1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/ftrace_event.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 
48 #include "internal.h"
49 
50 #include <asm/irq_regs.h>
51 
52 static struct workqueue_struct *perf_wq;
53 
54 struct remote_function_call {
55 	struct task_struct	*p;
56 	int			(*func)(void *info);
57 	void			*info;
58 	int			ret;
59 };
60 
remote_function(void * data)61 static void remote_function(void *data)
62 {
63 	struct remote_function_call *tfc = data;
64 	struct task_struct *p = tfc->p;
65 
66 	if (p) {
67 		tfc->ret = -EAGAIN;
68 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
69 			return;
70 	}
71 
72 	tfc->ret = tfc->func(tfc->info);
73 }
74 
75 /**
76  * task_function_call - call a function on the cpu on which a task runs
77  * @p:		the task to evaluate
78  * @func:	the function to be called
79  * @info:	the function call argument
80  *
81  * Calls the function @func when the task is currently running. This might
82  * be on the current CPU, which just calls the function directly
83  *
84  * returns: @func return value, or
85  *	    -ESRCH  - when the process isn't running
86  *	    -EAGAIN - when the process moved away
87  */
88 static int
task_function_call(struct task_struct * p,int (* func)(void * info),void * info)89 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
90 {
91 	struct remote_function_call data = {
92 		.p	= p,
93 		.func	= func,
94 		.info	= info,
95 		.ret	= -ESRCH, /* No such (running) process */
96 	};
97 
98 	if (task_curr(p))
99 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
100 
101 	return data.ret;
102 }
103 
104 /**
105  * cpu_function_call - call a function on the cpu
106  * @func:	the function to be called
107  * @info:	the function call argument
108  *
109  * Calls the function @func on the remote cpu.
110  *
111  * returns: @func return value or -ENXIO when the cpu is offline
112  */
cpu_function_call(int cpu,int (* func)(void * info),void * info)113 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
114 {
115 	struct remote_function_call data = {
116 		.p	= NULL,
117 		.func	= func,
118 		.info	= info,
119 		.ret	= -ENXIO, /* No such CPU */
120 	};
121 
122 	smp_call_function_single(cpu, remote_function, &data, 1);
123 
124 	return data.ret;
125 }
126 
127 #define EVENT_OWNER_KERNEL ((void *) -1)
128 
is_kernel_event(struct perf_event * event)129 static bool is_kernel_event(struct perf_event *event)
130 {
131 	return event->owner == EVENT_OWNER_KERNEL;
132 }
133 
134 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
135 		       PERF_FLAG_FD_OUTPUT  |\
136 		       PERF_FLAG_PID_CGROUP |\
137 		       PERF_FLAG_FD_CLOEXEC)
138 
139 /*
140  * branch priv levels that need permission checks
141  */
142 #define PERF_SAMPLE_BRANCH_PERM_PLM \
143 	(PERF_SAMPLE_BRANCH_KERNEL |\
144 	 PERF_SAMPLE_BRANCH_HV)
145 
146 enum event_type_t {
147 	EVENT_FLEXIBLE = 0x1,
148 	EVENT_PINNED = 0x2,
149 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
150 };
151 
152 /*
153  * perf_sched_events : >0 events exist
154  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
155  */
156 struct static_key_deferred perf_sched_events __read_mostly;
157 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
158 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
159 
160 static atomic_t nr_mmap_events __read_mostly;
161 static atomic_t nr_comm_events __read_mostly;
162 static atomic_t nr_task_events __read_mostly;
163 static atomic_t nr_freq_events __read_mostly;
164 
165 static LIST_HEAD(pmus);
166 static DEFINE_MUTEX(pmus_lock);
167 static struct srcu_struct pmus_srcu;
168 
169 /*
170  * perf event paranoia level:
171  *  -1 - not paranoid at all
172  *   0 - disallow raw tracepoint access for unpriv
173  *   1 - disallow cpu events for unpriv
174  *   2 - disallow kernel profiling for unpriv
175  */
176 int sysctl_perf_event_paranoid __read_mostly = 1;
177 
178 /* Minimum for 512 kiB + 1 user control page */
179 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
180 
181 /*
182  * max perf event sample rate
183  */
184 #define DEFAULT_MAX_SAMPLE_RATE		100000
185 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
186 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
187 
188 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
189 
190 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
191 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
192 
193 static int perf_sample_allowed_ns __read_mostly =
194 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
195 
update_perf_cpu_limits(void)196 void update_perf_cpu_limits(void)
197 {
198 	u64 tmp = perf_sample_period_ns;
199 
200 	tmp *= sysctl_perf_cpu_time_max_percent;
201 	do_div(tmp, 100);
202 	ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
203 }
204 
205 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
206 
perf_proc_update_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)207 int perf_proc_update_handler(struct ctl_table *table, int write,
208 		void __user *buffer, size_t *lenp,
209 		loff_t *ppos)
210 {
211 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
212 
213 	if (ret || !write)
214 		return ret;
215 
216 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
217 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
218 	update_perf_cpu_limits();
219 
220 	return 0;
221 }
222 
223 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
224 
perf_cpu_time_max_percent_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)225 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
226 				void __user *buffer, size_t *lenp,
227 				loff_t *ppos)
228 {
229 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
230 
231 	if (ret || !write)
232 		return ret;
233 
234 	update_perf_cpu_limits();
235 
236 	return 0;
237 }
238 
239 /*
240  * perf samples are done in some very critical code paths (NMIs).
241  * If they take too much CPU time, the system can lock up and not
242  * get any real work done.  This will drop the sample rate when
243  * we detect that events are taking too long.
244  */
245 #define NR_ACCUMULATED_SAMPLES 128
246 static DEFINE_PER_CPU(u64, running_sample_length);
247 
perf_duration_warn(struct irq_work * w)248 static void perf_duration_warn(struct irq_work *w)
249 {
250 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
251 	u64 avg_local_sample_len;
252 	u64 local_samples_len;
253 
254 	local_samples_len = __this_cpu_read(running_sample_length);
255 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
256 
257 	printk_ratelimited(KERN_WARNING
258 			"perf interrupt took too long (%lld > %lld), lowering "
259 			"kernel.perf_event_max_sample_rate to %d\n",
260 			avg_local_sample_len, allowed_ns >> 1,
261 			sysctl_perf_event_sample_rate);
262 }
263 
264 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
265 
perf_sample_event_took(u64 sample_len_ns)266 void perf_sample_event_took(u64 sample_len_ns)
267 {
268 	u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
269 	u64 avg_local_sample_len;
270 	u64 local_samples_len;
271 
272 	if (allowed_ns == 0)
273 		return;
274 
275 	/* decay the counter by 1 average sample */
276 	local_samples_len = __this_cpu_read(running_sample_length);
277 	local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
278 	local_samples_len += sample_len_ns;
279 	__this_cpu_write(running_sample_length, local_samples_len);
280 
281 	/*
282 	 * note: this will be biased artifically low until we have
283 	 * seen NR_ACCUMULATED_SAMPLES.  Doing it this way keeps us
284 	 * from having to maintain a count.
285 	 */
286 	avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
287 
288 	if (avg_local_sample_len <= allowed_ns)
289 		return;
290 
291 	if (max_samples_per_tick <= 1)
292 		return;
293 
294 	max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
295 	sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
296 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
297 
298 	update_perf_cpu_limits();
299 
300 	if (!irq_work_queue(&perf_duration_work)) {
301 		early_printk("perf interrupt took too long (%lld > %lld), lowering "
302 			     "kernel.perf_event_max_sample_rate to %d\n",
303 			     avg_local_sample_len, allowed_ns >> 1,
304 			     sysctl_perf_event_sample_rate);
305 	}
306 }
307 
308 static atomic64_t perf_event_id;
309 
310 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
311 			      enum event_type_t event_type);
312 
313 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
314 			     enum event_type_t event_type,
315 			     struct task_struct *task);
316 
317 static void update_context_time(struct perf_event_context *ctx);
318 static u64 perf_event_time(struct perf_event *event);
319 
perf_event_print_debug(void)320 void __weak perf_event_print_debug(void)	{ }
321 
perf_pmu_name(void)322 extern __weak const char *perf_pmu_name(void)
323 {
324 	return "pmu";
325 }
326 
perf_clock(void)327 static inline u64 perf_clock(void)
328 {
329 	return local_clock();
330 }
331 
perf_event_clock(struct perf_event * event)332 static inline u64 perf_event_clock(struct perf_event *event)
333 {
334 	return event->clock();
335 }
336 
337 static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context * ctx)338 __get_cpu_context(struct perf_event_context *ctx)
339 {
340 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
341 }
342 
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)343 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
344 			  struct perf_event_context *ctx)
345 {
346 	raw_spin_lock(&cpuctx->ctx.lock);
347 	if (ctx)
348 		raw_spin_lock(&ctx->lock);
349 }
350 
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)351 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
352 			    struct perf_event_context *ctx)
353 {
354 	if (ctx)
355 		raw_spin_unlock(&ctx->lock);
356 	raw_spin_unlock(&cpuctx->ctx.lock);
357 }
358 
359 #ifdef CONFIG_CGROUP_PERF
360 
361 static inline bool
perf_cgroup_match(struct perf_event * event)362 perf_cgroup_match(struct perf_event *event)
363 {
364 	struct perf_event_context *ctx = event->ctx;
365 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
366 
367 	/* @event doesn't care about cgroup */
368 	if (!event->cgrp)
369 		return true;
370 
371 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
372 	if (!cpuctx->cgrp)
373 		return false;
374 
375 	/*
376 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
377 	 * also enabled for all its descendant cgroups.  If @cpuctx's
378 	 * cgroup is a descendant of @event's (the test covers identity
379 	 * case), it's a match.
380 	 */
381 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
382 				    event->cgrp->css.cgroup);
383 }
384 
perf_detach_cgroup(struct perf_event * event)385 static inline void perf_detach_cgroup(struct perf_event *event)
386 {
387 	css_put(&event->cgrp->css);
388 	event->cgrp = NULL;
389 }
390 
is_cgroup_event(struct perf_event * event)391 static inline int is_cgroup_event(struct perf_event *event)
392 {
393 	return event->cgrp != NULL;
394 }
395 
perf_cgroup_event_time(struct perf_event * event)396 static inline u64 perf_cgroup_event_time(struct perf_event *event)
397 {
398 	struct perf_cgroup_info *t;
399 
400 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
401 	return t->time;
402 }
403 
__update_cgrp_time(struct perf_cgroup * cgrp)404 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
405 {
406 	struct perf_cgroup_info *info;
407 	u64 now;
408 
409 	now = perf_clock();
410 
411 	info = this_cpu_ptr(cgrp->info);
412 
413 	info->time += now - info->timestamp;
414 	info->timestamp = now;
415 }
416 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx)417 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
418 {
419 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
420 	if (cgrp_out)
421 		__update_cgrp_time(cgrp_out);
422 }
423 
update_cgrp_time_from_event(struct perf_event * event)424 static inline void update_cgrp_time_from_event(struct perf_event *event)
425 {
426 	struct perf_cgroup *cgrp;
427 
428 	/*
429 	 * ensure we access cgroup data only when needed and
430 	 * when we know the cgroup is pinned (css_get)
431 	 */
432 	if (!is_cgroup_event(event))
433 		return;
434 
435 	cgrp = perf_cgroup_from_task(current);
436 	/*
437 	 * Do not update time when cgroup is not active
438 	 */
439 	if (cgrp == event->cgrp)
440 		__update_cgrp_time(event->cgrp);
441 }
442 
443 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)444 perf_cgroup_set_timestamp(struct task_struct *task,
445 			  struct perf_event_context *ctx)
446 {
447 	struct perf_cgroup *cgrp;
448 	struct perf_cgroup_info *info;
449 
450 	/*
451 	 * ctx->lock held by caller
452 	 * ensure we do not access cgroup data
453 	 * unless we have the cgroup pinned (css_get)
454 	 */
455 	if (!task || !ctx->nr_cgroups)
456 		return;
457 
458 	cgrp = perf_cgroup_from_task(task);
459 	info = this_cpu_ptr(cgrp->info);
460 	info->timestamp = ctx->timestamp;
461 }
462 
463 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
464 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
465 
466 /*
467  * reschedule events based on the cgroup constraint of task.
468  *
469  * mode SWOUT : schedule out everything
470  * mode SWIN : schedule in based on cgroup for next
471  */
perf_cgroup_switch(struct task_struct * task,int mode)472 void perf_cgroup_switch(struct task_struct *task, int mode)
473 {
474 	struct perf_cpu_context *cpuctx;
475 	struct pmu *pmu;
476 	unsigned long flags;
477 
478 	/*
479 	 * disable interrupts to avoid geting nr_cgroup
480 	 * changes via __perf_event_disable(). Also
481 	 * avoids preemption.
482 	 */
483 	local_irq_save(flags);
484 
485 	/*
486 	 * we reschedule only in the presence of cgroup
487 	 * constrained events.
488 	 */
489 	rcu_read_lock();
490 
491 	list_for_each_entry_rcu(pmu, &pmus, entry) {
492 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
493 		if (cpuctx->unique_pmu != pmu)
494 			continue; /* ensure we process each cpuctx once */
495 
496 		/*
497 		 * perf_cgroup_events says at least one
498 		 * context on this CPU has cgroup events.
499 		 *
500 		 * ctx->nr_cgroups reports the number of cgroup
501 		 * events for a context.
502 		 */
503 		if (cpuctx->ctx.nr_cgroups > 0) {
504 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
505 			perf_pmu_disable(cpuctx->ctx.pmu);
506 
507 			if (mode & PERF_CGROUP_SWOUT) {
508 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
509 				/*
510 				 * must not be done before ctxswout due
511 				 * to event_filter_match() in event_sched_out()
512 				 */
513 				cpuctx->cgrp = NULL;
514 			}
515 
516 			if (mode & PERF_CGROUP_SWIN) {
517 				WARN_ON_ONCE(cpuctx->cgrp);
518 				/*
519 				 * set cgrp before ctxsw in to allow
520 				 * event_filter_match() to not have to pass
521 				 * task around
522 				 */
523 				cpuctx->cgrp = perf_cgroup_from_task(task);
524 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
525 			}
526 			perf_pmu_enable(cpuctx->ctx.pmu);
527 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
528 		}
529 	}
530 
531 	rcu_read_unlock();
532 
533 	local_irq_restore(flags);
534 }
535 
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)536 static inline void perf_cgroup_sched_out(struct task_struct *task,
537 					 struct task_struct *next)
538 {
539 	struct perf_cgroup *cgrp1;
540 	struct perf_cgroup *cgrp2 = NULL;
541 
542 	/*
543 	 * we come here when we know perf_cgroup_events > 0
544 	 */
545 	cgrp1 = perf_cgroup_from_task(task);
546 
547 	/*
548 	 * next is NULL when called from perf_event_enable_on_exec()
549 	 * that will systematically cause a cgroup_switch()
550 	 */
551 	if (next)
552 		cgrp2 = perf_cgroup_from_task(next);
553 
554 	/*
555 	 * only schedule out current cgroup events if we know
556 	 * that we are switching to a different cgroup. Otherwise,
557 	 * do no touch the cgroup events.
558 	 */
559 	if (cgrp1 != cgrp2)
560 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
561 }
562 
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)563 static inline void perf_cgroup_sched_in(struct task_struct *prev,
564 					struct task_struct *task)
565 {
566 	struct perf_cgroup *cgrp1;
567 	struct perf_cgroup *cgrp2 = NULL;
568 
569 	/*
570 	 * we come here when we know perf_cgroup_events > 0
571 	 */
572 	cgrp1 = perf_cgroup_from_task(task);
573 
574 	/* prev can never be NULL */
575 	cgrp2 = perf_cgroup_from_task(prev);
576 
577 	/*
578 	 * only need to schedule in cgroup events if we are changing
579 	 * cgroup during ctxsw. Cgroup events were not scheduled
580 	 * out of ctxsw out if that was not the case.
581 	 */
582 	if (cgrp1 != cgrp2)
583 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
584 }
585 
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)586 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
587 				      struct perf_event_attr *attr,
588 				      struct perf_event *group_leader)
589 {
590 	struct perf_cgroup *cgrp;
591 	struct cgroup_subsys_state *css;
592 	struct fd f = fdget(fd);
593 	int ret = 0;
594 
595 	if (!f.file)
596 		return -EBADF;
597 
598 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
599 					 &perf_event_cgrp_subsys);
600 	if (IS_ERR(css)) {
601 		ret = PTR_ERR(css);
602 		goto out;
603 	}
604 
605 	cgrp = container_of(css, struct perf_cgroup, css);
606 	event->cgrp = cgrp;
607 
608 	/*
609 	 * all events in a group must monitor
610 	 * the same cgroup because a task belongs
611 	 * to only one perf cgroup at a time
612 	 */
613 	if (group_leader && group_leader->cgrp != cgrp) {
614 		perf_detach_cgroup(event);
615 		ret = -EINVAL;
616 	}
617 out:
618 	fdput(f);
619 	return ret;
620 }
621 
622 static inline void
perf_cgroup_set_shadow_time(struct perf_event * event,u64 now)623 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
624 {
625 	struct perf_cgroup_info *t;
626 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 	event->shadow_ctx_time = now - t->timestamp;
628 }
629 
630 static inline void
perf_cgroup_defer_enabled(struct perf_event * event)631 perf_cgroup_defer_enabled(struct perf_event *event)
632 {
633 	/*
634 	 * when the current task's perf cgroup does not match
635 	 * the event's, we need to remember to call the
636 	 * perf_mark_enable() function the first time a task with
637 	 * a matching perf cgroup is scheduled in.
638 	 */
639 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
640 		event->cgrp_defer_enabled = 1;
641 }
642 
643 static inline void
perf_cgroup_mark_enabled(struct perf_event * event,struct perf_event_context * ctx)644 perf_cgroup_mark_enabled(struct perf_event *event,
645 			 struct perf_event_context *ctx)
646 {
647 	struct perf_event *sub;
648 	u64 tstamp = perf_event_time(event);
649 
650 	if (!event->cgrp_defer_enabled)
651 		return;
652 
653 	event->cgrp_defer_enabled = 0;
654 
655 	event->tstamp_enabled = tstamp - event->total_time_enabled;
656 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
657 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
658 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
659 			sub->cgrp_defer_enabled = 0;
660 		}
661 	}
662 }
663 #else /* !CONFIG_CGROUP_PERF */
664 
665 static inline bool
perf_cgroup_match(struct perf_event * event)666 perf_cgroup_match(struct perf_event *event)
667 {
668 	return true;
669 }
670 
perf_detach_cgroup(struct perf_event * event)671 static inline void perf_detach_cgroup(struct perf_event *event)
672 {}
673 
is_cgroup_event(struct perf_event * event)674 static inline int is_cgroup_event(struct perf_event *event)
675 {
676 	return 0;
677 }
678 
perf_cgroup_event_cgrp_time(struct perf_event * event)679 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
680 {
681 	return 0;
682 }
683 
update_cgrp_time_from_event(struct perf_event * event)684 static inline void update_cgrp_time_from_event(struct perf_event *event)
685 {
686 }
687 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx)688 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
689 {
690 }
691 
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)692 static inline void perf_cgroup_sched_out(struct task_struct *task,
693 					 struct task_struct *next)
694 {
695 }
696 
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)697 static inline void perf_cgroup_sched_in(struct task_struct *prev,
698 					struct task_struct *task)
699 {
700 }
701 
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)702 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
703 				      struct perf_event_attr *attr,
704 				      struct perf_event *group_leader)
705 {
706 	return -EINVAL;
707 }
708 
709 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)710 perf_cgroup_set_timestamp(struct task_struct *task,
711 			  struct perf_event_context *ctx)
712 {
713 }
714 
715 void
perf_cgroup_switch(struct task_struct * task,struct task_struct * next)716 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
717 {
718 }
719 
720 static inline void
perf_cgroup_set_shadow_time(struct perf_event * event,u64 now)721 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
722 {
723 }
724 
perf_cgroup_event_time(struct perf_event * event)725 static inline u64 perf_cgroup_event_time(struct perf_event *event)
726 {
727 	return 0;
728 }
729 
730 static inline void
perf_cgroup_defer_enabled(struct perf_event * event)731 perf_cgroup_defer_enabled(struct perf_event *event)
732 {
733 }
734 
735 static inline void
perf_cgroup_mark_enabled(struct perf_event * event,struct perf_event_context * ctx)736 perf_cgroup_mark_enabled(struct perf_event *event,
737 			 struct perf_event_context *ctx)
738 {
739 }
740 #endif
741 
742 /*
743  * set default to be dependent on timer tick just
744  * like original code
745  */
746 #define PERF_CPU_HRTIMER (1000 / HZ)
747 /*
748  * function must be called with interrupts disbled
749  */
perf_cpu_hrtimer_handler(struct hrtimer * hr)750 static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
751 {
752 	struct perf_cpu_context *cpuctx;
753 	enum hrtimer_restart ret = HRTIMER_NORESTART;
754 	int rotations = 0;
755 
756 	WARN_ON(!irqs_disabled());
757 
758 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
759 
760 	rotations = perf_rotate_context(cpuctx);
761 
762 	/*
763 	 * arm timer if needed
764 	 */
765 	if (rotations) {
766 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
767 		ret = HRTIMER_RESTART;
768 	}
769 
770 	return ret;
771 }
772 
773 /* CPU is going down */
perf_cpu_hrtimer_cancel(int cpu)774 void perf_cpu_hrtimer_cancel(int cpu)
775 {
776 	struct perf_cpu_context *cpuctx;
777 	struct pmu *pmu;
778 	unsigned long flags;
779 
780 	if (WARN_ON(cpu != smp_processor_id()))
781 		return;
782 
783 	local_irq_save(flags);
784 
785 	rcu_read_lock();
786 
787 	list_for_each_entry_rcu(pmu, &pmus, entry) {
788 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
789 
790 		if (pmu->task_ctx_nr == perf_sw_context)
791 			continue;
792 
793 		hrtimer_cancel(&cpuctx->hrtimer);
794 	}
795 
796 	rcu_read_unlock();
797 
798 	local_irq_restore(flags);
799 }
800 
__perf_cpu_hrtimer_init(struct perf_cpu_context * cpuctx,int cpu)801 static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
802 {
803 	struct hrtimer *hr = &cpuctx->hrtimer;
804 	struct pmu *pmu = cpuctx->ctx.pmu;
805 	int timer;
806 
807 	/* no multiplexing needed for SW PMU */
808 	if (pmu->task_ctx_nr == perf_sw_context)
809 		return;
810 
811 	/*
812 	 * check default is sane, if not set then force to
813 	 * default interval (1/tick)
814 	 */
815 	timer = pmu->hrtimer_interval_ms;
816 	if (timer < 1)
817 		timer = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
818 
819 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
820 
821 	hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
822 	hr->function = perf_cpu_hrtimer_handler;
823 }
824 
perf_cpu_hrtimer_restart(struct perf_cpu_context * cpuctx)825 static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
826 {
827 	struct hrtimer *hr = &cpuctx->hrtimer;
828 	struct pmu *pmu = cpuctx->ctx.pmu;
829 
830 	/* not for SW PMU */
831 	if (pmu->task_ctx_nr == perf_sw_context)
832 		return;
833 
834 	if (hrtimer_active(hr))
835 		return;
836 
837 	if (!hrtimer_callback_running(hr))
838 		__hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
839 					 0, HRTIMER_MODE_REL_PINNED, 0);
840 }
841 
perf_pmu_disable(struct pmu * pmu)842 void perf_pmu_disable(struct pmu *pmu)
843 {
844 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
845 	if (!(*count)++)
846 		pmu->pmu_disable(pmu);
847 }
848 
perf_pmu_enable(struct pmu * pmu)849 void perf_pmu_enable(struct pmu *pmu)
850 {
851 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
852 	if (!--(*count))
853 		pmu->pmu_enable(pmu);
854 }
855 
856 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
857 
858 /*
859  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
860  * perf_event_task_tick() are fully serialized because they're strictly cpu
861  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
862  * disabled, while perf_event_task_tick is called from IRQ context.
863  */
perf_event_ctx_activate(struct perf_event_context * ctx)864 static void perf_event_ctx_activate(struct perf_event_context *ctx)
865 {
866 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
867 
868 	WARN_ON(!irqs_disabled());
869 
870 	WARN_ON(!list_empty(&ctx->active_ctx_list));
871 
872 	list_add(&ctx->active_ctx_list, head);
873 }
874 
perf_event_ctx_deactivate(struct perf_event_context * ctx)875 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
876 {
877 	WARN_ON(!irqs_disabled());
878 
879 	WARN_ON(list_empty(&ctx->active_ctx_list));
880 
881 	list_del_init(&ctx->active_ctx_list);
882 }
883 
get_ctx(struct perf_event_context * ctx)884 static void get_ctx(struct perf_event_context *ctx)
885 {
886 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
887 }
888 
free_ctx(struct rcu_head * head)889 static void free_ctx(struct rcu_head *head)
890 {
891 	struct perf_event_context *ctx;
892 
893 	ctx = container_of(head, struct perf_event_context, rcu_head);
894 	kfree(ctx->task_ctx_data);
895 	kfree(ctx);
896 }
897 
put_ctx(struct perf_event_context * ctx)898 static void put_ctx(struct perf_event_context *ctx)
899 {
900 	if (atomic_dec_and_test(&ctx->refcount)) {
901 		if (ctx->parent_ctx)
902 			put_ctx(ctx->parent_ctx);
903 		if (ctx->task)
904 			put_task_struct(ctx->task);
905 		call_rcu(&ctx->rcu_head, free_ctx);
906 	}
907 }
908 
909 /*
910  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
911  * perf_pmu_migrate_context() we need some magic.
912  *
913  * Those places that change perf_event::ctx will hold both
914  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
915  *
916  * Lock ordering is by mutex address. There are two other sites where
917  * perf_event_context::mutex nests and those are:
918  *
919  *  - perf_event_exit_task_context()	[ child , 0 ]
920  *      __perf_event_exit_task()
921  *        sync_child_event()
922  *          put_event()			[ parent, 1 ]
923  *
924  *  - perf_event_init_context()		[ parent, 0 ]
925  *      inherit_task_group()
926  *        inherit_group()
927  *          inherit_event()
928  *            perf_event_alloc()
929  *              perf_init_event()
930  *                perf_try_init_event()	[ child , 1 ]
931  *
932  * While it appears there is an obvious deadlock here -- the parent and child
933  * nesting levels are inverted between the two. This is in fact safe because
934  * life-time rules separate them. That is an exiting task cannot fork, and a
935  * spawning task cannot (yet) exit.
936  *
937  * But remember that that these are parent<->child context relations, and
938  * migration does not affect children, therefore these two orderings should not
939  * interact.
940  *
941  * The change in perf_event::ctx does not affect children (as claimed above)
942  * because the sys_perf_event_open() case will install a new event and break
943  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
944  * concerned with cpuctx and that doesn't have children.
945  *
946  * The places that change perf_event::ctx will issue:
947  *
948  *   perf_remove_from_context();
949  *   synchronize_rcu();
950  *   perf_install_in_context();
951  *
952  * to affect the change. The remove_from_context() + synchronize_rcu() should
953  * quiesce the event, after which we can install it in the new location. This
954  * means that only external vectors (perf_fops, prctl) can perturb the event
955  * while in transit. Therefore all such accessors should also acquire
956  * perf_event_context::mutex to serialize against this.
957  *
958  * However; because event->ctx can change while we're waiting to acquire
959  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
960  * function.
961  *
962  * Lock order:
963  *	task_struct::perf_event_mutex
964  *	  perf_event_context::mutex
965  *	    perf_event_context::lock
966  *	    perf_event::child_mutex;
967  *	    perf_event::mmap_mutex
968  *	    mmap_sem
969  */
970 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)971 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
972 {
973 	struct perf_event_context *ctx;
974 
975 again:
976 	rcu_read_lock();
977 	ctx = ACCESS_ONCE(event->ctx);
978 	if (!atomic_inc_not_zero(&ctx->refcount)) {
979 		rcu_read_unlock();
980 		goto again;
981 	}
982 	rcu_read_unlock();
983 
984 	mutex_lock_nested(&ctx->mutex, nesting);
985 	if (event->ctx != ctx) {
986 		mutex_unlock(&ctx->mutex);
987 		put_ctx(ctx);
988 		goto again;
989 	}
990 
991 	return ctx;
992 }
993 
994 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)995 perf_event_ctx_lock(struct perf_event *event)
996 {
997 	return perf_event_ctx_lock_nested(event, 0);
998 }
999 
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1000 static void perf_event_ctx_unlock(struct perf_event *event,
1001 				  struct perf_event_context *ctx)
1002 {
1003 	mutex_unlock(&ctx->mutex);
1004 	put_ctx(ctx);
1005 }
1006 
1007 /*
1008  * This must be done under the ctx->lock, such as to serialize against
1009  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1010  * calling scheduler related locks and ctx->lock nests inside those.
1011  */
1012 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1013 unclone_ctx(struct perf_event_context *ctx)
1014 {
1015 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1016 
1017 	lockdep_assert_held(&ctx->lock);
1018 
1019 	if (parent_ctx)
1020 		ctx->parent_ctx = NULL;
1021 	ctx->generation++;
1022 
1023 	return parent_ctx;
1024 }
1025 
perf_event_pid(struct perf_event * event,struct task_struct * p)1026 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1027 {
1028 	/*
1029 	 * only top level events have the pid namespace they were created in
1030 	 */
1031 	if (event->parent)
1032 		event = event->parent;
1033 
1034 	return task_tgid_nr_ns(p, event->ns);
1035 }
1036 
perf_event_tid(struct perf_event * event,struct task_struct * p)1037 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1038 {
1039 	/*
1040 	 * only top level events have the pid namespace they were created in
1041 	 */
1042 	if (event->parent)
1043 		event = event->parent;
1044 
1045 	return task_pid_nr_ns(p, event->ns);
1046 }
1047 
1048 /*
1049  * If we inherit events we want to return the parent event id
1050  * to userspace.
1051  */
primary_event_id(struct perf_event * event)1052 static u64 primary_event_id(struct perf_event *event)
1053 {
1054 	u64 id = event->id;
1055 
1056 	if (event->parent)
1057 		id = event->parent->id;
1058 
1059 	return id;
1060 }
1061 
1062 /*
1063  * Get the perf_event_context for a task and lock it.
1064  * This has to cope with with the fact that until it is locked,
1065  * the context could get moved to another task.
1066  */
1067 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,int ctxn,unsigned long * flags)1068 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1069 {
1070 	struct perf_event_context *ctx;
1071 
1072 retry:
1073 	/*
1074 	 * One of the few rules of preemptible RCU is that one cannot do
1075 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1076 	 * part of the read side critical section was preemptible -- see
1077 	 * rcu_read_unlock_special().
1078 	 *
1079 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1080 	 * side critical section is non-preemptible.
1081 	 */
1082 	preempt_disable();
1083 	rcu_read_lock();
1084 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1085 	if (ctx) {
1086 		/*
1087 		 * If this context is a clone of another, it might
1088 		 * get swapped for another underneath us by
1089 		 * perf_event_task_sched_out, though the
1090 		 * rcu_read_lock() protects us from any context
1091 		 * getting freed.  Lock the context and check if it
1092 		 * got swapped before we could get the lock, and retry
1093 		 * if so.  If we locked the right context, then it
1094 		 * can't get swapped on us any more.
1095 		 */
1096 		raw_spin_lock_irqsave(&ctx->lock, *flags);
1097 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1098 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1099 			rcu_read_unlock();
1100 			preempt_enable();
1101 			goto retry;
1102 		}
1103 
1104 		if (!atomic_inc_not_zero(&ctx->refcount)) {
1105 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
1106 			ctx = NULL;
1107 		}
1108 	}
1109 	rcu_read_unlock();
1110 	preempt_enable();
1111 	return ctx;
1112 }
1113 
1114 /*
1115  * Get the context for a task and increment its pin_count so it
1116  * can't get swapped to another task.  This also increments its
1117  * reference count so that the context can't get freed.
1118  */
1119 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task,int ctxn)1120 perf_pin_task_context(struct task_struct *task, int ctxn)
1121 {
1122 	struct perf_event_context *ctx;
1123 	unsigned long flags;
1124 
1125 	ctx = perf_lock_task_context(task, ctxn, &flags);
1126 	if (ctx) {
1127 		++ctx->pin_count;
1128 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1129 	}
1130 	return ctx;
1131 }
1132 
perf_unpin_context(struct perf_event_context * ctx)1133 static void perf_unpin_context(struct perf_event_context *ctx)
1134 {
1135 	unsigned long flags;
1136 
1137 	raw_spin_lock_irqsave(&ctx->lock, flags);
1138 	--ctx->pin_count;
1139 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1140 }
1141 
1142 /*
1143  * Update the record of the current time in a context.
1144  */
update_context_time(struct perf_event_context * ctx)1145 static void update_context_time(struct perf_event_context *ctx)
1146 {
1147 	u64 now = perf_clock();
1148 
1149 	ctx->time += now - ctx->timestamp;
1150 	ctx->timestamp = now;
1151 }
1152 
perf_event_time(struct perf_event * event)1153 static u64 perf_event_time(struct perf_event *event)
1154 {
1155 	struct perf_event_context *ctx = event->ctx;
1156 
1157 	if (is_cgroup_event(event))
1158 		return perf_cgroup_event_time(event);
1159 
1160 	return ctx ? ctx->time : 0;
1161 }
1162 
1163 /*
1164  * Update the total_time_enabled and total_time_running fields for a event.
1165  * The caller of this function needs to hold the ctx->lock.
1166  */
update_event_times(struct perf_event * event)1167 static void update_event_times(struct perf_event *event)
1168 {
1169 	struct perf_event_context *ctx = event->ctx;
1170 	u64 run_end;
1171 
1172 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1173 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1174 		return;
1175 	/*
1176 	 * in cgroup mode, time_enabled represents
1177 	 * the time the event was enabled AND active
1178 	 * tasks were in the monitored cgroup. This is
1179 	 * independent of the activity of the context as
1180 	 * there may be a mix of cgroup and non-cgroup events.
1181 	 *
1182 	 * That is why we treat cgroup events differently
1183 	 * here.
1184 	 */
1185 	if (is_cgroup_event(event))
1186 		run_end = perf_cgroup_event_time(event);
1187 	else if (ctx->is_active)
1188 		run_end = ctx->time;
1189 	else
1190 		run_end = event->tstamp_stopped;
1191 
1192 	event->total_time_enabled = run_end - event->tstamp_enabled;
1193 
1194 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1195 		run_end = event->tstamp_stopped;
1196 	else
1197 		run_end = perf_event_time(event);
1198 
1199 	event->total_time_running = run_end - event->tstamp_running;
1200 
1201 }
1202 
1203 /*
1204  * Update total_time_enabled and total_time_running for all events in a group.
1205  */
update_group_times(struct perf_event * leader)1206 static void update_group_times(struct perf_event *leader)
1207 {
1208 	struct perf_event *event;
1209 
1210 	update_event_times(leader);
1211 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1212 		update_event_times(event);
1213 }
1214 
1215 static struct list_head *
ctx_group_list(struct perf_event * event,struct perf_event_context * ctx)1216 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1217 {
1218 	if (event->attr.pinned)
1219 		return &ctx->pinned_groups;
1220 	else
1221 		return &ctx->flexible_groups;
1222 }
1223 
1224 /*
1225  * Add a event from the lists for its context.
1226  * Must be called with ctx->mutex and ctx->lock held.
1227  */
1228 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1229 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1230 {
1231 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1232 	event->attach_state |= PERF_ATTACH_CONTEXT;
1233 
1234 	/*
1235 	 * If we're a stand alone event or group leader, we go to the context
1236 	 * list, group events are kept attached to the group so that
1237 	 * perf_group_detach can, at all times, locate all siblings.
1238 	 */
1239 	if (event->group_leader == event) {
1240 		struct list_head *list;
1241 
1242 		if (is_software_event(event))
1243 			event->group_flags |= PERF_GROUP_SOFTWARE;
1244 
1245 		list = ctx_group_list(event, ctx);
1246 		list_add_tail(&event->group_entry, list);
1247 	}
1248 
1249 	if (is_cgroup_event(event))
1250 		ctx->nr_cgroups++;
1251 
1252 	list_add_rcu(&event->event_entry, &ctx->event_list);
1253 	ctx->nr_events++;
1254 	if (event->attr.inherit_stat)
1255 		ctx->nr_stat++;
1256 
1257 	ctx->generation++;
1258 }
1259 
1260 /*
1261  * Initialize event state based on the perf_event_attr::disabled.
1262  */
perf_event__state_init(struct perf_event * event)1263 static inline void perf_event__state_init(struct perf_event *event)
1264 {
1265 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1266 					      PERF_EVENT_STATE_INACTIVE;
1267 }
1268 
1269 /*
1270  * Called at perf_event creation and when events are attached/detached from a
1271  * group.
1272  */
perf_event__read_size(struct perf_event * event)1273 static void perf_event__read_size(struct perf_event *event)
1274 {
1275 	int entry = sizeof(u64); /* value */
1276 	int size = 0;
1277 	int nr = 1;
1278 
1279 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1280 		size += sizeof(u64);
1281 
1282 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1283 		size += sizeof(u64);
1284 
1285 	if (event->attr.read_format & PERF_FORMAT_ID)
1286 		entry += sizeof(u64);
1287 
1288 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1289 		nr += event->group_leader->nr_siblings;
1290 		size += sizeof(u64);
1291 	}
1292 
1293 	size += entry * nr;
1294 	event->read_size = size;
1295 }
1296 
perf_event__header_size(struct perf_event * event)1297 static void perf_event__header_size(struct perf_event *event)
1298 {
1299 	struct perf_sample_data *data;
1300 	u64 sample_type = event->attr.sample_type;
1301 	u16 size = 0;
1302 
1303 	perf_event__read_size(event);
1304 
1305 	if (sample_type & PERF_SAMPLE_IP)
1306 		size += sizeof(data->ip);
1307 
1308 	if (sample_type & PERF_SAMPLE_ADDR)
1309 		size += sizeof(data->addr);
1310 
1311 	if (sample_type & PERF_SAMPLE_PERIOD)
1312 		size += sizeof(data->period);
1313 
1314 	if (sample_type & PERF_SAMPLE_WEIGHT)
1315 		size += sizeof(data->weight);
1316 
1317 	if (sample_type & PERF_SAMPLE_READ)
1318 		size += event->read_size;
1319 
1320 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1321 		size += sizeof(data->data_src.val);
1322 
1323 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1324 		size += sizeof(data->txn);
1325 
1326 	event->header_size = size;
1327 }
1328 
perf_event__id_header_size(struct perf_event * event)1329 static void perf_event__id_header_size(struct perf_event *event)
1330 {
1331 	struct perf_sample_data *data;
1332 	u64 sample_type = event->attr.sample_type;
1333 	u16 size = 0;
1334 
1335 	if (sample_type & PERF_SAMPLE_TID)
1336 		size += sizeof(data->tid_entry);
1337 
1338 	if (sample_type & PERF_SAMPLE_TIME)
1339 		size += sizeof(data->time);
1340 
1341 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1342 		size += sizeof(data->id);
1343 
1344 	if (sample_type & PERF_SAMPLE_ID)
1345 		size += sizeof(data->id);
1346 
1347 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1348 		size += sizeof(data->stream_id);
1349 
1350 	if (sample_type & PERF_SAMPLE_CPU)
1351 		size += sizeof(data->cpu_entry);
1352 
1353 	event->id_header_size = size;
1354 }
1355 
perf_group_attach(struct perf_event * event)1356 static void perf_group_attach(struct perf_event *event)
1357 {
1358 	struct perf_event *group_leader = event->group_leader, *pos;
1359 
1360 	/*
1361 	 * We can have double attach due to group movement in perf_event_open.
1362 	 */
1363 	if (event->attach_state & PERF_ATTACH_GROUP)
1364 		return;
1365 
1366 	event->attach_state |= PERF_ATTACH_GROUP;
1367 
1368 	if (group_leader == event)
1369 		return;
1370 
1371 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1372 
1373 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1374 			!is_software_event(event))
1375 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1376 
1377 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1378 	group_leader->nr_siblings++;
1379 
1380 	perf_event__header_size(group_leader);
1381 
1382 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1383 		perf_event__header_size(pos);
1384 }
1385 
1386 /*
1387  * Remove a event from the lists for its context.
1388  * Must be called with ctx->mutex and ctx->lock held.
1389  */
1390 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)1391 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1392 {
1393 	struct perf_cpu_context *cpuctx;
1394 
1395 	WARN_ON_ONCE(event->ctx != ctx);
1396 	lockdep_assert_held(&ctx->lock);
1397 
1398 	/*
1399 	 * We can have double detach due to exit/hot-unplug + close.
1400 	 */
1401 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1402 		return;
1403 
1404 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1405 
1406 	if (is_cgroup_event(event)) {
1407 		ctx->nr_cgroups--;
1408 		cpuctx = __get_cpu_context(ctx);
1409 		/*
1410 		 * if there are no more cgroup events
1411 		 * then cler cgrp to avoid stale pointer
1412 		 * in update_cgrp_time_from_cpuctx()
1413 		 */
1414 		if (!ctx->nr_cgroups)
1415 			cpuctx->cgrp = NULL;
1416 	}
1417 
1418 	ctx->nr_events--;
1419 	if (event->attr.inherit_stat)
1420 		ctx->nr_stat--;
1421 
1422 	list_del_rcu(&event->event_entry);
1423 
1424 	if (event->group_leader == event)
1425 		list_del_init(&event->group_entry);
1426 
1427 	update_group_times(event);
1428 
1429 	/*
1430 	 * If event was in error state, then keep it
1431 	 * that way, otherwise bogus counts will be
1432 	 * returned on read(). The only way to get out
1433 	 * of error state is by explicit re-enabling
1434 	 * of the event
1435 	 */
1436 	if (event->state > PERF_EVENT_STATE_OFF)
1437 		event->state = PERF_EVENT_STATE_OFF;
1438 
1439 	ctx->generation++;
1440 }
1441 
perf_group_detach(struct perf_event * event)1442 static void perf_group_detach(struct perf_event *event)
1443 {
1444 	struct perf_event *sibling, *tmp;
1445 	struct list_head *list = NULL;
1446 
1447 	/*
1448 	 * We can have double detach due to exit/hot-unplug + close.
1449 	 */
1450 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1451 		return;
1452 
1453 	event->attach_state &= ~PERF_ATTACH_GROUP;
1454 
1455 	/*
1456 	 * If this is a sibling, remove it from its group.
1457 	 */
1458 	if (event->group_leader != event) {
1459 		list_del_init(&event->group_entry);
1460 		event->group_leader->nr_siblings--;
1461 		goto out;
1462 	}
1463 
1464 	if (!list_empty(&event->group_entry))
1465 		list = &event->group_entry;
1466 
1467 	/*
1468 	 * If this was a group event with sibling events then
1469 	 * upgrade the siblings to singleton events by adding them
1470 	 * to whatever list we are on.
1471 	 */
1472 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1473 		if (list)
1474 			list_move_tail(&sibling->group_entry, list);
1475 		sibling->group_leader = sibling;
1476 
1477 		/* Inherit group flags from the previous leader */
1478 		sibling->group_flags = event->group_flags;
1479 
1480 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1481 	}
1482 
1483 out:
1484 	perf_event__header_size(event->group_leader);
1485 
1486 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1487 		perf_event__header_size(tmp);
1488 }
1489 
1490 /*
1491  * User event without the task.
1492  */
is_orphaned_event(struct perf_event * event)1493 static bool is_orphaned_event(struct perf_event *event)
1494 {
1495 	return event && !is_kernel_event(event) && !event->owner;
1496 }
1497 
1498 /*
1499  * Event has a parent but parent's task finished and it's
1500  * alive only because of children holding refference.
1501  */
is_orphaned_child(struct perf_event * event)1502 static bool is_orphaned_child(struct perf_event *event)
1503 {
1504 	return is_orphaned_event(event->parent);
1505 }
1506 
1507 static void orphans_remove_work(struct work_struct *work);
1508 
schedule_orphans_remove(struct perf_event_context * ctx)1509 static void schedule_orphans_remove(struct perf_event_context *ctx)
1510 {
1511 	if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1512 		return;
1513 
1514 	if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1515 		get_ctx(ctx);
1516 		ctx->orphans_remove_sched = true;
1517 	}
1518 }
1519 
perf_workqueue_init(void)1520 static int __init perf_workqueue_init(void)
1521 {
1522 	perf_wq = create_singlethread_workqueue("perf");
1523 	WARN(!perf_wq, "failed to create perf workqueue\n");
1524 	return perf_wq ? 0 : -1;
1525 }
1526 
1527 core_initcall(perf_workqueue_init);
1528 
1529 static inline int
event_filter_match(struct perf_event * event)1530 event_filter_match(struct perf_event *event)
1531 {
1532 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1533 	    && perf_cgroup_match(event);
1534 }
1535 
1536 static void
event_sched_out(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)1537 event_sched_out(struct perf_event *event,
1538 		  struct perf_cpu_context *cpuctx,
1539 		  struct perf_event_context *ctx)
1540 {
1541 	u64 tstamp = perf_event_time(event);
1542 	u64 delta;
1543 
1544 	WARN_ON_ONCE(event->ctx != ctx);
1545 	lockdep_assert_held(&ctx->lock);
1546 
1547 	/*
1548 	 * An event which could not be activated because of
1549 	 * filter mismatch still needs to have its timings
1550 	 * maintained, otherwise bogus information is return
1551 	 * via read() for time_enabled, time_running:
1552 	 */
1553 	if (event->state == PERF_EVENT_STATE_INACTIVE
1554 	    && !event_filter_match(event)) {
1555 		delta = tstamp - event->tstamp_stopped;
1556 		event->tstamp_running += delta;
1557 		event->tstamp_stopped = tstamp;
1558 	}
1559 
1560 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1561 		return;
1562 
1563 	perf_pmu_disable(event->pmu);
1564 
1565 	event->tstamp_stopped = tstamp;
1566 	event->pmu->del(event, 0);
1567 	event->oncpu = -1;
1568 	event->state = PERF_EVENT_STATE_INACTIVE;
1569 	if (event->pending_disable) {
1570 		event->pending_disable = 0;
1571 		event->state = PERF_EVENT_STATE_OFF;
1572 	}
1573 
1574 	if (!is_software_event(event))
1575 		cpuctx->active_oncpu--;
1576 	if (!--ctx->nr_active)
1577 		perf_event_ctx_deactivate(ctx);
1578 	if (event->attr.freq && event->attr.sample_freq)
1579 		ctx->nr_freq--;
1580 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1581 		cpuctx->exclusive = 0;
1582 
1583 	if (is_orphaned_child(event))
1584 		schedule_orphans_remove(ctx);
1585 
1586 	perf_pmu_enable(event->pmu);
1587 }
1588 
1589 static void
group_sched_out(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)1590 group_sched_out(struct perf_event *group_event,
1591 		struct perf_cpu_context *cpuctx,
1592 		struct perf_event_context *ctx)
1593 {
1594 	struct perf_event *event;
1595 	int state = group_event->state;
1596 
1597 	event_sched_out(group_event, cpuctx, ctx);
1598 
1599 	/*
1600 	 * Schedule out siblings (if any):
1601 	 */
1602 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1603 		event_sched_out(event, cpuctx, ctx);
1604 
1605 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1606 		cpuctx->exclusive = 0;
1607 }
1608 
1609 struct remove_event {
1610 	struct perf_event *event;
1611 	bool detach_group;
1612 };
1613 
1614 /*
1615  * Cross CPU call to remove a performance event
1616  *
1617  * We disable the event on the hardware level first. After that we
1618  * remove it from the context list.
1619  */
__perf_remove_from_context(void * info)1620 static int __perf_remove_from_context(void *info)
1621 {
1622 	struct remove_event *re = info;
1623 	struct perf_event *event = re->event;
1624 	struct perf_event_context *ctx = event->ctx;
1625 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1626 
1627 	raw_spin_lock(&ctx->lock);
1628 	event_sched_out(event, cpuctx, ctx);
1629 	if (re->detach_group)
1630 		perf_group_detach(event);
1631 	list_del_event(event, ctx);
1632 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1633 		ctx->is_active = 0;
1634 		cpuctx->task_ctx = NULL;
1635 	}
1636 	raw_spin_unlock(&ctx->lock);
1637 
1638 	return 0;
1639 }
1640 
1641 
1642 /*
1643  * Remove the event from a task's (or a CPU's) list of events.
1644  *
1645  * CPU events are removed with a smp call. For task events we only
1646  * call when the task is on a CPU.
1647  *
1648  * If event->ctx is a cloned context, callers must make sure that
1649  * every task struct that event->ctx->task could possibly point to
1650  * remains valid.  This is OK when called from perf_release since
1651  * that only calls us on the top-level context, which can't be a clone.
1652  * When called from perf_event_exit_task, it's OK because the
1653  * context has been detached from its task.
1654  */
perf_remove_from_context(struct perf_event * event,bool detach_group)1655 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1656 {
1657 	struct perf_event_context *ctx = event->ctx;
1658 	struct task_struct *task = ctx->task;
1659 	struct remove_event re = {
1660 		.event = event,
1661 		.detach_group = detach_group,
1662 	};
1663 
1664 	lockdep_assert_held(&ctx->mutex);
1665 
1666 	if (!task) {
1667 		/*
1668 		 * Per cpu events are removed via an smp call. The removal can
1669 		 * fail if the CPU is currently offline, but in that case we
1670 		 * already called __perf_remove_from_context from
1671 		 * perf_event_exit_cpu.
1672 		 */
1673 		cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1674 		return;
1675 	}
1676 
1677 retry:
1678 	if (!task_function_call(task, __perf_remove_from_context, &re))
1679 		return;
1680 
1681 	raw_spin_lock_irq(&ctx->lock);
1682 	/*
1683 	 * If we failed to find a running task, but find the context active now
1684 	 * that we've acquired the ctx->lock, retry.
1685 	 */
1686 	if (ctx->is_active) {
1687 		raw_spin_unlock_irq(&ctx->lock);
1688 		/*
1689 		 * Reload the task pointer, it might have been changed by
1690 		 * a concurrent perf_event_context_sched_out().
1691 		 */
1692 		task = ctx->task;
1693 		goto retry;
1694 	}
1695 
1696 	/*
1697 	 * Since the task isn't running, its safe to remove the event, us
1698 	 * holding the ctx->lock ensures the task won't get scheduled in.
1699 	 */
1700 	if (detach_group)
1701 		perf_group_detach(event);
1702 	list_del_event(event, ctx);
1703 	raw_spin_unlock_irq(&ctx->lock);
1704 }
1705 
1706 /*
1707  * Cross CPU call to disable a performance event
1708  */
__perf_event_disable(void * info)1709 int __perf_event_disable(void *info)
1710 {
1711 	struct perf_event *event = info;
1712 	struct perf_event_context *ctx = event->ctx;
1713 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1714 
1715 	/*
1716 	 * If this is a per-task event, need to check whether this
1717 	 * event's task is the current task on this cpu.
1718 	 *
1719 	 * Can trigger due to concurrent perf_event_context_sched_out()
1720 	 * flipping contexts around.
1721 	 */
1722 	if (ctx->task && cpuctx->task_ctx != ctx)
1723 		return -EINVAL;
1724 
1725 	raw_spin_lock(&ctx->lock);
1726 
1727 	/*
1728 	 * If the event is on, turn it off.
1729 	 * If it is in error state, leave it in error state.
1730 	 */
1731 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1732 		update_context_time(ctx);
1733 		update_cgrp_time_from_event(event);
1734 		update_group_times(event);
1735 		if (event == event->group_leader)
1736 			group_sched_out(event, cpuctx, ctx);
1737 		else
1738 			event_sched_out(event, cpuctx, ctx);
1739 		event->state = PERF_EVENT_STATE_OFF;
1740 	}
1741 
1742 	raw_spin_unlock(&ctx->lock);
1743 
1744 	return 0;
1745 }
1746 
1747 /*
1748  * Disable a event.
1749  *
1750  * If event->ctx is a cloned context, callers must make sure that
1751  * every task struct that event->ctx->task could possibly point to
1752  * remains valid.  This condition is satisifed when called through
1753  * perf_event_for_each_child or perf_event_for_each because they
1754  * hold the top-level event's child_mutex, so any descendant that
1755  * goes to exit will block in sync_child_event.
1756  * When called from perf_pending_event it's OK because event->ctx
1757  * is the current context on this CPU and preemption is disabled,
1758  * hence we can't get into perf_event_task_sched_out for this context.
1759  */
_perf_event_disable(struct perf_event * event)1760 static void _perf_event_disable(struct perf_event *event)
1761 {
1762 	struct perf_event_context *ctx = event->ctx;
1763 	struct task_struct *task = ctx->task;
1764 
1765 	if (!task) {
1766 		/*
1767 		 * Disable the event on the cpu that it's on
1768 		 */
1769 		cpu_function_call(event->cpu, __perf_event_disable, event);
1770 		return;
1771 	}
1772 
1773 retry:
1774 	if (!task_function_call(task, __perf_event_disable, event))
1775 		return;
1776 
1777 	raw_spin_lock_irq(&ctx->lock);
1778 	/*
1779 	 * If the event is still active, we need to retry the cross-call.
1780 	 */
1781 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1782 		raw_spin_unlock_irq(&ctx->lock);
1783 		/*
1784 		 * Reload the task pointer, it might have been changed by
1785 		 * a concurrent perf_event_context_sched_out().
1786 		 */
1787 		task = ctx->task;
1788 		goto retry;
1789 	}
1790 
1791 	/*
1792 	 * Since we have the lock this context can't be scheduled
1793 	 * in, so we can change the state safely.
1794 	 */
1795 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1796 		update_group_times(event);
1797 		event->state = PERF_EVENT_STATE_OFF;
1798 	}
1799 	raw_spin_unlock_irq(&ctx->lock);
1800 }
1801 
1802 /*
1803  * Strictly speaking kernel users cannot create groups and therefore this
1804  * interface does not need the perf_event_ctx_lock() magic.
1805  */
perf_event_disable(struct perf_event * event)1806 void perf_event_disable(struct perf_event *event)
1807 {
1808 	struct perf_event_context *ctx;
1809 
1810 	ctx = perf_event_ctx_lock(event);
1811 	_perf_event_disable(event);
1812 	perf_event_ctx_unlock(event, ctx);
1813 }
1814 EXPORT_SYMBOL_GPL(perf_event_disable);
1815 
perf_set_shadow_time(struct perf_event * event,struct perf_event_context * ctx,u64 tstamp)1816 static void perf_set_shadow_time(struct perf_event *event,
1817 				 struct perf_event_context *ctx,
1818 				 u64 tstamp)
1819 {
1820 	/*
1821 	 * use the correct time source for the time snapshot
1822 	 *
1823 	 * We could get by without this by leveraging the
1824 	 * fact that to get to this function, the caller
1825 	 * has most likely already called update_context_time()
1826 	 * and update_cgrp_time_xx() and thus both timestamp
1827 	 * are identical (or very close). Given that tstamp is,
1828 	 * already adjusted for cgroup, we could say that:
1829 	 *    tstamp - ctx->timestamp
1830 	 * is equivalent to
1831 	 *    tstamp - cgrp->timestamp.
1832 	 *
1833 	 * Then, in perf_output_read(), the calculation would
1834 	 * work with no changes because:
1835 	 * - event is guaranteed scheduled in
1836 	 * - no scheduled out in between
1837 	 * - thus the timestamp would be the same
1838 	 *
1839 	 * But this is a bit hairy.
1840 	 *
1841 	 * So instead, we have an explicit cgroup call to remain
1842 	 * within the time time source all along. We believe it
1843 	 * is cleaner and simpler to understand.
1844 	 */
1845 	if (is_cgroup_event(event))
1846 		perf_cgroup_set_shadow_time(event, tstamp);
1847 	else
1848 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1849 }
1850 
1851 #define MAX_INTERRUPTS (~0ULL)
1852 
1853 static void perf_log_throttle(struct perf_event *event, int enable);
1854 static void perf_log_itrace_start(struct perf_event *event);
1855 
1856 static int
event_sched_in(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)1857 event_sched_in(struct perf_event *event,
1858 		 struct perf_cpu_context *cpuctx,
1859 		 struct perf_event_context *ctx)
1860 {
1861 	u64 tstamp = perf_event_time(event);
1862 	int ret = 0;
1863 
1864 	lockdep_assert_held(&ctx->lock);
1865 
1866 	if (event->state <= PERF_EVENT_STATE_OFF)
1867 		return 0;
1868 
1869 	event->state = PERF_EVENT_STATE_ACTIVE;
1870 	event->oncpu = smp_processor_id();
1871 
1872 	/*
1873 	 * Unthrottle events, since we scheduled we might have missed several
1874 	 * ticks already, also for a heavily scheduling task there is little
1875 	 * guarantee it'll get a tick in a timely manner.
1876 	 */
1877 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1878 		perf_log_throttle(event, 1);
1879 		event->hw.interrupts = 0;
1880 	}
1881 
1882 	/*
1883 	 * The new state must be visible before we turn it on in the hardware:
1884 	 */
1885 	smp_wmb();
1886 
1887 	perf_pmu_disable(event->pmu);
1888 
1889 	perf_set_shadow_time(event, ctx, tstamp);
1890 
1891 	perf_log_itrace_start(event);
1892 
1893 	if (event->pmu->add(event, PERF_EF_START)) {
1894 		event->state = PERF_EVENT_STATE_INACTIVE;
1895 		event->oncpu = -1;
1896 		ret = -EAGAIN;
1897 		goto out;
1898 	}
1899 
1900 	event->tstamp_running += tstamp - event->tstamp_stopped;
1901 
1902 	if (!is_software_event(event))
1903 		cpuctx->active_oncpu++;
1904 	if (!ctx->nr_active++)
1905 		perf_event_ctx_activate(ctx);
1906 	if (event->attr.freq && event->attr.sample_freq)
1907 		ctx->nr_freq++;
1908 
1909 	if (event->attr.exclusive)
1910 		cpuctx->exclusive = 1;
1911 
1912 	if (is_orphaned_child(event))
1913 		schedule_orphans_remove(ctx);
1914 
1915 out:
1916 	perf_pmu_enable(event->pmu);
1917 
1918 	return ret;
1919 }
1920 
1921 static int
group_sched_in(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)1922 group_sched_in(struct perf_event *group_event,
1923 	       struct perf_cpu_context *cpuctx,
1924 	       struct perf_event_context *ctx)
1925 {
1926 	struct perf_event *event, *partial_group = NULL;
1927 	struct pmu *pmu = ctx->pmu;
1928 	u64 now = ctx->time;
1929 	bool simulate = false;
1930 
1931 	if (group_event->state == PERF_EVENT_STATE_OFF)
1932 		return 0;
1933 
1934 	pmu->start_txn(pmu);
1935 
1936 	if (event_sched_in(group_event, cpuctx, ctx)) {
1937 		pmu->cancel_txn(pmu);
1938 		perf_cpu_hrtimer_restart(cpuctx);
1939 		return -EAGAIN;
1940 	}
1941 
1942 	/*
1943 	 * Schedule in siblings as one group (if any):
1944 	 */
1945 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1946 		if (event_sched_in(event, cpuctx, ctx)) {
1947 			partial_group = event;
1948 			goto group_error;
1949 		}
1950 	}
1951 
1952 	if (!pmu->commit_txn(pmu))
1953 		return 0;
1954 
1955 group_error:
1956 	/*
1957 	 * Groups can be scheduled in as one unit only, so undo any
1958 	 * partial group before returning:
1959 	 * The events up to the failed event are scheduled out normally,
1960 	 * tstamp_stopped will be updated.
1961 	 *
1962 	 * The failed events and the remaining siblings need to have
1963 	 * their timings updated as if they had gone thru event_sched_in()
1964 	 * and event_sched_out(). This is required to get consistent timings
1965 	 * across the group. This also takes care of the case where the group
1966 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1967 	 * the time the event was actually stopped, such that time delta
1968 	 * calculation in update_event_times() is correct.
1969 	 */
1970 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1971 		if (event == partial_group)
1972 			simulate = true;
1973 
1974 		if (simulate) {
1975 			event->tstamp_running += now - event->tstamp_stopped;
1976 			event->tstamp_stopped = now;
1977 		} else {
1978 			event_sched_out(event, cpuctx, ctx);
1979 		}
1980 	}
1981 	event_sched_out(group_event, cpuctx, ctx);
1982 
1983 	pmu->cancel_txn(pmu);
1984 
1985 	perf_cpu_hrtimer_restart(cpuctx);
1986 
1987 	return -EAGAIN;
1988 }
1989 
1990 /*
1991  * Work out whether we can put this event group on the CPU now.
1992  */
group_can_go_on(struct perf_event * event,struct perf_cpu_context * cpuctx,int can_add_hw)1993 static int group_can_go_on(struct perf_event *event,
1994 			   struct perf_cpu_context *cpuctx,
1995 			   int can_add_hw)
1996 {
1997 	/*
1998 	 * Groups consisting entirely of software events can always go on.
1999 	 */
2000 	if (event->group_flags & PERF_GROUP_SOFTWARE)
2001 		return 1;
2002 	/*
2003 	 * If an exclusive group is already on, no other hardware
2004 	 * events can go on.
2005 	 */
2006 	if (cpuctx->exclusive)
2007 		return 0;
2008 	/*
2009 	 * If this group is exclusive and there are already
2010 	 * events on the CPU, it can't go on.
2011 	 */
2012 	if (event->attr.exclusive && cpuctx->active_oncpu)
2013 		return 0;
2014 	/*
2015 	 * Otherwise, try to add it if all previous groups were able
2016 	 * to go on.
2017 	 */
2018 	return can_add_hw;
2019 }
2020 
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2021 static void add_event_to_ctx(struct perf_event *event,
2022 			       struct perf_event_context *ctx)
2023 {
2024 	u64 tstamp = perf_event_time(event);
2025 
2026 	list_add_event(event, ctx);
2027 	perf_group_attach(event);
2028 	event->tstamp_enabled = tstamp;
2029 	event->tstamp_running = tstamp;
2030 	event->tstamp_stopped = tstamp;
2031 }
2032 
2033 static void task_ctx_sched_out(struct perf_event_context *ctx);
2034 static void
2035 ctx_sched_in(struct perf_event_context *ctx,
2036 	     struct perf_cpu_context *cpuctx,
2037 	     enum event_type_t event_type,
2038 	     struct task_struct *task);
2039 
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct task_struct * task)2040 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2041 				struct perf_event_context *ctx,
2042 				struct task_struct *task)
2043 {
2044 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2045 	if (ctx)
2046 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2047 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2048 	if (ctx)
2049 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2050 }
2051 
2052 /*
2053  * Cross CPU call to install and enable a performance event
2054  *
2055  * Must be called with ctx->mutex held
2056  */
__perf_install_in_context(void * info)2057 static int  __perf_install_in_context(void *info)
2058 {
2059 	struct perf_event *event = info;
2060 	struct perf_event_context *ctx = event->ctx;
2061 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2062 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2063 	struct task_struct *task = current;
2064 
2065 	perf_ctx_lock(cpuctx, task_ctx);
2066 	perf_pmu_disable(cpuctx->ctx.pmu);
2067 
2068 	/*
2069 	 * If there was an active task_ctx schedule it out.
2070 	 */
2071 	if (task_ctx)
2072 		task_ctx_sched_out(task_ctx);
2073 
2074 	/*
2075 	 * If the context we're installing events in is not the
2076 	 * active task_ctx, flip them.
2077 	 */
2078 	if (ctx->task && task_ctx != ctx) {
2079 		if (task_ctx)
2080 			raw_spin_unlock(&task_ctx->lock);
2081 		raw_spin_lock(&ctx->lock);
2082 		task_ctx = ctx;
2083 	}
2084 
2085 	if (task_ctx) {
2086 		cpuctx->task_ctx = task_ctx;
2087 		task = task_ctx->task;
2088 	}
2089 
2090 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2091 
2092 	update_context_time(ctx);
2093 	/*
2094 	 * update cgrp time only if current cgrp
2095 	 * matches event->cgrp. Must be done before
2096 	 * calling add_event_to_ctx()
2097 	 */
2098 	update_cgrp_time_from_event(event);
2099 
2100 	add_event_to_ctx(event, ctx);
2101 
2102 	/*
2103 	 * Schedule everything back in
2104 	 */
2105 	perf_event_sched_in(cpuctx, task_ctx, task);
2106 
2107 	perf_pmu_enable(cpuctx->ctx.pmu);
2108 	perf_ctx_unlock(cpuctx, task_ctx);
2109 
2110 	return 0;
2111 }
2112 
2113 /*
2114  * Attach a performance event to a context
2115  *
2116  * First we add the event to the list with the hardware enable bit
2117  * in event->hw_config cleared.
2118  *
2119  * If the event is attached to a task which is on a CPU we use a smp
2120  * call to enable it in the task context. The task might have been
2121  * scheduled away, but we check this in the smp call again.
2122  */
2123 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2124 perf_install_in_context(struct perf_event_context *ctx,
2125 			struct perf_event *event,
2126 			int cpu)
2127 {
2128 	struct task_struct *task = ctx->task;
2129 
2130 	lockdep_assert_held(&ctx->mutex);
2131 
2132 	event->ctx = ctx;
2133 	if (event->cpu != -1)
2134 		event->cpu = cpu;
2135 
2136 	if (!task) {
2137 		/*
2138 		 * Per cpu events are installed via an smp call and
2139 		 * the install is always successful.
2140 		 */
2141 		cpu_function_call(cpu, __perf_install_in_context, event);
2142 		return;
2143 	}
2144 
2145 retry:
2146 	if (!task_function_call(task, __perf_install_in_context, event))
2147 		return;
2148 
2149 	raw_spin_lock_irq(&ctx->lock);
2150 	/*
2151 	 * If we failed to find a running task, but find the context active now
2152 	 * that we've acquired the ctx->lock, retry.
2153 	 */
2154 	if (ctx->is_active) {
2155 		raw_spin_unlock_irq(&ctx->lock);
2156 		/*
2157 		 * Reload the task pointer, it might have been changed by
2158 		 * a concurrent perf_event_context_sched_out().
2159 		 */
2160 		task = ctx->task;
2161 		goto retry;
2162 	}
2163 
2164 	/*
2165 	 * Since the task isn't running, its safe to add the event, us holding
2166 	 * the ctx->lock ensures the task won't get scheduled in.
2167 	 */
2168 	add_event_to_ctx(event, ctx);
2169 	raw_spin_unlock_irq(&ctx->lock);
2170 }
2171 
2172 /*
2173  * Put a event into inactive state and update time fields.
2174  * Enabling the leader of a group effectively enables all
2175  * the group members that aren't explicitly disabled, so we
2176  * have to update their ->tstamp_enabled also.
2177  * Note: this works for group members as well as group leaders
2178  * since the non-leader members' sibling_lists will be empty.
2179  */
__perf_event_mark_enabled(struct perf_event * event)2180 static void __perf_event_mark_enabled(struct perf_event *event)
2181 {
2182 	struct perf_event *sub;
2183 	u64 tstamp = perf_event_time(event);
2184 
2185 	event->state = PERF_EVENT_STATE_INACTIVE;
2186 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2187 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2188 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2189 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2190 	}
2191 }
2192 
2193 /*
2194  * Cross CPU call to enable a performance event
2195  */
__perf_event_enable(void * info)2196 static int __perf_event_enable(void *info)
2197 {
2198 	struct perf_event *event = info;
2199 	struct perf_event_context *ctx = event->ctx;
2200 	struct perf_event *leader = event->group_leader;
2201 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2202 	int err;
2203 
2204 	/*
2205 	 * There's a time window between 'ctx->is_active' check
2206 	 * in perf_event_enable function and this place having:
2207 	 *   - IRQs on
2208 	 *   - ctx->lock unlocked
2209 	 *
2210 	 * where the task could be killed and 'ctx' deactivated
2211 	 * by perf_event_exit_task.
2212 	 */
2213 	if (!ctx->is_active)
2214 		return -EINVAL;
2215 
2216 	raw_spin_lock(&ctx->lock);
2217 	update_context_time(ctx);
2218 
2219 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2220 		goto unlock;
2221 
2222 	/*
2223 	 * set current task's cgroup time reference point
2224 	 */
2225 	perf_cgroup_set_timestamp(current, ctx);
2226 
2227 	__perf_event_mark_enabled(event);
2228 
2229 	if (!event_filter_match(event)) {
2230 		if (is_cgroup_event(event))
2231 			perf_cgroup_defer_enabled(event);
2232 		goto unlock;
2233 	}
2234 
2235 	/*
2236 	 * If the event is in a group and isn't the group leader,
2237 	 * then don't put it on unless the group is on.
2238 	 */
2239 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2240 		goto unlock;
2241 
2242 	if (!group_can_go_on(event, cpuctx, 1)) {
2243 		err = -EEXIST;
2244 	} else {
2245 		if (event == leader)
2246 			err = group_sched_in(event, cpuctx, ctx);
2247 		else
2248 			err = event_sched_in(event, cpuctx, ctx);
2249 	}
2250 
2251 	if (err) {
2252 		/*
2253 		 * If this event can't go on and it's part of a
2254 		 * group, then the whole group has to come off.
2255 		 */
2256 		if (leader != event) {
2257 			group_sched_out(leader, cpuctx, ctx);
2258 			perf_cpu_hrtimer_restart(cpuctx);
2259 		}
2260 		if (leader->attr.pinned) {
2261 			update_group_times(leader);
2262 			leader->state = PERF_EVENT_STATE_ERROR;
2263 		}
2264 	}
2265 
2266 unlock:
2267 	raw_spin_unlock(&ctx->lock);
2268 
2269 	return 0;
2270 }
2271 
2272 /*
2273  * Enable a event.
2274  *
2275  * If event->ctx is a cloned context, callers must make sure that
2276  * every task struct that event->ctx->task could possibly point to
2277  * remains valid.  This condition is satisfied when called through
2278  * perf_event_for_each_child or perf_event_for_each as described
2279  * for perf_event_disable.
2280  */
_perf_event_enable(struct perf_event * event)2281 static void _perf_event_enable(struct perf_event *event)
2282 {
2283 	struct perf_event_context *ctx = event->ctx;
2284 	struct task_struct *task = ctx->task;
2285 
2286 	if (!task) {
2287 		/*
2288 		 * Enable the event on the cpu that it's on
2289 		 */
2290 		cpu_function_call(event->cpu, __perf_event_enable, event);
2291 		return;
2292 	}
2293 
2294 	raw_spin_lock_irq(&ctx->lock);
2295 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2296 		goto out;
2297 
2298 	/*
2299 	 * If the event is in error state, clear that first.
2300 	 * That way, if we see the event in error state below, we
2301 	 * know that it has gone back into error state, as distinct
2302 	 * from the task having been scheduled away before the
2303 	 * cross-call arrived.
2304 	 */
2305 	if (event->state == PERF_EVENT_STATE_ERROR)
2306 		event->state = PERF_EVENT_STATE_OFF;
2307 
2308 retry:
2309 	if (!ctx->is_active) {
2310 		__perf_event_mark_enabled(event);
2311 		goto out;
2312 	}
2313 
2314 	raw_spin_unlock_irq(&ctx->lock);
2315 
2316 	if (!task_function_call(task, __perf_event_enable, event))
2317 		return;
2318 
2319 	raw_spin_lock_irq(&ctx->lock);
2320 
2321 	/*
2322 	 * If the context is active and the event is still off,
2323 	 * we need to retry the cross-call.
2324 	 */
2325 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2326 		/*
2327 		 * task could have been flipped by a concurrent
2328 		 * perf_event_context_sched_out()
2329 		 */
2330 		task = ctx->task;
2331 		goto retry;
2332 	}
2333 
2334 out:
2335 	raw_spin_unlock_irq(&ctx->lock);
2336 }
2337 
2338 /*
2339  * See perf_event_disable();
2340  */
perf_event_enable(struct perf_event * event)2341 void perf_event_enable(struct perf_event *event)
2342 {
2343 	struct perf_event_context *ctx;
2344 
2345 	ctx = perf_event_ctx_lock(event);
2346 	_perf_event_enable(event);
2347 	perf_event_ctx_unlock(event, ctx);
2348 }
2349 EXPORT_SYMBOL_GPL(perf_event_enable);
2350 
_perf_event_refresh(struct perf_event * event,int refresh)2351 static int _perf_event_refresh(struct perf_event *event, int refresh)
2352 {
2353 	/*
2354 	 * not supported on inherited events
2355 	 */
2356 	if (event->attr.inherit || !is_sampling_event(event))
2357 		return -EINVAL;
2358 
2359 	atomic_add(refresh, &event->event_limit);
2360 	_perf_event_enable(event);
2361 
2362 	return 0;
2363 }
2364 
2365 /*
2366  * See perf_event_disable()
2367  */
perf_event_refresh(struct perf_event * event,int refresh)2368 int perf_event_refresh(struct perf_event *event, int refresh)
2369 {
2370 	struct perf_event_context *ctx;
2371 	int ret;
2372 
2373 	ctx = perf_event_ctx_lock(event);
2374 	ret = _perf_event_refresh(event, refresh);
2375 	perf_event_ctx_unlock(event, ctx);
2376 
2377 	return ret;
2378 }
2379 EXPORT_SYMBOL_GPL(perf_event_refresh);
2380 
ctx_sched_out(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type)2381 static void ctx_sched_out(struct perf_event_context *ctx,
2382 			  struct perf_cpu_context *cpuctx,
2383 			  enum event_type_t event_type)
2384 {
2385 	struct perf_event *event;
2386 	int is_active = ctx->is_active;
2387 
2388 	ctx->is_active &= ~event_type;
2389 	if (likely(!ctx->nr_events))
2390 		return;
2391 
2392 	update_context_time(ctx);
2393 	update_cgrp_time_from_cpuctx(cpuctx);
2394 	if (!ctx->nr_active)
2395 		return;
2396 
2397 	perf_pmu_disable(ctx->pmu);
2398 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2399 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2400 			group_sched_out(event, cpuctx, ctx);
2401 	}
2402 
2403 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2404 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2405 			group_sched_out(event, cpuctx, ctx);
2406 	}
2407 	perf_pmu_enable(ctx->pmu);
2408 }
2409 
2410 /*
2411  * Test whether two contexts are equivalent, i.e. whether they have both been
2412  * cloned from the same version of the same context.
2413  *
2414  * Equivalence is measured using a generation number in the context that is
2415  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2416  * and list_del_event().
2417  */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)2418 static int context_equiv(struct perf_event_context *ctx1,
2419 			 struct perf_event_context *ctx2)
2420 {
2421 	lockdep_assert_held(&ctx1->lock);
2422 	lockdep_assert_held(&ctx2->lock);
2423 
2424 	/* Pinning disables the swap optimization */
2425 	if (ctx1->pin_count || ctx2->pin_count)
2426 		return 0;
2427 
2428 	/* If ctx1 is the parent of ctx2 */
2429 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2430 		return 1;
2431 
2432 	/* If ctx2 is the parent of ctx1 */
2433 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2434 		return 1;
2435 
2436 	/*
2437 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2438 	 * hierarchy, see perf_event_init_context().
2439 	 */
2440 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2441 			ctx1->parent_gen == ctx2->parent_gen)
2442 		return 1;
2443 
2444 	/* Unmatched */
2445 	return 0;
2446 }
2447 
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)2448 static void __perf_event_sync_stat(struct perf_event *event,
2449 				     struct perf_event *next_event)
2450 {
2451 	u64 value;
2452 
2453 	if (!event->attr.inherit_stat)
2454 		return;
2455 
2456 	/*
2457 	 * Update the event value, we cannot use perf_event_read()
2458 	 * because we're in the middle of a context switch and have IRQs
2459 	 * disabled, which upsets smp_call_function_single(), however
2460 	 * we know the event must be on the current CPU, therefore we
2461 	 * don't need to use it.
2462 	 */
2463 	switch (event->state) {
2464 	case PERF_EVENT_STATE_ACTIVE:
2465 		event->pmu->read(event);
2466 		/* fall-through */
2467 
2468 	case PERF_EVENT_STATE_INACTIVE:
2469 		update_event_times(event);
2470 		break;
2471 
2472 	default:
2473 		break;
2474 	}
2475 
2476 	/*
2477 	 * In order to keep per-task stats reliable we need to flip the event
2478 	 * values when we flip the contexts.
2479 	 */
2480 	value = local64_read(&next_event->count);
2481 	value = local64_xchg(&event->count, value);
2482 	local64_set(&next_event->count, value);
2483 
2484 	swap(event->total_time_enabled, next_event->total_time_enabled);
2485 	swap(event->total_time_running, next_event->total_time_running);
2486 
2487 	/*
2488 	 * Since we swizzled the values, update the user visible data too.
2489 	 */
2490 	perf_event_update_userpage(event);
2491 	perf_event_update_userpage(next_event);
2492 }
2493 
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)2494 static void perf_event_sync_stat(struct perf_event_context *ctx,
2495 				   struct perf_event_context *next_ctx)
2496 {
2497 	struct perf_event *event, *next_event;
2498 
2499 	if (!ctx->nr_stat)
2500 		return;
2501 
2502 	update_context_time(ctx);
2503 
2504 	event = list_first_entry(&ctx->event_list,
2505 				   struct perf_event, event_entry);
2506 
2507 	next_event = list_first_entry(&next_ctx->event_list,
2508 					struct perf_event, event_entry);
2509 
2510 	while (&event->event_entry != &ctx->event_list &&
2511 	       &next_event->event_entry != &next_ctx->event_list) {
2512 
2513 		__perf_event_sync_stat(event, next_event);
2514 
2515 		event = list_next_entry(event, event_entry);
2516 		next_event = list_next_entry(next_event, event_entry);
2517 	}
2518 }
2519 
perf_event_context_sched_out(struct task_struct * task,int ctxn,struct task_struct * next)2520 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2521 					 struct task_struct *next)
2522 {
2523 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2524 	struct perf_event_context *next_ctx;
2525 	struct perf_event_context *parent, *next_parent;
2526 	struct perf_cpu_context *cpuctx;
2527 	int do_switch = 1;
2528 
2529 	if (likely(!ctx))
2530 		return;
2531 
2532 	cpuctx = __get_cpu_context(ctx);
2533 	if (!cpuctx->task_ctx)
2534 		return;
2535 
2536 	rcu_read_lock();
2537 	next_ctx = next->perf_event_ctxp[ctxn];
2538 	if (!next_ctx)
2539 		goto unlock;
2540 
2541 	parent = rcu_dereference(ctx->parent_ctx);
2542 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2543 
2544 	/* If neither context have a parent context; they cannot be clones. */
2545 	if (!parent && !next_parent)
2546 		goto unlock;
2547 
2548 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2549 		/*
2550 		 * Looks like the two contexts are clones, so we might be
2551 		 * able to optimize the context switch.  We lock both
2552 		 * contexts and check that they are clones under the
2553 		 * lock (including re-checking that neither has been
2554 		 * uncloned in the meantime).  It doesn't matter which
2555 		 * order we take the locks because no other cpu could
2556 		 * be trying to lock both of these tasks.
2557 		 */
2558 		raw_spin_lock(&ctx->lock);
2559 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2560 		if (context_equiv(ctx, next_ctx)) {
2561 			/*
2562 			 * XXX do we need a memory barrier of sorts
2563 			 * wrt to rcu_dereference() of perf_event_ctxp
2564 			 */
2565 			task->perf_event_ctxp[ctxn] = next_ctx;
2566 			next->perf_event_ctxp[ctxn] = ctx;
2567 			ctx->task = next;
2568 			next_ctx->task = task;
2569 
2570 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2571 
2572 			do_switch = 0;
2573 
2574 			perf_event_sync_stat(ctx, next_ctx);
2575 		}
2576 		raw_spin_unlock(&next_ctx->lock);
2577 		raw_spin_unlock(&ctx->lock);
2578 	}
2579 unlock:
2580 	rcu_read_unlock();
2581 
2582 	if (do_switch) {
2583 		raw_spin_lock(&ctx->lock);
2584 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2585 		cpuctx->task_ctx = NULL;
2586 		raw_spin_unlock(&ctx->lock);
2587 	}
2588 }
2589 
perf_sched_cb_dec(struct pmu * pmu)2590 void perf_sched_cb_dec(struct pmu *pmu)
2591 {
2592 	this_cpu_dec(perf_sched_cb_usages);
2593 }
2594 
perf_sched_cb_inc(struct pmu * pmu)2595 void perf_sched_cb_inc(struct pmu *pmu)
2596 {
2597 	this_cpu_inc(perf_sched_cb_usages);
2598 }
2599 
2600 /*
2601  * This function provides the context switch callback to the lower code
2602  * layer. It is invoked ONLY when the context switch callback is enabled.
2603  */
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)2604 static void perf_pmu_sched_task(struct task_struct *prev,
2605 				struct task_struct *next,
2606 				bool sched_in)
2607 {
2608 	struct perf_cpu_context *cpuctx;
2609 	struct pmu *pmu;
2610 	unsigned long flags;
2611 
2612 	if (prev == next)
2613 		return;
2614 
2615 	local_irq_save(flags);
2616 
2617 	rcu_read_lock();
2618 
2619 	list_for_each_entry_rcu(pmu, &pmus, entry) {
2620 		if (pmu->sched_task) {
2621 			cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2622 
2623 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2624 
2625 			perf_pmu_disable(pmu);
2626 
2627 			pmu->sched_task(cpuctx->task_ctx, sched_in);
2628 
2629 			perf_pmu_enable(pmu);
2630 
2631 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2632 		}
2633 	}
2634 
2635 	rcu_read_unlock();
2636 
2637 	local_irq_restore(flags);
2638 }
2639 
2640 #define for_each_task_context_nr(ctxn)					\
2641 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2642 
2643 /*
2644  * Called from scheduler to remove the events of the current task,
2645  * with interrupts disabled.
2646  *
2647  * We stop each event and update the event value in event->count.
2648  *
2649  * This does not protect us against NMI, but disable()
2650  * sets the disabled bit in the control field of event _before_
2651  * accessing the event control register. If a NMI hits, then it will
2652  * not restart the event.
2653  */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)2654 void __perf_event_task_sched_out(struct task_struct *task,
2655 				 struct task_struct *next)
2656 {
2657 	int ctxn;
2658 
2659 	if (__this_cpu_read(perf_sched_cb_usages))
2660 		perf_pmu_sched_task(task, next, false);
2661 
2662 	for_each_task_context_nr(ctxn)
2663 		perf_event_context_sched_out(task, ctxn, next);
2664 
2665 	/*
2666 	 * if cgroup events exist on this CPU, then we need
2667 	 * to check if we have to switch out PMU state.
2668 	 * cgroup event are system-wide mode only
2669 	 */
2670 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2671 		perf_cgroup_sched_out(task, next);
2672 }
2673 
task_ctx_sched_out(struct perf_event_context * ctx)2674 static void task_ctx_sched_out(struct perf_event_context *ctx)
2675 {
2676 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2677 
2678 	if (!cpuctx->task_ctx)
2679 		return;
2680 
2681 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2682 		return;
2683 
2684 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2685 	cpuctx->task_ctx = NULL;
2686 }
2687 
2688 /*
2689  * Called with IRQs disabled
2690  */
cpu_ctx_sched_out(struct perf_cpu_context * cpuctx,enum event_type_t event_type)2691 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2692 			      enum event_type_t event_type)
2693 {
2694 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2695 }
2696 
2697 static void
ctx_pinned_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)2698 ctx_pinned_sched_in(struct perf_event_context *ctx,
2699 		    struct perf_cpu_context *cpuctx)
2700 {
2701 	struct perf_event *event;
2702 
2703 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2704 		if (event->state <= PERF_EVENT_STATE_OFF)
2705 			continue;
2706 		if (!event_filter_match(event))
2707 			continue;
2708 
2709 		/* may need to reset tstamp_enabled */
2710 		if (is_cgroup_event(event))
2711 			perf_cgroup_mark_enabled(event, ctx);
2712 
2713 		if (group_can_go_on(event, cpuctx, 1))
2714 			group_sched_in(event, cpuctx, ctx);
2715 
2716 		/*
2717 		 * If this pinned group hasn't been scheduled,
2718 		 * put it in error state.
2719 		 */
2720 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2721 			update_group_times(event);
2722 			event->state = PERF_EVENT_STATE_ERROR;
2723 		}
2724 	}
2725 }
2726 
2727 static void
ctx_flexible_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)2728 ctx_flexible_sched_in(struct perf_event_context *ctx,
2729 		      struct perf_cpu_context *cpuctx)
2730 {
2731 	struct perf_event *event;
2732 	int can_add_hw = 1;
2733 
2734 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2735 		/* Ignore events in OFF or ERROR state */
2736 		if (event->state <= PERF_EVENT_STATE_OFF)
2737 			continue;
2738 		/*
2739 		 * Listen to the 'cpu' scheduling filter constraint
2740 		 * of events:
2741 		 */
2742 		if (!event_filter_match(event))
2743 			continue;
2744 
2745 		/* may need to reset tstamp_enabled */
2746 		if (is_cgroup_event(event))
2747 			perf_cgroup_mark_enabled(event, ctx);
2748 
2749 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2750 			if (group_sched_in(event, cpuctx, ctx))
2751 				can_add_hw = 0;
2752 		}
2753 	}
2754 }
2755 
2756 static void
ctx_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)2757 ctx_sched_in(struct perf_event_context *ctx,
2758 	     struct perf_cpu_context *cpuctx,
2759 	     enum event_type_t event_type,
2760 	     struct task_struct *task)
2761 {
2762 	u64 now;
2763 	int is_active = ctx->is_active;
2764 
2765 	ctx->is_active |= event_type;
2766 	if (likely(!ctx->nr_events))
2767 		return;
2768 
2769 	now = perf_clock();
2770 	ctx->timestamp = now;
2771 	perf_cgroup_set_timestamp(task, ctx);
2772 	/*
2773 	 * First go through the list and put on any pinned groups
2774 	 * in order to give them the best chance of going on.
2775 	 */
2776 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2777 		ctx_pinned_sched_in(ctx, cpuctx);
2778 
2779 	/* Then walk through the lower prio flexible groups */
2780 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2781 		ctx_flexible_sched_in(ctx, cpuctx);
2782 }
2783 
cpu_ctx_sched_in(struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)2784 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2785 			     enum event_type_t event_type,
2786 			     struct task_struct *task)
2787 {
2788 	struct perf_event_context *ctx = &cpuctx->ctx;
2789 
2790 	ctx_sched_in(ctx, cpuctx, event_type, task);
2791 }
2792 
perf_event_context_sched_in(struct perf_event_context * ctx,struct task_struct * task)2793 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2794 					struct task_struct *task)
2795 {
2796 	struct perf_cpu_context *cpuctx;
2797 
2798 	cpuctx = __get_cpu_context(ctx);
2799 	if (cpuctx->task_ctx == ctx)
2800 		return;
2801 
2802 	perf_ctx_lock(cpuctx, ctx);
2803 	perf_pmu_disable(ctx->pmu);
2804 	/*
2805 	 * We want to keep the following priority order:
2806 	 * cpu pinned (that don't need to move), task pinned,
2807 	 * cpu flexible, task flexible.
2808 	 */
2809 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2810 
2811 	if (ctx->nr_events)
2812 		cpuctx->task_ctx = ctx;
2813 
2814 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2815 
2816 	perf_pmu_enable(ctx->pmu);
2817 	perf_ctx_unlock(cpuctx, ctx);
2818 }
2819 
2820 /*
2821  * Called from scheduler to add the events of the current task
2822  * with interrupts disabled.
2823  *
2824  * We restore the event value and then enable it.
2825  *
2826  * This does not protect us against NMI, but enable()
2827  * sets the enabled bit in the control field of event _before_
2828  * accessing the event control register. If a NMI hits, then it will
2829  * keep the event running.
2830  */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)2831 void __perf_event_task_sched_in(struct task_struct *prev,
2832 				struct task_struct *task)
2833 {
2834 	struct perf_event_context *ctx;
2835 	int ctxn;
2836 
2837 	for_each_task_context_nr(ctxn) {
2838 		ctx = task->perf_event_ctxp[ctxn];
2839 		if (likely(!ctx))
2840 			continue;
2841 
2842 		perf_event_context_sched_in(ctx, task);
2843 	}
2844 	/*
2845 	 * if cgroup events exist on this CPU, then we need
2846 	 * to check if we have to switch in PMU state.
2847 	 * cgroup event are system-wide mode only
2848 	 */
2849 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2850 		perf_cgroup_sched_in(prev, task);
2851 
2852 	if (__this_cpu_read(perf_sched_cb_usages))
2853 		perf_pmu_sched_task(prev, task, true);
2854 }
2855 
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)2856 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2857 {
2858 	u64 frequency = event->attr.sample_freq;
2859 	u64 sec = NSEC_PER_SEC;
2860 	u64 divisor, dividend;
2861 
2862 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2863 
2864 	count_fls = fls64(count);
2865 	nsec_fls = fls64(nsec);
2866 	frequency_fls = fls64(frequency);
2867 	sec_fls = 30;
2868 
2869 	/*
2870 	 * We got @count in @nsec, with a target of sample_freq HZ
2871 	 * the target period becomes:
2872 	 *
2873 	 *             @count * 10^9
2874 	 * period = -------------------
2875 	 *          @nsec * sample_freq
2876 	 *
2877 	 */
2878 
2879 	/*
2880 	 * Reduce accuracy by one bit such that @a and @b converge
2881 	 * to a similar magnitude.
2882 	 */
2883 #define REDUCE_FLS(a, b)		\
2884 do {					\
2885 	if (a##_fls > b##_fls) {	\
2886 		a >>= 1;		\
2887 		a##_fls--;		\
2888 	} else {			\
2889 		b >>= 1;		\
2890 		b##_fls--;		\
2891 	}				\
2892 } while (0)
2893 
2894 	/*
2895 	 * Reduce accuracy until either term fits in a u64, then proceed with
2896 	 * the other, so that finally we can do a u64/u64 division.
2897 	 */
2898 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2899 		REDUCE_FLS(nsec, frequency);
2900 		REDUCE_FLS(sec, count);
2901 	}
2902 
2903 	if (count_fls + sec_fls > 64) {
2904 		divisor = nsec * frequency;
2905 
2906 		while (count_fls + sec_fls > 64) {
2907 			REDUCE_FLS(count, sec);
2908 			divisor >>= 1;
2909 		}
2910 
2911 		dividend = count * sec;
2912 	} else {
2913 		dividend = count * sec;
2914 
2915 		while (nsec_fls + frequency_fls > 64) {
2916 			REDUCE_FLS(nsec, frequency);
2917 			dividend >>= 1;
2918 		}
2919 
2920 		divisor = nsec * frequency;
2921 	}
2922 
2923 	if (!divisor)
2924 		return dividend;
2925 
2926 	return div64_u64(dividend, divisor);
2927 }
2928 
2929 static DEFINE_PER_CPU(int, perf_throttled_count);
2930 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2931 
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)2932 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2933 {
2934 	struct hw_perf_event *hwc = &event->hw;
2935 	s64 period, sample_period;
2936 	s64 delta;
2937 
2938 	period = perf_calculate_period(event, nsec, count);
2939 
2940 	delta = (s64)(period - hwc->sample_period);
2941 	delta = (delta + 7) / 8; /* low pass filter */
2942 
2943 	sample_period = hwc->sample_period + delta;
2944 
2945 	if (!sample_period)
2946 		sample_period = 1;
2947 
2948 	hwc->sample_period = sample_period;
2949 
2950 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2951 		if (disable)
2952 			event->pmu->stop(event, PERF_EF_UPDATE);
2953 
2954 		local64_set(&hwc->period_left, 0);
2955 
2956 		if (disable)
2957 			event->pmu->start(event, PERF_EF_RELOAD);
2958 	}
2959 }
2960 
2961 /*
2962  * combine freq adjustment with unthrottling to avoid two passes over the
2963  * events. At the same time, make sure, having freq events does not change
2964  * the rate of unthrottling as that would introduce bias.
2965  */
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,int needs_unthr)2966 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2967 					   int needs_unthr)
2968 {
2969 	struct perf_event *event;
2970 	struct hw_perf_event *hwc;
2971 	u64 now, period = TICK_NSEC;
2972 	s64 delta;
2973 
2974 	/*
2975 	 * only need to iterate over all events iff:
2976 	 * - context have events in frequency mode (needs freq adjust)
2977 	 * - there are events to unthrottle on this cpu
2978 	 */
2979 	if (!(ctx->nr_freq || needs_unthr))
2980 		return;
2981 
2982 	raw_spin_lock(&ctx->lock);
2983 	perf_pmu_disable(ctx->pmu);
2984 
2985 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2986 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2987 			continue;
2988 
2989 		if (!event_filter_match(event))
2990 			continue;
2991 
2992 		perf_pmu_disable(event->pmu);
2993 
2994 		hwc = &event->hw;
2995 
2996 		if (hwc->interrupts == MAX_INTERRUPTS) {
2997 			hwc->interrupts = 0;
2998 			perf_log_throttle(event, 1);
2999 			event->pmu->start(event, 0);
3000 		}
3001 
3002 		if (!event->attr.freq || !event->attr.sample_freq)
3003 			goto next;
3004 
3005 		/*
3006 		 * stop the event and update event->count
3007 		 */
3008 		event->pmu->stop(event, PERF_EF_UPDATE);
3009 
3010 		now = local64_read(&event->count);
3011 		delta = now - hwc->freq_count_stamp;
3012 		hwc->freq_count_stamp = now;
3013 
3014 		/*
3015 		 * restart the event
3016 		 * reload only if value has changed
3017 		 * we have stopped the event so tell that
3018 		 * to perf_adjust_period() to avoid stopping it
3019 		 * twice.
3020 		 */
3021 		if (delta > 0)
3022 			perf_adjust_period(event, period, delta, false);
3023 
3024 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3025 	next:
3026 		perf_pmu_enable(event->pmu);
3027 	}
3028 
3029 	perf_pmu_enable(ctx->pmu);
3030 	raw_spin_unlock(&ctx->lock);
3031 }
3032 
3033 /*
3034  * Round-robin a context's events:
3035  */
rotate_ctx(struct perf_event_context * ctx)3036 static void rotate_ctx(struct perf_event_context *ctx)
3037 {
3038 	/*
3039 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3040 	 * disabled by the inheritance code.
3041 	 */
3042 	if (!ctx->rotate_disable)
3043 		list_rotate_left(&ctx->flexible_groups);
3044 }
3045 
perf_rotate_context(struct perf_cpu_context * cpuctx)3046 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3047 {
3048 	struct perf_event_context *ctx = NULL;
3049 	int rotate = 0;
3050 
3051 	if (cpuctx->ctx.nr_events) {
3052 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3053 			rotate = 1;
3054 	}
3055 
3056 	ctx = cpuctx->task_ctx;
3057 	if (ctx && ctx->nr_events) {
3058 		if (ctx->nr_events != ctx->nr_active)
3059 			rotate = 1;
3060 	}
3061 
3062 	if (!rotate)
3063 		goto done;
3064 
3065 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3066 	perf_pmu_disable(cpuctx->ctx.pmu);
3067 
3068 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3069 	if (ctx)
3070 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3071 
3072 	rotate_ctx(&cpuctx->ctx);
3073 	if (ctx)
3074 		rotate_ctx(ctx);
3075 
3076 	perf_event_sched_in(cpuctx, ctx, current);
3077 
3078 	perf_pmu_enable(cpuctx->ctx.pmu);
3079 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3080 done:
3081 
3082 	return rotate;
3083 }
3084 
3085 #ifdef CONFIG_NO_HZ_FULL
perf_event_can_stop_tick(void)3086 bool perf_event_can_stop_tick(void)
3087 {
3088 	if (atomic_read(&nr_freq_events) ||
3089 	    __this_cpu_read(perf_throttled_count))
3090 		return false;
3091 	else
3092 		return true;
3093 }
3094 #endif
3095 
perf_event_task_tick(void)3096 void perf_event_task_tick(void)
3097 {
3098 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3099 	struct perf_event_context *ctx, *tmp;
3100 	int throttled;
3101 
3102 	WARN_ON(!irqs_disabled());
3103 
3104 	__this_cpu_inc(perf_throttled_seq);
3105 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3106 
3107 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3108 		perf_adjust_freq_unthr_context(ctx, throttled);
3109 }
3110 
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)3111 static int event_enable_on_exec(struct perf_event *event,
3112 				struct perf_event_context *ctx)
3113 {
3114 	if (!event->attr.enable_on_exec)
3115 		return 0;
3116 
3117 	event->attr.enable_on_exec = 0;
3118 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3119 		return 0;
3120 
3121 	__perf_event_mark_enabled(event);
3122 
3123 	return 1;
3124 }
3125 
3126 /*
3127  * Enable all of a task's events that have been marked enable-on-exec.
3128  * This expects task == current.
3129  */
perf_event_enable_on_exec(struct perf_event_context * ctx)3130 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3131 {
3132 	struct perf_event_context *clone_ctx = NULL;
3133 	struct perf_event *event;
3134 	unsigned long flags;
3135 	int enabled = 0;
3136 	int ret;
3137 
3138 	local_irq_save(flags);
3139 	if (!ctx || !ctx->nr_events)
3140 		goto out;
3141 
3142 	/*
3143 	 * We must ctxsw out cgroup events to avoid conflict
3144 	 * when invoking perf_task_event_sched_in() later on
3145 	 * in this function. Otherwise we end up trying to
3146 	 * ctxswin cgroup events which are already scheduled
3147 	 * in.
3148 	 */
3149 	perf_cgroup_sched_out(current, NULL);
3150 
3151 	raw_spin_lock(&ctx->lock);
3152 	task_ctx_sched_out(ctx);
3153 
3154 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3155 		ret = event_enable_on_exec(event, ctx);
3156 		if (ret)
3157 			enabled = 1;
3158 	}
3159 
3160 	/*
3161 	 * Unclone this context if we enabled any event.
3162 	 */
3163 	if (enabled)
3164 		clone_ctx = unclone_ctx(ctx);
3165 
3166 	raw_spin_unlock(&ctx->lock);
3167 
3168 	/*
3169 	 * Also calls ctxswin for cgroup events, if any:
3170 	 */
3171 	perf_event_context_sched_in(ctx, ctx->task);
3172 out:
3173 	local_irq_restore(flags);
3174 
3175 	if (clone_ctx)
3176 		put_ctx(clone_ctx);
3177 }
3178 
perf_event_exec(void)3179 void perf_event_exec(void)
3180 {
3181 	struct perf_event_context *ctx;
3182 	int ctxn;
3183 
3184 	rcu_read_lock();
3185 	for_each_task_context_nr(ctxn) {
3186 		ctx = current->perf_event_ctxp[ctxn];
3187 		if (!ctx)
3188 			continue;
3189 
3190 		perf_event_enable_on_exec(ctx);
3191 	}
3192 	rcu_read_unlock();
3193 }
3194 
3195 /*
3196  * Cross CPU call to read the hardware event
3197  */
__perf_event_read(void * info)3198 static void __perf_event_read(void *info)
3199 {
3200 	struct perf_event *event = info;
3201 	struct perf_event_context *ctx = event->ctx;
3202 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3203 
3204 	/*
3205 	 * If this is a task context, we need to check whether it is
3206 	 * the current task context of this cpu.  If not it has been
3207 	 * scheduled out before the smp call arrived.  In that case
3208 	 * event->count would have been updated to a recent sample
3209 	 * when the event was scheduled out.
3210 	 */
3211 	if (ctx->task && cpuctx->task_ctx != ctx)
3212 		return;
3213 
3214 	raw_spin_lock(&ctx->lock);
3215 	if (ctx->is_active) {
3216 		update_context_time(ctx);
3217 		update_cgrp_time_from_event(event);
3218 	}
3219 	update_event_times(event);
3220 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3221 		event->pmu->read(event);
3222 	raw_spin_unlock(&ctx->lock);
3223 }
3224 
perf_event_count(struct perf_event * event)3225 static inline u64 perf_event_count(struct perf_event *event)
3226 {
3227 	if (event->pmu->count)
3228 		return event->pmu->count(event);
3229 
3230 	return __perf_event_count(event);
3231 }
3232 
perf_event_read(struct perf_event * event)3233 static u64 perf_event_read(struct perf_event *event)
3234 {
3235 	/*
3236 	 * If event is enabled and currently active on a CPU, update the
3237 	 * value in the event structure:
3238 	 */
3239 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3240 		smp_call_function_single(event->oncpu,
3241 					 __perf_event_read, event, 1);
3242 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3243 		struct perf_event_context *ctx = event->ctx;
3244 		unsigned long flags;
3245 
3246 		raw_spin_lock_irqsave(&ctx->lock, flags);
3247 		/*
3248 		 * may read while context is not active
3249 		 * (e.g., thread is blocked), in that case
3250 		 * we cannot update context time
3251 		 */
3252 		if (ctx->is_active) {
3253 			update_context_time(ctx);
3254 			update_cgrp_time_from_event(event);
3255 		}
3256 		update_event_times(event);
3257 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3258 	}
3259 
3260 	return perf_event_count(event);
3261 }
3262 
3263 /*
3264  * Initialize the perf_event context in a task_struct:
3265  */
__perf_event_init_context(struct perf_event_context * ctx)3266 static void __perf_event_init_context(struct perf_event_context *ctx)
3267 {
3268 	raw_spin_lock_init(&ctx->lock);
3269 	mutex_init(&ctx->mutex);
3270 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3271 	INIT_LIST_HEAD(&ctx->pinned_groups);
3272 	INIT_LIST_HEAD(&ctx->flexible_groups);
3273 	INIT_LIST_HEAD(&ctx->event_list);
3274 	atomic_set(&ctx->refcount, 1);
3275 	INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3276 }
3277 
3278 static struct perf_event_context *
alloc_perf_context(struct pmu * pmu,struct task_struct * task)3279 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3280 {
3281 	struct perf_event_context *ctx;
3282 
3283 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3284 	if (!ctx)
3285 		return NULL;
3286 
3287 	__perf_event_init_context(ctx);
3288 	if (task) {
3289 		ctx->task = task;
3290 		get_task_struct(task);
3291 	}
3292 	ctx->pmu = pmu;
3293 
3294 	return ctx;
3295 }
3296 
3297 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)3298 find_lively_task_by_vpid(pid_t vpid)
3299 {
3300 	struct task_struct *task;
3301 	int err;
3302 
3303 	rcu_read_lock();
3304 	if (!vpid)
3305 		task = current;
3306 	else
3307 		task = find_task_by_vpid(vpid);
3308 	if (task)
3309 		get_task_struct(task);
3310 	rcu_read_unlock();
3311 
3312 	if (!task)
3313 		return ERR_PTR(-ESRCH);
3314 
3315 	/* Reuse ptrace permission checks for now. */
3316 	err = -EACCES;
3317 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
3318 		goto errout;
3319 
3320 	return task;
3321 errout:
3322 	put_task_struct(task);
3323 	return ERR_PTR(err);
3324 
3325 }
3326 
3327 /*
3328  * Returns a matching context with refcount and pincount.
3329  */
3330 static struct perf_event_context *
find_get_context(struct pmu * pmu,struct task_struct * task,struct perf_event * event)3331 find_get_context(struct pmu *pmu, struct task_struct *task,
3332 		struct perf_event *event)
3333 {
3334 	struct perf_event_context *ctx, *clone_ctx = NULL;
3335 	struct perf_cpu_context *cpuctx;
3336 	void *task_ctx_data = NULL;
3337 	unsigned long flags;
3338 	int ctxn, err;
3339 	int cpu = event->cpu;
3340 
3341 	if (!task) {
3342 		/* Must be root to operate on a CPU event: */
3343 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3344 			return ERR_PTR(-EACCES);
3345 
3346 		/*
3347 		 * We could be clever and allow to attach a event to an
3348 		 * offline CPU and activate it when the CPU comes up, but
3349 		 * that's for later.
3350 		 */
3351 		if (!cpu_online(cpu))
3352 			return ERR_PTR(-ENODEV);
3353 
3354 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3355 		ctx = &cpuctx->ctx;
3356 		get_ctx(ctx);
3357 		++ctx->pin_count;
3358 
3359 		return ctx;
3360 	}
3361 
3362 	err = -EINVAL;
3363 	ctxn = pmu->task_ctx_nr;
3364 	if (ctxn < 0)
3365 		goto errout;
3366 
3367 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3368 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3369 		if (!task_ctx_data) {
3370 			err = -ENOMEM;
3371 			goto errout;
3372 		}
3373 	}
3374 
3375 retry:
3376 	ctx = perf_lock_task_context(task, ctxn, &flags);
3377 	if (ctx) {
3378 		clone_ctx = unclone_ctx(ctx);
3379 		++ctx->pin_count;
3380 
3381 		if (task_ctx_data && !ctx->task_ctx_data) {
3382 			ctx->task_ctx_data = task_ctx_data;
3383 			task_ctx_data = NULL;
3384 		}
3385 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3386 
3387 		if (clone_ctx)
3388 			put_ctx(clone_ctx);
3389 	} else {
3390 		ctx = alloc_perf_context(pmu, task);
3391 		err = -ENOMEM;
3392 		if (!ctx)
3393 			goto errout;
3394 
3395 		if (task_ctx_data) {
3396 			ctx->task_ctx_data = task_ctx_data;
3397 			task_ctx_data = NULL;
3398 		}
3399 
3400 		err = 0;
3401 		mutex_lock(&task->perf_event_mutex);
3402 		/*
3403 		 * If it has already passed perf_event_exit_task().
3404 		 * we must see PF_EXITING, it takes this mutex too.
3405 		 */
3406 		if (task->flags & PF_EXITING)
3407 			err = -ESRCH;
3408 		else if (task->perf_event_ctxp[ctxn])
3409 			err = -EAGAIN;
3410 		else {
3411 			get_ctx(ctx);
3412 			++ctx->pin_count;
3413 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3414 		}
3415 		mutex_unlock(&task->perf_event_mutex);
3416 
3417 		if (unlikely(err)) {
3418 			put_ctx(ctx);
3419 
3420 			if (err == -EAGAIN)
3421 				goto retry;
3422 			goto errout;
3423 		}
3424 	}
3425 
3426 	kfree(task_ctx_data);
3427 	return ctx;
3428 
3429 errout:
3430 	kfree(task_ctx_data);
3431 	return ERR_PTR(err);
3432 }
3433 
3434 static void perf_event_free_filter(struct perf_event *event);
3435 static void perf_event_free_bpf_prog(struct perf_event *event);
3436 
free_event_rcu(struct rcu_head * head)3437 static void free_event_rcu(struct rcu_head *head)
3438 {
3439 	struct perf_event *event;
3440 
3441 	event = container_of(head, struct perf_event, rcu_head);
3442 	if (event->ns)
3443 		put_pid_ns(event->ns);
3444 	perf_event_free_filter(event);
3445 	kfree(event);
3446 }
3447 
3448 static void ring_buffer_attach(struct perf_event *event,
3449 			       struct ring_buffer *rb);
3450 
unaccount_event_cpu(struct perf_event * event,int cpu)3451 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3452 {
3453 	if (event->parent)
3454 		return;
3455 
3456 	if (is_cgroup_event(event))
3457 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3458 }
3459 
unaccount_event(struct perf_event * event)3460 static void unaccount_event(struct perf_event *event)
3461 {
3462 	if (event->parent)
3463 		return;
3464 
3465 	if (event->attach_state & PERF_ATTACH_TASK)
3466 		static_key_slow_dec_deferred(&perf_sched_events);
3467 	if (event->attr.mmap || event->attr.mmap_data)
3468 		atomic_dec(&nr_mmap_events);
3469 	if (event->attr.comm)
3470 		atomic_dec(&nr_comm_events);
3471 	if (event->attr.task)
3472 		atomic_dec(&nr_task_events);
3473 	if (event->attr.freq)
3474 		atomic_dec(&nr_freq_events);
3475 	if (is_cgroup_event(event))
3476 		static_key_slow_dec_deferred(&perf_sched_events);
3477 	if (has_branch_stack(event))
3478 		static_key_slow_dec_deferred(&perf_sched_events);
3479 
3480 	unaccount_event_cpu(event, event->cpu);
3481 }
3482 
3483 /*
3484  * The following implement mutual exclusion of events on "exclusive" pmus
3485  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3486  * at a time, so we disallow creating events that might conflict, namely:
3487  *
3488  *  1) cpu-wide events in the presence of per-task events,
3489  *  2) per-task events in the presence of cpu-wide events,
3490  *  3) two matching events on the same context.
3491  *
3492  * The former two cases are handled in the allocation path (perf_event_alloc(),
3493  * __free_event()), the latter -- before the first perf_install_in_context().
3494  */
exclusive_event_init(struct perf_event * event)3495 static int exclusive_event_init(struct perf_event *event)
3496 {
3497 	struct pmu *pmu = event->pmu;
3498 
3499 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3500 		return 0;
3501 
3502 	/*
3503 	 * Prevent co-existence of per-task and cpu-wide events on the
3504 	 * same exclusive pmu.
3505 	 *
3506 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3507 	 * events on this "exclusive" pmu, positive means there are
3508 	 * per-task events.
3509 	 *
3510 	 * Since this is called in perf_event_alloc() path, event::ctx
3511 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3512 	 * to mean "per-task event", because unlike other attach states it
3513 	 * never gets cleared.
3514 	 */
3515 	if (event->attach_state & PERF_ATTACH_TASK) {
3516 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3517 			return -EBUSY;
3518 	} else {
3519 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3520 			return -EBUSY;
3521 	}
3522 
3523 	return 0;
3524 }
3525 
exclusive_event_destroy(struct perf_event * event)3526 static void exclusive_event_destroy(struct perf_event *event)
3527 {
3528 	struct pmu *pmu = event->pmu;
3529 
3530 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3531 		return;
3532 
3533 	/* see comment in exclusive_event_init() */
3534 	if (event->attach_state & PERF_ATTACH_TASK)
3535 		atomic_dec(&pmu->exclusive_cnt);
3536 	else
3537 		atomic_inc(&pmu->exclusive_cnt);
3538 }
3539 
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)3540 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3541 {
3542 	if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3543 	    (e1->cpu == e2->cpu ||
3544 	     e1->cpu == -1 ||
3545 	     e2->cpu == -1))
3546 		return true;
3547 	return false;
3548 }
3549 
3550 /* Called under the same ctx::mutex as perf_install_in_context() */
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)3551 static bool exclusive_event_installable(struct perf_event *event,
3552 					struct perf_event_context *ctx)
3553 {
3554 	struct perf_event *iter_event;
3555 	struct pmu *pmu = event->pmu;
3556 
3557 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3558 		return true;
3559 
3560 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3561 		if (exclusive_event_match(iter_event, event))
3562 			return false;
3563 	}
3564 
3565 	return true;
3566 }
3567 
__free_event(struct perf_event * event)3568 static void __free_event(struct perf_event *event)
3569 {
3570 	if (!event->parent) {
3571 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3572 			put_callchain_buffers();
3573 	}
3574 
3575 	perf_event_free_bpf_prog(event);
3576 
3577 	if (event->destroy)
3578 		event->destroy(event);
3579 
3580 	if (event->ctx)
3581 		put_ctx(event->ctx);
3582 
3583 	if (event->pmu) {
3584 		exclusive_event_destroy(event);
3585 		module_put(event->pmu->module);
3586 	}
3587 
3588 	call_rcu(&event->rcu_head, free_event_rcu);
3589 }
3590 
_free_event(struct perf_event * event)3591 static void _free_event(struct perf_event *event)
3592 {
3593 	irq_work_sync(&event->pending);
3594 
3595 	unaccount_event(event);
3596 
3597 	if (event->rb) {
3598 		/*
3599 		 * Can happen when we close an event with re-directed output.
3600 		 *
3601 		 * Since we have a 0 refcount, perf_mmap_close() will skip
3602 		 * over us; possibly making our ring_buffer_put() the last.
3603 		 */
3604 		mutex_lock(&event->mmap_mutex);
3605 		ring_buffer_attach(event, NULL);
3606 		mutex_unlock(&event->mmap_mutex);
3607 	}
3608 
3609 	if (is_cgroup_event(event))
3610 		perf_detach_cgroup(event);
3611 
3612 	__free_event(event);
3613 }
3614 
3615 /*
3616  * Used to free events which have a known refcount of 1, such as in error paths
3617  * where the event isn't exposed yet and inherited events.
3618  */
free_event(struct perf_event * event)3619 static void free_event(struct perf_event *event)
3620 {
3621 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3622 				"unexpected event refcount: %ld; ptr=%p\n",
3623 				atomic_long_read(&event->refcount), event)) {
3624 		/* leak to avoid use-after-free */
3625 		return;
3626 	}
3627 
3628 	_free_event(event);
3629 }
3630 
3631 /*
3632  * Remove user event from the owner task.
3633  */
perf_remove_from_owner(struct perf_event * event)3634 static void perf_remove_from_owner(struct perf_event *event)
3635 {
3636 	struct task_struct *owner;
3637 
3638 	rcu_read_lock();
3639 	owner = ACCESS_ONCE(event->owner);
3640 	/*
3641 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3642 	 * !owner it means the list deletion is complete and we can indeed
3643 	 * free this event, otherwise we need to serialize on
3644 	 * owner->perf_event_mutex.
3645 	 */
3646 	smp_read_barrier_depends();
3647 	if (owner) {
3648 		/*
3649 		 * Since delayed_put_task_struct() also drops the last
3650 		 * task reference we can safely take a new reference
3651 		 * while holding the rcu_read_lock().
3652 		 */
3653 		get_task_struct(owner);
3654 	}
3655 	rcu_read_unlock();
3656 
3657 	if (owner) {
3658 		/*
3659 		 * If we're here through perf_event_exit_task() we're already
3660 		 * holding ctx->mutex which would be an inversion wrt. the
3661 		 * normal lock order.
3662 		 *
3663 		 * However we can safely take this lock because its the child
3664 		 * ctx->mutex.
3665 		 */
3666 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3667 
3668 		/*
3669 		 * We have to re-check the event->owner field, if it is cleared
3670 		 * we raced with perf_event_exit_task(), acquiring the mutex
3671 		 * ensured they're done, and we can proceed with freeing the
3672 		 * event.
3673 		 */
3674 		if (event->owner)
3675 			list_del_init(&event->owner_entry);
3676 		mutex_unlock(&owner->perf_event_mutex);
3677 		put_task_struct(owner);
3678 	}
3679 }
3680 
put_event(struct perf_event * event)3681 static void put_event(struct perf_event *event)
3682 {
3683 	struct perf_event_context *ctx;
3684 
3685 	if (!atomic_long_dec_and_test(&event->refcount))
3686 		return;
3687 
3688 	if (!is_kernel_event(event))
3689 		perf_remove_from_owner(event);
3690 
3691 	/*
3692 	 * There are two ways this annotation is useful:
3693 	 *
3694 	 *  1) there is a lock recursion from perf_event_exit_task
3695 	 *     see the comment there.
3696 	 *
3697 	 *  2) there is a lock-inversion with mmap_sem through
3698 	 *     perf_event_read_group(), which takes faults while
3699 	 *     holding ctx->mutex, however this is called after
3700 	 *     the last filedesc died, so there is no possibility
3701 	 *     to trigger the AB-BA case.
3702 	 */
3703 	ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3704 	WARN_ON_ONCE(ctx->parent_ctx);
3705 	perf_remove_from_context(event, true);
3706 	perf_event_ctx_unlock(event, ctx);
3707 
3708 	_free_event(event);
3709 }
3710 
perf_event_release_kernel(struct perf_event * event)3711 int perf_event_release_kernel(struct perf_event *event)
3712 {
3713 	put_event(event);
3714 	return 0;
3715 }
3716 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3717 
3718 /*
3719  * Called when the last reference to the file is gone.
3720  */
perf_release(struct inode * inode,struct file * file)3721 static int perf_release(struct inode *inode, struct file *file)
3722 {
3723 	put_event(file->private_data);
3724 	return 0;
3725 }
3726 
3727 /*
3728  * Remove all orphanes events from the context.
3729  */
orphans_remove_work(struct work_struct * work)3730 static void orphans_remove_work(struct work_struct *work)
3731 {
3732 	struct perf_event_context *ctx;
3733 	struct perf_event *event, *tmp;
3734 
3735 	ctx = container_of(work, struct perf_event_context,
3736 			   orphans_remove.work);
3737 
3738 	mutex_lock(&ctx->mutex);
3739 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3740 		struct perf_event *parent_event = event->parent;
3741 
3742 		if (!is_orphaned_child(event))
3743 			continue;
3744 
3745 		perf_remove_from_context(event, true);
3746 
3747 		mutex_lock(&parent_event->child_mutex);
3748 		list_del_init(&event->child_list);
3749 		mutex_unlock(&parent_event->child_mutex);
3750 
3751 		free_event(event);
3752 		put_event(parent_event);
3753 	}
3754 
3755 	raw_spin_lock_irq(&ctx->lock);
3756 	ctx->orphans_remove_sched = false;
3757 	raw_spin_unlock_irq(&ctx->lock);
3758 	mutex_unlock(&ctx->mutex);
3759 
3760 	put_ctx(ctx);
3761 }
3762 
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)3763 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3764 {
3765 	struct perf_event *child;
3766 	u64 total = 0;
3767 
3768 	*enabled = 0;
3769 	*running = 0;
3770 
3771 	mutex_lock(&event->child_mutex);
3772 	total += perf_event_read(event);
3773 	*enabled += event->total_time_enabled +
3774 			atomic64_read(&event->child_total_time_enabled);
3775 	*running += event->total_time_running +
3776 			atomic64_read(&event->child_total_time_running);
3777 
3778 	list_for_each_entry(child, &event->child_list, child_list) {
3779 		total += perf_event_read(child);
3780 		*enabled += child->total_time_enabled;
3781 		*running += child->total_time_running;
3782 	}
3783 	mutex_unlock(&event->child_mutex);
3784 
3785 	return total;
3786 }
3787 EXPORT_SYMBOL_GPL(perf_event_read_value);
3788 
perf_event_read_group(struct perf_event * event,u64 read_format,char __user * buf)3789 static int perf_event_read_group(struct perf_event *event,
3790 				   u64 read_format, char __user *buf)
3791 {
3792 	struct perf_event *leader = event->group_leader, *sub;
3793 	struct perf_event_context *ctx = leader->ctx;
3794 	int n = 0, size = 0, ret;
3795 	u64 count, enabled, running;
3796 	u64 values[5];
3797 
3798 	lockdep_assert_held(&ctx->mutex);
3799 
3800 	count = perf_event_read_value(leader, &enabled, &running);
3801 
3802 	values[n++] = 1 + leader->nr_siblings;
3803 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3804 		values[n++] = enabled;
3805 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3806 		values[n++] = running;
3807 	values[n++] = count;
3808 	if (read_format & PERF_FORMAT_ID)
3809 		values[n++] = primary_event_id(leader);
3810 
3811 	size = n * sizeof(u64);
3812 
3813 	if (copy_to_user(buf, values, size))
3814 		return -EFAULT;
3815 
3816 	ret = size;
3817 
3818 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3819 		n = 0;
3820 
3821 		values[n++] = perf_event_read_value(sub, &enabled, &running);
3822 		if (read_format & PERF_FORMAT_ID)
3823 			values[n++] = primary_event_id(sub);
3824 
3825 		size = n * sizeof(u64);
3826 
3827 		if (copy_to_user(buf + ret, values, size)) {
3828 			return -EFAULT;
3829 		}
3830 
3831 		ret += size;
3832 	}
3833 
3834 	return ret;
3835 }
3836 
perf_event_read_one(struct perf_event * event,u64 read_format,char __user * buf)3837 static int perf_event_read_one(struct perf_event *event,
3838 				 u64 read_format, char __user *buf)
3839 {
3840 	u64 enabled, running;
3841 	u64 values[4];
3842 	int n = 0;
3843 
3844 	values[n++] = perf_event_read_value(event, &enabled, &running);
3845 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3846 		values[n++] = enabled;
3847 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3848 		values[n++] = running;
3849 	if (read_format & PERF_FORMAT_ID)
3850 		values[n++] = primary_event_id(event);
3851 
3852 	if (copy_to_user(buf, values, n * sizeof(u64)))
3853 		return -EFAULT;
3854 
3855 	return n * sizeof(u64);
3856 }
3857 
is_event_hup(struct perf_event * event)3858 static bool is_event_hup(struct perf_event *event)
3859 {
3860 	bool no_children;
3861 
3862 	if (event->state != PERF_EVENT_STATE_EXIT)
3863 		return false;
3864 
3865 	mutex_lock(&event->child_mutex);
3866 	no_children = list_empty(&event->child_list);
3867 	mutex_unlock(&event->child_mutex);
3868 	return no_children;
3869 }
3870 
3871 /*
3872  * Read the performance event - simple non blocking version for now
3873  */
3874 static ssize_t
perf_read_hw(struct perf_event * event,char __user * buf,size_t count)3875 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3876 {
3877 	u64 read_format = event->attr.read_format;
3878 	int ret;
3879 
3880 	/*
3881 	 * Return end-of-file for a read on a event that is in
3882 	 * error state (i.e. because it was pinned but it couldn't be
3883 	 * scheduled on to the CPU at some point).
3884 	 */
3885 	if (event->state == PERF_EVENT_STATE_ERROR)
3886 		return 0;
3887 
3888 	if (count < event->read_size)
3889 		return -ENOSPC;
3890 
3891 	WARN_ON_ONCE(event->ctx->parent_ctx);
3892 	if (read_format & PERF_FORMAT_GROUP)
3893 		ret = perf_event_read_group(event, read_format, buf);
3894 	else
3895 		ret = perf_event_read_one(event, read_format, buf);
3896 
3897 	return ret;
3898 }
3899 
3900 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)3901 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3902 {
3903 	struct perf_event *event = file->private_data;
3904 	struct perf_event_context *ctx;
3905 	int ret;
3906 
3907 	ctx = perf_event_ctx_lock(event);
3908 	ret = perf_read_hw(event, buf, count);
3909 	perf_event_ctx_unlock(event, ctx);
3910 
3911 	return ret;
3912 }
3913 
perf_poll(struct file * file,poll_table * wait)3914 static unsigned int perf_poll(struct file *file, poll_table *wait)
3915 {
3916 	struct perf_event *event = file->private_data;
3917 	struct ring_buffer *rb;
3918 	unsigned int events = POLLHUP;
3919 
3920 	poll_wait(file, &event->waitq, wait);
3921 
3922 	if (is_event_hup(event))
3923 		return events;
3924 
3925 	/*
3926 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
3927 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3928 	 */
3929 	mutex_lock(&event->mmap_mutex);
3930 	rb = event->rb;
3931 	if (rb)
3932 		events = atomic_xchg(&rb->poll, 0);
3933 	mutex_unlock(&event->mmap_mutex);
3934 	return events;
3935 }
3936 
_perf_event_reset(struct perf_event * event)3937 static void _perf_event_reset(struct perf_event *event)
3938 {
3939 	(void)perf_event_read(event);
3940 	local64_set(&event->count, 0);
3941 	perf_event_update_userpage(event);
3942 }
3943 
3944 /*
3945  * Holding the top-level event's child_mutex means that any
3946  * descendant process that has inherited this event will block
3947  * in sync_child_event if it goes to exit, thus satisfying the
3948  * task existence requirements of perf_event_enable/disable.
3949  */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))3950 static void perf_event_for_each_child(struct perf_event *event,
3951 					void (*func)(struct perf_event *))
3952 {
3953 	struct perf_event *child;
3954 
3955 	WARN_ON_ONCE(event->ctx->parent_ctx);
3956 
3957 	mutex_lock(&event->child_mutex);
3958 	func(event);
3959 	list_for_each_entry(child, &event->child_list, child_list)
3960 		func(child);
3961 	mutex_unlock(&event->child_mutex);
3962 }
3963 
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))3964 static void perf_event_for_each(struct perf_event *event,
3965 				  void (*func)(struct perf_event *))
3966 {
3967 	struct perf_event_context *ctx = event->ctx;
3968 	struct perf_event *sibling;
3969 
3970 	lockdep_assert_held(&ctx->mutex);
3971 
3972 	event = event->group_leader;
3973 
3974 	perf_event_for_each_child(event, func);
3975 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3976 		perf_event_for_each_child(sibling, func);
3977 }
3978 
3979 struct period_event {
3980 	struct perf_event *event;
3981 	u64 value;
3982 };
3983 
__perf_event_period(void * info)3984 static int __perf_event_period(void *info)
3985 {
3986 	struct period_event *pe = info;
3987 	struct perf_event *event = pe->event;
3988 	struct perf_event_context *ctx = event->ctx;
3989 	u64 value = pe->value;
3990 	bool active;
3991 
3992 	raw_spin_lock(&ctx->lock);
3993 	if (event->attr.freq) {
3994 		event->attr.sample_freq = value;
3995 	} else {
3996 		event->attr.sample_period = value;
3997 		event->hw.sample_period = value;
3998 	}
3999 
4000 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4001 	if (active) {
4002 		perf_pmu_disable(ctx->pmu);
4003 		event->pmu->stop(event, PERF_EF_UPDATE);
4004 	}
4005 
4006 	local64_set(&event->hw.period_left, 0);
4007 
4008 	if (active) {
4009 		event->pmu->start(event, PERF_EF_RELOAD);
4010 		perf_pmu_enable(ctx->pmu);
4011 	}
4012 	raw_spin_unlock(&ctx->lock);
4013 
4014 	return 0;
4015 }
4016 
perf_event_period(struct perf_event * event,u64 __user * arg)4017 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4018 {
4019 	struct period_event pe = { .event = event, };
4020 	struct perf_event_context *ctx = event->ctx;
4021 	struct task_struct *task;
4022 	u64 value;
4023 
4024 	if (!is_sampling_event(event))
4025 		return -EINVAL;
4026 
4027 	if (copy_from_user(&value, arg, sizeof(value)))
4028 		return -EFAULT;
4029 
4030 	if (!value)
4031 		return -EINVAL;
4032 
4033 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4034 		return -EINVAL;
4035 
4036 	task = ctx->task;
4037 	pe.value = value;
4038 
4039 	if (!task) {
4040 		cpu_function_call(event->cpu, __perf_event_period, &pe);
4041 		return 0;
4042 	}
4043 
4044 retry:
4045 	if (!task_function_call(task, __perf_event_period, &pe))
4046 		return 0;
4047 
4048 	raw_spin_lock_irq(&ctx->lock);
4049 	if (ctx->is_active) {
4050 		raw_spin_unlock_irq(&ctx->lock);
4051 		task = ctx->task;
4052 		goto retry;
4053 	}
4054 
4055 	__perf_event_period(&pe);
4056 	raw_spin_unlock_irq(&ctx->lock);
4057 
4058 	return 0;
4059 }
4060 
4061 static const struct file_operations perf_fops;
4062 
perf_fget_light(int fd,struct fd * p)4063 static inline int perf_fget_light(int fd, struct fd *p)
4064 {
4065 	struct fd f = fdget(fd);
4066 	if (!f.file)
4067 		return -EBADF;
4068 
4069 	if (f.file->f_op != &perf_fops) {
4070 		fdput(f);
4071 		return -EBADF;
4072 	}
4073 	*p = f;
4074 	return 0;
4075 }
4076 
4077 static int perf_event_set_output(struct perf_event *event,
4078 				 struct perf_event *output_event);
4079 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4080 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4081 
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)4082 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4083 {
4084 	void (*func)(struct perf_event *);
4085 	u32 flags = arg;
4086 
4087 	switch (cmd) {
4088 	case PERF_EVENT_IOC_ENABLE:
4089 		func = _perf_event_enable;
4090 		break;
4091 	case PERF_EVENT_IOC_DISABLE:
4092 		func = _perf_event_disable;
4093 		break;
4094 	case PERF_EVENT_IOC_RESET:
4095 		func = _perf_event_reset;
4096 		break;
4097 
4098 	case PERF_EVENT_IOC_REFRESH:
4099 		return _perf_event_refresh(event, arg);
4100 
4101 	case PERF_EVENT_IOC_PERIOD:
4102 		return perf_event_period(event, (u64 __user *)arg);
4103 
4104 	case PERF_EVENT_IOC_ID:
4105 	{
4106 		u64 id = primary_event_id(event);
4107 
4108 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4109 			return -EFAULT;
4110 		return 0;
4111 	}
4112 
4113 	case PERF_EVENT_IOC_SET_OUTPUT:
4114 	{
4115 		int ret;
4116 		if (arg != -1) {
4117 			struct perf_event *output_event;
4118 			struct fd output;
4119 			ret = perf_fget_light(arg, &output);
4120 			if (ret)
4121 				return ret;
4122 			output_event = output.file->private_data;
4123 			ret = perf_event_set_output(event, output_event);
4124 			fdput(output);
4125 		} else {
4126 			ret = perf_event_set_output(event, NULL);
4127 		}
4128 		return ret;
4129 	}
4130 
4131 	case PERF_EVENT_IOC_SET_FILTER:
4132 		return perf_event_set_filter(event, (void __user *)arg);
4133 
4134 	case PERF_EVENT_IOC_SET_BPF:
4135 		return perf_event_set_bpf_prog(event, arg);
4136 
4137 	default:
4138 		return -ENOTTY;
4139 	}
4140 
4141 	if (flags & PERF_IOC_FLAG_GROUP)
4142 		perf_event_for_each(event, func);
4143 	else
4144 		perf_event_for_each_child(event, func);
4145 
4146 	return 0;
4147 }
4148 
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4149 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4150 {
4151 	struct perf_event *event = file->private_data;
4152 	struct perf_event_context *ctx;
4153 	long ret;
4154 
4155 	ctx = perf_event_ctx_lock(event);
4156 	ret = _perf_ioctl(event, cmd, arg);
4157 	perf_event_ctx_unlock(event, ctx);
4158 
4159 	return ret;
4160 }
4161 
4162 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4163 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4164 				unsigned long arg)
4165 {
4166 	switch (_IOC_NR(cmd)) {
4167 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4168 	case _IOC_NR(PERF_EVENT_IOC_ID):
4169 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4170 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4171 			cmd &= ~IOCSIZE_MASK;
4172 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4173 		}
4174 		break;
4175 	}
4176 	return perf_ioctl(file, cmd, arg);
4177 }
4178 #else
4179 # define perf_compat_ioctl NULL
4180 #endif
4181 
perf_event_task_enable(void)4182 int perf_event_task_enable(void)
4183 {
4184 	struct perf_event_context *ctx;
4185 	struct perf_event *event;
4186 
4187 	mutex_lock(&current->perf_event_mutex);
4188 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4189 		ctx = perf_event_ctx_lock(event);
4190 		perf_event_for_each_child(event, _perf_event_enable);
4191 		perf_event_ctx_unlock(event, ctx);
4192 	}
4193 	mutex_unlock(&current->perf_event_mutex);
4194 
4195 	return 0;
4196 }
4197 
perf_event_task_disable(void)4198 int perf_event_task_disable(void)
4199 {
4200 	struct perf_event_context *ctx;
4201 	struct perf_event *event;
4202 
4203 	mutex_lock(&current->perf_event_mutex);
4204 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4205 		ctx = perf_event_ctx_lock(event);
4206 		perf_event_for_each_child(event, _perf_event_disable);
4207 		perf_event_ctx_unlock(event, ctx);
4208 	}
4209 	mutex_unlock(&current->perf_event_mutex);
4210 
4211 	return 0;
4212 }
4213 
perf_event_index(struct perf_event * event)4214 static int perf_event_index(struct perf_event *event)
4215 {
4216 	if (event->hw.state & PERF_HES_STOPPED)
4217 		return 0;
4218 
4219 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4220 		return 0;
4221 
4222 	return event->pmu->event_idx(event);
4223 }
4224 
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4225 static void calc_timer_values(struct perf_event *event,
4226 				u64 *now,
4227 				u64 *enabled,
4228 				u64 *running)
4229 {
4230 	u64 ctx_time;
4231 
4232 	*now = perf_clock();
4233 	ctx_time = event->shadow_ctx_time + *now;
4234 	*enabled = ctx_time - event->tstamp_enabled;
4235 	*running = ctx_time - event->tstamp_running;
4236 }
4237 
perf_event_init_userpage(struct perf_event * event)4238 static void perf_event_init_userpage(struct perf_event *event)
4239 {
4240 	struct perf_event_mmap_page *userpg;
4241 	struct ring_buffer *rb;
4242 
4243 	rcu_read_lock();
4244 	rb = rcu_dereference(event->rb);
4245 	if (!rb)
4246 		goto unlock;
4247 
4248 	userpg = rb->user_page;
4249 
4250 	/* Allow new userspace to detect that bit 0 is deprecated */
4251 	userpg->cap_bit0_is_deprecated = 1;
4252 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4253 	userpg->data_offset = PAGE_SIZE;
4254 	userpg->data_size = perf_data_size(rb);
4255 
4256 unlock:
4257 	rcu_read_unlock();
4258 }
4259 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)4260 void __weak arch_perf_update_userpage(
4261 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4262 {
4263 }
4264 
4265 /*
4266  * Callers need to ensure there can be no nesting of this function, otherwise
4267  * the seqlock logic goes bad. We can not serialize this because the arch
4268  * code calls this from NMI context.
4269  */
perf_event_update_userpage(struct perf_event * event)4270 void perf_event_update_userpage(struct perf_event *event)
4271 {
4272 	struct perf_event_mmap_page *userpg;
4273 	struct ring_buffer *rb;
4274 	u64 enabled, running, now;
4275 
4276 	rcu_read_lock();
4277 	rb = rcu_dereference(event->rb);
4278 	if (!rb)
4279 		goto unlock;
4280 
4281 	/*
4282 	 * compute total_time_enabled, total_time_running
4283 	 * based on snapshot values taken when the event
4284 	 * was last scheduled in.
4285 	 *
4286 	 * we cannot simply called update_context_time()
4287 	 * because of locking issue as we can be called in
4288 	 * NMI context
4289 	 */
4290 	calc_timer_values(event, &now, &enabled, &running);
4291 
4292 	userpg = rb->user_page;
4293 	/*
4294 	 * Disable preemption so as to not let the corresponding user-space
4295 	 * spin too long if we get preempted.
4296 	 */
4297 	preempt_disable();
4298 	++userpg->lock;
4299 	barrier();
4300 	userpg->index = perf_event_index(event);
4301 	userpg->offset = perf_event_count(event);
4302 	if (userpg->index)
4303 		userpg->offset -= local64_read(&event->hw.prev_count);
4304 
4305 	userpg->time_enabled = enabled +
4306 			atomic64_read(&event->child_total_time_enabled);
4307 
4308 	userpg->time_running = running +
4309 			atomic64_read(&event->child_total_time_running);
4310 
4311 	arch_perf_update_userpage(event, userpg, now);
4312 
4313 	barrier();
4314 	++userpg->lock;
4315 	preempt_enable();
4316 unlock:
4317 	rcu_read_unlock();
4318 }
4319 
perf_mmap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)4320 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4321 {
4322 	struct perf_event *event = vma->vm_file->private_data;
4323 	struct ring_buffer *rb;
4324 	int ret = VM_FAULT_SIGBUS;
4325 
4326 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4327 		if (vmf->pgoff == 0)
4328 			ret = 0;
4329 		return ret;
4330 	}
4331 
4332 	rcu_read_lock();
4333 	rb = rcu_dereference(event->rb);
4334 	if (!rb)
4335 		goto unlock;
4336 
4337 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4338 		goto unlock;
4339 
4340 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4341 	if (!vmf->page)
4342 		goto unlock;
4343 
4344 	get_page(vmf->page);
4345 	vmf->page->mapping = vma->vm_file->f_mapping;
4346 	vmf->page->index   = vmf->pgoff;
4347 
4348 	ret = 0;
4349 unlock:
4350 	rcu_read_unlock();
4351 
4352 	return ret;
4353 }
4354 
ring_buffer_attach(struct perf_event * event,struct ring_buffer * rb)4355 static void ring_buffer_attach(struct perf_event *event,
4356 			       struct ring_buffer *rb)
4357 {
4358 	struct ring_buffer *old_rb = NULL;
4359 	unsigned long flags;
4360 
4361 	if (event->rb) {
4362 		/*
4363 		 * Should be impossible, we set this when removing
4364 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4365 		 */
4366 		WARN_ON_ONCE(event->rcu_pending);
4367 
4368 		old_rb = event->rb;
4369 		spin_lock_irqsave(&old_rb->event_lock, flags);
4370 		list_del_rcu(&event->rb_entry);
4371 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4372 
4373 		event->rcu_batches = get_state_synchronize_rcu();
4374 		event->rcu_pending = 1;
4375 	}
4376 
4377 	if (rb) {
4378 		if (event->rcu_pending) {
4379 			cond_synchronize_rcu(event->rcu_batches);
4380 			event->rcu_pending = 0;
4381 		}
4382 
4383 		spin_lock_irqsave(&rb->event_lock, flags);
4384 		list_add_rcu(&event->rb_entry, &rb->event_list);
4385 		spin_unlock_irqrestore(&rb->event_lock, flags);
4386 	}
4387 
4388 	rcu_assign_pointer(event->rb, rb);
4389 
4390 	if (old_rb) {
4391 		ring_buffer_put(old_rb);
4392 		/*
4393 		 * Since we detached before setting the new rb, so that we
4394 		 * could attach the new rb, we could have missed a wakeup.
4395 		 * Provide it now.
4396 		 */
4397 		wake_up_all(&event->waitq);
4398 	}
4399 }
4400 
ring_buffer_wakeup(struct perf_event * event)4401 static void ring_buffer_wakeup(struct perf_event *event)
4402 {
4403 	struct ring_buffer *rb;
4404 
4405 	rcu_read_lock();
4406 	rb = rcu_dereference(event->rb);
4407 	if (rb) {
4408 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4409 			wake_up_all(&event->waitq);
4410 	}
4411 	rcu_read_unlock();
4412 }
4413 
ring_buffer_get(struct perf_event * event)4414 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4415 {
4416 	struct ring_buffer *rb;
4417 
4418 	rcu_read_lock();
4419 	rb = rcu_dereference(event->rb);
4420 	if (rb) {
4421 		if (!atomic_inc_not_zero(&rb->refcount))
4422 			rb = NULL;
4423 	}
4424 	rcu_read_unlock();
4425 
4426 	return rb;
4427 }
4428 
ring_buffer_put(struct ring_buffer * rb)4429 void ring_buffer_put(struct ring_buffer *rb)
4430 {
4431 	if (!atomic_dec_and_test(&rb->refcount))
4432 		return;
4433 
4434 	WARN_ON_ONCE(!list_empty(&rb->event_list));
4435 
4436 	call_rcu(&rb->rcu_head, rb_free_rcu);
4437 }
4438 
perf_mmap_open(struct vm_area_struct * vma)4439 static void perf_mmap_open(struct vm_area_struct *vma)
4440 {
4441 	struct perf_event *event = vma->vm_file->private_data;
4442 
4443 	atomic_inc(&event->mmap_count);
4444 	atomic_inc(&event->rb->mmap_count);
4445 
4446 	if (vma->vm_pgoff)
4447 		atomic_inc(&event->rb->aux_mmap_count);
4448 
4449 	if (event->pmu->event_mapped)
4450 		event->pmu->event_mapped(event);
4451 }
4452 
4453 /*
4454  * A buffer can be mmap()ed multiple times; either directly through the same
4455  * event, or through other events by use of perf_event_set_output().
4456  *
4457  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4458  * the buffer here, where we still have a VM context. This means we need
4459  * to detach all events redirecting to us.
4460  */
perf_mmap_close(struct vm_area_struct * vma)4461 static void perf_mmap_close(struct vm_area_struct *vma)
4462 {
4463 	struct perf_event *event = vma->vm_file->private_data;
4464 
4465 	struct ring_buffer *rb = ring_buffer_get(event);
4466 	struct user_struct *mmap_user = rb->mmap_user;
4467 	int mmap_locked = rb->mmap_locked;
4468 	unsigned long size = perf_data_size(rb);
4469 
4470 	if (event->pmu->event_unmapped)
4471 		event->pmu->event_unmapped(event);
4472 
4473 	/*
4474 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
4475 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
4476 	 * serialize with perf_mmap here.
4477 	 */
4478 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4479 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4480 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4481 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4482 
4483 		rb_free_aux(rb);
4484 		mutex_unlock(&event->mmap_mutex);
4485 	}
4486 
4487 	atomic_dec(&rb->mmap_count);
4488 
4489 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4490 		goto out_put;
4491 
4492 	ring_buffer_attach(event, NULL);
4493 	mutex_unlock(&event->mmap_mutex);
4494 
4495 	/* If there's still other mmap()s of this buffer, we're done. */
4496 	if (atomic_read(&rb->mmap_count))
4497 		goto out_put;
4498 
4499 	/*
4500 	 * No other mmap()s, detach from all other events that might redirect
4501 	 * into the now unreachable buffer. Somewhat complicated by the
4502 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4503 	 */
4504 again:
4505 	rcu_read_lock();
4506 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4507 		if (!atomic_long_inc_not_zero(&event->refcount)) {
4508 			/*
4509 			 * This event is en-route to free_event() which will
4510 			 * detach it and remove it from the list.
4511 			 */
4512 			continue;
4513 		}
4514 		rcu_read_unlock();
4515 
4516 		mutex_lock(&event->mmap_mutex);
4517 		/*
4518 		 * Check we didn't race with perf_event_set_output() which can
4519 		 * swizzle the rb from under us while we were waiting to
4520 		 * acquire mmap_mutex.
4521 		 *
4522 		 * If we find a different rb; ignore this event, a next
4523 		 * iteration will no longer find it on the list. We have to
4524 		 * still restart the iteration to make sure we're not now
4525 		 * iterating the wrong list.
4526 		 */
4527 		if (event->rb == rb)
4528 			ring_buffer_attach(event, NULL);
4529 
4530 		mutex_unlock(&event->mmap_mutex);
4531 		put_event(event);
4532 
4533 		/*
4534 		 * Restart the iteration; either we're on the wrong list or
4535 		 * destroyed its integrity by doing a deletion.
4536 		 */
4537 		goto again;
4538 	}
4539 	rcu_read_unlock();
4540 
4541 	/*
4542 	 * It could be there's still a few 0-ref events on the list; they'll
4543 	 * get cleaned up by free_event() -- they'll also still have their
4544 	 * ref on the rb and will free it whenever they are done with it.
4545 	 *
4546 	 * Aside from that, this buffer is 'fully' detached and unmapped,
4547 	 * undo the VM accounting.
4548 	 */
4549 
4550 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4551 	vma->vm_mm->pinned_vm -= mmap_locked;
4552 	free_uid(mmap_user);
4553 
4554 out_put:
4555 	ring_buffer_put(rb); /* could be last */
4556 }
4557 
4558 static const struct vm_operations_struct perf_mmap_vmops = {
4559 	.open		= perf_mmap_open,
4560 	.close		= perf_mmap_close, /* non mergable */
4561 	.fault		= perf_mmap_fault,
4562 	.page_mkwrite	= perf_mmap_fault,
4563 };
4564 
perf_mmap(struct file * file,struct vm_area_struct * vma)4565 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4566 {
4567 	struct perf_event *event = file->private_data;
4568 	unsigned long user_locked, user_lock_limit;
4569 	struct user_struct *user = current_user();
4570 	unsigned long locked, lock_limit;
4571 	struct ring_buffer *rb = NULL;
4572 	unsigned long vma_size;
4573 	unsigned long nr_pages;
4574 	long user_extra = 0, extra = 0;
4575 	int ret = 0, flags = 0;
4576 
4577 	/*
4578 	 * Don't allow mmap() of inherited per-task counters. This would
4579 	 * create a performance issue due to all children writing to the
4580 	 * same rb.
4581 	 */
4582 	if (event->cpu == -1 && event->attr.inherit)
4583 		return -EINVAL;
4584 
4585 	if (!(vma->vm_flags & VM_SHARED))
4586 		return -EINVAL;
4587 
4588 	vma_size = vma->vm_end - vma->vm_start;
4589 
4590 	if (vma->vm_pgoff == 0) {
4591 		nr_pages = (vma_size / PAGE_SIZE) - 1;
4592 	} else {
4593 		/*
4594 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4595 		 * mapped, all subsequent mappings should have the same size
4596 		 * and offset. Must be above the normal perf buffer.
4597 		 */
4598 		u64 aux_offset, aux_size;
4599 
4600 		if (!event->rb)
4601 			return -EINVAL;
4602 
4603 		nr_pages = vma_size / PAGE_SIZE;
4604 
4605 		mutex_lock(&event->mmap_mutex);
4606 		ret = -EINVAL;
4607 
4608 		rb = event->rb;
4609 		if (!rb)
4610 			goto aux_unlock;
4611 
4612 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4613 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4614 
4615 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4616 			goto aux_unlock;
4617 
4618 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4619 			goto aux_unlock;
4620 
4621 		/* already mapped with a different offset */
4622 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4623 			goto aux_unlock;
4624 
4625 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4626 			goto aux_unlock;
4627 
4628 		/* already mapped with a different size */
4629 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4630 			goto aux_unlock;
4631 
4632 		if (!is_power_of_2(nr_pages))
4633 			goto aux_unlock;
4634 
4635 		if (!atomic_inc_not_zero(&rb->mmap_count))
4636 			goto aux_unlock;
4637 
4638 		if (rb_has_aux(rb)) {
4639 			atomic_inc(&rb->aux_mmap_count);
4640 			ret = 0;
4641 			goto unlock;
4642 		}
4643 
4644 		atomic_set(&rb->aux_mmap_count, 1);
4645 		user_extra = nr_pages;
4646 
4647 		goto accounting;
4648 	}
4649 
4650 	/*
4651 	 * If we have rb pages ensure they're a power-of-two number, so we
4652 	 * can do bitmasks instead of modulo.
4653 	 */
4654 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
4655 		return -EINVAL;
4656 
4657 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
4658 		return -EINVAL;
4659 
4660 	WARN_ON_ONCE(event->ctx->parent_ctx);
4661 again:
4662 	mutex_lock(&event->mmap_mutex);
4663 	if (event->rb) {
4664 		if (event->rb->nr_pages != nr_pages) {
4665 			ret = -EINVAL;
4666 			goto unlock;
4667 		}
4668 
4669 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4670 			/*
4671 			 * Raced against perf_mmap_close() through
4672 			 * perf_event_set_output(). Try again, hope for better
4673 			 * luck.
4674 			 */
4675 			mutex_unlock(&event->mmap_mutex);
4676 			goto again;
4677 		}
4678 
4679 		goto unlock;
4680 	}
4681 
4682 	user_extra = nr_pages + 1;
4683 
4684 accounting:
4685 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4686 
4687 	/*
4688 	 * Increase the limit linearly with more CPUs:
4689 	 */
4690 	user_lock_limit *= num_online_cpus();
4691 
4692 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4693 
4694 	if (user_locked > user_lock_limit)
4695 		extra = user_locked - user_lock_limit;
4696 
4697 	lock_limit = rlimit(RLIMIT_MEMLOCK);
4698 	lock_limit >>= PAGE_SHIFT;
4699 	locked = vma->vm_mm->pinned_vm + extra;
4700 
4701 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4702 		!capable(CAP_IPC_LOCK)) {
4703 		ret = -EPERM;
4704 		goto unlock;
4705 	}
4706 
4707 	WARN_ON(!rb && event->rb);
4708 
4709 	if (vma->vm_flags & VM_WRITE)
4710 		flags |= RING_BUFFER_WRITABLE;
4711 
4712 	if (!rb) {
4713 		rb = rb_alloc(nr_pages,
4714 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
4715 			      event->cpu, flags);
4716 
4717 		if (!rb) {
4718 			ret = -ENOMEM;
4719 			goto unlock;
4720 		}
4721 
4722 		atomic_set(&rb->mmap_count, 1);
4723 		rb->mmap_user = get_current_user();
4724 		rb->mmap_locked = extra;
4725 
4726 		ring_buffer_attach(event, rb);
4727 
4728 		perf_event_init_userpage(event);
4729 		perf_event_update_userpage(event);
4730 	} else {
4731 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4732 				   event->attr.aux_watermark, flags);
4733 		if (!ret)
4734 			rb->aux_mmap_locked = extra;
4735 	}
4736 
4737 unlock:
4738 	if (!ret) {
4739 		atomic_long_add(user_extra, &user->locked_vm);
4740 		vma->vm_mm->pinned_vm += extra;
4741 
4742 		atomic_inc(&event->mmap_count);
4743 	} else if (rb) {
4744 		atomic_dec(&rb->mmap_count);
4745 	}
4746 aux_unlock:
4747 	mutex_unlock(&event->mmap_mutex);
4748 
4749 	/*
4750 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
4751 	 * vma.
4752 	 */
4753 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4754 	vma->vm_ops = &perf_mmap_vmops;
4755 
4756 	if (event->pmu->event_mapped)
4757 		event->pmu->event_mapped(event);
4758 
4759 	return ret;
4760 }
4761 
perf_fasync(int fd,struct file * filp,int on)4762 static int perf_fasync(int fd, struct file *filp, int on)
4763 {
4764 	struct inode *inode = file_inode(filp);
4765 	struct perf_event *event = filp->private_data;
4766 	int retval;
4767 
4768 	mutex_lock(&inode->i_mutex);
4769 	retval = fasync_helper(fd, filp, on, &event->fasync);
4770 	mutex_unlock(&inode->i_mutex);
4771 
4772 	if (retval < 0)
4773 		return retval;
4774 
4775 	return 0;
4776 }
4777 
4778 static const struct file_operations perf_fops = {
4779 	.llseek			= no_llseek,
4780 	.release		= perf_release,
4781 	.read			= perf_read,
4782 	.poll			= perf_poll,
4783 	.unlocked_ioctl		= perf_ioctl,
4784 	.compat_ioctl		= perf_compat_ioctl,
4785 	.mmap			= perf_mmap,
4786 	.fasync			= perf_fasync,
4787 };
4788 
4789 /*
4790  * Perf event wakeup
4791  *
4792  * If there's data, ensure we set the poll() state and publish everything
4793  * to user-space before waking everybody up.
4794  */
4795 
perf_event_fasync(struct perf_event * event)4796 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4797 {
4798 	/* only the parent has fasync state */
4799 	if (event->parent)
4800 		event = event->parent;
4801 	return &event->fasync;
4802 }
4803 
perf_event_wakeup(struct perf_event * event)4804 void perf_event_wakeup(struct perf_event *event)
4805 {
4806 	ring_buffer_wakeup(event);
4807 
4808 	if (event->pending_kill) {
4809 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4810 		event->pending_kill = 0;
4811 	}
4812 }
4813 
perf_pending_event(struct irq_work * entry)4814 static void perf_pending_event(struct irq_work *entry)
4815 {
4816 	struct perf_event *event = container_of(entry,
4817 			struct perf_event, pending);
4818 	int rctx;
4819 
4820 	rctx = perf_swevent_get_recursion_context();
4821 	/*
4822 	 * If we 'fail' here, that's OK, it means recursion is already disabled
4823 	 * and we won't recurse 'further'.
4824 	 */
4825 
4826 	if (event->pending_disable) {
4827 		event->pending_disable = 0;
4828 		__perf_event_disable(event);
4829 	}
4830 
4831 	if (event->pending_wakeup) {
4832 		event->pending_wakeup = 0;
4833 		perf_event_wakeup(event);
4834 	}
4835 
4836 	if (rctx >= 0)
4837 		perf_swevent_put_recursion_context(rctx);
4838 }
4839 
4840 /*
4841  * We assume there is only KVM supporting the callbacks.
4842  * Later on, we might change it to a list if there is
4843  * another virtualization implementation supporting the callbacks.
4844  */
4845 struct perf_guest_info_callbacks *perf_guest_cbs;
4846 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)4847 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4848 {
4849 	perf_guest_cbs = cbs;
4850 	return 0;
4851 }
4852 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4853 
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)4854 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4855 {
4856 	perf_guest_cbs = NULL;
4857 	return 0;
4858 }
4859 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4860 
4861 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)4862 perf_output_sample_regs(struct perf_output_handle *handle,
4863 			struct pt_regs *regs, u64 mask)
4864 {
4865 	int bit;
4866 
4867 	for_each_set_bit(bit, (const unsigned long *) &mask,
4868 			 sizeof(mask) * BITS_PER_BYTE) {
4869 		u64 val;
4870 
4871 		val = perf_reg_value(regs, bit);
4872 		perf_output_put(handle, val);
4873 	}
4874 }
4875 
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs,struct pt_regs * regs_user_copy)4876 static void perf_sample_regs_user(struct perf_regs *regs_user,
4877 				  struct pt_regs *regs,
4878 				  struct pt_regs *regs_user_copy)
4879 {
4880 	if (user_mode(regs)) {
4881 		regs_user->abi = perf_reg_abi(current);
4882 		regs_user->regs = regs;
4883 	} else if (current->mm) {
4884 		perf_get_regs_user(regs_user, regs, regs_user_copy);
4885 	} else {
4886 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4887 		regs_user->regs = NULL;
4888 	}
4889 }
4890 
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)4891 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4892 				  struct pt_regs *regs)
4893 {
4894 	regs_intr->regs = regs;
4895 	regs_intr->abi  = perf_reg_abi(current);
4896 }
4897 
4898 
4899 /*
4900  * Get remaining task size from user stack pointer.
4901  *
4902  * It'd be better to take stack vma map and limit this more
4903  * precisly, but there's no way to get it safely under interrupt,
4904  * so using TASK_SIZE as limit.
4905  */
perf_ustack_task_size(struct pt_regs * regs)4906 static u64 perf_ustack_task_size(struct pt_regs *regs)
4907 {
4908 	unsigned long addr = perf_user_stack_pointer(regs);
4909 
4910 	if (!addr || addr >= TASK_SIZE)
4911 		return 0;
4912 
4913 	return TASK_SIZE - addr;
4914 }
4915 
4916 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)4917 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4918 			struct pt_regs *regs)
4919 {
4920 	u64 task_size;
4921 
4922 	/* No regs, no stack pointer, no dump. */
4923 	if (!regs)
4924 		return 0;
4925 
4926 	/*
4927 	 * Check if we fit in with the requested stack size into the:
4928 	 * - TASK_SIZE
4929 	 *   If we don't, we limit the size to the TASK_SIZE.
4930 	 *
4931 	 * - remaining sample size
4932 	 *   If we don't, we customize the stack size to
4933 	 *   fit in to the remaining sample size.
4934 	 */
4935 
4936 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4937 	stack_size = min(stack_size, (u16) task_size);
4938 
4939 	/* Current header size plus static size and dynamic size. */
4940 	header_size += 2 * sizeof(u64);
4941 
4942 	/* Do we fit in with the current stack dump size? */
4943 	if ((u16) (header_size + stack_size) < header_size) {
4944 		/*
4945 		 * If we overflow the maximum size for the sample,
4946 		 * we customize the stack dump size to fit in.
4947 		 */
4948 		stack_size = USHRT_MAX - header_size - sizeof(u64);
4949 		stack_size = round_up(stack_size, sizeof(u64));
4950 	}
4951 
4952 	return stack_size;
4953 }
4954 
4955 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)4956 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4957 			  struct pt_regs *regs)
4958 {
4959 	/* Case of a kernel thread, nothing to dump */
4960 	if (!regs) {
4961 		u64 size = 0;
4962 		perf_output_put(handle, size);
4963 	} else {
4964 		unsigned long sp;
4965 		unsigned int rem;
4966 		u64 dyn_size;
4967 
4968 		/*
4969 		 * We dump:
4970 		 * static size
4971 		 *   - the size requested by user or the best one we can fit
4972 		 *     in to the sample max size
4973 		 * data
4974 		 *   - user stack dump data
4975 		 * dynamic size
4976 		 *   - the actual dumped size
4977 		 */
4978 
4979 		/* Static size. */
4980 		perf_output_put(handle, dump_size);
4981 
4982 		/* Data. */
4983 		sp = perf_user_stack_pointer(regs);
4984 		rem = __output_copy_user(handle, (void *) sp, dump_size);
4985 		dyn_size = dump_size - rem;
4986 
4987 		perf_output_skip(handle, rem);
4988 
4989 		/* Dynamic size. */
4990 		perf_output_put(handle, dyn_size);
4991 	}
4992 }
4993 
__perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)4994 static void __perf_event_header__init_id(struct perf_event_header *header,
4995 					 struct perf_sample_data *data,
4996 					 struct perf_event *event)
4997 {
4998 	u64 sample_type = event->attr.sample_type;
4999 
5000 	data->type = sample_type;
5001 	header->size += event->id_header_size;
5002 
5003 	if (sample_type & PERF_SAMPLE_TID) {
5004 		/* namespace issues */
5005 		data->tid_entry.pid = perf_event_pid(event, current);
5006 		data->tid_entry.tid = perf_event_tid(event, current);
5007 	}
5008 
5009 	if (sample_type & PERF_SAMPLE_TIME)
5010 		data->time = perf_event_clock(event);
5011 
5012 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5013 		data->id = primary_event_id(event);
5014 
5015 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5016 		data->stream_id = event->id;
5017 
5018 	if (sample_type & PERF_SAMPLE_CPU) {
5019 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5020 		data->cpu_entry.reserved = 0;
5021 	}
5022 }
5023 
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)5024 void perf_event_header__init_id(struct perf_event_header *header,
5025 				struct perf_sample_data *data,
5026 				struct perf_event *event)
5027 {
5028 	if (event->attr.sample_id_all)
5029 		__perf_event_header__init_id(header, data, event);
5030 }
5031 
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)5032 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5033 					   struct perf_sample_data *data)
5034 {
5035 	u64 sample_type = data->type;
5036 
5037 	if (sample_type & PERF_SAMPLE_TID)
5038 		perf_output_put(handle, data->tid_entry);
5039 
5040 	if (sample_type & PERF_SAMPLE_TIME)
5041 		perf_output_put(handle, data->time);
5042 
5043 	if (sample_type & PERF_SAMPLE_ID)
5044 		perf_output_put(handle, data->id);
5045 
5046 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5047 		perf_output_put(handle, data->stream_id);
5048 
5049 	if (sample_type & PERF_SAMPLE_CPU)
5050 		perf_output_put(handle, data->cpu_entry);
5051 
5052 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5053 		perf_output_put(handle, data->id);
5054 }
5055 
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)5056 void perf_event__output_id_sample(struct perf_event *event,
5057 				  struct perf_output_handle *handle,
5058 				  struct perf_sample_data *sample)
5059 {
5060 	if (event->attr.sample_id_all)
5061 		__perf_event__output_id_sample(handle, sample);
5062 }
5063 
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)5064 static void perf_output_read_one(struct perf_output_handle *handle,
5065 				 struct perf_event *event,
5066 				 u64 enabled, u64 running)
5067 {
5068 	u64 read_format = event->attr.read_format;
5069 	u64 values[4];
5070 	int n = 0;
5071 
5072 	values[n++] = perf_event_count(event);
5073 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5074 		values[n++] = enabled +
5075 			atomic64_read(&event->child_total_time_enabled);
5076 	}
5077 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5078 		values[n++] = running +
5079 			atomic64_read(&event->child_total_time_running);
5080 	}
5081 	if (read_format & PERF_FORMAT_ID)
5082 		values[n++] = primary_event_id(event);
5083 
5084 	__output_copy(handle, values, n * sizeof(u64));
5085 }
5086 
5087 /*
5088  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5089  */
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)5090 static void perf_output_read_group(struct perf_output_handle *handle,
5091 			    struct perf_event *event,
5092 			    u64 enabled, u64 running)
5093 {
5094 	struct perf_event *leader = event->group_leader, *sub;
5095 	u64 read_format = event->attr.read_format;
5096 	u64 values[5];
5097 	int n = 0;
5098 
5099 	values[n++] = 1 + leader->nr_siblings;
5100 
5101 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5102 		values[n++] = enabled;
5103 
5104 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5105 		values[n++] = running;
5106 
5107 	if (leader != event)
5108 		leader->pmu->read(leader);
5109 
5110 	values[n++] = perf_event_count(leader);
5111 	if (read_format & PERF_FORMAT_ID)
5112 		values[n++] = primary_event_id(leader);
5113 
5114 	__output_copy(handle, values, n * sizeof(u64));
5115 
5116 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5117 		n = 0;
5118 
5119 		if ((sub != event) &&
5120 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5121 			sub->pmu->read(sub);
5122 
5123 		values[n++] = perf_event_count(sub);
5124 		if (read_format & PERF_FORMAT_ID)
5125 			values[n++] = primary_event_id(sub);
5126 
5127 		__output_copy(handle, values, n * sizeof(u64));
5128 	}
5129 }
5130 
5131 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5132 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5133 
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)5134 static void perf_output_read(struct perf_output_handle *handle,
5135 			     struct perf_event *event)
5136 {
5137 	u64 enabled = 0, running = 0, now;
5138 	u64 read_format = event->attr.read_format;
5139 
5140 	/*
5141 	 * compute total_time_enabled, total_time_running
5142 	 * based on snapshot values taken when the event
5143 	 * was last scheduled in.
5144 	 *
5145 	 * we cannot simply called update_context_time()
5146 	 * because of locking issue as we are called in
5147 	 * NMI context
5148 	 */
5149 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5150 		calc_timer_values(event, &now, &enabled, &running);
5151 
5152 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5153 		perf_output_read_group(handle, event, enabled, running);
5154 	else
5155 		perf_output_read_one(handle, event, enabled, running);
5156 }
5157 
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)5158 void perf_output_sample(struct perf_output_handle *handle,
5159 			struct perf_event_header *header,
5160 			struct perf_sample_data *data,
5161 			struct perf_event *event)
5162 {
5163 	u64 sample_type = data->type;
5164 
5165 	perf_output_put(handle, *header);
5166 
5167 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5168 		perf_output_put(handle, data->id);
5169 
5170 	if (sample_type & PERF_SAMPLE_IP)
5171 		perf_output_put(handle, data->ip);
5172 
5173 	if (sample_type & PERF_SAMPLE_TID)
5174 		perf_output_put(handle, data->tid_entry);
5175 
5176 	if (sample_type & PERF_SAMPLE_TIME)
5177 		perf_output_put(handle, data->time);
5178 
5179 	if (sample_type & PERF_SAMPLE_ADDR)
5180 		perf_output_put(handle, data->addr);
5181 
5182 	if (sample_type & PERF_SAMPLE_ID)
5183 		perf_output_put(handle, data->id);
5184 
5185 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5186 		perf_output_put(handle, data->stream_id);
5187 
5188 	if (sample_type & PERF_SAMPLE_CPU)
5189 		perf_output_put(handle, data->cpu_entry);
5190 
5191 	if (sample_type & PERF_SAMPLE_PERIOD)
5192 		perf_output_put(handle, data->period);
5193 
5194 	if (sample_type & PERF_SAMPLE_READ)
5195 		perf_output_read(handle, event);
5196 
5197 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5198 		if (data->callchain) {
5199 			int size = 1;
5200 
5201 			if (data->callchain)
5202 				size += data->callchain->nr;
5203 
5204 			size *= sizeof(u64);
5205 
5206 			__output_copy(handle, data->callchain, size);
5207 		} else {
5208 			u64 nr = 0;
5209 			perf_output_put(handle, nr);
5210 		}
5211 	}
5212 
5213 	if (sample_type & PERF_SAMPLE_RAW) {
5214 		if (data->raw) {
5215 			perf_output_put(handle, data->raw->size);
5216 			__output_copy(handle, data->raw->data,
5217 					   data->raw->size);
5218 		} else {
5219 			struct {
5220 				u32	size;
5221 				u32	data;
5222 			} raw = {
5223 				.size = sizeof(u32),
5224 				.data = 0,
5225 			};
5226 			perf_output_put(handle, raw);
5227 		}
5228 	}
5229 
5230 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5231 		if (data->br_stack) {
5232 			size_t size;
5233 
5234 			size = data->br_stack->nr
5235 			     * sizeof(struct perf_branch_entry);
5236 
5237 			perf_output_put(handle, data->br_stack->nr);
5238 			perf_output_copy(handle, data->br_stack->entries, size);
5239 		} else {
5240 			/*
5241 			 * we always store at least the value of nr
5242 			 */
5243 			u64 nr = 0;
5244 			perf_output_put(handle, nr);
5245 		}
5246 	}
5247 
5248 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5249 		u64 abi = data->regs_user.abi;
5250 
5251 		/*
5252 		 * If there are no regs to dump, notice it through
5253 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5254 		 */
5255 		perf_output_put(handle, abi);
5256 
5257 		if (abi) {
5258 			u64 mask = event->attr.sample_regs_user;
5259 			perf_output_sample_regs(handle,
5260 						data->regs_user.regs,
5261 						mask);
5262 		}
5263 	}
5264 
5265 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5266 		perf_output_sample_ustack(handle,
5267 					  data->stack_user_size,
5268 					  data->regs_user.regs);
5269 	}
5270 
5271 	if (sample_type & PERF_SAMPLE_WEIGHT)
5272 		perf_output_put(handle, data->weight);
5273 
5274 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5275 		perf_output_put(handle, data->data_src.val);
5276 
5277 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5278 		perf_output_put(handle, data->txn);
5279 
5280 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5281 		u64 abi = data->regs_intr.abi;
5282 		/*
5283 		 * If there are no regs to dump, notice it through
5284 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5285 		 */
5286 		perf_output_put(handle, abi);
5287 
5288 		if (abi) {
5289 			u64 mask = event->attr.sample_regs_intr;
5290 
5291 			perf_output_sample_regs(handle,
5292 						data->regs_intr.regs,
5293 						mask);
5294 		}
5295 	}
5296 
5297 	if (!event->attr.watermark) {
5298 		int wakeup_events = event->attr.wakeup_events;
5299 
5300 		if (wakeup_events) {
5301 			struct ring_buffer *rb = handle->rb;
5302 			int events = local_inc_return(&rb->events);
5303 
5304 			if (events >= wakeup_events) {
5305 				local_sub(wakeup_events, &rb->events);
5306 				local_inc(&rb->wakeup);
5307 			}
5308 		}
5309 	}
5310 }
5311 
perf_prepare_sample(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)5312 void perf_prepare_sample(struct perf_event_header *header,
5313 			 struct perf_sample_data *data,
5314 			 struct perf_event *event,
5315 			 struct pt_regs *regs)
5316 {
5317 	u64 sample_type = event->attr.sample_type;
5318 
5319 	header->type = PERF_RECORD_SAMPLE;
5320 	header->size = sizeof(*header) + event->header_size;
5321 
5322 	header->misc = 0;
5323 	header->misc |= perf_misc_flags(regs);
5324 
5325 	__perf_event_header__init_id(header, data, event);
5326 
5327 	if (sample_type & PERF_SAMPLE_IP)
5328 		data->ip = perf_instruction_pointer(regs);
5329 
5330 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5331 		int size = 1;
5332 
5333 		data->callchain = perf_callchain(event, regs);
5334 
5335 		if (data->callchain)
5336 			size += data->callchain->nr;
5337 
5338 		header->size += size * sizeof(u64);
5339 	}
5340 
5341 	if (sample_type & PERF_SAMPLE_RAW) {
5342 		int size = sizeof(u32);
5343 
5344 		if (data->raw)
5345 			size += data->raw->size;
5346 		else
5347 			size += sizeof(u32);
5348 
5349 		WARN_ON_ONCE(size & (sizeof(u64)-1));
5350 		header->size += size;
5351 	}
5352 
5353 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5354 		int size = sizeof(u64); /* nr */
5355 		if (data->br_stack) {
5356 			size += data->br_stack->nr
5357 			      * sizeof(struct perf_branch_entry);
5358 		}
5359 		header->size += size;
5360 	}
5361 
5362 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5363 		perf_sample_regs_user(&data->regs_user, regs,
5364 				      &data->regs_user_copy);
5365 
5366 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5367 		/* regs dump ABI info */
5368 		int size = sizeof(u64);
5369 
5370 		if (data->regs_user.regs) {
5371 			u64 mask = event->attr.sample_regs_user;
5372 			size += hweight64(mask) * sizeof(u64);
5373 		}
5374 
5375 		header->size += size;
5376 	}
5377 
5378 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5379 		/*
5380 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5381 		 * processed as the last one or have additional check added
5382 		 * in case new sample type is added, because we could eat
5383 		 * up the rest of the sample size.
5384 		 */
5385 		u16 stack_size = event->attr.sample_stack_user;
5386 		u16 size = sizeof(u64);
5387 
5388 		stack_size = perf_sample_ustack_size(stack_size, header->size,
5389 						     data->regs_user.regs);
5390 
5391 		/*
5392 		 * If there is something to dump, add space for the dump
5393 		 * itself and for the field that tells the dynamic size,
5394 		 * which is how many have been actually dumped.
5395 		 */
5396 		if (stack_size)
5397 			size += sizeof(u64) + stack_size;
5398 
5399 		data->stack_user_size = stack_size;
5400 		header->size += size;
5401 	}
5402 
5403 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5404 		/* regs dump ABI info */
5405 		int size = sizeof(u64);
5406 
5407 		perf_sample_regs_intr(&data->regs_intr, regs);
5408 
5409 		if (data->regs_intr.regs) {
5410 			u64 mask = event->attr.sample_regs_intr;
5411 
5412 			size += hweight64(mask) * sizeof(u64);
5413 		}
5414 
5415 		header->size += size;
5416 	}
5417 }
5418 
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)5419 static void perf_event_output(struct perf_event *event,
5420 				struct perf_sample_data *data,
5421 				struct pt_regs *regs)
5422 {
5423 	struct perf_output_handle handle;
5424 	struct perf_event_header header;
5425 
5426 	/* protect the callchain buffers */
5427 	rcu_read_lock();
5428 
5429 	perf_prepare_sample(&header, data, event, regs);
5430 
5431 	if (perf_output_begin(&handle, event, header.size))
5432 		goto exit;
5433 
5434 	perf_output_sample(&handle, &header, data, event);
5435 
5436 	perf_output_end(&handle);
5437 
5438 exit:
5439 	rcu_read_unlock();
5440 }
5441 
5442 /*
5443  * read event_id
5444  */
5445 
5446 struct perf_read_event {
5447 	struct perf_event_header	header;
5448 
5449 	u32				pid;
5450 	u32				tid;
5451 };
5452 
5453 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)5454 perf_event_read_event(struct perf_event *event,
5455 			struct task_struct *task)
5456 {
5457 	struct perf_output_handle handle;
5458 	struct perf_sample_data sample;
5459 	struct perf_read_event read_event = {
5460 		.header = {
5461 			.type = PERF_RECORD_READ,
5462 			.misc = 0,
5463 			.size = sizeof(read_event) + event->read_size,
5464 		},
5465 		.pid = perf_event_pid(event, task),
5466 		.tid = perf_event_tid(event, task),
5467 	};
5468 	int ret;
5469 
5470 	perf_event_header__init_id(&read_event.header, &sample, event);
5471 	ret = perf_output_begin(&handle, event, read_event.header.size);
5472 	if (ret)
5473 		return;
5474 
5475 	perf_output_put(&handle, read_event);
5476 	perf_output_read(&handle, event);
5477 	perf_event__output_id_sample(event, &handle, &sample);
5478 
5479 	perf_output_end(&handle);
5480 }
5481 
5482 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5483 
5484 static void
perf_event_aux_ctx(struct perf_event_context * ctx,perf_event_aux_output_cb output,void * data)5485 perf_event_aux_ctx(struct perf_event_context *ctx,
5486 		   perf_event_aux_output_cb output,
5487 		   void *data)
5488 {
5489 	struct perf_event *event;
5490 
5491 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5492 		if (event->state < PERF_EVENT_STATE_INACTIVE)
5493 			continue;
5494 		if (!event_filter_match(event))
5495 			continue;
5496 		output(event, data);
5497 	}
5498 }
5499 
5500 static void
perf_event_aux(perf_event_aux_output_cb output,void * data,struct perf_event_context * task_ctx)5501 perf_event_aux(perf_event_aux_output_cb output, void *data,
5502 	       struct perf_event_context *task_ctx)
5503 {
5504 	struct perf_cpu_context *cpuctx;
5505 	struct perf_event_context *ctx;
5506 	struct pmu *pmu;
5507 	int ctxn;
5508 
5509 	rcu_read_lock();
5510 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5511 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5512 		if (cpuctx->unique_pmu != pmu)
5513 			goto next;
5514 		perf_event_aux_ctx(&cpuctx->ctx, output, data);
5515 		if (task_ctx)
5516 			goto next;
5517 		ctxn = pmu->task_ctx_nr;
5518 		if (ctxn < 0)
5519 			goto next;
5520 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5521 		if (ctx)
5522 			perf_event_aux_ctx(ctx, output, data);
5523 next:
5524 		put_cpu_ptr(pmu->pmu_cpu_context);
5525 	}
5526 
5527 	if (task_ctx) {
5528 		preempt_disable();
5529 		perf_event_aux_ctx(task_ctx, output, data);
5530 		preempt_enable();
5531 	}
5532 	rcu_read_unlock();
5533 }
5534 
5535 /*
5536  * task tracking -- fork/exit
5537  *
5538  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5539  */
5540 
5541 struct perf_task_event {
5542 	struct task_struct		*task;
5543 	struct perf_event_context	*task_ctx;
5544 
5545 	struct {
5546 		struct perf_event_header	header;
5547 
5548 		u32				pid;
5549 		u32				ppid;
5550 		u32				tid;
5551 		u32				ptid;
5552 		u64				time;
5553 	} event_id;
5554 };
5555 
perf_event_task_match(struct perf_event * event)5556 static int perf_event_task_match(struct perf_event *event)
5557 {
5558 	return event->attr.comm  || event->attr.mmap ||
5559 	       event->attr.mmap2 || event->attr.mmap_data ||
5560 	       event->attr.task;
5561 }
5562 
perf_event_task_output(struct perf_event * event,void * data)5563 static void perf_event_task_output(struct perf_event *event,
5564 				   void *data)
5565 {
5566 	struct perf_task_event *task_event = data;
5567 	struct perf_output_handle handle;
5568 	struct perf_sample_data	sample;
5569 	struct task_struct *task = task_event->task;
5570 	int ret, size = task_event->event_id.header.size;
5571 
5572 	if (!perf_event_task_match(event))
5573 		return;
5574 
5575 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5576 
5577 	ret = perf_output_begin(&handle, event,
5578 				task_event->event_id.header.size);
5579 	if (ret)
5580 		goto out;
5581 
5582 	task_event->event_id.pid = perf_event_pid(event, task);
5583 	task_event->event_id.ppid = perf_event_pid(event, current);
5584 
5585 	task_event->event_id.tid = perf_event_tid(event, task);
5586 	task_event->event_id.ptid = perf_event_tid(event, current);
5587 
5588 	task_event->event_id.time = perf_event_clock(event);
5589 
5590 	perf_output_put(&handle, task_event->event_id);
5591 
5592 	perf_event__output_id_sample(event, &handle, &sample);
5593 
5594 	perf_output_end(&handle);
5595 out:
5596 	task_event->event_id.header.size = size;
5597 }
5598 
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)5599 static void perf_event_task(struct task_struct *task,
5600 			      struct perf_event_context *task_ctx,
5601 			      int new)
5602 {
5603 	struct perf_task_event task_event;
5604 
5605 	if (!atomic_read(&nr_comm_events) &&
5606 	    !atomic_read(&nr_mmap_events) &&
5607 	    !atomic_read(&nr_task_events))
5608 		return;
5609 
5610 	task_event = (struct perf_task_event){
5611 		.task	  = task,
5612 		.task_ctx = task_ctx,
5613 		.event_id    = {
5614 			.header = {
5615 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5616 				.misc = 0,
5617 				.size = sizeof(task_event.event_id),
5618 			},
5619 			/* .pid  */
5620 			/* .ppid */
5621 			/* .tid  */
5622 			/* .ptid */
5623 			/* .time */
5624 		},
5625 	};
5626 
5627 	perf_event_aux(perf_event_task_output,
5628 		       &task_event,
5629 		       task_ctx);
5630 }
5631 
perf_event_fork(struct task_struct * task)5632 void perf_event_fork(struct task_struct *task)
5633 {
5634 	perf_event_task(task, NULL, 1);
5635 }
5636 
5637 /*
5638  * comm tracking
5639  */
5640 
5641 struct perf_comm_event {
5642 	struct task_struct	*task;
5643 	char			*comm;
5644 	int			comm_size;
5645 
5646 	struct {
5647 		struct perf_event_header	header;
5648 
5649 		u32				pid;
5650 		u32				tid;
5651 	} event_id;
5652 };
5653 
perf_event_comm_match(struct perf_event * event)5654 static int perf_event_comm_match(struct perf_event *event)
5655 {
5656 	return event->attr.comm;
5657 }
5658 
perf_event_comm_output(struct perf_event * event,void * data)5659 static void perf_event_comm_output(struct perf_event *event,
5660 				   void *data)
5661 {
5662 	struct perf_comm_event *comm_event = data;
5663 	struct perf_output_handle handle;
5664 	struct perf_sample_data sample;
5665 	int size = comm_event->event_id.header.size;
5666 	int ret;
5667 
5668 	if (!perf_event_comm_match(event))
5669 		return;
5670 
5671 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5672 	ret = perf_output_begin(&handle, event,
5673 				comm_event->event_id.header.size);
5674 
5675 	if (ret)
5676 		goto out;
5677 
5678 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5679 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5680 
5681 	perf_output_put(&handle, comm_event->event_id);
5682 	__output_copy(&handle, comm_event->comm,
5683 				   comm_event->comm_size);
5684 
5685 	perf_event__output_id_sample(event, &handle, &sample);
5686 
5687 	perf_output_end(&handle);
5688 out:
5689 	comm_event->event_id.header.size = size;
5690 }
5691 
perf_event_comm_event(struct perf_comm_event * comm_event)5692 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5693 {
5694 	char comm[TASK_COMM_LEN];
5695 	unsigned int size;
5696 
5697 	memset(comm, 0, sizeof(comm));
5698 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
5699 	size = ALIGN(strlen(comm)+1, sizeof(u64));
5700 
5701 	comm_event->comm = comm;
5702 	comm_event->comm_size = size;
5703 
5704 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5705 
5706 	perf_event_aux(perf_event_comm_output,
5707 		       comm_event,
5708 		       NULL);
5709 }
5710 
perf_event_comm(struct task_struct * task,bool exec)5711 void perf_event_comm(struct task_struct *task, bool exec)
5712 {
5713 	struct perf_comm_event comm_event;
5714 
5715 	if (!atomic_read(&nr_comm_events))
5716 		return;
5717 
5718 	comm_event = (struct perf_comm_event){
5719 		.task	= task,
5720 		/* .comm      */
5721 		/* .comm_size */
5722 		.event_id  = {
5723 			.header = {
5724 				.type = PERF_RECORD_COMM,
5725 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5726 				/* .size */
5727 			},
5728 			/* .pid */
5729 			/* .tid */
5730 		},
5731 	};
5732 
5733 	perf_event_comm_event(&comm_event);
5734 }
5735 
5736 /*
5737  * mmap tracking
5738  */
5739 
5740 struct perf_mmap_event {
5741 	struct vm_area_struct	*vma;
5742 
5743 	const char		*file_name;
5744 	int			file_size;
5745 	int			maj, min;
5746 	u64			ino;
5747 	u64			ino_generation;
5748 	u32			prot, flags;
5749 
5750 	struct {
5751 		struct perf_event_header	header;
5752 
5753 		u32				pid;
5754 		u32				tid;
5755 		u64				start;
5756 		u64				len;
5757 		u64				pgoff;
5758 	} event_id;
5759 };
5760 
perf_event_mmap_match(struct perf_event * event,void * data)5761 static int perf_event_mmap_match(struct perf_event *event,
5762 				 void *data)
5763 {
5764 	struct perf_mmap_event *mmap_event = data;
5765 	struct vm_area_struct *vma = mmap_event->vma;
5766 	int executable = vma->vm_flags & VM_EXEC;
5767 
5768 	return (!executable && event->attr.mmap_data) ||
5769 	       (executable && (event->attr.mmap || event->attr.mmap2));
5770 }
5771 
perf_event_mmap_output(struct perf_event * event,void * data)5772 static void perf_event_mmap_output(struct perf_event *event,
5773 				   void *data)
5774 {
5775 	struct perf_mmap_event *mmap_event = data;
5776 	struct perf_output_handle handle;
5777 	struct perf_sample_data sample;
5778 	int size = mmap_event->event_id.header.size;
5779 	int ret;
5780 
5781 	if (!perf_event_mmap_match(event, data))
5782 		return;
5783 
5784 	if (event->attr.mmap2) {
5785 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5786 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5787 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
5788 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5789 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5790 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5791 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5792 	}
5793 
5794 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5795 	ret = perf_output_begin(&handle, event,
5796 				mmap_event->event_id.header.size);
5797 	if (ret)
5798 		goto out;
5799 
5800 	mmap_event->event_id.pid = perf_event_pid(event, current);
5801 	mmap_event->event_id.tid = perf_event_tid(event, current);
5802 
5803 	perf_output_put(&handle, mmap_event->event_id);
5804 
5805 	if (event->attr.mmap2) {
5806 		perf_output_put(&handle, mmap_event->maj);
5807 		perf_output_put(&handle, mmap_event->min);
5808 		perf_output_put(&handle, mmap_event->ino);
5809 		perf_output_put(&handle, mmap_event->ino_generation);
5810 		perf_output_put(&handle, mmap_event->prot);
5811 		perf_output_put(&handle, mmap_event->flags);
5812 	}
5813 
5814 	__output_copy(&handle, mmap_event->file_name,
5815 				   mmap_event->file_size);
5816 
5817 	perf_event__output_id_sample(event, &handle, &sample);
5818 
5819 	perf_output_end(&handle);
5820 out:
5821 	mmap_event->event_id.header.size = size;
5822 }
5823 
perf_event_mmap_event(struct perf_mmap_event * mmap_event)5824 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
5825 {
5826 	struct vm_area_struct *vma = mmap_event->vma;
5827 	struct file *file = vma->vm_file;
5828 	int maj = 0, min = 0;
5829 	u64 ino = 0, gen = 0;
5830 	u32 prot = 0, flags = 0;
5831 	unsigned int size;
5832 	char tmp[16];
5833 	char *buf = NULL;
5834 	char *name;
5835 
5836 	if (file) {
5837 		struct inode *inode;
5838 		dev_t dev;
5839 
5840 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
5841 		if (!buf) {
5842 			name = "//enomem";
5843 			goto cpy_name;
5844 		}
5845 		/*
5846 		 * d_path() works from the end of the rb backwards, so we
5847 		 * need to add enough zero bytes after the string to handle
5848 		 * the 64bit alignment we do later.
5849 		 */
5850 		name = d_path(&file->f_path, buf, PATH_MAX - sizeof(u64));
5851 		if (IS_ERR(name)) {
5852 			name = "//toolong";
5853 			goto cpy_name;
5854 		}
5855 		inode = file_inode(vma->vm_file);
5856 		dev = inode->i_sb->s_dev;
5857 		ino = inode->i_ino;
5858 		gen = inode->i_generation;
5859 		maj = MAJOR(dev);
5860 		min = MINOR(dev);
5861 
5862 		if (vma->vm_flags & VM_READ)
5863 			prot |= PROT_READ;
5864 		if (vma->vm_flags & VM_WRITE)
5865 			prot |= PROT_WRITE;
5866 		if (vma->vm_flags & VM_EXEC)
5867 			prot |= PROT_EXEC;
5868 
5869 		if (vma->vm_flags & VM_MAYSHARE)
5870 			flags = MAP_SHARED;
5871 		else
5872 			flags = MAP_PRIVATE;
5873 
5874 		if (vma->vm_flags & VM_DENYWRITE)
5875 			flags |= MAP_DENYWRITE;
5876 		if (vma->vm_flags & VM_MAYEXEC)
5877 			flags |= MAP_EXECUTABLE;
5878 		if (vma->vm_flags & VM_LOCKED)
5879 			flags |= MAP_LOCKED;
5880 		if (vma->vm_flags & VM_HUGETLB)
5881 			flags |= MAP_HUGETLB;
5882 
5883 		goto got_name;
5884 	} else {
5885 		if (vma->vm_ops && vma->vm_ops->name) {
5886 			name = (char *) vma->vm_ops->name(vma);
5887 			if (name)
5888 				goto cpy_name;
5889 		}
5890 
5891 		name = (char *)arch_vma_name(vma);
5892 		if (name)
5893 			goto cpy_name;
5894 
5895 		if (vma->vm_start <= vma->vm_mm->start_brk &&
5896 				vma->vm_end >= vma->vm_mm->brk) {
5897 			name = "[heap]";
5898 			goto cpy_name;
5899 		}
5900 		if (vma->vm_start <= vma->vm_mm->start_stack &&
5901 				vma->vm_end >= vma->vm_mm->start_stack) {
5902 			name = "[stack]";
5903 			goto cpy_name;
5904 		}
5905 
5906 		name = "//anon";
5907 		goto cpy_name;
5908 	}
5909 
5910 cpy_name:
5911 	strlcpy(tmp, name, sizeof(tmp));
5912 	name = tmp;
5913 got_name:
5914 	/*
5915 	 * Since our buffer works in 8 byte units we need to align our string
5916 	 * size to a multiple of 8. However, we must guarantee the tail end is
5917 	 * zero'd out to avoid leaking random bits to userspace.
5918 	 */
5919 	size = strlen(name)+1;
5920 	while (!IS_ALIGNED(size, sizeof(u64)))
5921 		name[size++] = '\0';
5922 
5923 	mmap_event->file_name = name;
5924 	mmap_event->file_size = size;
5925 	mmap_event->maj = maj;
5926 	mmap_event->min = min;
5927 	mmap_event->ino = ino;
5928 	mmap_event->ino_generation = gen;
5929 	mmap_event->prot = prot;
5930 	mmap_event->flags = flags;
5931 
5932 	if (!(vma->vm_flags & VM_EXEC))
5933 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5934 
5935 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5936 
5937 	perf_event_aux(perf_event_mmap_output,
5938 		       mmap_event,
5939 		       NULL);
5940 
5941 	kfree(buf);
5942 }
5943 
perf_event_mmap(struct vm_area_struct * vma)5944 void perf_event_mmap(struct vm_area_struct *vma)
5945 {
5946 	struct perf_mmap_event mmap_event;
5947 
5948 	if (!atomic_read(&nr_mmap_events))
5949 		return;
5950 
5951 	mmap_event = (struct perf_mmap_event){
5952 		.vma	= vma,
5953 		/* .file_name */
5954 		/* .file_size */
5955 		.event_id  = {
5956 			.header = {
5957 				.type = PERF_RECORD_MMAP,
5958 				.misc = PERF_RECORD_MISC_USER,
5959 				/* .size */
5960 			},
5961 			/* .pid */
5962 			/* .tid */
5963 			.start  = vma->vm_start,
5964 			.len    = vma->vm_end - vma->vm_start,
5965 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
5966 		},
5967 		/* .maj (attr_mmap2 only) */
5968 		/* .min (attr_mmap2 only) */
5969 		/* .ino (attr_mmap2 only) */
5970 		/* .ino_generation (attr_mmap2 only) */
5971 		/* .prot (attr_mmap2 only) */
5972 		/* .flags (attr_mmap2 only) */
5973 	};
5974 
5975 	perf_event_mmap_event(&mmap_event);
5976 }
5977 
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)5978 void perf_event_aux_event(struct perf_event *event, unsigned long head,
5979 			  unsigned long size, u64 flags)
5980 {
5981 	struct perf_output_handle handle;
5982 	struct perf_sample_data sample;
5983 	struct perf_aux_event {
5984 		struct perf_event_header	header;
5985 		u64				offset;
5986 		u64				size;
5987 		u64				flags;
5988 	} rec = {
5989 		.header = {
5990 			.type = PERF_RECORD_AUX,
5991 			.misc = 0,
5992 			.size = sizeof(rec),
5993 		},
5994 		.offset		= head,
5995 		.size		= size,
5996 		.flags		= flags,
5997 	};
5998 	int ret;
5999 
6000 	perf_event_header__init_id(&rec.header, &sample, event);
6001 	ret = perf_output_begin(&handle, event, rec.header.size);
6002 
6003 	if (ret)
6004 		return;
6005 
6006 	perf_output_put(&handle, rec);
6007 	perf_event__output_id_sample(event, &handle, &sample);
6008 
6009 	perf_output_end(&handle);
6010 }
6011 
6012 /*
6013  * IRQ throttle logging
6014  */
6015 
perf_log_throttle(struct perf_event * event,int enable)6016 static void perf_log_throttle(struct perf_event *event, int enable)
6017 {
6018 	struct perf_output_handle handle;
6019 	struct perf_sample_data sample;
6020 	int ret;
6021 
6022 	struct {
6023 		struct perf_event_header	header;
6024 		u64				time;
6025 		u64				id;
6026 		u64				stream_id;
6027 	} throttle_event = {
6028 		.header = {
6029 			.type = PERF_RECORD_THROTTLE,
6030 			.misc = 0,
6031 			.size = sizeof(throttle_event),
6032 		},
6033 		.time		= perf_event_clock(event),
6034 		.id		= primary_event_id(event),
6035 		.stream_id	= event->id,
6036 	};
6037 
6038 	if (enable)
6039 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6040 
6041 	perf_event_header__init_id(&throttle_event.header, &sample, event);
6042 
6043 	ret = perf_output_begin(&handle, event,
6044 				throttle_event.header.size);
6045 	if (ret)
6046 		return;
6047 
6048 	perf_output_put(&handle, throttle_event);
6049 	perf_event__output_id_sample(event, &handle, &sample);
6050 	perf_output_end(&handle);
6051 }
6052 
perf_log_itrace_start(struct perf_event * event)6053 static void perf_log_itrace_start(struct perf_event *event)
6054 {
6055 	struct perf_output_handle handle;
6056 	struct perf_sample_data sample;
6057 	struct perf_aux_event {
6058 		struct perf_event_header        header;
6059 		u32				pid;
6060 		u32				tid;
6061 	} rec;
6062 	int ret;
6063 
6064 	if (event->parent)
6065 		event = event->parent;
6066 
6067 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6068 	    event->hw.itrace_started)
6069 		return;
6070 
6071 	event->hw.itrace_started = 1;
6072 
6073 	rec.header.type	= PERF_RECORD_ITRACE_START;
6074 	rec.header.misc	= 0;
6075 	rec.header.size	= sizeof(rec);
6076 	rec.pid	= perf_event_pid(event, current);
6077 	rec.tid	= perf_event_tid(event, current);
6078 
6079 	perf_event_header__init_id(&rec.header, &sample, event);
6080 	ret = perf_output_begin(&handle, event, rec.header.size);
6081 
6082 	if (ret)
6083 		return;
6084 
6085 	perf_output_put(&handle, rec);
6086 	perf_event__output_id_sample(event, &handle, &sample);
6087 
6088 	perf_output_end(&handle);
6089 }
6090 
6091 /*
6092  * Generic event overflow handling, sampling.
6093  */
6094 
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)6095 static int __perf_event_overflow(struct perf_event *event,
6096 				   int throttle, struct perf_sample_data *data,
6097 				   struct pt_regs *regs)
6098 {
6099 	int events = atomic_read(&event->event_limit);
6100 	struct hw_perf_event *hwc = &event->hw;
6101 	u64 seq;
6102 	int ret = 0;
6103 
6104 	/*
6105 	 * Non-sampling counters might still use the PMI to fold short
6106 	 * hardware counters, ignore those.
6107 	 */
6108 	if (unlikely(!is_sampling_event(event)))
6109 		return 0;
6110 
6111 	seq = __this_cpu_read(perf_throttled_seq);
6112 	if (seq != hwc->interrupts_seq) {
6113 		hwc->interrupts_seq = seq;
6114 		hwc->interrupts = 1;
6115 	} else {
6116 		hwc->interrupts++;
6117 		if (unlikely(throttle
6118 			     && hwc->interrupts >= max_samples_per_tick)) {
6119 			__this_cpu_inc(perf_throttled_count);
6120 			hwc->interrupts = MAX_INTERRUPTS;
6121 			perf_log_throttle(event, 0);
6122 			tick_nohz_full_kick();
6123 			ret = 1;
6124 		}
6125 	}
6126 
6127 	if (event->attr.freq) {
6128 		u64 now = perf_clock();
6129 		s64 delta = now - hwc->freq_time_stamp;
6130 
6131 		hwc->freq_time_stamp = now;
6132 
6133 		if (delta > 0 && delta < 2*TICK_NSEC)
6134 			perf_adjust_period(event, delta, hwc->last_period, true);
6135 	}
6136 
6137 	/*
6138 	 * XXX event_limit might not quite work as expected on inherited
6139 	 * events
6140 	 */
6141 
6142 	event->pending_kill = POLL_IN;
6143 	if (events && atomic_dec_and_test(&event->event_limit)) {
6144 		ret = 1;
6145 		event->pending_kill = POLL_HUP;
6146 		event->pending_disable = 1;
6147 		irq_work_queue(&event->pending);
6148 	}
6149 
6150 	if (event->overflow_handler)
6151 		event->overflow_handler(event, data, regs);
6152 	else
6153 		perf_event_output(event, data, regs);
6154 
6155 	if (*perf_event_fasync(event) && event->pending_kill) {
6156 		event->pending_wakeup = 1;
6157 		irq_work_queue(&event->pending);
6158 	}
6159 
6160 	return ret;
6161 }
6162 
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)6163 int perf_event_overflow(struct perf_event *event,
6164 			  struct perf_sample_data *data,
6165 			  struct pt_regs *regs)
6166 {
6167 	return __perf_event_overflow(event, 1, data, regs);
6168 }
6169 
6170 /*
6171  * Generic software event infrastructure
6172  */
6173 
6174 struct swevent_htable {
6175 	struct swevent_hlist		*swevent_hlist;
6176 	struct mutex			hlist_mutex;
6177 	int				hlist_refcount;
6178 
6179 	/* Recursion avoidance in each contexts */
6180 	int				recursion[PERF_NR_CONTEXTS];
6181 
6182 	/* Keeps track of cpu being initialized/exited */
6183 	bool				online;
6184 };
6185 
6186 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6187 
6188 /*
6189  * We directly increment event->count and keep a second value in
6190  * event->hw.period_left to count intervals. This period event
6191  * is kept in the range [-sample_period, 0] so that we can use the
6192  * sign as trigger.
6193  */
6194 
perf_swevent_set_period(struct perf_event * event)6195 u64 perf_swevent_set_period(struct perf_event *event)
6196 {
6197 	struct hw_perf_event *hwc = &event->hw;
6198 	u64 period = hwc->last_period;
6199 	u64 nr, offset;
6200 	s64 old, val;
6201 
6202 	hwc->last_period = hwc->sample_period;
6203 
6204 again:
6205 	old = val = local64_read(&hwc->period_left);
6206 	if (val < 0)
6207 		return 0;
6208 
6209 	nr = div64_u64(period + val, period);
6210 	offset = nr * period;
6211 	val -= offset;
6212 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6213 		goto again;
6214 
6215 	return nr;
6216 }
6217 
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)6218 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6219 				    struct perf_sample_data *data,
6220 				    struct pt_regs *regs)
6221 {
6222 	struct hw_perf_event *hwc = &event->hw;
6223 	int throttle = 0;
6224 
6225 	if (!overflow)
6226 		overflow = perf_swevent_set_period(event);
6227 
6228 	if (hwc->interrupts == MAX_INTERRUPTS)
6229 		return;
6230 
6231 	for (; overflow; overflow--) {
6232 		if (__perf_event_overflow(event, throttle,
6233 					    data, regs)) {
6234 			/*
6235 			 * We inhibit the overflow from happening when
6236 			 * hwc->interrupts == MAX_INTERRUPTS.
6237 			 */
6238 			break;
6239 		}
6240 		throttle = 1;
6241 	}
6242 }
6243 
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)6244 static void perf_swevent_event(struct perf_event *event, u64 nr,
6245 			       struct perf_sample_data *data,
6246 			       struct pt_regs *regs)
6247 {
6248 	struct hw_perf_event *hwc = &event->hw;
6249 
6250 	local64_add(nr, &event->count);
6251 
6252 	if (!regs)
6253 		return;
6254 
6255 	if (!is_sampling_event(event))
6256 		return;
6257 
6258 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6259 		data->period = nr;
6260 		return perf_swevent_overflow(event, 1, data, regs);
6261 	} else
6262 		data->period = event->hw.last_period;
6263 
6264 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6265 		return perf_swevent_overflow(event, 1, data, regs);
6266 
6267 	if (local64_add_negative(nr, &hwc->period_left))
6268 		return;
6269 
6270 	perf_swevent_overflow(event, 0, data, regs);
6271 }
6272 
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)6273 static int perf_exclude_event(struct perf_event *event,
6274 			      struct pt_regs *regs)
6275 {
6276 	if (event->hw.state & PERF_HES_STOPPED)
6277 		return 1;
6278 
6279 	if (regs) {
6280 		if (event->attr.exclude_user && user_mode(regs))
6281 			return 1;
6282 
6283 		if (event->attr.exclude_kernel && !user_mode(regs))
6284 			return 1;
6285 	}
6286 
6287 	return 0;
6288 }
6289 
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)6290 static int perf_swevent_match(struct perf_event *event,
6291 				enum perf_type_id type,
6292 				u32 event_id,
6293 				struct perf_sample_data *data,
6294 				struct pt_regs *regs)
6295 {
6296 	if (event->attr.type != type)
6297 		return 0;
6298 
6299 	if (event->attr.config != event_id)
6300 		return 0;
6301 
6302 	if (perf_exclude_event(event, regs))
6303 		return 0;
6304 
6305 	return 1;
6306 }
6307 
swevent_hash(u64 type,u32 event_id)6308 static inline u64 swevent_hash(u64 type, u32 event_id)
6309 {
6310 	u64 val = event_id | (type << 32);
6311 
6312 	return hash_64(val, SWEVENT_HLIST_BITS);
6313 }
6314 
6315 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)6316 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6317 {
6318 	u64 hash = swevent_hash(type, event_id);
6319 
6320 	return &hlist->heads[hash];
6321 }
6322 
6323 /* For the read side: events when they trigger */
6324 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)6325 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6326 {
6327 	struct swevent_hlist *hlist;
6328 
6329 	hlist = rcu_dereference(swhash->swevent_hlist);
6330 	if (!hlist)
6331 		return NULL;
6332 
6333 	return __find_swevent_head(hlist, type, event_id);
6334 }
6335 
6336 /* For the event head insertion and removal in the hlist */
6337 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)6338 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6339 {
6340 	struct swevent_hlist *hlist;
6341 	u32 event_id = event->attr.config;
6342 	u64 type = event->attr.type;
6343 
6344 	/*
6345 	 * Event scheduling is always serialized against hlist allocation
6346 	 * and release. Which makes the protected version suitable here.
6347 	 * The context lock guarantees that.
6348 	 */
6349 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
6350 					  lockdep_is_held(&event->ctx->lock));
6351 	if (!hlist)
6352 		return NULL;
6353 
6354 	return __find_swevent_head(hlist, type, event_id);
6355 }
6356 
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)6357 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6358 				    u64 nr,
6359 				    struct perf_sample_data *data,
6360 				    struct pt_regs *regs)
6361 {
6362 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6363 	struct perf_event *event;
6364 	struct hlist_head *head;
6365 
6366 	rcu_read_lock();
6367 	head = find_swevent_head_rcu(swhash, type, event_id);
6368 	if (!head)
6369 		goto end;
6370 
6371 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6372 		if (perf_swevent_match(event, type, event_id, data, regs))
6373 			perf_swevent_event(event, nr, data, regs);
6374 	}
6375 end:
6376 	rcu_read_unlock();
6377 }
6378 
6379 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6380 
perf_swevent_get_recursion_context(void)6381 int perf_swevent_get_recursion_context(void)
6382 {
6383 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6384 
6385 	return get_recursion_context(swhash->recursion);
6386 }
6387 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6388 
perf_swevent_put_recursion_context(int rctx)6389 inline void perf_swevent_put_recursion_context(int rctx)
6390 {
6391 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6392 
6393 	put_recursion_context(swhash->recursion, rctx);
6394 }
6395 
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)6396 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6397 {
6398 	struct perf_sample_data data;
6399 
6400 	if (WARN_ON_ONCE(!regs))
6401 		return;
6402 
6403 	perf_sample_data_init(&data, addr, 0);
6404 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6405 }
6406 
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)6407 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6408 {
6409 	int rctx;
6410 
6411 	preempt_disable_notrace();
6412 	rctx = perf_swevent_get_recursion_context();
6413 	if (unlikely(rctx < 0))
6414 		goto fail;
6415 
6416 	___perf_sw_event(event_id, nr, regs, addr);
6417 
6418 	perf_swevent_put_recursion_context(rctx);
6419 fail:
6420 	preempt_enable_notrace();
6421 }
6422 
perf_swevent_read(struct perf_event * event)6423 static void perf_swevent_read(struct perf_event *event)
6424 {
6425 }
6426 
perf_swevent_add(struct perf_event * event,int flags)6427 static int perf_swevent_add(struct perf_event *event, int flags)
6428 {
6429 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6430 	struct hw_perf_event *hwc = &event->hw;
6431 	struct hlist_head *head;
6432 
6433 	if (is_sampling_event(event)) {
6434 		hwc->last_period = hwc->sample_period;
6435 		perf_swevent_set_period(event);
6436 	}
6437 
6438 	hwc->state = !(flags & PERF_EF_START);
6439 
6440 	head = find_swevent_head(swhash, event);
6441 	if (!head) {
6442 		/*
6443 		 * We can race with cpu hotplug code. Do not
6444 		 * WARN if the cpu just got unplugged.
6445 		 */
6446 		WARN_ON_ONCE(swhash->online);
6447 		return -EINVAL;
6448 	}
6449 
6450 	hlist_add_head_rcu(&event->hlist_entry, head);
6451 	perf_event_update_userpage(event);
6452 
6453 	return 0;
6454 }
6455 
perf_swevent_del(struct perf_event * event,int flags)6456 static void perf_swevent_del(struct perf_event *event, int flags)
6457 {
6458 	hlist_del_rcu(&event->hlist_entry);
6459 }
6460 
perf_swevent_start(struct perf_event * event,int flags)6461 static void perf_swevent_start(struct perf_event *event, int flags)
6462 {
6463 	event->hw.state = 0;
6464 }
6465 
perf_swevent_stop(struct perf_event * event,int flags)6466 static void perf_swevent_stop(struct perf_event *event, int flags)
6467 {
6468 	event->hw.state = PERF_HES_STOPPED;
6469 }
6470 
6471 /* Deref the hlist from the update side */
6472 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)6473 swevent_hlist_deref(struct swevent_htable *swhash)
6474 {
6475 	return rcu_dereference_protected(swhash->swevent_hlist,
6476 					 lockdep_is_held(&swhash->hlist_mutex));
6477 }
6478 
swevent_hlist_release(struct swevent_htable * swhash)6479 static void swevent_hlist_release(struct swevent_htable *swhash)
6480 {
6481 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6482 
6483 	if (!hlist)
6484 		return;
6485 
6486 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6487 	kfree_rcu(hlist, rcu_head);
6488 }
6489 
swevent_hlist_put_cpu(struct perf_event * event,int cpu)6490 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6491 {
6492 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6493 
6494 	mutex_lock(&swhash->hlist_mutex);
6495 
6496 	if (!--swhash->hlist_refcount)
6497 		swevent_hlist_release(swhash);
6498 
6499 	mutex_unlock(&swhash->hlist_mutex);
6500 }
6501 
swevent_hlist_put(struct perf_event * event)6502 static void swevent_hlist_put(struct perf_event *event)
6503 {
6504 	int cpu;
6505 
6506 	for_each_possible_cpu(cpu)
6507 		swevent_hlist_put_cpu(event, cpu);
6508 }
6509 
swevent_hlist_get_cpu(struct perf_event * event,int cpu)6510 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6511 {
6512 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6513 	int err = 0;
6514 
6515 	mutex_lock(&swhash->hlist_mutex);
6516 
6517 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6518 		struct swevent_hlist *hlist;
6519 
6520 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6521 		if (!hlist) {
6522 			err = -ENOMEM;
6523 			goto exit;
6524 		}
6525 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6526 	}
6527 	swhash->hlist_refcount++;
6528 exit:
6529 	mutex_unlock(&swhash->hlist_mutex);
6530 
6531 	return err;
6532 }
6533 
swevent_hlist_get(struct perf_event * event)6534 static int swevent_hlist_get(struct perf_event *event)
6535 {
6536 	int err;
6537 	int cpu, failed_cpu;
6538 
6539 	get_online_cpus();
6540 	for_each_possible_cpu(cpu) {
6541 		err = swevent_hlist_get_cpu(event, cpu);
6542 		if (err) {
6543 			failed_cpu = cpu;
6544 			goto fail;
6545 		}
6546 	}
6547 	put_online_cpus();
6548 
6549 	return 0;
6550 fail:
6551 	for_each_possible_cpu(cpu) {
6552 		if (cpu == failed_cpu)
6553 			break;
6554 		swevent_hlist_put_cpu(event, cpu);
6555 	}
6556 
6557 	put_online_cpus();
6558 	return err;
6559 }
6560 
6561 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6562 
sw_perf_event_destroy(struct perf_event * event)6563 static void sw_perf_event_destroy(struct perf_event *event)
6564 {
6565 	u64 event_id = event->attr.config;
6566 
6567 	WARN_ON(event->parent);
6568 
6569 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
6570 	swevent_hlist_put(event);
6571 }
6572 
perf_swevent_init(struct perf_event * event)6573 static int perf_swevent_init(struct perf_event *event)
6574 {
6575 	u64 event_id = event->attr.config;
6576 
6577 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6578 		return -ENOENT;
6579 
6580 	/*
6581 	 * no branch sampling for software events
6582 	 */
6583 	if (has_branch_stack(event))
6584 		return -EOPNOTSUPP;
6585 
6586 	switch (event_id) {
6587 	case PERF_COUNT_SW_CPU_CLOCK:
6588 	case PERF_COUNT_SW_TASK_CLOCK:
6589 		return -ENOENT;
6590 
6591 	default:
6592 		break;
6593 	}
6594 
6595 	if (event_id >= PERF_COUNT_SW_MAX)
6596 		return -ENOENT;
6597 
6598 	if (!event->parent) {
6599 		int err;
6600 
6601 		err = swevent_hlist_get(event);
6602 		if (err)
6603 			return err;
6604 
6605 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
6606 		event->destroy = sw_perf_event_destroy;
6607 	}
6608 
6609 	return 0;
6610 }
6611 
6612 static struct pmu perf_swevent = {
6613 	.task_ctx_nr	= perf_sw_context,
6614 
6615 	.capabilities	= PERF_PMU_CAP_NO_NMI,
6616 
6617 	.event_init	= perf_swevent_init,
6618 	.add		= perf_swevent_add,
6619 	.del		= perf_swevent_del,
6620 	.start		= perf_swevent_start,
6621 	.stop		= perf_swevent_stop,
6622 	.read		= perf_swevent_read,
6623 };
6624 
6625 #ifdef CONFIG_EVENT_TRACING
6626 
perf_tp_filter_match(struct perf_event * event,struct perf_sample_data * data)6627 static int perf_tp_filter_match(struct perf_event *event,
6628 				struct perf_sample_data *data)
6629 {
6630 	void *record = data->raw->data;
6631 
6632 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
6633 		return 1;
6634 	return 0;
6635 }
6636 
perf_tp_event_match(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)6637 static int perf_tp_event_match(struct perf_event *event,
6638 				struct perf_sample_data *data,
6639 				struct pt_regs *regs)
6640 {
6641 	if (event->hw.state & PERF_HES_STOPPED)
6642 		return 0;
6643 	/*
6644 	 * All tracepoints are from kernel-space.
6645 	 */
6646 	if (event->attr.exclude_kernel)
6647 		return 0;
6648 
6649 	if (!perf_tp_filter_match(event, data))
6650 		return 0;
6651 
6652 	return 1;
6653 }
6654 
perf_tp_event(u64 addr,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)6655 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6656 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
6657 		   struct task_struct *task)
6658 {
6659 	struct perf_sample_data data;
6660 	struct perf_event *event;
6661 
6662 	struct perf_raw_record raw = {
6663 		.size = entry_size,
6664 		.data = record,
6665 	};
6666 
6667 	perf_sample_data_init(&data, addr, 0);
6668 	data.raw = &raw;
6669 
6670 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
6671 		if (perf_tp_event_match(event, &data, regs))
6672 			perf_swevent_event(event, count, &data, regs);
6673 	}
6674 
6675 	/*
6676 	 * If we got specified a target task, also iterate its context and
6677 	 * deliver this event there too.
6678 	 */
6679 	if (task && task != current) {
6680 		struct perf_event_context *ctx;
6681 		struct trace_entry *entry = record;
6682 
6683 		rcu_read_lock();
6684 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6685 		if (!ctx)
6686 			goto unlock;
6687 
6688 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6689 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
6690 				continue;
6691 			if (event->attr.config != entry->type)
6692 				continue;
6693 			if (perf_tp_event_match(event, &data, regs))
6694 				perf_swevent_event(event, count, &data, regs);
6695 		}
6696 unlock:
6697 		rcu_read_unlock();
6698 	}
6699 
6700 	perf_swevent_put_recursion_context(rctx);
6701 }
6702 EXPORT_SYMBOL_GPL(perf_tp_event);
6703 
tp_perf_event_destroy(struct perf_event * event)6704 static void tp_perf_event_destroy(struct perf_event *event)
6705 {
6706 	perf_trace_destroy(event);
6707 }
6708 
perf_tp_event_init(struct perf_event * event)6709 static int perf_tp_event_init(struct perf_event *event)
6710 {
6711 	int err;
6712 
6713 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6714 		return -ENOENT;
6715 
6716 	/*
6717 	 * no branch sampling for tracepoint events
6718 	 */
6719 	if (has_branch_stack(event))
6720 		return -EOPNOTSUPP;
6721 
6722 	err = perf_trace_init(event);
6723 	if (err)
6724 		return err;
6725 
6726 	event->destroy = tp_perf_event_destroy;
6727 
6728 	return 0;
6729 }
6730 
6731 static struct pmu perf_tracepoint = {
6732 	.task_ctx_nr	= perf_sw_context,
6733 
6734 	.event_init	= perf_tp_event_init,
6735 	.add		= perf_trace_add,
6736 	.del		= perf_trace_del,
6737 	.start		= perf_swevent_start,
6738 	.stop		= perf_swevent_stop,
6739 	.read		= perf_swevent_read,
6740 };
6741 
perf_tp_register(void)6742 static inline void perf_tp_register(void)
6743 {
6744 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
6745 }
6746 
perf_event_set_filter(struct perf_event * event,void __user * arg)6747 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6748 {
6749 	char *filter_str;
6750 	int ret;
6751 
6752 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6753 		return -EINVAL;
6754 
6755 	filter_str = strndup_user(arg, PAGE_SIZE);
6756 	if (IS_ERR(filter_str))
6757 		return PTR_ERR(filter_str);
6758 
6759 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6760 
6761 	kfree(filter_str);
6762 	return ret;
6763 }
6764 
perf_event_free_filter(struct perf_event * event)6765 static void perf_event_free_filter(struct perf_event *event)
6766 {
6767 	ftrace_profile_free_filter(event);
6768 }
6769 
perf_event_set_bpf_prog(struct perf_event * event,u32 prog_fd)6770 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6771 {
6772 	struct bpf_prog *prog;
6773 
6774 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
6775 		return -EINVAL;
6776 
6777 	if (event->tp_event->prog)
6778 		return -EEXIST;
6779 
6780 	if (!(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
6781 		/* bpf programs can only be attached to kprobes */
6782 		return -EINVAL;
6783 
6784 	prog = bpf_prog_get(prog_fd);
6785 	if (IS_ERR(prog))
6786 		return PTR_ERR(prog);
6787 
6788 	if (prog->type != BPF_PROG_TYPE_KPROBE) {
6789 		/* valid fd, but invalid bpf program type */
6790 		bpf_prog_put(prog);
6791 		return -EINVAL;
6792 	}
6793 
6794 	event->tp_event->prog = prog;
6795 
6796 	return 0;
6797 }
6798 
perf_event_free_bpf_prog(struct perf_event * event)6799 static void perf_event_free_bpf_prog(struct perf_event *event)
6800 {
6801 	struct bpf_prog *prog;
6802 
6803 	if (!event->tp_event)
6804 		return;
6805 
6806 	prog = event->tp_event->prog;
6807 	if (prog) {
6808 		event->tp_event->prog = NULL;
6809 		bpf_prog_put(prog);
6810 	}
6811 }
6812 
6813 #else
6814 
perf_tp_register(void)6815 static inline void perf_tp_register(void)
6816 {
6817 }
6818 
perf_event_set_filter(struct perf_event * event,void __user * arg)6819 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6820 {
6821 	return -ENOENT;
6822 }
6823 
perf_event_free_filter(struct perf_event * event)6824 static void perf_event_free_filter(struct perf_event *event)
6825 {
6826 }
6827 
perf_event_set_bpf_prog(struct perf_event * event,u32 prog_fd)6828 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
6829 {
6830 	return -ENOENT;
6831 }
6832 
perf_event_free_bpf_prog(struct perf_event * event)6833 static void perf_event_free_bpf_prog(struct perf_event *event)
6834 {
6835 }
6836 #endif /* CONFIG_EVENT_TRACING */
6837 
6838 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)6839 void perf_bp_event(struct perf_event *bp, void *data)
6840 {
6841 	struct perf_sample_data sample;
6842 	struct pt_regs *regs = data;
6843 
6844 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
6845 
6846 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
6847 		perf_swevent_event(bp, 1, &sample, regs);
6848 }
6849 #endif
6850 
6851 /*
6852  * hrtimer based swevent callback
6853  */
6854 
perf_swevent_hrtimer(struct hrtimer * hrtimer)6855 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
6856 {
6857 	enum hrtimer_restart ret = HRTIMER_RESTART;
6858 	struct perf_sample_data data;
6859 	struct pt_regs *regs;
6860 	struct perf_event *event;
6861 	u64 period;
6862 
6863 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
6864 
6865 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6866 		return HRTIMER_NORESTART;
6867 
6868 	event->pmu->read(event);
6869 
6870 	perf_sample_data_init(&data, 0, event->hw.last_period);
6871 	regs = get_irq_regs();
6872 
6873 	if (regs && !perf_exclude_event(event, regs)) {
6874 		if (!(event->attr.exclude_idle && is_idle_task(current)))
6875 			if (__perf_event_overflow(event, 1, &data, regs))
6876 				ret = HRTIMER_NORESTART;
6877 	}
6878 
6879 	period = max_t(u64, 10000, event->hw.sample_period);
6880 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
6881 
6882 	return ret;
6883 }
6884 
perf_swevent_start_hrtimer(struct perf_event * event)6885 static void perf_swevent_start_hrtimer(struct perf_event *event)
6886 {
6887 	struct hw_perf_event *hwc = &event->hw;
6888 	s64 period;
6889 
6890 	if (!is_sampling_event(event))
6891 		return;
6892 
6893 	period = local64_read(&hwc->period_left);
6894 	if (period) {
6895 		if (period < 0)
6896 			period = 10000;
6897 
6898 		local64_set(&hwc->period_left, 0);
6899 	} else {
6900 		period = max_t(u64, 10000, hwc->sample_period);
6901 	}
6902 	__hrtimer_start_range_ns(&hwc->hrtimer,
6903 				ns_to_ktime(period), 0,
6904 				HRTIMER_MODE_REL_PINNED, 0);
6905 }
6906 
perf_swevent_cancel_hrtimer(struct perf_event * event)6907 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
6908 {
6909 	struct hw_perf_event *hwc = &event->hw;
6910 
6911 	if (is_sampling_event(event)) {
6912 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
6913 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
6914 
6915 		hrtimer_cancel(&hwc->hrtimer);
6916 	}
6917 }
6918 
perf_swevent_init_hrtimer(struct perf_event * event)6919 static void perf_swevent_init_hrtimer(struct perf_event *event)
6920 {
6921 	struct hw_perf_event *hwc = &event->hw;
6922 
6923 	if (!is_sampling_event(event))
6924 		return;
6925 
6926 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6927 	hwc->hrtimer.function = perf_swevent_hrtimer;
6928 
6929 	/*
6930 	 * Since hrtimers have a fixed rate, we can do a static freq->period
6931 	 * mapping and avoid the whole period adjust feedback stuff.
6932 	 */
6933 	if (event->attr.freq) {
6934 		long freq = event->attr.sample_freq;
6935 
6936 		event->attr.sample_period = NSEC_PER_SEC / freq;
6937 		hwc->sample_period = event->attr.sample_period;
6938 		local64_set(&hwc->period_left, hwc->sample_period);
6939 		hwc->last_period = hwc->sample_period;
6940 		event->attr.freq = 0;
6941 	}
6942 }
6943 
6944 /*
6945  * Software event: cpu wall time clock
6946  */
6947 
cpu_clock_event_update(struct perf_event * event)6948 static void cpu_clock_event_update(struct perf_event *event)
6949 {
6950 	s64 prev;
6951 	u64 now;
6952 
6953 	now = local_clock();
6954 	prev = local64_xchg(&event->hw.prev_count, now);
6955 	local64_add(now - prev, &event->count);
6956 }
6957 
cpu_clock_event_start(struct perf_event * event,int flags)6958 static void cpu_clock_event_start(struct perf_event *event, int flags)
6959 {
6960 	local64_set(&event->hw.prev_count, local_clock());
6961 	perf_swevent_start_hrtimer(event);
6962 }
6963 
cpu_clock_event_stop(struct perf_event * event,int flags)6964 static void cpu_clock_event_stop(struct perf_event *event, int flags)
6965 {
6966 	perf_swevent_cancel_hrtimer(event);
6967 	cpu_clock_event_update(event);
6968 }
6969 
cpu_clock_event_add(struct perf_event * event,int flags)6970 static int cpu_clock_event_add(struct perf_event *event, int flags)
6971 {
6972 	if (flags & PERF_EF_START)
6973 		cpu_clock_event_start(event, flags);
6974 	perf_event_update_userpage(event);
6975 
6976 	return 0;
6977 }
6978 
cpu_clock_event_del(struct perf_event * event,int flags)6979 static void cpu_clock_event_del(struct perf_event *event, int flags)
6980 {
6981 	cpu_clock_event_stop(event, flags);
6982 }
6983 
cpu_clock_event_read(struct perf_event * event)6984 static void cpu_clock_event_read(struct perf_event *event)
6985 {
6986 	cpu_clock_event_update(event);
6987 }
6988 
cpu_clock_event_init(struct perf_event * event)6989 static int cpu_clock_event_init(struct perf_event *event)
6990 {
6991 	if (event->attr.type != PERF_TYPE_SOFTWARE)
6992 		return -ENOENT;
6993 
6994 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
6995 		return -ENOENT;
6996 
6997 	/*
6998 	 * no branch sampling for software events
6999 	 */
7000 	if (has_branch_stack(event))
7001 		return -EOPNOTSUPP;
7002 
7003 	perf_swevent_init_hrtimer(event);
7004 
7005 	return 0;
7006 }
7007 
7008 static struct pmu perf_cpu_clock = {
7009 	.task_ctx_nr	= perf_sw_context,
7010 
7011 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7012 
7013 	.event_init	= cpu_clock_event_init,
7014 	.add		= cpu_clock_event_add,
7015 	.del		= cpu_clock_event_del,
7016 	.start		= cpu_clock_event_start,
7017 	.stop		= cpu_clock_event_stop,
7018 	.read		= cpu_clock_event_read,
7019 };
7020 
7021 /*
7022  * Software event: task time clock
7023  */
7024 
task_clock_event_update(struct perf_event * event,u64 now)7025 static void task_clock_event_update(struct perf_event *event, u64 now)
7026 {
7027 	u64 prev;
7028 	s64 delta;
7029 
7030 	prev = local64_xchg(&event->hw.prev_count, now);
7031 	delta = now - prev;
7032 	local64_add(delta, &event->count);
7033 }
7034 
task_clock_event_start(struct perf_event * event,int flags)7035 static void task_clock_event_start(struct perf_event *event, int flags)
7036 {
7037 	local64_set(&event->hw.prev_count, event->ctx->time);
7038 	perf_swevent_start_hrtimer(event);
7039 }
7040 
task_clock_event_stop(struct perf_event * event,int flags)7041 static void task_clock_event_stop(struct perf_event *event, int flags)
7042 {
7043 	perf_swevent_cancel_hrtimer(event);
7044 	task_clock_event_update(event, event->ctx->time);
7045 }
7046 
task_clock_event_add(struct perf_event * event,int flags)7047 static int task_clock_event_add(struct perf_event *event, int flags)
7048 {
7049 	if (flags & PERF_EF_START)
7050 		task_clock_event_start(event, flags);
7051 	perf_event_update_userpage(event);
7052 
7053 	return 0;
7054 }
7055 
task_clock_event_del(struct perf_event * event,int flags)7056 static void task_clock_event_del(struct perf_event *event, int flags)
7057 {
7058 	task_clock_event_stop(event, PERF_EF_UPDATE);
7059 }
7060 
task_clock_event_read(struct perf_event * event)7061 static void task_clock_event_read(struct perf_event *event)
7062 {
7063 	u64 now = perf_clock();
7064 	u64 delta = now - event->ctx->timestamp;
7065 	u64 time = event->ctx->time + delta;
7066 
7067 	task_clock_event_update(event, time);
7068 }
7069 
task_clock_event_init(struct perf_event * event)7070 static int task_clock_event_init(struct perf_event *event)
7071 {
7072 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7073 		return -ENOENT;
7074 
7075 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7076 		return -ENOENT;
7077 
7078 	/*
7079 	 * no branch sampling for software events
7080 	 */
7081 	if (has_branch_stack(event))
7082 		return -EOPNOTSUPP;
7083 
7084 	perf_swevent_init_hrtimer(event);
7085 
7086 	return 0;
7087 }
7088 
7089 static struct pmu perf_task_clock = {
7090 	.task_ctx_nr	= perf_sw_context,
7091 
7092 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7093 
7094 	.event_init	= task_clock_event_init,
7095 	.add		= task_clock_event_add,
7096 	.del		= task_clock_event_del,
7097 	.start		= task_clock_event_start,
7098 	.stop		= task_clock_event_stop,
7099 	.read		= task_clock_event_read,
7100 };
7101 
perf_pmu_nop_void(struct pmu * pmu)7102 static void perf_pmu_nop_void(struct pmu *pmu)
7103 {
7104 }
7105 
perf_pmu_nop_int(struct pmu * pmu)7106 static int perf_pmu_nop_int(struct pmu *pmu)
7107 {
7108 	return 0;
7109 }
7110 
perf_pmu_start_txn(struct pmu * pmu)7111 static void perf_pmu_start_txn(struct pmu *pmu)
7112 {
7113 	perf_pmu_disable(pmu);
7114 }
7115 
perf_pmu_commit_txn(struct pmu * pmu)7116 static int perf_pmu_commit_txn(struct pmu *pmu)
7117 {
7118 	perf_pmu_enable(pmu);
7119 	return 0;
7120 }
7121 
perf_pmu_cancel_txn(struct pmu * pmu)7122 static void perf_pmu_cancel_txn(struct pmu *pmu)
7123 {
7124 	perf_pmu_enable(pmu);
7125 }
7126 
perf_event_idx_default(struct perf_event * event)7127 static int perf_event_idx_default(struct perf_event *event)
7128 {
7129 	return 0;
7130 }
7131 
7132 /*
7133  * Ensures all contexts with the same task_ctx_nr have the same
7134  * pmu_cpu_context too.
7135  */
find_pmu_context(int ctxn)7136 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7137 {
7138 	struct pmu *pmu;
7139 
7140 	if (ctxn < 0)
7141 		return NULL;
7142 
7143 	list_for_each_entry(pmu, &pmus, entry) {
7144 		if (pmu->task_ctx_nr == ctxn)
7145 			return pmu->pmu_cpu_context;
7146 	}
7147 
7148 	return NULL;
7149 }
7150 
update_pmu_context(struct pmu * pmu,struct pmu * old_pmu)7151 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7152 {
7153 	int cpu;
7154 
7155 	for_each_possible_cpu(cpu) {
7156 		struct perf_cpu_context *cpuctx;
7157 
7158 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7159 
7160 		if (cpuctx->unique_pmu == old_pmu)
7161 			cpuctx->unique_pmu = pmu;
7162 	}
7163 }
7164 
free_pmu_context(struct pmu * pmu)7165 static void free_pmu_context(struct pmu *pmu)
7166 {
7167 	struct pmu *i;
7168 
7169 	mutex_lock(&pmus_lock);
7170 	/*
7171 	 * Like a real lame refcount.
7172 	 */
7173 	list_for_each_entry(i, &pmus, entry) {
7174 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7175 			update_pmu_context(i, pmu);
7176 			goto out;
7177 		}
7178 	}
7179 
7180 	free_percpu(pmu->pmu_cpu_context);
7181 out:
7182 	mutex_unlock(&pmus_lock);
7183 }
7184 static struct idr pmu_idr;
7185 
7186 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)7187 type_show(struct device *dev, struct device_attribute *attr, char *page)
7188 {
7189 	struct pmu *pmu = dev_get_drvdata(dev);
7190 
7191 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7192 }
7193 static DEVICE_ATTR_RO(type);
7194 
7195 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)7196 perf_event_mux_interval_ms_show(struct device *dev,
7197 				struct device_attribute *attr,
7198 				char *page)
7199 {
7200 	struct pmu *pmu = dev_get_drvdata(dev);
7201 
7202 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7203 }
7204 
7205 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7206 perf_event_mux_interval_ms_store(struct device *dev,
7207 				 struct device_attribute *attr,
7208 				 const char *buf, size_t count)
7209 {
7210 	struct pmu *pmu = dev_get_drvdata(dev);
7211 	int timer, cpu, ret;
7212 
7213 	ret = kstrtoint(buf, 0, &timer);
7214 	if (ret)
7215 		return ret;
7216 
7217 	if (timer < 1)
7218 		return -EINVAL;
7219 
7220 	/* same value, noting to do */
7221 	if (timer == pmu->hrtimer_interval_ms)
7222 		return count;
7223 
7224 	pmu->hrtimer_interval_ms = timer;
7225 
7226 	/* update all cpuctx for this PMU */
7227 	for_each_possible_cpu(cpu) {
7228 		struct perf_cpu_context *cpuctx;
7229 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7230 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7231 
7232 		if (hrtimer_active(&cpuctx->hrtimer))
7233 			hrtimer_forward_now(&cpuctx->hrtimer, cpuctx->hrtimer_interval);
7234 	}
7235 
7236 	return count;
7237 }
7238 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7239 
7240 static struct attribute *pmu_dev_attrs[] = {
7241 	&dev_attr_type.attr,
7242 	&dev_attr_perf_event_mux_interval_ms.attr,
7243 	NULL,
7244 };
7245 ATTRIBUTE_GROUPS(pmu_dev);
7246 
7247 static int pmu_bus_running;
7248 static struct bus_type pmu_bus = {
7249 	.name		= "event_source",
7250 	.dev_groups	= pmu_dev_groups,
7251 };
7252 
pmu_dev_release(struct device * dev)7253 static void pmu_dev_release(struct device *dev)
7254 {
7255 	kfree(dev);
7256 }
7257 
pmu_dev_alloc(struct pmu * pmu)7258 static int pmu_dev_alloc(struct pmu *pmu)
7259 {
7260 	int ret = -ENOMEM;
7261 
7262 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7263 	if (!pmu->dev)
7264 		goto out;
7265 
7266 	pmu->dev->groups = pmu->attr_groups;
7267 	device_initialize(pmu->dev);
7268 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
7269 	if (ret)
7270 		goto free_dev;
7271 
7272 	dev_set_drvdata(pmu->dev, pmu);
7273 	pmu->dev->bus = &pmu_bus;
7274 	pmu->dev->release = pmu_dev_release;
7275 	ret = device_add(pmu->dev);
7276 	if (ret)
7277 		goto free_dev;
7278 
7279 out:
7280 	return ret;
7281 
7282 free_dev:
7283 	put_device(pmu->dev);
7284 	goto out;
7285 }
7286 
7287 static struct lock_class_key cpuctx_mutex;
7288 static struct lock_class_key cpuctx_lock;
7289 
perf_pmu_register(struct pmu * pmu,const char * name,int type)7290 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7291 {
7292 	int cpu, ret;
7293 
7294 	mutex_lock(&pmus_lock);
7295 	ret = -ENOMEM;
7296 	pmu->pmu_disable_count = alloc_percpu(int);
7297 	if (!pmu->pmu_disable_count)
7298 		goto unlock;
7299 
7300 	pmu->type = -1;
7301 	if (!name)
7302 		goto skip_type;
7303 	pmu->name = name;
7304 
7305 	if (type < 0) {
7306 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7307 		if (type < 0) {
7308 			ret = type;
7309 			goto free_pdc;
7310 		}
7311 	}
7312 	pmu->type = type;
7313 
7314 	if (pmu_bus_running) {
7315 		ret = pmu_dev_alloc(pmu);
7316 		if (ret)
7317 			goto free_idr;
7318 	}
7319 
7320 skip_type:
7321 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7322 	if (pmu->pmu_cpu_context)
7323 		goto got_cpu_context;
7324 
7325 	ret = -ENOMEM;
7326 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7327 	if (!pmu->pmu_cpu_context)
7328 		goto free_dev;
7329 
7330 	for_each_possible_cpu(cpu) {
7331 		struct perf_cpu_context *cpuctx;
7332 
7333 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7334 		__perf_event_init_context(&cpuctx->ctx);
7335 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7336 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7337 		cpuctx->ctx.pmu = pmu;
7338 
7339 		__perf_cpu_hrtimer_init(cpuctx, cpu);
7340 
7341 		cpuctx->unique_pmu = pmu;
7342 	}
7343 
7344 got_cpu_context:
7345 	if (!pmu->start_txn) {
7346 		if (pmu->pmu_enable) {
7347 			/*
7348 			 * If we have pmu_enable/pmu_disable calls, install
7349 			 * transaction stubs that use that to try and batch
7350 			 * hardware accesses.
7351 			 */
7352 			pmu->start_txn  = perf_pmu_start_txn;
7353 			pmu->commit_txn = perf_pmu_commit_txn;
7354 			pmu->cancel_txn = perf_pmu_cancel_txn;
7355 		} else {
7356 			pmu->start_txn  = perf_pmu_nop_void;
7357 			pmu->commit_txn = perf_pmu_nop_int;
7358 			pmu->cancel_txn = perf_pmu_nop_void;
7359 		}
7360 	}
7361 
7362 	if (!pmu->pmu_enable) {
7363 		pmu->pmu_enable  = perf_pmu_nop_void;
7364 		pmu->pmu_disable = perf_pmu_nop_void;
7365 	}
7366 
7367 	if (!pmu->event_idx)
7368 		pmu->event_idx = perf_event_idx_default;
7369 
7370 	list_add_rcu(&pmu->entry, &pmus);
7371 	atomic_set(&pmu->exclusive_cnt, 0);
7372 	ret = 0;
7373 unlock:
7374 	mutex_unlock(&pmus_lock);
7375 
7376 	return ret;
7377 
7378 free_dev:
7379 	device_del(pmu->dev);
7380 	put_device(pmu->dev);
7381 
7382 free_idr:
7383 	if (pmu->type >= PERF_TYPE_MAX)
7384 		idr_remove(&pmu_idr, pmu->type);
7385 
7386 free_pdc:
7387 	free_percpu(pmu->pmu_disable_count);
7388 	goto unlock;
7389 }
7390 EXPORT_SYMBOL_GPL(perf_pmu_register);
7391 
perf_pmu_unregister(struct pmu * pmu)7392 void perf_pmu_unregister(struct pmu *pmu)
7393 {
7394 	mutex_lock(&pmus_lock);
7395 	list_del_rcu(&pmu->entry);
7396 	mutex_unlock(&pmus_lock);
7397 
7398 	/*
7399 	 * We dereference the pmu list under both SRCU and regular RCU, so
7400 	 * synchronize against both of those.
7401 	 */
7402 	synchronize_srcu(&pmus_srcu);
7403 	synchronize_rcu();
7404 
7405 	free_percpu(pmu->pmu_disable_count);
7406 	if (pmu->type >= PERF_TYPE_MAX)
7407 		idr_remove(&pmu_idr, pmu->type);
7408 	device_del(pmu->dev);
7409 	put_device(pmu->dev);
7410 	free_pmu_context(pmu);
7411 }
7412 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7413 
perf_try_init_event(struct pmu * pmu,struct perf_event * event)7414 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7415 {
7416 	struct perf_event_context *ctx = NULL;
7417 	int ret;
7418 
7419 	if (!try_module_get(pmu->module))
7420 		return -ENODEV;
7421 
7422 	if (event->group_leader != event) {
7423 		/*
7424 		 * This ctx->mutex can nest when we're called through
7425 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
7426 		 */
7427 		ctx = perf_event_ctx_lock_nested(event->group_leader,
7428 						 SINGLE_DEPTH_NESTING);
7429 		BUG_ON(!ctx);
7430 	}
7431 
7432 	event->pmu = pmu;
7433 	ret = pmu->event_init(event);
7434 
7435 	if (ctx)
7436 		perf_event_ctx_unlock(event->group_leader, ctx);
7437 
7438 	if (ret)
7439 		module_put(pmu->module);
7440 
7441 	return ret;
7442 }
7443 
perf_init_event(struct perf_event * event)7444 struct pmu *perf_init_event(struct perf_event *event)
7445 {
7446 	struct pmu *pmu = NULL;
7447 	int idx;
7448 	int ret;
7449 
7450 	idx = srcu_read_lock(&pmus_srcu);
7451 
7452 	rcu_read_lock();
7453 	pmu = idr_find(&pmu_idr, event->attr.type);
7454 	rcu_read_unlock();
7455 	if (pmu) {
7456 		ret = perf_try_init_event(pmu, event);
7457 		if (ret)
7458 			pmu = ERR_PTR(ret);
7459 		goto unlock;
7460 	}
7461 
7462 	list_for_each_entry_rcu(pmu, &pmus, entry) {
7463 		ret = perf_try_init_event(pmu, event);
7464 		if (!ret)
7465 			goto unlock;
7466 
7467 		if (ret != -ENOENT) {
7468 			pmu = ERR_PTR(ret);
7469 			goto unlock;
7470 		}
7471 	}
7472 	pmu = ERR_PTR(-ENOENT);
7473 unlock:
7474 	srcu_read_unlock(&pmus_srcu, idx);
7475 
7476 	return pmu;
7477 }
7478 
account_event_cpu(struct perf_event * event,int cpu)7479 static void account_event_cpu(struct perf_event *event, int cpu)
7480 {
7481 	if (event->parent)
7482 		return;
7483 
7484 	if (is_cgroup_event(event))
7485 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7486 }
7487 
account_event(struct perf_event * event)7488 static void account_event(struct perf_event *event)
7489 {
7490 	if (event->parent)
7491 		return;
7492 
7493 	if (event->attach_state & PERF_ATTACH_TASK)
7494 		static_key_slow_inc(&perf_sched_events.key);
7495 	if (event->attr.mmap || event->attr.mmap_data)
7496 		atomic_inc(&nr_mmap_events);
7497 	if (event->attr.comm)
7498 		atomic_inc(&nr_comm_events);
7499 	if (event->attr.task)
7500 		atomic_inc(&nr_task_events);
7501 	if (event->attr.freq) {
7502 		if (atomic_inc_return(&nr_freq_events) == 1)
7503 			tick_nohz_full_kick_all();
7504 	}
7505 	if (has_branch_stack(event))
7506 		static_key_slow_inc(&perf_sched_events.key);
7507 	if (is_cgroup_event(event))
7508 		static_key_slow_inc(&perf_sched_events.key);
7509 
7510 	account_event_cpu(event, event->cpu);
7511 }
7512 
7513 /*
7514  * Allocate and initialize a event structure
7515  */
7516 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)7517 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7518 		 struct task_struct *task,
7519 		 struct perf_event *group_leader,
7520 		 struct perf_event *parent_event,
7521 		 perf_overflow_handler_t overflow_handler,
7522 		 void *context, int cgroup_fd)
7523 {
7524 	struct pmu *pmu;
7525 	struct perf_event *event;
7526 	struct hw_perf_event *hwc;
7527 	long err = -EINVAL;
7528 
7529 	if ((unsigned)cpu >= nr_cpu_ids) {
7530 		if (!task || cpu != -1)
7531 			return ERR_PTR(-EINVAL);
7532 	}
7533 
7534 	event = kzalloc(sizeof(*event), GFP_KERNEL);
7535 	if (!event)
7536 		return ERR_PTR(-ENOMEM);
7537 
7538 	/*
7539 	 * Single events are their own group leaders, with an
7540 	 * empty sibling list:
7541 	 */
7542 	if (!group_leader)
7543 		group_leader = event;
7544 
7545 	mutex_init(&event->child_mutex);
7546 	INIT_LIST_HEAD(&event->child_list);
7547 
7548 	INIT_LIST_HEAD(&event->group_entry);
7549 	INIT_LIST_HEAD(&event->event_entry);
7550 	INIT_LIST_HEAD(&event->sibling_list);
7551 	INIT_LIST_HEAD(&event->rb_entry);
7552 	INIT_LIST_HEAD(&event->active_entry);
7553 	INIT_HLIST_NODE(&event->hlist_entry);
7554 
7555 
7556 	init_waitqueue_head(&event->waitq);
7557 	init_irq_work(&event->pending, perf_pending_event);
7558 
7559 	mutex_init(&event->mmap_mutex);
7560 
7561 	atomic_long_set(&event->refcount, 1);
7562 	event->cpu		= cpu;
7563 	event->attr		= *attr;
7564 	event->group_leader	= group_leader;
7565 	event->pmu		= NULL;
7566 	event->oncpu		= -1;
7567 
7568 	event->parent		= parent_event;
7569 
7570 	event->ns		= get_pid_ns(task_active_pid_ns(current));
7571 	event->id		= atomic64_inc_return(&perf_event_id);
7572 
7573 	event->state		= PERF_EVENT_STATE_INACTIVE;
7574 
7575 	if (task) {
7576 		event->attach_state = PERF_ATTACH_TASK;
7577 		/*
7578 		 * XXX pmu::event_init needs to know what task to account to
7579 		 * and we cannot use the ctx information because we need the
7580 		 * pmu before we get a ctx.
7581 		 */
7582 		event->hw.target = task;
7583 	}
7584 
7585 	event->clock = &local_clock;
7586 	if (parent_event)
7587 		event->clock = parent_event->clock;
7588 
7589 	if (!overflow_handler && parent_event) {
7590 		overflow_handler = parent_event->overflow_handler;
7591 		context = parent_event->overflow_handler_context;
7592 	}
7593 
7594 	event->overflow_handler	= overflow_handler;
7595 	event->overflow_handler_context = context;
7596 
7597 	perf_event__state_init(event);
7598 
7599 	pmu = NULL;
7600 
7601 	hwc = &event->hw;
7602 	hwc->sample_period = attr->sample_period;
7603 	if (attr->freq && attr->sample_freq)
7604 		hwc->sample_period = 1;
7605 	hwc->last_period = hwc->sample_period;
7606 
7607 	local64_set(&hwc->period_left, hwc->sample_period);
7608 
7609 	/*
7610 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
7611 	 */
7612 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7613 		goto err_ns;
7614 
7615 	if (!has_branch_stack(event))
7616 		event->attr.branch_sample_type = 0;
7617 
7618 	if (cgroup_fd != -1) {
7619 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7620 		if (err)
7621 			goto err_ns;
7622 	}
7623 
7624 	pmu = perf_init_event(event);
7625 	if (!pmu)
7626 		goto err_ns;
7627 	else if (IS_ERR(pmu)) {
7628 		err = PTR_ERR(pmu);
7629 		goto err_ns;
7630 	}
7631 
7632 	err = exclusive_event_init(event);
7633 	if (err)
7634 		goto err_pmu;
7635 
7636 	if (!event->parent) {
7637 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7638 			err = get_callchain_buffers();
7639 			if (err)
7640 				goto err_per_task;
7641 		}
7642 	}
7643 
7644 	/* symmetric to unaccount_event() in _free_event() */
7645 	account_event(event);
7646 
7647 	return event;
7648 
7649 err_per_task:
7650 	exclusive_event_destroy(event);
7651 
7652 err_pmu:
7653 	if (event->destroy)
7654 		event->destroy(event);
7655 	module_put(pmu->module);
7656 err_ns:
7657 	if (is_cgroup_event(event))
7658 		perf_detach_cgroup(event);
7659 	if (event->ns)
7660 		put_pid_ns(event->ns);
7661 	kfree(event);
7662 
7663 	return ERR_PTR(err);
7664 }
7665 
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)7666 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7667 			  struct perf_event_attr *attr)
7668 {
7669 	u32 size;
7670 	int ret;
7671 
7672 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7673 		return -EFAULT;
7674 
7675 	/*
7676 	 * zero the full structure, so that a short copy will be nice.
7677 	 */
7678 	memset(attr, 0, sizeof(*attr));
7679 
7680 	ret = get_user(size, &uattr->size);
7681 	if (ret)
7682 		return ret;
7683 
7684 	if (size > PAGE_SIZE)	/* silly large */
7685 		goto err_size;
7686 
7687 	if (!size)		/* abi compat */
7688 		size = PERF_ATTR_SIZE_VER0;
7689 
7690 	if (size < PERF_ATTR_SIZE_VER0)
7691 		goto err_size;
7692 
7693 	/*
7694 	 * If we're handed a bigger struct than we know of,
7695 	 * ensure all the unknown bits are 0 - i.e. new
7696 	 * user-space does not rely on any kernel feature
7697 	 * extensions we dont know about yet.
7698 	 */
7699 	if (size > sizeof(*attr)) {
7700 		unsigned char __user *addr;
7701 		unsigned char __user *end;
7702 		unsigned char val;
7703 
7704 		addr = (void __user *)uattr + sizeof(*attr);
7705 		end  = (void __user *)uattr + size;
7706 
7707 		for (; addr < end; addr++) {
7708 			ret = get_user(val, addr);
7709 			if (ret)
7710 				return ret;
7711 			if (val)
7712 				goto err_size;
7713 		}
7714 		size = sizeof(*attr);
7715 	}
7716 
7717 	ret = copy_from_user(attr, uattr, size);
7718 	if (ret)
7719 		return -EFAULT;
7720 
7721 	if (attr->__reserved_1)
7722 		return -EINVAL;
7723 
7724 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7725 		return -EINVAL;
7726 
7727 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
7728 		return -EINVAL;
7729 
7730 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
7731 		u64 mask = attr->branch_sample_type;
7732 
7733 		/* only using defined bits */
7734 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
7735 			return -EINVAL;
7736 
7737 		/* at least one branch bit must be set */
7738 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
7739 			return -EINVAL;
7740 
7741 		/* propagate priv level, when not set for branch */
7742 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
7743 
7744 			/* exclude_kernel checked on syscall entry */
7745 			if (!attr->exclude_kernel)
7746 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
7747 
7748 			if (!attr->exclude_user)
7749 				mask |= PERF_SAMPLE_BRANCH_USER;
7750 
7751 			if (!attr->exclude_hv)
7752 				mask |= PERF_SAMPLE_BRANCH_HV;
7753 			/*
7754 			 * adjust user setting (for HW filter setup)
7755 			 */
7756 			attr->branch_sample_type = mask;
7757 		}
7758 		/* privileged levels capture (kernel, hv): check permissions */
7759 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
7760 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7761 			return -EACCES;
7762 	}
7763 
7764 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
7765 		ret = perf_reg_validate(attr->sample_regs_user);
7766 		if (ret)
7767 			return ret;
7768 	}
7769 
7770 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
7771 		if (!arch_perf_have_user_stack_dump())
7772 			return -ENOSYS;
7773 
7774 		/*
7775 		 * We have __u32 type for the size, but so far
7776 		 * we can only use __u16 as maximum due to the
7777 		 * __u16 sample size limit.
7778 		 */
7779 		if (attr->sample_stack_user >= USHRT_MAX)
7780 			ret = -EINVAL;
7781 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
7782 			ret = -EINVAL;
7783 	}
7784 
7785 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
7786 		ret = perf_reg_validate(attr->sample_regs_intr);
7787 out:
7788 	return ret;
7789 
7790 err_size:
7791 	put_user(sizeof(*attr), &uattr->size);
7792 	ret = -E2BIG;
7793 	goto out;
7794 }
7795 
7796 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)7797 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
7798 {
7799 	struct ring_buffer *rb = NULL;
7800 	int ret = -EINVAL;
7801 
7802 	if (!output_event)
7803 		goto set;
7804 
7805 	/* don't allow circular references */
7806 	if (event == output_event)
7807 		goto out;
7808 
7809 	/*
7810 	 * Don't allow cross-cpu buffers
7811 	 */
7812 	if (output_event->cpu != event->cpu)
7813 		goto out;
7814 
7815 	/*
7816 	 * If its not a per-cpu rb, it must be the same task.
7817 	 */
7818 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
7819 		goto out;
7820 
7821 	/*
7822 	 * Mixing clocks in the same buffer is trouble you don't need.
7823 	 */
7824 	if (output_event->clock != event->clock)
7825 		goto out;
7826 
7827 	/*
7828 	 * If both events generate aux data, they must be on the same PMU
7829 	 */
7830 	if (has_aux(event) && has_aux(output_event) &&
7831 	    event->pmu != output_event->pmu)
7832 		goto out;
7833 
7834 set:
7835 	mutex_lock(&event->mmap_mutex);
7836 	/* Can't redirect output if we've got an active mmap() */
7837 	if (atomic_read(&event->mmap_count))
7838 		goto unlock;
7839 
7840 	if (output_event) {
7841 		/* get the rb we want to redirect to */
7842 		rb = ring_buffer_get(output_event);
7843 		if (!rb)
7844 			goto unlock;
7845 	}
7846 
7847 	ring_buffer_attach(event, rb);
7848 
7849 	ret = 0;
7850 unlock:
7851 	mutex_unlock(&event->mmap_mutex);
7852 
7853 out:
7854 	return ret;
7855 }
7856 
mutex_lock_double(struct mutex * a,struct mutex * b)7857 static void mutex_lock_double(struct mutex *a, struct mutex *b)
7858 {
7859 	if (b < a)
7860 		swap(a, b);
7861 
7862 	mutex_lock(a);
7863 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
7864 }
7865 
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)7866 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
7867 {
7868 	bool nmi_safe = false;
7869 
7870 	switch (clk_id) {
7871 	case CLOCK_MONOTONIC:
7872 		event->clock = &ktime_get_mono_fast_ns;
7873 		nmi_safe = true;
7874 		break;
7875 
7876 	case CLOCK_MONOTONIC_RAW:
7877 		event->clock = &ktime_get_raw_fast_ns;
7878 		nmi_safe = true;
7879 		break;
7880 
7881 	case CLOCK_REALTIME:
7882 		event->clock = &ktime_get_real_ns;
7883 		break;
7884 
7885 	case CLOCK_BOOTTIME:
7886 		event->clock = &ktime_get_boot_ns;
7887 		break;
7888 
7889 	case CLOCK_TAI:
7890 		event->clock = &ktime_get_tai_ns;
7891 		break;
7892 
7893 	default:
7894 		return -EINVAL;
7895 	}
7896 
7897 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
7898 		return -EINVAL;
7899 
7900 	return 0;
7901 }
7902 
7903 /**
7904  * sys_perf_event_open - open a performance event, associate it to a task/cpu
7905  *
7906  * @attr_uptr:	event_id type attributes for monitoring/sampling
7907  * @pid:		target pid
7908  * @cpu:		target cpu
7909  * @group_fd:		group leader event fd
7910  */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)7911 SYSCALL_DEFINE5(perf_event_open,
7912 		struct perf_event_attr __user *, attr_uptr,
7913 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
7914 {
7915 	struct perf_event *group_leader = NULL, *output_event = NULL;
7916 	struct perf_event *event, *sibling;
7917 	struct perf_event_attr attr;
7918 	struct perf_event_context *ctx, *uninitialized_var(gctx);
7919 	struct file *event_file = NULL;
7920 	struct fd group = {NULL, 0};
7921 	struct task_struct *task = NULL;
7922 	struct pmu *pmu;
7923 	int event_fd;
7924 	int move_group = 0;
7925 	int err;
7926 	int f_flags = O_RDWR;
7927 	int cgroup_fd = -1;
7928 
7929 	/* for future expandability... */
7930 	if (flags & ~PERF_FLAG_ALL)
7931 		return -EINVAL;
7932 
7933 	err = perf_copy_attr(attr_uptr, &attr);
7934 	if (err)
7935 		return err;
7936 
7937 	if (!attr.exclude_kernel) {
7938 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
7939 			return -EACCES;
7940 	}
7941 
7942 	if (attr.freq) {
7943 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
7944 			return -EINVAL;
7945 	} else {
7946 		if (attr.sample_period & (1ULL << 63))
7947 			return -EINVAL;
7948 	}
7949 
7950 	/*
7951 	 * In cgroup mode, the pid argument is used to pass the fd
7952 	 * opened to the cgroup directory in cgroupfs. The cpu argument
7953 	 * designates the cpu on which to monitor threads from that
7954 	 * cgroup.
7955 	 */
7956 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
7957 		return -EINVAL;
7958 
7959 	if (flags & PERF_FLAG_FD_CLOEXEC)
7960 		f_flags |= O_CLOEXEC;
7961 
7962 	event_fd = get_unused_fd_flags(f_flags);
7963 	if (event_fd < 0)
7964 		return event_fd;
7965 
7966 	if (group_fd != -1) {
7967 		err = perf_fget_light(group_fd, &group);
7968 		if (err)
7969 			goto err_fd;
7970 		group_leader = group.file->private_data;
7971 		if (flags & PERF_FLAG_FD_OUTPUT)
7972 			output_event = group_leader;
7973 		if (flags & PERF_FLAG_FD_NO_GROUP)
7974 			group_leader = NULL;
7975 	}
7976 
7977 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
7978 		task = find_lively_task_by_vpid(pid);
7979 		if (IS_ERR(task)) {
7980 			err = PTR_ERR(task);
7981 			goto err_group_fd;
7982 		}
7983 	}
7984 
7985 	if (task && group_leader &&
7986 	    group_leader->attr.inherit != attr.inherit) {
7987 		err = -EINVAL;
7988 		goto err_task;
7989 	}
7990 
7991 	get_online_cpus();
7992 
7993 	if (flags & PERF_FLAG_PID_CGROUP)
7994 		cgroup_fd = pid;
7995 
7996 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
7997 				 NULL, NULL, cgroup_fd);
7998 	if (IS_ERR(event)) {
7999 		err = PTR_ERR(event);
8000 		goto err_cpus;
8001 	}
8002 
8003 	if (is_sampling_event(event)) {
8004 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8005 			err = -ENOTSUPP;
8006 			goto err_alloc;
8007 		}
8008 	}
8009 
8010 	/*
8011 	 * Special case software events and allow them to be part of
8012 	 * any hardware group.
8013 	 */
8014 	pmu = event->pmu;
8015 
8016 	if (attr.use_clockid) {
8017 		err = perf_event_set_clock(event, attr.clockid);
8018 		if (err)
8019 			goto err_alloc;
8020 	}
8021 
8022 	if (group_leader &&
8023 	    (is_software_event(event) != is_software_event(group_leader))) {
8024 		if (is_software_event(event)) {
8025 			/*
8026 			 * If event and group_leader are not both a software
8027 			 * event, and event is, then group leader is not.
8028 			 *
8029 			 * Allow the addition of software events to !software
8030 			 * groups, this is safe because software events never
8031 			 * fail to schedule.
8032 			 */
8033 			pmu = group_leader->pmu;
8034 		} else if (is_software_event(group_leader) &&
8035 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8036 			/*
8037 			 * In case the group is a pure software group, and we
8038 			 * try to add a hardware event, move the whole group to
8039 			 * the hardware context.
8040 			 */
8041 			move_group = 1;
8042 		}
8043 	}
8044 
8045 	/*
8046 	 * Get the target context (task or percpu):
8047 	 */
8048 	ctx = find_get_context(pmu, task, event);
8049 	if (IS_ERR(ctx)) {
8050 		err = PTR_ERR(ctx);
8051 		goto err_alloc;
8052 	}
8053 
8054 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8055 		err = -EBUSY;
8056 		goto err_context;
8057 	}
8058 
8059 	if (task) {
8060 		put_task_struct(task);
8061 		task = NULL;
8062 	}
8063 
8064 	/*
8065 	 * Look up the group leader (we will attach this event to it):
8066 	 */
8067 	if (group_leader) {
8068 		err = -EINVAL;
8069 
8070 		/*
8071 		 * Do not allow a recursive hierarchy (this new sibling
8072 		 * becoming part of another group-sibling):
8073 		 */
8074 		if (group_leader->group_leader != group_leader)
8075 			goto err_context;
8076 
8077 		/* All events in a group should have the same clock */
8078 		if (group_leader->clock != event->clock)
8079 			goto err_context;
8080 
8081 		/*
8082 		 * Do not allow to attach to a group in a different
8083 		 * task or CPU context:
8084 		 */
8085 		if (move_group) {
8086 			/*
8087 			 * Make sure we're both on the same task, or both
8088 			 * per-cpu events.
8089 			 */
8090 			if (group_leader->ctx->task != ctx->task)
8091 				goto err_context;
8092 
8093 			/*
8094 			 * Make sure we're both events for the same CPU;
8095 			 * grouping events for different CPUs is broken; since
8096 			 * you can never concurrently schedule them anyhow.
8097 			 */
8098 			if (group_leader->cpu != event->cpu)
8099 				goto err_context;
8100 		} else {
8101 			if (group_leader->ctx != ctx)
8102 				goto err_context;
8103 		}
8104 
8105 		/*
8106 		 * Only a group leader can be exclusive or pinned
8107 		 */
8108 		if (attr.exclusive || attr.pinned)
8109 			goto err_context;
8110 	}
8111 
8112 	if (output_event) {
8113 		err = perf_event_set_output(event, output_event);
8114 		if (err)
8115 			goto err_context;
8116 	}
8117 
8118 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8119 					f_flags);
8120 	if (IS_ERR(event_file)) {
8121 		err = PTR_ERR(event_file);
8122 		goto err_context;
8123 	}
8124 
8125 	if (move_group) {
8126 		gctx = group_leader->ctx;
8127 
8128 		/*
8129 		 * See perf_event_ctx_lock() for comments on the details
8130 		 * of swizzling perf_event::ctx.
8131 		 */
8132 		mutex_lock_double(&gctx->mutex, &ctx->mutex);
8133 
8134 		perf_remove_from_context(group_leader, false);
8135 
8136 		list_for_each_entry(sibling, &group_leader->sibling_list,
8137 				    group_entry) {
8138 			perf_remove_from_context(sibling, false);
8139 			put_ctx(gctx);
8140 		}
8141 	} else {
8142 		mutex_lock(&ctx->mutex);
8143 	}
8144 
8145 	WARN_ON_ONCE(ctx->parent_ctx);
8146 
8147 	if (move_group) {
8148 		/*
8149 		 * Wait for everybody to stop referencing the events through
8150 		 * the old lists, before installing it on new lists.
8151 		 */
8152 		synchronize_rcu();
8153 
8154 		/*
8155 		 * Install the group siblings before the group leader.
8156 		 *
8157 		 * Because a group leader will try and install the entire group
8158 		 * (through the sibling list, which is still in-tact), we can
8159 		 * end up with siblings installed in the wrong context.
8160 		 *
8161 		 * By installing siblings first we NO-OP because they're not
8162 		 * reachable through the group lists.
8163 		 */
8164 		list_for_each_entry(sibling, &group_leader->sibling_list,
8165 				    group_entry) {
8166 			perf_event__state_init(sibling);
8167 			perf_install_in_context(ctx, sibling, sibling->cpu);
8168 			get_ctx(ctx);
8169 		}
8170 
8171 		/*
8172 		 * Removing from the context ends up with disabled
8173 		 * event. What we want here is event in the initial
8174 		 * startup state, ready to be add into new context.
8175 		 */
8176 		perf_event__state_init(group_leader);
8177 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
8178 		get_ctx(ctx);
8179 	}
8180 
8181 	if (!exclusive_event_installable(event, ctx)) {
8182 		err = -EBUSY;
8183 		mutex_unlock(&ctx->mutex);
8184 		fput(event_file);
8185 		goto err_context;
8186 	}
8187 
8188 	perf_install_in_context(ctx, event, event->cpu);
8189 	perf_unpin_context(ctx);
8190 
8191 	if (move_group) {
8192 		mutex_unlock(&gctx->mutex);
8193 		put_ctx(gctx);
8194 	}
8195 	mutex_unlock(&ctx->mutex);
8196 
8197 	put_online_cpus();
8198 
8199 	event->owner = current;
8200 
8201 	mutex_lock(&current->perf_event_mutex);
8202 	list_add_tail(&event->owner_entry, &current->perf_event_list);
8203 	mutex_unlock(&current->perf_event_mutex);
8204 
8205 	/*
8206 	 * Precalculate sample_data sizes
8207 	 */
8208 	perf_event__header_size(event);
8209 	perf_event__id_header_size(event);
8210 
8211 	/*
8212 	 * Drop the reference on the group_event after placing the
8213 	 * new event on the sibling_list. This ensures destruction
8214 	 * of the group leader will find the pointer to itself in
8215 	 * perf_group_detach().
8216 	 */
8217 	fdput(group);
8218 	fd_install(event_fd, event_file);
8219 	return event_fd;
8220 
8221 err_context:
8222 	perf_unpin_context(ctx);
8223 	put_ctx(ctx);
8224 err_alloc:
8225 	/*
8226 	 * If event_file is set, the fput() above will have called ->release()
8227 	 * and that will take care of freeing the event.
8228 	 */
8229 	if (!event_file)
8230 		free_event(event);
8231 err_cpus:
8232 	put_online_cpus();
8233 err_task:
8234 	if (task)
8235 		put_task_struct(task);
8236 err_group_fd:
8237 	fdput(group);
8238 err_fd:
8239 	put_unused_fd(event_fd);
8240 	return err;
8241 }
8242 
8243 /**
8244  * perf_event_create_kernel_counter
8245  *
8246  * @attr: attributes of the counter to create
8247  * @cpu: cpu in which the counter is bound
8248  * @task: task to profile (NULL for percpu)
8249  */
8250 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)8251 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8252 				 struct task_struct *task,
8253 				 perf_overflow_handler_t overflow_handler,
8254 				 void *context)
8255 {
8256 	struct perf_event_context *ctx;
8257 	struct perf_event *event;
8258 	int err;
8259 
8260 	/*
8261 	 * Get the target context (task or percpu):
8262 	 */
8263 
8264 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8265 				 overflow_handler, context, -1);
8266 	if (IS_ERR(event)) {
8267 		err = PTR_ERR(event);
8268 		goto err;
8269 	}
8270 
8271 	/* Mark owner so we could distinguish it from user events. */
8272 	event->owner = EVENT_OWNER_KERNEL;
8273 
8274 	ctx = find_get_context(event->pmu, task, event);
8275 	if (IS_ERR(ctx)) {
8276 		err = PTR_ERR(ctx);
8277 		goto err_free;
8278 	}
8279 
8280 	WARN_ON_ONCE(ctx->parent_ctx);
8281 	mutex_lock(&ctx->mutex);
8282 	if (!exclusive_event_installable(event, ctx)) {
8283 		mutex_unlock(&ctx->mutex);
8284 		perf_unpin_context(ctx);
8285 		put_ctx(ctx);
8286 		err = -EBUSY;
8287 		goto err_free;
8288 	}
8289 
8290 	perf_install_in_context(ctx, event, cpu);
8291 	perf_unpin_context(ctx);
8292 	mutex_unlock(&ctx->mutex);
8293 
8294 	return event;
8295 
8296 err_free:
8297 	free_event(event);
8298 err:
8299 	return ERR_PTR(err);
8300 }
8301 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8302 
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)8303 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8304 {
8305 	struct perf_event_context *src_ctx;
8306 	struct perf_event_context *dst_ctx;
8307 	struct perf_event *event, *tmp;
8308 	LIST_HEAD(events);
8309 
8310 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8311 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8312 
8313 	/*
8314 	 * See perf_event_ctx_lock() for comments on the details
8315 	 * of swizzling perf_event::ctx.
8316 	 */
8317 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8318 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8319 				 event_entry) {
8320 		perf_remove_from_context(event, false);
8321 		unaccount_event_cpu(event, src_cpu);
8322 		put_ctx(src_ctx);
8323 		list_add(&event->migrate_entry, &events);
8324 	}
8325 
8326 	/*
8327 	 * Wait for the events to quiesce before re-instating them.
8328 	 */
8329 	synchronize_rcu();
8330 
8331 	/*
8332 	 * Re-instate events in 2 passes.
8333 	 *
8334 	 * Skip over group leaders and only install siblings on this first
8335 	 * pass, siblings will not get enabled without a leader, however a
8336 	 * leader will enable its siblings, even if those are still on the old
8337 	 * context.
8338 	 */
8339 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8340 		if (event->group_leader == event)
8341 			continue;
8342 
8343 		list_del(&event->migrate_entry);
8344 		if (event->state >= PERF_EVENT_STATE_OFF)
8345 			event->state = PERF_EVENT_STATE_INACTIVE;
8346 		account_event_cpu(event, dst_cpu);
8347 		perf_install_in_context(dst_ctx, event, dst_cpu);
8348 		get_ctx(dst_ctx);
8349 	}
8350 
8351 	/*
8352 	 * Once all the siblings are setup properly, install the group leaders
8353 	 * to make it go.
8354 	 */
8355 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8356 		list_del(&event->migrate_entry);
8357 		if (event->state >= PERF_EVENT_STATE_OFF)
8358 			event->state = PERF_EVENT_STATE_INACTIVE;
8359 		account_event_cpu(event, dst_cpu);
8360 		perf_install_in_context(dst_ctx, event, dst_cpu);
8361 		get_ctx(dst_ctx);
8362 	}
8363 	mutex_unlock(&dst_ctx->mutex);
8364 	mutex_unlock(&src_ctx->mutex);
8365 }
8366 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8367 
sync_child_event(struct perf_event * child_event,struct task_struct * child)8368 static void sync_child_event(struct perf_event *child_event,
8369 			       struct task_struct *child)
8370 {
8371 	struct perf_event *parent_event = child_event->parent;
8372 	u64 child_val;
8373 
8374 	if (child_event->attr.inherit_stat)
8375 		perf_event_read_event(child_event, child);
8376 
8377 	child_val = perf_event_count(child_event);
8378 
8379 	/*
8380 	 * Add back the child's count to the parent's count:
8381 	 */
8382 	atomic64_add(child_val, &parent_event->child_count);
8383 	atomic64_add(child_event->total_time_enabled,
8384 		     &parent_event->child_total_time_enabled);
8385 	atomic64_add(child_event->total_time_running,
8386 		     &parent_event->child_total_time_running);
8387 
8388 	/*
8389 	 * Remove this event from the parent's list
8390 	 */
8391 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8392 	mutex_lock(&parent_event->child_mutex);
8393 	list_del_init(&child_event->child_list);
8394 	mutex_unlock(&parent_event->child_mutex);
8395 
8396 	/*
8397 	 * Make sure user/parent get notified, that we just
8398 	 * lost one event.
8399 	 */
8400 	perf_event_wakeup(parent_event);
8401 
8402 	/*
8403 	 * Release the parent event, if this was the last
8404 	 * reference to it.
8405 	 */
8406 	put_event(parent_event);
8407 }
8408 
8409 static void
__perf_event_exit_task(struct perf_event * child_event,struct perf_event_context * child_ctx,struct task_struct * child)8410 __perf_event_exit_task(struct perf_event *child_event,
8411 			 struct perf_event_context *child_ctx,
8412 			 struct task_struct *child)
8413 {
8414 	/*
8415 	 * Do not destroy the 'original' grouping; because of the context
8416 	 * switch optimization the original events could've ended up in a
8417 	 * random child task.
8418 	 *
8419 	 * If we were to destroy the original group, all group related
8420 	 * operations would cease to function properly after this random
8421 	 * child dies.
8422 	 *
8423 	 * Do destroy all inherited groups, we don't care about those
8424 	 * and being thorough is better.
8425 	 */
8426 	perf_remove_from_context(child_event, !!child_event->parent);
8427 
8428 	/*
8429 	 * It can happen that the parent exits first, and has events
8430 	 * that are still around due to the child reference. These
8431 	 * events need to be zapped.
8432 	 */
8433 	if (child_event->parent) {
8434 		sync_child_event(child_event, child);
8435 		free_event(child_event);
8436 	} else {
8437 		child_event->state = PERF_EVENT_STATE_EXIT;
8438 		perf_event_wakeup(child_event);
8439 	}
8440 }
8441 
perf_event_exit_task_context(struct task_struct * child,int ctxn)8442 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8443 {
8444 	struct perf_event *child_event, *next;
8445 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
8446 	unsigned long flags;
8447 
8448 	if (likely(!child->perf_event_ctxp[ctxn])) {
8449 		perf_event_task(child, NULL, 0);
8450 		return;
8451 	}
8452 
8453 	local_irq_save(flags);
8454 	/*
8455 	 * We can't reschedule here because interrupts are disabled,
8456 	 * and either child is current or it is a task that can't be
8457 	 * scheduled, so we are now safe from rescheduling changing
8458 	 * our context.
8459 	 */
8460 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8461 
8462 	/*
8463 	 * Take the context lock here so that if find_get_context is
8464 	 * reading child->perf_event_ctxp, we wait until it has
8465 	 * incremented the context's refcount before we do put_ctx below.
8466 	 */
8467 	raw_spin_lock(&child_ctx->lock);
8468 	task_ctx_sched_out(child_ctx);
8469 	child->perf_event_ctxp[ctxn] = NULL;
8470 
8471 	/*
8472 	 * If this context is a clone; unclone it so it can't get
8473 	 * swapped to another process while we're removing all
8474 	 * the events from it.
8475 	 */
8476 	clone_ctx = unclone_ctx(child_ctx);
8477 	update_context_time(child_ctx);
8478 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8479 
8480 	if (clone_ctx)
8481 		put_ctx(clone_ctx);
8482 
8483 	/*
8484 	 * Report the task dead after unscheduling the events so that we
8485 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
8486 	 * get a few PERF_RECORD_READ events.
8487 	 */
8488 	perf_event_task(child, child_ctx, 0);
8489 
8490 	/*
8491 	 * We can recurse on the same lock type through:
8492 	 *
8493 	 *   __perf_event_exit_task()
8494 	 *     sync_child_event()
8495 	 *       put_event()
8496 	 *         mutex_lock(&ctx->mutex)
8497 	 *
8498 	 * But since its the parent context it won't be the same instance.
8499 	 */
8500 	mutex_lock(&child_ctx->mutex);
8501 
8502 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8503 		__perf_event_exit_task(child_event, child_ctx, child);
8504 
8505 	mutex_unlock(&child_ctx->mutex);
8506 
8507 	put_ctx(child_ctx);
8508 }
8509 
8510 /*
8511  * When a child task exits, feed back event values to parent events.
8512  */
perf_event_exit_task(struct task_struct * child)8513 void perf_event_exit_task(struct task_struct *child)
8514 {
8515 	struct perf_event *event, *tmp;
8516 	int ctxn;
8517 
8518 	mutex_lock(&child->perf_event_mutex);
8519 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8520 				 owner_entry) {
8521 		list_del_init(&event->owner_entry);
8522 
8523 		/*
8524 		 * Ensure the list deletion is visible before we clear
8525 		 * the owner, closes a race against perf_release() where
8526 		 * we need to serialize on the owner->perf_event_mutex.
8527 		 */
8528 		smp_wmb();
8529 		event->owner = NULL;
8530 	}
8531 	mutex_unlock(&child->perf_event_mutex);
8532 
8533 	for_each_task_context_nr(ctxn)
8534 		perf_event_exit_task_context(child, ctxn);
8535 }
8536 
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)8537 static void perf_free_event(struct perf_event *event,
8538 			    struct perf_event_context *ctx)
8539 {
8540 	struct perf_event *parent = event->parent;
8541 
8542 	if (WARN_ON_ONCE(!parent))
8543 		return;
8544 
8545 	mutex_lock(&parent->child_mutex);
8546 	list_del_init(&event->child_list);
8547 	mutex_unlock(&parent->child_mutex);
8548 
8549 	put_event(parent);
8550 
8551 	raw_spin_lock_irq(&ctx->lock);
8552 	perf_group_detach(event);
8553 	list_del_event(event, ctx);
8554 	raw_spin_unlock_irq(&ctx->lock);
8555 	free_event(event);
8556 }
8557 
8558 /*
8559  * Free an unexposed, unused context as created by inheritance by
8560  * perf_event_init_task below, used by fork() in case of fail.
8561  *
8562  * Not all locks are strictly required, but take them anyway to be nice and
8563  * help out with the lockdep assertions.
8564  */
perf_event_free_task(struct task_struct * task)8565 void perf_event_free_task(struct task_struct *task)
8566 {
8567 	struct perf_event_context *ctx;
8568 	struct perf_event *event, *tmp;
8569 	int ctxn;
8570 
8571 	for_each_task_context_nr(ctxn) {
8572 		ctx = task->perf_event_ctxp[ctxn];
8573 		if (!ctx)
8574 			continue;
8575 
8576 		mutex_lock(&ctx->mutex);
8577 again:
8578 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8579 				group_entry)
8580 			perf_free_event(event, ctx);
8581 
8582 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8583 				group_entry)
8584 			perf_free_event(event, ctx);
8585 
8586 		if (!list_empty(&ctx->pinned_groups) ||
8587 				!list_empty(&ctx->flexible_groups))
8588 			goto again;
8589 
8590 		mutex_unlock(&ctx->mutex);
8591 
8592 		put_ctx(ctx);
8593 	}
8594 }
8595 
perf_event_delayed_put(struct task_struct * task)8596 void perf_event_delayed_put(struct task_struct *task)
8597 {
8598 	int ctxn;
8599 
8600 	for_each_task_context_nr(ctxn)
8601 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8602 }
8603 
8604 /*
8605  * inherit a event from parent task to child task:
8606  */
8607 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)8608 inherit_event(struct perf_event *parent_event,
8609 	      struct task_struct *parent,
8610 	      struct perf_event_context *parent_ctx,
8611 	      struct task_struct *child,
8612 	      struct perf_event *group_leader,
8613 	      struct perf_event_context *child_ctx)
8614 {
8615 	enum perf_event_active_state parent_state = parent_event->state;
8616 	struct perf_event *child_event;
8617 	unsigned long flags;
8618 
8619 	/*
8620 	 * Instead of creating recursive hierarchies of events,
8621 	 * we link inherited events back to the original parent,
8622 	 * which has a filp for sure, which we use as the reference
8623 	 * count:
8624 	 */
8625 	if (parent_event->parent)
8626 		parent_event = parent_event->parent;
8627 
8628 	child_event = perf_event_alloc(&parent_event->attr,
8629 					   parent_event->cpu,
8630 					   child,
8631 					   group_leader, parent_event,
8632 					   NULL, NULL, -1);
8633 	if (IS_ERR(child_event))
8634 		return child_event;
8635 
8636 	if (is_orphaned_event(parent_event) ||
8637 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
8638 		free_event(child_event);
8639 		return NULL;
8640 	}
8641 
8642 	get_ctx(child_ctx);
8643 
8644 	/*
8645 	 * Make the child state follow the state of the parent event,
8646 	 * not its attr.disabled bit.  We hold the parent's mutex,
8647 	 * so we won't race with perf_event_{en, dis}able_family.
8648 	 */
8649 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
8650 		child_event->state = PERF_EVENT_STATE_INACTIVE;
8651 	else
8652 		child_event->state = PERF_EVENT_STATE_OFF;
8653 
8654 	if (parent_event->attr.freq) {
8655 		u64 sample_period = parent_event->hw.sample_period;
8656 		struct hw_perf_event *hwc = &child_event->hw;
8657 
8658 		hwc->sample_period = sample_period;
8659 		hwc->last_period   = sample_period;
8660 
8661 		local64_set(&hwc->period_left, sample_period);
8662 	}
8663 
8664 	child_event->ctx = child_ctx;
8665 	child_event->overflow_handler = parent_event->overflow_handler;
8666 	child_event->overflow_handler_context
8667 		= parent_event->overflow_handler_context;
8668 
8669 	/*
8670 	 * Precalculate sample_data sizes
8671 	 */
8672 	perf_event__header_size(child_event);
8673 	perf_event__id_header_size(child_event);
8674 
8675 	/*
8676 	 * Link it up in the child's context:
8677 	 */
8678 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
8679 	add_event_to_ctx(child_event, child_ctx);
8680 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8681 
8682 	/*
8683 	 * Link this into the parent event's child list
8684 	 */
8685 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8686 	mutex_lock(&parent_event->child_mutex);
8687 	list_add_tail(&child_event->child_list, &parent_event->child_list);
8688 	mutex_unlock(&parent_event->child_mutex);
8689 
8690 	return child_event;
8691 }
8692 
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)8693 static int inherit_group(struct perf_event *parent_event,
8694 	      struct task_struct *parent,
8695 	      struct perf_event_context *parent_ctx,
8696 	      struct task_struct *child,
8697 	      struct perf_event_context *child_ctx)
8698 {
8699 	struct perf_event *leader;
8700 	struct perf_event *sub;
8701 	struct perf_event *child_ctr;
8702 
8703 	leader = inherit_event(parent_event, parent, parent_ctx,
8704 				 child, NULL, child_ctx);
8705 	if (IS_ERR(leader))
8706 		return PTR_ERR(leader);
8707 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
8708 		child_ctr = inherit_event(sub, parent, parent_ctx,
8709 					    child, leader, child_ctx);
8710 		if (IS_ERR(child_ctr))
8711 			return PTR_ERR(child_ctr);
8712 	}
8713 	return 0;
8714 }
8715 
8716 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,int ctxn,int * inherited_all)8717 inherit_task_group(struct perf_event *event, struct task_struct *parent,
8718 		   struct perf_event_context *parent_ctx,
8719 		   struct task_struct *child, int ctxn,
8720 		   int *inherited_all)
8721 {
8722 	int ret;
8723 	struct perf_event_context *child_ctx;
8724 
8725 	if (!event->attr.inherit) {
8726 		*inherited_all = 0;
8727 		return 0;
8728 	}
8729 
8730 	child_ctx = child->perf_event_ctxp[ctxn];
8731 	if (!child_ctx) {
8732 		/*
8733 		 * This is executed from the parent task context, so
8734 		 * inherit events that have been marked for cloning.
8735 		 * First allocate and initialize a context for the
8736 		 * child.
8737 		 */
8738 
8739 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
8740 		if (!child_ctx)
8741 			return -ENOMEM;
8742 
8743 		child->perf_event_ctxp[ctxn] = child_ctx;
8744 	}
8745 
8746 	ret = inherit_group(event, parent, parent_ctx,
8747 			    child, child_ctx);
8748 
8749 	if (ret)
8750 		*inherited_all = 0;
8751 
8752 	return ret;
8753 }
8754 
8755 /*
8756  * Initialize the perf_event context in task_struct
8757  */
perf_event_init_context(struct task_struct * child,int ctxn)8758 static int perf_event_init_context(struct task_struct *child, int ctxn)
8759 {
8760 	struct perf_event_context *child_ctx, *parent_ctx;
8761 	struct perf_event_context *cloned_ctx;
8762 	struct perf_event *event;
8763 	struct task_struct *parent = current;
8764 	int inherited_all = 1;
8765 	unsigned long flags;
8766 	int ret = 0;
8767 
8768 	if (likely(!parent->perf_event_ctxp[ctxn]))
8769 		return 0;
8770 
8771 	/*
8772 	 * If the parent's context is a clone, pin it so it won't get
8773 	 * swapped under us.
8774 	 */
8775 	parent_ctx = perf_pin_task_context(parent, ctxn);
8776 	if (!parent_ctx)
8777 		return 0;
8778 
8779 	/*
8780 	 * No need to check if parent_ctx != NULL here; since we saw
8781 	 * it non-NULL earlier, the only reason for it to become NULL
8782 	 * is if we exit, and since we're currently in the middle of
8783 	 * a fork we can't be exiting at the same time.
8784 	 */
8785 
8786 	/*
8787 	 * Lock the parent list. No need to lock the child - not PID
8788 	 * hashed yet and not running, so nobody can access it.
8789 	 */
8790 	mutex_lock(&parent_ctx->mutex);
8791 
8792 	/*
8793 	 * We dont have to disable NMIs - we are only looking at
8794 	 * the list, not manipulating it:
8795 	 */
8796 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8797 		ret = inherit_task_group(event, parent, parent_ctx,
8798 					 child, ctxn, &inherited_all);
8799 		if (ret)
8800 			break;
8801 	}
8802 
8803 	/*
8804 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
8805 	 * to allocations, but we need to prevent rotation because
8806 	 * rotate_ctx() will change the list from interrupt context.
8807 	 */
8808 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8809 	parent_ctx->rotate_disable = 1;
8810 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8811 
8812 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8813 		ret = inherit_task_group(event, parent, parent_ctx,
8814 					 child, ctxn, &inherited_all);
8815 		if (ret)
8816 			break;
8817 	}
8818 
8819 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
8820 	parent_ctx->rotate_disable = 0;
8821 
8822 	child_ctx = child->perf_event_ctxp[ctxn];
8823 
8824 	if (child_ctx && inherited_all) {
8825 		/*
8826 		 * Mark the child context as a clone of the parent
8827 		 * context, or of whatever the parent is a clone of.
8828 		 *
8829 		 * Note that if the parent is a clone, the holding of
8830 		 * parent_ctx->lock avoids it from being uncloned.
8831 		 */
8832 		cloned_ctx = parent_ctx->parent_ctx;
8833 		if (cloned_ctx) {
8834 			child_ctx->parent_ctx = cloned_ctx;
8835 			child_ctx->parent_gen = parent_ctx->parent_gen;
8836 		} else {
8837 			child_ctx->parent_ctx = parent_ctx;
8838 			child_ctx->parent_gen = parent_ctx->generation;
8839 		}
8840 		get_ctx(child_ctx->parent_ctx);
8841 	}
8842 
8843 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
8844 	mutex_unlock(&parent_ctx->mutex);
8845 
8846 	perf_unpin_context(parent_ctx);
8847 	put_ctx(parent_ctx);
8848 
8849 	return ret;
8850 }
8851 
8852 /*
8853  * Initialize the perf_event context in task_struct
8854  */
perf_event_init_task(struct task_struct * child)8855 int perf_event_init_task(struct task_struct *child)
8856 {
8857 	int ctxn, ret;
8858 
8859 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
8860 	mutex_init(&child->perf_event_mutex);
8861 	INIT_LIST_HEAD(&child->perf_event_list);
8862 
8863 	for_each_task_context_nr(ctxn) {
8864 		ret = perf_event_init_context(child, ctxn);
8865 		if (ret) {
8866 			perf_event_free_task(child);
8867 			return ret;
8868 		}
8869 	}
8870 
8871 	return 0;
8872 }
8873 
perf_event_init_all_cpus(void)8874 static void __init perf_event_init_all_cpus(void)
8875 {
8876 	struct swevent_htable *swhash;
8877 	int cpu;
8878 
8879 	for_each_possible_cpu(cpu) {
8880 		swhash = &per_cpu(swevent_htable, cpu);
8881 		mutex_init(&swhash->hlist_mutex);
8882 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
8883 	}
8884 }
8885 
perf_event_init_cpu(int cpu)8886 static void perf_event_init_cpu(int cpu)
8887 {
8888 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8889 
8890 	mutex_lock(&swhash->hlist_mutex);
8891 	swhash->online = true;
8892 	if (swhash->hlist_refcount > 0) {
8893 		struct swevent_hlist *hlist;
8894 
8895 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
8896 		WARN_ON(!hlist);
8897 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8898 	}
8899 	mutex_unlock(&swhash->hlist_mutex);
8900 }
8901 
8902 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
__perf_event_exit_context(void * __info)8903 static void __perf_event_exit_context(void *__info)
8904 {
8905 	struct remove_event re = { .detach_group = true };
8906 	struct perf_event_context *ctx = __info;
8907 
8908 	rcu_read_lock();
8909 	list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
8910 		__perf_remove_from_context(&re);
8911 	rcu_read_unlock();
8912 }
8913 
perf_event_exit_cpu_context(int cpu)8914 static void perf_event_exit_cpu_context(int cpu)
8915 {
8916 	struct perf_event_context *ctx;
8917 	struct pmu *pmu;
8918 	int idx;
8919 
8920 	idx = srcu_read_lock(&pmus_srcu);
8921 	list_for_each_entry_rcu(pmu, &pmus, entry) {
8922 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
8923 
8924 		mutex_lock(&ctx->mutex);
8925 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
8926 		mutex_unlock(&ctx->mutex);
8927 	}
8928 	srcu_read_unlock(&pmus_srcu, idx);
8929 }
8930 
perf_event_exit_cpu(int cpu)8931 static void perf_event_exit_cpu(int cpu)
8932 {
8933 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8934 
8935 	perf_event_exit_cpu_context(cpu);
8936 
8937 	mutex_lock(&swhash->hlist_mutex);
8938 	swhash->online = false;
8939 	swevent_hlist_release(swhash);
8940 	mutex_unlock(&swhash->hlist_mutex);
8941 }
8942 #else
perf_event_exit_cpu(int cpu)8943 static inline void perf_event_exit_cpu(int cpu) { }
8944 #endif
8945 
8946 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)8947 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
8948 {
8949 	int cpu;
8950 
8951 	for_each_online_cpu(cpu)
8952 		perf_event_exit_cpu(cpu);
8953 
8954 	return NOTIFY_OK;
8955 }
8956 
8957 /*
8958  * Run the perf reboot notifier at the very last possible moment so that
8959  * the generic watchdog code runs as long as possible.
8960  */
8961 static struct notifier_block perf_reboot_notifier = {
8962 	.notifier_call = perf_reboot,
8963 	.priority = INT_MIN,
8964 };
8965 
8966 static int
perf_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)8967 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
8968 {
8969 	unsigned int cpu = (long)hcpu;
8970 
8971 	switch (action & ~CPU_TASKS_FROZEN) {
8972 
8973 	case CPU_UP_PREPARE:
8974 	case CPU_DOWN_FAILED:
8975 		perf_event_init_cpu(cpu);
8976 		break;
8977 
8978 	case CPU_UP_CANCELED:
8979 	case CPU_DOWN_PREPARE:
8980 		perf_event_exit_cpu(cpu);
8981 		break;
8982 	default:
8983 		break;
8984 	}
8985 
8986 	return NOTIFY_OK;
8987 }
8988 
perf_event_init(void)8989 void __init perf_event_init(void)
8990 {
8991 	int ret;
8992 
8993 	idr_init(&pmu_idr);
8994 
8995 	perf_event_init_all_cpus();
8996 	init_srcu_struct(&pmus_srcu);
8997 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
8998 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
8999 	perf_pmu_register(&perf_task_clock, NULL, -1);
9000 	perf_tp_register();
9001 	perf_cpu_notifier(perf_cpu_notify);
9002 	register_reboot_notifier(&perf_reboot_notifier);
9003 
9004 	ret = init_hw_breakpoint();
9005 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9006 
9007 	/* do not patch jump label more than once per second */
9008 	jump_label_rate_limit(&perf_sched_events, HZ);
9009 
9010 	/*
9011 	 * Build time assertion that we keep the data_head at the intended
9012 	 * location.  IOW, validation we got the __reserved[] size right.
9013 	 */
9014 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9015 		     != 1024);
9016 }
9017 
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)9018 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9019 			      char *page)
9020 {
9021 	struct perf_pmu_events_attr *pmu_attr =
9022 		container_of(attr, struct perf_pmu_events_attr, attr);
9023 
9024 	if (pmu_attr->event_str)
9025 		return sprintf(page, "%s\n", pmu_attr->event_str);
9026 
9027 	return 0;
9028 }
9029 
perf_event_sysfs_init(void)9030 static int __init perf_event_sysfs_init(void)
9031 {
9032 	struct pmu *pmu;
9033 	int ret;
9034 
9035 	mutex_lock(&pmus_lock);
9036 
9037 	ret = bus_register(&pmu_bus);
9038 	if (ret)
9039 		goto unlock;
9040 
9041 	list_for_each_entry(pmu, &pmus, entry) {
9042 		if (!pmu->name || pmu->type < 0)
9043 			continue;
9044 
9045 		ret = pmu_dev_alloc(pmu);
9046 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9047 	}
9048 	pmu_bus_running = 1;
9049 	ret = 0;
9050 
9051 unlock:
9052 	mutex_unlock(&pmus_lock);
9053 
9054 	return ret;
9055 }
9056 device_initcall(perf_event_sysfs_init);
9057 
9058 #ifdef CONFIG_CGROUP_PERF
9059 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)9060 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9061 {
9062 	struct perf_cgroup *jc;
9063 
9064 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9065 	if (!jc)
9066 		return ERR_PTR(-ENOMEM);
9067 
9068 	jc->info = alloc_percpu(struct perf_cgroup_info);
9069 	if (!jc->info) {
9070 		kfree(jc);
9071 		return ERR_PTR(-ENOMEM);
9072 	}
9073 
9074 	return &jc->css;
9075 }
9076 
perf_cgroup_css_free(struct cgroup_subsys_state * css)9077 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9078 {
9079 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9080 
9081 	free_percpu(jc->info);
9082 	kfree(jc);
9083 }
9084 
__perf_cgroup_move(void * info)9085 static int __perf_cgroup_move(void *info)
9086 {
9087 	struct task_struct *task = info;
9088 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9089 	return 0;
9090 }
9091 
perf_cgroup_attach(struct cgroup_subsys_state * css,struct cgroup_taskset * tset)9092 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9093 			       struct cgroup_taskset *tset)
9094 {
9095 	struct task_struct *task;
9096 
9097 	cgroup_taskset_for_each(task, tset)
9098 		task_function_call(task, __perf_cgroup_move, task);
9099 }
9100 
perf_cgroup_exit(struct cgroup_subsys_state * css,struct cgroup_subsys_state * old_css,struct task_struct * task)9101 static void perf_cgroup_exit(struct cgroup_subsys_state *css,
9102 			     struct cgroup_subsys_state *old_css,
9103 			     struct task_struct *task)
9104 {
9105 	/*
9106 	 * cgroup_exit() is called in the copy_process() failure path.
9107 	 * Ignore this case since the task hasn't ran yet, this avoids
9108 	 * trying to poke a half freed task state from generic code.
9109 	 */
9110 	if (!(task->flags & PF_EXITING))
9111 		return;
9112 
9113 	task_function_call(task, __perf_cgroup_move, task);
9114 }
9115 
9116 struct cgroup_subsys perf_event_cgrp_subsys = {
9117 	.css_alloc	= perf_cgroup_css_alloc,
9118 	.css_free	= perf_cgroup_css_free,
9119 	.exit		= perf_cgroup_exit,
9120 	.attach		= perf_cgroup_attach,
9121 };
9122 #endif /* CONFIG_CGROUP_PERF */
9123