1 /*
2 * isp.c
3 *
4 * TI OMAP3 ISP - Core
5 *
6 * Copyright (C) 2006-2010 Nokia Corporation
7 * Copyright (C) 2007-2009 Texas Instruments, Inc.
8 *
9 * Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
10 * Sakari Ailus <sakari.ailus@iki.fi>
11 *
12 * Contributors:
13 * Laurent Pinchart <laurent.pinchart@ideasonboard.com>
14 * Sakari Ailus <sakari.ailus@iki.fi>
15 * David Cohen <dacohen@gmail.com>
16 * Stanimir Varbanov <svarbanov@mm-sol.com>
17 * Vimarsh Zutshi <vimarsh.zutshi@gmail.com>
18 * Tuukka Toivonen <tuukkat76@gmail.com>
19 * Sergio Aguirre <saaguirre@ti.com>
20 * Antti Koskipaa <akoskipa@gmail.com>
21 * Ivan T. Ivanov <iivanov@mm-sol.com>
22 * RaniSuneela <r-m@ti.com>
23 * Atanas Filipov <afilipov@mm-sol.com>
24 * Gjorgji Rosikopulos <grosikopulos@mm-sol.com>
25 * Hiroshi DOYU <hiroshi.doyu@nokia.com>
26 * Nayden Kanchev <nkanchev@mm-sol.com>
27 * Phil Carmody <ext-phil.2.carmody@nokia.com>
28 * Artem Bityutskiy <artem.bityutskiy@nokia.com>
29 * Dominic Curran <dcurran@ti.com>
30 * Ilkka Myllyperkio <ilkka.myllyperkio@sofica.fi>
31 * Pallavi Kulkarni <p-kulkarni@ti.com>
32 * Vaibhav Hiremath <hvaibhav@ti.com>
33 * Mohit Jalori <mjalori@ti.com>
34 * Sameer Venkatraman <sameerv@ti.com>
35 * Senthilvadivu Guruswamy <svadivu@ti.com>
36 * Thara Gopinath <thara@ti.com>
37 * Toni Leinonen <toni.leinonen@nokia.com>
38 * Troy Laramy <t-laramy@ti.com>
39 *
40 * This program is free software; you can redistribute it and/or modify
41 * it under the terms of the GNU General Public License version 2 as
42 * published by the Free Software Foundation.
43 */
44
45 #include <asm/cacheflush.h>
46
47 #include <linux/clk.h>
48 #include <linux/clkdev.h>
49 #include <linux/delay.h>
50 #include <linux/device.h>
51 #include <linux/dma-mapping.h>
52 #include <linux/i2c.h>
53 #include <linux/interrupt.h>
54 #include <linux/mfd/syscon.h>
55 #include <linux/module.h>
56 #include <linux/omap-iommu.h>
57 #include <linux/platform_device.h>
58 #include <linux/regulator/consumer.h>
59 #include <linux/slab.h>
60 #include <linux/sched.h>
61 #include <linux/vmalloc.h>
62
63 #include <asm/dma-iommu.h>
64
65 #include <media/v4l2-common.h>
66 #include <media/v4l2-device.h>
67 #include <media/v4l2-of.h>
68
69 #include "isp.h"
70 #include "ispreg.h"
71 #include "ispccdc.h"
72 #include "isppreview.h"
73 #include "ispresizer.h"
74 #include "ispcsi2.h"
75 #include "ispccp2.h"
76 #include "isph3a.h"
77 #include "isphist.h"
78
79 static unsigned int autoidle;
80 module_param(autoidle, int, 0444);
81 MODULE_PARM_DESC(autoidle, "Enable OMAP3ISP AUTOIDLE support");
82
83 static void isp_save_ctx(struct isp_device *isp);
84
85 static void isp_restore_ctx(struct isp_device *isp);
86
87 static const struct isp_res_mapping isp_res_maps[] = {
88 {
89 .isp_rev = ISP_REVISION_2_0,
90 .offset = {
91 /* first MMIO area */
92 0x0000, /* base, len 0x0070 */
93 0x0400, /* ccp2, len 0x01f0 */
94 0x0600, /* ccdc, len 0x00a8 */
95 0x0a00, /* hist, len 0x0048 */
96 0x0c00, /* h3a, len 0x0060 */
97 0x0e00, /* preview, len 0x00a0 */
98 0x1000, /* resizer, len 0x00ac */
99 0x1200, /* sbl, len 0x00fc */
100 /* second MMIO area */
101 0x0000, /* csi2a, len 0x0170 */
102 0x0170, /* csiphy2, len 0x000c */
103 },
104 .syscon_offset = 0xdc,
105 .phy_type = ISP_PHY_TYPE_3430,
106 },
107 {
108 .isp_rev = ISP_REVISION_15_0,
109 .offset = {
110 /* first MMIO area */
111 0x0000, /* base, len 0x0070 */
112 0x0400, /* ccp2, len 0x01f0 */
113 0x0600, /* ccdc, len 0x00a8 */
114 0x0a00, /* hist, len 0x0048 */
115 0x0c00, /* h3a, len 0x0060 */
116 0x0e00, /* preview, len 0x00a0 */
117 0x1000, /* resizer, len 0x00ac */
118 0x1200, /* sbl, len 0x00fc */
119 /* second MMIO area */
120 0x0000, /* csi2a, len 0x0170 (1st area) */
121 0x0170, /* csiphy2, len 0x000c */
122 0x01c0, /* csi2a, len 0x0040 (2nd area) */
123 0x0400, /* csi2c, len 0x0170 (1st area) */
124 0x0570, /* csiphy1, len 0x000c */
125 0x05c0, /* csi2c, len 0x0040 (2nd area) */
126 },
127 .syscon_offset = 0x2f0,
128 .phy_type = ISP_PHY_TYPE_3630,
129 },
130 };
131
132 /* Structure for saving/restoring ISP module registers */
133 static struct isp_reg isp_reg_list[] = {
134 {OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG, 0},
135 {OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, 0},
136 {OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL, 0},
137 {0, ISP_TOK_TERM, 0}
138 };
139
140 /*
141 * omap3isp_flush - Post pending L3 bus writes by doing a register readback
142 * @isp: OMAP3 ISP device
143 *
144 * In order to force posting of pending writes, we need to write and
145 * readback the same register, in this case the revision register.
146 *
147 * See this link for reference:
148 * http://www.mail-archive.com/linux-omap@vger.kernel.org/msg08149.html
149 */
omap3isp_flush(struct isp_device * isp)150 void omap3isp_flush(struct isp_device *isp)
151 {
152 isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
153 isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
154 }
155
156 /* -----------------------------------------------------------------------------
157 * XCLK
158 */
159
160 #define to_isp_xclk(_hw) container_of(_hw, struct isp_xclk, hw)
161
isp_xclk_update(struct isp_xclk * xclk,u32 divider)162 static void isp_xclk_update(struct isp_xclk *xclk, u32 divider)
163 {
164 switch (xclk->id) {
165 case ISP_XCLK_A:
166 isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
167 ISPTCTRL_CTRL_DIVA_MASK,
168 divider << ISPTCTRL_CTRL_DIVA_SHIFT);
169 break;
170 case ISP_XCLK_B:
171 isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
172 ISPTCTRL_CTRL_DIVB_MASK,
173 divider << ISPTCTRL_CTRL_DIVB_SHIFT);
174 break;
175 }
176 }
177
isp_xclk_prepare(struct clk_hw * hw)178 static int isp_xclk_prepare(struct clk_hw *hw)
179 {
180 struct isp_xclk *xclk = to_isp_xclk(hw);
181
182 omap3isp_get(xclk->isp);
183
184 return 0;
185 }
186
isp_xclk_unprepare(struct clk_hw * hw)187 static void isp_xclk_unprepare(struct clk_hw *hw)
188 {
189 struct isp_xclk *xclk = to_isp_xclk(hw);
190
191 omap3isp_put(xclk->isp);
192 }
193
isp_xclk_enable(struct clk_hw * hw)194 static int isp_xclk_enable(struct clk_hw *hw)
195 {
196 struct isp_xclk *xclk = to_isp_xclk(hw);
197 unsigned long flags;
198
199 spin_lock_irqsave(&xclk->lock, flags);
200 isp_xclk_update(xclk, xclk->divider);
201 xclk->enabled = true;
202 spin_unlock_irqrestore(&xclk->lock, flags);
203
204 return 0;
205 }
206
isp_xclk_disable(struct clk_hw * hw)207 static void isp_xclk_disable(struct clk_hw *hw)
208 {
209 struct isp_xclk *xclk = to_isp_xclk(hw);
210 unsigned long flags;
211
212 spin_lock_irqsave(&xclk->lock, flags);
213 isp_xclk_update(xclk, 0);
214 xclk->enabled = false;
215 spin_unlock_irqrestore(&xclk->lock, flags);
216 }
217
isp_xclk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)218 static unsigned long isp_xclk_recalc_rate(struct clk_hw *hw,
219 unsigned long parent_rate)
220 {
221 struct isp_xclk *xclk = to_isp_xclk(hw);
222
223 return parent_rate / xclk->divider;
224 }
225
isp_xclk_calc_divider(unsigned long * rate,unsigned long parent_rate)226 static u32 isp_xclk_calc_divider(unsigned long *rate, unsigned long parent_rate)
227 {
228 u32 divider;
229
230 if (*rate >= parent_rate) {
231 *rate = parent_rate;
232 return ISPTCTRL_CTRL_DIV_BYPASS;
233 }
234
235 if (*rate == 0)
236 *rate = 1;
237
238 divider = DIV_ROUND_CLOSEST(parent_rate, *rate);
239 if (divider >= ISPTCTRL_CTRL_DIV_BYPASS)
240 divider = ISPTCTRL_CTRL_DIV_BYPASS - 1;
241
242 *rate = parent_rate / divider;
243 return divider;
244 }
245
isp_xclk_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)246 static long isp_xclk_round_rate(struct clk_hw *hw, unsigned long rate,
247 unsigned long *parent_rate)
248 {
249 isp_xclk_calc_divider(&rate, *parent_rate);
250 return rate;
251 }
252
isp_xclk_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)253 static int isp_xclk_set_rate(struct clk_hw *hw, unsigned long rate,
254 unsigned long parent_rate)
255 {
256 struct isp_xclk *xclk = to_isp_xclk(hw);
257 unsigned long flags;
258 u32 divider;
259
260 divider = isp_xclk_calc_divider(&rate, parent_rate);
261
262 spin_lock_irqsave(&xclk->lock, flags);
263
264 xclk->divider = divider;
265 if (xclk->enabled)
266 isp_xclk_update(xclk, divider);
267
268 spin_unlock_irqrestore(&xclk->lock, flags);
269
270 dev_dbg(xclk->isp->dev, "%s: cam_xclk%c set to %lu Hz (div %u)\n",
271 __func__, xclk->id == ISP_XCLK_A ? 'a' : 'b', rate, divider);
272 return 0;
273 }
274
275 static const struct clk_ops isp_xclk_ops = {
276 .prepare = isp_xclk_prepare,
277 .unprepare = isp_xclk_unprepare,
278 .enable = isp_xclk_enable,
279 .disable = isp_xclk_disable,
280 .recalc_rate = isp_xclk_recalc_rate,
281 .round_rate = isp_xclk_round_rate,
282 .set_rate = isp_xclk_set_rate,
283 };
284
285 static const char *isp_xclk_parent_name = "cam_mclk";
286
287 static const struct clk_init_data isp_xclk_init_data = {
288 .name = "cam_xclk",
289 .ops = &isp_xclk_ops,
290 .parent_names = &isp_xclk_parent_name,
291 .num_parents = 1,
292 };
293
isp_xclk_src_get(struct of_phandle_args * clkspec,void * data)294 static struct clk *isp_xclk_src_get(struct of_phandle_args *clkspec, void *data)
295 {
296 unsigned int idx = clkspec->args[0];
297 struct isp_device *isp = data;
298
299 if (idx >= ARRAY_SIZE(isp->xclks))
300 return ERR_PTR(-ENOENT);
301
302 return isp->xclks[idx].clk;
303 }
304
isp_xclk_init(struct isp_device * isp)305 static int isp_xclk_init(struct isp_device *isp)
306 {
307 struct device_node *np = isp->dev->of_node;
308 struct clk_init_data init;
309 unsigned int i;
310
311 for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i)
312 isp->xclks[i].clk = ERR_PTR(-EINVAL);
313
314 for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
315 struct isp_xclk *xclk = &isp->xclks[i];
316
317 xclk->isp = isp;
318 xclk->id = i == 0 ? ISP_XCLK_A : ISP_XCLK_B;
319 xclk->divider = 1;
320 spin_lock_init(&xclk->lock);
321
322 init.name = i == 0 ? "cam_xclka" : "cam_xclkb";
323 init.ops = &isp_xclk_ops;
324 init.parent_names = &isp_xclk_parent_name;
325 init.num_parents = 1;
326
327 xclk->hw.init = &init;
328 /*
329 * The first argument is NULL in order to avoid circular
330 * reference, as this driver takes reference on the
331 * sensor subdevice modules and the sensors would take
332 * reference on this module through clk_get().
333 */
334 xclk->clk = clk_register(NULL, &xclk->hw);
335 if (IS_ERR(xclk->clk))
336 return PTR_ERR(xclk->clk);
337 }
338
339 if (np)
340 of_clk_add_provider(np, isp_xclk_src_get, isp);
341
342 return 0;
343 }
344
isp_xclk_cleanup(struct isp_device * isp)345 static void isp_xclk_cleanup(struct isp_device *isp)
346 {
347 struct device_node *np = isp->dev->of_node;
348 unsigned int i;
349
350 if (np)
351 of_clk_del_provider(np);
352
353 for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
354 struct isp_xclk *xclk = &isp->xclks[i];
355
356 if (!IS_ERR(xclk->clk))
357 clk_unregister(xclk->clk);
358 }
359 }
360
361 /* -----------------------------------------------------------------------------
362 * Interrupts
363 */
364
365 /*
366 * isp_enable_interrupts - Enable ISP interrupts.
367 * @isp: OMAP3 ISP device
368 */
isp_enable_interrupts(struct isp_device * isp)369 static void isp_enable_interrupts(struct isp_device *isp)
370 {
371 static const u32 irq = IRQ0ENABLE_CSIA_IRQ
372 | IRQ0ENABLE_CSIB_IRQ
373 | IRQ0ENABLE_CCDC_LSC_PREF_ERR_IRQ
374 | IRQ0ENABLE_CCDC_LSC_DONE_IRQ
375 | IRQ0ENABLE_CCDC_VD0_IRQ
376 | IRQ0ENABLE_CCDC_VD1_IRQ
377 | IRQ0ENABLE_HS_VS_IRQ
378 | IRQ0ENABLE_HIST_DONE_IRQ
379 | IRQ0ENABLE_H3A_AWB_DONE_IRQ
380 | IRQ0ENABLE_H3A_AF_DONE_IRQ
381 | IRQ0ENABLE_PRV_DONE_IRQ
382 | IRQ0ENABLE_RSZ_DONE_IRQ;
383
384 isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
385 isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
386 }
387
388 /*
389 * isp_disable_interrupts - Disable ISP interrupts.
390 * @isp: OMAP3 ISP device
391 */
isp_disable_interrupts(struct isp_device * isp)392 static void isp_disable_interrupts(struct isp_device *isp)
393 {
394 isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
395 }
396
397 /*
398 * isp_core_init - ISP core settings
399 * @isp: OMAP3 ISP device
400 * @idle: Consider idle state.
401 *
402 * Set the power settings for the ISP and SBL bus and configure the HS/VS
403 * interrupt source.
404 *
405 * We need to configure the HS/VS interrupt source before interrupts get
406 * enabled, as the sensor might be free-running and the ISP default setting
407 * (HS edge) would put an unnecessary burden on the CPU.
408 */
isp_core_init(struct isp_device * isp,int idle)409 static void isp_core_init(struct isp_device *isp, int idle)
410 {
411 isp_reg_writel(isp,
412 ((idle ? ISP_SYSCONFIG_MIDLEMODE_SMARTSTANDBY :
413 ISP_SYSCONFIG_MIDLEMODE_FORCESTANDBY) <<
414 ISP_SYSCONFIG_MIDLEMODE_SHIFT) |
415 ((isp->revision == ISP_REVISION_15_0) ?
416 ISP_SYSCONFIG_AUTOIDLE : 0),
417 OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
418
419 isp_reg_writel(isp,
420 (isp->autoidle ? ISPCTRL_SBL_AUTOIDLE : 0) |
421 ISPCTRL_SYNC_DETECT_VSRISE,
422 OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
423 }
424
425 /*
426 * Configure the bridge and lane shifter. Valid inputs are
427 *
428 * CCDC_INPUT_PARALLEL: Parallel interface
429 * CCDC_INPUT_CSI2A: CSI2a receiver
430 * CCDC_INPUT_CCP2B: CCP2b receiver
431 * CCDC_INPUT_CSI2C: CSI2c receiver
432 *
433 * The bridge and lane shifter are configured according to the selected input
434 * and the ISP platform data.
435 */
omap3isp_configure_bridge(struct isp_device * isp,enum ccdc_input_entity input,const struct isp_parallel_cfg * parcfg,unsigned int shift,unsigned int bridge)436 void omap3isp_configure_bridge(struct isp_device *isp,
437 enum ccdc_input_entity input,
438 const struct isp_parallel_cfg *parcfg,
439 unsigned int shift, unsigned int bridge)
440 {
441 u32 ispctrl_val;
442
443 ispctrl_val = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
444 ispctrl_val &= ~ISPCTRL_SHIFT_MASK;
445 ispctrl_val &= ~ISPCTRL_PAR_CLK_POL_INV;
446 ispctrl_val &= ~ISPCTRL_PAR_SER_CLK_SEL_MASK;
447 ispctrl_val &= ~ISPCTRL_PAR_BRIDGE_MASK;
448 ispctrl_val |= bridge;
449
450 switch (input) {
451 case CCDC_INPUT_PARALLEL:
452 ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_PARALLEL;
453 ispctrl_val |= parcfg->clk_pol << ISPCTRL_PAR_CLK_POL_SHIFT;
454 shift += parcfg->data_lane_shift * 2;
455 break;
456
457 case CCDC_INPUT_CSI2A:
458 ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIA;
459 break;
460
461 case CCDC_INPUT_CCP2B:
462 ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIB;
463 break;
464
465 case CCDC_INPUT_CSI2C:
466 ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIC;
467 break;
468
469 default:
470 return;
471 }
472
473 ispctrl_val |= ((shift/2) << ISPCTRL_SHIFT_SHIFT) & ISPCTRL_SHIFT_MASK;
474
475 isp_reg_writel(isp, ispctrl_val, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
476 }
477
omap3isp_hist_dma_done(struct isp_device * isp)478 void omap3isp_hist_dma_done(struct isp_device *isp)
479 {
480 if (omap3isp_ccdc_busy(&isp->isp_ccdc) ||
481 omap3isp_stat_pcr_busy(&isp->isp_hist)) {
482 /* Histogram cannot be enabled in this frame anymore */
483 atomic_set(&isp->isp_hist.buf_err, 1);
484 dev_dbg(isp->dev, "hist: Out of synchronization with "
485 "CCDC. Ignoring next buffer.\n");
486 }
487 }
488
isp_isr_dbg(struct isp_device * isp,u32 irqstatus)489 static inline void isp_isr_dbg(struct isp_device *isp, u32 irqstatus)
490 {
491 static const char *name[] = {
492 "CSIA_IRQ",
493 "res1",
494 "res2",
495 "CSIB_LCM_IRQ",
496 "CSIB_IRQ",
497 "res5",
498 "res6",
499 "res7",
500 "CCDC_VD0_IRQ",
501 "CCDC_VD1_IRQ",
502 "CCDC_VD2_IRQ",
503 "CCDC_ERR_IRQ",
504 "H3A_AF_DONE_IRQ",
505 "H3A_AWB_DONE_IRQ",
506 "res14",
507 "res15",
508 "HIST_DONE_IRQ",
509 "CCDC_LSC_DONE",
510 "CCDC_LSC_PREFETCH_COMPLETED",
511 "CCDC_LSC_PREFETCH_ERROR",
512 "PRV_DONE_IRQ",
513 "CBUFF_IRQ",
514 "res22",
515 "res23",
516 "RSZ_DONE_IRQ",
517 "OVF_IRQ",
518 "res26",
519 "res27",
520 "MMU_ERR_IRQ",
521 "OCP_ERR_IRQ",
522 "SEC_ERR_IRQ",
523 "HS_VS_IRQ",
524 };
525 int i;
526
527 dev_dbg(isp->dev, "ISP IRQ: ");
528
529 for (i = 0; i < ARRAY_SIZE(name); i++) {
530 if ((1 << i) & irqstatus)
531 printk(KERN_CONT "%s ", name[i]);
532 }
533 printk(KERN_CONT "\n");
534 }
535
isp_isr_sbl(struct isp_device * isp)536 static void isp_isr_sbl(struct isp_device *isp)
537 {
538 struct device *dev = isp->dev;
539 struct isp_pipeline *pipe;
540 u32 sbl_pcr;
541
542 /*
543 * Handle shared buffer logic overflows for video buffers.
544 * ISPSBL_PCR_CCDCPRV_2_RSZ_OVF can be safely ignored.
545 */
546 sbl_pcr = isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
547 isp_reg_writel(isp, sbl_pcr, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
548 sbl_pcr &= ~ISPSBL_PCR_CCDCPRV_2_RSZ_OVF;
549
550 if (sbl_pcr)
551 dev_dbg(dev, "SBL overflow (PCR = 0x%08x)\n", sbl_pcr);
552
553 if (sbl_pcr & ISPSBL_PCR_CSIB_WBL_OVF) {
554 pipe = to_isp_pipeline(&isp->isp_ccp2.subdev.entity);
555 if (pipe != NULL)
556 pipe->error = true;
557 }
558
559 if (sbl_pcr & ISPSBL_PCR_CSIA_WBL_OVF) {
560 pipe = to_isp_pipeline(&isp->isp_csi2a.subdev.entity);
561 if (pipe != NULL)
562 pipe->error = true;
563 }
564
565 if (sbl_pcr & ISPSBL_PCR_CCDC_WBL_OVF) {
566 pipe = to_isp_pipeline(&isp->isp_ccdc.subdev.entity);
567 if (pipe != NULL)
568 pipe->error = true;
569 }
570
571 if (sbl_pcr & ISPSBL_PCR_PRV_WBL_OVF) {
572 pipe = to_isp_pipeline(&isp->isp_prev.subdev.entity);
573 if (pipe != NULL)
574 pipe->error = true;
575 }
576
577 if (sbl_pcr & (ISPSBL_PCR_RSZ1_WBL_OVF
578 | ISPSBL_PCR_RSZ2_WBL_OVF
579 | ISPSBL_PCR_RSZ3_WBL_OVF
580 | ISPSBL_PCR_RSZ4_WBL_OVF)) {
581 pipe = to_isp_pipeline(&isp->isp_res.subdev.entity);
582 if (pipe != NULL)
583 pipe->error = true;
584 }
585
586 if (sbl_pcr & ISPSBL_PCR_H3A_AF_WBL_OVF)
587 omap3isp_stat_sbl_overflow(&isp->isp_af);
588
589 if (sbl_pcr & ISPSBL_PCR_H3A_AEAWB_WBL_OVF)
590 omap3isp_stat_sbl_overflow(&isp->isp_aewb);
591 }
592
593 /*
594 * isp_isr - Interrupt Service Routine for Camera ISP module.
595 * @irq: Not used currently.
596 * @_isp: Pointer to the OMAP3 ISP device
597 *
598 * Handles the corresponding callback if plugged in.
599 */
isp_isr(int irq,void * _isp)600 static irqreturn_t isp_isr(int irq, void *_isp)
601 {
602 static const u32 ccdc_events = IRQ0STATUS_CCDC_LSC_PREF_ERR_IRQ |
603 IRQ0STATUS_CCDC_LSC_DONE_IRQ |
604 IRQ0STATUS_CCDC_VD0_IRQ |
605 IRQ0STATUS_CCDC_VD1_IRQ |
606 IRQ0STATUS_HS_VS_IRQ;
607 struct isp_device *isp = _isp;
608 u32 irqstatus;
609
610 irqstatus = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
611 isp_reg_writel(isp, irqstatus, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
612
613 isp_isr_sbl(isp);
614
615 if (irqstatus & IRQ0STATUS_CSIA_IRQ)
616 omap3isp_csi2_isr(&isp->isp_csi2a);
617
618 if (irqstatus & IRQ0STATUS_CSIB_IRQ)
619 omap3isp_ccp2_isr(&isp->isp_ccp2);
620
621 if (irqstatus & IRQ0STATUS_CCDC_VD0_IRQ) {
622 if (isp->isp_ccdc.output & CCDC_OUTPUT_PREVIEW)
623 omap3isp_preview_isr_frame_sync(&isp->isp_prev);
624 if (isp->isp_ccdc.output & CCDC_OUTPUT_RESIZER)
625 omap3isp_resizer_isr_frame_sync(&isp->isp_res);
626 omap3isp_stat_isr_frame_sync(&isp->isp_aewb);
627 omap3isp_stat_isr_frame_sync(&isp->isp_af);
628 omap3isp_stat_isr_frame_sync(&isp->isp_hist);
629 }
630
631 if (irqstatus & ccdc_events)
632 omap3isp_ccdc_isr(&isp->isp_ccdc, irqstatus & ccdc_events);
633
634 if (irqstatus & IRQ0STATUS_PRV_DONE_IRQ) {
635 if (isp->isp_prev.output & PREVIEW_OUTPUT_RESIZER)
636 omap3isp_resizer_isr_frame_sync(&isp->isp_res);
637 omap3isp_preview_isr(&isp->isp_prev);
638 }
639
640 if (irqstatus & IRQ0STATUS_RSZ_DONE_IRQ)
641 omap3isp_resizer_isr(&isp->isp_res);
642
643 if (irqstatus & IRQ0STATUS_H3A_AWB_DONE_IRQ)
644 omap3isp_stat_isr(&isp->isp_aewb);
645
646 if (irqstatus & IRQ0STATUS_H3A_AF_DONE_IRQ)
647 omap3isp_stat_isr(&isp->isp_af);
648
649 if (irqstatus & IRQ0STATUS_HIST_DONE_IRQ)
650 omap3isp_stat_isr(&isp->isp_hist);
651
652 omap3isp_flush(isp);
653
654 #if defined(DEBUG) && defined(ISP_ISR_DEBUG)
655 isp_isr_dbg(isp, irqstatus);
656 #endif
657
658 return IRQ_HANDLED;
659 }
660
661 /* -----------------------------------------------------------------------------
662 * Pipeline power management
663 *
664 * Entities must be powered up when part of a pipeline that contains at least
665 * one open video device node.
666 *
667 * To achieve this use the entity use_count field to track the number of users.
668 * For entities corresponding to video device nodes the use_count field stores
669 * the users count of the node. For entities corresponding to subdevs the
670 * use_count field stores the total number of users of all video device nodes
671 * in the pipeline.
672 *
673 * The omap3isp_pipeline_pm_use() function must be called in the open() and
674 * close() handlers of video device nodes. It increments or decrements the use
675 * count of all subdev entities in the pipeline.
676 *
677 * To react to link management on powered pipelines, the link setup notification
678 * callback updates the use count of all entities in the source and sink sides
679 * of the link.
680 */
681
682 /*
683 * isp_pipeline_pm_use_count - Count the number of users of a pipeline
684 * @entity: The entity
685 *
686 * Return the total number of users of all video device nodes in the pipeline.
687 */
isp_pipeline_pm_use_count(struct media_entity * entity)688 static int isp_pipeline_pm_use_count(struct media_entity *entity)
689 {
690 struct media_entity_graph graph;
691 int use = 0;
692
693 media_entity_graph_walk_start(&graph, entity);
694
695 while ((entity = media_entity_graph_walk_next(&graph))) {
696 if (media_entity_type(entity) == MEDIA_ENT_T_DEVNODE)
697 use += entity->use_count;
698 }
699
700 return use;
701 }
702
703 /*
704 * isp_pipeline_pm_power_one - Apply power change to an entity
705 * @entity: The entity
706 * @change: Use count change
707 *
708 * Change the entity use count by @change. If the entity is a subdev update its
709 * power state by calling the core::s_power operation when the use count goes
710 * from 0 to != 0 or from != 0 to 0.
711 *
712 * Return 0 on success or a negative error code on failure.
713 */
isp_pipeline_pm_power_one(struct media_entity * entity,int change)714 static int isp_pipeline_pm_power_one(struct media_entity *entity, int change)
715 {
716 struct v4l2_subdev *subdev;
717 int ret;
718
719 subdev = media_entity_type(entity) == MEDIA_ENT_T_V4L2_SUBDEV
720 ? media_entity_to_v4l2_subdev(entity) : NULL;
721
722 if (entity->use_count == 0 && change > 0 && subdev != NULL) {
723 ret = v4l2_subdev_call(subdev, core, s_power, 1);
724 if (ret < 0 && ret != -ENOIOCTLCMD)
725 return ret;
726 }
727
728 entity->use_count += change;
729 WARN_ON(entity->use_count < 0);
730
731 if (entity->use_count == 0 && change < 0 && subdev != NULL)
732 v4l2_subdev_call(subdev, core, s_power, 0);
733
734 return 0;
735 }
736
737 /*
738 * isp_pipeline_pm_power - Apply power change to all entities in a pipeline
739 * @entity: The entity
740 * @change: Use count change
741 *
742 * Walk the pipeline to update the use count and the power state of all non-node
743 * entities.
744 *
745 * Return 0 on success or a negative error code on failure.
746 */
isp_pipeline_pm_power(struct media_entity * entity,int change)747 static int isp_pipeline_pm_power(struct media_entity *entity, int change)
748 {
749 struct media_entity_graph graph;
750 struct media_entity *first = entity;
751 int ret = 0;
752
753 if (!change)
754 return 0;
755
756 media_entity_graph_walk_start(&graph, entity);
757
758 while (!ret && (entity = media_entity_graph_walk_next(&graph)))
759 if (media_entity_type(entity) != MEDIA_ENT_T_DEVNODE)
760 ret = isp_pipeline_pm_power_one(entity, change);
761
762 if (!ret)
763 return 0;
764
765 media_entity_graph_walk_start(&graph, first);
766
767 while ((first = media_entity_graph_walk_next(&graph))
768 && first != entity)
769 if (media_entity_type(first) != MEDIA_ENT_T_DEVNODE)
770 isp_pipeline_pm_power_one(first, -change);
771
772 return ret;
773 }
774
775 /*
776 * omap3isp_pipeline_pm_use - Update the use count of an entity
777 * @entity: The entity
778 * @use: Use (1) or stop using (0) the entity
779 *
780 * Update the use count of all entities in the pipeline and power entities on or
781 * off accordingly.
782 *
783 * Return 0 on success or a negative error code on failure. Powering entities
784 * off is assumed to never fail. No failure can occur when the use parameter is
785 * set to 0.
786 */
omap3isp_pipeline_pm_use(struct media_entity * entity,int use)787 int omap3isp_pipeline_pm_use(struct media_entity *entity, int use)
788 {
789 int change = use ? 1 : -1;
790 int ret;
791
792 mutex_lock(&entity->parent->graph_mutex);
793
794 /* Apply use count to node. */
795 entity->use_count += change;
796 WARN_ON(entity->use_count < 0);
797
798 /* Apply power change to connected non-nodes. */
799 ret = isp_pipeline_pm_power(entity, change);
800 if (ret < 0)
801 entity->use_count -= change;
802
803 mutex_unlock(&entity->parent->graph_mutex);
804
805 return ret;
806 }
807
808 /*
809 * isp_pipeline_link_notify - Link management notification callback
810 * @link: The link
811 * @flags: New link flags that will be applied
812 * @notification: The link's state change notification type (MEDIA_DEV_NOTIFY_*)
813 *
814 * React to link management on powered pipelines by updating the use count of
815 * all entities in the source and sink sides of the link. Entities are powered
816 * on or off accordingly.
817 *
818 * Return 0 on success or a negative error code on failure. Powering entities
819 * off is assumed to never fail. This function will not fail for disconnection
820 * events.
821 */
isp_pipeline_link_notify(struct media_link * link,u32 flags,unsigned int notification)822 static int isp_pipeline_link_notify(struct media_link *link, u32 flags,
823 unsigned int notification)
824 {
825 struct media_entity *source = link->source->entity;
826 struct media_entity *sink = link->sink->entity;
827 int source_use = isp_pipeline_pm_use_count(source);
828 int sink_use = isp_pipeline_pm_use_count(sink);
829 int ret;
830
831 if (notification == MEDIA_DEV_NOTIFY_POST_LINK_CH &&
832 !(flags & MEDIA_LNK_FL_ENABLED)) {
833 /* Powering off entities is assumed to never fail. */
834 isp_pipeline_pm_power(source, -sink_use);
835 isp_pipeline_pm_power(sink, -source_use);
836 return 0;
837 }
838
839 if (notification == MEDIA_DEV_NOTIFY_PRE_LINK_CH &&
840 (flags & MEDIA_LNK_FL_ENABLED)) {
841
842 ret = isp_pipeline_pm_power(source, sink_use);
843 if (ret < 0)
844 return ret;
845
846 ret = isp_pipeline_pm_power(sink, source_use);
847 if (ret < 0)
848 isp_pipeline_pm_power(source, -sink_use);
849
850 return ret;
851 }
852
853 return 0;
854 }
855
856 /* -----------------------------------------------------------------------------
857 * Pipeline stream management
858 */
859
860 /*
861 * isp_pipeline_enable - Enable streaming on a pipeline
862 * @pipe: ISP pipeline
863 * @mode: Stream mode (single shot or continuous)
864 *
865 * Walk the entities chain starting at the pipeline output video node and start
866 * all modules in the chain in the given mode.
867 *
868 * Return 0 if successful, or the return value of the failed video::s_stream
869 * operation otherwise.
870 */
isp_pipeline_enable(struct isp_pipeline * pipe,enum isp_pipeline_stream_state mode)871 static int isp_pipeline_enable(struct isp_pipeline *pipe,
872 enum isp_pipeline_stream_state mode)
873 {
874 struct isp_device *isp = pipe->output->isp;
875 struct media_entity *entity;
876 struct media_pad *pad;
877 struct v4l2_subdev *subdev;
878 unsigned long flags;
879 int ret;
880
881 /* Refuse to start streaming if an entity included in the pipeline has
882 * crashed. This check must be performed before the loop below to avoid
883 * starting entities if the pipeline won't start anyway (those entities
884 * would then likely fail to stop, making the problem worse).
885 */
886 if (pipe->entities & isp->crashed)
887 return -EIO;
888
889 spin_lock_irqsave(&pipe->lock, flags);
890 pipe->state &= ~(ISP_PIPELINE_IDLE_INPUT | ISP_PIPELINE_IDLE_OUTPUT);
891 spin_unlock_irqrestore(&pipe->lock, flags);
892
893 pipe->do_propagation = false;
894
895 entity = &pipe->output->video.entity;
896 while (1) {
897 pad = &entity->pads[0];
898 if (!(pad->flags & MEDIA_PAD_FL_SINK))
899 break;
900
901 pad = media_entity_remote_pad(pad);
902 if (pad == NULL ||
903 media_entity_type(pad->entity) != MEDIA_ENT_T_V4L2_SUBDEV)
904 break;
905
906 entity = pad->entity;
907 subdev = media_entity_to_v4l2_subdev(entity);
908
909 ret = v4l2_subdev_call(subdev, video, s_stream, mode);
910 if (ret < 0 && ret != -ENOIOCTLCMD)
911 return ret;
912
913 if (subdev == &isp->isp_ccdc.subdev) {
914 v4l2_subdev_call(&isp->isp_aewb.subdev, video,
915 s_stream, mode);
916 v4l2_subdev_call(&isp->isp_af.subdev, video,
917 s_stream, mode);
918 v4l2_subdev_call(&isp->isp_hist.subdev, video,
919 s_stream, mode);
920 pipe->do_propagation = true;
921 }
922 }
923
924 return 0;
925 }
926
isp_pipeline_wait_resizer(struct isp_device * isp)927 static int isp_pipeline_wait_resizer(struct isp_device *isp)
928 {
929 return omap3isp_resizer_busy(&isp->isp_res);
930 }
931
isp_pipeline_wait_preview(struct isp_device * isp)932 static int isp_pipeline_wait_preview(struct isp_device *isp)
933 {
934 return omap3isp_preview_busy(&isp->isp_prev);
935 }
936
isp_pipeline_wait_ccdc(struct isp_device * isp)937 static int isp_pipeline_wait_ccdc(struct isp_device *isp)
938 {
939 return omap3isp_stat_busy(&isp->isp_af)
940 || omap3isp_stat_busy(&isp->isp_aewb)
941 || omap3isp_stat_busy(&isp->isp_hist)
942 || omap3isp_ccdc_busy(&isp->isp_ccdc);
943 }
944
945 #define ISP_STOP_TIMEOUT msecs_to_jiffies(1000)
946
isp_pipeline_wait(struct isp_device * isp,int (* busy)(struct isp_device * isp))947 static int isp_pipeline_wait(struct isp_device *isp,
948 int(*busy)(struct isp_device *isp))
949 {
950 unsigned long timeout = jiffies + ISP_STOP_TIMEOUT;
951
952 while (!time_after(jiffies, timeout)) {
953 if (!busy(isp))
954 return 0;
955 }
956
957 return 1;
958 }
959
960 /*
961 * isp_pipeline_disable - Disable streaming on a pipeline
962 * @pipe: ISP pipeline
963 *
964 * Walk the entities chain starting at the pipeline output video node and stop
965 * all modules in the chain. Wait synchronously for the modules to be stopped if
966 * necessary.
967 *
968 * Return 0 if all modules have been properly stopped, or -ETIMEDOUT if a module
969 * can't be stopped (in which case a software reset of the ISP is probably
970 * necessary).
971 */
isp_pipeline_disable(struct isp_pipeline * pipe)972 static int isp_pipeline_disable(struct isp_pipeline *pipe)
973 {
974 struct isp_device *isp = pipe->output->isp;
975 struct media_entity *entity;
976 struct media_pad *pad;
977 struct v4l2_subdev *subdev;
978 int failure = 0;
979 int ret;
980
981 /*
982 * We need to stop all the modules after CCDC first or they'll
983 * never stop since they may not get a full frame from CCDC.
984 */
985 entity = &pipe->output->video.entity;
986 while (1) {
987 pad = &entity->pads[0];
988 if (!(pad->flags & MEDIA_PAD_FL_SINK))
989 break;
990
991 pad = media_entity_remote_pad(pad);
992 if (pad == NULL ||
993 media_entity_type(pad->entity) != MEDIA_ENT_T_V4L2_SUBDEV)
994 break;
995
996 entity = pad->entity;
997 subdev = media_entity_to_v4l2_subdev(entity);
998
999 if (subdev == &isp->isp_ccdc.subdev) {
1000 v4l2_subdev_call(&isp->isp_aewb.subdev,
1001 video, s_stream, 0);
1002 v4l2_subdev_call(&isp->isp_af.subdev,
1003 video, s_stream, 0);
1004 v4l2_subdev_call(&isp->isp_hist.subdev,
1005 video, s_stream, 0);
1006 }
1007
1008 ret = v4l2_subdev_call(subdev, video, s_stream, 0);
1009
1010 if (subdev == &isp->isp_res.subdev)
1011 ret |= isp_pipeline_wait(isp, isp_pipeline_wait_resizer);
1012 else if (subdev == &isp->isp_prev.subdev)
1013 ret |= isp_pipeline_wait(isp, isp_pipeline_wait_preview);
1014 else if (subdev == &isp->isp_ccdc.subdev)
1015 ret |= isp_pipeline_wait(isp, isp_pipeline_wait_ccdc);
1016
1017 /* Handle stop failures. An entity that fails to stop can
1018 * usually just be restarted. Flag the stop failure nonetheless
1019 * to trigger an ISP reset the next time the device is released,
1020 * just in case.
1021 *
1022 * The preview engine is a special case. A failure to stop can
1023 * mean a hardware crash. When that happens the preview engine
1024 * won't respond to read/write operations on the L4 bus anymore,
1025 * resulting in a bus fault and a kernel oops next time it gets
1026 * accessed. Mark it as crashed to prevent pipelines including
1027 * it from being started.
1028 */
1029 if (ret) {
1030 dev_info(isp->dev, "Unable to stop %s\n", subdev->name);
1031 isp->stop_failure = true;
1032 if (subdev == &isp->isp_prev.subdev)
1033 isp->crashed |= 1U << subdev->entity.id;
1034 failure = -ETIMEDOUT;
1035 }
1036 }
1037
1038 return failure;
1039 }
1040
1041 /*
1042 * omap3isp_pipeline_set_stream - Enable/disable streaming on a pipeline
1043 * @pipe: ISP pipeline
1044 * @state: Stream state (stopped, single shot or continuous)
1045 *
1046 * Set the pipeline to the given stream state. Pipelines can be started in
1047 * single-shot or continuous mode.
1048 *
1049 * Return 0 if successful, or the return value of the failed video::s_stream
1050 * operation otherwise. The pipeline state is not updated when the operation
1051 * fails, except when stopping the pipeline.
1052 */
omap3isp_pipeline_set_stream(struct isp_pipeline * pipe,enum isp_pipeline_stream_state state)1053 int omap3isp_pipeline_set_stream(struct isp_pipeline *pipe,
1054 enum isp_pipeline_stream_state state)
1055 {
1056 int ret;
1057
1058 if (state == ISP_PIPELINE_STREAM_STOPPED)
1059 ret = isp_pipeline_disable(pipe);
1060 else
1061 ret = isp_pipeline_enable(pipe, state);
1062
1063 if (ret == 0 || state == ISP_PIPELINE_STREAM_STOPPED)
1064 pipe->stream_state = state;
1065
1066 return ret;
1067 }
1068
1069 /*
1070 * omap3isp_pipeline_cancel_stream - Cancel stream on a pipeline
1071 * @pipe: ISP pipeline
1072 *
1073 * Cancelling a stream mark all buffers on all video nodes in the pipeline as
1074 * erroneous and makes sure no new buffer can be queued. This function is called
1075 * when a fatal error that prevents any further operation on the pipeline
1076 * occurs.
1077 */
omap3isp_pipeline_cancel_stream(struct isp_pipeline * pipe)1078 void omap3isp_pipeline_cancel_stream(struct isp_pipeline *pipe)
1079 {
1080 if (pipe->input)
1081 omap3isp_video_cancel_stream(pipe->input);
1082 if (pipe->output)
1083 omap3isp_video_cancel_stream(pipe->output);
1084 }
1085
1086 /*
1087 * isp_pipeline_resume - Resume streaming on a pipeline
1088 * @pipe: ISP pipeline
1089 *
1090 * Resume video output and input and re-enable pipeline.
1091 */
isp_pipeline_resume(struct isp_pipeline * pipe)1092 static void isp_pipeline_resume(struct isp_pipeline *pipe)
1093 {
1094 int singleshot = pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT;
1095
1096 omap3isp_video_resume(pipe->output, !singleshot);
1097 if (singleshot)
1098 omap3isp_video_resume(pipe->input, 0);
1099 isp_pipeline_enable(pipe, pipe->stream_state);
1100 }
1101
1102 /*
1103 * isp_pipeline_suspend - Suspend streaming on a pipeline
1104 * @pipe: ISP pipeline
1105 *
1106 * Suspend pipeline.
1107 */
isp_pipeline_suspend(struct isp_pipeline * pipe)1108 static void isp_pipeline_suspend(struct isp_pipeline *pipe)
1109 {
1110 isp_pipeline_disable(pipe);
1111 }
1112
1113 /*
1114 * isp_pipeline_is_last - Verify if entity has an enabled link to the output
1115 * video node
1116 * @me: ISP module's media entity
1117 *
1118 * Returns 1 if the entity has an enabled link to the output video node or 0
1119 * otherwise. It's true only while pipeline can have no more than one output
1120 * node.
1121 */
isp_pipeline_is_last(struct media_entity * me)1122 static int isp_pipeline_is_last(struct media_entity *me)
1123 {
1124 struct isp_pipeline *pipe;
1125 struct media_pad *pad;
1126
1127 if (!me->pipe)
1128 return 0;
1129 pipe = to_isp_pipeline(me);
1130 if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED)
1131 return 0;
1132 pad = media_entity_remote_pad(&pipe->output->pad);
1133 return pad->entity == me;
1134 }
1135
1136 /*
1137 * isp_suspend_module_pipeline - Suspend pipeline to which belongs the module
1138 * @me: ISP module's media entity
1139 *
1140 * Suspend the whole pipeline if module's entity has an enabled link to the
1141 * output video node. It works only while pipeline can have no more than one
1142 * output node.
1143 */
isp_suspend_module_pipeline(struct media_entity * me)1144 static void isp_suspend_module_pipeline(struct media_entity *me)
1145 {
1146 if (isp_pipeline_is_last(me))
1147 isp_pipeline_suspend(to_isp_pipeline(me));
1148 }
1149
1150 /*
1151 * isp_resume_module_pipeline - Resume pipeline to which belongs the module
1152 * @me: ISP module's media entity
1153 *
1154 * Resume the whole pipeline if module's entity has an enabled link to the
1155 * output video node. It works only while pipeline can have no more than one
1156 * output node.
1157 */
isp_resume_module_pipeline(struct media_entity * me)1158 static void isp_resume_module_pipeline(struct media_entity *me)
1159 {
1160 if (isp_pipeline_is_last(me))
1161 isp_pipeline_resume(to_isp_pipeline(me));
1162 }
1163
1164 /*
1165 * isp_suspend_modules - Suspend ISP submodules.
1166 * @isp: OMAP3 ISP device
1167 *
1168 * Returns 0 if suspend left in idle state all the submodules properly,
1169 * or returns 1 if a general Reset is required to suspend the submodules.
1170 */
isp_suspend_modules(struct isp_device * isp)1171 static int isp_suspend_modules(struct isp_device *isp)
1172 {
1173 unsigned long timeout;
1174
1175 omap3isp_stat_suspend(&isp->isp_aewb);
1176 omap3isp_stat_suspend(&isp->isp_af);
1177 omap3isp_stat_suspend(&isp->isp_hist);
1178 isp_suspend_module_pipeline(&isp->isp_res.subdev.entity);
1179 isp_suspend_module_pipeline(&isp->isp_prev.subdev.entity);
1180 isp_suspend_module_pipeline(&isp->isp_ccdc.subdev.entity);
1181 isp_suspend_module_pipeline(&isp->isp_csi2a.subdev.entity);
1182 isp_suspend_module_pipeline(&isp->isp_ccp2.subdev.entity);
1183
1184 timeout = jiffies + ISP_STOP_TIMEOUT;
1185 while (omap3isp_stat_busy(&isp->isp_af)
1186 || omap3isp_stat_busy(&isp->isp_aewb)
1187 || omap3isp_stat_busy(&isp->isp_hist)
1188 || omap3isp_preview_busy(&isp->isp_prev)
1189 || omap3isp_resizer_busy(&isp->isp_res)
1190 || omap3isp_ccdc_busy(&isp->isp_ccdc)) {
1191 if (time_after(jiffies, timeout)) {
1192 dev_info(isp->dev, "can't stop modules.\n");
1193 return 1;
1194 }
1195 msleep(1);
1196 }
1197
1198 return 0;
1199 }
1200
1201 /*
1202 * isp_resume_modules - Resume ISP submodules.
1203 * @isp: OMAP3 ISP device
1204 */
isp_resume_modules(struct isp_device * isp)1205 static void isp_resume_modules(struct isp_device *isp)
1206 {
1207 omap3isp_stat_resume(&isp->isp_aewb);
1208 omap3isp_stat_resume(&isp->isp_af);
1209 omap3isp_stat_resume(&isp->isp_hist);
1210 isp_resume_module_pipeline(&isp->isp_res.subdev.entity);
1211 isp_resume_module_pipeline(&isp->isp_prev.subdev.entity);
1212 isp_resume_module_pipeline(&isp->isp_ccdc.subdev.entity);
1213 isp_resume_module_pipeline(&isp->isp_csi2a.subdev.entity);
1214 isp_resume_module_pipeline(&isp->isp_ccp2.subdev.entity);
1215 }
1216
1217 /*
1218 * isp_reset - Reset ISP with a timeout wait for idle.
1219 * @isp: OMAP3 ISP device
1220 */
isp_reset(struct isp_device * isp)1221 static int isp_reset(struct isp_device *isp)
1222 {
1223 unsigned long timeout = 0;
1224
1225 isp_reg_writel(isp,
1226 isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG)
1227 | ISP_SYSCONFIG_SOFTRESET,
1228 OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
1229 while (!(isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN,
1230 ISP_SYSSTATUS) & 0x1)) {
1231 if (timeout++ > 10000) {
1232 dev_alert(isp->dev, "cannot reset ISP\n");
1233 return -ETIMEDOUT;
1234 }
1235 udelay(1);
1236 }
1237
1238 isp->stop_failure = false;
1239 isp->crashed = 0;
1240 return 0;
1241 }
1242
1243 /*
1244 * isp_save_context - Saves the values of the ISP module registers.
1245 * @isp: OMAP3 ISP device
1246 * @reg_list: Structure containing pairs of register address and value to
1247 * modify on OMAP.
1248 */
1249 static void
isp_save_context(struct isp_device * isp,struct isp_reg * reg_list)1250 isp_save_context(struct isp_device *isp, struct isp_reg *reg_list)
1251 {
1252 struct isp_reg *next = reg_list;
1253
1254 for (; next->reg != ISP_TOK_TERM; next++)
1255 next->val = isp_reg_readl(isp, next->mmio_range, next->reg);
1256 }
1257
1258 /*
1259 * isp_restore_context - Restores the values of the ISP module registers.
1260 * @isp: OMAP3 ISP device
1261 * @reg_list: Structure containing pairs of register address and value to
1262 * modify on OMAP.
1263 */
1264 static void
isp_restore_context(struct isp_device * isp,struct isp_reg * reg_list)1265 isp_restore_context(struct isp_device *isp, struct isp_reg *reg_list)
1266 {
1267 struct isp_reg *next = reg_list;
1268
1269 for (; next->reg != ISP_TOK_TERM; next++)
1270 isp_reg_writel(isp, next->val, next->mmio_range, next->reg);
1271 }
1272
1273 /*
1274 * isp_save_ctx - Saves ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1275 * @isp: OMAP3 ISP device
1276 *
1277 * Routine for saving the context of each module in the ISP.
1278 * CCDC, HIST, H3A, PREV, RESZ and MMU.
1279 */
isp_save_ctx(struct isp_device * isp)1280 static void isp_save_ctx(struct isp_device *isp)
1281 {
1282 isp_save_context(isp, isp_reg_list);
1283 omap_iommu_save_ctx(isp->dev);
1284 }
1285
1286 /*
1287 * isp_restore_ctx - Restores ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1288 * @isp: OMAP3 ISP device
1289 *
1290 * Routine for restoring the context of each module in the ISP.
1291 * CCDC, HIST, H3A, PREV, RESZ and MMU.
1292 */
isp_restore_ctx(struct isp_device * isp)1293 static void isp_restore_ctx(struct isp_device *isp)
1294 {
1295 isp_restore_context(isp, isp_reg_list);
1296 omap_iommu_restore_ctx(isp->dev);
1297 omap3isp_ccdc_restore_context(isp);
1298 omap3isp_preview_restore_context(isp);
1299 }
1300
1301 /* -----------------------------------------------------------------------------
1302 * SBL resources management
1303 */
1304 #define OMAP3_ISP_SBL_READ (OMAP3_ISP_SBL_CSI1_READ | \
1305 OMAP3_ISP_SBL_CCDC_LSC_READ | \
1306 OMAP3_ISP_SBL_PREVIEW_READ | \
1307 OMAP3_ISP_SBL_RESIZER_READ)
1308 #define OMAP3_ISP_SBL_WRITE (OMAP3_ISP_SBL_CSI1_WRITE | \
1309 OMAP3_ISP_SBL_CSI2A_WRITE | \
1310 OMAP3_ISP_SBL_CSI2C_WRITE | \
1311 OMAP3_ISP_SBL_CCDC_WRITE | \
1312 OMAP3_ISP_SBL_PREVIEW_WRITE)
1313
omap3isp_sbl_enable(struct isp_device * isp,enum isp_sbl_resource res)1314 void omap3isp_sbl_enable(struct isp_device *isp, enum isp_sbl_resource res)
1315 {
1316 u32 sbl = 0;
1317
1318 isp->sbl_resources |= res;
1319
1320 if (isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ)
1321 sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1322
1323 if (isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ)
1324 sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1325
1326 if (isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE)
1327 sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1328
1329 if (isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE)
1330 sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1331
1332 if (isp->sbl_resources & OMAP3_ISP_SBL_WRITE)
1333 sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1334
1335 if (isp->sbl_resources & OMAP3_ISP_SBL_READ)
1336 sbl |= ISPCTRL_SBL_RD_RAM_EN;
1337
1338 isp_reg_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1339 }
1340
omap3isp_sbl_disable(struct isp_device * isp,enum isp_sbl_resource res)1341 void omap3isp_sbl_disable(struct isp_device *isp, enum isp_sbl_resource res)
1342 {
1343 u32 sbl = 0;
1344
1345 isp->sbl_resources &= ~res;
1346
1347 if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ))
1348 sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1349
1350 if (!(isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ))
1351 sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1352
1353 if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE))
1354 sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1355
1356 if (!(isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE))
1357 sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1358
1359 if (!(isp->sbl_resources & OMAP3_ISP_SBL_WRITE))
1360 sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1361
1362 if (!(isp->sbl_resources & OMAP3_ISP_SBL_READ))
1363 sbl |= ISPCTRL_SBL_RD_RAM_EN;
1364
1365 isp_reg_clr(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1366 }
1367
1368 /*
1369 * isp_module_sync_idle - Helper to sync module with its idle state
1370 * @me: ISP submodule's media entity
1371 * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1372 * @stopping: flag which tells module wants to stop
1373 *
1374 * This function checks if ISP submodule needs to wait for next interrupt. If
1375 * yes, makes the caller to sleep while waiting for such event.
1376 */
omap3isp_module_sync_idle(struct media_entity * me,wait_queue_head_t * wait,atomic_t * stopping)1377 int omap3isp_module_sync_idle(struct media_entity *me, wait_queue_head_t *wait,
1378 atomic_t *stopping)
1379 {
1380 struct isp_pipeline *pipe = to_isp_pipeline(me);
1381
1382 if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED ||
1383 (pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT &&
1384 !isp_pipeline_ready(pipe)))
1385 return 0;
1386
1387 /*
1388 * atomic_set() doesn't include memory barrier on ARM platform for SMP
1389 * scenario. We'll call it here to avoid race conditions.
1390 */
1391 atomic_set(stopping, 1);
1392 smp_mb();
1393
1394 /*
1395 * If module is the last one, it's writing to memory. In this case,
1396 * it's necessary to check if the module is already paused due to
1397 * DMA queue underrun or if it has to wait for next interrupt to be
1398 * idle.
1399 * If it isn't the last one, the function won't sleep but *stopping
1400 * will still be set to warn next submodule caller's interrupt the
1401 * module wants to be idle.
1402 */
1403 if (isp_pipeline_is_last(me)) {
1404 struct isp_video *video = pipe->output;
1405 unsigned long flags;
1406 spin_lock_irqsave(&video->irqlock, flags);
1407 if (video->dmaqueue_flags & ISP_VIDEO_DMAQUEUE_UNDERRUN) {
1408 spin_unlock_irqrestore(&video->irqlock, flags);
1409 atomic_set(stopping, 0);
1410 smp_mb();
1411 return 0;
1412 }
1413 spin_unlock_irqrestore(&video->irqlock, flags);
1414 if (!wait_event_timeout(*wait, !atomic_read(stopping),
1415 msecs_to_jiffies(1000))) {
1416 atomic_set(stopping, 0);
1417 smp_mb();
1418 return -ETIMEDOUT;
1419 }
1420 }
1421
1422 return 0;
1423 }
1424
1425 /*
1426 * omap3isp_module_sync_is_stopping - Helper to verify if module was stopping
1427 * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1428 * @stopping: flag which tells module wants to stop
1429 *
1430 * This function checks if ISP submodule was stopping. In case of yes, it
1431 * notices the caller by setting stopping to 0 and waking up the wait queue.
1432 * Returns 1 if it was stopping or 0 otherwise.
1433 */
omap3isp_module_sync_is_stopping(wait_queue_head_t * wait,atomic_t * stopping)1434 int omap3isp_module_sync_is_stopping(wait_queue_head_t *wait,
1435 atomic_t *stopping)
1436 {
1437 if (atomic_cmpxchg(stopping, 1, 0)) {
1438 wake_up(wait);
1439 return 1;
1440 }
1441
1442 return 0;
1443 }
1444
1445 /* --------------------------------------------------------------------------
1446 * Clock management
1447 */
1448
1449 #define ISPCTRL_CLKS_MASK (ISPCTRL_H3A_CLK_EN | \
1450 ISPCTRL_HIST_CLK_EN | \
1451 ISPCTRL_RSZ_CLK_EN | \
1452 (ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN) | \
1453 (ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN))
1454
__isp_subclk_update(struct isp_device * isp)1455 static void __isp_subclk_update(struct isp_device *isp)
1456 {
1457 u32 clk = 0;
1458
1459 /* AEWB and AF share the same clock. */
1460 if (isp->subclk_resources &
1461 (OMAP3_ISP_SUBCLK_AEWB | OMAP3_ISP_SUBCLK_AF))
1462 clk |= ISPCTRL_H3A_CLK_EN;
1463
1464 if (isp->subclk_resources & OMAP3_ISP_SUBCLK_HIST)
1465 clk |= ISPCTRL_HIST_CLK_EN;
1466
1467 if (isp->subclk_resources & OMAP3_ISP_SUBCLK_RESIZER)
1468 clk |= ISPCTRL_RSZ_CLK_EN;
1469
1470 /* NOTE: For CCDC & Preview submodules, we need to affect internal
1471 * RAM as well.
1472 */
1473 if (isp->subclk_resources & OMAP3_ISP_SUBCLK_CCDC)
1474 clk |= ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN;
1475
1476 if (isp->subclk_resources & OMAP3_ISP_SUBCLK_PREVIEW)
1477 clk |= ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN;
1478
1479 isp_reg_clr_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL,
1480 ISPCTRL_CLKS_MASK, clk);
1481 }
1482
omap3isp_subclk_enable(struct isp_device * isp,enum isp_subclk_resource res)1483 void omap3isp_subclk_enable(struct isp_device *isp,
1484 enum isp_subclk_resource res)
1485 {
1486 isp->subclk_resources |= res;
1487
1488 __isp_subclk_update(isp);
1489 }
1490
omap3isp_subclk_disable(struct isp_device * isp,enum isp_subclk_resource res)1491 void omap3isp_subclk_disable(struct isp_device *isp,
1492 enum isp_subclk_resource res)
1493 {
1494 isp->subclk_resources &= ~res;
1495
1496 __isp_subclk_update(isp);
1497 }
1498
1499 /*
1500 * isp_enable_clocks - Enable ISP clocks
1501 * @isp: OMAP3 ISP device
1502 *
1503 * Return 0 if successful, or clk_prepare_enable return value if any of them
1504 * fails.
1505 */
isp_enable_clocks(struct isp_device * isp)1506 static int isp_enable_clocks(struct isp_device *isp)
1507 {
1508 int r;
1509 unsigned long rate;
1510
1511 r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_ICK]);
1512 if (r) {
1513 dev_err(isp->dev, "failed to enable cam_ick clock\n");
1514 goto out_clk_enable_ick;
1515 }
1516 r = clk_set_rate(isp->clock[ISP_CLK_CAM_MCLK], CM_CAM_MCLK_HZ);
1517 if (r) {
1518 dev_err(isp->dev, "clk_set_rate for cam_mclk failed\n");
1519 goto out_clk_enable_mclk;
1520 }
1521 r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_MCLK]);
1522 if (r) {
1523 dev_err(isp->dev, "failed to enable cam_mclk clock\n");
1524 goto out_clk_enable_mclk;
1525 }
1526 rate = clk_get_rate(isp->clock[ISP_CLK_CAM_MCLK]);
1527 if (rate != CM_CAM_MCLK_HZ)
1528 dev_warn(isp->dev, "unexpected cam_mclk rate:\n"
1529 " expected : %d\n"
1530 " actual : %ld\n", CM_CAM_MCLK_HZ, rate);
1531 r = clk_prepare_enable(isp->clock[ISP_CLK_CSI2_FCK]);
1532 if (r) {
1533 dev_err(isp->dev, "failed to enable csi2_fck clock\n");
1534 goto out_clk_enable_csi2_fclk;
1535 }
1536 return 0;
1537
1538 out_clk_enable_csi2_fclk:
1539 clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1540 out_clk_enable_mclk:
1541 clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1542 out_clk_enable_ick:
1543 return r;
1544 }
1545
1546 /*
1547 * isp_disable_clocks - Disable ISP clocks
1548 * @isp: OMAP3 ISP device
1549 */
isp_disable_clocks(struct isp_device * isp)1550 static void isp_disable_clocks(struct isp_device *isp)
1551 {
1552 clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1553 clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1554 clk_disable_unprepare(isp->clock[ISP_CLK_CSI2_FCK]);
1555 }
1556
1557 static const char *isp_clocks[] = {
1558 "cam_ick",
1559 "cam_mclk",
1560 "csi2_96m_fck",
1561 "l3_ick",
1562 };
1563
isp_get_clocks(struct isp_device * isp)1564 static int isp_get_clocks(struct isp_device *isp)
1565 {
1566 struct clk *clk;
1567 unsigned int i;
1568
1569 for (i = 0; i < ARRAY_SIZE(isp_clocks); ++i) {
1570 clk = devm_clk_get(isp->dev, isp_clocks[i]);
1571 if (IS_ERR(clk)) {
1572 dev_err(isp->dev, "clk_get %s failed\n", isp_clocks[i]);
1573 return PTR_ERR(clk);
1574 }
1575
1576 isp->clock[i] = clk;
1577 }
1578
1579 return 0;
1580 }
1581
1582 /*
1583 * omap3isp_get - Acquire the ISP resource.
1584 *
1585 * Initializes the clocks for the first acquire.
1586 *
1587 * Increment the reference count on the ISP. If the first reference is taken,
1588 * enable clocks and power-up all submodules.
1589 *
1590 * Return a pointer to the ISP device structure, or NULL if an error occurred.
1591 */
__omap3isp_get(struct isp_device * isp,bool irq)1592 static struct isp_device *__omap3isp_get(struct isp_device *isp, bool irq)
1593 {
1594 struct isp_device *__isp = isp;
1595
1596 if (isp == NULL)
1597 return NULL;
1598
1599 mutex_lock(&isp->isp_mutex);
1600 if (isp->ref_count > 0)
1601 goto out;
1602
1603 if (isp_enable_clocks(isp) < 0) {
1604 __isp = NULL;
1605 goto out;
1606 }
1607
1608 /* We don't want to restore context before saving it! */
1609 if (isp->has_context)
1610 isp_restore_ctx(isp);
1611
1612 if (irq)
1613 isp_enable_interrupts(isp);
1614
1615 out:
1616 if (__isp != NULL)
1617 isp->ref_count++;
1618 mutex_unlock(&isp->isp_mutex);
1619
1620 return __isp;
1621 }
1622
omap3isp_get(struct isp_device * isp)1623 struct isp_device *omap3isp_get(struct isp_device *isp)
1624 {
1625 return __omap3isp_get(isp, true);
1626 }
1627
1628 /*
1629 * omap3isp_put - Release the ISP
1630 *
1631 * Decrement the reference count on the ISP. If the last reference is released,
1632 * power-down all submodules, disable clocks and free temporary buffers.
1633 */
__omap3isp_put(struct isp_device * isp,bool save_ctx)1634 static void __omap3isp_put(struct isp_device *isp, bool save_ctx)
1635 {
1636 if (isp == NULL)
1637 return;
1638
1639 mutex_lock(&isp->isp_mutex);
1640 BUG_ON(isp->ref_count == 0);
1641 if (--isp->ref_count == 0) {
1642 isp_disable_interrupts(isp);
1643 if (save_ctx) {
1644 isp_save_ctx(isp);
1645 isp->has_context = 1;
1646 }
1647 /* Reset the ISP if an entity has failed to stop. This is the
1648 * only way to recover from such conditions.
1649 */
1650 if (isp->crashed || isp->stop_failure)
1651 isp_reset(isp);
1652 isp_disable_clocks(isp);
1653 }
1654 mutex_unlock(&isp->isp_mutex);
1655 }
1656
omap3isp_put(struct isp_device * isp)1657 void omap3isp_put(struct isp_device *isp)
1658 {
1659 __omap3isp_put(isp, true);
1660 }
1661
1662 /* --------------------------------------------------------------------------
1663 * Platform device driver
1664 */
1665
1666 /*
1667 * omap3isp_print_status - Prints the values of the ISP Control Module registers
1668 * @isp: OMAP3 ISP device
1669 */
1670 #define ISP_PRINT_REGISTER(isp, name)\
1671 dev_dbg(isp->dev, "###ISP " #name "=0x%08x\n", \
1672 isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_##name))
1673 #define SBL_PRINT_REGISTER(isp, name)\
1674 dev_dbg(isp->dev, "###SBL " #name "=0x%08x\n", \
1675 isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_##name))
1676
omap3isp_print_status(struct isp_device * isp)1677 void omap3isp_print_status(struct isp_device *isp)
1678 {
1679 dev_dbg(isp->dev, "-------------ISP Register dump--------------\n");
1680
1681 ISP_PRINT_REGISTER(isp, SYSCONFIG);
1682 ISP_PRINT_REGISTER(isp, SYSSTATUS);
1683 ISP_PRINT_REGISTER(isp, IRQ0ENABLE);
1684 ISP_PRINT_REGISTER(isp, IRQ0STATUS);
1685 ISP_PRINT_REGISTER(isp, TCTRL_GRESET_LENGTH);
1686 ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_REPLAY);
1687 ISP_PRINT_REGISTER(isp, CTRL);
1688 ISP_PRINT_REGISTER(isp, TCTRL_CTRL);
1689 ISP_PRINT_REGISTER(isp, TCTRL_FRAME);
1690 ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_DELAY);
1691 ISP_PRINT_REGISTER(isp, TCTRL_STRB_DELAY);
1692 ISP_PRINT_REGISTER(isp, TCTRL_SHUT_DELAY);
1693 ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_LENGTH);
1694 ISP_PRINT_REGISTER(isp, TCTRL_STRB_LENGTH);
1695 ISP_PRINT_REGISTER(isp, TCTRL_SHUT_LENGTH);
1696
1697 SBL_PRINT_REGISTER(isp, PCR);
1698 SBL_PRINT_REGISTER(isp, SDR_REQ_EXP);
1699
1700 dev_dbg(isp->dev, "--------------------------------------------\n");
1701 }
1702
1703 #ifdef CONFIG_PM
1704
1705 /*
1706 * Power management support.
1707 *
1708 * As the ISP can't properly handle an input video stream interruption on a non
1709 * frame boundary, the ISP pipelines need to be stopped before sensors get
1710 * suspended. However, as suspending the sensors can require a running clock,
1711 * which can be provided by the ISP, the ISP can't be completely suspended
1712 * before the sensor.
1713 *
1714 * To solve this problem power management support is split into prepare/complete
1715 * and suspend/resume operations. The pipelines are stopped in prepare() and the
1716 * ISP clocks get disabled in suspend(). Similarly, the clocks are reenabled in
1717 * resume(), and the the pipelines are restarted in complete().
1718 *
1719 * TODO: PM dependencies between the ISP and sensors are not modelled explicitly
1720 * yet.
1721 */
isp_pm_prepare(struct device * dev)1722 static int isp_pm_prepare(struct device *dev)
1723 {
1724 struct isp_device *isp = dev_get_drvdata(dev);
1725 int reset;
1726
1727 WARN_ON(mutex_is_locked(&isp->isp_mutex));
1728
1729 if (isp->ref_count == 0)
1730 return 0;
1731
1732 reset = isp_suspend_modules(isp);
1733 isp_disable_interrupts(isp);
1734 isp_save_ctx(isp);
1735 if (reset)
1736 isp_reset(isp);
1737
1738 return 0;
1739 }
1740
isp_pm_suspend(struct device * dev)1741 static int isp_pm_suspend(struct device *dev)
1742 {
1743 struct isp_device *isp = dev_get_drvdata(dev);
1744
1745 WARN_ON(mutex_is_locked(&isp->isp_mutex));
1746
1747 if (isp->ref_count)
1748 isp_disable_clocks(isp);
1749
1750 return 0;
1751 }
1752
isp_pm_resume(struct device * dev)1753 static int isp_pm_resume(struct device *dev)
1754 {
1755 struct isp_device *isp = dev_get_drvdata(dev);
1756
1757 if (isp->ref_count == 0)
1758 return 0;
1759
1760 return isp_enable_clocks(isp);
1761 }
1762
isp_pm_complete(struct device * dev)1763 static void isp_pm_complete(struct device *dev)
1764 {
1765 struct isp_device *isp = dev_get_drvdata(dev);
1766
1767 if (isp->ref_count == 0)
1768 return;
1769
1770 isp_restore_ctx(isp);
1771 isp_enable_interrupts(isp);
1772 isp_resume_modules(isp);
1773 }
1774
1775 #else
1776
1777 #define isp_pm_prepare NULL
1778 #define isp_pm_suspend NULL
1779 #define isp_pm_resume NULL
1780 #define isp_pm_complete NULL
1781
1782 #endif /* CONFIG_PM */
1783
isp_unregister_entities(struct isp_device * isp)1784 static void isp_unregister_entities(struct isp_device *isp)
1785 {
1786 omap3isp_csi2_unregister_entities(&isp->isp_csi2a);
1787 omap3isp_ccp2_unregister_entities(&isp->isp_ccp2);
1788 omap3isp_ccdc_unregister_entities(&isp->isp_ccdc);
1789 omap3isp_preview_unregister_entities(&isp->isp_prev);
1790 omap3isp_resizer_unregister_entities(&isp->isp_res);
1791 omap3isp_stat_unregister_entities(&isp->isp_aewb);
1792 omap3isp_stat_unregister_entities(&isp->isp_af);
1793 omap3isp_stat_unregister_entities(&isp->isp_hist);
1794
1795 v4l2_device_unregister(&isp->v4l2_dev);
1796 media_device_unregister(&isp->media_dev);
1797 }
1798
1799 /*
1800 * isp_register_subdev - Register a sub-device
1801 * @isp: OMAP3 ISP device
1802 * @isp_subdev: platform data related to a sub-device
1803 *
1804 * Register an I2C sub-device which has not been registered by other
1805 * means (such as the Device Tree).
1806 *
1807 * Return a pointer to the sub-device if it has been successfully
1808 * registered, or NULL otherwise.
1809 */
1810 static struct v4l2_subdev *
isp_register_subdev(struct isp_device * isp,struct isp_platform_subdev * isp_subdev)1811 isp_register_subdev(struct isp_device *isp,
1812 struct isp_platform_subdev *isp_subdev)
1813 {
1814 struct i2c_adapter *adapter;
1815 struct v4l2_subdev *sd;
1816
1817 if (isp_subdev->board_info == NULL)
1818 return NULL;
1819
1820 adapter = i2c_get_adapter(isp_subdev->i2c_adapter_id);
1821 if (adapter == NULL) {
1822 dev_err(isp->dev,
1823 "%s: Unable to get I2C adapter %d for device %s\n",
1824 __func__, isp_subdev->i2c_adapter_id,
1825 isp_subdev->board_info->type);
1826 return NULL;
1827 }
1828
1829 sd = v4l2_i2c_new_subdev_board(&isp->v4l2_dev, adapter,
1830 isp_subdev->board_info, NULL);
1831 if (sd == NULL) {
1832 dev_err(isp->dev, "%s: Unable to register subdev %s\n",
1833 __func__, isp_subdev->board_info->type);
1834 return NULL;
1835 }
1836
1837 return sd;
1838 }
1839
isp_link_entity(struct isp_device * isp,struct media_entity * entity,enum isp_interface_type interface)1840 static int isp_link_entity(
1841 struct isp_device *isp, struct media_entity *entity,
1842 enum isp_interface_type interface)
1843 {
1844 struct media_entity *input;
1845 unsigned int flags;
1846 unsigned int pad;
1847 unsigned int i;
1848
1849 /* Connect the sensor to the correct interface module.
1850 * Parallel sensors are connected directly to the CCDC, while
1851 * serial sensors are connected to the CSI2a, CCP2b or CSI2c
1852 * receiver through CSIPHY1 or CSIPHY2.
1853 */
1854 switch (interface) {
1855 case ISP_INTERFACE_PARALLEL:
1856 input = &isp->isp_ccdc.subdev.entity;
1857 pad = CCDC_PAD_SINK;
1858 flags = 0;
1859 break;
1860
1861 case ISP_INTERFACE_CSI2A_PHY2:
1862 input = &isp->isp_csi2a.subdev.entity;
1863 pad = CSI2_PAD_SINK;
1864 flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1865 break;
1866
1867 case ISP_INTERFACE_CCP2B_PHY1:
1868 case ISP_INTERFACE_CCP2B_PHY2:
1869 input = &isp->isp_ccp2.subdev.entity;
1870 pad = CCP2_PAD_SINK;
1871 flags = 0;
1872 break;
1873
1874 case ISP_INTERFACE_CSI2C_PHY1:
1875 input = &isp->isp_csi2c.subdev.entity;
1876 pad = CSI2_PAD_SINK;
1877 flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1878 break;
1879
1880 default:
1881 dev_err(isp->dev, "%s: invalid interface type %u\n", __func__,
1882 interface);
1883 return -EINVAL;
1884 }
1885
1886 /*
1887 * Not all interfaces are available on all revisions of the
1888 * ISP. The sub-devices of those interfaces aren't initialised
1889 * in such a case. Check this by ensuring the num_pads is
1890 * non-zero.
1891 */
1892 if (!input->num_pads) {
1893 dev_err(isp->dev, "%s: invalid input %u\n", entity->name,
1894 interface);
1895 return -EINVAL;
1896 }
1897
1898 for (i = 0; i < entity->num_pads; i++) {
1899 if (entity->pads[i].flags & MEDIA_PAD_FL_SOURCE)
1900 break;
1901 }
1902 if (i == entity->num_pads) {
1903 dev_err(isp->dev, "%s: no source pad in external entity\n",
1904 __func__);
1905 return -EINVAL;
1906 }
1907
1908 return media_entity_create_link(entity, i, input, pad, flags);
1909 }
1910
isp_register_entities(struct isp_device * isp)1911 static int isp_register_entities(struct isp_device *isp)
1912 {
1913 struct isp_platform_data *pdata = isp->pdata;
1914 struct isp_platform_subdev *isp_subdev;
1915 int ret;
1916
1917 isp->media_dev.dev = isp->dev;
1918 strlcpy(isp->media_dev.model, "TI OMAP3 ISP",
1919 sizeof(isp->media_dev.model));
1920 isp->media_dev.hw_revision = isp->revision;
1921 isp->media_dev.link_notify = isp_pipeline_link_notify;
1922 ret = media_device_register(&isp->media_dev);
1923 if (ret < 0) {
1924 dev_err(isp->dev, "%s: Media device registration failed (%d)\n",
1925 __func__, ret);
1926 return ret;
1927 }
1928
1929 isp->v4l2_dev.mdev = &isp->media_dev;
1930 ret = v4l2_device_register(isp->dev, &isp->v4l2_dev);
1931 if (ret < 0) {
1932 dev_err(isp->dev, "%s: V4L2 device registration failed (%d)\n",
1933 __func__, ret);
1934 goto done;
1935 }
1936
1937 /* Register internal entities */
1938 ret = omap3isp_ccp2_register_entities(&isp->isp_ccp2, &isp->v4l2_dev);
1939 if (ret < 0)
1940 goto done;
1941
1942 ret = omap3isp_csi2_register_entities(&isp->isp_csi2a, &isp->v4l2_dev);
1943 if (ret < 0)
1944 goto done;
1945
1946 ret = omap3isp_ccdc_register_entities(&isp->isp_ccdc, &isp->v4l2_dev);
1947 if (ret < 0)
1948 goto done;
1949
1950 ret = omap3isp_preview_register_entities(&isp->isp_prev,
1951 &isp->v4l2_dev);
1952 if (ret < 0)
1953 goto done;
1954
1955 ret = omap3isp_resizer_register_entities(&isp->isp_res, &isp->v4l2_dev);
1956 if (ret < 0)
1957 goto done;
1958
1959 ret = omap3isp_stat_register_entities(&isp->isp_aewb, &isp->v4l2_dev);
1960 if (ret < 0)
1961 goto done;
1962
1963 ret = omap3isp_stat_register_entities(&isp->isp_af, &isp->v4l2_dev);
1964 if (ret < 0)
1965 goto done;
1966
1967 ret = omap3isp_stat_register_entities(&isp->isp_hist, &isp->v4l2_dev);
1968 if (ret < 0)
1969 goto done;
1970
1971 /*
1972 * Device Tree --- the external sub-devices will be registered
1973 * later. The same goes for the sub-device node registration.
1974 */
1975 if (isp->dev->of_node)
1976 return 0;
1977
1978 /* Register external entities */
1979 for (isp_subdev = pdata ? pdata->subdevs : NULL;
1980 isp_subdev && isp_subdev->board_info; isp_subdev++) {
1981 struct v4l2_subdev *sd;
1982
1983 sd = isp_register_subdev(isp, isp_subdev);
1984
1985 /*
1986 * No bus information --- this is either a flash or a
1987 * lens subdev.
1988 */
1989 if (!sd || !isp_subdev->bus)
1990 continue;
1991
1992 sd->host_priv = isp_subdev->bus;
1993
1994 ret = isp_link_entity(isp, &sd->entity,
1995 isp_subdev->bus->interface);
1996 if (ret < 0)
1997 goto done;
1998 }
1999
2000 ret = v4l2_device_register_subdev_nodes(&isp->v4l2_dev);
2001
2002 done:
2003 if (ret < 0) {
2004 isp_unregister_entities(isp);
2005 v4l2_async_notifier_unregister(&isp->notifier);
2006 }
2007
2008 return ret;
2009 }
2010
isp_cleanup_modules(struct isp_device * isp)2011 static void isp_cleanup_modules(struct isp_device *isp)
2012 {
2013 omap3isp_h3a_aewb_cleanup(isp);
2014 omap3isp_h3a_af_cleanup(isp);
2015 omap3isp_hist_cleanup(isp);
2016 omap3isp_resizer_cleanup(isp);
2017 omap3isp_preview_cleanup(isp);
2018 omap3isp_ccdc_cleanup(isp);
2019 omap3isp_ccp2_cleanup(isp);
2020 omap3isp_csi2_cleanup(isp);
2021 }
2022
isp_initialize_modules(struct isp_device * isp)2023 static int isp_initialize_modules(struct isp_device *isp)
2024 {
2025 int ret;
2026
2027 ret = omap3isp_csiphy_init(isp);
2028 if (ret < 0) {
2029 dev_err(isp->dev, "CSI PHY initialization failed\n");
2030 goto error_csiphy;
2031 }
2032
2033 ret = omap3isp_csi2_init(isp);
2034 if (ret < 0) {
2035 dev_err(isp->dev, "CSI2 initialization failed\n");
2036 goto error_csi2;
2037 }
2038
2039 ret = omap3isp_ccp2_init(isp);
2040 if (ret < 0) {
2041 dev_err(isp->dev, "CCP2 initialization failed\n");
2042 goto error_ccp2;
2043 }
2044
2045 ret = omap3isp_ccdc_init(isp);
2046 if (ret < 0) {
2047 dev_err(isp->dev, "CCDC initialization failed\n");
2048 goto error_ccdc;
2049 }
2050
2051 ret = omap3isp_preview_init(isp);
2052 if (ret < 0) {
2053 dev_err(isp->dev, "Preview initialization failed\n");
2054 goto error_preview;
2055 }
2056
2057 ret = omap3isp_resizer_init(isp);
2058 if (ret < 0) {
2059 dev_err(isp->dev, "Resizer initialization failed\n");
2060 goto error_resizer;
2061 }
2062
2063 ret = omap3isp_hist_init(isp);
2064 if (ret < 0) {
2065 dev_err(isp->dev, "Histogram initialization failed\n");
2066 goto error_hist;
2067 }
2068
2069 ret = omap3isp_h3a_aewb_init(isp);
2070 if (ret < 0) {
2071 dev_err(isp->dev, "H3A AEWB initialization failed\n");
2072 goto error_h3a_aewb;
2073 }
2074
2075 ret = omap3isp_h3a_af_init(isp);
2076 if (ret < 0) {
2077 dev_err(isp->dev, "H3A AF initialization failed\n");
2078 goto error_h3a_af;
2079 }
2080
2081 /* Connect the submodules. */
2082 ret = media_entity_create_link(
2083 &isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE,
2084 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
2085 if (ret < 0)
2086 goto error_link;
2087
2088 ret = media_entity_create_link(
2089 &isp->isp_ccp2.subdev.entity, CCP2_PAD_SOURCE,
2090 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
2091 if (ret < 0)
2092 goto error_link;
2093
2094 ret = media_entity_create_link(
2095 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
2096 &isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0);
2097 if (ret < 0)
2098 goto error_link;
2099
2100 ret = media_entity_create_link(
2101 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF,
2102 &isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
2103 if (ret < 0)
2104 goto error_link;
2105
2106 ret = media_entity_create_link(
2107 &isp->isp_prev.subdev.entity, PREV_PAD_SOURCE,
2108 &isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
2109 if (ret < 0)
2110 goto error_link;
2111
2112 ret = media_entity_create_link(
2113 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
2114 &isp->isp_aewb.subdev.entity, 0,
2115 MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
2116 if (ret < 0)
2117 goto error_link;
2118
2119 ret = media_entity_create_link(
2120 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
2121 &isp->isp_af.subdev.entity, 0,
2122 MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
2123 if (ret < 0)
2124 goto error_link;
2125
2126 ret = media_entity_create_link(
2127 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
2128 &isp->isp_hist.subdev.entity, 0,
2129 MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
2130 if (ret < 0)
2131 goto error_link;
2132
2133 return 0;
2134
2135 error_link:
2136 omap3isp_h3a_af_cleanup(isp);
2137 error_h3a_af:
2138 omap3isp_h3a_aewb_cleanup(isp);
2139 error_h3a_aewb:
2140 omap3isp_hist_cleanup(isp);
2141 error_hist:
2142 omap3isp_resizer_cleanup(isp);
2143 error_resizer:
2144 omap3isp_preview_cleanup(isp);
2145 error_preview:
2146 omap3isp_ccdc_cleanup(isp);
2147 error_ccdc:
2148 omap3isp_ccp2_cleanup(isp);
2149 error_ccp2:
2150 omap3isp_csi2_cleanup(isp);
2151 error_csi2:
2152 error_csiphy:
2153 return ret;
2154 }
2155
isp_detach_iommu(struct isp_device * isp)2156 static void isp_detach_iommu(struct isp_device *isp)
2157 {
2158 arm_iommu_release_mapping(isp->mapping);
2159 isp->mapping = NULL;
2160 iommu_group_remove_device(isp->dev);
2161 }
2162
isp_attach_iommu(struct isp_device * isp)2163 static int isp_attach_iommu(struct isp_device *isp)
2164 {
2165 struct dma_iommu_mapping *mapping;
2166 struct iommu_group *group;
2167 int ret;
2168
2169 /* Create a device group and add the device to it. */
2170 group = iommu_group_alloc();
2171 if (IS_ERR(group)) {
2172 dev_err(isp->dev, "failed to allocate IOMMU group\n");
2173 return PTR_ERR(group);
2174 }
2175
2176 ret = iommu_group_add_device(group, isp->dev);
2177 iommu_group_put(group);
2178
2179 if (ret < 0) {
2180 dev_err(isp->dev, "failed to add device to IPMMU group\n");
2181 return ret;
2182 }
2183
2184 /*
2185 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
2186 * VAs. This will allocate a corresponding IOMMU domain.
2187 */
2188 mapping = arm_iommu_create_mapping(&platform_bus_type, SZ_1G, SZ_2G);
2189 if (IS_ERR(mapping)) {
2190 dev_err(isp->dev, "failed to create ARM IOMMU mapping\n");
2191 ret = PTR_ERR(mapping);
2192 goto error;
2193 }
2194
2195 isp->mapping = mapping;
2196
2197 /* Attach the ARM VA mapping to the device. */
2198 ret = arm_iommu_attach_device(isp->dev, mapping);
2199 if (ret < 0) {
2200 dev_err(isp->dev, "failed to attach device to VA mapping\n");
2201 goto error;
2202 }
2203
2204 return 0;
2205
2206 error:
2207 isp_detach_iommu(isp);
2208 return ret;
2209 }
2210
2211 /*
2212 * isp_remove - Remove ISP platform device
2213 * @pdev: Pointer to ISP platform device
2214 *
2215 * Always returns 0.
2216 */
isp_remove(struct platform_device * pdev)2217 static int isp_remove(struct platform_device *pdev)
2218 {
2219 struct isp_device *isp = platform_get_drvdata(pdev);
2220
2221 v4l2_async_notifier_unregister(&isp->notifier);
2222 isp_unregister_entities(isp);
2223 isp_cleanup_modules(isp);
2224 isp_xclk_cleanup(isp);
2225
2226 __omap3isp_get(isp, false);
2227 isp_detach_iommu(isp);
2228 __omap3isp_put(isp, false);
2229
2230 return 0;
2231 }
2232
2233 enum isp_of_phy {
2234 ISP_OF_PHY_PARALLEL = 0,
2235 ISP_OF_PHY_CSIPHY1,
2236 ISP_OF_PHY_CSIPHY2,
2237 };
2238
isp_of_parse_node(struct device * dev,struct device_node * node,struct isp_async_subdev * isd)2239 static int isp_of_parse_node(struct device *dev, struct device_node *node,
2240 struct isp_async_subdev *isd)
2241 {
2242 struct isp_bus_cfg *buscfg = &isd->bus;
2243 struct v4l2_of_endpoint vep;
2244 unsigned int i;
2245
2246 v4l2_of_parse_endpoint(node, &vep);
2247
2248 dev_dbg(dev, "parsing endpoint %s, interface %u\n", node->full_name,
2249 vep.base.port);
2250
2251 switch (vep.base.port) {
2252 case ISP_OF_PHY_PARALLEL:
2253 buscfg->interface = ISP_INTERFACE_PARALLEL;
2254 buscfg->bus.parallel.data_lane_shift =
2255 vep.bus.parallel.data_shift;
2256 buscfg->bus.parallel.clk_pol =
2257 !!(vep.bus.parallel.flags
2258 & V4L2_MBUS_PCLK_SAMPLE_FALLING);
2259 buscfg->bus.parallel.hs_pol =
2260 !!(vep.bus.parallel.flags & V4L2_MBUS_VSYNC_ACTIVE_LOW);
2261 buscfg->bus.parallel.vs_pol =
2262 !!(vep.bus.parallel.flags & V4L2_MBUS_HSYNC_ACTIVE_LOW);
2263 buscfg->bus.parallel.fld_pol =
2264 !!(vep.bus.parallel.flags & V4L2_MBUS_FIELD_EVEN_LOW);
2265 buscfg->bus.parallel.data_pol =
2266 !!(vep.bus.parallel.flags & V4L2_MBUS_DATA_ACTIVE_LOW);
2267 break;
2268
2269 case ISP_OF_PHY_CSIPHY1:
2270 case ISP_OF_PHY_CSIPHY2:
2271 /* FIXME: always assume CSI-2 for now. */
2272 switch (vep.base.port) {
2273 case ISP_OF_PHY_CSIPHY1:
2274 buscfg->interface = ISP_INTERFACE_CSI2C_PHY1;
2275 break;
2276 case ISP_OF_PHY_CSIPHY2:
2277 buscfg->interface = ISP_INTERFACE_CSI2A_PHY2;
2278 break;
2279 }
2280 buscfg->bus.csi2.lanecfg.clk.pos = vep.bus.mipi_csi2.clock_lane;
2281 buscfg->bus.csi2.lanecfg.clk.pol =
2282 vep.bus.mipi_csi2.lane_polarities[0];
2283 dev_dbg(dev, "clock lane polarity %u, pos %u\n",
2284 buscfg->bus.csi2.lanecfg.clk.pol,
2285 buscfg->bus.csi2.lanecfg.clk.pos);
2286
2287 for (i = 0; i < ISP_CSIPHY2_NUM_DATA_LANES; i++) {
2288 buscfg->bus.csi2.lanecfg.data[i].pos =
2289 vep.bus.mipi_csi2.data_lanes[i];
2290 buscfg->bus.csi2.lanecfg.data[i].pol =
2291 vep.bus.mipi_csi2.lane_polarities[i + 1];
2292 dev_dbg(dev, "data lane %u polarity %u, pos %u\n", i,
2293 buscfg->bus.csi2.lanecfg.data[i].pol,
2294 buscfg->bus.csi2.lanecfg.data[i].pos);
2295 }
2296
2297 /*
2298 * FIXME: now we assume the CRC is always there.
2299 * Implement a way to obtain this information from the
2300 * sensor. Frame descriptors, perhaps?
2301 */
2302 buscfg->bus.csi2.crc = 1;
2303 break;
2304
2305 default:
2306 dev_warn(dev, "%s: invalid interface %u\n", node->full_name,
2307 vep.base.port);
2308 break;
2309 }
2310
2311 return 0;
2312 }
2313
isp_of_parse_nodes(struct device * dev,struct v4l2_async_notifier * notifier)2314 static int isp_of_parse_nodes(struct device *dev,
2315 struct v4l2_async_notifier *notifier)
2316 {
2317 struct device_node *node = NULL;
2318
2319 notifier->subdevs = devm_kcalloc(
2320 dev, ISP_MAX_SUBDEVS, sizeof(*notifier->subdevs), GFP_KERNEL);
2321 if (!notifier->subdevs)
2322 return -ENOMEM;
2323
2324 while (notifier->num_subdevs < ISP_MAX_SUBDEVS &&
2325 (node = of_graph_get_next_endpoint(dev->of_node, node))) {
2326 struct isp_async_subdev *isd;
2327
2328 isd = devm_kzalloc(dev, sizeof(*isd), GFP_KERNEL);
2329 if (!isd) {
2330 of_node_put(node);
2331 return -ENOMEM;
2332 }
2333
2334 notifier->subdevs[notifier->num_subdevs] = &isd->asd;
2335
2336 if (isp_of_parse_node(dev, node, isd)) {
2337 of_node_put(node);
2338 return -EINVAL;
2339 }
2340
2341 isd->asd.match.of.node = of_graph_get_remote_port_parent(node);
2342 of_node_put(node);
2343 if (!isd->asd.match.of.node) {
2344 dev_warn(dev, "bad remote port parent\n");
2345 return -EINVAL;
2346 }
2347
2348 isd->asd.match_type = V4L2_ASYNC_MATCH_OF;
2349 notifier->num_subdevs++;
2350 }
2351
2352 return notifier->num_subdevs;
2353 }
2354
isp_subdev_notifier_bound(struct v4l2_async_notifier * async,struct v4l2_subdev * subdev,struct v4l2_async_subdev * asd)2355 static int isp_subdev_notifier_bound(struct v4l2_async_notifier *async,
2356 struct v4l2_subdev *subdev,
2357 struct v4l2_async_subdev *asd)
2358 {
2359 struct isp_device *isp = container_of(async, struct isp_device,
2360 notifier);
2361 struct isp_async_subdev *isd =
2362 container_of(asd, struct isp_async_subdev, asd);
2363 int ret;
2364
2365 ret = isp_link_entity(isp, &subdev->entity, isd->bus.interface);
2366 if (ret < 0)
2367 return ret;
2368
2369 isd->sd = subdev;
2370 isd->sd->host_priv = &isd->bus;
2371
2372 return ret;
2373 }
2374
isp_subdev_notifier_complete(struct v4l2_async_notifier * async)2375 static int isp_subdev_notifier_complete(struct v4l2_async_notifier *async)
2376 {
2377 struct isp_device *isp = container_of(async, struct isp_device,
2378 notifier);
2379
2380 return v4l2_device_register_subdev_nodes(&isp->v4l2_dev);
2381 }
2382
2383 /*
2384 * isp_probe - Probe ISP platform device
2385 * @pdev: Pointer to ISP platform device
2386 *
2387 * Returns 0 if successful,
2388 * -ENOMEM if no memory available,
2389 * -ENODEV if no platform device resources found
2390 * or no space for remapping registers,
2391 * -EINVAL if couldn't install ISR,
2392 * or clk_get return error value.
2393 */
isp_probe(struct platform_device * pdev)2394 static int isp_probe(struct platform_device *pdev)
2395 {
2396 struct isp_device *isp;
2397 struct resource *mem;
2398 int ret;
2399 int i, m;
2400
2401 isp = devm_kzalloc(&pdev->dev, sizeof(*isp), GFP_KERNEL);
2402 if (!isp) {
2403 dev_err(&pdev->dev, "could not allocate memory\n");
2404 return -ENOMEM;
2405 }
2406
2407 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
2408 ret = of_property_read_u32(pdev->dev.of_node, "ti,phy-type",
2409 &isp->phy_type);
2410 if (ret)
2411 return ret;
2412
2413 isp->syscon = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
2414 "syscon");
2415 if (IS_ERR(isp->syscon))
2416 return PTR_ERR(isp->syscon);
2417
2418 ret = of_property_read_u32_index(pdev->dev.of_node, "syscon", 1,
2419 &isp->syscon_offset);
2420 if (ret)
2421 return ret;
2422
2423 ret = isp_of_parse_nodes(&pdev->dev, &isp->notifier);
2424 if (ret < 0)
2425 return ret;
2426 ret = v4l2_async_notifier_register(&isp->v4l2_dev,
2427 &isp->notifier);
2428 if (ret)
2429 return ret;
2430 } else {
2431 isp->pdata = pdev->dev.platform_data;
2432 isp->syscon = syscon_regmap_lookup_by_pdevname("syscon.0");
2433 if (IS_ERR(isp->syscon))
2434 return PTR_ERR(isp->syscon);
2435 dev_warn(&pdev->dev,
2436 "Platform data support is deprecated! Please move to DT now!\n");
2437 }
2438
2439 isp->autoidle = autoidle;
2440
2441 mutex_init(&isp->isp_mutex);
2442 spin_lock_init(&isp->stat_lock);
2443
2444 isp->dev = &pdev->dev;
2445 isp->ref_count = 0;
2446
2447 ret = dma_coerce_mask_and_coherent(isp->dev, DMA_BIT_MASK(32));
2448 if (ret)
2449 goto error;
2450
2451 platform_set_drvdata(pdev, isp);
2452
2453 /* Regulators */
2454 isp->isp_csiphy1.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy1");
2455 isp->isp_csiphy2.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy2");
2456
2457 /* Clocks
2458 *
2459 * The ISP clock tree is revision-dependent. We thus need to enable ICLK
2460 * manually to read the revision before calling __omap3isp_get().
2461 *
2462 * Start by mapping the ISP MMIO area, which is in two pieces.
2463 * The ISP IOMMU is in between. Map both now, and fill in the
2464 * ISP revision specific portions a little later in the
2465 * function.
2466 */
2467 for (i = 0; i < 2; i++) {
2468 unsigned int map_idx = i ? OMAP3_ISP_IOMEM_CSI2A_REGS1 : 0;
2469
2470 mem = platform_get_resource(pdev, IORESOURCE_MEM, i);
2471 isp->mmio_base[map_idx] =
2472 devm_ioremap_resource(isp->dev, mem);
2473 if (IS_ERR(isp->mmio_base[map_idx]))
2474 return PTR_ERR(isp->mmio_base[map_idx]);
2475 }
2476
2477 ret = isp_get_clocks(isp);
2478 if (ret < 0)
2479 goto error;
2480
2481 ret = clk_enable(isp->clock[ISP_CLK_CAM_ICK]);
2482 if (ret < 0)
2483 goto error;
2484
2485 isp->revision = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
2486 dev_info(isp->dev, "Revision %d.%d found\n",
2487 (isp->revision & 0xf0) >> 4, isp->revision & 0x0f);
2488
2489 clk_disable(isp->clock[ISP_CLK_CAM_ICK]);
2490
2491 if (__omap3isp_get(isp, false) == NULL) {
2492 ret = -ENODEV;
2493 goto error;
2494 }
2495
2496 ret = isp_reset(isp);
2497 if (ret < 0)
2498 goto error_isp;
2499
2500 ret = isp_xclk_init(isp);
2501 if (ret < 0)
2502 goto error_isp;
2503
2504 /* Memory resources */
2505 for (m = 0; m < ARRAY_SIZE(isp_res_maps); m++)
2506 if (isp->revision == isp_res_maps[m].isp_rev)
2507 break;
2508
2509 if (m == ARRAY_SIZE(isp_res_maps)) {
2510 dev_err(isp->dev, "No resource map found for ISP rev %d.%d\n",
2511 (isp->revision & 0xf0) >> 4, isp->revision & 0xf);
2512 ret = -ENODEV;
2513 goto error_isp;
2514 }
2515
2516 if (!IS_ENABLED(CONFIG_OF) || !pdev->dev.of_node) {
2517 isp->syscon_offset = isp_res_maps[m].syscon_offset;
2518 isp->phy_type = isp_res_maps[m].phy_type;
2519 }
2520
2521 for (i = 1; i < OMAP3_ISP_IOMEM_CSI2A_REGS1; i++)
2522 isp->mmio_base[i] =
2523 isp->mmio_base[0] + isp_res_maps[m].offset[i];
2524
2525 for (i = OMAP3_ISP_IOMEM_CSIPHY2; i < OMAP3_ISP_IOMEM_LAST; i++)
2526 isp->mmio_base[i] =
2527 isp->mmio_base[OMAP3_ISP_IOMEM_CSI2A_REGS1]
2528 + isp_res_maps[m].offset[i];
2529
2530 isp->mmio_hist_base_phys =
2531 mem->start + isp_res_maps[m].offset[OMAP3_ISP_IOMEM_HIST];
2532
2533 /* IOMMU */
2534 ret = isp_attach_iommu(isp);
2535 if (ret < 0) {
2536 dev_err(&pdev->dev, "unable to attach to IOMMU\n");
2537 goto error_isp;
2538 }
2539
2540 /* Interrupt */
2541 isp->irq_num = platform_get_irq(pdev, 0);
2542 if (isp->irq_num <= 0) {
2543 dev_err(isp->dev, "No IRQ resource\n");
2544 ret = -ENODEV;
2545 goto error_iommu;
2546 }
2547
2548 if (devm_request_irq(isp->dev, isp->irq_num, isp_isr, IRQF_SHARED,
2549 "OMAP3 ISP", isp)) {
2550 dev_err(isp->dev, "Unable to request IRQ\n");
2551 ret = -EINVAL;
2552 goto error_iommu;
2553 }
2554
2555 /* Entities */
2556 ret = isp_initialize_modules(isp);
2557 if (ret < 0)
2558 goto error_iommu;
2559
2560 isp->notifier.bound = isp_subdev_notifier_bound;
2561 isp->notifier.complete = isp_subdev_notifier_complete;
2562
2563 ret = isp_register_entities(isp);
2564 if (ret < 0)
2565 goto error_modules;
2566
2567 isp_core_init(isp, 1);
2568 omap3isp_put(isp);
2569
2570 return 0;
2571
2572 error_modules:
2573 isp_cleanup_modules(isp);
2574 error_iommu:
2575 isp_detach_iommu(isp);
2576 error_isp:
2577 isp_xclk_cleanup(isp);
2578 __omap3isp_put(isp, false);
2579 error:
2580 mutex_destroy(&isp->isp_mutex);
2581
2582 return ret;
2583 }
2584
2585 static const struct dev_pm_ops omap3isp_pm_ops = {
2586 .prepare = isp_pm_prepare,
2587 .suspend = isp_pm_suspend,
2588 .resume = isp_pm_resume,
2589 .complete = isp_pm_complete,
2590 };
2591
2592 static struct platform_device_id omap3isp_id_table[] = {
2593 { "omap3isp", 0 },
2594 { },
2595 };
2596 MODULE_DEVICE_TABLE(platform, omap3isp_id_table);
2597
2598 static const struct of_device_id omap3isp_of_table[] = {
2599 { .compatible = "ti,omap3-isp" },
2600 { },
2601 };
2602
2603 static struct platform_driver omap3isp_driver = {
2604 .probe = isp_probe,
2605 .remove = isp_remove,
2606 .id_table = omap3isp_id_table,
2607 .driver = {
2608 .name = "omap3isp",
2609 .pm = &omap3isp_pm_ops,
2610 .of_match_table = omap3isp_of_table,
2611 },
2612 };
2613
2614 module_platform_driver(omap3isp_driver);
2615
2616 MODULE_AUTHOR("Nokia Corporation");
2617 MODULE_DESCRIPTION("TI OMAP3 ISP driver");
2618 MODULE_LICENSE("GPL");
2619 MODULE_VERSION(ISP_VIDEO_DRIVER_VERSION);
2620