1 /*
2  * Handle caching attributes in page tables (PAT)
3  *
4  * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5  *          Suresh B Siddha <suresh.b.siddha@intel.com>
6  *
7  * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
8  */
9 
10 #include <linux/seq_file.h>
11 #include <linux/bootmem.h>
12 #include <linux/debugfs.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/mm.h>
17 #include <linux/fs.h>
18 #include <linux/rbtree.h>
19 
20 #include <asm/cacheflush.h>
21 #include <asm/processor.h>
22 #include <asm/tlbflush.h>
23 #include <asm/x86_init.h>
24 #include <asm/pgtable.h>
25 #include <asm/fcntl.h>
26 #include <asm/e820.h>
27 #include <asm/mtrr.h>
28 #include <asm/page.h>
29 #include <asm/msr.h>
30 #include <asm/pat.h>
31 #include <asm/io.h>
32 
33 #include "pat_internal.h"
34 #include "mm_internal.h"
35 
36 #undef pr_fmt
37 #define pr_fmt(fmt) "" fmt
38 
39 static bool boot_cpu_done;
40 
41 static int __read_mostly __pat_enabled = IS_ENABLED(CONFIG_X86_PAT);
42 
pat_disable(const char * reason)43 static inline void pat_disable(const char *reason)
44 {
45 	__pat_enabled = 0;
46 	pr_info("x86/PAT: %s\n", reason);
47 }
48 
nopat(char * str)49 static int __init nopat(char *str)
50 {
51 	pat_disable("PAT support disabled.");
52 	return 0;
53 }
54 early_param("nopat", nopat);
55 
pat_enabled(void)56 bool pat_enabled(void)
57 {
58 	return !!__pat_enabled;
59 }
60 EXPORT_SYMBOL_GPL(pat_enabled);
61 
62 int pat_debug_enable;
63 
pat_debug_setup(char * str)64 static int __init pat_debug_setup(char *str)
65 {
66 	pat_debug_enable = 1;
67 	return 0;
68 }
69 __setup("debugpat", pat_debug_setup);
70 
71 #ifdef CONFIG_X86_PAT
72 /*
73  * X86 PAT uses page flags arch_1 and uncached together to keep track of
74  * memory type of pages that have backing page struct.
75  *
76  * X86 PAT supports 4 different memory types:
77  *  - _PAGE_CACHE_MODE_WB
78  *  - _PAGE_CACHE_MODE_WC
79  *  - _PAGE_CACHE_MODE_UC_MINUS
80  *  - _PAGE_CACHE_MODE_WT
81  *
82  * _PAGE_CACHE_MODE_WB is the default type.
83  */
84 
85 #define _PGMT_WB		0
86 #define _PGMT_WC		(1UL << PG_arch_1)
87 #define _PGMT_UC_MINUS		(1UL << PG_uncached)
88 #define _PGMT_WT		(1UL << PG_uncached | 1UL << PG_arch_1)
89 #define _PGMT_MASK		(1UL << PG_uncached | 1UL << PG_arch_1)
90 #define _PGMT_CLEAR_MASK	(~_PGMT_MASK)
91 
get_page_memtype(struct page * pg)92 static inline enum page_cache_mode get_page_memtype(struct page *pg)
93 {
94 	unsigned long pg_flags = pg->flags & _PGMT_MASK;
95 
96 	if (pg_flags == _PGMT_WB)
97 		return _PAGE_CACHE_MODE_WB;
98 	else if (pg_flags == _PGMT_WC)
99 		return _PAGE_CACHE_MODE_WC;
100 	else if (pg_flags == _PGMT_UC_MINUS)
101 		return _PAGE_CACHE_MODE_UC_MINUS;
102 	else
103 		return _PAGE_CACHE_MODE_WT;
104 }
105 
set_page_memtype(struct page * pg,enum page_cache_mode memtype)106 static inline void set_page_memtype(struct page *pg,
107 				    enum page_cache_mode memtype)
108 {
109 	unsigned long memtype_flags;
110 	unsigned long old_flags;
111 	unsigned long new_flags;
112 
113 	switch (memtype) {
114 	case _PAGE_CACHE_MODE_WC:
115 		memtype_flags = _PGMT_WC;
116 		break;
117 	case _PAGE_CACHE_MODE_UC_MINUS:
118 		memtype_flags = _PGMT_UC_MINUS;
119 		break;
120 	case _PAGE_CACHE_MODE_WT:
121 		memtype_flags = _PGMT_WT;
122 		break;
123 	case _PAGE_CACHE_MODE_WB:
124 	default:
125 		memtype_flags = _PGMT_WB;
126 		break;
127 	}
128 
129 	do {
130 		old_flags = pg->flags;
131 		new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
132 	} while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags);
133 }
134 #else
get_page_memtype(struct page * pg)135 static inline enum page_cache_mode get_page_memtype(struct page *pg)
136 {
137 	return -1;
138 }
set_page_memtype(struct page * pg,enum page_cache_mode memtype)139 static inline void set_page_memtype(struct page *pg,
140 				    enum page_cache_mode memtype)
141 {
142 }
143 #endif
144 
145 enum {
146 	PAT_UC = 0,		/* uncached */
147 	PAT_WC = 1,		/* Write combining */
148 	PAT_WT = 4,		/* Write Through */
149 	PAT_WP = 5,		/* Write Protected */
150 	PAT_WB = 6,		/* Write Back (default) */
151 	PAT_UC_MINUS = 7,	/* UC, but can be overriden by MTRR */
152 };
153 
154 #define CM(c) (_PAGE_CACHE_MODE_ ## c)
155 
pat_get_cache_mode(unsigned pat_val,char * msg)156 static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg)
157 {
158 	enum page_cache_mode cache;
159 	char *cache_mode;
160 
161 	switch (pat_val) {
162 	case PAT_UC:       cache = CM(UC);       cache_mode = "UC  "; break;
163 	case PAT_WC:       cache = CM(WC);       cache_mode = "WC  "; break;
164 	case PAT_WT:       cache = CM(WT);       cache_mode = "WT  "; break;
165 	case PAT_WP:       cache = CM(WP);       cache_mode = "WP  "; break;
166 	case PAT_WB:       cache = CM(WB);       cache_mode = "WB  "; break;
167 	case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
168 	default:           cache = CM(WB);       cache_mode = "WB  "; break;
169 	}
170 
171 	memcpy(msg, cache_mode, 4);
172 
173 	return cache;
174 }
175 
176 #undef CM
177 
178 /*
179  * Update the cache mode to pgprot translation tables according to PAT
180  * configuration.
181  * Using lower indices is preferred, so we start with highest index.
182  */
pat_init_cache_modes(u64 pat)183 void pat_init_cache_modes(u64 pat)
184 {
185 	enum page_cache_mode cache;
186 	char pat_msg[33];
187 	int i;
188 
189 	pat_msg[32] = 0;
190 	for (i = 7; i >= 0; i--) {
191 		cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
192 					   pat_msg + 4 * i);
193 		update_cache_mode_entry(i, cache);
194 	}
195 	pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
196 }
197 
198 #define PAT(x, y)	((u64)PAT_ ## y << ((x)*8))
199 
pat_bsp_init(u64 pat)200 static void pat_bsp_init(u64 pat)
201 {
202 	u64 tmp_pat;
203 
204 	if (!cpu_has_pat) {
205 		pat_disable("PAT not supported by CPU.");
206 		return;
207 	}
208 
209 	if (!pat_enabled())
210 		goto done;
211 
212 	rdmsrl(MSR_IA32_CR_PAT, tmp_pat);
213 	if (!tmp_pat) {
214 		pat_disable("PAT MSR is 0, disabled.");
215 		return;
216 	}
217 
218 	wrmsrl(MSR_IA32_CR_PAT, pat);
219 
220 done:
221 	pat_init_cache_modes(pat);
222 }
223 
pat_ap_init(u64 pat)224 static void pat_ap_init(u64 pat)
225 {
226 	if (!pat_enabled())
227 		return;
228 
229 	if (!cpu_has_pat) {
230 		/*
231 		 * If this happens we are on a secondary CPU, but switched to
232 		 * PAT on the boot CPU. We have no way to undo PAT.
233 		 */
234 		panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
235 	}
236 
237 	wrmsrl(MSR_IA32_CR_PAT, pat);
238 }
239 
pat_init(void)240 void pat_init(void)
241 {
242 	u64 pat;
243 	struct cpuinfo_x86 *c = &boot_cpu_data;
244 
245 	if (!pat_enabled()) {
246 		/*
247 		 * No PAT. Emulate the PAT table that corresponds to the two
248 		 * cache bits, PWT (Write Through) and PCD (Cache Disable). This
249 		 * setup is the same as the BIOS default setup when the system
250 		 * has PAT but the "nopat" boot option has been specified. This
251 		 * emulated PAT table is used when MSR_IA32_CR_PAT returns 0.
252 		 *
253 		 * PTE encoding:
254 		 *
255 		 *       PCD
256 		 *       |PWT  PAT
257 		 *       ||    slot
258 		 *       00    0    WB : _PAGE_CACHE_MODE_WB
259 		 *       01    1    WT : _PAGE_CACHE_MODE_WT
260 		 *       10    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
261 		 *       11    3    UC : _PAGE_CACHE_MODE_UC
262 		 *
263 		 * NOTE: When WC or WP is used, it is redirected to UC- per
264 		 * the default setup in __cachemode2pte_tbl[].
265 		 */
266 		pat = PAT(0, WB) | PAT(1, WT) | PAT(2, UC_MINUS) | PAT(3, UC) |
267 		      PAT(4, WB) | PAT(5, WT) | PAT(6, UC_MINUS) | PAT(7, UC);
268 
269 	} else if ((c->x86_vendor == X86_VENDOR_INTEL) &&
270 		   (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
271 		    ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
272 		/*
273 		 * PAT support with the lower four entries. Intel Pentium 2,
274 		 * 3, M, and 4 are affected by PAT errata, which makes the
275 		 * upper four entries unusable. To be on the safe side, we don't
276 		 * use those.
277 		 *
278 		 *  PTE encoding:
279 		 *      PAT
280 		 *      |PCD
281 		 *      ||PWT  PAT
282 		 *      |||    slot
283 		 *      000    0    WB : _PAGE_CACHE_MODE_WB
284 		 *      001    1    WC : _PAGE_CACHE_MODE_WC
285 		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
286 		 *      011    3    UC : _PAGE_CACHE_MODE_UC
287 		 * PAT bit unused
288 		 *
289 		 * NOTE: When WT or WP is used, it is redirected to UC- per
290 		 * the default setup in __cachemode2pte_tbl[].
291 		 */
292 		pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
293 		      PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
294 	} else {
295 		/*
296 		 * Full PAT support.  We put WT in slot 7 to improve
297 		 * robustness in the presence of errata that might cause
298 		 * the high PAT bit to be ignored.  This way, a buggy slot 7
299 		 * access will hit slot 3, and slot 3 is UC, so at worst
300 		 * we lose performance without causing a correctness issue.
301 		 * Pentium 4 erratum N46 is an example for such an erratum,
302 		 * although we try not to use PAT at all on affected CPUs.
303 		 *
304 		 *  PTE encoding:
305 		 *      PAT
306 		 *      |PCD
307 		 *      ||PWT  PAT
308 		 *      |||    slot
309 		 *      000    0    WB : _PAGE_CACHE_MODE_WB
310 		 *      001    1    WC : _PAGE_CACHE_MODE_WC
311 		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
312 		 *      011    3    UC : _PAGE_CACHE_MODE_UC
313 		 *      100    4    WB : Reserved
314 		 *      101    5    WC : Reserved
315 		 *      110    6    UC-: Reserved
316 		 *      111    7    WT : _PAGE_CACHE_MODE_WT
317 		 *
318 		 * The reserved slots are unused, but mapped to their
319 		 * corresponding types in the presence of PAT errata.
320 		 */
321 		pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
322 		      PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, WT);
323 	}
324 
325 	if (!boot_cpu_done) {
326 		pat_bsp_init(pat);
327 		boot_cpu_done = true;
328 	} else {
329 		pat_ap_init(pat);
330 	}
331 }
332 
333 #undef PAT
334 
335 static DEFINE_SPINLOCK(memtype_lock);	/* protects memtype accesses */
336 
337 /*
338  * Does intersection of PAT memory type and MTRR memory type and returns
339  * the resulting memory type as PAT understands it.
340  * (Type in pat and mtrr will not have same value)
341  * The intersection is based on "Effective Memory Type" tables in IA-32
342  * SDM vol 3a
343  */
pat_x_mtrr_type(u64 start,u64 end,enum page_cache_mode req_type)344 static unsigned long pat_x_mtrr_type(u64 start, u64 end,
345 				     enum page_cache_mode req_type)
346 {
347 	/*
348 	 * Look for MTRR hint to get the effective type in case where PAT
349 	 * request is for WB.
350 	 */
351 	if (req_type == _PAGE_CACHE_MODE_WB) {
352 		u8 mtrr_type, uniform;
353 
354 		mtrr_type = mtrr_type_lookup(start, end, &uniform);
355 		if (mtrr_type != MTRR_TYPE_WRBACK)
356 			return _PAGE_CACHE_MODE_UC_MINUS;
357 
358 		return _PAGE_CACHE_MODE_WB;
359 	}
360 
361 	return req_type;
362 }
363 
364 struct pagerange_state {
365 	unsigned long		cur_pfn;
366 	int			ram;
367 	int			not_ram;
368 };
369 
370 static int
pagerange_is_ram_callback(unsigned long initial_pfn,unsigned long total_nr_pages,void * arg)371 pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
372 {
373 	struct pagerange_state *state = arg;
374 
375 	state->not_ram	|= initial_pfn > state->cur_pfn;
376 	state->ram	|= total_nr_pages > 0;
377 	state->cur_pfn	 = initial_pfn + total_nr_pages;
378 
379 	return state->ram && state->not_ram;
380 }
381 
pat_pagerange_is_ram(resource_size_t start,resource_size_t end)382 static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
383 {
384 	int ret = 0;
385 	unsigned long start_pfn = start >> PAGE_SHIFT;
386 	unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
387 	struct pagerange_state state = {start_pfn, 0, 0};
388 
389 	/*
390 	 * For legacy reasons, physical address range in the legacy ISA
391 	 * region is tracked as non-RAM. This will allow users of
392 	 * /dev/mem to map portions of legacy ISA region, even when
393 	 * some of those portions are listed(or not even listed) with
394 	 * different e820 types(RAM/reserved/..)
395 	 */
396 	if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
397 		start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
398 
399 	if (start_pfn < end_pfn) {
400 		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
401 				&state, pagerange_is_ram_callback);
402 	}
403 
404 	return (ret > 0) ? -1 : (state.ram ? 1 : 0);
405 }
406 
407 /*
408  * For RAM pages, we use page flags to mark the pages with appropriate type.
409  * The page flags are limited to four types, WB (default), WC, WT and UC-.
410  * WP request fails with -EINVAL, and UC gets redirected to UC-.  Setting
411  * a new memory type is only allowed for a page mapped with the default WB
412  * type.
413  *
414  * Here we do two passes:
415  * - Find the memtype of all the pages in the range, look for any conflicts.
416  * - In case of no conflicts, set the new memtype for pages in the range.
417  */
reserve_ram_pages_type(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)418 static int reserve_ram_pages_type(u64 start, u64 end,
419 				  enum page_cache_mode req_type,
420 				  enum page_cache_mode *new_type)
421 {
422 	struct page *page;
423 	u64 pfn;
424 
425 	if (req_type == _PAGE_CACHE_MODE_WP) {
426 		if (new_type)
427 			*new_type = _PAGE_CACHE_MODE_UC_MINUS;
428 		return -EINVAL;
429 	}
430 
431 	if (req_type == _PAGE_CACHE_MODE_UC) {
432 		/* We do not support strong UC */
433 		WARN_ON_ONCE(1);
434 		req_type = _PAGE_CACHE_MODE_UC_MINUS;
435 	}
436 
437 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
438 		enum page_cache_mode type;
439 
440 		page = pfn_to_page(pfn);
441 		type = get_page_memtype(page);
442 		if (type != _PAGE_CACHE_MODE_WB) {
443 			pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
444 				start, end - 1, type, req_type);
445 			if (new_type)
446 				*new_type = type;
447 
448 			return -EBUSY;
449 		}
450 	}
451 
452 	if (new_type)
453 		*new_type = req_type;
454 
455 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
456 		page = pfn_to_page(pfn);
457 		set_page_memtype(page, req_type);
458 	}
459 	return 0;
460 }
461 
free_ram_pages_type(u64 start,u64 end)462 static int free_ram_pages_type(u64 start, u64 end)
463 {
464 	struct page *page;
465 	u64 pfn;
466 
467 	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
468 		page = pfn_to_page(pfn);
469 		set_page_memtype(page, _PAGE_CACHE_MODE_WB);
470 	}
471 	return 0;
472 }
473 
474 /*
475  * req_type typically has one of the:
476  * - _PAGE_CACHE_MODE_WB
477  * - _PAGE_CACHE_MODE_WC
478  * - _PAGE_CACHE_MODE_UC_MINUS
479  * - _PAGE_CACHE_MODE_UC
480  * - _PAGE_CACHE_MODE_WT
481  *
482  * If new_type is NULL, function will return an error if it cannot reserve the
483  * region with req_type. If new_type is non-NULL, function will return
484  * available type in new_type in case of no error. In case of any error
485  * it will return a negative return value.
486  */
reserve_memtype(u64 start,u64 end,enum page_cache_mode req_type,enum page_cache_mode * new_type)487 int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type,
488 		    enum page_cache_mode *new_type)
489 {
490 	struct memtype *new;
491 	enum page_cache_mode actual_type;
492 	int is_range_ram;
493 	int err = 0;
494 
495 	BUG_ON(start >= end); /* end is exclusive */
496 
497 	if (!pat_enabled()) {
498 		/* This is identical to page table setting without PAT */
499 		if (new_type)
500 			*new_type = req_type;
501 		return 0;
502 	}
503 
504 	/* Low ISA region is always mapped WB in page table. No need to track */
505 	if (x86_platform.is_untracked_pat_range(start, end)) {
506 		if (new_type)
507 			*new_type = _PAGE_CACHE_MODE_WB;
508 		return 0;
509 	}
510 
511 	/*
512 	 * Call mtrr_lookup to get the type hint. This is an
513 	 * optimization for /dev/mem mmap'ers into WB memory (BIOS
514 	 * tools and ACPI tools). Use WB request for WB memory and use
515 	 * UC_MINUS otherwise.
516 	 */
517 	actual_type = pat_x_mtrr_type(start, end, req_type);
518 
519 	if (new_type)
520 		*new_type = actual_type;
521 
522 	is_range_ram = pat_pagerange_is_ram(start, end);
523 	if (is_range_ram == 1) {
524 
525 		err = reserve_ram_pages_type(start, end, req_type, new_type);
526 
527 		return err;
528 	} else if (is_range_ram < 0) {
529 		return -EINVAL;
530 	}
531 
532 	new  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
533 	if (!new)
534 		return -ENOMEM;
535 
536 	new->start	= start;
537 	new->end	= end;
538 	new->type	= actual_type;
539 
540 	spin_lock(&memtype_lock);
541 
542 	err = rbt_memtype_check_insert(new, new_type);
543 	if (err) {
544 		pr_info("x86/PAT: reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
545 			start, end - 1,
546 			cattr_name(new->type), cattr_name(req_type));
547 		kfree(new);
548 		spin_unlock(&memtype_lock);
549 
550 		return err;
551 	}
552 
553 	spin_unlock(&memtype_lock);
554 
555 	dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
556 		start, end - 1, cattr_name(new->type), cattr_name(req_type),
557 		new_type ? cattr_name(*new_type) : "-");
558 
559 	return err;
560 }
561 
free_memtype(u64 start,u64 end)562 int free_memtype(u64 start, u64 end)
563 {
564 	int err = -EINVAL;
565 	int is_range_ram;
566 	struct memtype *entry;
567 
568 	if (!pat_enabled())
569 		return 0;
570 
571 	/* Low ISA region is always mapped WB. No need to track */
572 	if (x86_platform.is_untracked_pat_range(start, end))
573 		return 0;
574 
575 	is_range_ram = pat_pagerange_is_ram(start, end);
576 	if (is_range_ram == 1) {
577 
578 		err = free_ram_pages_type(start, end);
579 
580 		return err;
581 	} else if (is_range_ram < 0) {
582 		return -EINVAL;
583 	}
584 
585 	spin_lock(&memtype_lock);
586 	entry = rbt_memtype_erase(start, end);
587 	spin_unlock(&memtype_lock);
588 
589 	if (!entry) {
590 		pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
591 			current->comm, current->pid, start, end - 1);
592 		return -EINVAL;
593 	}
594 
595 	kfree(entry);
596 
597 	dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1);
598 
599 	return 0;
600 }
601 
602 
603 /**
604  * lookup_memtype - Looksup the memory type for a physical address
605  * @paddr: physical address of which memory type needs to be looked up
606  *
607  * Only to be called when PAT is enabled
608  *
609  * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
610  * or _PAGE_CACHE_MODE_WT.
611  */
lookup_memtype(u64 paddr)612 static enum page_cache_mode lookup_memtype(u64 paddr)
613 {
614 	enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
615 	struct memtype *entry;
616 
617 	if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
618 		return rettype;
619 
620 	if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
621 		struct page *page;
622 
623 		page = pfn_to_page(paddr >> PAGE_SHIFT);
624 		return get_page_memtype(page);
625 	}
626 
627 	spin_lock(&memtype_lock);
628 
629 	entry = rbt_memtype_lookup(paddr);
630 	if (entry != NULL)
631 		rettype = entry->type;
632 	else
633 		rettype = _PAGE_CACHE_MODE_UC_MINUS;
634 
635 	spin_unlock(&memtype_lock);
636 	return rettype;
637 }
638 
639 /**
640  * io_reserve_memtype - Request a memory type mapping for a region of memory
641  * @start: start (physical address) of the region
642  * @end: end (physical address) of the region
643  * @type: A pointer to memtype, with requested type. On success, requested
644  * or any other compatible type that was available for the region is returned
645  *
646  * On success, returns 0
647  * On failure, returns non-zero
648  */
io_reserve_memtype(resource_size_t start,resource_size_t end,enum page_cache_mode * type)649 int io_reserve_memtype(resource_size_t start, resource_size_t end,
650 			enum page_cache_mode *type)
651 {
652 	resource_size_t size = end - start;
653 	enum page_cache_mode req_type = *type;
654 	enum page_cache_mode new_type;
655 	int ret;
656 
657 	WARN_ON_ONCE(iomem_map_sanity_check(start, size));
658 
659 	ret = reserve_memtype(start, end, req_type, &new_type);
660 	if (ret)
661 		goto out_err;
662 
663 	if (!is_new_memtype_allowed(start, size, req_type, new_type))
664 		goto out_free;
665 
666 	if (kernel_map_sync_memtype(start, size, new_type) < 0)
667 		goto out_free;
668 
669 	*type = new_type;
670 	return 0;
671 
672 out_free:
673 	free_memtype(start, end);
674 	ret = -EBUSY;
675 out_err:
676 	return ret;
677 }
678 
679 /**
680  * io_free_memtype - Release a memory type mapping for a region of memory
681  * @start: start (physical address) of the region
682  * @end: end (physical address) of the region
683  */
io_free_memtype(resource_size_t start,resource_size_t end)684 void io_free_memtype(resource_size_t start, resource_size_t end)
685 {
686 	free_memtype(start, end);
687 }
688 
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)689 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
690 				unsigned long size, pgprot_t vma_prot)
691 {
692 	return vma_prot;
693 }
694 
695 #ifdef CONFIG_STRICT_DEVMEM
696 /* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
range_is_allowed(unsigned long pfn,unsigned long size)697 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
698 {
699 	return 1;
700 }
701 #else
702 /* This check is needed to avoid cache aliasing when PAT is enabled */
range_is_allowed(unsigned long pfn,unsigned long size)703 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
704 {
705 	u64 from = ((u64)pfn) << PAGE_SHIFT;
706 	u64 to = from + size;
707 	u64 cursor = from;
708 
709 	if (!pat_enabled())
710 		return 1;
711 
712 	while (cursor < to) {
713 		if (!devmem_is_allowed(pfn)) {
714 			pr_info("x86/PAT: Program %s tried to access /dev/mem between [mem %#010Lx-%#010Lx], PAT prevents it\n",
715 				current->comm, from, to - 1);
716 			return 0;
717 		}
718 		cursor += PAGE_SIZE;
719 		pfn++;
720 	}
721 	return 1;
722 }
723 #endif /* CONFIG_STRICT_DEVMEM */
724 
phys_mem_access_prot_allowed(struct file * file,unsigned long pfn,unsigned long size,pgprot_t * vma_prot)725 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
726 				unsigned long size, pgprot_t *vma_prot)
727 {
728 	enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
729 
730 	if (!range_is_allowed(pfn, size))
731 		return 0;
732 
733 	if (file->f_flags & O_DSYNC)
734 		pcm = _PAGE_CACHE_MODE_UC_MINUS;
735 
736 #ifdef CONFIG_X86_32
737 	/*
738 	 * On the PPro and successors, the MTRRs are used to set
739 	 * memory types for physical addresses outside main memory,
740 	 * so blindly setting UC or PWT on those pages is wrong.
741 	 * For Pentiums and earlier, the surround logic should disable
742 	 * caching for the high addresses through the KEN pin, but
743 	 * we maintain the tradition of paranoia in this code.
744 	 */
745 	if (!pat_enabled() &&
746 	    !(boot_cpu_has(X86_FEATURE_MTRR) ||
747 	      boot_cpu_has(X86_FEATURE_K6_MTRR) ||
748 	      boot_cpu_has(X86_FEATURE_CYRIX_ARR) ||
749 	      boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) &&
750 	    (pfn << PAGE_SHIFT) >= __pa(high_memory)) {
751 		pcm = _PAGE_CACHE_MODE_UC;
752 	}
753 #endif
754 
755 	*vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
756 			     cachemode2protval(pcm));
757 	return 1;
758 }
759 
760 /*
761  * Change the memory type for the physial address range in kernel identity
762  * mapping space if that range is a part of identity map.
763  */
kernel_map_sync_memtype(u64 base,unsigned long size,enum page_cache_mode pcm)764 int kernel_map_sync_memtype(u64 base, unsigned long size,
765 			    enum page_cache_mode pcm)
766 {
767 	unsigned long id_sz;
768 
769 	if (base > __pa(high_memory-1))
770 		return 0;
771 
772 	/*
773 	 * some areas in the middle of the kernel identity range
774 	 * are not mapped, like the PCI space.
775 	 */
776 	if (!page_is_ram(base >> PAGE_SHIFT))
777 		return 0;
778 
779 	id_sz = (__pa(high_memory-1) <= base + size) ?
780 				__pa(high_memory) - base :
781 				size;
782 
783 	if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
784 		pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
785 			current->comm, current->pid,
786 			cattr_name(pcm),
787 			base, (unsigned long long)(base + size-1));
788 		return -EINVAL;
789 	}
790 	return 0;
791 }
792 
793 /*
794  * Internal interface to reserve a range of physical memory with prot.
795  * Reserved non RAM regions only and after successful reserve_memtype,
796  * this func also keeps identity mapping (if any) in sync with this new prot.
797  */
reserve_pfn_range(u64 paddr,unsigned long size,pgprot_t * vma_prot,int strict_prot)798 static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
799 				int strict_prot)
800 {
801 	int is_ram = 0;
802 	int ret;
803 	enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
804 	enum page_cache_mode pcm = want_pcm;
805 
806 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
807 
808 	/*
809 	 * reserve_pfn_range() for RAM pages. We do not refcount to keep
810 	 * track of number of mappings of RAM pages. We can assert that
811 	 * the type requested matches the type of first page in the range.
812 	 */
813 	if (is_ram) {
814 		if (!pat_enabled())
815 			return 0;
816 
817 		pcm = lookup_memtype(paddr);
818 		if (want_pcm != pcm) {
819 			pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
820 				current->comm, current->pid,
821 				cattr_name(want_pcm),
822 				(unsigned long long)paddr,
823 				(unsigned long long)(paddr + size - 1),
824 				cattr_name(pcm));
825 			*vma_prot = __pgprot((pgprot_val(*vma_prot) &
826 					     (~_PAGE_CACHE_MASK)) |
827 					     cachemode2protval(pcm));
828 		}
829 		return 0;
830 	}
831 
832 	ret = reserve_memtype(paddr, paddr + size, want_pcm, &pcm);
833 	if (ret)
834 		return ret;
835 
836 	if (pcm != want_pcm) {
837 		if (strict_prot ||
838 		    !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
839 			free_memtype(paddr, paddr + size);
840 			pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
841 			       current->comm, current->pid,
842 			       cattr_name(want_pcm),
843 			       (unsigned long long)paddr,
844 			       (unsigned long long)(paddr + size - 1),
845 			       cattr_name(pcm));
846 			return -EINVAL;
847 		}
848 		/*
849 		 * We allow returning different type than the one requested in
850 		 * non strict case.
851 		 */
852 		*vma_prot = __pgprot((pgprot_val(*vma_prot) &
853 				      (~_PAGE_CACHE_MASK)) |
854 				     cachemode2protval(pcm));
855 	}
856 
857 	if (kernel_map_sync_memtype(paddr, size, pcm) < 0) {
858 		free_memtype(paddr, paddr + size);
859 		return -EINVAL;
860 	}
861 	return 0;
862 }
863 
864 /*
865  * Internal interface to free a range of physical memory.
866  * Frees non RAM regions only.
867  */
free_pfn_range(u64 paddr,unsigned long size)868 static void free_pfn_range(u64 paddr, unsigned long size)
869 {
870 	int is_ram;
871 
872 	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
873 	if (is_ram == 0)
874 		free_memtype(paddr, paddr + size);
875 }
876 
877 /*
878  * track_pfn_copy is called when vma that is covering the pfnmap gets
879  * copied through copy_page_range().
880  *
881  * If the vma has a linear pfn mapping for the entire range, we get the prot
882  * from pte and reserve the entire vma range with single reserve_pfn_range call.
883  */
track_pfn_copy(struct vm_area_struct * vma)884 int track_pfn_copy(struct vm_area_struct *vma)
885 {
886 	resource_size_t paddr;
887 	unsigned long prot;
888 	unsigned long vma_size = vma->vm_end - vma->vm_start;
889 	pgprot_t pgprot;
890 
891 	if (vma->vm_flags & VM_PAT) {
892 		/*
893 		 * reserve the whole chunk covered by vma. We need the
894 		 * starting address and protection from pte.
895 		 */
896 		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
897 			WARN_ON_ONCE(1);
898 			return -EINVAL;
899 		}
900 		pgprot = __pgprot(prot);
901 		return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
902 	}
903 
904 	return 0;
905 }
906 
907 /*
908  * prot is passed in as a parameter for the new mapping. If the vma has a
909  * linear pfn mapping for the entire range reserve the entire vma range with
910  * single reserve_pfn_range call.
911  */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)912 int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
913 		    unsigned long pfn, unsigned long addr, unsigned long size)
914 {
915 	resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
916 	enum page_cache_mode pcm;
917 
918 	/* reserve the whole chunk starting from paddr */
919 	if (addr == vma->vm_start && size == (vma->vm_end - vma->vm_start)) {
920 		int ret;
921 
922 		ret = reserve_pfn_range(paddr, size, prot, 0);
923 		if (!ret)
924 			vma->vm_flags |= VM_PAT;
925 		return ret;
926 	}
927 
928 	if (!pat_enabled())
929 		return 0;
930 
931 	/*
932 	 * For anything smaller than the vma size we set prot based on the
933 	 * lookup.
934 	 */
935 	pcm = lookup_memtype(paddr);
936 
937 	/* Check memtype for the remaining pages */
938 	while (size > PAGE_SIZE) {
939 		size -= PAGE_SIZE;
940 		paddr += PAGE_SIZE;
941 		if (pcm != lookup_memtype(paddr))
942 			return -EINVAL;
943 	}
944 
945 	*prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
946 			 cachemode2protval(pcm));
947 
948 	return 0;
949 }
950 
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn)951 int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
952 		     unsigned long pfn)
953 {
954 	enum page_cache_mode pcm;
955 
956 	if (!pat_enabled())
957 		return 0;
958 
959 	/* Set prot based on lookup */
960 	pcm = lookup_memtype((resource_size_t)pfn << PAGE_SHIFT);
961 	*prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
962 			 cachemode2protval(pcm));
963 
964 	return 0;
965 }
966 
967 /*
968  * untrack_pfn is called while unmapping a pfnmap for a region.
969  * untrack can be called for a specific region indicated by pfn and size or
970  * can be for the entire vma (in which case pfn, size are zero).
971  */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size)972 void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
973 		 unsigned long size)
974 {
975 	resource_size_t paddr;
976 	unsigned long prot;
977 
978 	if (!(vma->vm_flags & VM_PAT))
979 		return;
980 
981 	/* free the chunk starting from pfn or the whole chunk */
982 	paddr = (resource_size_t)pfn << PAGE_SHIFT;
983 	if (!paddr && !size) {
984 		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
985 			WARN_ON_ONCE(1);
986 			return;
987 		}
988 
989 		size = vma->vm_end - vma->vm_start;
990 	}
991 	free_pfn_range(paddr, size);
992 	vma->vm_flags &= ~VM_PAT;
993 }
994 
pgprot_writecombine(pgprot_t prot)995 pgprot_t pgprot_writecombine(pgprot_t prot)
996 {
997 	return __pgprot(pgprot_val(prot) |
998 				cachemode2protval(_PAGE_CACHE_MODE_WC));
999 }
1000 EXPORT_SYMBOL_GPL(pgprot_writecombine);
1001 
pgprot_writethrough(pgprot_t prot)1002 pgprot_t pgprot_writethrough(pgprot_t prot)
1003 {
1004 	return __pgprot(pgprot_val(prot) |
1005 				cachemode2protval(_PAGE_CACHE_MODE_WT));
1006 }
1007 EXPORT_SYMBOL_GPL(pgprot_writethrough);
1008 
1009 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1010 
memtype_get_idx(loff_t pos)1011 static struct memtype *memtype_get_idx(loff_t pos)
1012 {
1013 	struct memtype *print_entry;
1014 	int ret;
1015 
1016 	print_entry  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1017 	if (!print_entry)
1018 		return NULL;
1019 
1020 	spin_lock(&memtype_lock);
1021 	ret = rbt_memtype_copy_nth_element(print_entry, pos);
1022 	spin_unlock(&memtype_lock);
1023 
1024 	if (!ret) {
1025 		return print_entry;
1026 	} else {
1027 		kfree(print_entry);
1028 		return NULL;
1029 	}
1030 }
1031 
memtype_seq_start(struct seq_file * seq,loff_t * pos)1032 static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1033 {
1034 	if (*pos == 0) {
1035 		++*pos;
1036 		seq_puts(seq, "PAT memtype list:\n");
1037 	}
1038 
1039 	return memtype_get_idx(*pos);
1040 }
1041 
memtype_seq_next(struct seq_file * seq,void * v,loff_t * pos)1042 static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1043 {
1044 	++*pos;
1045 	return memtype_get_idx(*pos);
1046 }
1047 
memtype_seq_stop(struct seq_file * seq,void * v)1048 static void memtype_seq_stop(struct seq_file *seq, void *v)
1049 {
1050 }
1051 
memtype_seq_show(struct seq_file * seq,void * v)1052 static int memtype_seq_show(struct seq_file *seq, void *v)
1053 {
1054 	struct memtype *print_entry = (struct memtype *)v;
1055 
1056 	seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
1057 			print_entry->start, print_entry->end);
1058 	kfree(print_entry);
1059 
1060 	return 0;
1061 }
1062 
1063 static const struct seq_operations memtype_seq_ops = {
1064 	.start = memtype_seq_start,
1065 	.next  = memtype_seq_next,
1066 	.stop  = memtype_seq_stop,
1067 	.show  = memtype_seq_show,
1068 };
1069 
memtype_seq_open(struct inode * inode,struct file * file)1070 static int memtype_seq_open(struct inode *inode, struct file *file)
1071 {
1072 	return seq_open(file, &memtype_seq_ops);
1073 }
1074 
1075 static const struct file_operations memtype_fops = {
1076 	.open    = memtype_seq_open,
1077 	.read    = seq_read,
1078 	.llseek  = seq_lseek,
1079 	.release = seq_release,
1080 };
1081 
pat_memtype_list_init(void)1082 static int __init pat_memtype_list_init(void)
1083 {
1084 	if (pat_enabled()) {
1085 		debugfs_create_file("pat_memtype_list", S_IRUSR,
1086 				    arch_debugfs_dir, NULL, &memtype_fops);
1087 	}
1088 	return 0;
1089 }
1090 
1091 late_initcall(pat_memtype_list_init);
1092 
1093 #endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
1094