (!(len))						\
67 			break;						\
68 									\
69 		printk(KERN_DEBUG fmt, ##args);				\
70 		for (j = 0; j < (len) - 1; j++)				\
71 			printk(KERN_CONT "%02hhx ", buf[j]);		\
72 		printk(KERN_CONT "%02hhx\n", buf[j]);			\
73 	}								\
74 } while (0)
75 
76 /*
77  * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
78  * that correspond to that nop. Getting from one nop to the next, we
79  * add to the array the offset that is equal to the sum of all sizes of
80  * nops preceding the one we are after.
81  *
82  * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
83  * nice symmetry of sizes of the previous nops.
84  */
85 #if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
86 static const unsigned char intelnops[] =
87 {
88 	GENERIC_NOP1,
89 	GENERIC_NOP2,
90 	GENERIC_NOP3,
91 	GENERIC_NOP4,
92 	GENERIC_NOP5,
93 	GENERIC_NOP6,
94 	GENERIC_NOP7,
95 	GENERIC_NOP8,
96 	GENERIC_NOP5_ATOMIC
97 };
98 static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
99 {
100 	NULL,
101 	intelnops,
102 	intelnops + 1,
103 	intelnops + 1 + 2,
104 	intelnops + 1 + 2 + 3,
105 	intelnops + 1 + 2 + 3 + 4,
106 	intelnops + 1 + 2 + 3 + 4 + 5,
107 	intelnops + 1 + 2 + 3 + 4 + 5 + 6,
108 	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
109 	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
110 };
111 #endif
112 
113 #ifdef K8_NOP1
114 static const unsigned char k8nops[] =
115 {
116 	K8_NOP1,
117 	K8_NOP2,
118 	K8_NOP3,
119 	K8_NOP4,
120 	K8_NOP5,
121 	K8_NOP6,
122 	K8_NOP7,
123 	K8_NOP8,
124 	K8_NOP5_ATOMIC
125 };
126 static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
127 {
128 	NULL,
129 	k8nops,
130 	k8nops + 1,
131 	k8nops + 1 + 2,
132 	k8nops + 1 + 2 + 3,
133 	k8nops + 1 + 2 + 3 + 4,
134 	k8nops + 1 + 2 + 3 + 4 + 5,
135 	k8nops + 1 + 2 + 3 + 4 + 5 + 6,
136 	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
137 	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
138 };
139 #endif
140 
141 #if defined(K7_NOP1) && !defined(CONFIG_X86_64)
142 static const unsigned char k7nops[] =
143 {
144 	K7_NOP1,
145 	K7_NOP2,
146 	K7_NOP3,
147 	K7_NOP4,
148 	K7_NOP5,
149 	K7_NOP6,
150 	K7_NOP7,
151 	K7_NOP8,
152 	K7_NOP5_ATOMIC
153 };
154 static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
155 {
156 	NULL,
157 	k7nops,
158 	k7nops + 1,
159 	k7nops + 1 + 2,
160 	k7nops + 1 + 2 + 3,
161 	k7nops + 1 + 2 + 3 + 4,
162 	k7nops + 1 + 2 + 3 + 4 + 5,
163 	k7nops + 1 + 2 + 3 + 4 + 5 + 6,
164 	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
165 	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
166 };
167 #endif
168 
169 #ifdef P6_NOP1
170 static const unsigned char p6nops[] =
171 {
172 	P6_NOP1,
173 	P6_NOP2,
174 	P6_NOP3,
175 	P6_NOP4,
176 	P6_NOP5,
177 	P6_NOP6,
178 	P6_NOP7,
179 	P6_NOP8,
180 	P6_NOP5_ATOMIC
181 };
182 static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
183 {
184 	NULL,
185 	p6nops,
186 	p6nops + 1,
187 	p6nops + 1 + 2,
188 	p6nops + 1 + 2 + 3,
189 	p6nops + 1 + 2 + 3 + 4,
190 	p6nops + 1 + 2 + 3 + 4 + 5,
191 	p6nops + 1 + 2 + 3 + 4 + 5 + 6,
192 	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
193 	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
194 };
195 #endif
196 
197 /* Initialize these to a safe default */
198 #ifdef CONFIG_X86_64
199 const unsigned char * const *ideal_nops = p6_nops;
200 #else
201 const unsigned char * const *ideal_nops = intel_nops;
202 #endif
203 
arch_init_ideal_nops(void)204 void __init arch_init_ideal_nops(void)
205 {
206 	switch (boot_cpu_data.x86_vendor) {
207 	case X86_VENDOR_INTEL:
208 		/*
209 		 * Due to a decoder implementation quirk, some
210 		 * specific Intel CPUs actually perform better with
211 		 * the "k8_nops" than with the SDM-recommended NOPs.
212 		 */
213 		if (boot_cpu_data.x86 == 6 &&
214 		    boot_cpu_data.x86_model >= 0x0f &&
215 		    boot_cpu_data.x86_model != 0x1c &&
216 		    boot_cpu_data.x86_model != 0x26 &&
217 		    boot_cpu_data.x86_model != 0x27 &&
218 		    boot_cpu_data.x86_model < 0x30) {
219 			ideal_nops = k8_nops;
220 		} else if (boot_cpu_has(X86_FEATURE_NOPL)) {
221 			   ideal_nops = p6_nops;
222 		} else {
223 #ifdef CONFIG_X86_64
224 			ideal_nops = k8_nops;
225 #else
226 			ideal_nops = intel_nops;
227 #endif
228 		}
229 		break;
230 	default:
231 #ifdef CONFIG_X86_64
232 		ideal_nops = k8_nops;
233 #else
234 		if (boot_cpu_has(X86_FEATURE_K8))
235 			ideal_nops = k8_nops;
236 		else if (boot_cpu_has(X86_FEATURE_K7))
237 			ideal_nops = k7_nops;
238 		else
239 			ideal_nops = intel_nops;
240 #endif
241 	}
242 }
243 
244 /* Use this to add nops to a buffer, then text_poke the whole buffer. */
add_nops(void * insns,unsigned int len)245 static void __init_or_module add_nops(void *insns, unsigned int len)
246 {
247 	while (len > 0) {
248 		unsigned int noplen = len;
249 		if (noplen > ASM_NOP_MAX)
250 			noplen = ASM_NOP_MAX;
251 		memcpy(insns, ideal_nops[noplen], noplen);
252 		insns += noplen;
253 		len -= noplen;
254 	}
255 }
256 
257 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
258 extern s32 __smp_locks[], __smp_locks_end[];
259 void *text_poke_early(void *addr, const void *opcode, size_t len);
260 
261 /*
262  * Are we looking at a near JMP with a 1 or 4-byte displacement.
263  */
is_jmp(const u8 opcode)264 static inline bool is_jmp(const u8 opcode)
265 {
266 	return opcode == 0xeb || opcode == 0xe9;
267 }
268 
269 static void __init_or_module
recompute_jump(struct alt_instr * a,u8 * orig_insn,u8 * repl_insn,u8 * insnbuf)270 recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insnbuf)
271 {
272 	u8 *next_rip, *tgt_rip;
273 	s32 n_dspl, o_dspl;
274 	int repl_len;
275 
276 	if (a->replacementlen != 5)
277 		return;
278 
279 	o_dspl = *(s32 *)(insnbuf + 1);
280 
281 	/* next_rip of the replacement JMP */
282 	next_rip = repl_insn + a->replacementlen;
283 	/* target rip of the replacement JMP */
284 	tgt_rip  = next_rip + o_dspl;
285 	n_dspl = tgt_rip - orig_insn;
286 
287 	DPRINTK("target RIP: %p, new_displ: 0x%x", tgt_rip, n_dspl);
288 
289 	if (tgt_rip - orig_insn >= 0) {
290 		if (n_dspl - 2 <= 127)
291 			goto two_byte_jmp;
292 		else
293 			goto five_byte_jmp;
294 	/* negative offset */
295 	} else {
296 		if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
297 			goto two_byte_jmp;
298 		else
299 			goto five_byte_jmp;
300 	}
301 
302 two_byte_jmp:
303 	n_dspl -= 2;
304 
305 	insnbuf[0] = 0xeb;
306 	insnbuf[1] = (s8)n_dspl;
307 	add_nops(insnbuf + 2, 3);
308 
309 	repl_len = 2;
310 	goto done;
311 
312 five_byte_jmp:
313 	n_dspl -= 5;
314 
315 	insnbuf[0] = 0xe9;
316 	*(s32 *)&insnbuf[1] = n_dspl;
317 
318 	repl_len = 5;
319 
320 done:
321 
322 	DPRINTK("final displ: 0x%08x, JMP 0x%lx",
323 		n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
324 }
325 
optimize_nops(struct alt_instr * a,u8 * instr)326 static void __init_or_module optimize_nops(struct alt_instr *a, u8 *instr)
327 {
328 	unsigned long flags;
329 
330 	if (instr[0] != 0x90)
331 		return;
332 
333 	local_irq_save(flags);
334 	add_nops(instr + (a->instrlen - a->padlen), a->padlen);
335 	sync_core();
336 	local_irq_restore(flags);
337 
338 	DUMP_BYTES(instr, a->instrlen, "%p: [%d:%d) optimized NOPs: ",
339 		   instr, a->instrlen - a->padlen, a->padlen);
340 }
341 
342 /*
343  * Replace instructions with better alternatives for this CPU type. This runs
344  * before SMP is initialized to avoid SMP problems with self modifying code.
345  * This implies that asymmetric systems where APs have less capabilities than
346  * the boot processor are not handled. Tough. Make sure you disable such
347  * features by hand.
348  */
apply_alternatives(struct alt_instr * start,struct alt_instr * end)349 void __init_or_module apply_alternatives(struct alt_instr *start,
350 					 struct alt_instr *end)
351 {
352 	struct alt_instr *a;
353 	u8 *instr, *replacement;
354 	u8 insnbuf[MAX_PATCH_LEN];
355 
356 	DPRINTK("alt table %p -> %p", start, end);
357 	/*
358 	 * The scan order should be from start to end. A later scanned
359 	 * alternative code can overwrite previously scanned alternative code.
360 	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
361 	 * patch code.
362 	 *
363 	 * So be careful if you want to change the scan order to any other
364 	 * order.
365 	 */
366 	for (a = start; a < end; a++) {
367 		int insnbuf_sz = 0;
368 
369 		instr = (u8 *)&a->instr_offset + a->instr_offset;
370 		replacement = (u8 *)&a->repl_offset + a->repl_offset;
371 		BUG_ON(a->instrlen > sizeof(insnbuf));
372 		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
373 		if (!boot_cpu_has(a->cpuid)) {
374 			if (a->padlen > 1)
375 				optimize_nops(a, instr);
376 
377 			continue;
378 		}
379 
380 		DPRINTK("feat: %d*32+%d, old: (%p, len: %d), repl: (%p, len: %d), pad: %d",
381 			a->cpuid >> 5,
382 			a->cpuid & 0x1f,
383 			instr, a->instrlen,
384 			replacement, a->replacementlen, a->padlen);
385 
386 		DUMP_BYTES(instr, a->instrlen, "%p: old_insn: ", instr);
387 		DUMP_BYTES(replacement, a->replacementlen, "%p: rpl_insn: ", replacement);
388 
389 		memcpy(insnbuf, replacement, a->replacementlen);
390 		insnbuf_sz = a->replacementlen;
391 
392 		/* 0xe8 is a relative jump; fix the offset. */
393 		if (*insnbuf == 0xe8 && a->replacementlen == 5) {
394 			*(s32 *)(insnbuf + 1) += replacement - instr;
395 			DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
396 				*(s32 *)(insnbuf + 1),
397 				(unsigned long)instr + *(s32 *)(insnbuf + 1) + 5);
398 		}
399 
400 		if (a->replacementlen && is_jmp(replacement[0]))
401 			recompute_jump(a, instr, replacement, insnbuf);
402 
403 		if (a->instrlen > a->replacementlen) {
404 			add_nops(insnbuf + a->replacementlen,
405 				 a->instrlen - a->replacementlen);
406 			insnbuf_sz += a->instrlen - a->replacementlen;
407 		}
408 		DUMP_BYTES(insnbuf, insnbuf_sz, "%p: final_insn: ", instr);
409 
410 		text_poke_early(instr, insnbuf, insnbuf_sz);
411 	}
412 }
413 
414 #ifdef CONFIG_SMP
alternatives_smp_lock(const s32 * start,const s32 * end,u8 * text,u8 * text_end)415 static void alternatives_smp_lock(const s32 *start, const s32 *end,
416 				  u8 *text, u8 *text_end)
417 {
418 	const s32 *poff;
419 
420 	mutex_lock(&text_mutex);
421 	for (poff = start; poff < end; poff++) {
422 		u8 *ptr = (u8 *)poff + *poff;
423 
424 		if (!*poff || ptr < text || ptr >= text_end)
425 			continue;
426 		/* turn DS segment override prefix into lock prefix */
427 		if (*ptr == 0x3e)
428 			text_poke(ptr, ((unsigned char []){0xf0}), 1);
429 	}
430 	mutex_unlock(&text_mutex);
431 }
432 
alternatives_smp_unlock(const s32 * start,const s32 * end,u8 * text,u8 * text_end)433 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
434 				    u8 *text, u8 *text_end)
435 {
436 	const s32 *poff;
437 
438 	mutex_lock(&text_mutex);
439 	for (poff = start; poff < end; poff++) {
440 		u8 *ptr = (u8 *)poff + *poff;
441 
442 		if (!*poff || ptr < text || ptr >= text_end)
443 			continue;
444 		/* turn lock prefix into DS segment override prefix */
445 		if (*ptr == 0xf0)
446 			text_poke(ptr, ((unsigned char []){0x3E}), 1);
447 	}
448 	mutex_unlock(&text_mutex);
449 }
450 
451 struct smp_alt_module {
452 	/* what is this ??? */
453 	struct module	*mod;
454 	char		*name;
455 
456 	/* ptrs to lock prefixes */
457 	const s32	*locks;
458 	const s32	*locks_end;
459 
460 	/* .text segment, needed to avoid patching init code ;) */
461 	u8		*text;
462 	u8		*text_end;
463 
464 	struct list_head next;
465 };
466 static LIST_HEAD(smp_alt_modules);
467 static DEFINE_MUTEX(smp_alt);
468 static bool uniproc_patched = false;	/* protected by smp_alt */
469 
alternatives_smp_module_add(struct module * mod,char * name,void * locks,void * locks_end,void * text,void * text_end)470 void __init_or_module alternatives_smp_module_add(struct module *mod,
471 						  char *name,
472 						  void *locks, void *locks_end,
473 						  void *text,  void *text_end)
474 {
475 	struct smp_alt_module *smp;
476 
477 	mutex_lock(&smp_alt);
478 	if (!uniproc_patched)
479 		goto unlock;
480 
481 	if (num_possible_cpus() == 1)
482 		/* Don't bother remembering, we'll never have to undo it. */
483 		goto smp_unlock;
484 
485 	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
486 	if (NULL == smp)
487 		/* we'll run the (safe but slow) SMP code then ... */
488 		goto unlock;
489 
490 	smp->mod	= mod;
491 	smp->name	= name;
492 	smp->locks	= locks;
493 	smp->locks_end	= locks_end;
494 	smp->text	= text;
495 	smp->text_end	= text_end;
496 	DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
497 		smp->locks, smp->locks_end,
498 		smp->text, smp->text_end, smp->name);
499 
500 	list_add_tail(&smp->next, &smp_alt_modules);
501 smp_unlock:
502 	alternatives_smp_unlock(locks, locks_end, text, text_end);
503 unlock:
504 	mutex_unlock(&smp_alt);
505 }
506 
alternatives_smp_module_del(struct module * mod)507 void __init_or_module alternatives_smp_module_del(struct module *mod)
508 {
509 	struct smp_alt_module *item;
510 
511 	mutex_lock(&smp_alt);
512 	list_for_each_entry(item, &smp_alt_modules, next) {
513 		if (mod != item->mod)
514 			continue;
515 		list_del(&item->next);
516 		kfree(item);
517 		break;
518 	}
519 	mutex_unlock(&smp_alt);
520 }
521 
alternatives_enable_smp(void)522 void alternatives_enable_smp(void)
523 {
524 	struct smp_alt_module *mod;
525 
526 	/* Why bother if there are no other CPUs? */
527 	BUG_ON(num_possible_cpus() == 1);
528 
529 	mutex_lock(&smp_alt);
530 
531 	if (uniproc_patched) {
532 		pr_info("switching to SMP code\n");
533 		BUG_ON(num_online_cpus() != 1);
534 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
535 		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
536 		list_for_each_entry(mod, &smp_alt_modules, next)
537 			alternatives_smp_lock(mod->locks, mod->locks_end,
538 					      mod->text, mod->text_end);
539 		uniproc_patched = false;
540 	}
541 	mutex_unlock(&smp_alt);
542 }
543 
544 /* Return 1 if the address range is reserved for smp-alternatives */
alternatives_text_reserved(void * start,void * end)545 int alternatives_text_reserved(void *start, void *end)
546 {
547 	struct smp_alt_module *mod;
548 	const s32 *poff;
549 	u8 *text_start = start;
550 	u8 *text_end = end;
551 
552 	list_for_each_entry(mod, &smp_alt_modules, next) {
553 		if (mod->text > text_end || mod->text_end < text_start)
554 			continue;
555 		for (poff = mod->locks; poff < mod->locks_end; poff++) {
556 			const u8 *ptr = (const u8 *)poff + *poff;
557 
558 			if (text_start <= ptr && text_end > ptr)
559 				return 1;
560 		}
561 	}
562 
563 	return 0;
564 }
565 #endif /* CONFIG_SMP */
566 
567 #ifdef CONFIG_PARAVIRT
apply_paravirt(struct paravirt_patch_site * start,struct paravirt_patch_site * end)568 void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
569 				     struct paravirt_patch_site *end)
570 {
571 	struct paravirt_patch_site *p;
572 	char insnbuf[MAX_PATCH_LEN];
573 
574 	if (noreplace_paravirt)
575 		return;
576 
577 	for (p = start; p < end; p++) {
578 		unsigned int used;
579 
580 		BUG_ON(p->len > MAX_PATCH_LEN);
581 		/* prep the buffer with the original instructions */
582 		memcpy(insnbuf, p->instr, p->len);
583 		used = pv_init_ops.patch(p->instrtype, p->clobbers, insnbuf,
584 					 (unsigned long)p->instr, p->len);
585 
586 		BUG_ON(used > p->len);
587 
588 		/* Pad the rest with nops */
589 		add_nops(insnbuf + used, p->len - used);
590 		text_poke_early(p->instr, insnbuf, p->len);
591 	}
592 }
593 extern struct paravirt_patch_site __start_parainstructions[],
594 	__stop_parainstructions[];
595 #endif	/* CONFIG_PARAVIRT */
596 
alternative_instructions(void)597 void __init alternative_instructions(void)
598 {
599 	/* The patching is not fully atomic, so try to avoid local interruptions
600 	   that might execute the to be patched code.
601 	   Other CPUs are not running. */
602 	stop_nmi();
603 
604 	/*
605 	 * Don't stop machine check exceptions while patching.
606 	 * MCEs only happen when something got corrupted and in this
607 	 * case we must do something about the corruption.
608 	 * Ignoring it is worse than a unlikely patching race.
609 	 * Also machine checks tend to be broadcast and if one CPU
610 	 * goes into machine check the others follow quickly, so we don't
611 	 * expect a machine check to cause undue problems during to code
612 	 * patching.
613 	 */
614 
615 	apply_alternatives(__alt_instructions, __alt_instructions_end);
616 
617 #ifdef CONFIG_SMP
618 	/* Patch to UP if other cpus not imminent. */
619 	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
620 		uniproc_patched = true;
621 		alternatives_smp_module_add(NULL, "core kernel",
622 					    __smp_locks, __smp_locks_end,
623 					    _text, _etext);
624 	}
625 
626 	if (!uniproc_patched || num_possible_cpus() == 1)
627 		free_init_pages("SMP alternatives",
628 				(unsigned long)__smp_locks,
629 				(unsigned long)__smp_locks_end);
630 #endif
631 
632 	apply_paravirt(__parainstructions, __parainstructions_end);
633 
634 	restart_nmi();
635 }
636 
637 /**
638  * text_poke_early - Update instructions on a live kernel at boot time
639  * @addr: address to modify
640  * @opcode: source of the copy
641  * @len: length to copy
642  *
643  * When you use this code to patch more than one byte of an instruction
644  * you need to make sure that other CPUs cannot execute this code in parallel.
645  * Also no thread must be currently preempted in the middle of these
646  * instructions. And on the local CPU you need to be protected again NMI or MCE
647  * handlers seeing an inconsistent instruction while you patch.
648  */
text_poke_early(void * addr,const void * opcode,size_t len)649 void *__init_or_module text_poke_early(void *addr, const void *opcode,
650 					      size_t len)
651 {
652 	unsigned long flags;
653 	local_irq_save(flags);
654 	memcpy(addr, opcode, len);
655 	sync_core();
656 	local_irq_restore(flags);
657 	/* Could also do a CLFLUSH here to speed up CPU recovery; but
658 	   that causes hangs on some VIA CPUs. */
659 	return addr;
660 }
661 
662 /**
663  * text_poke - Update instructions on a live kernel
664  * @addr: address to modify
665  * @opcode: source of the copy
666  * @len: length to copy
667  *
668  * Only atomic text poke/set should be allowed when not doing early patching.
669  * It means the size must be writable atomically and the address must be aligned
670  * in a way that permits an atomic write. It also makes sure we fit on a single
671  * page.
672  *
673  * Note: Must be called under text_mutex.
674  */
text_poke(void * addr,const void * opcode,size_t len)675 void *text_poke(void *addr, const void *opcode, size_t len)
676 {
677 	unsigned long flags;
678 	char *vaddr;
679 	struct page *pages[2];
680 	int i;
681 
682 	if (!core_kernel_text((unsigned long)addr)) {
683 		pages[0] = vmalloc_to_page(addr);
684 		pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
685 	} else {
686 		pages[0] = virt_to_page(addr);
687 		WARN_ON(!PageReserved(pages[0]));
688 		pages[1] = virt_to_page(addr + PAGE_SIZE);
689 	}
690 	BUG_ON(!pages[0]);
691 	local_irq_save(flags);
692 	set_fixmap(FIX_TEXT_POKE0, page_to_phys(pages[0]));
693 	if (pages[1])
694 		set_fixmap(FIX_TEXT_POKE1, page_to_phys(pages[1]));
695 	vaddr = (char *)fix_to_virt(FIX_TEXT_POKE0);
696 	memcpy(&vaddr[(unsigned long)addr & ~PAGE_MASK], opcode, len);
697 	clear_fixmap(FIX_TEXT_POKE0);
698 	if (pages[1])
699 		clear_fixmap(FIX_TEXT_POKE1);
700 	local_flush_tlb();
701 	sync_core();
702 	/* Could also do a CLFLUSH here to speed up CPU recovery; but
703 	   that causes hangs on some VIA CPUs. */
704 	for (i = 0; i < len; i++)
705 		BUG_ON(((char *)addr)[i] != ((char *)opcode)[i]);
706 	local_irq_restore(flags);
707 	return addr;
708 }
709 
do_sync_core(void * info)710 static void do_sync_core(void *info)
711 {
712 	sync_core();
713 }
714 
715 static bool bp_patching_in_progress;
716 static void *bp_int3_handler, *bp_int3_addr;
717 
poke_int3_handler(struct pt_regs * regs)718 int poke_int3_handler(struct pt_regs *regs)
719 {
720 	/* bp_patching_in_progress */
721 	smp_rmb();
722 
723 	if (likely(!bp_patching_in_progress))
724 		return 0;
725 
726 	if (user_mode(regs) || regs->ip != (unsigned long)bp_int3_addr)
727 		return 0;
728 
729 	/* set up the specified breakpoint handler */
730 	regs->ip = (unsigned long) bp_int3_handler;
731 
732 	return 1;
733 
734 }
735 
736 /**
737  * text_poke_bp() -- update instructions on live kernel on SMP
738  * @addr:	address to patch
739  * @opcode:	opcode of new instruction
740  * @len:	length to copy
741  * @handler:	address to jump to when the temporary breakpoint is hit
742  *
743  * Modify multi-byte instruction by using int3 breakpoint on SMP.
744  * We completely avoid stop_machine() here, and achieve the
745  * synchronization using int3 breakpoint.
746  *
747  * The way it is done:
748  *	- add a int3 trap to the address that will be patched
749  *	- sync cores
750  *	- update all but the first byte of the patched range
751  *	- sync cores
752  *	- replace the first byte (int3) by the first byte of
753  *	  replacing opcode
754  *	- sync cores
755  *
756  * Note: must be called under text_mutex.
757  */
text_poke_bp(void * addr,const void * opcode,size_t len,void * handler)758 void *text_poke_bp(void *addr, const void *opcode, size_t len, void *handler)
759 {
760 	unsigned char int3 = 0xcc;
761 
762 	bp_int3_handler = handler;
763 	bp_int3_addr = (u8 *)addr + sizeof(int3);
764 	bp_patching_in_progress = true;
765 	/*
766 	 * Corresponding read barrier in int3 notifier for
767 	 * making sure the in_progress flags is correctly ordered wrt.
768 	 * patching
769 	 */
770 	smp_wmb();
771 
772 	text_poke(addr, &int3, sizeof(int3));
773 
774 	on_each_cpu(do_sync_core, NULL, 1);
775 
776 	if (len - sizeof(int3) > 0) {
777 		/* patch all but the first byte */
778 		text_poke((char *)addr + sizeof(int3),
779 			  (const char *) opcode + sizeof(int3),
780 			  len - sizeof(int3));
781 		/*
782 		 * According to Intel, this core syncing is very likely
783 		 * not necessary and we'd be safe even without it. But
784 		 * better safe than sorry (plus there's not only Intel).
785 		 */
786 		on_each_cpu(do_sync_core, NULL, 1);
787 	}
788 
789 	/* patch the first byte */
790 	text_poke(addr, opcode, sizeof(int3));
791 
792 	on_each_cpu(do_sync_core, NULL, 1);
793 
794 	bp_patching_in_progress = false;
795 	smp_wmb();
796 
797 	return addr;
798 }
799 
800