1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/mmu_context.h>
35 #include <asm/tlbflush.h>
36 #include <asm/timer.h>
37 #include <asm/desc.h>
38 #include <asm/ldt.h>
39
40 #include "perf_event.h"
41
42 struct x86_pmu x86_pmu __read_mostly;
43
44 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
45 .enabled = 1,
46 };
47
48 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
49
50 u64 __read_mostly hw_cache_event_ids
51 [PERF_COUNT_HW_CACHE_MAX]
52 [PERF_COUNT_HW_CACHE_OP_MAX]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX];
54 u64 __read_mostly hw_cache_extra_regs
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58
59 /*
60 * Propagate event elapsed time into the generic event.
61 * Can only be executed on the CPU where the event is active.
62 * Returns the delta events processed.
63 */
x86_perf_event_update(struct perf_event * event)64 u64 x86_perf_event_update(struct perf_event *event)
65 {
66 struct hw_perf_event *hwc = &event->hw;
67 int shift = 64 - x86_pmu.cntval_bits;
68 u64 prev_raw_count, new_raw_count;
69 int idx = hwc->idx;
70 s64 delta;
71
72 if (idx == INTEL_PMC_IDX_FIXED_BTS)
73 return 0;
74
75 /*
76 * Careful: an NMI might modify the previous event value.
77 *
78 * Our tactic to handle this is to first atomically read and
79 * exchange a new raw count - then add that new-prev delta
80 * count to the generic event atomically:
81 */
82 again:
83 prev_raw_count = local64_read(&hwc->prev_count);
84 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
85
86 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
87 new_raw_count) != prev_raw_count)
88 goto again;
89
90 /*
91 * Now we have the new raw value and have updated the prev
92 * timestamp already. We can now calculate the elapsed delta
93 * (event-)time and add that to the generic event.
94 *
95 * Careful, not all hw sign-extends above the physical width
96 * of the count.
97 */
98 delta = (new_raw_count << shift) - (prev_raw_count << shift);
99 delta >>= shift;
100
101 local64_add(delta, &event->count);
102 local64_sub(delta, &hwc->period_left);
103
104 return new_raw_count;
105 }
106
107 /*
108 * Find and validate any extra registers to set up.
109 */
x86_pmu_extra_regs(u64 config,struct perf_event * event)110 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
111 {
112 struct hw_perf_event_extra *reg;
113 struct extra_reg *er;
114
115 reg = &event->hw.extra_reg;
116
117 if (!x86_pmu.extra_regs)
118 return 0;
119
120 for (er = x86_pmu.extra_regs; er->msr; er++) {
121 if (er->event != (config & er->config_mask))
122 continue;
123 if (event->attr.config1 & ~er->valid_mask)
124 return -EINVAL;
125 /* Check if the extra msrs can be safely accessed*/
126 if (!er->extra_msr_access)
127 return -ENXIO;
128
129 reg->idx = er->idx;
130 reg->config = event->attr.config1;
131 reg->reg = er->msr;
132 break;
133 }
134 return 0;
135 }
136
137 static atomic_t active_events;
138 static atomic_t pmc_refcount;
139 static DEFINE_MUTEX(pmc_reserve_mutex);
140
141 #ifdef CONFIG_X86_LOCAL_APIC
142
reserve_pmc_hardware(void)143 static bool reserve_pmc_hardware(void)
144 {
145 int i;
146
147 for (i = 0; i < x86_pmu.num_counters; i++) {
148 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
149 goto perfctr_fail;
150 }
151
152 for (i = 0; i < x86_pmu.num_counters; i++) {
153 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
154 goto eventsel_fail;
155 }
156
157 return true;
158
159 eventsel_fail:
160 for (i--; i >= 0; i--)
161 release_evntsel_nmi(x86_pmu_config_addr(i));
162
163 i = x86_pmu.num_counters;
164
165 perfctr_fail:
166 for (i--; i >= 0; i--)
167 release_perfctr_nmi(x86_pmu_event_addr(i));
168
169 return false;
170 }
171
release_pmc_hardware(void)172 static void release_pmc_hardware(void)
173 {
174 int i;
175
176 for (i = 0; i < x86_pmu.num_counters; i++) {
177 release_perfctr_nmi(x86_pmu_event_addr(i));
178 release_evntsel_nmi(x86_pmu_config_addr(i));
179 }
180 }
181
182 #else
183
reserve_pmc_hardware(void)184 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)185 static void release_pmc_hardware(void) {}
186
187 #endif
188
check_hw_exists(void)189 static bool check_hw_exists(void)
190 {
191 u64 val, val_fail, val_new= ~0;
192 int i, reg, reg_fail, ret = 0;
193 int bios_fail = 0;
194 int reg_safe = -1;
195
196 /*
197 * Check to see if the BIOS enabled any of the counters, if so
198 * complain and bail.
199 */
200 for (i = 0; i < x86_pmu.num_counters; i++) {
201 reg = x86_pmu_config_addr(i);
202 ret = rdmsrl_safe(reg, &val);
203 if (ret)
204 goto msr_fail;
205 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
206 bios_fail = 1;
207 val_fail = val;
208 reg_fail = reg;
209 } else {
210 reg_safe = i;
211 }
212 }
213
214 if (x86_pmu.num_counters_fixed) {
215 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
216 ret = rdmsrl_safe(reg, &val);
217 if (ret)
218 goto msr_fail;
219 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
220 if (val & (0x03 << i*4)) {
221 bios_fail = 1;
222 val_fail = val;
223 reg_fail = reg;
224 }
225 }
226 }
227
228 /*
229 * If all the counters are enabled, the below test will always
230 * fail. The tools will also become useless in this scenario.
231 * Just fail and disable the hardware counters.
232 */
233
234 if (reg_safe == -1) {
235 reg = reg_safe;
236 goto msr_fail;
237 }
238
239 /*
240 * Read the current value, change it and read it back to see if it
241 * matches, this is needed to detect certain hardware emulators
242 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
243 */
244 reg = x86_pmu_event_addr(reg_safe);
245 if (rdmsrl_safe(reg, &val))
246 goto msr_fail;
247 val ^= 0xffffUL;
248 ret = wrmsrl_safe(reg, val);
249 ret |= rdmsrl_safe(reg, &val_new);
250 if (ret || val != val_new)
251 goto msr_fail;
252
253 /*
254 * We still allow the PMU driver to operate:
255 */
256 if (bios_fail) {
257 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
258 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
259 }
260
261 return true;
262
263 msr_fail:
264 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
265 printk("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
266 boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
267 reg, val_new);
268
269 return false;
270 }
271
hw_perf_event_destroy(struct perf_event * event)272 static void hw_perf_event_destroy(struct perf_event *event)
273 {
274 x86_release_hardware();
275 atomic_dec(&active_events);
276 }
277
hw_perf_lbr_event_destroy(struct perf_event * event)278 void hw_perf_lbr_event_destroy(struct perf_event *event)
279 {
280 hw_perf_event_destroy(event);
281
282 /* undo the lbr/bts event accounting */
283 x86_del_exclusive(x86_lbr_exclusive_lbr);
284 }
285
x86_pmu_initialized(void)286 static inline int x86_pmu_initialized(void)
287 {
288 return x86_pmu.handle_irq != NULL;
289 }
290
291 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)292 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
293 {
294 struct perf_event_attr *attr = &event->attr;
295 unsigned int cache_type, cache_op, cache_result;
296 u64 config, val;
297
298 config = attr->config;
299
300 cache_type = (config >> 0) & 0xff;
301 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
302 return -EINVAL;
303
304 cache_op = (config >> 8) & 0xff;
305 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
306 return -EINVAL;
307
308 cache_result = (config >> 16) & 0xff;
309 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
310 return -EINVAL;
311
312 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
313
314 if (val == 0)
315 return -ENOENT;
316
317 if (val == -1)
318 return -EINVAL;
319
320 hwc->config |= val;
321 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
322 return x86_pmu_extra_regs(val, event);
323 }
324
x86_reserve_hardware(void)325 int x86_reserve_hardware(void)
326 {
327 int err = 0;
328
329 if (!atomic_inc_not_zero(&pmc_refcount)) {
330 mutex_lock(&pmc_reserve_mutex);
331 if (atomic_read(&pmc_refcount) == 0) {
332 if (!reserve_pmc_hardware())
333 err = -EBUSY;
334 else
335 reserve_ds_buffers();
336 }
337 if (!err)
338 atomic_inc(&pmc_refcount);
339 mutex_unlock(&pmc_reserve_mutex);
340 }
341
342 return err;
343 }
344
x86_release_hardware(void)345 void x86_release_hardware(void)
346 {
347 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
348 release_pmc_hardware();
349 release_ds_buffers();
350 mutex_unlock(&pmc_reserve_mutex);
351 }
352 }
353
354 /*
355 * Check if we can create event of a certain type (that no conflicting events
356 * are present).
357 */
x86_add_exclusive(unsigned int what)358 int x86_add_exclusive(unsigned int what)
359 {
360 int i;
361
362 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
363 mutex_lock(&pmc_reserve_mutex);
364 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
365 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
366 goto fail_unlock;
367 }
368 atomic_inc(&x86_pmu.lbr_exclusive[what]);
369 mutex_unlock(&pmc_reserve_mutex);
370 }
371
372 atomic_inc(&active_events);
373 return 0;
374
375 fail_unlock:
376 mutex_unlock(&pmc_reserve_mutex);
377 return -EBUSY;
378 }
379
x86_del_exclusive(unsigned int what)380 void x86_del_exclusive(unsigned int what)
381 {
382 atomic_dec(&x86_pmu.lbr_exclusive[what]);
383 atomic_dec(&active_events);
384 }
385
x86_setup_perfctr(struct perf_event * event)386 int x86_setup_perfctr(struct perf_event *event)
387 {
388 struct perf_event_attr *attr = &event->attr;
389 struct hw_perf_event *hwc = &event->hw;
390 u64 config;
391
392 if (!is_sampling_event(event)) {
393 hwc->sample_period = x86_pmu.max_period;
394 hwc->last_period = hwc->sample_period;
395 local64_set(&hwc->period_left, hwc->sample_period);
396 }
397
398 if (attr->type == PERF_TYPE_RAW)
399 return x86_pmu_extra_regs(event->attr.config, event);
400
401 if (attr->type == PERF_TYPE_HW_CACHE)
402 return set_ext_hw_attr(hwc, event);
403
404 if (attr->config >= x86_pmu.max_events)
405 return -EINVAL;
406
407 /*
408 * The generic map:
409 */
410 config = x86_pmu.event_map(attr->config);
411
412 if (config == 0)
413 return -ENOENT;
414
415 if (config == -1LL)
416 return -EINVAL;
417
418 /*
419 * Branch tracing:
420 */
421 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
422 !attr->freq && hwc->sample_period == 1) {
423 /* BTS is not supported by this architecture. */
424 if (!x86_pmu.bts_active)
425 return -EOPNOTSUPP;
426
427 /* BTS is currently only allowed for user-mode. */
428 if (!attr->exclude_kernel)
429 return -EOPNOTSUPP;
430
431 /* disallow bts if conflicting events are present */
432 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
433 return -EBUSY;
434
435 event->destroy = hw_perf_lbr_event_destroy;
436 }
437
438 hwc->config |= config;
439
440 return 0;
441 }
442
443 /*
444 * check that branch_sample_type is compatible with
445 * settings needed for precise_ip > 1 which implies
446 * using the LBR to capture ALL taken branches at the
447 * priv levels of the measurement
448 */
precise_br_compat(struct perf_event * event)449 static inline int precise_br_compat(struct perf_event *event)
450 {
451 u64 m = event->attr.branch_sample_type;
452 u64 b = 0;
453
454 /* must capture all branches */
455 if (!(m & PERF_SAMPLE_BRANCH_ANY))
456 return 0;
457
458 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
459
460 if (!event->attr.exclude_user)
461 b |= PERF_SAMPLE_BRANCH_USER;
462
463 if (!event->attr.exclude_kernel)
464 b |= PERF_SAMPLE_BRANCH_KERNEL;
465
466 /*
467 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
468 */
469
470 return m == b;
471 }
472
x86_pmu_hw_config(struct perf_event * event)473 int x86_pmu_hw_config(struct perf_event *event)
474 {
475 if (event->attr.precise_ip) {
476 int precise = 0;
477
478 /* Support for constant skid */
479 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
480 precise++;
481
482 /* Support for IP fixup */
483 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
484 precise++;
485 }
486
487 if (event->attr.precise_ip > precise)
488 return -EOPNOTSUPP;
489 }
490 /*
491 * check that PEBS LBR correction does not conflict with
492 * whatever the user is asking with attr->branch_sample_type
493 */
494 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
495 u64 *br_type = &event->attr.branch_sample_type;
496
497 if (has_branch_stack(event)) {
498 if (!precise_br_compat(event))
499 return -EOPNOTSUPP;
500
501 /* branch_sample_type is compatible */
502
503 } else {
504 /*
505 * user did not specify branch_sample_type
506 *
507 * For PEBS fixups, we capture all
508 * the branches at the priv level of the
509 * event.
510 */
511 *br_type = PERF_SAMPLE_BRANCH_ANY;
512
513 if (!event->attr.exclude_user)
514 *br_type |= PERF_SAMPLE_BRANCH_USER;
515
516 if (!event->attr.exclude_kernel)
517 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
518 }
519 }
520
521 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
522 event->attach_state |= PERF_ATTACH_TASK_DATA;
523
524 /*
525 * Generate PMC IRQs:
526 * (keep 'enabled' bit clear for now)
527 */
528 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
529
530 /*
531 * Count user and OS events unless requested not to
532 */
533 if (!event->attr.exclude_user)
534 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
535 if (!event->attr.exclude_kernel)
536 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
537
538 if (event->attr.type == PERF_TYPE_RAW)
539 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
540
541 if (event->attr.sample_period && x86_pmu.limit_period) {
542 if (x86_pmu.limit_period(event, event->attr.sample_period) >
543 event->attr.sample_period)
544 return -EINVAL;
545 }
546
547 return x86_setup_perfctr(event);
548 }
549
550 /*
551 * Setup the hardware configuration for a given attr_type
552 */
__x86_pmu_event_init(struct perf_event * event)553 static int __x86_pmu_event_init(struct perf_event *event)
554 {
555 int err;
556
557 if (!x86_pmu_initialized())
558 return -ENODEV;
559
560 err = x86_reserve_hardware();
561 if (err)
562 return err;
563
564 atomic_inc(&active_events);
565 event->destroy = hw_perf_event_destroy;
566
567 event->hw.idx = -1;
568 event->hw.last_cpu = -1;
569 event->hw.last_tag = ~0ULL;
570
571 /* mark unused */
572 event->hw.extra_reg.idx = EXTRA_REG_NONE;
573 event->hw.branch_reg.idx = EXTRA_REG_NONE;
574
575 return x86_pmu.hw_config(event);
576 }
577
x86_pmu_disable_all(void)578 void x86_pmu_disable_all(void)
579 {
580 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
581 int idx;
582
583 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
584 u64 val;
585
586 if (!test_bit(idx, cpuc->active_mask))
587 continue;
588 rdmsrl(x86_pmu_config_addr(idx), val);
589 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
590 continue;
591 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
592 wrmsrl(x86_pmu_config_addr(idx), val);
593 }
594 }
595
596 /*
597 * There may be PMI landing after enabled=0. The PMI hitting could be before or
598 * after disable_all.
599 *
600 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
601 * It will not be re-enabled in the NMI handler again, because enabled=0. After
602 * handling the NMI, disable_all will be called, which will not change the
603 * state either. If PMI hits after disable_all, the PMU is already disabled
604 * before entering NMI handler. The NMI handler will not change the state
605 * either.
606 *
607 * So either situation is harmless.
608 */
x86_pmu_disable(struct pmu * pmu)609 static void x86_pmu_disable(struct pmu *pmu)
610 {
611 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
612
613 if (!x86_pmu_initialized())
614 return;
615
616 if (!cpuc->enabled)
617 return;
618
619 cpuc->n_added = 0;
620 cpuc->enabled = 0;
621 barrier();
622
623 x86_pmu.disable_all();
624 }
625
x86_pmu_enable_all(int added)626 void x86_pmu_enable_all(int added)
627 {
628 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
629 int idx;
630
631 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
632 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
633
634 if (!test_bit(idx, cpuc->active_mask))
635 continue;
636
637 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
638 }
639 }
640
641 static struct pmu pmu;
642
is_x86_event(struct perf_event * event)643 static inline int is_x86_event(struct perf_event *event)
644 {
645 return event->pmu == &pmu;
646 }
647
648 /*
649 * Event scheduler state:
650 *
651 * Assign events iterating over all events and counters, beginning
652 * with events with least weights first. Keep the current iterator
653 * state in struct sched_state.
654 */
655 struct sched_state {
656 int weight;
657 int event; /* event index */
658 int counter; /* counter index */
659 int unassigned; /* number of events to be assigned left */
660 int nr_gp; /* number of GP counters used */
661 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
662 };
663
664 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
665 #define SCHED_STATES_MAX 2
666
667 struct perf_sched {
668 int max_weight;
669 int max_events;
670 int max_gp;
671 int saved_states;
672 struct event_constraint **constraints;
673 struct sched_state state;
674 struct sched_state saved[SCHED_STATES_MAX];
675 };
676
677 /*
678 * Initialize interator that runs through all events and counters.
679 */
perf_sched_init(struct perf_sched * sched,struct event_constraint ** constraints,int num,int wmin,int wmax,int gpmax)680 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
681 int num, int wmin, int wmax, int gpmax)
682 {
683 int idx;
684
685 memset(sched, 0, sizeof(*sched));
686 sched->max_events = num;
687 sched->max_weight = wmax;
688 sched->max_gp = gpmax;
689 sched->constraints = constraints;
690
691 for (idx = 0; idx < num; idx++) {
692 if (constraints[idx]->weight == wmin)
693 break;
694 }
695
696 sched->state.event = idx; /* start with min weight */
697 sched->state.weight = wmin;
698 sched->state.unassigned = num;
699 }
700
perf_sched_save_state(struct perf_sched * sched)701 static void perf_sched_save_state(struct perf_sched *sched)
702 {
703 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
704 return;
705
706 sched->saved[sched->saved_states] = sched->state;
707 sched->saved_states++;
708 }
709
perf_sched_restore_state(struct perf_sched * sched)710 static bool perf_sched_restore_state(struct perf_sched *sched)
711 {
712 if (!sched->saved_states)
713 return false;
714
715 sched->saved_states--;
716 sched->state = sched->saved[sched->saved_states];
717
718 /* continue with next counter: */
719 clear_bit(sched->state.counter++, sched->state.used);
720
721 return true;
722 }
723
724 /*
725 * Select a counter for the current event to schedule. Return true on
726 * success.
727 */
__perf_sched_find_counter(struct perf_sched * sched)728 static bool __perf_sched_find_counter(struct perf_sched *sched)
729 {
730 struct event_constraint *c;
731 int idx;
732
733 if (!sched->state.unassigned)
734 return false;
735
736 if (sched->state.event >= sched->max_events)
737 return false;
738
739 c = sched->constraints[sched->state.event];
740 /* Prefer fixed purpose counters */
741 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
742 idx = INTEL_PMC_IDX_FIXED;
743 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
744 if (!__test_and_set_bit(idx, sched->state.used))
745 goto done;
746 }
747 }
748
749 /* Grab the first unused counter starting with idx */
750 idx = sched->state.counter;
751 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
752 if (!__test_and_set_bit(idx, sched->state.used)) {
753 if (sched->state.nr_gp++ >= sched->max_gp)
754 return false;
755
756 goto done;
757 }
758 }
759
760 return false;
761
762 done:
763 sched->state.counter = idx;
764
765 if (c->overlap)
766 perf_sched_save_state(sched);
767
768 return true;
769 }
770
perf_sched_find_counter(struct perf_sched * sched)771 static bool perf_sched_find_counter(struct perf_sched *sched)
772 {
773 while (!__perf_sched_find_counter(sched)) {
774 if (!perf_sched_restore_state(sched))
775 return false;
776 }
777
778 return true;
779 }
780
781 /*
782 * Go through all unassigned events and find the next one to schedule.
783 * Take events with the least weight first. Return true on success.
784 */
perf_sched_next_event(struct perf_sched * sched)785 static bool perf_sched_next_event(struct perf_sched *sched)
786 {
787 struct event_constraint *c;
788
789 if (!sched->state.unassigned || !--sched->state.unassigned)
790 return false;
791
792 do {
793 /* next event */
794 sched->state.event++;
795 if (sched->state.event >= sched->max_events) {
796 /* next weight */
797 sched->state.event = 0;
798 sched->state.weight++;
799 if (sched->state.weight > sched->max_weight)
800 return false;
801 }
802 c = sched->constraints[sched->state.event];
803 } while (c->weight != sched->state.weight);
804
805 sched->state.counter = 0; /* start with first counter */
806
807 return true;
808 }
809
810 /*
811 * Assign a counter for each event.
812 */
perf_assign_events(struct event_constraint ** constraints,int n,int wmin,int wmax,int gpmax,int * assign)813 int perf_assign_events(struct event_constraint **constraints, int n,
814 int wmin, int wmax, int gpmax, int *assign)
815 {
816 struct perf_sched sched;
817
818 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
819
820 do {
821 if (!perf_sched_find_counter(&sched))
822 break; /* failed */
823 if (assign)
824 assign[sched.state.event] = sched.state.counter;
825 } while (perf_sched_next_event(&sched));
826
827 return sched.state.unassigned;
828 }
829 EXPORT_SYMBOL_GPL(perf_assign_events);
830
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)831 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
832 {
833 struct event_constraint *c;
834 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
835 struct perf_event *e;
836 int i, wmin, wmax, unsched = 0;
837 struct hw_perf_event *hwc;
838
839 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
840
841 if (x86_pmu.start_scheduling)
842 x86_pmu.start_scheduling(cpuc);
843
844 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
845 cpuc->event_constraint[i] = NULL;
846 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
847 cpuc->event_constraint[i] = c;
848
849 wmin = min(wmin, c->weight);
850 wmax = max(wmax, c->weight);
851 }
852
853 /*
854 * fastpath, try to reuse previous register
855 */
856 for (i = 0; i < n; i++) {
857 hwc = &cpuc->event_list[i]->hw;
858 c = cpuc->event_constraint[i];
859
860 /* never assigned */
861 if (hwc->idx == -1)
862 break;
863
864 /* constraint still honored */
865 if (!test_bit(hwc->idx, c->idxmsk))
866 break;
867
868 /* not already used */
869 if (test_bit(hwc->idx, used_mask))
870 break;
871
872 __set_bit(hwc->idx, used_mask);
873 if (assign)
874 assign[i] = hwc->idx;
875 }
876
877 /* slow path */
878 if (i != n) {
879 int gpmax = x86_pmu.num_counters;
880
881 /*
882 * Do not allow scheduling of more than half the available
883 * generic counters.
884 *
885 * This helps avoid counter starvation of sibling thread by
886 * ensuring at most half the counters cannot be in exclusive
887 * mode. There is no designated counters for the limits. Any
888 * N/2 counters can be used. This helps with events with
889 * specific counter constraints.
890 */
891 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
892 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
893 gpmax /= 2;
894
895 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
896 wmax, gpmax, assign);
897 }
898
899 /*
900 * In case of success (unsched = 0), mark events as committed,
901 * so we do not put_constraint() in case new events are added
902 * and fail to be scheduled
903 *
904 * We invoke the lower level commit callback to lock the resource
905 *
906 * We do not need to do all of this in case we are called to
907 * validate an event group (assign == NULL)
908 */
909 if (!unsched && assign) {
910 for (i = 0; i < n; i++) {
911 e = cpuc->event_list[i];
912 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
913 if (x86_pmu.commit_scheduling)
914 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
915 }
916 } else {
917 for (i = 0; i < n; i++) {
918 e = cpuc->event_list[i];
919 /*
920 * do not put_constraint() on comitted events,
921 * because they are good to go
922 */
923 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
924 continue;
925
926 /*
927 * release events that failed scheduling
928 */
929 if (x86_pmu.put_event_constraints)
930 x86_pmu.put_event_constraints(cpuc, e);
931 }
932 }
933
934 if (x86_pmu.stop_scheduling)
935 x86_pmu.stop_scheduling(cpuc);
936
937 return unsched ? -EINVAL : 0;
938 }
939
940 /*
941 * dogrp: true if must collect siblings events (group)
942 * returns total number of events and error code
943 */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)944 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
945 {
946 struct perf_event *event;
947 int n, max_count;
948
949 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
950
951 /* current number of events already accepted */
952 n = cpuc->n_events;
953
954 if (is_x86_event(leader)) {
955 if (n >= max_count)
956 return -EINVAL;
957 cpuc->event_list[n] = leader;
958 n++;
959 }
960 if (!dogrp)
961 return n;
962
963 list_for_each_entry(event, &leader->sibling_list, group_entry) {
964 if (!is_x86_event(event) ||
965 event->state <= PERF_EVENT_STATE_OFF)
966 continue;
967
968 if (n >= max_count)
969 return -EINVAL;
970
971 cpuc->event_list[n] = event;
972 n++;
973 }
974 return n;
975 }
976
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)977 static inline void x86_assign_hw_event(struct perf_event *event,
978 struct cpu_hw_events *cpuc, int i)
979 {
980 struct hw_perf_event *hwc = &event->hw;
981
982 hwc->idx = cpuc->assign[i];
983 hwc->last_cpu = smp_processor_id();
984 hwc->last_tag = ++cpuc->tags[i];
985
986 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
987 hwc->config_base = 0;
988 hwc->event_base = 0;
989 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
990 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
991 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
992 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
993 } else {
994 hwc->config_base = x86_pmu_config_addr(hwc->idx);
995 hwc->event_base = x86_pmu_event_addr(hwc->idx);
996 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
997 }
998 }
999
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)1000 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1001 struct cpu_hw_events *cpuc,
1002 int i)
1003 {
1004 return hwc->idx == cpuc->assign[i] &&
1005 hwc->last_cpu == smp_processor_id() &&
1006 hwc->last_tag == cpuc->tags[i];
1007 }
1008
1009 static void x86_pmu_start(struct perf_event *event, int flags);
1010
x86_pmu_enable(struct pmu * pmu)1011 static void x86_pmu_enable(struct pmu *pmu)
1012 {
1013 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1014 struct perf_event *event;
1015 struct hw_perf_event *hwc;
1016 int i, added = cpuc->n_added;
1017
1018 if (!x86_pmu_initialized())
1019 return;
1020
1021 if (cpuc->enabled)
1022 return;
1023
1024 if (cpuc->n_added) {
1025 int n_running = cpuc->n_events - cpuc->n_added;
1026 /*
1027 * apply assignment obtained either from
1028 * hw_perf_group_sched_in() or x86_pmu_enable()
1029 *
1030 * step1: save events moving to new counters
1031 */
1032 for (i = 0; i < n_running; i++) {
1033 event = cpuc->event_list[i];
1034 hwc = &event->hw;
1035
1036 /*
1037 * we can avoid reprogramming counter if:
1038 * - assigned same counter as last time
1039 * - running on same CPU as last time
1040 * - no other event has used the counter since
1041 */
1042 if (hwc->idx == -1 ||
1043 match_prev_assignment(hwc, cpuc, i))
1044 continue;
1045
1046 /*
1047 * Ensure we don't accidentally enable a stopped
1048 * counter simply because we rescheduled.
1049 */
1050 if (hwc->state & PERF_HES_STOPPED)
1051 hwc->state |= PERF_HES_ARCH;
1052
1053 x86_pmu_stop(event, PERF_EF_UPDATE);
1054 }
1055
1056 /*
1057 * step2: reprogram moved events into new counters
1058 */
1059 for (i = 0; i < cpuc->n_events; i++) {
1060 event = cpuc->event_list[i];
1061 hwc = &event->hw;
1062
1063 if (!match_prev_assignment(hwc, cpuc, i))
1064 x86_assign_hw_event(event, cpuc, i);
1065 else if (i < n_running)
1066 continue;
1067
1068 if (hwc->state & PERF_HES_ARCH)
1069 continue;
1070
1071 x86_pmu_start(event, PERF_EF_RELOAD);
1072 }
1073 cpuc->n_added = 0;
1074 perf_events_lapic_init();
1075 }
1076
1077 cpuc->enabled = 1;
1078 barrier();
1079
1080 x86_pmu.enable_all(added);
1081 }
1082
1083 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1084
1085 /*
1086 * Set the next IRQ period, based on the hwc->period_left value.
1087 * To be called with the event disabled in hw:
1088 */
x86_perf_event_set_period(struct perf_event * event)1089 int x86_perf_event_set_period(struct perf_event *event)
1090 {
1091 struct hw_perf_event *hwc = &event->hw;
1092 s64 left = local64_read(&hwc->period_left);
1093 s64 period = hwc->sample_period;
1094 int ret = 0, idx = hwc->idx;
1095
1096 if (idx == INTEL_PMC_IDX_FIXED_BTS)
1097 return 0;
1098
1099 /*
1100 * If we are way outside a reasonable range then just skip forward:
1101 */
1102 if (unlikely(left <= -period)) {
1103 left = period;
1104 local64_set(&hwc->period_left, left);
1105 hwc->last_period = period;
1106 ret = 1;
1107 }
1108
1109 if (unlikely(left <= 0)) {
1110 left += period;
1111 local64_set(&hwc->period_left, left);
1112 hwc->last_period = period;
1113 ret = 1;
1114 }
1115 /*
1116 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1117 */
1118 if (unlikely(left < 2))
1119 left = 2;
1120
1121 if (left > x86_pmu.max_period)
1122 left = x86_pmu.max_period;
1123
1124 if (x86_pmu.limit_period)
1125 left = x86_pmu.limit_period(event, left);
1126
1127 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1128
1129 if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1130 local64_read(&hwc->prev_count) != (u64)-left) {
1131 /*
1132 * The hw event starts counting from this event offset,
1133 * mark it to be able to extra future deltas:
1134 */
1135 local64_set(&hwc->prev_count, (u64)-left);
1136
1137 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1138 }
1139
1140 /*
1141 * Due to erratum on certan cpu we need
1142 * a second write to be sure the register
1143 * is updated properly
1144 */
1145 if (x86_pmu.perfctr_second_write) {
1146 wrmsrl(hwc->event_base,
1147 (u64)(-left) & x86_pmu.cntval_mask);
1148 }
1149
1150 perf_event_update_userpage(event);
1151
1152 return ret;
1153 }
1154
x86_pmu_enable_event(struct perf_event * event)1155 void x86_pmu_enable_event(struct perf_event *event)
1156 {
1157 if (__this_cpu_read(cpu_hw_events.enabled))
1158 __x86_pmu_enable_event(&event->hw,
1159 ARCH_PERFMON_EVENTSEL_ENABLE);
1160 }
1161
1162 /*
1163 * Add a single event to the PMU.
1164 *
1165 * The event is added to the group of enabled events
1166 * but only if it can be scehduled with existing events.
1167 */
x86_pmu_add(struct perf_event * event,int flags)1168 static int x86_pmu_add(struct perf_event *event, int flags)
1169 {
1170 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1171 struct hw_perf_event *hwc;
1172 int assign[X86_PMC_IDX_MAX];
1173 int n, n0, ret;
1174
1175 hwc = &event->hw;
1176
1177 n0 = cpuc->n_events;
1178 ret = n = collect_events(cpuc, event, false);
1179 if (ret < 0)
1180 goto out;
1181
1182 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1183 if (!(flags & PERF_EF_START))
1184 hwc->state |= PERF_HES_ARCH;
1185
1186 /*
1187 * If group events scheduling transaction was started,
1188 * skip the schedulability test here, it will be performed
1189 * at commit time (->commit_txn) as a whole.
1190 */
1191 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1192 goto done_collect;
1193
1194 ret = x86_pmu.schedule_events(cpuc, n, assign);
1195 if (ret)
1196 goto out;
1197 /*
1198 * copy new assignment, now we know it is possible
1199 * will be used by hw_perf_enable()
1200 */
1201 memcpy(cpuc->assign, assign, n*sizeof(int));
1202
1203 done_collect:
1204 /*
1205 * Commit the collect_events() state. See x86_pmu_del() and
1206 * x86_pmu_*_txn().
1207 */
1208 cpuc->n_events = n;
1209 cpuc->n_added += n - n0;
1210 cpuc->n_txn += n - n0;
1211
1212 ret = 0;
1213 out:
1214 return ret;
1215 }
1216
x86_pmu_start(struct perf_event * event,int flags)1217 static void x86_pmu_start(struct perf_event *event, int flags)
1218 {
1219 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1220 int idx = event->hw.idx;
1221
1222 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1223 return;
1224
1225 if (WARN_ON_ONCE(idx == -1))
1226 return;
1227
1228 if (flags & PERF_EF_RELOAD) {
1229 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1230 x86_perf_event_set_period(event);
1231 }
1232
1233 event->hw.state = 0;
1234
1235 cpuc->events[idx] = event;
1236 __set_bit(idx, cpuc->active_mask);
1237 __set_bit(idx, cpuc->running);
1238 x86_pmu.enable(event);
1239 perf_event_update_userpage(event);
1240 }
1241
perf_event_print_debug(void)1242 void perf_event_print_debug(void)
1243 {
1244 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1245 u64 pebs, debugctl;
1246 struct cpu_hw_events *cpuc;
1247 unsigned long flags;
1248 int cpu, idx;
1249
1250 if (!x86_pmu.num_counters)
1251 return;
1252
1253 local_irq_save(flags);
1254
1255 cpu = smp_processor_id();
1256 cpuc = &per_cpu(cpu_hw_events, cpu);
1257
1258 if (x86_pmu.version >= 2) {
1259 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1260 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1261 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1262 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1263
1264 pr_info("\n");
1265 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1266 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1267 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1268 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1269 if (x86_pmu.pebs_constraints) {
1270 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1271 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1272 }
1273 if (x86_pmu.lbr_nr) {
1274 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1275 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1276 }
1277 }
1278 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1279
1280 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1281 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1282 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1283
1284 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1285
1286 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1287 cpu, idx, pmc_ctrl);
1288 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1289 cpu, idx, pmc_count);
1290 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1291 cpu, idx, prev_left);
1292 }
1293 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1294 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1295
1296 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1297 cpu, idx, pmc_count);
1298 }
1299 local_irq_restore(flags);
1300 }
1301
x86_pmu_stop(struct perf_event * event,int flags)1302 void x86_pmu_stop(struct perf_event *event, int flags)
1303 {
1304 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1305 struct hw_perf_event *hwc = &event->hw;
1306
1307 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1308 x86_pmu.disable(event);
1309 cpuc->events[hwc->idx] = NULL;
1310 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1311 hwc->state |= PERF_HES_STOPPED;
1312 }
1313
1314 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1315 /*
1316 * Drain the remaining delta count out of a event
1317 * that we are disabling:
1318 */
1319 x86_perf_event_update(event);
1320 hwc->state |= PERF_HES_UPTODATE;
1321 }
1322 }
1323
x86_pmu_del(struct perf_event * event,int flags)1324 static void x86_pmu_del(struct perf_event *event, int flags)
1325 {
1326 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1327 int i;
1328
1329 /*
1330 * event is descheduled
1331 */
1332 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1333
1334 /*
1335 * If we're called during a txn, we don't need to do anything.
1336 * The events never got scheduled and ->cancel_txn will truncate
1337 * the event_list.
1338 *
1339 * XXX assumes any ->del() called during a TXN will only be on
1340 * an event added during that same TXN.
1341 */
1342 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1343 return;
1344
1345 /*
1346 * Not a TXN, therefore cleanup properly.
1347 */
1348 x86_pmu_stop(event, PERF_EF_UPDATE);
1349
1350 for (i = 0; i < cpuc->n_events; i++) {
1351 if (event == cpuc->event_list[i])
1352 break;
1353 }
1354
1355 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1356 return;
1357
1358 /* If we have a newly added event; make sure to decrease n_added. */
1359 if (i >= cpuc->n_events - cpuc->n_added)
1360 --cpuc->n_added;
1361
1362 if (x86_pmu.put_event_constraints)
1363 x86_pmu.put_event_constraints(cpuc, event);
1364
1365 /* Delete the array entry. */
1366 while (++i < cpuc->n_events) {
1367 cpuc->event_list[i-1] = cpuc->event_list[i];
1368 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1369 }
1370 --cpuc->n_events;
1371
1372 perf_event_update_userpage(event);
1373 }
1374
x86_pmu_handle_irq(struct pt_regs * regs)1375 int x86_pmu_handle_irq(struct pt_regs *regs)
1376 {
1377 struct perf_sample_data data;
1378 struct cpu_hw_events *cpuc;
1379 struct perf_event *event;
1380 int idx, handled = 0;
1381 u64 val;
1382
1383 cpuc = this_cpu_ptr(&cpu_hw_events);
1384
1385 /*
1386 * Some chipsets need to unmask the LVTPC in a particular spot
1387 * inside the nmi handler. As a result, the unmasking was pushed
1388 * into all the nmi handlers.
1389 *
1390 * This generic handler doesn't seem to have any issues where the
1391 * unmasking occurs so it was left at the top.
1392 */
1393 apic_write(APIC_LVTPC, APIC_DM_NMI);
1394
1395 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1396 if (!test_bit(idx, cpuc->active_mask)) {
1397 /*
1398 * Though we deactivated the counter some cpus
1399 * might still deliver spurious interrupts still
1400 * in flight. Catch them:
1401 */
1402 if (__test_and_clear_bit(idx, cpuc->running))
1403 handled++;
1404 continue;
1405 }
1406
1407 event = cpuc->events[idx];
1408
1409 val = x86_perf_event_update(event);
1410 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1411 continue;
1412
1413 /*
1414 * event overflow
1415 */
1416 handled++;
1417 perf_sample_data_init(&data, 0, event->hw.last_period);
1418
1419 if (!x86_perf_event_set_period(event))
1420 continue;
1421
1422 if (perf_event_overflow(event, &data, regs))
1423 x86_pmu_stop(event, 0);
1424 }
1425
1426 if (handled)
1427 inc_irq_stat(apic_perf_irqs);
1428
1429 return handled;
1430 }
1431
perf_events_lapic_init(void)1432 void perf_events_lapic_init(void)
1433 {
1434 if (!x86_pmu.apic || !x86_pmu_initialized())
1435 return;
1436
1437 /*
1438 * Always use NMI for PMU
1439 */
1440 apic_write(APIC_LVTPC, APIC_DM_NMI);
1441 }
1442
1443 static int
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1444 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1445 {
1446 u64 start_clock;
1447 u64 finish_clock;
1448 int ret;
1449
1450 /*
1451 * All PMUs/events that share this PMI handler should make sure to
1452 * increment active_events for their events.
1453 */
1454 if (!atomic_read(&active_events))
1455 return NMI_DONE;
1456
1457 start_clock = sched_clock();
1458 ret = x86_pmu.handle_irq(regs);
1459 finish_clock = sched_clock();
1460
1461 perf_sample_event_took(finish_clock - start_clock);
1462
1463 return ret;
1464 }
1465 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1466
1467 struct event_constraint emptyconstraint;
1468 struct event_constraint unconstrained;
1469
1470 static int
x86_pmu_notifier(struct notifier_block * self,unsigned long action,void * hcpu)1471 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1472 {
1473 unsigned int cpu = (long)hcpu;
1474 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1475 int i, ret = NOTIFY_OK;
1476
1477 switch (action & ~CPU_TASKS_FROZEN) {
1478 case CPU_UP_PREPARE:
1479 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1480 cpuc->kfree_on_online[i] = NULL;
1481 if (x86_pmu.cpu_prepare)
1482 ret = x86_pmu.cpu_prepare(cpu);
1483 break;
1484
1485 case CPU_STARTING:
1486 if (x86_pmu.cpu_starting)
1487 x86_pmu.cpu_starting(cpu);
1488 break;
1489
1490 case CPU_ONLINE:
1491 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1492 kfree(cpuc->kfree_on_online[i]);
1493 cpuc->kfree_on_online[i] = NULL;
1494 }
1495 break;
1496
1497 case CPU_DYING:
1498 if (x86_pmu.cpu_dying)
1499 x86_pmu.cpu_dying(cpu);
1500 break;
1501
1502 case CPU_UP_CANCELED:
1503 case CPU_DEAD:
1504 if (x86_pmu.cpu_dead)
1505 x86_pmu.cpu_dead(cpu);
1506 break;
1507
1508 default:
1509 break;
1510 }
1511
1512 return ret;
1513 }
1514
pmu_check_apic(void)1515 static void __init pmu_check_apic(void)
1516 {
1517 if (cpu_has_apic)
1518 return;
1519
1520 x86_pmu.apic = 0;
1521 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1522 pr_info("no hardware sampling interrupt available.\n");
1523
1524 /*
1525 * If we have a PMU initialized but no APIC
1526 * interrupts, we cannot sample hardware
1527 * events (user-space has to fall back and
1528 * sample via a hrtimer based software event):
1529 */
1530 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1531
1532 }
1533
1534 static struct attribute_group x86_pmu_format_group = {
1535 .name = "format",
1536 .attrs = NULL,
1537 };
1538
1539 /*
1540 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1541 * out of events_attr attributes.
1542 */
filter_events(struct attribute ** attrs)1543 static void __init filter_events(struct attribute **attrs)
1544 {
1545 struct device_attribute *d;
1546 struct perf_pmu_events_attr *pmu_attr;
1547 int i, j;
1548
1549 for (i = 0; attrs[i]; i++) {
1550 d = (struct device_attribute *)attrs[i];
1551 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1552 /* str trumps id */
1553 if (pmu_attr->event_str)
1554 continue;
1555 if (x86_pmu.event_map(i))
1556 continue;
1557
1558 for (j = i; attrs[j]; j++)
1559 attrs[j] = attrs[j + 1];
1560
1561 /* Check the shifted attr. */
1562 i--;
1563 }
1564 }
1565
1566 /* Merge two pointer arrays */
merge_attr(struct attribute ** a,struct attribute ** b)1567 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1568 {
1569 struct attribute **new;
1570 int j, i;
1571
1572 for (j = 0; a[j]; j++)
1573 ;
1574 for (i = 0; b[i]; i++)
1575 j++;
1576 j++;
1577
1578 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1579 if (!new)
1580 return NULL;
1581
1582 j = 0;
1583 for (i = 0; a[i]; i++)
1584 new[j++] = a[i];
1585 for (i = 0; b[i]; i++)
1586 new[j++] = b[i];
1587 new[j] = NULL;
1588
1589 return new;
1590 }
1591
events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1592 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1593 char *page)
1594 {
1595 struct perf_pmu_events_attr *pmu_attr = \
1596 container_of(attr, struct perf_pmu_events_attr, attr);
1597 u64 config = x86_pmu.event_map(pmu_attr->id);
1598
1599 /* string trumps id */
1600 if (pmu_attr->event_str)
1601 return sprintf(page, "%s", pmu_attr->event_str);
1602
1603 return x86_pmu.events_sysfs_show(page, config);
1604 }
1605
1606 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1607 EVENT_ATTR(instructions, INSTRUCTIONS );
1608 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1609 EVENT_ATTR(cache-misses, CACHE_MISSES );
1610 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1611 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1612 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1613 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1614 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1615 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1616
1617 static struct attribute *empty_attrs;
1618
1619 static struct attribute *events_attr[] = {
1620 EVENT_PTR(CPU_CYCLES),
1621 EVENT_PTR(INSTRUCTIONS),
1622 EVENT_PTR(CACHE_REFERENCES),
1623 EVENT_PTR(CACHE_MISSES),
1624 EVENT_PTR(BRANCH_INSTRUCTIONS),
1625 EVENT_PTR(BRANCH_MISSES),
1626 EVENT_PTR(BUS_CYCLES),
1627 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1628 EVENT_PTR(STALLED_CYCLES_BACKEND),
1629 EVENT_PTR(REF_CPU_CYCLES),
1630 NULL,
1631 };
1632
1633 static struct attribute_group x86_pmu_events_group = {
1634 .name = "events",
1635 .attrs = events_attr,
1636 };
1637
x86_event_sysfs_show(char * page,u64 config,u64 event)1638 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1639 {
1640 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1641 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1642 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1643 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1644 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1645 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1646 ssize_t ret;
1647
1648 /*
1649 * We have whole page size to spend and just little data
1650 * to write, so we can safely use sprintf.
1651 */
1652 ret = sprintf(page, "event=0x%02llx", event);
1653
1654 if (umask)
1655 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1656
1657 if (edge)
1658 ret += sprintf(page + ret, ",edge");
1659
1660 if (pc)
1661 ret += sprintf(page + ret, ",pc");
1662
1663 if (any)
1664 ret += sprintf(page + ret, ",any");
1665
1666 if (inv)
1667 ret += sprintf(page + ret, ",inv");
1668
1669 if (cmask)
1670 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1671
1672 ret += sprintf(page + ret, "\n");
1673
1674 return ret;
1675 }
1676
init_hw_perf_events(void)1677 static int __init init_hw_perf_events(void)
1678 {
1679 struct x86_pmu_quirk *quirk;
1680 int err;
1681
1682 pr_info("Performance Events: ");
1683
1684 switch (boot_cpu_data.x86_vendor) {
1685 case X86_VENDOR_INTEL:
1686 err = intel_pmu_init();
1687 break;
1688 case X86_VENDOR_AMD:
1689 err = amd_pmu_init();
1690 break;
1691 default:
1692 err = -ENOTSUPP;
1693 }
1694 if (err != 0) {
1695 pr_cont("no PMU driver, software events only.\n");
1696 return 0;
1697 }
1698
1699 pmu_check_apic();
1700
1701 /* sanity check that the hardware exists or is emulated */
1702 if (!check_hw_exists())
1703 return 0;
1704
1705 pr_cont("%s PMU driver.\n", x86_pmu.name);
1706
1707 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1708
1709 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1710 quirk->func();
1711
1712 if (!x86_pmu.intel_ctrl)
1713 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1714
1715 perf_events_lapic_init();
1716 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1717
1718 unconstrained = (struct event_constraint)
1719 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1720 0, x86_pmu.num_counters, 0, 0);
1721
1722 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1723
1724 if (x86_pmu.event_attrs)
1725 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1726
1727 if (!x86_pmu.events_sysfs_show)
1728 x86_pmu_events_group.attrs = &empty_attrs;
1729 else
1730 filter_events(x86_pmu_events_group.attrs);
1731
1732 if (x86_pmu.cpu_events) {
1733 struct attribute **tmp;
1734
1735 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1736 if (!WARN_ON(!tmp))
1737 x86_pmu_events_group.attrs = tmp;
1738 }
1739
1740 pr_info("... version: %d\n", x86_pmu.version);
1741 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1742 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1743 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1744 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1745 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1746 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1747
1748 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1749 perf_cpu_notifier(x86_pmu_notifier);
1750
1751 return 0;
1752 }
1753 early_initcall(init_hw_perf_events);
1754
x86_pmu_read(struct perf_event * event)1755 static inline void x86_pmu_read(struct perf_event *event)
1756 {
1757 x86_perf_event_update(event);
1758 }
1759
1760 /*
1761 * Start group events scheduling transaction
1762 * Set the flag to make pmu::enable() not perform the
1763 * schedulability test, it will be performed at commit time
1764 *
1765 * We only support PERF_PMU_TXN_ADD transactions. Save the
1766 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1767 * transactions.
1768 */
x86_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)1769 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1770 {
1771 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1772
1773 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1774
1775 cpuc->txn_flags = txn_flags;
1776 if (txn_flags & ~PERF_PMU_TXN_ADD)
1777 return;
1778
1779 perf_pmu_disable(pmu);
1780 __this_cpu_write(cpu_hw_events.n_txn, 0);
1781 }
1782
1783 /*
1784 * Stop group events scheduling transaction
1785 * Clear the flag and pmu::enable() will perform the
1786 * schedulability test.
1787 */
x86_pmu_cancel_txn(struct pmu * pmu)1788 static void x86_pmu_cancel_txn(struct pmu *pmu)
1789 {
1790 unsigned int txn_flags;
1791 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1792
1793 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1794
1795 txn_flags = cpuc->txn_flags;
1796 cpuc->txn_flags = 0;
1797 if (txn_flags & ~PERF_PMU_TXN_ADD)
1798 return;
1799
1800 /*
1801 * Truncate collected array by the number of events added in this
1802 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1803 */
1804 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1805 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1806 perf_pmu_enable(pmu);
1807 }
1808
1809 /*
1810 * Commit group events scheduling transaction
1811 * Perform the group schedulability test as a whole
1812 * Return 0 if success
1813 *
1814 * Does not cancel the transaction on failure; expects the caller to do this.
1815 */
x86_pmu_commit_txn(struct pmu * pmu)1816 static int x86_pmu_commit_txn(struct pmu *pmu)
1817 {
1818 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1819 int assign[X86_PMC_IDX_MAX];
1820 int n, ret;
1821
1822 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1823
1824 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1825 cpuc->txn_flags = 0;
1826 return 0;
1827 }
1828
1829 n = cpuc->n_events;
1830
1831 if (!x86_pmu_initialized())
1832 return -EAGAIN;
1833
1834 ret = x86_pmu.schedule_events(cpuc, n, assign);
1835 if (ret)
1836 return ret;
1837
1838 /*
1839 * copy new assignment, now we know it is possible
1840 * will be used by hw_perf_enable()
1841 */
1842 memcpy(cpuc->assign, assign, n*sizeof(int));
1843
1844 cpuc->txn_flags = 0;
1845 perf_pmu_enable(pmu);
1846 return 0;
1847 }
1848 /*
1849 * a fake_cpuc is used to validate event groups. Due to
1850 * the extra reg logic, we need to also allocate a fake
1851 * per_core and per_cpu structure. Otherwise, group events
1852 * using extra reg may conflict without the kernel being
1853 * able to catch this when the last event gets added to
1854 * the group.
1855 */
free_fake_cpuc(struct cpu_hw_events * cpuc)1856 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1857 {
1858 kfree(cpuc->shared_regs);
1859 kfree(cpuc);
1860 }
1861
allocate_fake_cpuc(void)1862 static struct cpu_hw_events *allocate_fake_cpuc(void)
1863 {
1864 struct cpu_hw_events *cpuc;
1865 int cpu = raw_smp_processor_id();
1866
1867 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1868 if (!cpuc)
1869 return ERR_PTR(-ENOMEM);
1870
1871 /* only needed, if we have extra_regs */
1872 if (x86_pmu.extra_regs) {
1873 cpuc->shared_regs = allocate_shared_regs(cpu);
1874 if (!cpuc->shared_regs)
1875 goto error;
1876 }
1877 cpuc->is_fake = 1;
1878 return cpuc;
1879 error:
1880 free_fake_cpuc(cpuc);
1881 return ERR_PTR(-ENOMEM);
1882 }
1883
1884 /*
1885 * validate that we can schedule this event
1886 */
validate_event(struct perf_event * event)1887 static int validate_event(struct perf_event *event)
1888 {
1889 struct cpu_hw_events *fake_cpuc;
1890 struct event_constraint *c;
1891 int ret = 0;
1892
1893 fake_cpuc = allocate_fake_cpuc();
1894 if (IS_ERR(fake_cpuc))
1895 return PTR_ERR(fake_cpuc);
1896
1897 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
1898
1899 if (!c || !c->weight)
1900 ret = -EINVAL;
1901
1902 if (x86_pmu.put_event_constraints)
1903 x86_pmu.put_event_constraints(fake_cpuc, event);
1904
1905 free_fake_cpuc(fake_cpuc);
1906
1907 return ret;
1908 }
1909
1910 /*
1911 * validate a single event group
1912 *
1913 * validation include:
1914 * - check events are compatible which each other
1915 * - events do not compete for the same counter
1916 * - number of events <= number of counters
1917 *
1918 * validation ensures the group can be loaded onto the
1919 * PMU if it was the only group available.
1920 */
validate_group(struct perf_event * event)1921 static int validate_group(struct perf_event *event)
1922 {
1923 struct perf_event *leader = event->group_leader;
1924 struct cpu_hw_events *fake_cpuc;
1925 int ret = -EINVAL, n;
1926
1927 fake_cpuc = allocate_fake_cpuc();
1928 if (IS_ERR(fake_cpuc))
1929 return PTR_ERR(fake_cpuc);
1930 /*
1931 * the event is not yet connected with its
1932 * siblings therefore we must first collect
1933 * existing siblings, then add the new event
1934 * before we can simulate the scheduling
1935 */
1936 n = collect_events(fake_cpuc, leader, true);
1937 if (n < 0)
1938 goto out;
1939
1940 fake_cpuc->n_events = n;
1941 n = collect_events(fake_cpuc, event, false);
1942 if (n < 0)
1943 goto out;
1944
1945 fake_cpuc->n_events = n;
1946
1947 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1948
1949 out:
1950 free_fake_cpuc(fake_cpuc);
1951 return ret;
1952 }
1953
x86_pmu_event_init(struct perf_event * event)1954 static int x86_pmu_event_init(struct perf_event *event)
1955 {
1956 struct pmu *tmp;
1957 int err;
1958
1959 switch (event->attr.type) {
1960 case PERF_TYPE_RAW:
1961 case PERF_TYPE_HARDWARE:
1962 case PERF_TYPE_HW_CACHE:
1963 break;
1964
1965 default:
1966 return -ENOENT;
1967 }
1968
1969 err = __x86_pmu_event_init(event);
1970 if (!err) {
1971 /*
1972 * we temporarily connect event to its pmu
1973 * such that validate_group() can classify
1974 * it as an x86 event using is_x86_event()
1975 */
1976 tmp = event->pmu;
1977 event->pmu = &pmu;
1978
1979 if (event->group_leader != event)
1980 err = validate_group(event);
1981 else
1982 err = validate_event(event);
1983
1984 event->pmu = tmp;
1985 }
1986 if (err) {
1987 if (event->destroy)
1988 event->destroy(event);
1989 }
1990
1991 if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
1992 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
1993
1994 return err;
1995 }
1996
refresh_pce(void * ignored)1997 static void refresh_pce(void *ignored)
1998 {
1999 if (current->mm)
2000 load_mm_cr4(current->mm);
2001 }
2002
x86_pmu_event_mapped(struct perf_event * event)2003 static void x86_pmu_event_mapped(struct perf_event *event)
2004 {
2005 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2006 return;
2007
2008 if (atomic_inc_return(¤t->mm->context.perf_rdpmc_allowed) == 1)
2009 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2010 }
2011
x86_pmu_event_unmapped(struct perf_event * event)2012 static void x86_pmu_event_unmapped(struct perf_event *event)
2013 {
2014 if (!current->mm)
2015 return;
2016
2017 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2018 return;
2019
2020 if (atomic_dec_and_test(¤t->mm->context.perf_rdpmc_allowed))
2021 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2022 }
2023
x86_pmu_event_idx(struct perf_event * event)2024 static int x86_pmu_event_idx(struct perf_event *event)
2025 {
2026 int idx = event->hw.idx;
2027
2028 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2029 return 0;
2030
2031 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2032 idx -= INTEL_PMC_IDX_FIXED;
2033 idx |= 1 << 30;
2034 }
2035
2036 return idx + 1;
2037 }
2038
get_attr_rdpmc(struct device * cdev,struct device_attribute * attr,char * buf)2039 static ssize_t get_attr_rdpmc(struct device *cdev,
2040 struct device_attribute *attr,
2041 char *buf)
2042 {
2043 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2044 }
2045
set_attr_rdpmc(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)2046 static ssize_t set_attr_rdpmc(struct device *cdev,
2047 struct device_attribute *attr,
2048 const char *buf, size_t count)
2049 {
2050 unsigned long val;
2051 ssize_t ret;
2052
2053 ret = kstrtoul(buf, 0, &val);
2054 if (ret)
2055 return ret;
2056
2057 if (val > 2)
2058 return -EINVAL;
2059
2060 if (x86_pmu.attr_rdpmc_broken)
2061 return -ENOTSUPP;
2062
2063 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2064 /*
2065 * Changing into or out of always available, aka
2066 * perf-event-bypassing mode. This path is extremely slow,
2067 * but only root can trigger it, so it's okay.
2068 */
2069 if (val == 2)
2070 static_key_slow_inc(&rdpmc_always_available);
2071 else
2072 static_key_slow_dec(&rdpmc_always_available);
2073 on_each_cpu(refresh_pce, NULL, 1);
2074 }
2075
2076 x86_pmu.attr_rdpmc = val;
2077
2078 return count;
2079 }
2080
2081 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2082
2083 static struct attribute *x86_pmu_attrs[] = {
2084 &dev_attr_rdpmc.attr,
2085 NULL,
2086 };
2087
2088 static struct attribute_group x86_pmu_attr_group = {
2089 .attrs = x86_pmu_attrs,
2090 };
2091
2092 static const struct attribute_group *x86_pmu_attr_groups[] = {
2093 &x86_pmu_attr_group,
2094 &x86_pmu_format_group,
2095 &x86_pmu_events_group,
2096 NULL,
2097 };
2098
x86_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)2099 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2100 {
2101 if (x86_pmu.sched_task)
2102 x86_pmu.sched_task(ctx, sched_in);
2103 }
2104
perf_check_microcode(void)2105 void perf_check_microcode(void)
2106 {
2107 if (x86_pmu.check_microcode)
2108 x86_pmu.check_microcode();
2109 }
2110 EXPORT_SYMBOL_GPL(perf_check_microcode);
2111
2112 static struct pmu pmu = {
2113 .pmu_enable = x86_pmu_enable,
2114 .pmu_disable = x86_pmu_disable,
2115
2116 .attr_groups = x86_pmu_attr_groups,
2117
2118 .event_init = x86_pmu_event_init,
2119
2120 .event_mapped = x86_pmu_event_mapped,
2121 .event_unmapped = x86_pmu_event_unmapped,
2122
2123 .add = x86_pmu_add,
2124 .del = x86_pmu_del,
2125 .start = x86_pmu_start,
2126 .stop = x86_pmu_stop,
2127 .read = x86_pmu_read,
2128
2129 .start_txn = x86_pmu_start_txn,
2130 .cancel_txn = x86_pmu_cancel_txn,
2131 .commit_txn = x86_pmu_commit_txn,
2132
2133 .event_idx = x86_pmu_event_idx,
2134 .sched_task = x86_pmu_sched_task,
2135 .task_ctx_size = sizeof(struct x86_perf_task_context),
2136 };
2137
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)2138 void arch_perf_update_userpage(struct perf_event *event,
2139 struct perf_event_mmap_page *userpg, u64 now)
2140 {
2141 struct cyc2ns_data *data;
2142
2143 userpg->cap_user_time = 0;
2144 userpg->cap_user_time_zero = 0;
2145 userpg->cap_user_rdpmc =
2146 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2147 userpg->pmc_width = x86_pmu.cntval_bits;
2148
2149 if (!sched_clock_stable())
2150 return;
2151
2152 data = cyc2ns_read_begin();
2153
2154 /*
2155 * Internal timekeeping for enabled/running/stopped times
2156 * is always in the local_clock domain.
2157 */
2158 userpg->cap_user_time = 1;
2159 userpg->time_mult = data->cyc2ns_mul;
2160 userpg->time_shift = data->cyc2ns_shift;
2161 userpg->time_offset = data->cyc2ns_offset - now;
2162
2163 /*
2164 * cap_user_time_zero doesn't make sense when we're using a different
2165 * time base for the records.
2166 */
2167 if (event->clock == &local_clock) {
2168 userpg->cap_user_time_zero = 1;
2169 userpg->time_zero = data->cyc2ns_offset;
2170 }
2171
2172 cyc2ns_read_end(data);
2173 }
2174
2175 /*
2176 * callchain support
2177 */
2178
backtrace_stack(void * data,char * name)2179 static int backtrace_stack(void *data, char *name)
2180 {
2181 return 0;
2182 }
2183
backtrace_address(void * data,unsigned long addr,int reliable)2184 static void backtrace_address(void *data, unsigned long addr, int reliable)
2185 {
2186 struct perf_callchain_entry *entry = data;
2187
2188 perf_callchain_store(entry, addr);
2189 }
2190
2191 static const struct stacktrace_ops backtrace_ops = {
2192 .stack = backtrace_stack,
2193 .address = backtrace_address,
2194 .walk_stack = print_context_stack_bp,
2195 };
2196
2197 void
perf_callchain_kernel(struct perf_callchain_entry * entry,struct pt_regs * regs)2198 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
2199 {
2200 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2201 /* TODO: We don't support guest os callchain now */
2202 return;
2203 }
2204
2205 perf_callchain_store(entry, regs->ip);
2206
2207 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
2208 }
2209
2210 static inline int
valid_user_frame(const void __user * fp,unsigned long size)2211 valid_user_frame(const void __user *fp, unsigned long size)
2212 {
2213 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2214 }
2215
get_segment_base(unsigned int segment)2216 static unsigned long get_segment_base(unsigned int segment)
2217 {
2218 struct desc_struct *desc;
2219 int idx = segment >> 3;
2220
2221 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2222 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2223 struct ldt_struct *ldt;
2224
2225 if (idx > LDT_ENTRIES)
2226 return 0;
2227
2228 /* IRQs are off, so this synchronizes with smp_store_release */
2229 ldt = lockless_dereference(current->active_mm->context.ldt);
2230 if (!ldt || idx > ldt->size)
2231 return 0;
2232
2233 desc = &ldt->entries[idx];
2234 #else
2235 return 0;
2236 #endif
2237 } else {
2238 if (idx > GDT_ENTRIES)
2239 return 0;
2240
2241 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2242 }
2243
2244 return get_desc_base(desc);
2245 }
2246
2247 #ifdef CONFIG_IA32_EMULATION
2248
2249 #include <asm/compat.h>
2250
2251 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry * entry)2252 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2253 {
2254 /* 32-bit process in 64-bit kernel. */
2255 unsigned long ss_base, cs_base;
2256 struct stack_frame_ia32 frame;
2257 const void __user *fp;
2258
2259 if (!test_thread_flag(TIF_IA32))
2260 return 0;
2261
2262 cs_base = get_segment_base(regs->cs);
2263 ss_base = get_segment_base(regs->ss);
2264
2265 fp = compat_ptr(ss_base + regs->bp);
2266 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2267 unsigned long bytes;
2268 frame.next_frame = 0;
2269 frame.return_address = 0;
2270
2271 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2272 if (bytes != 0)
2273 break;
2274
2275 if (!valid_user_frame(fp, sizeof(frame)))
2276 break;
2277
2278 perf_callchain_store(entry, cs_base + frame.return_address);
2279 fp = compat_ptr(ss_base + frame.next_frame);
2280 }
2281 return 1;
2282 }
2283 #else
2284 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry * entry)2285 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2286 {
2287 return 0;
2288 }
2289 #endif
2290
2291 void
perf_callchain_user(struct perf_callchain_entry * entry,struct pt_regs * regs)2292 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
2293 {
2294 struct stack_frame frame;
2295 const void __user *fp;
2296
2297 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2298 /* TODO: We don't support guest os callchain now */
2299 return;
2300 }
2301
2302 /*
2303 * We don't know what to do with VM86 stacks.. ignore them for now.
2304 */
2305 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2306 return;
2307
2308 fp = (void __user *)regs->bp;
2309
2310 perf_callchain_store(entry, regs->ip);
2311
2312 if (!current->mm)
2313 return;
2314
2315 if (perf_callchain_user32(regs, entry))
2316 return;
2317
2318 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2319 unsigned long bytes;
2320 frame.next_frame = NULL;
2321 frame.return_address = 0;
2322
2323 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2324 if (bytes != 0)
2325 break;
2326
2327 if (!valid_user_frame(fp, sizeof(frame)))
2328 break;
2329
2330 perf_callchain_store(entry, frame.return_address);
2331 fp = frame.next_frame;
2332 }
2333 }
2334
2335 /*
2336 * Deal with code segment offsets for the various execution modes:
2337 *
2338 * VM86 - the good olde 16 bit days, where the linear address is
2339 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2340 *
2341 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2342 * to figure out what the 32bit base address is.
2343 *
2344 * X32 - has TIF_X32 set, but is running in x86_64
2345 *
2346 * X86_64 - CS,DS,SS,ES are all zero based.
2347 */
code_segment_base(struct pt_regs * regs)2348 static unsigned long code_segment_base(struct pt_regs *regs)
2349 {
2350 /*
2351 * For IA32 we look at the GDT/LDT segment base to convert the
2352 * effective IP to a linear address.
2353 */
2354
2355 #ifdef CONFIG_X86_32
2356 /*
2357 * If we are in VM86 mode, add the segment offset to convert to a
2358 * linear address.
2359 */
2360 if (regs->flags & X86_VM_MASK)
2361 return 0x10 * regs->cs;
2362
2363 if (user_mode(regs) && regs->cs != __USER_CS)
2364 return get_segment_base(regs->cs);
2365 #else
2366 if (user_mode(regs) && !user_64bit_mode(regs) &&
2367 regs->cs != __USER32_CS)
2368 return get_segment_base(regs->cs);
2369 #endif
2370 return 0;
2371 }
2372
perf_instruction_pointer(struct pt_regs * regs)2373 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2374 {
2375 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2376 return perf_guest_cbs->get_guest_ip();
2377
2378 return regs->ip + code_segment_base(regs);
2379 }
2380
perf_misc_flags(struct pt_regs * regs)2381 unsigned long perf_misc_flags(struct pt_regs *regs)
2382 {
2383 int misc = 0;
2384
2385 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2386 if (perf_guest_cbs->is_user_mode())
2387 misc |= PERF_RECORD_MISC_GUEST_USER;
2388 else
2389 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2390 } else {
2391 if (user_mode(regs))
2392 misc |= PERF_RECORD_MISC_USER;
2393 else
2394 misc |= PERF_RECORD_MISC_KERNEL;
2395 }
2396
2397 if (regs->flags & PERF_EFLAGS_EXACT)
2398 misc |= PERF_RECORD_MISC_EXACT_IP;
2399
2400 return misc;
2401 }
2402
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)2403 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2404 {
2405 cap->version = x86_pmu.version;
2406 cap->num_counters_gp = x86_pmu.num_counters;
2407 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2408 cap->bit_width_gp = x86_pmu.cntval_bits;
2409 cap->bit_width_fixed = x86_pmu.cntval_bits;
2410 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2411 cap->events_mask_len = x86_pmu.events_mask_len;
2412 }
2413 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2414