1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 
19 /*
20  * Kernel-internal data types and definitions:
21  */
22 
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27 
28 struct perf_guest_info_callbacks {
29 	int				(*is_in_guest)(void);
30 	int				(*is_user_mode)(void);
31 	unsigned long			(*get_guest_ip)(void);
32 };
33 
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37 
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58 
59 struct perf_callchain_entry {
60 	__u64				nr;
61 	__u64				ip[PERF_MAX_STACK_DEPTH];
62 };
63 
64 struct perf_raw_record {
65 	u32				size;
66 	void				*data;
67 };
68 
69 /*
70  * branch stack layout:
71  *  nr: number of taken branches stored in entries[]
72  *
73  * Note that nr can vary from sample to sample
74  * branches (to, from) are stored from most recent
75  * to least recent, i.e., entries[0] contains the most
76  * recent branch.
77  */
78 struct perf_branch_stack {
79 	__u64				nr;
80 	struct perf_branch_entry	entries[0];
81 };
82 
83 struct task_struct;
84 
85 /*
86  * extra PMU register associated with an event
87  */
88 struct hw_perf_event_extra {
89 	u64		config;	/* register value */
90 	unsigned int	reg;	/* register address or index */
91 	int		alloc;	/* extra register already allocated */
92 	int		idx;	/* index in shared_regs->regs[] */
93 };
94 
95 /**
96  * struct hw_perf_event - performance event hardware details:
97  */
98 struct hw_perf_event {
99 #ifdef CONFIG_PERF_EVENTS
100 	union {
101 		struct { /* hardware */
102 			u64		config;
103 			u64		last_tag;
104 			unsigned long	config_base;
105 			unsigned long	event_base;
106 			int		event_base_rdpmc;
107 			int		idx;
108 			int		last_cpu;
109 			int		flags;
110 
111 			struct hw_perf_event_extra extra_reg;
112 			struct hw_perf_event_extra branch_reg;
113 		};
114 		struct { /* software */
115 			struct hrtimer	hrtimer;
116 		};
117 		struct { /* tracepoint */
118 			/* for tp_event->class */
119 			struct list_head	tp_list;
120 		};
121 		struct { /* intel_cqm */
122 			int			cqm_state;
123 			int			cqm_rmid;
124 			struct list_head	cqm_events_entry;
125 			struct list_head	cqm_groups_entry;
126 			struct list_head	cqm_group_entry;
127 		};
128 		struct { /* itrace */
129 			int			itrace_started;
130 		};
131 #ifdef CONFIG_HAVE_HW_BREAKPOINT
132 		struct { /* breakpoint */
133 			/*
134 			 * Crufty hack to avoid the chicken and egg
135 			 * problem hw_breakpoint has with context
136 			 * creation and event initalization.
137 			 */
138 			struct arch_hw_breakpoint	info;
139 			struct list_head		bp_list;
140 		};
141 #endif
142 	};
143 	struct task_struct		*target;
144 	int				state;
145 	local64_t			prev_count;
146 	u64				sample_period;
147 	u64				last_period;
148 	local64_t			period_left;
149 	u64                             interrupts_seq;
150 	u64				interrupts;
151 
152 	u64				freq_time_stamp;
153 	u64				freq_count_stamp;
154 #endif
155 };
156 
157 /*
158  * hw_perf_event::state flags
159  */
160 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
161 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
162 #define PERF_HES_ARCH		0x04
163 
164 struct perf_event;
165 
166 /*
167  * Common implementation detail of pmu::{start,commit,cancel}_txn
168  */
169 #define PERF_EVENT_TXN 0x1
170 
171 /**
172  * pmu::capabilities flags
173  */
174 #define PERF_PMU_CAP_NO_INTERRUPT		0x01
175 #define PERF_PMU_CAP_NO_NMI			0x02
176 #define PERF_PMU_CAP_AUX_NO_SG			0x04
177 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF		0x08
178 #define PERF_PMU_CAP_EXCLUSIVE			0x10
179 #define PERF_PMU_CAP_ITRACE			0x20
180 
181 /**
182  * struct pmu - generic performance monitoring unit
183  */
184 struct pmu {
185 	struct list_head		entry;
186 
187 	struct module			*module;
188 	struct device			*dev;
189 	const struct attribute_group	**attr_groups;
190 	const char			*name;
191 	int				type;
192 
193 	/*
194 	 * various common per-pmu feature flags
195 	 */
196 	int				capabilities;
197 
198 	int * __percpu			pmu_disable_count;
199 	struct perf_cpu_context * __percpu pmu_cpu_context;
200 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
201 	int				task_ctx_nr;
202 	int				hrtimer_interval_ms;
203 
204 	/*
205 	 * Fully disable/enable this PMU, can be used to protect from the PMI
206 	 * as well as for lazy/batch writing of the MSRs.
207 	 */
208 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
209 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
210 
211 	/*
212 	 * Try and initialize the event for this PMU.
213 	 * Should return -ENOENT when the @event doesn't match this PMU.
214 	 */
215 	int (*event_init)		(struct perf_event *event);
216 
217 	/*
218 	 * Notification that the event was mapped or unmapped.  Called
219 	 * in the context of the mapping task.
220 	 */
221 	void (*event_mapped)		(struct perf_event *event); /*optional*/
222 	void (*event_unmapped)		(struct perf_event *event); /*optional*/
223 
224 #define PERF_EF_START	0x01		/* start the counter when adding    */
225 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
226 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
227 
228 	/*
229 	 * Adds/Removes a counter to/from the PMU, can be done inside
230 	 * a transaction, see the ->*_txn() methods.
231 	 */
232 	int  (*add)			(struct perf_event *event, int flags);
233 	void (*del)			(struct perf_event *event, int flags);
234 
235 	/*
236 	 * Starts/Stops a counter present on the PMU. The PMI handler
237 	 * should stop the counter when perf_event_overflow() returns
238 	 * !0. ->start() will be used to continue.
239 	 */
240 	void (*start)			(struct perf_event *event, int flags);
241 	void (*stop)			(struct perf_event *event, int flags);
242 
243 	/*
244 	 * Updates the counter value of the event.
245 	 */
246 	void (*read)			(struct perf_event *event);
247 
248 	/*
249 	 * Group events scheduling is treated as a transaction, add
250 	 * group events as a whole and perform one schedulability test.
251 	 * If the test fails, roll back the whole group
252 	 *
253 	 * Start the transaction, after this ->add() doesn't need to
254 	 * do schedulability tests.
255 	 */
256 	void (*start_txn)		(struct pmu *pmu); /* optional */
257 	/*
258 	 * If ->start_txn() disabled the ->add() schedulability test
259 	 * then ->commit_txn() is required to perform one. On success
260 	 * the transaction is closed. On error the transaction is kept
261 	 * open until ->cancel_txn() is called.
262 	 */
263 	int  (*commit_txn)		(struct pmu *pmu); /* optional */
264 	/*
265 	 * Will cancel the transaction, assumes ->del() is called
266 	 * for each successful ->add() during the transaction.
267 	 */
268 	void (*cancel_txn)		(struct pmu *pmu); /* optional */
269 
270 	/*
271 	 * Will return the value for perf_event_mmap_page::index for this event,
272 	 * if no implementation is provided it will default to: event->hw.idx + 1.
273 	 */
274 	int (*event_idx)		(struct perf_event *event); /*optional */
275 
276 	/*
277 	 * context-switches callback
278 	 */
279 	void (*sched_task)		(struct perf_event_context *ctx,
280 					bool sched_in);
281 	/*
282 	 * PMU specific data size
283 	 */
284 	size_t				task_ctx_size;
285 
286 
287 	/*
288 	 * Return the count value for a counter.
289 	 */
290 	u64 (*count)			(struct perf_event *event); /*optional*/
291 
292 	/*
293 	 * Set up pmu-private data structures for an AUX area
294 	 */
295 	void *(*setup_aux)		(int cpu, void **pages,
296 					 int nr_pages, bool overwrite);
297 					/* optional */
298 
299 	/*
300 	 * Free pmu-private AUX data structures
301 	 */
302 	void (*free_aux)		(void *aux); /* optional */
303 };
304 
305 /**
306  * enum perf_event_active_state - the states of a event
307  */
308 enum perf_event_active_state {
309 	PERF_EVENT_STATE_EXIT		= -3,
310 	PERF_EVENT_STATE_ERROR		= -2,
311 	PERF_EVENT_STATE_OFF		= -1,
312 	PERF_EVENT_STATE_INACTIVE	=  0,
313 	PERF_EVENT_STATE_ACTIVE		=  1,
314 };
315 
316 struct file;
317 struct perf_sample_data;
318 
319 typedef void (*perf_overflow_handler_t)(struct perf_event *,
320 					struct perf_sample_data *,
321 					struct pt_regs *regs);
322 
323 enum perf_group_flag {
324 	PERF_GROUP_SOFTWARE		= 0x1,
325 };
326 
327 #define SWEVENT_HLIST_BITS		8
328 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
329 
330 struct swevent_hlist {
331 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
332 	struct rcu_head			rcu_head;
333 };
334 
335 #define PERF_ATTACH_CONTEXT	0x01
336 #define PERF_ATTACH_GROUP	0x02
337 #define PERF_ATTACH_TASK	0x04
338 #define PERF_ATTACH_TASK_DATA	0x08
339 
340 struct perf_cgroup;
341 struct ring_buffer;
342 
343 /**
344  * struct perf_event - performance event kernel representation:
345  */
346 struct perf_event {
347 #ifdef CONFIG_PERF_EVENTS
348 	/*
349 	 * entry onto perf_event_context::event_list;
350 	 *   modifications require ctx->lock
351 	 *   RCU safe iterations.
352 	 */
353 	struct list_head		event_entry;
354 
355 	/*
356 	 * XXX: group_entry and sibling_list should be mutually exclusive;
357 	 * either you're a sibling on a group, or you're the group leader.
358 	 * Rework the code to always use the same list element.
359 	 *
360 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
361 	 * either sufficies for read.
362 	 */
363 	struct list_head		group_entry;
364 	struct list_head		sibling_list;
365 
366 	/*
367 	 * We need storage to track the entries in perf_pmu_migrate_context; we
368 	 * cannot use the event_entry because of RCU and we want to keep the
369 	 * group in tact which avoids us using the other two entries.
370 	 */
371 	struct list_head		migrate_entry;
372 
373 	struct hlist_node		hlist_entry;
374 	struct list_head		active_entry;
375 	int				nr_siblings;
376 	int				group_flags;
377 	struct perf_event		*group_leader;
378 	struct pmu			*pmu;
379 
380 	enum perf_event_active_state	state;
381 	unsigned int			attach_state;
382 	local64_t			count;
383 	atomic64_t			child_count;
384 
385 	/*
386 	 * These are the total time in nanoseconds that the event
387 	 * has been enabled (i.e. eligible to run, and the task has
388 	 * been scheduled in, if this is a per-task event)
389 	 * and running (scheduled onto the CPU), respectively.
390 	 *
391 	 * They are computed from tstamp_enabled, tstamp_running and
392 	 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
393 	 */
394 	u64				total_time_enabled;
395 	u64				total_time_running;
396 
397 	/*
398 	 * These are timestamps used for computing total_time_enabled
399 	 * and total_time_running when the event is in INACTIVE or
400 	 * ACTIVE state, measured in nanoseconds from an arbitrary point
401 	 * in time.
402 	 * tstamp_enabled: the notional time when the event was enabled
403 	 * tstamp_running: the notional time when the event was scheduled on
404 	 * tstamp_stopped: in INACTIVE state, the notional time when the
405 	 *	event was scheduled off.
406 	 */
407 	u64				tstamp_enabled;
408 	u64				tstamp_running;
409 	u64				tstamp_stopped;
410 
411 	/*
412 	 * timestamp shadows the actual context timing but it can
413 	 * be safely used in NMI interrupt context. It reflects the
414 	 * context time as it was when the event was last scheduled in.
415 	 *
416 	 * ctx_time already accounts for ctx->timestamp. Therefore to
417 	 * compute ctx_time for a sample, simply add perf_clock().
418 	 */
419 	u64				shadow_ctx_time;
420 
421 	struct perf_event_attr		attr;
422 	u16				header_size;
423 	u16				id_header_size;
424 	u16				read_size;
425 	struct hw_perf_event		hw;
426 
427 	struct perf_event_context	*ctx;
428 	atomic_long_t			refcount;
429 
430 	/*
431 	 * These accumulate total time (in nanoseconds) that children
432 	 * events have been enabled and running, respectively.
433 	 */
434 	atomic64_t			child_total_time_enabled;
435 	atomic64_t			child_total_time_running;
436 
437 	/*
438 	 * Protect attach/detach and child_list:
439 	 */
440 	struct mutex			child_mutex;
441 	struct list_head		child_list;
442 	struct perf_event		*parent;
443 
444 	int				oncpu;
445 	int				cpu;
446 
447 	struct list_head		owner_entry;
448 	struct task_struct		*owner;
449 
450 	/* mmap bits */
451 	struct mutex			mmap_mutex;
452 	atomic_t			mmap_count;
453 
454 	struct ring_buffer		*rb;
455 	struct list_head		rb_entry;
456 	unsigned long			rcu_batches;
457 	int				rcu_pending;
458 
459 	/* poll related */
460 	wait_queue_head_t		waitq;
461 	struct fasync_struct		*fasync;
462 
463 	/* delayed work for NMIs and such */
464 	int				pending_wakeup;
465 	int				pending_kill;
466 	int				pending_disable;
467 	struct irq_work			pending;
468 
469 	atomic_t			event_limit;
470 
471 	void (*destroy)(struct perf_event *);
472 	struct rcu_head			rcu_head;
473 
474 	struct pid_namespace		*ns;
475 	u64				id;
476 
477 	u64				(*clock)(void);
478 	perf_overflow_handler_t		overflow_handler;
479 	void				*overflow_handler_context;
480 
481 #ifdef CONFIG_EVENT_TRACING
482 	struct ftrace_event_call	*tp_event;
483 	struct event_filter		*filter;
484 #ifdef CONFIG_FUNCTION_TRACER
485 	struct ftrace_ops               ftrace_ops;
486 #endif
487 #endif
488 
489 #ifdef CONFIG_CGROUP_PERF
490 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
491 	int				cgrp_defer_enabled;
492 #endif
493 
494 #endif /* CONFIG_PERF_EVENTS */
495 };
496 
497 /**
498  * struct perf_event_context - event context structure
499  *
500  * Used as a container for task events and CPU events as well:
501  */
502 struct perf_event_context {
503 	struct pmu			*pmu;
504 	/*
505 	 * Protect the states of the events in the list,
506 	 * nr_active, and the list:
507 	 */
508 	raw_spinlock_t			lock;
509 	/*
510 	 * Protect the list of events.  Locking either mutex or lock
511 	 * is sufficient to ensure the list doesn't change; to change
512 	 * the list you need to lock both the mutex and the spinlock.
513 	 */
514 	struct mutex			mutex;
515 
516 	struct list_head		active_ctx_list;
517 	struct list_head		pinned_groups;
518 	struct list_head		flexible_groups;
519 	struct list_head		event_list;
520 	int				nr_events;
521 	int				nr_active;
522 	int				is_active;
523 	int				nr_stat;
524 	int				nr_freq;
525 	int				rotate_disable;
526 	atomic_t			refcount;
527 	struct task_struct		*task;
528 
529 	/*
530 	 * Context clock, runs when context enabled.
531 	 */
532 	u64				time;
533 	u64				timestamp;
534 
535 	/*
536 	 * These fields let us detect when two contexts have both
537 	 * been cloned (inherited) from a common ancestor.
538 	 */
539 	struct perf_event_context	*parent_ctx;
540 	u64				parent_gen;
541 	u64				generation;
542 	int				pin_count;
543 	int				nr_cgroups;	 /* cgroup evts */
544 	void				*task_ctx_data; /* pmu specific data */
545 	struct rcu_head			rcu_head;
546 
547 	struct delayed_work		orphans_remove;
548 	bool				orphans_remove_sched;
549 };
550 
551 /*
552  * Number of contexts where an event can trigger:
553  *	task, softirq, hardirq, nmi.
554  */
555 #define PERF_NR_CONTEXTS	4
556 
557 /**
558  * struct perf_event_cpu_context - per cpu event context structure
559  */
560 struct perf_cpu_context {
561 	struct perf_event_context	ctx;
562 	struct perf_event_context	*task_ctx;
563 	int				active_oncpu;
564 	int				exclusive;
565 	struct hrtimer			hrtimer;
566 	ktime_t				hrtimer_interval;
567 	struct pmu			*unique_pmu;
568 	struct perf_cgroup		*cgrp;
569 };
570 
571 struct perf_output_handle {
572 	struct perf_event		*event;
573 	struct ring_buffer		*rb;
574 	unsigned long			wakeup;
575 	unsigned long			size;
576 	union {
577 		void			*addr;
578 		unsigned long		head;
579 	};
580 	int				page;
581 };
582 
583 #ifdef CONFIG_CGROUP_PERF
584 
585 /*
586  * perf_cgroup_info keeps track of time_enabled for a cgroup.
587  * This is a per-cpu dynamically allocated data structure.
588  */
589 struct perf_cgroup_info {
590 	u64				time;
591 	u64				timestamp;
592 };
593 
594 struct perf_cgroup {
595 	struct cgroup_subsys_state	css;
596 	struct perf_cgroup_info	__percpu *info;
597 };
598 
599 /*
600  * Must ensure cgroup is pinned (css_get) before calling
601  * this function. In other words, we cannot call this function
602  * if there is no cgroup event for the current CPU context.
603  */
604 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task)605 perf_cgroup_from_task(struct task_struct *task)
606 {
607 	return container_of(task_css(task, perf_event_cgrp_id),
608 			    struct perf_cgroup, css);
609 }
610 #endif /* CONFIG_CGROUP_PERF */
611 
612 #ifdef CONFIG_PERF_EVENTS
613 
614 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
615 				   struct perf_event *event);
616 extern void perf_aux_output_end(struct perf_output_handle *handle,
617 				unsigned long size, bool truncated);
618 extern int perf_aux_output_skip(struct perf_output_handle *handle,
619 				unsigned long size);
620 extern void *perf_get_aux(struct perf_output_handle *handle);
621 
622 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
623 extern void perf_pmu_unregister(struct pmu *pmu);
624 
625 extern int perf_num_counters(void);
626 extern const char *perf_pmu_name(void);
627 extern void __perf_event_task_sched_in(struct task_struct *prev,
628 				       struct task_struct *task);
629 extern void __perf_event_task_sched_out(struct task_struct *prev,
630 					struct task_struct *next);
631 extern int perf_event_init_task(struct task_struct *child);
632 extern void perf_event_exit_task(struct task_struct *child);
633 extern void perf_event_free_task(struct task_struct *task);
634 extern void perf_event_delayed_put(struct task_struct *task);
635 extern void perf_event_print_debug(void);
636 extern void perf_pmu_disable(struct pmu *pmu);
637 extern void perf_pmu_enable(struct pmu *pmu);
638 extern void perf_sched_cb_dec(struct pmu *pmu);
639 extern void perf_sched_cb_inc(struct pmu *pmu);
640 extern int perf_event_task_disable(void);
641 extern int perf_event_task_enable(void);
642 extern int perf_event_refresh(struct perf_event *event, int refresh);
643 extern void perf_event_update_userpage(struct perf_event *event);
644 extern int perf_event_release_kernel(struct perf_event *event);
645 extern struct perf_event *
646 perf_event_create_kernel_counter(struct perf_event_attr *attr,
647 				int cpu,
648 				struct task_struct *task,
649 				perf_overflow_handler_t callback,
650 				void *context);
651 extern void perf_pmu_migrate_context(struct pmu *pmu,
652 				int src_cpu, int dst_cpu);
653 extern u64 perf_event_read_value(struct perf_event *event,
654 				 u64 *enabled, u64 *running);
655 
656 
657 struct perf_sample_data {
658 	/*
659 	 * Fields set by perf_sample_data_init(), group so as to
660 	 * minimize the cachelines touched.
661 	 */
662 	u64				addr;
663 	struct perf_raw_record		*raw;
664 	struct perf_branch_stack	*br_stack;
665 	u64				period;
666 	u64				weight;
667 	u64				txn;
668 	union  perf_mem_data_src	data_src;
669 
670 	/*
671 	 * The other fields, optionally {set,used} by
672 	 * perf_{prepare,output}_sample().
673 	 */
674 	u64				type;
675 	u64				ip;
676 	struct {
677 		u32	pid;
678 		u32	tid;
679 	}				tid_entry;
680 	u64				time;
681 	u64				id;
682 	u64				stream_id;
683 	struct {
684 		u32	cpu;
685 		u32	reserved;
686 	}				cpu_entry;
687 	struct perf_callchain_entry	*callchain;
688 
689 	/*
690 	 * regs_user may point to task_pt_regs or to regs_user_copy, depending
691 	 * on arch details.
692 	 */
693 	struct perf_regs		regs_user;
694 	struct pt_regs			regs_user_copy;
695 
696 	struct perf_regs		regs_intr;
697 	u64				stack_user_size;
698 } ____cacheline_aligned;
699 
700 /* default value for data source */
701 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
702 		    PERF_MEM_S(LVL, NA)   |\
703 		    PERF_MEM_S(SNOOP, NA) |\
704 		    PERF_MEM_S(LOCK, NA)  |\
705 		    PERF_MEM_S(TLB, NA))
706 
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)707 static inline void perf_sample_data_init(struct perf_sample_data *data,
708 					 u64 addr, u64 period)
709 {
710 	/* remaining struct members initialized in perf_prepare_sample() */
711 	data->addr = addr;
712 	data->raw  = NULL;
713 	data->br_stack = NULL;
714 	data->period = period;
715 	data->weight = 0;
716 	data->data_src.val = PERF_MEM_NA;
717 	data->txn = 0;
718 }
719 
720 extern void perf_output_sample(struct perf_output_handle *handle,
721 			       struct perf_event_header *header,
722 			       struct perf_sample_data *data,
723 			       struct perf_event *event);
724 extern void perf_prepare_sample(struct perf_event_header *header,
725 				struct perf_sample_data *data,
726 				struct perf_event *event,
727 				struct pt_regs *regs);
728 
729 extern int perf_event_overflow(struct perf_event *event,
730 				 struct perf_sample_data *data,
731 				 struct pt_regs *regs);
732 
is_sampling_event(struct perf_event * event)733 static inline bool is_sampling_event(struct perf_event *event)
734 {
735 	return event->attr.sample_period != 0;
736 }
737 
738 /*
739  * Return 1 for a software event, 0 for a hardware event
740  */
is_software_event(struct perf_event * event)741 static inline int is_software_event(struct perf_event *event)
742 {
743 	return event->pmu->task_ctx_nr == perf_sw_context;
744 }
745 
746 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
747 
748 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
749 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
750 
751 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)752 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
753 #endif
754 
755 /*
756  * Take a snapshot of the regs. Skip ip and frame pointer to
757  * the nth caller. We only need a few of the regs:
758  * - ip for PERF_SAMPLE_IP
759  * - cs for user_mode() tests
760  * - bp for callchains
761  * - eflags, for future purposes, just in case
762  */
perf_fetch_caller_regs(struct pt_regs * regs)763 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
764 {
765 	memset(regs, 0, sizeof(*regs));
766 
767 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
768 }
769 
770 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)771 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
772 {
773 	if (static_key_false(&perf_swevent_enabled[event_id]))
774 		__perf_sw_event(event_id, nr, regs, addr);
775 }
776 
777 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
778 
779 /*
780  * 'Special' version for the scheduler, it hard assumes no recursion,
781  * which is guaranteed by us not actually scheduling inside other swevents
782  * because those disable preemption.
783  */
784 static __always_inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)785 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
786 {
787 	if (static_key_false(&perf_swevent_enabled[event_id])) {
788 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
789 
790 		perf_fetch_caller_regs(regs);
791 		___perf_sw_event(event_id, nr, regs, addr);
792 	}
793 }
794 
795 extern struct static_key_deferred perf_sched_events;
796 
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)797 static inline void perf_event_task_sched_in(struct task_struct *prev,
798 					    struct task_struct *task)
799 {
800 	if (static_key_false(&perf_sched_events.key))
801 		__perf_event_task_sched_in(prev, task);
802 }
803 
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)804 static inline void perf_event_task_sched_out(struct task_struct *prev,
805 					     struct task_struct *next)
806 {
807 	perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
808 
809 	if (static_key_false(&perf_sched_events.key))
810 		__perf_event_task_sched_out(prev, next);
811 }
812 
__perf_event_count(struct perf_event * event)813 static inline u64 __perf_event_count(struct perf_event *event)
814 {
815 	return local64_read(&event->count) + atomic64_read(&event->child_count);
816 }
817 
818 extern void perf_event_mmap(struct vm_area_struct *vma);
819 extern struct perf_guest_info_callbacks *perf_guest_cbs;
820 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
821 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
822 
823 extern void perf_event_exec(void);
824 extern void perf_event_comm(struct task_struct *tsk, bool exec);
825 extern void perf_event_fork(struct task_struct *tsk);
826 
827 /* Callchains */
828 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
829 
830 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
831 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
832 
perf_callchain_store(struct perf_callchain_entry * entry,u64 ip)833 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
834 {
835 	if (entry->nr < PERF_MAX_STACK_DEPTH)
836 		entry->ip[entry->nr++] = ip;
837 }
838 
839 extern int sysctl_perf_event_paranoid;
840 extern int sysctl_perf_event_mlock;
841 extern int sysctl_perf_event_sample_rate;
842 extern int sysctl_perf_cpu_time_max_percent;
843 
844 extern void perf_sample_event_took(u64 sample_len_ns);
845 
846 extern int perf_proc_update_handler(struct ctl_table *table, int write,
847 		void __user *buffer, size_t *lenp,
848 		loff_t *ppos);
849 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
850 		void __user *buffer, size_t *lenp,
851 		loff_t *ppos);
852 
853 
perf_paranoid_tracepoint_raw(void)854 static inline bool perf_paranoid_tracepoint_raw(void)
855 {
856 	return sysctl_perf_event_paranoid > -1;
857 }
858 
perf_paranoid_cpu(void)859 static inline bool perf_paranoid_cpu(void)
860 {
861 	return sysctl_perf_event_paranoid > 0;
862 }
863 
perf_paranoid_kernel(void)864 static inline bool perf_paranoid_kernel(void)
865 {
866 	return sysctl_perf_event_paranoid > 1;
867 }
868 
869 extern void perf_event_init(void);
870 extern void perf_tp_event(u64 addr, u64 count, void *record,
871 			  int entry_size, struct pt_regs *regs,
872 			  struct hlist_head *head, int rctx,
873 			  struct task_struct *task);
874 extern void perf_bp_event(struct perf_event *event, void *data);
875 
876 #ifndef perf_misc_flags
877 # define perf_misc_flags(regs) \
878 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
879 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
880 #endif
881 
has_branch_stack(struct perf_event * event)882 static inline bool has_branch_stack(struct perf_event *event)
883 {
884 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
885 }
886 
needs_branch_stack(struct perf_event * event)887 static inline bool needs_branch_stack(struct perf_event *event)
888 {
889 	return event->attr.branch_sample_type != 0;
890 }
891 
has_aux(struct perf_event * event)892 static inline bool has_aux(struct perf_event *event)
893 {
894 	return event->pmu->setup_aux;
895 }
896 
897 extern int perf_output_begin(struct perf_output_handle *handle,
898 			     struct perf_event *event, unsigned int size);
899 extern void perf_output_end(struct perf_output_handle *handle);
900 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
901 			     const void *buf, unsigned int len);
902 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
903 				     unsigned int len);
904 extern int perf_swevent_get_recursion_context(void);
905 extern void perf_swevent_put_recursion_context(int rctx);
906 extern u64 perf_swevent_set_period(struct perf_event *event);
907 extern void perf_event_enable(struct perf_event *event);
908 extern void perf_event_disable(struct perf_event *event);
909 extern int __perf_event_disable(void *info);
910 extern void perf_event_task_tick(void);
911 #else /* !CONFIG_PERF_EVENTS: */
912 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)913 perf_aux_output_begin(struct perf_output_handle *handle,
914 		      struct perf_event *event)				{ return NULL; }
915 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size,bool truncated)916 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
917 		    bool truncated)					{ }
918 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)919 perf_aux_output_skip(struct perf_output_handle *handle,
920 		     unsigned long size)				{ return -EINVAL; }
921 static inline void *
perf_get_aux(struct perf_output_handle * handle)922 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
923 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)924 perf_event_task_sched_in(struct task_struct *prev,
925 			 struct task_struct *task)			{ }
926 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)927 perf_event_task_sched_out(struct task_struct *prev,
928 			  struct task_struct *next)			{ }
perf_event_init_task(struct task_struct * child)929 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
perf_event_exit_task(struct task_struct * child)930 static inline void perf_event_exit_task(struct task_struct *child)	{ }
perf_event_free_task(struct task_struct * task)931 static inline void perf_event_free_task(struct task_struct *task)	{ }
perf_event_delayed_put(struct task_struct * task)932 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
perf_event_print_debug(void)933 static inline void perf_event_print_debug(void)				{ }
perf_event_task_disable(void)934 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
perf_event_task_enable(void)935 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)936 static inline int perf_event_refresh(struct perf_event *event, int refresh)
937 {
938 	return -EINVAL;
939 }
940 
941 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)942 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
943 static inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)944 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)			{ }
945 static inline void
perf_bp_event(struct perf_event * event,void * data)946 perf_bp_event(struct perf_event *event, void *data)			{ }
947 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)948 static inline int perf_register_guest_info_callbacks
949 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)950 static inline int perf_unregister_guest_info_callbacks
951 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
952 
perf_event_mmap(struct vm_area_struct * vma)953 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
perf_event_exec(void)954 static inline void perf_event_exec(void)				{ }
perf_event_comm(struct task_struct * tsk,bool exec)955 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
perf_event_fork(struct task_struct * tsk)956 static inline void perf_event_fork(struct task_struct *tsk)		{ }
perf_event_init(void)957 static inline void perf_event_init(void)				{ }
perf_swevent_get_recursion_context(void)958 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
perf_swevent_put_recursion_context(int rctx)959 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
perf_swevent_set_period(struct perf_event * event)960 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
perf_event_enable(struct perf_event * event)961 static inline void perf_event_enable(struct perf_event *event)		{ }
perf_event_disable(struct perf_event * event)962 static inline void perf_event_disable(struct perf_event *event)		{ }
__perf_event_disable(void * info)963 static inline int __perf_event_disable(void *info)			{ return -1; }
perf_event_task_tick(void)964 static inline void perf_event_task_tick(void)				{ }
965 #endif
966 
967 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL)
968 extern bool perf_event_can_stop_tick(void);
969 #else
perf_event_can_stop_tick(void)970 static inline bool perf_event_can_stop_tick(void)			{ return true; }
971 #endif
972 
973 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
974 extern void perf_restore_debug_store(void);
975 #else
perf_restore_debug_store(void)976 static inline void perf_restore_debug_store(void)			{ }
977 #endif
978 
979 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
980 
981 /*
982  * This has to have a higher priority than migration_notifier in sched/core.c.
983  */
984 #define perf_cpu_notifier(fn)						\
985 do {									\
986 	static struct notifier_block fn##_nb =				\
987 		{ .notifier_call = fn, .priority = CPU_PRI_PERF };	\
988 	unsigned long cpu = smp_processor_id();				\
989 	unsigned long flags;						\
990 									\
991 	cpu_notifier_register_begin();					\
992 	fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,			\
993 		(void *)(unsigned long)cpu);				\
994 	local_irq_save(flags);						\
995 	fn(&fn##_nb, (unsigned long)CPU_STARTING,			\
996 		(void *)(unsigned long)cpu);				\
997 	local_irq_restore(flags);					\
998 	fn(&fn##_nb, (unsigned long)CPU_ONLINE,				\
999 		(void *)(unsigned long)cpu);				\
1000 	__register_cpu_notifier(&fn##_nb);				\
1001 	cpu_notifier_register_done();					\
1002 } while (0)
1003 
1004 /*
1005  * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the
1006  * callback for already online CPUs.
1007  */
1008 #define __perf_cpu_notifier(fn)						\
1009 do {									\
1010 	static struct notifier_block fn##_nb =				\
1011 		{ .notifier_call = fn, .priority = CPU_PRI_PERF };	\
1012 									\
1013 	__register_cpu_notifier(&fn##_nb);				\
1014 } while (0)
1015 
1016 struct perf_pmu_events_attr {
1017 	struct device_attribute attr;
1018 	u64 id;
1019 	const char *event_str;
1020 };
1021 
1022 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1023 			      char *page);
1024 
1025 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1026 static struct perf_pmu_events_attr _var = {				\
1027 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1028 	.id   =  _id,							\
1029 };
1030 
1031 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1032 static struct perf_pmu_events_attr _var = {				    \
1033 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1034 	.id		= 0,						    \
1035 	.event_str	= _str,						    \
1036 };
1037 
1038 #define PMU_FORMAT_ATTR(_name, _format)					\
1039 static ssize_t								\
1040 _name##_show(struct device *dev,					\
1041 			       struct device_attribute *attr,		\
1042 			       char *page)				\
1043 {									\
1044 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1045 	return sprintf(page, _format "\n");				\
1046 }									\
1047 									\
1048 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1049 
1050 #endif /* _LINUX_PERF_EVENT_H */
1051