1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39 
40 #include "internal.h"
41 #include "mount.h"
42 
43 /* [Feb-1997 T. Schoebel-Theuer]
44  * Fundamental changes in the pathname lookup mechanisms (namei)
45  * were necessary because of omirr.  The reason is that omirr needs
46  * to know the _real_ pathname, not the user-supplied one, in case
47  * of symlinks (and also when transname replacements occur).
48  *
49  * The new code replaces the old recursive symlink resolution with
50  * an iterative one (in case of non-nested symlink chains).  It does
51  * this with calls to <fs>_follow_link().
52  * As a side effect, dir_namei(), _namei() and follow_link() are now
53  * replaced with a single function lookup_dentry() that can handle all
54  * the special cases of the former code.
55  *
56  * With the new dcache, the pathname is stored at each inode, at least as
57  * long as the refcount of the inode is positive.  As a side effect, the
58  * size of the dcache depends on the inode cache and thus is dynamic.
59  *
60  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61  * resolution to correspond with current state of the code.
62  *
63  * Note that the symlink resolution is not *completely* iterative.
64  * There is still a significant amount of tail- and mid- recursion in
65  * the algorithm.  Also, note that <fs>_readlink() is not used in
66  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67  * may return different results than <fs>_follow_link().  Many virtual
68  * filesystems (including /proc) exhibit this behavior.
69  */
70 
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73  * and the name already exists in form of a symlink, try to create the new
74  * name indicated by the symlink. The old code always complained that the
75  * name already exists, due to not following the symlink even if its target
76  * is nonexistent.  The new semantics affects also mknod() and link() when
77  * the name is a symlink pointing to a non-existent name.
78  *
79  * I don't know which semantics is the right one, since I have no access
80  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82  * "old" one. Personally, I think the new semantics is much more logical.
83  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84  * file does succeed in both HP-UX and SunOs, but not in Solaris
85  * and in the old Linux semantics.
86  */
87 
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89  * semantics.  See the comments in "open_namei" and "do_link" below.
90  *
91  * [10-Sep-98 Alan Modra] Another symlink change.
92  */
93 
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95  *	inside the path - always follow.
96  *	in the last component in creation/removal/renaming - never follow.
97  *	if LOOKUP_FOLLOW passed - follow.
98  *	if the pathname has trailing slashes - follow.
99  *	otherwise - don't follow.
100  * (applied in that order).
101  *
102  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104  * During the 2.4 we need to fix the userland stuff depending on it -
105  * hopefully we will be able to get rid of that wart in 2.5. So far only
106  * XEmacs seems to be relying on it...
107  */
108 /*
109  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
111  * any extra contention...
112  */
113 
114 /* In order to reduce some races, while at the same time doing additional
115  * checking and hopefully speeding things up, we copy filenames to the
116  * kernel data space before using them..
117  *
118  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119  * PATH_MAX includes the nul terminator --RR.
120  */
121 
122 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
123 
124 struct filename *
getname_flags(const char __user * filename,int flags,int * empty)125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 	struct filename *result;
128 	char *kname;
129 	int len;
130 
131 	result = audit_reusename(filename);
132 	if (result)
133 		return result;
134 
135 	result = __getname();
136 	if (unlikely(!result))
137 		return ERR_PTR(-ENOMEM);
138 
139 	/*
140 	 * First, try to embed the struct filename inside the names_cache
141 	 * allocation
142 	 */
143 	kname = (char *)result->iname;
144 	result->name = kname;
145 
146 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 	if (unlikely(len < 0)) {
148 		__putname(result);
149 		return ERR_PTR(len);
150 	}
151 
152 	/*
153 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 	 * separate struct filename so we can dedicate the entire
155 	 * names_cache allocation for the pathname, and re-do the copy from
156 	 * userland.
157 	 */
158 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 		const size_t size = offsetof(struct filename, iname[1]);
160 		kname = (char *)result;
161 
162 		/*
163 		 * size is chosen that way we to guarantee that
164 		 * result->iname[0] is within the same object and that
165 		 * kname can't be equal to result->iname, no matter what.
166 		 */
167 		result = kzalloc(size, GFP_KERNEL);
168 		if (unlikely(!result)) {
169 			__putname(kname);
170 			return ERR_PTR(-ENOMEM);
171 		}
172 		result->name = kname;
173 		len = strncpy_from_user(kname, filename, PATH_MAX);
174 		if (unlikely(len < 0)) {
175 			__putname(kname);
176 			kfree(result);
177 			return ERR_PTR(len);
178 		}
179 		if (unlikely(len == PATH_MAX)) {
180 			__putname(kname);
181 			kfree(result);
182 			return ERR_PTR(-ENAMETOOLONG);
183 		}
184 	}
185 
186 	result->refcnt = 1;
187 	/* The empty path is special. */
188 	if (unlikely(!len)) {
189 		if (empty)
190 			*empty = 1;
191 		if (!(flags & LOOKUP_EMPTY)) {
192 			putname(result);
193 			return ERR_PTR(-ENOENT);
194 		}
195 	}
196 
197 	result->uptr = filename;
198 	result->aname = NULL;
199 	audit_getname(result);
200 	return result;
201 }
202 
203 struct filename *
getname(const char __user * filename)204 getname(const char __user * filename)
205 {
206 	return getname_flags(filename, 0, NULL);
207 }
208 
209 struct filename *
getname_kernel(const char * filename)210 getname_kernel(const char * filename)
211 {
212 	struct filename *result;
213 	int len = strlen(filename) + 1;
214 
215 	result = __getname();
216 	if (unlikely(!result))
217 		return ERR_PTR(-ENOMEM);
218 
219 	if (len <= EMBEDDED_NAME_MAX) {
220 		result->name = (char *)result->iname;
221 	} else if (len <= PATH_MAX) {
222 		struct filename *tmp;
223 
224 		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 		if (unlikely(!tmp)) {
226 			__putname(result);
227 			return ERR_PTR(-ENOMEM);
228 		}
229 		tmp->name = (char *)result;
230 		result = tmp;
231 	} else {
232 		__putname(result);
233 		return ERR_PTR(-ENAMETOOLONG);
234 	}
235 	memcpy((char *)result->name, filename, len);
236 	result->uptr = NULL;
237 	result->aname = NULL;
238 	result->refcnt = 1;
239 	audit_getname(result);
240 
241 	return result;
242 }
243 
putname(struct filename * name)244 void putname(struct filename *name)
245 {
246 	BUG_ON(name->refcnt <= 0);
247 
248 	if (--name->refcnt > 0)
249 		return;
250 
251 	if (name->name != name->iname) {
252 		__putname(name->name);
253 		kfree(name);
254 	} else
255 		__putname(name);
256 }
257 
check_acl(struct inode * inode,int mask)258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 	struct posix_acl *acl;
262 
263 	if (mask & MAY_NOT_BLOCK) {
264 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 	        if (!acl)
266 	                return -EAGAIN;
267 		/* no ->get_acl() calls in RCU mode... */
268 		if (acl == ACL_NOT_CACHED)
269 			return -ECHILD;
270 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 	}
272 
273 	acl = get_acl(inode, ACL_TYPE_ACCESS);
274 	if (IS_ERR(acl))
275 		return PTR_ERR(acl);
276 	if (acl) {
277 	        int error = posix_acl_permission(inode, acl, mask);
278 	        posix_acl_release(acl);
279 	        return error;
280 	}
281 #endif
282 
283 	return -EAGAIN;
284 }
285 
286 /*
287  * This does the basic permission checking
288  */
acl_permission_check(struct inode * inode,int mask)289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 	unsigned int mode = inode->i_mode;
292 
293 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 		mode >>= 6;
295 	else {
296 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 			int error = check_acl(inode, mask);
298 			if (error != -EAGAIN)
299 				return error;
300 		}
301 
302 		if (in_group_p(inode->i_gid))
303 			mode >>= 3;
304 	}
305 
306 	/*
307 	 * If the DACs are ok we don't need any capability check.
308 	 */
309 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 		return 0;
311 	return -EACCES;
312 }
313 
314 /**
315  * generic_permission -  check for access rights on a Posix-like filesystem
316  * @inode:	inode to check access rights for
317  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318  *
319  * Used to check for read/write/execute permissions on a file.
320  * We use "fsuid" for this, letting us set arbitrary permissions
321  * for filesystem access without changing the "normal" uids which
322  * are used for other things.
323  *
324  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325  * request cannot be satisfied (eg. requires blocking or too much complexity).
326  * It would then be called again in ref-walk mode.
327  */
generic_permission(struct inode * inode,int mask)328 int generic_permission(struct inode *inode, int mask)
329 {
330 	int ret;
331 
332 	/*
333 	 * Do the basic permission checks.
334 	 */
335 	ret = acl_permission_check(inode, mask);
336 	if (ret != -EACCES)
337 		return ret;
338 
339 	if (S_ISDIR(inode->i_mode)) {
340 		/* DACs are overridable for directories */
341 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 			return 0;
343 		if (!(mask & MAY_WRITE))
344 			if (capable_wrt_inode_uidgid(inode,
345 						     CAP_DAC_READ_SEARCH))
346 				return 0;
347 		return -EACCES;
348 	}
349 	/*
350 	 * Read/write DACs are always overridable.
351 	 * Executable DACs are overridable when there is
352 	 * at least one exec bit set.
353 	 */
354 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 			return 0;
357 
358 	/*
359 	 * Searching includes executable on directories, else just read.
360 	 */
361 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 	if (mask == MAY_READ)
363 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 			return 0;
365 
366 	return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369 
370 /*
371  * We _really_ want to just do "generic_permission()" without
372  * even looking at the inode->i_op values. So we keep a cache
373  * flag in inode->i_opflags, that says "this has not special
374  * permission function, use the fast case".
375  */
do_inode_permission(struct inode * inode,int mask)376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 		if (likely(inode->i_op->permission))
380 			return inode->i_op->permission(inode, mask);
381 
382 		/* This gets set once for the inode lifetime */
383 		spin_lock(&inode->i_lock);
384 		inode->i_opflags |= IOP_FASTPERM;
385 		spin_unlock(&inode->i_lock);
386 	}
387 	return generic_permission(inode, mask);
388 }
389 
390 /**
391  * __inode_permission - Check for access rights to a given inode
392  * @inode: Inode to check permission on
393  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394  *
395  * Check for read/write/execute permissions on an inode.
396  *
397  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398  *
399  * This does not check for a read-only file system.  You probably want
400  * inode_permission().
401  */
__inode_permission(struct inode * inode,int mask)402 int __inode_permission(struct inode *inode, int mask)
403 {
404 	int retval;
405 
406 	if (unlikely(mask & MAY_WRITE)) {
407 		/*
408 		 * Nobody gets write access to an immutable file.
409 		 */
410 		if (IS_IMMUTABLE(inode))
411 			return -EACCES;
412 	}
413 
414 	retval = do_inode_permission(inode, mask);
415 	if (retval)
416 		return retval;
417 
418 	retval = devcgroup_inode_permission(inode, mask);
419 	if (retval)
420 		return retval;
421 
422 	return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425 
426 /**
427  * sb_permission - Check superblock-level permissions
428  * @sb: Superblock of inode to check permission on
429  * @inode: Inode to check permission on
430  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431  *
432  * Separate out file-system wide checks from inode-specific permission checks.
433  */
sb_permission(struct super_block * sb,struct inode * inode,int mask)434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 	if (unlikely(mask & MAY_WRITE)) {
437 		umode_t mode = inode->i_mode;
438 
439 		/* Nobody gets write access to a read-only fs. */
440 		if ((sb->s_flags & MS_RDONLY) &&
441 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 			return -EROFS;
443 	}
444 	return 0;
445 }
446 
447 /**
448  * inode_permission - Check for access rights to a given inode
449  * @inode: Inode to check permission on
450  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451  *
452  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
453  * this, letting us set arbitrary permissions for filesystem access without
454  * changing the "normal" UIDs which are used for other things.
455  *
456  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457  */
inode_permission(struct inode * inode,int mask)458 int inode_permission(struct inode *inode, int mask)
459 {
460 	int retval;
461 
462 	retval = sb_permission(inode->i_sb, inode, mask);
463 	if (retval)
464 		return retval;
465 	return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468 
469 /**
470  * path_get - get a reference to a path
471  * @path: path to get the reference to
472  *
473  * Given a path increment the reference count to the dentry and the vfsmount.
474  */
path_get(const struct path * path)475 void path_get(const struct path *path)
476 {
477 	mntget(path->mnt);
478 	dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481 
482 /**
483  * path_put - put a reference to a path
484  * @path: path to put the reference to
485  *
486  * Given a path decrement the reference count to the dentry and the vfsmount.
487  */
path_put(const struct path * path)488 void path_put(const struct path *path)
489 {
490 	dput(path->dentry);
491 	mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494 
495 struct nameidata {
496 	struct path	path;
497 	struct qstr	last;
498 	struct path	root;
499 	struct inode	*inode; /* path.dentry.d_inode */
500 	unsigned int	flags;
501 	unsigned	seq, m_seq;
502 	int		last_type;
503 	unsigned	depth;
504 	struct file	*base;
505 	char *saved_names[MAX_NESTED_LINKS + 1];
506 };
507 
508 /**
509  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
510  * @path: nameidate to verify
511  *
512  * Rename can sometimes move a file or directory outside of a bind
513  * mount, path_connected allows those cases to be detected.
514  */
path_connected(const struct path * path)515 static bool path_connected(const struct path *path)
516 {
517 	struct vfsmount *mnt = path->mnt;
518 
519 	/* Only bind mounts can have disconnected paths */
520 	if (mnt->mnt_root == mnt->mnt_sb->s_root)
521 		return true;
522 
523 	return is_subdir(path->dentry, mnt->mnt_root);
524 }
525 
526 /*
527  * Path walking has 2 modes, rcu-walk and ref-walk (see
528  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
529  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
530  * normal reference counts on dentries and vfsmounts to transition to rcu-walk
531  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
532  * got stuck, so ref-walk may continue from there. If this is not successful
533  * (eg. a seqcount has changed), then failure is returned and it's up to caller
534  * to restart the path walk from the beginning in ref-walk mode.
535  */
536 
537 /**
538  * unlazy_walk - try to switch to ref-walk mode.
539  * @nd: nameidata pathwalk data
540  * @dentry: child of nd->path.dentry or NULL
541  * Returns: 0 on success, -ECHILD on failure
542  *
543  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
544  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
545  * @nd or NULL.  Must be called from rcu-walk context.
546  */
unlazy_walk(struct nameidata * nd,struct dentry * dentry)547 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
548 {
549 	struct fs_struct *fs = current->fs;
550 	struct dentry *parent = nd->path.dentry;
551 
552 	BUG_ON(!(nd->flags & LOOKUP_RCU));
553 
554 	/*
555 	 * After legitimizing the bastards, terminate_walk()
556 	 * will do the right thing for non-RCU mode, and all our
557 	 * subsequent exit cases should rcu_read_unlock()
558 	 * before returning.  Do vfsmount first; if dentry
559 	 * can't be legitimized, just set nd->path.dentry to NULL
560 	 * and rely on dput(NULL) being a no-op.
561 	 */
562 	if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
563 		return -ECHILD;
564 	nd->flags &= ~LOOKUP_RCU;
565 
566 	if (!lockref_get_not_dead(&parent->d_lockref)) {
567 		nd->path.dentry = NULL;
568 		goto out;
569 	}
570 
571 	/*
572 	 * For a negative lookup, the lookup sequence point is the parents
573 	 * sequence point, and it only needs to revalidate the parent dentry.
574 	 *
575 	 * For a positive lookup, we need to move both the parent and the
576 	 * dentry from the RCU domain to be properly refcounted. And the
577 	 * sequence number in the dentry validates *both* dentry counters,
578 	 * since we checked the sequence number of the parent after we got
579 	 * the child sequence number. So we know the parent must still
580 	 * be valid if the child sequence number is still valid.
581 	 */
582 	if (!dentry) {
583 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
584 			goto out;
585 		BUG_ON(nd->inode != parent->d_inode);
586 	} else {
587 		if (!lockref_get_not_dead(&dentry->d_lockref))
588 			goto out;
589 		if (read_seqcount_retry(&dentry->d_seq, nd->seq))
590 			goto drop_dentry;
591 	}
592 
593 	/*
594 	 * Sequence counts matched. Now make sure that the root is
595 	 * still valid and get it if required.
596 	 */
597 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
598 		spin_lock(&fs->lock);
599 		if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
600 			goto unlock_and_drop_dentry;
601 		path_get(&nd->root);
602 		spin_unlock(&fs->lock);
603 	}
604 
605 	rcu_read_unlock();
606 	return 0;
607 
608 unlock_and_drop_dentry:
609 	spin_unlock(&fs->lock);
610 drop_dentry:
611 	rcu_read_unlock();
612 	dput(dentry);
613 	goto drop_root_mnt;
614 out:
615 	rcu_read_unlock();
616 drop_root_mnt:
617 	if (!(nd->flags & LOOKUP_ROOT))
618 		nd->root.mnt = NULL;
619 	return -ECHILD;
620 }
621 
d_revalidate(struct dentry * dentry,unsigned int flags)622 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
623 {
624 	return dentry->d_op->d_revalidate(dentry, flags);
625 }
626 
627 /**
628  * complete_walk - successful completion of path walk
629  * @nd:  pointer nameidata
630  *
631  * If we had been in RCU mode, drop out of it and legitimize nd->path.
632  * Revalidate the final result, unless we'd already done that during
633  * the path walk or the filesystem doesn't ask for it.  Return 0 on
634  * success, -error on failure.  In case of failure caller does not
635  * need to drop nd->path.
636  */
complete_walk(struct nameidata * nd)637 static int complete_walk(struct nameidata *nd)
638 {
639 	struct dentry *dentry = nd->path.dentry;
640 	int status;
641 
642 	if (nd->flags & LOOKUP_RCU) {
643 		nd->flags &= ~LOOKUP_RCU;
644 		if (!(nd->flags & LOOKUP_ROOT))
645 			nd->root.mnt = NULL;
646 
647 		if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
648 			rcu_read_unlock();
649 			return -ECHILD;
650 		}
651 		if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
652 			rcu_read_unlock();
653 			mntput(nd->path.mnt);
654 			return -ECHILD;
655 		}
656 		if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
657 			rcu_read_unlock();
658 			dput(dentry);
659 			mntput(nd->path.mnt);
660 			return -ECHILD;
661 		}
662 		rcu_read_unlock();
663 	}
664 
665 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
666 		return 0;
667 
668 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
669 		return 0;
670 
671 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
672 	if (status > 0)
673 		return 0;
674 
675 	if (!status)
676 		status = -ESTALE;
677 
678 	path_put(&nd->path);
679 	return status;
680 }
681 
set_root(struct nameidata * nd)682 static __always_inline void set_root(struct nameidata *nd)
683 {
684 	get_fs_root(current->fs, &nd->root);
685 }
686 
687 static int link_path_walk(const char *, struct nameidata *);
688 
set_root_rcu(struct nameidata * nd)689 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
690 {
691 	struct fs_struct *fs = current->fs;
692 	unsigned seq, res;
693 
694 	do {
695 		seq = read_seqcount_begin(&fs->seq);
696 		nd->root = fs->root;
697 		res = __read_seqcount_begin(&nd->root.dentry->d_seq);
698 	} while (read_seqcount_retry(&fs->seq, seq));
699 	return res;
700 }
701 
path_put_conditional(struct path * path,struct nameidata * nd)702 static void path_put_conditional(struct path *path, struct nameidata *nd)
703 {
704 	dput(path->dentry);
705 	if (path->mnt != nd->path.mnt)
706 		mntput(path->mnt);
707 }
708 
path_to_nameidata(const struct path * path,struct nameidata * nd)709 static inline void path_to_nameidata(const struct path *path,
710 					struct nameidata *nd)
711 {
712 	if (!(nd->flags & LOOKUP_RCU)) {
713 		dput(nd->path.dentry);
714 		if (nd->path.mnt != path->mnt)
715 			mntput(nd->path.mnt);
716 	}
717 	nd->path.mnt = path->mnt;
718 	nd->path.dentry = path->dentry;
719 }
720 
721 /*
722  * Helper to directly jump to a known parsed path from ->follow_link,
723  * caller must have taken a reference to path beforehand.
724  */
nd_jump_link(struct nameidata * nd,struct path * path)725 void nd_jump_link(struct nameidata *nd, struct path *path)
726 {
727 	path_put(&nd->path);
728 
729 	nd->path = *path;
730 	nd->inode = nd->path.dentry->d_inode;
731 	nd->flags |= LOOKUP_JUMPED;
732 }
733 
nd_set_link(struct nameidata * nd,char * path)734 void nd_set_link(struct nameidata *nd, char *path)
735 {
736 	nd->saved_names[nd->depth] = path;
737 }
738 EXPORT_SYMBOL(nd_set_link);
739 
nd_get_link(struct nameidata * nd)740 char *nd_get_link(struct nameidata *nd)
741 {
742 	return nd->saved_names[nd->depth];
743 }
744 EXPORT_SYMBOL(nd_get_link);
745 
put_link(struct nameidata * nd,struct path * link,void * cookie)746 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
747 {
748 	struct inode *inode = link->dentry->d_inode;
749 	if (inode->i_op->put_link)
750 		inode->i_op->put_link(link->dentry, nd, cookie);
751 	path_put(link);
752 }
753 
754 int sysctl_protected_symlinks __read_mostly = 0;
755 int sysctl_protected_hardlinks __read_mostly = 0;
756 
757 /**
758  * may_follow_link - Check symlink following for unsafe situations
759  * @link: The path of the symlink
760  * @nd: nameidata pathwalk data
761  *
762  * In the case of the sysctl_protected_symlinks sysctl being enabled,
763  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
764  * in a sticky world-writable directory. This is to protect privileged
765  * processes from failing races against path names that may change out
766  * from under them by way of other users creating malicious symlinks.
767  * It will permit symlinks to be followed only when outside a sticky
768  * world-writable directory, or when the uid of the symlink and follower
769  * match, or when the directory owner matches the symlink's owner.
770  *
771  * Returns 0 if following the symlink is allowed, -ve on error.
772  */
may_follow_link(struct path * link,struct nameidata * nd)773 static inline int may_follow_link(struct path *link, struct nameidata *nd)
774 {
775 	const struct inode *inode;
776 	const struct inode *parent;
777 
778 	if (!sysctl_protected_symlinks)
779 		return 0;
780 
781 	/* Allowed if owner and follower match. */
782 	inode = link->dentry->d_inode;
783 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
784 		return 0;
785 
786 	/* Allowed if parent directory not sticky and world-writable. */
787 	parent = nd->path.dentry->d_inode;
788 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
789 		return 0;
790 
791 	/* Allowed if parent directory and link owner match. */
792 	if (uid_eq(parent->i_uid, inode->i_uid))
793 		return 0;
794 
795 	audit_log_link_denied("follow_link", link);
796 	path_put_conditional(link, nd);
797 	path_put(&nd->path);
798 	return -EACCES;
799 }
800 
801 /**
802  * safe_hardlink_source - Check for safe hardlink conditions
803  * @inode: the source inode to hardlink from
804  *
805  * Return false if at least one of the following conditions:
806  *    - inode is not a regular file
807  *    - inode is setuid
808  *    - inode is setgid and group-exec
809  *    - access failure for read and write
810  *
811  * Otherwise returns true.
812  */
safe_hardlink_source(struct inode * inode)813 static bool safe_hardlink_source(struct inode *inode)
814 {
815 	umode_t mode = inode->i_mode;
816 
817 	/* Special files should not get pinned to the filesystem. */
818 	if (!S_ISREG(mode))
819 		return false;
820 
821 	/* Setuid files should not get pinned to the filesystem. */
822 	if (mode & S_ISUID)
823 		return false;
824 
825 	/* Executable setgid files should not get pinned to the filesystem. */
826 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
827 		return false;
828 
829 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
830 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
831 		return false;
832 
833 	return true;
834 }
835 
836 /**
837  * may_linkat - Check permissions for creating a hardlink
838  * @link: the source to hardlink from
839  *
840  * Block hardlink when all of:
841  *  - sysctl_protected_hardlinks enabled
842  *  - fsuid does not match inode
843  *  - hardlink source is unsafe (see safe_hardlink_source() above)
844  *  - not CAP_FOWNER
845  *
846  * Returns 0 if successful, -ve on error.
847  */
may_linkat(struct path * link)848 static int may_linkat(struct path *link)
849 {
850 	const struct cred *cred;
851 	struct inode *inode;
852 
853 	if (!sysctl_protected_hardlinks)
854 		return 0;
855 
856 	cred = current_cred();
857 	inode = link->dentry->d_inode;
858 
859 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
860 	 * otherwise, it must be a safe source.
861 	 */
862 	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
863 	    capable(CAP_FOWNER))
864 		return 0;
865 
866 	audit_log_link_denied("linkat", link);
867 	return -EPERM;
868 }
869 
870 static __always_inline int
follow_link(struct path * link,struct nameidata * nd,void ** p)871 follow_link(struct path *link, struct nameidata *nd, void **p)
872 {
873 	struct dentry *dentry = link->dentry;
874 	int error;
875 	char *s;
876 
877 	BUG_ON(nd->flags & LOOKUP_RCU);
878 
879 	if (link->mnt == nd->path.mnt)
880 		mntget(link->mnt);
881 
882 	error = -ELOOP;
883 	if (unlikely(current->total_link_count >= 40))
884 		goto out_put_nd_path;
885 
886 	cond_resched();
887 	current->total_link_count++;
888 
889 	touch_atime(link);
890 	nd_set_link(nd, NULL);
891 
892 	error = security_inode_follow_link(link->dentry, nd);
893 	if (error)
894 		goto out_put_nd_path;
895 
896 	nd->last_type = LAST_BIND;
897 	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
898 	error = PTR_ERR(*p);
899 	if (IS_ERR(*p))
900 		goto out_put_nd_path;
901 
902 	error = 0;
903 	s = nd_get_link(nd);
904 	if (s) {
905 		if (unlikely(IS_ERR(s))) {
906 			path_put(&nd->path);
907 			put_link(nd, link, *p);
908 			return PTR_ERR(s);
909 		}
910 		if (*s == '/') {
911 			if (!nd->root.mnt)
912 				set_root(nd);
913 			path_put(&nd->path);
914 			nd->path = nd->root;
915 			path_get(&nd->root);
916 			nd->flags |= LOOKUP_JUMPED;
917 		}
918 		nd->inode = nd->path.dentry->d_inode;
919 		error = link_path_walk(s, nd);
920 		if (unlikely(error))
921 			put_link(nd, link, *p);
922 	}
923 
924 	return error;
925 
926 out_put_nd_path:
927 	*p = NULL;
928 	path_put(&nd->path);
929 	path_put(link);
930 	return error;
931 }
932 
follow_up_rcu(struct path * path)933 static int follow_up_rcu(struct path *path)
934 {
935 	struct mount *mnt = real_mount(path->mnt);
936 	struct mount *parent;
937 	struct dentry *mountpoint;
938 
939 	parent = mnt->mnt_parent;
940 	if (&parent->mnt == path->mnt)
941 		return 0;
942 	mountpoint = mnt->mnt_mountpoint;
943 	path->dentry = mountpoint;
944 	path->mnt = &parent->mnt;
945 	return 1;
946 }
947 
948 /*
949  * follow_up - Find the mountpoint of path's vfsmount
950  *
951  * Given a path, find the mountpoint of its source file system.
952  * Replace @path with the path of the mountpoint in the parent mount.
953  * Up is towards /.
954  *
955  * Return 1 if we went up a level and 0 if we were already at the
956  * root.
957  */
follow_up(struct path * path)958 int follow_up(struct path *path)
959 {
960 	struct mount *mnt = real_mount(path->mnt);
961 	struct mount *parent;
962 	struct dentry *mountpoint;
963 
964 	read_seqlock_excl(&mount_lock);
965 	parent = mnt->mnt_parent;
966 	if (parent == mnt) {
967 		read_sequnlock_excl(&mount_lock);
968 		return 0;
969 	}
970 	mntget(&parent->mnt);
971 	mountpoint = dget(mnt->mnt_mountpoint);
972 	read_sequnlock_excl(&mount_lock);
973 	dput(path->dentry);
974 	path->dentry = mountpoint;
975 	mntput(path->mnt);
976 	path->mnt = &parent->mnt;
977 	return 1;
978 }
979 EXPORT_SYMBOL(follow_up);
980 
981 /*
982  * Perform an automount
983  * - return -EISDIR to tell follow_managed() to stop and return the path we
984  *   were called with.
985  */
follow_automount(struct path * path,unsigned flags,bool * need_mntput)986 static int follow_automount(struct path *path, unsigned flags,
987 			    bool *need_mntput)
988 {
989 	struct vfsmount *mnt;
990 	int err;
991 
992 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
993 		return -EREMOTE;
994 
995 	/* We don't want to mount if someone's just doing a stat -
996 	 * unless they're stat'ing a directory and appended a '/' to
997 	 * the name.
998 	 *
999 	 * We do, however, want to mount if someone wants to open or
1000 	 * create a file of any type under the mountpoint, wants to
1001 	 * traverse through the mountpoint or wants to open the
1002 	 * mounted directory.  Also, autofs may mark negative dentries
1003 	 * as being automount points.  These will need the attentions
1004 	 * of the daemon to instantiate them before they can be used.
1005 	 */
1006 	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1007 		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1008 	    path->dentry->d_inode)
1009 		return -EISDIR;
1010 
1011 	current->total_link_count++;
1012 	if (current->total_link_count >= 40)
1013 		return -ELOOP;
1014 
1015 	mnt = path->dentry->d_op->d_automount(path);
1016 	if (IS_ERR(mnt)) {
1017 		/*
1018 		 * The filesystem is allowed to return -EISDIR here to indicate
1019 		 * it doesn't want to automount.  For instance, autofs would do
1020 		 * this so that its userspace daemon can mount on this dentry.
1021 		 *
1022 		 * However, we can only permit this if it's a terminal point in
1023 		 * the path being looked up; if it wasn't then the remainder of
1024 		 * the path is inaccessible and we should say so.
1025 		 */
1026 		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
1027 			return -EREMOTE;
1028 		return PTR_ERR(mnt);
1029 	}
1030 
1031 	if (!mnt) /* mount collision */
1032 		return 0;
1033 
1034 	if (!*need_mntput) {
1035 		/* lock_mount() may release path->mnt on error */
1036 		mntget(path->mnt);
1037 		*need_mntput = true;
1038 	}
1039 	err = finish_automount(mnt, path);
1040 
1041 	switch (err) {
1042 	case -EBUSY:
1043 		/* Someone else made a mount here whilst we were busy */
1044 		return 0;
1045 	case 0:
1046 		path_put(path);
1047 		path->mnt = mnt;
1048 		path->dentry = dget(mnt->mnt_root);
1049 		return 0;
1050 	default:
1051 		return err;
1052 	}
1053 
1054 }
1055 
1056 /*
1057  * Handle a dentry that is managed in some way.
1058  * - Flagged for transit management (autofs)
1059  * - Flagged as mountpoint
1060  * - Flagged as automount point
1061  *
1062  * This may only be called in refwalk mode.
1063  *
1064  * Serialization is taken care of in namespace.c
1065  */
follow_managed(struct path * path,unsigned flags)1066 static int follow_managed(struct path *path, unsigned flags)
1067 {
1068 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1069 	unsigned managed;
1070 	bool need_mntput = false;
1071 	int ret = 0;
1072 
1073 	/* Given that we're not holding a lock here, we retain the value in a
1074 	 * local variable for each dentry as we look at it so that we don't see
1075 	 * the components of that value change under us */
1076 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1077 	       managed &= DCACHE_MANAGED_DENTRY,
1078 	       unlikely(managed != 0)) {
1079 		/* Allow the filesystem to manage the transit without i_mutex
1080 		 * being held. */
1081 		if (managed & DCACHE_MANAGE_TRANSIT) {
1082 			BUG_ON(!path->dentry->d_op);
1083 			BUG_ON(!path->dentry->d_op->d_manage);
1084 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1085 			if (ret < 0)
1086 				break;
1087 		}
1088 
1089 		/* Transit to a mounted filesystem. */
1090 		if (managed & DCACHE_MOUNTED) {
1091 			struct vfsmount *mounted = lookup_mnt(path);
1092 			if (mounted) {
1093 				dput(path->dentry);
1094 				if (need_mntput)
1095 					mntput(path->mnt);
1096 				path->mnt = mounted;
1097 				path->dentry = dget(mounted->mnt_root);
1098 				need_mntput = true;
1099 				continue;
1100 			}
1101 
1102 			/* Something is mounted on this dentry in another
1103 			 * namespace and/or whatever was mounted there in this
1104 			 * namespace got unmounted before lookup_mnt() could
1105 			 * get it */
1106 		}
1107 
1108 		/* Handle an automount point */
1109 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1110 			ret = follow_automount(path, flags, &need_mntput);
1111 			if (ret < 0)
1112 				break;
1113 			continue;
1114 		}
1115 
1116 		/* We didn't change the current path point */
1117 		break;
1118 	}
1119 
1120 	if (need_mntput && path->mnt == mnt)
1121 		mntput(path->mnt);
1122 	if (ret == -EISDIR)
1123 		ret = 0;
1124 	return ret < 0 ? ret : need_mntput;
1125 }
1126 
follow_down_one(struct path * path)1127 int follow_down_one(struct path *path)
1128 {
1129 	struct vfsmount *mounted;
1130 
1131 	mounted = lookup_mnt(path);
1132 	if (mounted) {
1133 		dput(path->dentry);
1134 		mntput(path->mnt);
1135 		path->mnt = mounted;
1136 		path->dentry = dget(mounted->mnt_root);
1137 		return 1;
1138 	}
1139 	return 0;
1140 }
1141 EXPORT_SYMBOL(follow_down_one);
1142 
managed_dentry_rcu(struct dentry * dentry)1143 static inline int managed_dentry_rcu(struct dentry *dentry)
1144 {
1145 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1146 		dentry->d_op->d_manage(dentry, true) : 0;
1147 }
1148 
1149 /*
1150  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1151  * we meet a managed dentry that would need blocking.
1152  */
__follow_mount_rcu(struct nameidata * nd,struct path * path,struct inode ** inode)1153 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1154 			       struct inode **inode)
1155 {
1156 	for (;;) {
1157 		struct mount *mounted;
1158 		/*
1159 		 * Don't forget we might have a non-mountpoint managed dentry
1160 		 * that wants to block transit.
1161 		 */
1162 		switch (managed_dentry_rcu(path->dentry)) {
1163 		case -ECHILD:
1164 		default:
1165 			return false;
1166 		case -EISDIR:
1167 			return true;
1168 		case 0:
1169 			break;
1170 		}
1171 
1172 		if (!d_mountpoint(path->dentry))
1173 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1174 
1175 		mounted = __lookup_mnt(path->mnt, path->dentry);
1176 		if (!mounted)
1177 			break;
1178 		path->mnt = &mounted->mnt;
1179 		path->dentry = mounted->mnt.mnt_root;
1180 		nd->flags |= LOOKUP_JUMPED;
1181 		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1182 		/*
1183 		 * Update the inode too. We don't need to re-check the
1184 		 * dentry sequence number here after this d_inode read,
1185 		 * because a mount-point is always pinned.
1186 		 */
1187 		*inode = path->dentry->d_inode;
1188 	}
1189 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1190 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1191 }
1192 
follow_dotdot_rcu(struct nameidata * nd)1193 static int follow_dotdot_rcu(struct nameidata *nd)
1194 {
1195 	struct inode *inode = nd->inode;
1196 	if (!nd->root.mnt)
1197 		set_root_rcu(nd);
1198 
1199 	while (1) {
1200 		if (nd->path.dentry == nd->root.dentry &&
1201 		    nd->path.mnt == nd->root.mnt) {
1202 			break;
1203 		}
1204 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1205 			struct dentry *old = nd->path.dentry;
1206 			struct dentry *parent = old->d_parent;
1207 			unsigned seq;
1208 
1209 			inode = parent->d_inode;
1210 			seq = read_seqcount_begin(&parent->d_seq);
1211 			if (read_seqcount_retry(&old->d_seq, nd->seq))
1212 				goto failed;
1213 			nd->path.dentry = parent;
1214 			nd->seq = seq;
1215 			if (unlikely(!path_connected(&nd->path)))
1216 				goto failed;
1217 			break;
1218 		}
1219 		if (!follow_up_rcu(&nd->path))
1220 			break;
1221 		inode = nd->path.dentry->d_inode;
1222 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1223 	}
1224 	while (d_mountpoint(nd->path.dentry)) {
1225 		struct mount *mounted;
1226 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1227 		if (!mounted)
1228 			break;
1229 		nd->path.mnt = &mounted->mnt;
1230 		nd->path.dentry = mounted->mnt.mnt_root;
1231 		inode = nd->path.dentry->d_inode;
1232 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1233 		if (read_seqretry(&mount_lock, nd->m_seq))
1234 			goto failed;
1235 	}
1236 	nd->inode = inode;
1237 	return 0;
1238 
1239 failed:
1240 	nd->flags &= ~LOOKUP_RCU;
1241 	if (!(nd->flags & LOOKUP_ROOT))
1242 		nd->root.mnt = NULL;
1243 	rcu_read_unlock();
1244 	return -ECHILD;
1245 }
1246 
1247 /*
1248  * Follow down to the covering mount currently visible to userspace.  At each
1249  * point, the filesystem owning that dentry may be queried as to whether the
1250  * caller is permitted to proceed or not.
1251  */
follow_down(struct path * path)1252 int follow_down(struct path *path)
1253 {
1254 	unsigned managed;
1255 	int ret;
1256 
1257 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1258 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1259 		/* Allow the filesystem to manage the transit without i_mutex
1260 		 * being held.
1261 		 *
1262 		 * We indicate to the filesystem if someone is trying to mount
1263 		 * something here.  This gives autofs the chance to deny anyone
1264 		 * other than its daemon the right to mount on its
1265 		 * superstructure.
1266 		 *
1267 		 * The filesystem may sleep at this point.
1268 		 */
1269 		if (managed & DCACHE_MANAGE_TRANSIT) {
1270 			BUG_ON(!path->dentry->d_op);
1271 			BUG_ON(!path->dentry->d_op->d_manage);
1272 			ret = path->dentry->d_op->d_manage(
1273 				path->dentry, false);
1274 			if (ret < 0)
1275 				return ret == -EISDIR ? 0 : ret;
1276 		}
1277 
1278 		/* Transit to a mounted filesystem. */
1279 		if (managed & DCACHE_MOUNTED) {
1280 			struct vfsmount *mounted = lookup_mnt(path);
1281 			if (!mounted)
1282 				break;
1283 			dput(path->dentry);
1284 			mntput(path->mnt);
1285 			path->mnt = mounted;
1286 			path->dentry = dget(mounted->mnt_root);
1287 			continue;
1288 		}
1289 
1290 		/* Don't handle automount points here */
1291 		break;
1292 	}
1293 	return 0;
1294 }
1295 EXPORT_SYMBOL(follow_down);
1296 
1297 /*
1298  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1299  */
follow_mount(struct path * path)1300 static void follow_mount(struct path *path)
1301 {
1302 	while (d_mountpoint(path->dentry)) {
1303 		struct vfsmount *mounted = lookup_mnt(path);
1304 		if (!mounted)
1305 			break;
1306 		dput(path->dentry);
1307 		mntput(path->mnt);
1308 		path->mnt = mounted;
1309 		path->dentry = dget(mounted->mnt_root);
1310 	}
1311 }
1312 
follow_dotdot(struct nameidata * nd)1313 static int follow_dotdot(struct nameidata *nd)
1314 {
1315 	if (!nd->root.mnt)
1316 		set_root(nd);
1317 
1318 	while(1) {
1319 		struct dentry *old = nd->path.dentry;
1320 
1321 		if (nd->path.dentry == nd->root.dentry &&
1322 		    nd->path.mnt == nd->root.mnt) {
1323 			break;
1324 		}
1325 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1326 			/* rare case of legitimate dget_parent()... */
1327 			nd->path.dentry = dget_parent(nd->path.dentry);
1328 			dput(old);
1329 			if (unlikely(!path_connected(&nd->path))) {
1330 				path_put(&nd->path);
1331 				return -ENOENT;
1332 			}
1333 			break;
1334 		}
1335 		if (!follow_up(&nd->path))
1336 			break;
1337 	}
1338 	follow_mount(&nd->path);
1339 	nd->inode = nd->path.dentry->d_inode;
1340 	return 0;
1341 }
1342 
1343 /*
1344  * This looks up the name in dcache, possibly revalidates the old dentry and
1345  * allocates a new one if not found or not valid.  In the need_lookup argument
1346  * returns whether i_op->lookup is necessary.
1347  *
1348  * dir->d_inode->i_mutex must be held
1349  */
lookup_dcache(struct qstr * name,struct dentry * dir,unsigned int flags,bool * need_lookup)1350 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1351 				    unsigned int flags, bool *need_lookup)
1352 {
1353 	struct dentry *dentry;
1354 	int error;
1355 
1356 	*need_lookup = false;
1357 	dentry = d_lookup(dir, name);
1358 	if (dentry) {
1359 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1360 			error = d_revalidate(dentry, flags);
1361 			if (unlikely(error <= 0)) {
1362 				if (error < 0) {
1363 					dput(dentry);
1364 					return ERR_PTR(error);
1365 				} else {
1366 					d_invalidate(dentry);
1367 					dput(dentry);
1368 					dentry = NULL;
1369 				}
1370 			}
1371 		}
1372 	}
1373 
1374 	if (!dentry) {
1375 		dentry = d_alloc(dir, name);
1376 		if (unlikely(!dentry))
1377 			return ERR_PTR(-ENOMEM);
1378 
1379 		*need_lookup = true;
1380 	}
1381 	return dentry;
1382 }
1383 
1384 /*
1385  * Call i_op->lookup on the dentry.  The dentry must be negative and
1386  * unhashed.
1387  *
1388  * dir->d_inode->i_mutex must be held
1389  */
lookup_real(struct inode * dir,struct dentry * dentry,unsigned int flags)1390 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1391 				  unsigned int flags)
1392 {
1393 	struct dentry *old;
1394 
1395 	/* Don't create child dentry for a dead directory. */
1396 	if (unlikely(IS_DEADDIR(dir))) {
1397 		dput(dentry);
1398 		return ERR_PTR(-ENOENT);
1399 	}
1400 
1401 	old = dir->i_op->lookup(dir, dentry, flags);
1402 	if (unlikely(old)) {
1403 		dput(dentry);
1404 		dentry = old;
1405 	}
1406 	return dentry;
1407 }
1408 
__lookup_hash(struct qstr * name,struct dentry * base,unsigned int flags)1409 static struct dentry *__lookup_hash(struct qstr *name,
1410 		struct dentry *base, unsigned int flags)
1411 {
1412 	bool need_lookup;
1413 	struct dentry *dentry;
1414 
1415 	dentry = lookup_dcache(name, base, flags, &need_lookup);
1416 	if (!need_lookup)
1417 		return dentry;
1418 
1419 	return lookup_real(base->d_inode, dentry, flags);
1420 }
1421 
1422 /*
1423  *  It's more convoluted than I'd like it to be, but... it's still fairly
1424  *  small and for now I'd prefer to have fast path as straight as possible.
1425  *  It _is_ time-critical.
1426  */
lookup_fast(struct nameidata * nd,struct path * path,struct inode ** inode)1427 static int lookup_fast(struct nameidata *nd,
1428 		       struct path *path, struct inode **inode)
1429 {
1430 	struct vfsmount *mnt = nd->path.mnt;
1431 	struct dentry *dentry, *parent = nd->path.dentry;
1432 	int need_reval = 1;
1433 	int status = 1;
1434 	int err;
1435 
1436 	/*
1437 	 * Rename seqlock is not required here because in the off chance
1438 	 * of a false negative due to a concurrent rename, we're going to
1439 	 * do the non-racy lookup, below.
1440 	 */
1441 	if (nd->flags & LOOKUP_RCU) {
1442 		unsigned seq;
1443 		bool negative;
1444 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1445 		if (!dentry)
1446 			goto unlazy;
1447 
1448 		/*
1449 		 * This sequence count validates that the inode matches
1450 		 * the dentry name information from lookup.
1451 		 */
1452 		*inode = dentry->d_inode;
1453 		negative = d_is_negative(dentry);
1454 		if (read_seqcount_retry(&dentry->d_seq, seq))
1455 			return -ECHILD;
1456 
1457 		/*
1458 		 * This sequence count validates that the parent had no
1459 		 * changes while we did the lookup of the dentry above.
1460 		 *
1461 		 * The memory barrier in read_seqcount_begin of child is
1462 		 *  enough, we can use __read_seqcount_retry here.
1463 		 */
1464 		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1465 			return -ECHILD;
1466 		nd->seq = seq;
1467 
1468 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1469 			status = d_revalidate(dentry, nd->flags);
1470 			if (unlikely(status <= 0)) {
1471 				if (status != -ECHILD)
1472 					need_reval = 0;
1473 				goto unlazy;
1474 			}
1475 		}
1476 		/*
1477 		 * Note: do negative dentry check after revalidation in
1478 		 * case that drops it.
1479 		 */
1480 		if (negative)
1481 			return -ENOENT;
1482 		path->mnt = mnt;
1483 		path->dentry = dentry;
1484 		if (likely(__follow_mount_rcu(nd, path, inode)))
1485 			return 0;
1486 unlazy:
1487 		if (unlazy_walk(nd, dentry))
1488 			return -ECHILD;
1489 	} else {
1490 		dentry = __d_lookup(parent, &nd->last);
1491 	}
1492 
1493 	if (unlikely(!dentry))
1494 		goto need_lookup;
1495 
1496 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1497 		status = d_revalidate(dentry, nd->flags);
1498 	if (unlikely(status <= 0)) {
1499 		if (status < 0) {
1500 			dput(dentry);
1501 			return status;
1502 		}
1503 		d_invalidate(dentry);
1504 		dput(dentry);
1505 		goto need_lookup;
1506 	}
1507 
1508 	if (unlikely(d_is_negative(dentry))) {
1509 		dput(dentry);
1510 		return -ENOENT;
1511 	}
1512 	path->mnt = mnt;
1513 	path->dentry = dentry;
1514 	err = follow_managed(path, nd->flags);
1515 	if (unlikely(err < 0)) {
1516 		path_put_conditional(path, nd);
1517 		return err;
1518 	}
1519 	if (err)
1520 		nd->flags |= LOOKUP_JUMPED;
1521 	*inode = path->dentry->d_inode;
1522 	return 0;
1523 
1524 need_lookup:
1525 	return 1;
1526 }
1527 
1528 /* Fast lookup failed, do it the slow way */
lookup_slow(struct nameidata * nd,struct path * path)1529 static int lookup_slow(struct nameidata *nd, struct path *path)
1530 {
1531 	struct dentry *dentry, *parent;
1532 	int err;
1533 
1534 	parent = nd->path.dentry;
1535 	BUG_ON(nd->inode != parent->d_inode);
1536 
1537 	mutex_lock(&parent->d_inode->i_mutex);
1538 	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1539 	mutex_unlock(&parent->d_inode->i_mutex);
1540 	if (IS_ERR(dentry))
1541 		return PTR_ERR(dentry);
1542 	path->mnt = nd->path.mnt;
1543 	path->dentry = dentry;
1544 	err = follow_managed(path, nd->flags);
1545 	if (unlikely(err < 0)) {
1546 		path_put_conditional(path, nd);
1547 		return err;
1548 	}
1549 	if (err)
1550 		nd->flags |= LOOKUP_JUMPED;
1551 	return 0;
1552 }
1553 
may_lookup(struct nameidata * nd)1554 static inline int may_lookup(struct nameidata *nd)
1555 {
1556 	if (nd->flags & LOOKUP_RCU) {
1557 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1558 		if (err != -ECHILD)
1559 			return err;
1560 		if (unlazy_walk(nd, NULL))
1561 			return -ECHILD;
1562 	}
1563 	return inode_permission(nd->inode, MAY_EXEC);
1564 }
1565 
handle_dots(struct nameidata * nd,int type)1566 static inline int handle_dots(struct nameidata *nd, int type)
1567 {
1568 	if (type == LAST_DOTDOT) {
1569 		if (nd->flags & LOOKUP_RCU) {
1570 			if (follow_dotdot_rcu(nd))
1571 				return -ECHILD;
1572 		} else
1573 			return follow_dotdot(nd);
1574 	}
1575 	return 0;
1576 }
1577 
terminate_walk(struct nameidata * nd)1578 static void terminate_walk(struct nameidata *nd)
1579 {
1580 	if (!(nd->flags & LOOKUP_RCU)) {
1581 		path_put(&nd->path);
1582 	} else {
1583 		nd->flags &= ~LOOKUP_RCU;
1584 		if (!(nd->flags & LOOKUP_ROOT))
1585 			nd->root.mnt = NULL;
1586 		rcu_read_unlock();
1587 	}
1588 }
1589 
1590 /*
1591  * Do we need to follow links? We _really_ want to be able
1592  * to do this check without having to look at inode->i_op,
1593  * so we keep a cache of "no, this doesn't need follow_link"
1594  * for the common case.
1595  */
should_follow_link(struct dentry * dentry,int follow)1596 static inline int should_follow_link(struct dentry *dentry, int follow)
1597 {
1598 	return unlikely(d_is_symlink(dentry)) ? follow : 0;
1599 }
1600 
walk_component(struct nameidata * nd,struct path * path,int follow)1601 static inline int walk_component(struct nameidata *nd, struct path *path,
1602 		int follow)
1603 {
1604 	struct inode *inode;
1605 	int err;
1606 	/*
1607 	 * "." and ".." are special - ".." especially so because it has
1608 	 * to be able to know about the current root directory and
1609 	 * parent relationships.
1610 	 */
1611 	if (unlikely(nd->last_type != LAST_NORM))
1612 		return handle_dots(nd, nd->last_type);
1613 	err = lookup_fast(nd, path, &inode);
1614 	if (unlikely(err)) {
1615 		if (err < 0)
1616 			goto out_err;
1617 
1618 		err = lookup_slow(nd, path);
1619 		if (err < 0)
1620 			goto out_err;
1621 
1622 		err = -ENOENT;
1623 		if (d_is_negative(path->dentry))
1624 			goto out_path_put;
1625 		inode = path->dentry->d_inode;
1626 	}
1627 
1628 	if (should_follow_link(path->dentry, follow)) {
1629 		if (nd->flags & LOOKUP_RCU) {
1630 			if (unlikely(nd->path.mnt != path->mnt ||
1631 				     unlazy_walk(nd, path->dentry))) {
1632 				err = -ECHILD;
1633 				goto out_err;
1634 			}
1635 		}
1636 		BUG_ON(inode != path->dentry->d_inode);
1637 		return 1;
1638 	}
1639 	path_to_nameidata(path, nd);
1640 	nd->inode = inode;
1641 	return 0;
1642 
1643 out_path_put:
1644 	path_to_nameidata(path, nd);
1645 out_err:
1646 	terminate_walk(nd);
1647 	return err;
1648 }
1649 
1650 /*
1651  * This limits recursive symlink follows to 8, while
1652  * limiting consecutive symlinks to 40.
1653  *
1654  * Without that kind of total limit, nasty chains of consecutive
1655  * symlinks can cause almost arbitrarily long lookups.
1656  */
nested_symlink(struct path * path,struct nameidata * nd)1657 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1658 {
1659 	int res;
1660 
1661 	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1662 		path_put_conditional(path, nd);
1663 		path_put(&nd->path);
1664 		return -ELOOP;
1665 	}
1666 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1667 
1668 	nd->depth++;
1669 	current->link_count++;
1670 
1671 	do {
1672 		struct path link = *path;
1673 		void *cookie;
1674 
1675 		res = follow_link(&link, nd, &cookie);
1676 		if (res)
1677 			break;
1678 		res = walk_component(nd, path, LOOKUP_FOLLOW);
1679 		put_link(nd, &link, cookie);
1680 	} while (res > 0);
1681 
1682 	current->link_count--;
1683 	nd->depth--;
1684 	return res;
1685 }
1686 
1687 /*
1688  * We can do the critical dentry name comparison and hashing
1689  * operations one word at a time, but we are limited to:
1690  *
1691  * - Architectures with fast unaligned word accesses. We could
1692  *   do a "get_unaligned()" if this helps and is sufficiently
1693  *   fast.
1694  *
1695  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1696  *   do not trap on the (extremely unlikely) case of a page
1697  *   crossing operation.
1698  *
1699  * - Furthermore, we need an efficient 64-bit compile for the
1700  *   64-bit case in order to generate the "number of bytes in
1701  *   the final mask". Again, that could be replaced with a
1702  *   efficient population count instruction or similar.
1703  */
1704 #ifdef CONFIG_DCACHE_WORD_ACCESS
1705 
1706 #include <asm/word-at-a-time.h>
1707 
1708 #ifdef CONFIG_64BIT
1709 
fold_hash(unsigned long hash)1710 static inline unsigned int fold_hash(unsigned long hash)
1711 {
1712 	return hash_64(hash, 32);
1713 }
1714 
1715 #else	/* 32-bit case */
1716 
1717 #define fold_hash(x) (x)
1718 
1719 #endif
1720 
full_name_hash(const unsigned char * name,unsigned int len)1721 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1722 {
1723 	unsigned long a, mask;
1724 	unsigned long hash = 0;
1725 
1726 	for (;;) {
1727 		a = load_unaligned_zeropad(name);
1728 		if (len < sizeof(unsigned long))
1729 			break;
1730 		hash += a;
1731 		hash *= 9;
1732 		name += sizeof(unsigned long);
1733 		len -= sizeof(unsigned long);
1734 		if (!len)
1735 			goto done;
1736 	}
1737 	mask = bytemask_from_count(len);
1738 	hash += mask & a;
1739 done:
1740 	return fold_hash(hash);
1741 }
1742 EXPORT_SYMBOL(full_name_hash);
1743 
1744 /*
1745  * Calculate the length and hash of the path component, and
1746  * return the "hash_len" as the result.
1747  */
hash_name(const char * name)1748 static inline u64 hash_name(const char *name)
1749 {
1750 	unsigned long a, b, adata, bdata, mask, hash, len;
1751 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1752 
1753 	hash = a = 0;
1754 	len = -sizeof(unsigned long);
1755 	do {
1756 		hash = (hash + a) * 9;
1757 		len += sizeof(unsigned long);
1758 		a = load_unaligned_zeropad(name+len);
1759 		b = a ^ REPEAT_BYTE('/');
1760 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1761 
1762 	adata = prep_zero_mask(a, adata, &constants);
1763 	bdata = prep_zero_mask(b, bdata, &constants);
1764 
1765 	mask = create_zero_mask(adata | bdata);
1766 
1767 	hash += a & zero_bytemask(mask);
1768 	len += find_zero(mask);
1769 	return hashlen_create(fold_hash(hash), len);
1770 }
1771 
1772 #else
1773 
full_name_hash(const unsigned char * name,unsigned int len)1774 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1775 {
1776 	unsigned long hash = init_name_hash();
1777 	while (len--)
1778 		hash = partial_name_hash(*name++, hash);
1779 	return end_name_hash(hash);
1780 }
1781 EXPORT_SYMBOL(full_name_hash);
1782 
1783 /*
1784  * We know there's a real path component here of at least
1785  * one character.
1786  */
hash_name(const char * name)1787 static inline u64 hash_name(const char *name)
1788 {
1789 	unsigned long hash = init_name_hash();
1790 	unsigned long len = 0, c;
1791 
1792 	c = (unsigned char)*name;
1793 	do {
1794 		len++;
1795 		hash = partial_name_hash(c, hash);
1796 		c = (unsigned char)name[len];
1797 	} while (c && c != '/');
1798 	return hashlen_create(end_name_hash(hash), len);
1799 }
1800 
1801 #endif
1802 
1803 /*
1804  * Name resolution.
1805  * This is the basic name resolution function, turning a pathname into
1806  * the final dentry. We expect 'base' to be positive and a directory.
1807  *
1808  * Returns 0 and nd will have valid dentry and mnt on success.
1809  * Returns error and drops reference to input namei data on failure.
1810  */
link_path_walk(const char * name,struct nameidata * nd)1811 static int link_path_walk(const char *name, struct nameidata *nd)
1812 {
1813 	struct path next;
1814 	int err;
1815 
1816 	while (*name=='/')
1817 		name++;
1818 	if (!*name)
1819 		return 0;
1820 
1821 	/* At this point we know we have a real path component. */
1822 	for(;;) {
1823 		u64 hash_len;
1824 		int type;
1825 
1826 		err = may_lookup(nd);
1827  		if (err)
1828 			break;
1829 
1830 		hash_len = hash_name(name);
1831 
1832 		type = LAST_NORM;
1833 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
1834 			case 2:
1835 				if (name[1] == '.') {
1836 					type = LAST_DOTDOT;
1837 					nd->flags |= LOOKUP_JUMPED;
1838 				}
1839 				break;
1840 			case 1:
1841 				type = LAST_DOT;
1842 		}
1843 		if (likely(type == LAST_NORM)) {
1844 			struct dentry *parent = nd->path.dentry;
1845 			nd->flags &= ~LOOKUP_JUMPED;
1846 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1847 				struct qstr this = { { .hash_len = hash_len }, .name = name };
1848 				err = parent->d_op->d_hash(parent, &this);
1849 				if (err < 0)
1850 					break;
1851 				hash_len = this.hash_len;
1852 				name = this.name;
1853 			}
1854 		}
1855 
1856 		nd->last.hash_len = hash_len;
1857 		nd->last.name = name;
1858 		nd->last_type = type;
1859 
1860 		name += hashlen_len(hash_len);
1861 		if (!*name)
1862 			return 0;
1863 		/*
1864 		 * If it wasn't NUL, we know it was '/'. Skip that
1865 		 * slash, and continue until no more slashes.
1866 		 */
1867 		do {
1868 			name++;
1869 		} while (unlikely(*name == '/'));
1870 		if (!*name)
1871 			return 0;
1872 
1873 		err = walk_component(nd, &next, LOOKUP_FOLLOW);
1874 		if (err < 0)
1875 			return err;
1876 
1877 		if (err) {
1878 			err = nested_symlink(&next, nd);
1879 			if (err)
1880 				return err;
1881 		}
1882 		if (!d_can_lookup(nd->path.dentry)) {
1883 			err = -ENOTDIR;
1884 			break;
1885 		}
1886 	}
1887 	terminate_walk(nd);
1888 	return err;
1889 }
1890 
path_init(int dfd,const struct filename * name,unsigned int flags,struct nameidata * nd)1891 static int path_init(int dfd, const struct filename *name, unsigned int flags,
1892 		     struct nameidata *nd)
1893 {
1894 	int retval = 0;
1895 	const char *s = name->name;
1896 
1897 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1898 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1899 	nd->depth = 0;
1900 	nd->base = NULL;
1901 	if (flags & LOOKUP_ROOT) {
1902 		struct dentry *root = nd->root.dentry;
1903 		struct inode *inode = root->d_inode;
1904 		if (*s) {
1905 			if (!d_can_lookup(root))
1906 				return -ENOTDIR;
1907 			retval = inode_permission(inode, MAY_EXEC);
1908 			if (retval)
1909 				return retval;
1910 		}
1911 		nd->path = nd->root;
1912 		nd->inode = inode;
1913 		if (flags & LOOKUP_RCU) {
1914 			rcu_read_lock();
1915 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1916 			nd->m_seq = read_seqbegin(&mount_lock);
1917 		} else {
1918 			path_get(&nd->path);
1919 		}
1920 		goto done;
1921 	}
1922 
1923 	nd->root.mnt = NULL;
1924 
1925 	nd->m_seq = read_seqbegin(&mount_lock);
1926 	if (*s == '/') {
1927 		if (flags & LOOKUP_RCU) {
1928 			rcu_read_lock();
1929 			nd->seq = set_root_rcu(nd);
1930 		} else {
1931 			set_root(nd);
1932 			path_get(&nd->root);
1933 		}
1934 		nd->path = nd->root;
1935 	} else if (dfd == AT_FDCWD) {
1936 		if (flags & LOOKUP_RCU) {
1937 			struct fs_struct *fs = current->fs;
1938 			unsigned seq;
1939 
1940 			rcu_read_lock();
1941 
1942 			do {
1943 				seq = read_seqcount_begin(&fs->seq);
1944 				nd->path = fs->pwd;
1945 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1946 			} while (read_seqcount_retry(&fs->seq, seq));
1947 		} else {
1948 			get_fs_pwd(current->fs, &nd->path);
1949 		}
1950 	} else {
1951 		/* Caller must check execute permissions on the starting path component */
1952 		struct fd f = fdget_raw(dfd);
1953 		struct dentry *dentry;
1954 
1955 		if (!f.file)
1956 			return -EBADF;
1957 
1958 		dentry = f.file->f_path.dentry;
1959 
1960 		if (*s) {
1961 			if (!d_can_lookup(dentry)) {
1962 				fdput(f);
1963 				return -ENOTDIR;
1964 			}
1965 		}
1966 
1967 		nd->path = f.file->f_path;
1968 		if (flags & LOOKUP_RCU) {
1969 			if (f.flags & FDPUT_FPUT)
1970 				nd->base = f.file;
1971 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1972 			rcu_read_lock();
1973 		} else {
1974 			path_get(&nd->path);
1975 			fdput(f);
1976 		}
1977 	}
1978 
1979 	nd->inode = nd->path.dentry->d_inode;
1980 	if (!(flags & LOOKUP_RCU))
1981 		goto done;
1982 	if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1983 		goto done;
1984 	if (!(nd->flags & LOOKUP_ROOT))
1985 		nd->root.mnt = NULL;
1986 	rcu_read_unlock();
1987 	return -ECHILD;
1988 done:
1989 	current->total_link_count = 0;
1990 	return link_path_walk(s, nd);
1991 }
1992 
path_cleanup(struct nameidata * nd)1993 static void path_cleanup(struct nameidata *nd)
1994 {
1995 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1996 		path_put(&nd->root);
1997 		nd->root.mnt = NULL;
1998 	}
1999 	if (unlikely(nd->base))
2000 		fput(nd->base);
2001 }
2002 
lookup_last(struct nameidata * nd,struct path * path)2003 static inline int lookup_last(struct nameidata *nd, struct path *path)
2004 {
2005 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2006 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2007 
2008 	nd->flags &= ~LOOKUP_PARENT;
2009 	return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
2010 }
2011 
2012 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_lookupat(int dfd,const struct filename * name,unsigned int flags,struct nameidata * nd)2013 static int path_lookupat(int dfd, const struct filename *name,
2014 				unsigned int flags, struct nameidata *nd)
2015 {
2016 	struct path path;
2017 	int err;
2018 
2019 	/*
2020 	 * Path walking is largely split up into 2 different synchronisation
2021 	 * schemes, rcu-walk and ref-walk (explained in
2022 	 * Documentation/filesystems/path-lookup.txt). These share much of the
2023 	 * path walk code, but some things particularly setup, cleanup, and
2024 	 * following mounts are sufficiently divergent that functions are
2025 	 * duplicated. Typically there is a function foo(), and its RCU
2026 	 * analogue, foo_rcu().
2027 	 *
2028 	 * -ECHILD is the error number of choice (just to avoid clashes) that
2029 	 * is returned if some aspect of an rcu-walk fails. Such an error must
2030 	 * be handled by restarting a traditional ref-walk (which will always
2031 	 * be able to complete).
2032 	 */
2033 	err = path_init(dfd, name, flags, nd);
2034 	if (!err && !(flags & LOOKUP_PARENT)) {
2035 		err = lookup_last(nd, &path);
2036 		while (err > 0) {
2037 			void *cookie;
2038 			struct path link = path;
2039 			err = may_follow_link(&link, nd);
2040 			if (unlikely(err))
2041 				break;
2042 			nd->flags |= LOOKUP_PARENT;
2043 			err = follow_link(&link, nd, &cookie);
2044 			if (err)
2045 				break;
2046 			err = lookup_last(nd, &path);
2047 			put_link(nd, &link, cookie);
2048 		}
2049 	}
2050 
2051 	if (!err)
2052 		err = complete_walk(nd);
2053 
2054 	if (!err && nd->flags & LOOKUP_DIRECTORY) {
2055 		if (!d_can_lookup(nd->path.dentry)) {
2056 			path_put(&nd->path);
2057 			err = -ENOTDIR;
2058 		}
2059 	}
2060 
2061 	path_cleanup(nd);
2062 	return err;
2063 }
2064 
filename_lookup(int dfd,struct filename * name,unsigned int flags,struct nameidata * nd)2065 static int filename_lookup(int dfd, struct filename *name,
2066 				unsigned int flags, struct nameidata *nd)
2067 {
2068 	int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
2069 	if (unlikely(retval == -ECHILD))
2070 		retval = path_lookupat(dfd, name, flags, nd);
2071 	if (unlikely(retval == -ESTALE))
2072 		retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
2073 
2074 	if (likely(!retval))
2075 		audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2076 	return retval;
2077 }
2078 
2079 /* does lookup, returns the object with parent locked */
kern_path_locked(const char * name,struct path * path)2080 struct dentry *kern_path_locked(const char *name, struct path *path)
2081 {
2082 	struct filename *filename = getname_kernel(name);
2083 	struct nameidata nd;
2084 	struct dentry *d;
2085 	int err;
2086 
2087 	if (IS_ERR(filename))
2088 		return ERR_CAST(filename);
2089 
2090 	err = filename_lookup(AT_FDCWD, filename, LOOKUP_PARENT, &nd);
2091 	if (err) {
2092 		d = ERR_PTR(err);
2093 		goto out;
2094 	}
2095 	if (nd.last_type != LAST_NORM) {
2096 		path_put(&nd.path);
2097 		d = ERR_PTR(-EINVAL);
2098 		goto out;
2099 	}
2100 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2101 	d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2102 	if (IS_ERR(d)) {
2103 		mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2104 		path_put(&nd.path);
2105 		goto out;
2106 	}
2107 	*path = nd.path;
2108 out:
2109 	putname(filename);
2110 	return d;
2111 }
2112 
kern_path(const char * name,unsigned int flags,struct path * path)2113 int kern_path(const char *name, unsigned int flags, struct path *path)
2114 {
2115 	struct nameidata nd;
2116 	struct filename *filename = getname_kernel(name);
2117 	int res = PTR_ERR(filename);
2118 
2119 	if (!IS_ERR(filename)) {
2120 		res = filename_lookup(AT_FDCWD, filename, flags, &nd);
2121 		putname(filename);
2122 		if (!res)
2123 			*path = nd.path;
2124 	}
2125 	return res;
2126 }
2127 EXPORT_SYMBOL(kern_path);
2128 
2129 /**
2130  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2131  * @dentry:  pointer to dentry of the base directory
2132  * @mnt: pointer to vfs mount of the base directory
2133  * @name: pointer to file name
2134  * @flags: lookup flags
2135  * @path: pointer to struct path to fill
2136  */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2137 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2138 		    const char *name, unsigned int flags,
2139 		    struct path *path)
2140 {
2141 	struct filename *filename = getname_kernel(name);
2142 	int err = PTR_ERR(filename);
2143 
2144 	BUG_ON(flags & LOOKUP_PARENT);
2145 
2146 	/* the first argument of filename_lookup() is ignored with LOOKUP_ROOT */
2147 	if (!IS_ERR(filename)) {
2148 		struct nameidata nd;
2149 		nd.root.dentry = dentry;
2150 		nd.root.mnt = mnt;
2151 		err = filename_lookup(AT_FDCWD, filename,
2152 				      flags | LOOKUP_ROOT, &nd);
2153 		if (!err)
2154 			*path = nd.path;
2155 		putname(filename);
2156 	}
2157 	return err;
2158 }
2159 EXPORT_SYMBOL(vfs_path_lookup);
2160 
2161 /*
2162  * Restricted form of lookup. Doesn't follow links, single-component only,
2163  * needs parent already locked. Doesn't follow mounts.
2164  * SMP-safe.
2165  */
lookup_hash(struct nameidata * nd)2166 static struct dentry *lookup_hash(struct nameidata *nd)
2167 {
2168 	return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2169 }
2170 
2171 /**
2172  * lookup_one_len - filesystem helper to lookup single pathname component
2173  * @name:	pathname component to lookup
2174  * @base:	base directory to lookup from
2175  * @len:	maximum length @len should be interpreted to
2176  *
2177  * Note that this routine is purely a helper for filesystem usage and should
2178  * not be called by generic code.
2179  */
lookup_one_len(const char * name,struct dentry * base,int len)2180 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2181 {
2182 	struct qstr this;
2183 	unsigned int c;
2184 	int err;
2185 
2186 	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2187 
2188 	this.name = name;
2189 	this.len = len;
2190 	this.hash = full_name_hash(name, len);
2191 	if (!len)
2192 		return ERR_PTR(-EACCES);
2193 
2194 	if (unlikely(name[0] == '.')) {
2195 		if (len < 2 || (len == 2 && name[1] == '.'))
2196 			return ERR_PTR(-EACCES);
2197 	}
2198 
2199 	while (len--) {
2200 		c = *(const unsigned char *)name++;
2201 		if (c == '/' || c == '\0')
2202 			return ERR_PTR(-EACCES);
2203 	}
2204 	/*
2205 	 * See if the low-level filesystem might want
2206 	 * to use its own hash..
2207 	 */
2208 	if (base->d_flags & DCACHE_OP_HASH) {
2209 		int err = base->d_op->d_hash(base, &this);
2210 		if (err < 0)
2211 			return ERR_PTR(err);
2212 	}
2213 
2214 	err = inode_permission(base->d_inode, MAY_EXEC);
2215 	if (err)
2216 		return ERR_PTR(err);
2217 
2218 	return __lookup_hash(&this, base, 0);
2219 }
2220 EXPORT_SYMBOL(lookup_one_len);
2221 
user_path_at_empty(int dfd,const char __user * name,unsigned flags,struct path * path,int * empty)2222 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2223 		 struct path *path, int *empty)
2224 {
2225 	struct nameidata nd;
2226 	struct filename *tmp = getname_flags(name, flags, empty);
2227 	int err = PTR_ERR(tmp);
2228 	if (!IS_ERR(tmp)) {
2229 
2230 		BUG_ON(flags & LOOKUP_PARENT);
2231 
2232 		err = filename_lookup(dfd, tmp, flags, &nd);
2233 		putname(tmp);
2234 		if (!err)
2235 			*path = nd.path;
2236 	}
2237 	return err;
2238 }
2239 
user_path_at(int dfd,const char __user * name,unsigned flags,struct path * path)2240 int user_path_at(int dfd, const char __user *name, unsigned flags,
2241 		 struct path *path)
2242 {
2243 	return user_path_at_empty(dfd, name, flags, path, NULL);
2244 }
2245 EXPORT_SYMBOL(user_path_at);
2246 
2247 /*
2248  * NB: most callers don't do anything directly with the reference to the
2249  *     to struct filename, but the nd->last pointer points into the name string
2250  *     allocated by getname. So we must hold the reference to it until all
2251  *     path-walking is complete.
2252  */
2253 static struct filename *
user_path_parent(int dfd,const char __user * path,struct nameidata * nd,unsigned int flags)2254 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2255 		 unsigned int flags)
2256 {
2257 	struct filename *s = getname(path);
2258 	int error;
2259 
2260 	/* only LOOKUP_REVAL is allowed in extra flags */
2261 	flags &= LOOKUP_REVAL;
2262 
2263 	if (IS_ERR(s))
2264 		return s;
2265 
2266 	error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2267 	if (error) {
2268 		putname(s);
2269 		return ERR_PTR(error);
2270 	}
2271 
2272 	return s;
2273 }
2274 
2275 /**
2276  * mountpoint_last - look up last component for umount
2277  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2278  * @path: pointer to container for result
2279  *
2280  * This is a special lookup_last function just for umount. In this case, we
2281  * need to resolve the path without doing any revalidation.
2282  *
2283  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2284  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2285  * in almost all cases, this lookup will be served out of the dcache. The only
2286  * cases where it won't are if nd->last refers to a symlink or the path is
2287  * bogus and it doesn't exist.
2288  *
2289  * Returns:
2290  * -error: if there was an error during lookup. This includes -ENOENT if the
2291  *         lookup found a negative dentry. The nd->path reference will also be
2292  *         put in this case.
2293  *
2294  * 0:      if we successfully resolved nd->path and found it to not to be a
2295  *         symlink that needs to be followed. "path" will also be populated.
2296  *         The nd->path reference will also be put.
2297  *
2298  * 1:      if we successfully resolved nd->last and found it to be a symlink
2299  *         that needs to be followed. "path" will be populated with the path
2300  *         to the link, and nd->path will *not* be put.
2301  */
2302 static int
mountpoint_last(struct nameidata * nd,struct path * path)2303 mountpoint_last(struct nameidata *nd, struct path *path)
2304 {
2305 	int error = 0;
2306 	struct dentry *dentry;
2307 	struct dentry *dir = nd->path.dentry;
2308 
2309 	/* If we're in rcuwalk, drop out of it to handle last component */
2310 	if (nd->flags & LOOKUP_RCU) {
2311 		if (unlazy_walk(nd, NULL)) {
2312 			error = -ECHILD;
2313 			goto out;
2314 		}
2315 	}
2316 
2317 	nd->flags &= ~LOOKUP_PARENT;
2318 
2319 	if (unlikely(nd->last_type != LAST_NORM)) {
2320 		error = handle_dots(nd, nd->last_type);
2321 		if (error)
2322 			return error;
2323 		dentry = dget(nd->path.dentry);
2324 		goto done;
2325 	}
2326 
2327 	mutex_lock(&dir->d_inode->i_mutex);
2328 	dentry = d_lookup(dir, &nd->last);
2329 	if (!dentry) {
2330 		/*
2331 		 * No cached dentry. Mounted dentries are pinned in the cache,
2332 		 * so that means that this dentry is probably a symlink or the
2333 		 * path doesn't actually point to a mounted dentry.
2334 		 */
2335 		dentry = d_alloc(dir, &nd->last);
2336 		if (!dentry) {
2337 			error = -ENOMEM;
2338 			mutex_unlock(&dir->d_inode->i_mutex);
2339 			goto out;
2340 		}
2341 		dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2342 		error = PTR_ERR(dentry);
2343 		if (IS_ERR(dentry)) {
2344 			mutex_unlock(&dir->d_inode->i_mutex);
2345 			goto out;
2346 		}
2347 	}
2348 	mutex_unlock(&dir->d_inode->i_mutex);
2349 
2350 done:
2351 	if (d_is_negative(dentry)) {
2352 		error = -ENOENT;
2353 		dput(dentry);
2354 		goto out;
2355 	}
2356 	path->dentry = dentry;
2357 	path->mnt = nd->path.mnt;
2358 	if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2359 		return 1;
2360 	mntget(path->mnt);
2361 	follow_mount(path);
2362 	error = 0;
2363 out:
2364 	terminate_walk(nd);
2365 	return error;
2366 }
2367 
2368 /**
2369  * path_mountpoint - look up a path to be umounted
2370  * @dfd:	directory file descriptor to start walk from
2371  * @name:	full pathname to walk
2372  * @path:	pointer to container for result
2373  * @flags:	lookup flags
2374  *
2375  * Look up the given name, but don't attempt to revalidate the last component.
2376  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2377  */
2378 static int
path_mountpoint(int dfd,const struct filename * name,struct path * path,unsigned int flags)2379 path_mountpoint(int dfd, const struct filename *name, struct path *path,
2380 		unsigned int flags)
2381 {
2382 	struct nameidata nd;
2383 	int err;
2384 
2385 	err = path_init(dfd, name, flags, &nd);
2386 	if (unlikely(err))
2387 		goto out;
2388 
2389 	err = mountpoint_last(&nd, path);
2390 	while (err > 0) {
2391 		void *cookie;
2392 		struct path link = *path;
2393 		err = may_follow_link(&link, &nd);
2394 		if (unlikely(err))
2395 			break;
2396 		nd.flags |= LOOKUP_PARENT;
2397 		err = follow_link(&link, &nd, &cookie);
2398 		if (err)
2399 			break;
2400 		err = mountpoint_last(&nd, path);
2401 		put_link(&nd, &link, cookie);
2402 	}
2403 out:
2404 	path_cleanup(&nd);
2405 	return err;
2406 }
2407 
2408 static int
filename_mountpoint(int dfd,struct filename * name,struct path * path,unsigned int flags)2409 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2410 			unsigned int flags)
2411 {
2412 	int error;
2413 	if (IS_ERR(name))
2414 		return PTR_ERR(name);
2415 	error = path_mountpoint(dfd, name, path, flags | LOOKUP_RCU);
2416 	if (unlikely(error == -ECHILD))
2417 		error = path_mountpoint(dfd, name, path, flags);
2418 	if (unlikely(error == -ESTALE))
2419 		error = path_mountpoint(dfd, name, path, flags | LOOKUP_REVAL);
2420 	if (likely(!error))
2421 		audit_inode(name, path->dentry, 0);
2422 	putname(name);
2423 	return error;
2424 }
2425 
2426 /**
2427  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2428  * @dfd:	directory file descriptor
2429  * @name:	pathname from userland
2430  * @flags:	lookup flags
2431  * @path:	pointer to container to hold result
2432  *
2433  * A umount is a special case for path walking. We're not actually interested
2434  * in the inode in this situation, and ESTALE errors can be a problem. We
2435  * simply want track down the dentry and vfsmount attached at the mountpoint
2436  * and avoid revalidating the last component.
2437  *
2438  * Returns 0 and populates "path" on success.
2439  */
2440 int
user_path_mountpoint_at(int dfd,const char __user * name,unsigned int flags,struct path * path)2441 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2442 			struct path *path)
2443 {
2444 	return filename_mountpoint(dfd, getname(name), path, flags);
2445 }
2446 
2447 int
kern_path_mountpoint(int dfd,const char * name,struct path * path,unsigned int flags)2448 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2449 			unsigned int flags)
2450 {
2451 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2452 }
2453 EXPORT_SYMBOL(kern_path_mountpoint);
2454 
__check_sticky(struct inode * dir,struct inode * inode)2455 int __check_sticky(struct inode *dir, struct inode *inode)
2456 {
2457 	kuid_t fsuid = current_fsuid();
2458 
2459 	if (uid_eq(inode->i_uid, fsuid))
2460 		return 0;
2461 	if (uid_eq(dir->i_uid, fsuid))
2462 		return 0;
2463 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2464 }
2465 EXPORT_SYMBOL(__check_sticky);
2466 
2467 /*
2468  *	Check whether we can remove a link victim from directory dir, check
2469  *  whether the type of victim is right.
2470  *  1. We can't do it if dir is read-only (done in permission())
2471  *  2. We should have write and exec permissions on dir
2472  *  3. We can't remove anything from append-only dir
2473  *  4. We can't do anything with immutable dir (done in permission())
2474  *  5. If the sticky bit on dir is set we should either
2475  *	a. be owner of dir, or
2476  *	b. be owner of victim, or
2477  *	c. have CAP_FOWNER capability
2478  *  6. If the victim is append-only or immutable we can't do antyhing with
2479  *     links pointing to it.
2480  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2481  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2482  *  9. We can't remove a root or mountpoint.
2483  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2484  *     nfs_async_unlink().
2485  */
may_delete(struct inode * dir,struct dentry * victim,bool isdir)2486 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2487 {
2488 	struct inode *inode = victim->d_inode;
2489 	int error;
2490 
2491 	if (d_is_negative(victim))
2492 		return -ENOENT;
2493 	BUG_ON(!inode);
2494 
2495 	BUG_ON(victim->d_parent->d_inode != dir);
2496 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2497 
2498 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2499 	if (error)
2500 		return error;
2501 	if (IS_APPEND(dir))
2502 		return -EPERM;
2503 
2504 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2505 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2506 		return -EPERM;
2507 	if (isdir) {
2508 		if (!d_is_dir(victim))
2509 			return -ENOTDIR;
2510 		if (IS_ROOT(victim))
2511 			return -EBUSY;
2512 	} else if (d_is_dir(victim))
2513 		return -EISDIR;
2514 	if (IS_DEADDIR(dir))
2515 		return -ENOENT;
2516 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2517 		return -EBUSY;
2518 	return 0;
2519 }
2520 
2521 /*	Check whether we can create an object with dentry child in directory
2522  *  dir.
2523  *  1. We can't do it if child already exists (open has special treatment for
2524  *     this case, but since we are inlined it's OK)
2525  *  2. We can't do it if dir is read-only (done in permission())
2526  *  3. We should have write and exec permissions on dir
2527  *  4. We can't do it if dir is immutable (done in permission())
2528  */
may_create(struct inode * dir,struct dentry * child)2529 static inline int may_create(struct inode *dir, struct dentry *child)
2530 {
2531 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2532 	if (child->d_inode)
2533 		return -EEXIST;
2534 	if (IS_DEADDIR(dir))
2535 		return -ENOENT;
2536 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2537 }
2538 
2539 /*
2540  * p1 and p2 should be directories on the same fs.
2541  */
lock_rename(struct dentry * p1,struct dentry * p2)2542 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2543 {
2544 	struct dentry *p;
2545 
2546 	if (p1 == p2) {
2547 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2548 		return NULL;
2549 	}
2550 
2551 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2552 
2553 	p = d_ancestor(p2, p1);
2554 	if (p) {
2555 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2556 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2557 		return p;
2558 	}
2559 
2560 	p = d_ancestor(p1, p2);
2561 	if (p) {
2562 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2563 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2564 		return p;
2565 	}
2566 
2567 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2568 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2569 	return NULL;
2570 }
2571 EXPORT_SYMBOL(lock_rename);
2572 
unlock_rename(struct dentry * p1,struct dentry * p2)2573 void unlock_rename(struct dentry *p1, struct dentry *p2)
2574 {
2575 	mutex_unlock(&p1->d_inode->i_mutex);
2576 	if (p1 != p2) {
2577 		mutex_unlock(&p2->d_inode->i_mutex);
2578 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2579 	}
2580 }
2581 EXPORT_SYMBOL(unlock_rename);
2582 
vfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)2583 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2584 		bool want_excl)
2585 {
2586 	int error = may_create(dir, dentry);
2587 	if (error)
2588 		return error;
2589 
2590 	if (!dir->i_op->create)
2591 		return -EACCES;	/* shouldn't it be ENOSYS? */
2592 	mode &= S_IALLUGO;
2593 	mode |= S_IFREG;
2594 	error = security_inode_create(dir, dentry, mode);
2595 	if (error)
2596 		return error;
2597 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2598 	if (!error)
2599 		fsnotify_create(dir, dentry);
2600 	return error;
2601 }
2602 EXPORT_SYMBOL(vfs_create);
2603 
may_open(struct path * path,int acc_mode,int flag)2604 static int may_open(struct path *path, int acc_mode, int flag)
2605 {
2606 	struct dentry *dentry = path->dentry;
2607 	struct inode *inode = dentry->d_inode;
2608 	int error;
2609 
2610 	/* O_PATH? */
2611 	if (!acc_mode)
2612 		return 0;
2613 
2614 	if (!inode)
2615 		return -ENOENT;
2616 
2617 	switch (inode->i_mode & S_IFMT) {
2618 	case S_IFLNK:
2619 		return -ELOOP;
2620 	case S_IFDIR:
2621 		if (acc_mode & MAY_WRITE)
2622 			return -EISDIR;
2623 		break;
2624 	case S_IFBLK:
2625 	case S_IFCHR:
2626 		if (path->mnt->mnt_flags & MNT_NODEV)
2627 			return -EACCES;
2628 		/*FALLTHRU*/
2629 	case S_IFIFO:
2630 	case S_IFSOCK:
2631 		flag &= ~O_TRUNC;
2632 		break;
2633 	}
2634 
2635 	error = inode_permission(inode, acc_mode);
2636 	if (error)
2637 		return error;
2638 
2639 	/*
2640 	 * An append-only file must be opened in append mode for writing.
2641 	 */
2642 	if (IS_APPEND(inode)) {
2643 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2644 			return -EPERM;
2645 		if (flag & O_TRUNC)
2646 			return -EPERM;
2647 	}
2648 
2649 	/* O_NOATIME can only be set by the owner or superuser */
2650 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2651 		return -EPERM;
2652 
2653 	return 0;
2654 }
2655 
handle_truncate(struct file * filp)2656 static int handle_truncate(struct file *filp)
2657 {
2658 	struct path *path = &filp->f_path;
2659 	struct inode *inode = path->dentry->d_inode;
2660 	int error = get_write_access(inode);
2661 	if (error)
2662 		return error;
2663 	/*
2664 	 * Refuse to truncate files with mandatory locks held on them.
2665 	 */
2666 	error = locks_verify_locked(filp);
2667 	if (!error)
2668 		error = security_path_truncate(path);
2669 	if (!error) {
2670 		error = do_truncate(path->dentry, 0,
2671 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2672 				    filp);
2673 	}
2674 	put_write_access(inode);
2675 	return error;
2676 }
2677 
open_to_namei_flags(int flag)2678 static inline int open_to_namei_flags(int flag)
2679 {
2680 	if ((flag & O_ACCMODE) == 3)
2681 		flag--;
2682 	return flag;
2683 }
2684 
may_o_create(struct path * dir,struct dentry * dentry,umode_t mode)2685 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2686 {
2687 	int error = security_path_mknod(dir, dentry, mode, 0);
2688 	if (error)
2689 		return error;
2690 
2691 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2692 	if (error)
2693 		return error;
2694 
2695 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2696 }
2697 
2698 /*
2699  * Attempt to atomically look up, create and open a file from a negative
2700  * dentry.
2701  *
2702  * Returns 0 if successful.  The file will have been created and attached to
2703  * @file by the filesystem calling finish_open().
2704  *
2705  * Returns 1 if the file was looked up only or didn't need creating.  The
2706  * caller will need to perform the open themselves.  @path will have been
2707  * updated to point to the new dentry.  This may be negative.
2708  *
2709  * Returns an error code otherwise.
2710  */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct path * path,struct file * file,const struct open_flags * op,bool got_write,bool need_lookup,int * opened)2711 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2712 			struct path *path, struct file *file,
2713 			const struct open_flags *op,
2714 			bool got_write, bool need_lookup,
2715 			int *opened)
2716 {
2717 	struct inode *dir =  nd->path.dentry->d_inode;
2718 	unsigned open_flag = open_to_namei_flags(op->open_flag);
2719 	umode_t mode;
2720 	int error;
2721 	int acc_mode;
2722 	int create_error = 0;
2723 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2724 	bool excl;
2725 
2726 	BUG_ON(dentry->d_inode);
2727 
2728 	/* Don't create child dentry for a dead directory. */
2729 	if (unlikely(IS_DEADDIR(dir))) {
2730 		error = -ENOENT;
2731 		goto out;
2732 	}
2733 
2734 	mode = op->mode;
2735 	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2736 		mode &= ~current_umask();
2737 
2738 	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2739 	if (excl)
2740 		open_flag &= ~O_TRUNC;
2741 
2742 	/*
2743 	 * Checking write permission is tricky, bacuse we don't know if we are
2744 	 * going to actually need it: O_CREAT opens should work as long as the
2745 	 * file exists.  But checking existence breaks atomicity.  The trick is
2746 	 * to check access and if not granted clear O_CREAT from the flags.
2747 	 *
2748 	 * Another problem is returing the "right" error value (e.g. for an
2749 	 * O_EXCL open we want to return EEXIST not EROFS).
2750 	 */
2751 	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2752 	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2753 		if (!(open_flag & O_CREAT)) {
2754 			/*
2755 			 * No O_CREATE -> atomicity not a requirement -> fall
2756 			 * back to lookup + open
2757 			 */
2758 			goto no_open;
2759 		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2760 			/* Fall back and fail with the right error */
2761 			create_error = -EROFS;
2762 			goto no_open;
2763 		} else {
2764 			/* No side effects, safe to clear O_CREAT */
2765 			create_error = -EROFS;
2766 			open_flag &= ~O_CREAT;
2767 		}
2768 	}
2769 
2770 	if (open_flag & O_CREAT) {
2771 		error = may_o_create(&nd->path, dentry, mode);
2772 		if (error) {
2773 			create_error = error;
2774 			if (open_flag & O_EXCL)
2775 				goto no_open;
2776 			open_flag &= ~O_CREAT;
2777 		}
2778 	}
2779 
2780 	if (nd->flags & LOOKUP_DIRECTORY)
2781 		open_flag |= O_DIRECTORY;
2782 
2783 	file->f_path.dentry = DENTRY_NOT_SET;
2784 	file->f_path.mnt = nd->path.mnt;
2785 	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2786 				      opened);
2787 	if (error < 0) {
2788 		if (create_error && error == -ENOENT)
2789 			error = create_error;
2790 		goto out;
2791 	}
2792 
2793 	if (error) {	/* returned 1, that is */
2794 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2795 			error = -EIO;
2796 			goto out;
2797 		}
2798 		if (file->f_path.dentry) {
2799 			dput(dentry);
2800 			dentry = file->f_path.dentry;
2801 		}
2802 		if (*opened & FILE_CREATED)
2803 			fsnotify_create(dir, dentry);
2804 		if (!dentry->d_inode) {
2805 			WARN_ON(*opened & FILE_CREATED);
2806 			if (create_error) {
2807 				error = create_error;
2808 				goto out;
2809 			}
2810 		} else {
2811 			if (excl && !(*opened & FILE_CREATED)) {
2812 				error = -EEXIST;
2813 				goto out;
2814 			}
2815 		}
2816 		goto looked_up;
2817 	}
2818 
2819 	/*
2820 	 * We didn't have the inode before the open, so check open permission
2821 	 * here.
2822 	 */
2823 	acc_mode = op->acc_mode;
2824 	if (*opened & FILE_CREATED) {
2825 		WARN_ON(!(open_flag & O_CREAT));
2826 		fsnotify_create(dir, dentry);
2827 		acc_mode = MAY_OPEN;
2828 	}
2829 	error = may_open(&file->f_path, acc_mode, open_flag);
2830 	if (error)
2831 		fput(file);
2832 
2833 out:
2834 	dput(dentry);
2835 	return error;
2836 
2837 no_open:
2838 	if (need_lookup) {
2839 		dentry = lookup_real(dir, dentry, nd->flags);
2840 		if (IS_ERR(dentry))
2841 			return PTR_ERR(dentry);
2842 	}
2843 	if (create_error && !dentry->d_inode) {
2844 		error = create_error;
2845 		goto out;
2846 	}
2847 looked_up:
2848 	path->dentry = dentry;
2849 	path->mnt = nd->path.mnt;
2850 	return 1;
2851 }
2852 
2853 /*
2854  * Look up and maybe create and open the last component.
2855  *
2856  * Must be called with i_mutex held on parent.
2857  *
2858  * Returns 0 if the file was successfully atomically created (if necessary) and
2859  * opened.  In this case the file will be returned attached to @file.
2860  *
2861  * Returns 1 if the file was not completely opened at this time, though lookups
2862  * and creations will have been performed and the dentry returned in @path will
2863  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2864  * specified then a negative dentry may be returned.
2865  *
2866  * An error code is returned otherwise.
2867  *
2868  * FILE_CREATE will be set in @*opened if the dentry was created and will be
2869  * cleared otherwise prior to returning.
2870  */
lookup_open(struct nameidata * nd,struct path * path,struct file * file,const struct open_flags * op,bool got_write,int * opened)2871 static int lookup_open(struct nameidata *nd, struct path *path,
2872 			struct file *file,
2873 			const struct open_flags *op,
2874 			bool got_write, int *opened)
2875 {
2876 	struct dentry *dir = nd->path.dentry;
2877 	struct inode *dir_inode = dir->d_inode;
2878 	struct dentry *dentry;
2879 	int error;
2880 	bool need_lookup;
2881 
2882 	*opened &= ~FILE_CREATED;
2883 	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2884 	if (IS_ERR(dentry))
2885 		return PTR_ERR(dentry);
2886 
2887 	/* Cached positive dentry: will open in f_op->open */
2888 	if (!need_lookup && dentry->d_inode)
2889 		goto out_no_open;
2890 
2891 	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2892 		return atomic_open(nd, dentry, path, file, op, got_write,
2893 				   need_lookup, opened);
2894 	}
2895 
2896 	if (need_lookup) {
2897 		BUG_ON(dentry->d_inode);
2898 
2899 		dentry = lookup_real(dir_inode, dentry, nd->flags);
2900 		if (IS_ERR(dentry))
2901 			return PTR_ERR(dentry);
2902 	}
2903 
2904 	/* Negative dentry, just create the file */
2905 	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2906 		umode_t mode = op->mode;
2907 		if (!IS_POSIXACL(dir->d_inode))
2908 			mode &= ~current_umask();
2909 		/*
2910 		 * This write is needed to ensure that a
2911 		 * rw->ro transition does not occur between
2912 		 * the time when the file is created and when
2913 		 * a permanent write count is taken through
2914 		 * the 'struct file' in finish_open().
2915 		 */
2916 		if (!got_write) {
2917 			error = -EROFS;
2918 			goto out_dput;
2919 		}
2920 		*opened |= FILE_CREATED;
2921 		error = security_path_mknod(&nd->path, dentry, mode, 0);
2922 		if (error)
2923 			goto out_dput;
2924 		error = vfs_create(dir->d_inode, dentry, mode,
2925 				   nd->flags & LOOKUP_EXCL);
2926 		if (error)
2927 			goto out_dput;
2928 	}
2929 out_no_open:
2930 	path->dentry = dentry;
2931 	path->mnt = nd->path.mnt;
2932 	return 1;
2933 
2934 out_dput:
2935 	dput(dentry);
2936 	return error;
2937 }
2938 
2939 /*
2940  * Handle the last step of open()
2941  */
do_last(struct nameidata * nd,struct path * path,struct file * file,const struct open_flags * op,int * opened,struct filename * name)2942 static int do_last(struct nameidata *nd, struct path *path,
2943 		   struct file *file, const struct open_flags *op,
2944 		   int *opened, struct filename *name)
2945 {
2946 	struct dentry *dir = nd->path.dentry;
2947 	int open_flag = op->open_flag;
2948 	bool will_truncate = (open_flag & O_TRUNC) != 0;
2949 	bool got_write = false;
2950 	int acc_mode = op->acc_mode;
2951 	struct inode *inode;
2952 	bool symlink_ok = false;
2953 	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2954 	bool retried = false;
2955 	int error;
2956 
2957 	nd->flags &= ~LOOKUP_PARENT;
2958 	nd->flags |= op->intent;
2959 
2960 	if (nd->last_type != LAST_NORM) {
2961 		error = handle_dots(nd, nd->last_type);
2962 		if (error)
2963 			return error;
2964 		goto finish_open;
2965 	}
2966 
2967 	if (!(open_flag & O_CREAT)) {
2968 		if (nd->last.name[nd->last.len])
2969 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2970 		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2971 			symlink_ok = true;
2972 		/* we _can_ be in RCU mode here */
2973 		error = lookup_fast(nd, path, &inode);
2974 		if (likely(!error))
2975 			goto finish_lookup;
2976 
2977 		if (error < 0)
2978 			goto out;
2979 
2980 		BUG_ON(nd->inode != dir->d_inode);
2981 	} else {
2982 		/* create side of things */
2983 		/*
2984 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2985 		 * has been cleared when we got to the last component we are
2986 		 * about to look up
2987 		 */
2988 		error = complete_walk(nd);
2989 		if (error)
2990 			return error;
2991 
2992 		audit_inode(name, dir, LOOKUP_PARENT);
2993 		error = -EISDIR;
2994 		/* trailing slashes? */
2995 		if (nd->last.name[nd->last.len])
2996 			goto out;
2997 	}
2998 
2999 retry_lookup:
3000 	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3001 		error = mnt_want_write(nd->path.mnt);
3002 		if (!error)
3003 			got_write = true;
3004 		/*
3005 		 * do _not_ fail yet - we might not need that or fail with
3006 		 * a different error; let lookup_open() decide; we'll be
3007 		 * dropping this one anyway.
3008 		 */
3009 	}
3010 	mutex_lock(&dir->d_inode->i_mutex);
3011 	error = lookup_open(nd, path, file, op, got_write, opened);
3012 	mutex_unlock(&dir->d_inode->i_mutex);
3013 
3014 	if (error <= 0) {
3015 		if (error)
3016 			goto out;
3017 
3018 		if ((*opened & FILE_CREATED) ||
3019 		    !S_ISREG(file_inode(file)->i_mode))
3020 			will_truncate = false;
3021 
3022 		audit_inode(name, file->f_path.dentry, 0);
3023 		goto opened;
3024 	}
3025 
3026 	if (*opened & FILE_CREATED) {
3027 		/* Don't check for write permission, don't truncate */
3028 		open_flag &= ~O_TRUNC;
3029 		will_truncate = false;
3030 		acc_mode = MAY_OPEN;
3031 		path_to_nameidata(path, nd);
3032 		goto finish_open_created;
3033 	}
3034 
3035 	/*
3036 	 * create/update audit record if it already exists.
3037 	 */
3038 	if (d_is_positive(path->dentry))
3039 		audit_inode(name, path->dentry, 0);
3040 
3041 	/*
3042 	 * If atomic_open() acquired write access it is dropped now due to
3043 	 * possible mount and symlink following (this might be optimized away if
3044 	 * necessary...)
3045 	 */
3046 	if (got_write) {
3047 		mnt_drop_write(nd->path.mnt);
3048 		got_write = false;
3049 	}
3050 
3051 	error = -EEXIST;
3052 	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3053 		goto exit_dput;
3054 
3055 	error = follow_managed(path, nd->flags);
3056 	if (error < 0)
3057 		goto exit_dput;
3058 
3059 	if (error)
3060 		nd->flags |= LOOKUP_JUMPED;
3061 
3062 	BUG_ON(nd->flags & LOOKUP_RCU);
3063 	inode = path->dentry->d_inode;
3064 	error = -ENOENT;
3065 	if (d_is_negative(path->dentry)) {
3066 		path_to_nameidata(path, nd);
3067 		goto out;
3068 	}
3069 	inode = path->dentry->d_inode;
3070 finish_lookup:
3071 	/* we _can_ be in RCU mode here */
3072 	if (should_follow_link(path->dentry, !symlink_ok)) {
3073 		if (nd->flags & LOOKUP_RCU) {
3074 			if (unlikely(nd->path.mnt != path->mnt ||
3075 				     unlazy_walk(nd, path->dentry))) {
3076 				error = -ECHILD;
3077 				goto out;
3078 			}
3079 		}
3080 		BUG_ON(inode != path->dentry->d_inode);
3081 		return 1;
3082 	}
3083 
3084 	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3085 		path_to_nameidata(path, nd);
3086 	} else {
3087 		save_parent.dentry = nd->path.dentry;
3088 		save_parent.mnt = mntget(path->mnt);
3089 		nd->path.dentry = path->dentry;
3090 
3091 	}
3092 	nd->inode = inode;
3093 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3094 finish_open:
3095 	error = complete_walk(nd);
3096 	if (error) {
3097 		path_put(&save_parent);
3098 		return error;
3099 	}
3100 	audit_inode(name, nd->path.dentry, 0);
3101 	error = -EISDIR;
3102 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3103 		goto out;
3104 	error = -ENOTDIR;
3105 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3106 		goto out;
3107 	if (!d_is_reg(nd->path.dentry))
3108 		will_truncate = false;
3109 
3110 	if (will_truncate) {
3111 		error = mnt_want_write(nd->path.mnt);
3112 		if (error)
3113 			goto out;
3114 		got_write = true;
3115 	}
3116 finish_open_created:
3117 	error = may_open(&nd->path, acc_mode, open_flag);
3118 	if (error)
3119 		goto out;
3120 
3121 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3122 	error = vfs_open(&nd->path, file, current_cred());
3123 	if (!error) {
3124 		*opened |= FILE_OPENED;
3125 	} else {
3126 		if (error == -EOPENSTALE)
3127 			goto stale_open;
3128 		goto out;
3129 	}
3130 opened:
3131 	error = open_check_o_direct(file);
3132 	if (error)
3133 		goto exit_fput;
3134 	error = ima_file_check(file, op->acc_mode, *opened);
3135 	if (error)
3136 		goto exit_fput;
3137 
3138 	if (will_truncate) {
3139 		error = handle_truncate(file);
3140 		if (error)
3141 			goto exit_fput;
3142 	}
3143 out:
3144 	if (unlikely(error > 0)) {
3145 		WARN_ON(1);
3146 		error = -EINVAL;
3147 	}
3148 	if (got_write)
3149 		mnt_drop_write(nd->path.mnt);
3150 	path_put(&save_parent);
3151 	terminate_walk(nd);
3152 	return error;
3153 
3154 exit_dput:
3155 	path_put_conditional(path, nd);
3156 	goto out;
3157 exit_fput:
3158 	fput(file);
3159 	goto out;
3160 
3161 stale_open:
3162 	/* If no saved parent or already retried then can't retry */
3163 	if (!save_parent.dentry || retried)
3164 		goto out;
3165 
3166 	BUG_ON(save_parent.dentry != dir);
3167 	path_put(&nd->path);
3168 	nd->path = save_parent;
3169 	nd->inode = dir->d_inode;
3170 	save_parent.mnt = NULL;
3171 	save_parent.dentry = NULL;
3172 	if (got_write) {
3173 		mnt_drop_write(nd->path.mnt);
3174 		got_write = false;
3175 	}
3176 	retried = true;
3177 	goto retry_lookup;
3178 }
3179 
do_tmpfile(int dfd,struct filename * pathname,struct nameidata * nd,int flags,const struct open_flags * op,struct file * file,int * opened)3180 static int do_tmpfile(int dfd, struct filename *pathname,
3181 		struct nameidata *nd, int flags,
3182 		const struct open_flags *op,
3183 		struct file *file, int *opened)
3184 {
3185 	static const struct qstr name = QSTR_INIT("/", 1);
3186 	struct dentry *dentry, *child;
3187 	struct inode *dir;
3188 	int error = path_lookupat(dfd, pathname,
3189 				  flags | LOOKUP_DIRECTORY, nd);
3190 	if (unlikely(error))
3191 		return error;
3192 	error = mnt_want_write(nd->path.mnt);
3193 	if (unlikely(error))
3194 		goto out;
3195 	/* we want directory to be writable */
3196 	error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3197 	if (error)
3198 		goto out2;
3199 	dentry = nd->path.dentry;
3200 	dir = dentry->d_inode;
3201 	if (!dir->i_op->tmpfile) {
3202 		error = -EOPNOTSUPP;
3203 		goto out2;
3204 	}
3205 	child = d_alloc(dentry, &name);
3206 	if (unlikely(!child)) {
3207 		error = -ENOMEM;
3208 		goto out2;
3209 	}
3210 	nd->flags &= ~LOOKUP_DIRECTORY;
3211 	nd->flags |= op->intent;
3212 	dput(nd->path.dentry);
3213 	nd->path.dentry = child;
3214 	error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3215 	if (error)
3216 		goto out2;
3217 	audit_inode(pathname, nd->path.dentry, 0);
3218 	/* Don't check for other permissions, the inode was just created */
3219 	error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3220 	if (error)
3221 		goto out2;
3222 	file->f_path.mnt = nd->path.mnt;
3223 	error = finish_open(file, nd->path.dentry, NULL, opened);
3224 	if (error)
3225 		goto out2;
3226 	error = open_check_o_direct(file);
3227 	if (error) {
3228 		fput(file);
3229 	} else if (!(op->open_flag & O_EXCL)) {
3230 		struct inode *inode = file_inode(file);
3231 		spin_lock(&inode->i_lock);
3232 		inode->i_state |= I_LINKABLE;
3233 		spin_unlock(&inode->i_lock);
3234 	}
3235 out2:
3236 	mnt_drop_write(nd->path.mnt);
3237 out:
3238 	path_put(&nd->path);
3239 	return error;
3240 }
3241 
path_openat(int dfd,struct filename * pathname,struct nameidata * nd,const struct open_flags * op,int flags)3242 static struct file *path_openat(int dfd, struct filename *pathname,
3243 		struct nameidata *nd, const struct open_flags *op, int flags)
3244 {
3245 	struct file *file;
3246 	struct path path;
3247 	int opened = 0;
3248 	int error;
3249 
3250 	file = get_empty_filp();
3251 	if (IS_ERR(file))
3252 		return file;
3253 
3254 	file->f_flags = op->open_flag;
3255 
3256 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3257 		error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3258 		goto out2;
3259 	}
3260 
3261 	error = path_init(dfd, pathname, flags, nd);
3262 	if (unlikely(error))
3263 		goto out;
3264 
3265 	error = do_last(nd, &path, file, op, &opened, pathname);
3266 	while (unlikely(error > 0)) { /* trailing symlink */
3267 		struct path link = path;
3268 		void *cookie;
3269 		if (!(nd->flags & LOOKUP_FOLLOW)) {
3270 			path_put_conditional(&path, nd);
3271 			path_put(&nd->path);
3272 			error = -ELOOP;
3273 			break;
3274 		}
3275 		error = may_follow_link(&link, nd);
3276 		if (unlikely(error))
3277 			break;
3278 		nd->flags |= LOOKUP_PARENT;
3279 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3280 		error = follow_link(&link, nd, &cookie);
3281 		if (unlikely(error))
3282 			break;
3283 		error = do_last(nd, &path, file, op, &opened, pathname);
3284 		put_link(nd, &link, cookie);
3285 	}
3286 out:
3287 	path_cleanup(nd);
3288 out2:
3289 	if (!(opened & FILE_OPENED)) {
3290 		BUG_ON(!error);
3291 		put_filp(file);
3292 	}
3293 	if (unlikely(error)) {
3294 		if (error == -EOPENSTALE) {
3295 			if (flags & LOOKUP_RCU)
3296 				error = -ECHILD;
3297 			else
3298 				error = -ESTALE;
3299 		}
3300 		file = ERR_PTR(error);
3301 	}
3302 	return file;
3303 }
3304 
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)3305 struct file *do_filp_open(int dfd, struct filename *pathname,
3306 		const struct open_flags *op)
3307 {
3308 	struct nameidata nd;
3309 	int flags = op->lookup_flags;
3310 	struct file *filp;
3311 
3312 	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3313 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3314 		filp = path_openat(dfd, pathname, &nd, op, flags);
3315 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3316 		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3317 	return filp;
3318 }
3319 
do_file_open_root(struct dentry * dentry,struct vfsmount * mnt,const char * name,const struct open_flags * op)3320 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3321 		const char *name, const struct open_flags *op)
3322 {
3323 	struct nameidata nd;
3324 	struct file *file;
3325 	struct filename *filename;
3326 	int flags = op->lookup_flags | LOOKUP_ROOT;
3327 
3328 	nd.root.mnt = mnt;
3329 	nd.root.dentry = dentry;
3330 
3331 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3332 		return ERR_PTR(-ELOOP);
3333 
3334 	filename = getname_kernel(name);
3335 	if (unlikely(IS_ERR(filename)))
3336 		return ERR_CAST(filename);
3337 
3338 	file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3339 	if (unlikely(file == ERR_PTR(-ECHILD)))
3340 		file = path_openat(-1, filename, &nd, op, flags);
3341 	if (unlikely(file == ERR_PTR(-ESTALE)))
3342 		file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3343 	putname(filename);
3344 	return file;
3345 }
3346 
filename_create(int dfd,struct filename * name,struct path * path,unsigned int lookup_flags)3347 static struct dentry *filename_create(int dfd, struct filename *name,
3348 				struct path *path, unsigned int lookup_flags)
3349 {
3350 	struct dentry *dentry = ERR_PTR(-EEXIST);
3351 	struct nameidata nd;
3352 	int err2;
3353 	int error;
3354 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3355 
3356 	/*
3357 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3358 	 * other flags passed in are ignored!
3359 	 */
3360 	lookup_flags &= LOOKUP_REVAL;
3361 
3362 	error = filename_lookup(dfd, name, LOOKUP_PARENT|lookup_flags, &nd);
3363 	if (error)
3364 		return ERR_PTR(error);
3365 
3366 	/*
3367 	 * Yucky last component or no last component at all?
3368 	 * (foo/., foo/.., /////)
3369 	 */
3370 	if (nd.last_type != LAST_NORM)
3371 		goto out;
3372 	nd.flags &= ~LOOKUP_PARENT;
3373 	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3374 
3375 	/* don't fail immediately if it's r/o, at least try to report other errors */
3376 	err2 = mnt_want_write(nd.path.mnt);
3377 	/*
3378 	 * Do the final lookup.
3379 	 */
3380 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3381 	dentry = lookup_hash(&nd);
3382 	if (IS_ERR(dentry))
3383 		goto unlock;
3384 
3385 	error = -EEXIST;
3386 	if (d_is_positive(dentry))
3387 		goto fail;
3388 
3389 	/*
3390 	 * Special case - lookup gave negative, but... we had foo/bar/
3391 	 * From the vfs_mknod() POV we just have a negative dentry -
3392 	 * all is fine. Let's be bastards - you had / on the end, you've
3393 	 * been asking for (non-existent) directory. -ENOENT for you.
3394 	 */
3395 	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3396 		error = -ENOENT;
3397 		goto fail;
3398 	}
3399 	if (unlikely(err2)) {
3400 		error = err2;
3401 		goto fail;
3402 	}
3403 	*path = nd.path;
3404 	return dentry;
3405 fail:
3406 	dput(dentry);
3407 	dentry = ERR_PTR(error);
3408 unlock:
3409 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3410 	if (!err2)
3411 		mnt_drop_write(nd.path.mnt);
3412 out:
3413 	path_put(&nd.path);
3414 	return dentry;
3415 }
3416 
kern_path_create(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)3417 struct dentry *kern_path_create(int dfd, const char *pathname,
3418 				struct path *path, unsigned int lookup_flags)
3419 {
3420 	struct filename *filename = getname_kernel(pathname);
3421 	struct dentry *res;
3422 
3423 	if (IS_ERR(filename))
3424 		return ERR_CAST(filename);
3425 	res = filename_create(dfd, filename, path, lookup_flags);
3426 	putname(filename);
3427 	return res;
3428 }
3429 EXPORT_SYMBOL(kern_path_create);
3430 
done_path_create(struct path * path,struct dentry * dentry)3431 void done_path_create(struct path *path, struct dentry *dentry)
3432 {
3433 	dput(dentry);
3434 	mutex_unlock(&path->dentry->d_inode->i_mutex);
3435 	mnt_drop_write(path->mnt);
3436 	path_put(path);
3437 }
3438 EXPORT_SYMBOL(done_path_create);
3439 
user_path_create(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)3440 struct dentry *user_path_create(int dfd, const char __user *pathname,
3441 				struct path *path, unsigned int lookup_flags)
3442 {
3443 	struct filename *tmp = getname(pathname);
3444 	struct dentry *res;
3445 	if (IS_ERR(tmp))
3446 		return ERR_CAST(tmp);
3447 	res = filename_create(dfd, tmp, path, lookup_flags);
3448 	putname(tmp);
3449 	return res;
3450 }
3451 EXPORT_SYMBOL(user_path_create);
3452 
vfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3453 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3454 {
3455 	int error = may_create(dir, dentry);
3456 
3457 	if (error)
3458 		return error;
3459 
3460 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3461 		return -EPERM;
3462 
3463 	if (!dir->i_op->mknod)
3464 		return -EPERM;
3465 
3466 	error = devcgroup_inode_mknod(mode, dev);
3467 	if (error)
3468 		return error;
3469 
3470 	error = security_inode_mknod(dir, dentry, mode, dev);
3471 	if (error)
3472 		return error;
3473 
3474 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3475 	if (!error)
3476 		fsnotify_create(dir, dentry);
3477 	return error;
3478 }
3479 EXPORT_SYMBOL(vfs_mknod);
3480 
may_mknod(umode_t mode)3481 static int may_mknod(umode_t mode)
3482 {
3483 	switch (mode & S_IFMT) {
3484 	case S_IFREG:
3485 	case S_IFCHR:
3486 	case S_IFBLK:
3487 	case S_IFIFO:
3488 	case S_IFSOCK:
3489 	case 0: /* zero mode translates to S_IFREG */
3490 		return 0;
3491 	case S_IFDIR:
3492 		return -EPERM;
3493 	default:
3494 		return -EINVAL;
3495 	}
3496 }
3497 
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned,dev)3498 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3499 		unsigned, dev)
3500 {
3501 	struct dentry *dentry;
3502 	struct path path;
3503 	int error;
3504 	unsigned int lookup_flags = 0;
3505 
3506 	error = may_mknod(mode);
3507 	if (error)
3508 		return error;
3509 retry:
3510 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3511 	if (IS_ERR(dentry))
3512 		return PTR_ERR(dentry);
3513 
3514 	if (!IS_POSIXACL(path.dentry->d_inode))
3515 		mode &= ~current_umask();
3516 	error = security_path_mknod(&path, dentry, mode, dev);
3517 	if (error)
3518 		goto out;
3519 	switch (mode & S_IFMT) {
3520 		case 0: case S_IFREG:
3521 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3522 			break;
3523 		case S_IFCHR: case S_IFBLK:
3524 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3525 					new_decode_dev(dev));
3526 			break;
3527 		case S_IFIFO: case S_IFSOCK:
3528 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3529 			break;
3530 	}
3531 out:
3532 	done_path_create(&path, dentry);
3533 	if (retry_estale(error, lookup_flags)) {
3534 		lookup_flags |= LOOKUP_REVAL;
3535 		goto retry;
3536 	}
3537 	return error;
3538 }
3539 
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)3540 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3541 {
3542 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3543 }
3544 
vfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)3545 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3546 {
3547 	int error = may_create(dir, dentry);
3548 	unsigned max_links = dir->i_sb->s_max_links;
3549 
3550 	if (error)
3551 		return error;
3552 
3553 	if (!dir->i_op->mkdir)
3554 		return -EPERM;
3555 
3556 	mode &= (S_IRWXUGO|S_ISVTX);
3557 	error = security_inode_mkdir(dir, dentry, mode);
3558 	if (error)
3559 		return error;
3560 
3561 	if (max_links && dir->i_nlink >= max_links)
3562 		return -EMLINK;
3563 
3564 	error = dir->i_op->mkdir(dir, dentry, mode);
3565 	if (!error)
3566 		fsnotify_mkdir(dir, dentry);
3567 	return error;
3568 }
3569 EXPORT_SYMBOL(vfs_mkdir);
3570 
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)3571 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3572 {
3573 	struct dentry *dentry;
3574 	struct path path;
3575 	int error;
3576 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3577 
3578 retry:
3579 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3580 	if (IS_ERR(dentry))
3581 		return PTR_ERR(dentry);
3582 
3583 	if (!IS_POSIXACL(path.dentry->d_inode))
3584 		mode &= ~current_umask();
3585 	error = security_path_mkdir(&path, dentry, mode);
3586 	if (!error)
3587 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3588 	done_path_create(&path, dentry);
3589 	if (retry_estale(error, lookup_flags)) {
3590 		lookup_flags |= LOOKUP_REVAL;
3591 		goto retry;
3592 	}
3593 	return error;
3594 }
3595 
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)3596 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3597 {
3598 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3599 }
3600 
3601 /*
3602  * The dentry_unhash() helper will try to drop the dentry early: we
3603  * should have a usage count of 1 if we're the only user of this
3604  * dentry, and if that is true (possibly after pruning the dcache),
3605  * then we drop the dentry now.
3606  *
3607  * A low-level filesystem can, if it choses, legally
3608  * do a
3609  *
3610  *	if (!d_unhashed(dentry))
3611  *		return -EBUSY;
3612  *
3613  * if it cannot handle the case of removing a directory
3614  * that is still in use by something else..
3615  */
dentry_unhash(struct dentry * dentry)3616 void dentry_unhash(struct dentry *dentry)
3617 {
3618 	shrink_dcache_parent(dentry);
3619 	spin_lock(&dentry->d_lock);
3620 	if (dentry->d_lockref.count == 1)
3621 		__d_drop(dentry);
3622 	spin_unlock(&dentry->d_lock);
3623 }
3624 EXPORT_SYMBOL(dentry_unhash);
3625 
vfs_rmdir(struct inode * dir,struct dentry * dentry)3626 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3627 {
3628 	int error = may_delete(dir, dentry, 1);
3629 
3630 	if (error)
3631 		return error;
3632 
3633 	if (!dir->i_op->rmdir)
3634 		return -EPERM;
3635 
3636 	dget(dentry);
3637 	mutex_lock(&dentry->d_inode->i_mutex);
3638 
3639 	error = -EBUSY;
3640 	if (is_local_mountpoint(dentry))
3641 		goto out;
3642 
3643 	error = security_inode_rmdir(dir, dentry);
3644 	if (error)
3645 		goto out;
3646 
3647 	shrink_dcache_parent(dentry);
3648 	error = dir->i_op->rmdir(dir, dentry);
3649 	if (error)
3650 		goto out;
3651 
3652 	dentry->d_inode->i_flags |= S_DEAD;
3653 	dont_mount(dentry);
3654 	detach_mounts(dentry);
3655 
3656 out:
3657 	mutex_unlock(&dentry->d_inode->i_mutex);
3658 	dput(dentry);
3659 	if (!error)
3660 		d_delete(dentry);
3661 	return error;
3662 }
3663 EXPORT_SYMBOL(vfs_rmdir);
3664 
do_rmdir(int dfd,const char __user * pathname)3665 static long do_rmdir(int dfd, const char __user *pathname)
3666 {
3667 	int error = 0;
3668 	struct filename *name;
3669 	struct dentry *dentry;
3670 	struct nameidata nd;
3671 	unsigned int lookup_flags = 0;
3672 retry:
3673 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3674 	if (IS_ERR(name))
3675 		return PTR_ERR(name);
3676 
3677 	switch(nd.last_type) {
3678 	case LAST_DOTDOT:
3679 		error = -ENOTEMPTY;
3680 		goto exit1;
3681 	case LAST_DOT:
3682 		error = -EINVAL;
3683 		goto exit1;
3684 	case LAST_ROOT:
3685 		error = -EBUSY;
3686 		goto exit1;
3687 	}
3688 
3689 	nd.flags &= ~LOOKUP_PARENT;
3690 	error = mnt_want_write(nd.path.mnt);
3691 	if (error)
3692 		goto exit1;
3693 
3694 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3695 	dentry = lookup_hash(&nd);
3696 	error = PTR_ERR(dentry);
3697 	if (IS_ERR(dentry))
3698 		goto exit2;
3699 	if (!dentry->d_inode) {
3700 		error = -ENOENT;
3701 		goto exit3;
3702 	}
3703 	error = security_path_rmdir(&nd.path, dentry);
3704 	if (error)
3705 		goto exit3;
3706 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3707 exit3:
3708 	dput(dentry);
3709 exit2:
3710 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3711 	mnt_drop_write(nd.path.mnt);
3712 exit1:
3713 	path_put(&nd.path);
3714 	putname(name);
3715 	if (retry_estale(error, lookup_flags)) {
3716 		lookup_flags |= LOOKUP_REVAL;
3717 		goto retry;
3718 	}
3719 	return error;
3720 }
3721 
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)3722 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3723 {
3724 	return do_rmdir(AT_FDCWD, pathname);
3725 }
3726 
3727 /**
3728  * vfs_unlink - unlink a filesystem object
3729  * @dir:	parent directory
3730  * @dentry:	victim
3731  * @delegated_inode: returns victim inode, if the inode is delegated.
3732  *
3733  * The caller must hold dir->i_mutex.
3734  *
3735  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3736  * return a reference to the inode in delegated_inode.  The caller
3737  * should then break the delegation on that inode and retry.  Because
3738  * breaking a delegation may take a long time, the caller should drop
3739  * dir->i_mutex before doing so.
3740  *
3741  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3742  * be appropriate for callers that expect the underlying filesystem not
3743  * to be NFS exported.
3744  */
vfs_unlink(struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)3745 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3746 {
3747 	struct inode *target = dentry->d_inode;
3748 	int error = may_delete(dir, dentry, 0);
3749 
3750 	if (error)
3751 		return error;
3752 
3753 	if (!dir->i_op->unlink)
3754 		return -EPERM;
3755 
3756 	mutex_lock(&target->i_mutex);
3757 	if (is_local_mountpoint(dentry))
3758 		error = -EBUSY;
3759 	else {
3760 		error = security_inode_unlink(dir, dentry);
3761 		if (!error) {
3762 			error = try_break_deleg(target, delegated_inode);
3763 			if (error)
3764 				goto out;
3765 			error = dir->i_op->unlink(dir, dentry);
3766 			if (!error) {
3767 				dont_mount(dentry);
3768 				detach_mounts(dentry);
3769 			}
3770 		}
3771 	}
3772 out:
3773 	mutex_unlock(&target->i_mutex);
3774 
3775 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3776 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3777 		fsnotify_link_count(target);
3778 		d_delete(dentry);
3779 	}
3780 
3781 	return error;
3782 }
3783 EXPORT_SYMBOL(vfs_unlink);
3784 
3785 /*
3786  * Make sure that the actual truncation of the file will occur outside its
3787  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3788  * writeout happening, and we don't want to prevent access to the directory
3789  * while waiting on the I/O.
3790  */
do_unlinkat(int dfd,const char __user * pathname)3791 static long do_unlinkat(int dfd, const char __user *pathname)
3792 {
3793 	int error;
3794 	struct filename *name;
3795 	struct dentry *dentry;
3796 	struct nameidata nd;
3797 	struct inode *inode = NULL;
3798 	struct inode *delegated_inode = NULL;
3799 	unsigned int lookup_flags = 0;
3800 retry:
3801 	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3802 	if (IS_ERR(name))
3803 		return PTR_ERR(name);
3804 
3805 	error = -EISDIR;
3806 	if (nd.last_type != LAST_NORM)
3807 		goto exit1;
3808 
3809 	nd.flags &= ~LOOKUP_PARENT;
3810 	error = mnt_want_write(nd.path.mnt);
3811 	if (error)
3812 		goto exit1;
3813 retry_deleg:
3814 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3815 	dentry = lookup_hash(&nd);
3816 	error = PTR_ERR(dentry);
3817 	if (!IS_ERR(dentry)) {
3818 		/* Why not before? Because we want correct error value */
3819 		if (nd.last.name[nd.last.len])
3820 			goto slashes;
3821 		inode = dentry->d_inode;
3822 		if (d_is_negative(dentry))
3823 			goto slashes;
3824 		ihold(inode);
3825 		error = security_path_unlink(&nd.path, dentry);
3826 		if (error)
3827 			goto exit2;
3828 		error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3829 exit2:
3830 		dput(dentry);
3831 	}
3832 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3833 	if (inode)
3834 		iput(inode);	/* truncate the inode here */
3835 	inode = NULL;
3836 	if (delegated_inode) {
3837 		error = break_deleg_wait(&delegated_inode);
3838 		if (!error)
3839 			goto retry_deleg;
3840 	}
3841 	mnt_drop_write(nd.path.mnt);
3842 exit1:
3843 	path_put(&nd.path);
3844 	putname(name);
3845 	if (retry_estale(error, lookup_flags)) {
3846 		lookup_flags |= LOOKUP_REVAL;
3847 		inode = NULL;
3848 		goto retry;
3849 	}
3850 	return error;
3851 
3852 slashes:
3853 	if (d_is_negative(dentry))
3854 		error = -ENOENT;
3855 	else if (d_is_dir(dentry))
3856 		error = -EISDIR;
3857 	else
3858 		error = -ENOTDIR;
3859 	goto exit2;
3860 }
3861 
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)3862 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3863 {
3864 	if ((flag & ~AT_REMOVEDIR) != 0)
3865 		return -EINVAL;
3866 
3867 	if (flag & AT_REMOVEDIR)
3868 		return do_rmdir(dfd, pathname);
3869 
3870 	return do_unlinkat(dfd, pathname);
3871 }
3872 
SYSCALL_DEFINE1(unlink,const char __user *,pathname)3873 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3874 {
3875 	return do_unlinkat(AT_FDCWD, pathname);
3876 }
3877 
vfs_symlink(struct inode * dir,struct dentry * dentry,const char * oldname)3878 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3879 {
3880 	int error = may_create(dir, dentry);
3881 
3882 	if (error)
3883 		return error;
3884 
3885 	if (!dir->i_op->symlink)
3886 		return -EPERM;
3887 
3888 	error = security_inode_symlink(dir, dentry, oldname);
3889 	if (error)
3890 		return error;
3891 
3892 	error = dir->i_op->symlink(dir, dentry, oldname);
3893 	if (!error)
3894 		fsnotify_create(dir, dentry);
3895 	return error;
3896 }
3897 EXPORT_SYMBOL(vfs_symlink);
3898 
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)3899 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3900 		int, newdfd, const char __user *, newname)
3901 {
3902 	int error;
3903 	struct filename *from;
3904 	struct dentry *dentry;
3905 	struct path path;
3906 	unsigned int lookup_flags = 0;
3907 
3908 	from = getname(oldname);
3909 	if (IS_ERR(from))
3910 		return PTR_ERR(from);
3911 retry:
3912 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3913 	error = PTR_ERR(dentry);
3914 	if (IS_ERR(dentry))
3915 		goto out_putname;
3916 
3917 	error = security_path_symlink(&path, dentry, from->name);
3918 	if (!error)
3919 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3920 	done_path_create(&path, dentry);
3921 	if (retry_estale(error, lookup_flags)) {
3922 		lookup_flags |= LOOKUP_REVAL;
3923 		goto retry;
3924 	}
3925 out_putname:
3926 	putname(from);
3927 	return error;
3928 }
3929 
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)3930 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3931 {
3932 	return sys_symlinkat(oldname, AT_FDCWD, newname);
3933 }
3934 
3935 /**
3936  * vfs_link - create a new link
3937  * @old_dentry:	object to be linked
3938  * @dir:	new parent
3939  * @new_dentry:	where to create the new link
3940  * @delegated_inode: returns inode needing a delegation break
3941  *
3942  * The caller must hold dir->i_mutex
3943  *
3944  * If vfs_link discovers a delegation on the to-be-linked file in need
3945  * of breaking, it will return -EWOULDBLOCK and return a reference to the
3946  * inode in delegated_inode.  The caller should then break the delegation
3947  * and retry.  Because breaking a delegation may take a long time, the
3948  * caller should drop the i_mutex before doing so.
3949  *
3950  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3951  * be appropriate for callers that expect the underlying filesystem not
3952  * to be NFS exported.
3953  */
vfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)3954 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3955 {
3956 	struct inode *inode = old_dentry->d_inode;
3957 	unsigned max_links = dir->i_sb->s_max_links;
3958 	int error;
3959 
3960 	if (!inode)
3961 		return -ENOENT;
3962 
3963 	error = may_create(dir, new_dentry);
3964 	if (error)
3965 		return error;
3966 
3967 	if (dir->i_sb != inode->i_sb)
3968 		return -EXDEV;
3969 
3970 	/*
3971 	 * A link to an append-only or immutable file cannot be created.
3972 	 */
3973 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3974 		return -EPERM;
3975 	if (!dir->i_op->link)
3976 		return -EPERM;
3977 	if (S_ISDIR(inode->i_mode))
3978 		return -EPERM;
3979 
3980 	error = security_inode_link(old_dentry, dir, new_dentry);
3981 	if (error)
3982 		return error;
3983 
3984 	mutex_lock(&inode->i_mutex);
3985 	/* Make sure we don't allow creating hardlink to an unlinked file */
3986 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3987 		error =  -ENOENT;
3988 	else if (max_links && inode->i_nlink >= max_links)
3989 		error = -EMLINK;
3990 	else {
3991 		error = try_break_deleg(inode, delegated_inode);
3992 		if (!error)
3993 			error = dir->i_op->link(old_dentry, dir, new_dentry);
3994 	}
3995 
3996 	if (!error && (inode->i_state & I_LINKABLE)) {
3997 		spin_lock(&inode->i_lock);
3998 		inode->i_state &= ~I_LINKABLE;
3999 		spin_unlock(&inode->i_lock);
4000 	}
4001 	mutex_unlock(&inode->i_mutex);
4002 	if (!error)
4003 		fsnotify_link(dir, inode, new_dentry);
4004 	return error;
4005 }
4006 EXPORT_SYMBOL(vfs_link);
4007 
4008 /*
4009  * Hardlinks are often used in delicate situations.  We avoid
4010  * security-related surprises by not following symlinks on the
4011  * newname.  --KAB
4012  *
4013  * We don't follow them on the oldname either to be compatible
4014  * with linux 2.0, and to avoid hard-linking to directories
4015  * and other special files.  --ADM
4016  */
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)4017 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4018 		int, newdfd, const char __user *, newname, int, flags)
4019 {
4020 	struct dentry *new_dentry;
4021 	struct path old_path, new_path;
4022 	struct inode *delegated_inode = NULL;
4023 	int how = 0;
4024 	int error;
4025 
4026 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4027 		return -EINVAL;
4028 	/*
4029 	 * To use null names we require CAP_DAC_READ_SEARCH
4030 	 * This ensures that not everyone will be able to create
4031 	 * handlink using the passed filedescriptor.
4032 	 */
4033 	if (flags & AT_EMPTY_PATH) {
4034 		if (!capable(CAP_DAC_READ_SEARCH))
4035 			return -ENOENT;
4036 		how = LOOKUP_EMPTY;
4037 	}
4038 
4039 	if (flags & AT_SYMLINK_FOLLOW)
4040 		how |= LOOKUP_FOLLOW;
4041 retry:
4042 	error = user_path_at(olddfd, oldname, how, &old_path);
4043 	if (error)
4044 		return error;
4045 
4046 	new_dentry = user_path_create(newdfd, newname, &new_path,
4047 					(how & LOOKUP_REVAL));
4048 	error = PTR_ERR(new_dentry);
4049 	if (IS_ERR(new_dentry))
4050 		goto out;
4051 
4052 	error = -EXDEV;
4053 	if (old_path.mnt != new_path.mnt)
4054 		goto out_dput;
4055 	error = may_linkat(&old_path);
4056 	if (unlikely(error))
4057 		goto out_dput;
4058 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4059 	if (error)
4060 		goto out_dput;
4061 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4062 out_dput:
4063 	done_path_create(&new_path, new_dentry);
4064 	if (delegated_inode) {
4065 		error = break_deleg_wait(&delegated_inode);
4066 		if (!error) {
4067 			path_put(&old_path);
4068 			goto retry;
4069 		}
4070 	}
4071 	if (retry_estale(error, how)) {
4072 		path_put(&old_path);
4073 		how |= LOOKUP_REVAL;
4074 		goto retry;
4075 	}
4076 out:
4077 	path_put(&old_path);
4078 
4079 	return error;
4080 }
4081 
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)4082 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4083 {
4084 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4085 }
4086 
4087 /**
4088  * vfs_rename - rename a filesystem object
4089  * @old_dir:	parent of source
4090  * @old_dentry:	source
4091  * @new_dir:	parent of destination
4092  * @new_dentry:	destination
4093  * @delegated_inode: returns an inode needing a delegation break
4094  * @flags:	rename flags
4095  *
4096  * The caller must hold multiple mutexes--see lock_rename()).
4097  *
4098  * If vfs_rename discovers a delegation in need of breaking at either
4099  * the source or destination, it will return -EWOULDBLOCK and return a
4100  * reference to the inode in delegated_inode.  The caller should then
4101  * break the delegation and retry.  Because breaking a delegation may
4102  * take a long time, the caller should drop all locks before doing
4103  * so.
4104  *
4105  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4106  * be appropriate for callers that expect the underlying filesystem not
4107  * to be NFS exported.
4108  *
4109  * The worst of all namespace operations - renaming directory. "Perverted"
4110  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4111  * Problems:
4112  *	a) we can get into loop creation.
4113  *	b) race potential - two innocent renames can create a loop together.
4114  *	   That's where 4.4 screws up. Current fix: serialization on
4115  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4116  *	   story.
4117  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4118  *	   and source (if it is not a directory).
4119  *	   And that - after we got ->i_mutex on parents (until then we don't know
4120  *	   whether the target exists).  Solution: try to be smart with locking
4121  *	   order for inodes.  We rely on the fact that tree topology may change
4122  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4123  *	   move will be locked.  Thus we can rank directories by the tree
4124  *	   (ancestors first) and rank all non-directories after them.
4125  *	   That works since everybody except rename does "lock parent, lookup,
4126  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4127  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4128  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4129  *	   we'd better make sure that there's no link(2) for them.
4130  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4131  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4132  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4133  *	   ->i_mutex on parents, which works but leads to some truly excessive
4134  *	   locking].
4135  */
vfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,struct inode ** delegated_inode,unsigned int flags)4136 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4137 	       struct inode *new_dir, struct dentry *new_dentry,
4138 	       struct inode **delegated_inode, unsigned int flags)
4139 {
4140 	int error;
4141 	bool is_dir = d_is_dir(old_dentry);
4142 	const unsigned char *old_name;
4143 	struct inode *source = old_dentry->d_inode;
4144 	struct inode *target = new_dentry->d_inode;
4145 	bool new_is_dir = false;
4146 	unsigned max_links = new_dir->i_sb->s_max_links;
4147 
4148 	if (source == target)
4149 		return 0;
4150 
4151 	error = may_delete(old_dir, old_dentry, is_dir);
4152 	if (error)
4153 		return error;
4154 
4155 	if (!target) {
4156 		error = may_create(new_dir, new_dentry);
4157 	} else {
4158 		new_is_dir = d_is_dir(new_dentry);
4159 
4160 		if (!(flags & RENAME_EXCHANGE))
4161 			error = may_delete(new_dir, new_dentry, is_dir);
4162 		else
4163 			error = may_delete(new_dir, new_dentry, new_is_dir);
4164 	}
4165 	if (error)
4166 		return error;
4167 
4168 	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4169 		return -EPERM;
4170 
4171 	if (flags && !old_dir->i_op->rename2)
4172 		return -EINVAL;
4173 
4174 	/*
4175 	 * If we are going to change the parent - check write permissions,
4176 	 * we'll need to flip '..'.
4177 	 */
4178 	if (new_dir != old_dir) {
4179 		if (is_dir) {
4180 			error = inode_permission(source, MAY_WRITE);
4181 			if (error)
4182 				return error;
4183 		}
4184 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4185 			error = inode_permission(target, MAY_WRITE);
4186 			if (error)
4187 				return error;
4188 		}
4189 	}
4190 
4191 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4192 				      flags);
4193 	if (error)
4194 		return error;
4195 
4196 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4197 	dget(new_dentry);
4198 	if (!is_dir || (flags & RENAME_EXCHANGE))
4199 		lock_two_nondirectories(source, target);
4200 	else if (target)
4201 		mutex_lock(&target->i_mutex);
4202 
4203 	error = -EBUSY;
4204 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4205 		goto out;
4206 
4207 	if (max_links && new_dir != old_dir) {
4208 		error = -EMLINK;
4209 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4210 			goto out;
4211 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4212 		    old_dir->i_nlink >= max_links)
4213 			goto out;
4214 	}
4215 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4216 		shrink_dcache_parent(new_dentry);
4217 	if (!is_dir) {
4218 		error = try_break_deleg(source, delegated_inode);
4219 		if (error)
4220 			goto out;
4221 	}
4222 	if (target && !new_is_dir) {
4223 		error = try_break_deleg(target, delegated_inode);
4224 		if (error)
4225 			goto out;
4226 	}
4227 	if (!old_dir->i_op->rename2) {
4228 		error = old_dir->i_op->rename(old_dir, old_dentry,
4229 					      new_dir, new_dentry);
4230 	} else {
4231 		WARN_ON(old_dir->i_op->rename != NULL);
4232 		error = old_dir->i_op->rename2(old_dir, old_dentry,
4233 					       new_dir, new_dentry, flags);
4234 	}
4235 	if (error)
4236 		goto out;
4237 
4238 	if (!(flags & RENAME_EXCHANGE) && target) {
4239 		if (is_dir)
4240 			target->i_flags |= S_DEAD;
4241 		dont_mount(new_dentry);
4242 		detach_mounts(new_dentry);
4243 	}
4244 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4245 		if (!(flags & RENAME_EXCHANGE))
4246 			d_move(old_dentry, new_dentry);
4247 		else
4248 			d_exchange(old_dentry, new_dentry);
4249 	}
4250 out:
4251 	if (!is_dir || (flags & RENAME_EXCHANGE))
4252 		unlock_two_nondirectories(source, target);
4253 	else if (target)
4254 		mutex_unlock(&target->i_mutex);
4255 	dput(new_dentry);
4256 	if (!error) {
4257 		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4258 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4259 		if (flags & RENAME_EXCHANGE) {
4260 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4261 				      new_is_dir, NULL, new_dentry);
4262 		}
4263 	}
4264 	fsnotify_oldname_free(old_name);
4265 
4266 	return error;
4267 }
4268 EXPORT_SYMBOL(vfs_rename);
4269 
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)4270 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4271 		int, newdfd, const char __user *, newname, unsigned int, flags)
4272 {
4273 	struct dentry *old_dir, *new_dir;
4274 	struct dentry *old_dentry, *new_dentry;
4275 	struct dentry *trap;
4276 	struct nameidata oldnd, newnd;
4277 	struct inode *delegated_inode = NULL;
4278 	struct filename *from;
4279 	struct filename *to;
4280 	unsigned int lookup_flags = 0;
4281 	bool should_retry = false;
4282 	int error;
4283 
4284 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4285 		return -EINVAL;
4286 
4287 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4288 	    (flags & RENAME_EXCHANGE))
4289 		return -EINVAL;
4290 
4291 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4292 		return -EPERM;
4293 
4294 retry:
4295 	from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4296 	if (IS_ERR(from)) {
4297 		error = PTR_ERR(from);
4298 		goto exit;
4299 	}
4300 
4301 	to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4302 	if (IS_ERR(to)) {
4303 		error = PTR_ERR(to);
4304 		goto exit1;
4305 	}
4306 
4307 	error = -EXDEV;
4308 	if (oldnd.path.mnt != newnd.path.mnt)
4309 		goto exit2;
4310 
4311 	old_dir = oldnd.path.dentry;
4312 	error = -EBUSY;
4313 	if (oldnd.last_type != LAST_NORM)
4314 		goto exit2;
4315 
4316 	new_dir = newnd.path.dentry;
4317 	if (flags & RENAME_NOREPLACE)
4318 		error = -EEXIST;
4319 	if (newnd.last_type != LAST_NORM)
4320 		goto exit2;
4321 
4322 	error = mnt_want_write(oldnd.path.mnt);
4323 	if (error)
4324 		goto exit2;
4325 
4326 	oldnd.flags &= ~LOOKUP_PARENT;
4327 	newnd.flags &= ~LOOKUP_PARENT;
4328 	if (!(flags & RENAME_EXCHANGE))
4329 		newnd.flags |= LOOKUP_RENAME_TARGET;
4330 
4331 retry_deleg:
4332 	trap = lock_rename(new_dir, old_dir);
4333 
4334 	old_dentry = lookup_hash(&oldnd);
4335 	error = PTR_ERR(old_dentry);
4336 	if (IS_ERR(old_dentry))
4337 		goto exit3;
4338 	/* source must exist */
4339 	error = -ENOENT;
4340 	if (d_is_negative(old_dentry))
4341 		goto exit4;
4342 	new_dentry = lookup_hash(&newnd);
4343 	error = PTR_ERR(new_dentry);
4344 	if (IS_ERR(new_dentry))
4345 		goto exit4;
4346 	error = -EEXIST;
4347 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4348 		goto exit5;
4349 	if (flags & RENAME_EXCHANGE) {
4350 		error = -ENOENT;
4351 		if (d_is_negative(new_dentry))
4352 			goto exit5;
4353 
4354 		if (!d_is_dir(new_dentry)) {
4355 			error = -ENOTDIR;
4356 			if (newnd.last.name[newnd.last.len])
4357 				goto exit5;
4358 		}
4359 	}
4360 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4361 	if (!d_is_dir(old_dentry)) {
4362 		error = -ENOTDIR;
4363 		if (oldnd.last.name[oldnd.last.len])
4364 			goto exit5;
4365 		if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4366 			goto exit5;
4367 	}
4368 	/* source should not be ancestor of target */
4369 	error = -EINVAL;
4370 	if (old_dentry == trap)
4371 		goto exit5;
4372 	/* target should not be an ancestor of source */
4373 	if (!(flags & RENAME_EXCHANGE))
4374 		error = -ENOTEMPTY;
4375 	if (new_dentry == trap)
4376 		goto exit5;
4377 
4378 	error = security_path_rename(&oldnd.path, old_dentry,
4379 				     &newnd.path, new_dentry, flags);
4380 	if (error)
4381 		goto exit5;
4382 	error = vfs_rename(old_dir->d_inode, old_dentry,
4383 			   new_dir->d_inode, new_dentry,
4384 			   &delegated_inode, flags);
4385 exit5:
4386 	dput(new_dentry);
4387 exit4:
4388 	dput(old_dentry);
4389 exit3:
4390 	unlock_rename(new_dir, old_dir);
4391 	if (delegated_inode) {
4392 		error = break_deleg_wait(&delegated_inode);
4393 		if (!error)
4394 			goto retry_deleg;
4395 	}
4396 	mnt_drop_write(oldnd.path.mnt);
4397 exit2:
4398 	if (retry_estale(error, lookup_flags))
4399 		should_retry = true;
4400 	path_put(&newnd.path);
4401 	putname(to);
4402 exit1:
4403 	path_put(&oldnd.path);
4404 	putname(from);
4405 	if (should_retry) {
4406 		should_retry = false;
4407 		lookup_flags |= LOOKUP_REVAL;
4408 		goto retry;
4409 	}
4410 exit:
4411 	return error;
4412 }
4413 
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)4414 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4415 		int, newdfd, const char __user *, newname)
4416 {
4417 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4418 }
4419 
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)4420 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4421 {
4422 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4423 }
4424 
vfs_whiteout(struct inode * dir,struct dentry * dentry)4425 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4426 {
4427 	int error = may_create(dir, dentry);
4428 	if (error)
4429 		return error;
4430 
4431 	if (!dir->i_op->mknod)
4432 		return -EPERM;
4433 
4434 	return dir->i_op->mknod(dir, dentry,
4435 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4436 }
4437 EXPORT_SYMBOL(vfs_whiteout);
4438 
readlink_copy(char __user * buffer,int buflen,const char * link)4439 int readlink_copy(char __user *buffer, int buflen, const char *link)
4440 {
4441 	int len = PTR_ERR(link);
4442 	if (IS_ERR(link))
4443 		goto out;
4444 
4445 	len = strlen(link);
4446 	if (len > (unsigned) buflen)
4447 		len = buflen;
4448 	if (copy_to_user(buffer, link, len))
4449 		len = -EFAULT;
4450 out:
4451 	return len;
4452 }
4453 EXPORT_SYMBOL(readlink_copy);
4454 
4455 /*
4456  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4457  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
4458  * using) it for any given inode is up to filesystem.
4459  */
generic_readlink(struct dentry * dentry,char __user * buffer,int buflen)4460 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4461 {
4462 	struct nameidata nd;
4463 	void *cookie;
4464 	int res;
4465 
4466 	nd.depth = 0;
4467 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4468 	if (IS_ERR(cookie))
4469 		return PTR_ERR(cookie);
4470 
4471 	res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4472 	if (dentry->d_inode->i_op->put_link)
4473 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4474 	return res;
4475 }
4476 EXPORT_SYMBOL(generic_readlink);
4477 
4478 /* get the link contents into pagecache */
page_getlink(struct dentry * dentry,struct page ** ppage)4479 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4480 {
4481 	char *kaddr;
4482 	struct page *page;
4483 	struct address_space *mapping = dentry->d_inode->i_mapping;
4484 	page = read_mapping_page(mapping, 0, NULL);
4485 	if (IS_ERR(page))
4486 		return (char*)page;
4487 	*ppage = page;
4488 	kaddr = kmap(page);
4489 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4490 	return kaddr;
4491 }
4492 
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)4493 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4494 {
4495 	struct page *page = NULL;
4496 	int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4497 	if (page) {
4498 		kunmap(page);
4499 		page_cache_release(page);
4500 	}
4501 	return res;
4502 }
4503 EXPORT_SYMBOL(page_readlink);
4504 
page_follow_link_light(struct dentry * dentry,struct nameidata * nd)4505 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4506 {
4507 	struct page *page = NULL;
4508 	nd_set_link(nd, page_getlink(dentry, &page));
4509 	return page;
4510 }
4511 EXPORT_SYMBOL(page_follow_link_light);
4512 
page_put_link(struct dentry * dentry,struct nameidata * nd,void * cookie)4513 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4514 {
4515 	struct page *page = cookie;
4516 
4517 	if (page) {
4518 		kunmap(page);
4519 		page_cache_release(page);
4520 	}
4521 }
4522 EXPORT_SYMBOL(page_put_link);
4523 
4524 /*
4525  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4526  */
__page_symlink(struct inode * inode,const char * symname,int len,int nofs)4527 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4528 {
4529 	struct address_space *mapping = inode->i_mapping;
4530 	struct page *page;
4531 	void *fsdata;
4532 	int err;
4533 	char *kaddr;
4534 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4535 	if (nofs)
4536 		flags |= AOP_FLAG_NOFS;
4537 
4538 retry:
4539 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4540 				flags, &page, &fsdata);
4541 	if (err)
4542 		goto fail;
4543 
4544 	kaddr = kmap_atomic(page);
4545 	memcpy(kaddr, symname, len-1);
4546 	kunmap_atomic(kaddr);
4547 
4548 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4549 							page, fsdata);
4550 	if (err < 0)
4551 		goto fail;
4552 	if (err < len-1)
4553 		goto retry;
4554 
4555 	mark_inode_dirty(inode);
4556 	return 0;
4557 fail:
4558 	return err;
4559 }
4560 EXPORT_SYMBOL(__page_symlink);
4561 
page_symlink(struct inode * inode,const char * symname,int len)4562 int page_symlink(struct inode *inode, const char *symname, int len)
4563 {
4564 	return __page_symlink(inode, symname, len,
4565 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4566 }
4567 EXPORT_SYMBOL(page_symlink);
4568 
4569 const struct inode_operations page_symlink_inode_operations = {
4570 	.readlink	= generic_readlink,
4571 	.follow_link	= page_follow_link_light,
4572 	.put_link	= page_put_link,
4573 };
4574 EXPORT_SYMBOL(page_symlink_inode_operations);
4575