1 /*
2  * isp.c
3  *
4  * TI OMAP3 ISP - Core
5  *
6  * Copyright (C) 2006-2010 Nokia Corporation
7  * Copyright (C) 2007-2009 Texas Instruments, Inc.
8  *
9  * Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
10  *	     Sakari Ailus <sakari.ailus@iki.fi>
11  *
12  * Contributors:
13  *	Laurent Pinchart <laurent.pinchart@ideasonboard.com>
14  *	Sakari Ailus <sakari.ailus@iki.fi>
15  *	David Cohen <dacohen@gmail.com>
16  *	Stanimir Varbanov <svarbanov@mm-sol.com>
17  *	Vimarsh Zutshi <vimarsh.zutshi@gmail.com>
18  *	Tuukka Toivonen <tuukkat76@gmail.com>
19  *	Sergio Aguirre <saaguirre@ti.com>
20  *	Antti Koskipaa <akoskipa@gmail.com>
21  *	Ivan T. Ivanov <iivanov@mm-sol.com>
22  *	RaniSuneela <r-m@ti.com>
23  *	Atanas Filipov <afilipov@mm-sol.com>
24  *	Gjorgji Rosikopulos <grosikopulos@mm-sol.com>
25  *	Hiroshi DOYU <hiroshi.doyu@nokia.com>
26  *	Nayden Kanchev <nkanchev@mm-sol.com>
27  *	Phil Carmody <ext-phil.2.carmody@nokia.com>
28  *	Artem Bityutskiy <artem.bityutskiy@nokia.com>
29  *	Dominic Curran <dcurran@ti.com>
30  *	Ilkka Myllyperkio <ilkka.myllyperkio@sofica.fi>
31  *	Pallavi Kulkarni <p-kulkarni@ti.com>
32  *	Vaibhav Hiremath <hvaibhav@ti.com>
33  *	Mohit Jalori <mjalori@ti.com>
34  *	Sameer Venkatraman <sameerv@ti.com>
35  *	Senthilvadivu Guruswamy <svadivu@ti.com>
36  *	Thara Gopinath <thara@ti.com>
37  *	Toni Leinonen <toni.leinonen@nokia.com>
38  *	Troy Laramy <t-laramy@ti.com>
39  *
40  * This program is free software; you can redistribute it and/or modify
41  * it under the terms of the GNU General Public License version 2 as
42  * published by the Free Software Foundation.
43  */
44 
45 #include <asm/cacheflush.h>
46 
47 #include <linux/clk.h>
48 #include <linux/clkdev.h>
49 #include <linux/delay.h>
50 #include <linux/device.h>
51 #include <linux/dma-mapping.h>
52 #include <linux/i2c.h>
53 #include <linux/interrupt.h>
54 #include <linux/mfd/syscon.h>
55 #include <linux/module.h>
56 #include <linux/omap-iommu.h>
57 #include <linux/platform_device.h>
58 #include <linux/regulator/consumer.h>
59 #include <linux/slab.h>
60 #include <linux/sched.h>
61 #include <linux/vmalloc.h>
62 
63 #include <asm/dma-iommu.h>
64 
65 #include <media/v4l2-common.h>
66 #include <media/v4l2-device.h>
67 #include <media/v4l2-of.h>
68 
69 #include "isp.h"
70 #include "ispreg.h"
71 #include "ispccdc.h"
72 #include "isppreview.h"
73 #include "ispresizer.h"
74 #include "ispcsi2.h"
75 #include "ispccp2.h"
76 #include "isph3a.h"
77 #include "isphist.h"
78 
79 static unsigned int autoidle;
80 module_param(autoidle, int, 0444);
81 MODULE_PARM_DESC(autoidle, "Enable OMAP3ISP AUTOIDLE support");
82 
83 static void isp_save_ctx(struct isp_device *isp);
84 
85 static void isp_restore_ctx(struct isp_device *isp);
86 
87 static const struct isp_res_mapping isp_res_maps[] = {
88 	{
89 		.isp_rev = ISP_REVISION_2_0,
90 		.offset = {
91 			/* first MMIO area */
92 			0x0000, /* base, len 0x0070 */
93 			0x0400, /* ccp2, len 0x01f0 */
94 			0x0600, /* ccdc, len 0x00a8 */
95 			0x0a00, /* hist, len 0x0048 */
96 			0x0c00, /* h3a, len 0x0060 */
97 			0x0e00, /* preview, len 0x00a0 */
98 			0x1000, /* resizer, len 0x00ac */
99 			0x1200, /* sbl, len 0x00fc */
100 			/* second MMIO area */
101 			0x0000, /* csi2a, len 0x0170 */
102 			0x0170, /* csiphy2, len 0x000c */
103 		},
104 		.syscon_offset = 0xdc,
105 		.phy_type = ISP_PHY_TYPE_3430,
106 	},
107 	{
108 		.isp_rev = ISP_REVISION_15_0,
109 		.offset = {
110 			/* first MMIO area */
111 			0x0000, /* base, len 0x0070 */
112 			0x0400, /* ccp2, len 0x01f0 */
113 			0x0600, /* ccdc, len 0x00a8 */
114 			0x0a00, /* hist, len 0x0048 */
115 			0x0c00, /* h3a, len 0x0060 */
116 			0x0e00, /* preview, len 0x00a0 */
117 			0x1000, /* resizer, len 0x00ac */
118 			0x1200, /* sbl, len 0x00fc */
119 			/* second MMIO area */
120 			0x0000, /* csi2a, len 0x0170 (1st area) */
121 			0x0170, /* csiphy2, len 0x000c */
122 			0x01c0, /* csi2a, len 0x0040 (2nd area) */
123 			0x0400, /* csi2c, len 0x0170 (1st area) */
124 			0x0570, /* csiphy1, len 0x000c */
125 			0x05c0, /* csi2c, len 0x0040 (2nd area) */
126 		},
127 		.syscon_offset = 0x2f0,
128 		.phy_type = ISP_PHY_TYPE_3630,
129 	},
130 };
131 
132 /* Structure for saving/restoring ISP module registers */
133 static struct isp_reg isp_reg_list[] = {
134 	{OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG, 0},
135 	{OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, 0},
136 	{OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL, 0},
137 	{0, ISP_TOK_TERM, 0}
138 };
139 
140 /*
141  * omap3isp_flush - Post pending L3 bus writes by doing a register readback
142  * @isp: OMAP3 ISP device
143  *
144  * In order to force posting of pending writes, we need to write and
145  * readback the same register, in this case the revision register.
146  *
147  * See this link for reference:
148  *   http://www.mail-archive.com/linux-omap@vger.kernel.org/msg08149.html
149  */
omap3isp_flush(struct isp_device * isp)150 void omap3isp_flush(struct isp_device *isp)
151 {
152 	isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
153 	isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
154 }
155 
156 /* -----------------------------------------------------------------------------
157  * XCLK
158  */
159 
160 #define to_isp_xclk(_hw)	container_of(_hw, struct isp_xclk, hw)
161 
isp_xclk_update(struct isp_xclk * xclk,u32 divider)162 static void isp_xclk_update(struct isp_xclk *xclk, u32 divider)
163 {
164 	switch (xclk->id) {
165 	case ISP_XCLK_A:
166 		isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
167 				ISPTCTRL_CTRL_DIVA_MASK,
168 				divider << ISPTCTRL_CTRL_DIVA_SHIFT);
169 		break;
170 	case ISP_XCLK_B:
171 		isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
172 				ISPTCTRL_CTRL_DIVB_MASK,
173 				divider << ISPTCTRL_CTRL_DIVB_SHIFT);
174 		break;
175 	}
176 }
177 
isp_xclk_prepare(struct clk_hw * hw)178 static int isp_xclk_prepare(struct clk_hw *hw)
179 {
180 	struct isp_xclk *xclk = to_isp_xclk(hw);
181 
182 	omap3isp_get(xclk->isp);
183 
184 	return 0;
185 }
186 
isp_xclk_unprepare(struct clk_hw * hw)187 static void isp_xclk_unprepare(struct clk_hw *hw)
188 {
189 	struct isp_xclk *xclk = to_isp_xclk(hw);
190 
191 	omap3isp_put(xclk->isp);
192 }
193 
isp_xclk_enable(struct clk_hw * hw)194 static int isp_xclk_enable(struct clk_hw *hw)
195 {
196 	struct isp_xclk *xclk = to_isp_xclk(hw);
197 	unsigned long flags;
198 
199 	spin_lock_irqsave(&xclk->lock, flags);
200 	isp_xclk_update(xclk, xclk->divider);
201 	xclk->enabled = true;
202 	spin_unlock_irqrestore(&xclk->lock, flags);
203 
204 	return 0;
205 }
206 
isp_xclk_disable(struct clk_hw * hw)207 static void isp_xclk_disable(struct clk_hw *hw)
208 {
209 	struct isp_xclk *xclk = to_isp_xclk(hw);
210 	unsigned long flags;
211 
212 	spin_lock_irqsave(&xclk->lock, flags);
213 	isp_xclk_update(xclk, 0);
214 	xclk->enabled = false;
215 	spin_unlock_irqrestore(&xclk->lock, flags);
216 }
217 
isp_xclk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)218 static unsigned long isp_xclk_recalc_rate(struct clk_hw *hw,
219 					  unsigned long parent_rate)
220 {
221 	struct isp_xclk *xclk = to_isp_xclk(hw);
222 
223 	return parent_rate / xclk->divider;
224 }
225 
isp_xclk_calc_divider(unsigned long * rate,unsigned long parent_rate)226 static u32 isp_xclk_calc_divider(unsigned long *rate, unsigned long parent_rate)
227 {
228 	u32 divider;
229 
230 	if (*rate >= parent_rate) {
231 		*rate = parent_rate;
232 		return ISPTCTRL_CTRL_DIV_BYPASS;
233 	}
234 
235 	if (*rate == 0)
236 		*rate = 1;
237 
238 	divider = DIV_ROUND_CLOSEST(parent_rate, *rate);
239 	if (divider >= ISPTCTRL_CTRL_DIV_BYPASS)
240 		divider = ISPTCTRL_CTRL_DIV_BYPASS - 1;
241 
242 	*rate = parent_rate / divider;
243 	return divider;
244 }
245 
isp_xclk_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)246 static long isp_xclk_round_rate(struct clk_hw *hw, unsigned long rate,
247 				unsigned long *parent_rate)
248 {
249 	isp_xclk_calc_divider(&rate, *parent_rate);
250 	return rate;
251 }
252 
isp_xclk_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)253 static int isp_xclk_set_rate(struct clk_hw *hw, unsigned long rate,
254 			     unsigned long parent_rate)
255 {
256 	struct isp_xclk *xclk = to_isp_xclk(hw);
257 	unsigned long flags;
258 	u32 divider;
259 
260 	divider = isp_xclk_calc_divider(&rate, parent_rate);
261 
262 	spin_lock_irqsave(&xclk->lock, flags);
263 
264 	xclk->divider = divider;
265 	if (xclk->enabled)
266 		isp_xclk_update(xclk, divider);
267 
268 	spin_unlock_irqrestore(&xclk->lock, flags);
269 
270 	dev_dbg(xclk->isp->dev, "%s: cam_xclk%c set to %lu Hz (div %u)\n",
271 		__func__, xclk->id == ISP_XCLK_A ? 'a' : 'b', rate, divider);
272 	return 0;
273 }
274 
275 static const struct clk_ops isp_xclk_ops = {
276 	.prepare = isp_xclk_prepare,
277 	.unprepare = isp_xclk_unprepare,
278 	.enable = isp_xclk_enable,
279 	.disable = isp_xclk_disable,
280 	.recalc_rate = isp_xclk_recalc_rate,
281 	.round_rate = isp_xclk_round_rate,
282 	.set_rate = isp_xclk_set_rate,
283 };
284 
285 static const char *isp_xclk_parent_name = "cam_mclk";
286 
287 static const struct clk_init_data isp_xclk_init_data = {
288 	.name = "cam_xclk",
289 	.ops = &isp_xclk_ops,
290 	.parent_names = &isp_xclk_parent_name,
291 	.num_parents = 1,
292 };
293 
isp_xclk_src_get(struct of_phandle_args * clkspec,void * data)294 static struct clk *isp_xclk_src_get(struct of_phandle_args *clkspec, void *data)
295 {
296 	unsigned int idx = clkspec->args[0];
297 	struct isp_device *isp = data;
298 
299 	if (idx >= ARRAY_SIZE(isp->xclks))
300 		return ERR_PTR(-ENOENT);
301 
302 	return isp->xclks[idx].clk;
303 }
304 
isp_xclk_init(struct isp_device * isp)305 static int isp_xclk_init(struct isp_device *isp)
306 {
307 	struct device_node *np = isp->dev->of_node;
308 	struct clk_init_data init;
309 	unsigned int i;
310 
311 	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i)
312 		isp->xclks[i].clk = ERR_PTR(-EINVAL);
313 
314 	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
315 		struct isp_xclk *xclk = &isp->xclks[i];
316 
317 		xclk->isp = isp;
318 		xclk->id = i == 0 ? ISP_XCLK_A : ISP_XCLK_B;
319 		xclk->divider = 1;
320 		spin_lock_init(&xclk->lock);
321 
322 		init.name = i == 0 ? "cam_xclka" : "cam_xclkb";
323 		init.ops = &isp_xclk_ops;
324 		init.parent_names = &isp_xclk_parent_name;
325 		init.num_parents = 1;
326 
327 		xclk->hw.init = &init;
328 		/*
329 		 * The first argument is NULL in order to avoid circular
330 		 * reference, as this driver takes reference on the
331 		 * sensor subdevice modules and the sensors would take
332 		 * reference on this module through clk_get().
333 		 */
334 		xclk->clk = clk_register(NULL, &xclk->hw);
335 		if (IS_ERR(xclk->clk))
336 			return PTR_ERR(xclk->clk);
337 	}
338 
339 	if (np)
340 		of_clk_add_provider(np, isp_xclk_src_get, isp);
341 
342 	return 0;
343 }
344 
isp_xclk_cleanup(struct isp_device * isp)345 static void isp_xclk_cleanup(struct isp_device *isp)
346 {
347 	struct device_node *np = isp->dev->of_node;
348 	unsigned int i;
349 
350 	if (np)
351 		of_clk_del_provider(np);
352 
353 	for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
354 		struct isp_xclk *xclk = &isp->xclks[i];
355 
356 		if (!IS_ERR(xclk->clk))
357 			clk_unregister(xclk->clk);
358 	}
359 }
360 
361 /* -----------------------------------------------------------------------------
362  * Interrupts
363  */
364 
365 /*
366  * isp_enable_interrupts - Enable ISP interrupts.
367  * @isp: OMAP3 ISP device
368  */
isp_enable_interrupts(struct isp_device * isp)369 static void isp_enable_interrupts(struct isp_device *isp)
370 {
371 	static const u32 irq = IRQ0ENABLE_CSIA_IRQ
372 			     | IRQ0ENABLE_CSIB_IRQ
373 			     | IRQ0ENABLE_CCDC_LSC_PREF_ERR_IRQ
374 			     | IRQ0ENABLE_CCDC_LSC_DONE_IRQ
375 			     | IRQ0ENABLE_CCDC_VD0_IRQ
376 			     | IRQ0ENABLE_CCDC_VD1_IRQ
377 			     | IRQ0ENABLE_HS_VS_IRQ
378 			     | IRQ0ENABLE_HIST_DONE_IRQ
379 			     | IRQ0ENABLE_H3A_AWB_DONE_IRQ
380 			     | IRQ0ENABLE_H3A_AF_DONE_IRQ
381 			     | IRQ0ENABLE_PRV_DONE_IRQ
382 			     | IRQ0ENABLE_RSZ_DONE_IRQ;
383 
384 	isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
385 	isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
386 }
387 
388 /*
389  * isp_disable_interrupts - Disable ISP interrupts.
390  * @isp: OMAP3 ISP device
391  */
isp_disable_interrupts(struct isp_device * isp)392 static void isp_disable_interrupts(struct isp_device *isp)
393 {
394 	isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
395 }
396 
397 /*
398  * isp_core_init - ISP core settings
399  * @isp: OMAP3 ISP device
400  * @idle: Consider idle state.
401  *
402  * Set the power settings for the ISP and SBL bus and configure the HS/VS
403  * interrupt source.
404  *
405  * We need to configure the HS/VS interrupt source before interrupts get
406  * enabled, as the sensor might be free-running and the ISP default setting
407  * (HS edge) would put an unnecessary burden on the CPU.
408  */
isp_core_init(struct isp_device * isp,int idle)409 static void isp_core_init(struct isp_device *isp, int idle)
410 {
411 	isp_reg_writel(isp,
412 		       ((idle ? ISP_SYSCONFIG_MIDLEMODE_SMARTSTANDBY :
413 				ISP_SYSCONFIG_MIDLEMODE_FORCESTANDBY) <<
414 			ISP_SYSCONFIG_MIDLEMODE_SHIFT) |
415 			((isp->revision == ISP_REVISION_15_0) ?
416 			  ISP_SYSCONFIG_AUTOIDLE : 0),
417 		       OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
418 
419 	isp_reg_writel(isp,
420 		       (isp->autoidle ? ISPCTRL_SBL_AUTOIDLE : 0) |
421 		       ISPCTRL_SYNC_DETECT_VSRISE,
422 		       OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
423 }
424 
425 /*
426  * Configure the bridge and lane shifter. Valid inputs are
427  *
428  * CCDC_INPUT_PARALLEL: Parallel interface
429  * CCDC_INPUT_CSI2A: CSI2a receiver
430  * CCDC_INPUT_CCP2B: CCP2b receiver
431  * CCDC_INPUT_CSI2C: CSI2c receiver
432  *
433  * The bridge and lane shifter are configured according to the selected input
434  * and the ISP platform data.
435  */
omap3isp_configure_bridge(struct isp_device * isp,enum ccdc_input_entity input,const struct isp_parallel_cfg * parcfg,unsigned int shift,unsigned int bridge)436 void omap3isp_configure_bridge(struct isp_device *isp,
437 			       enum ccdc_input_entity input,
438 			       const struct isp_parallel_cfg *parcfg,
439 			       unsigned int shift, unsigned int bridge)
440 {
441 	u32 ispctrl_val;
442 
443 	ispctrl_val  = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
444 	ispctrl_val &= ~ISPCTRL_SHIFT_MASK;
445 	ispctrl_val &= ~ISPCTRL_PAR_CLK_POL_INV;
446 	ispctrl_val &= ~ISPCTRL_PAR_SER_CLK_SEL_MASK;
447 	ispctrl_val &= ~ISPCTRL_PAR_BRIDGE_MASK;
448 	ispctrl_val |= bridge;
449 
450 	switch (input) {
451 	case CCDC_INPUT_PARALLEL:
452 		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_PARALLEL;
453 		ispctrl_val |= parcfg->clk_pol << ISPCTRL_PAR_CLK_POL_SHIFT;
454 		shift += parcfg->data_lane_shift * 2;
455 		break;
456 
457 	case CCDC_INPUT_CSI2A:
458 		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIA;
459 		break;
460 
461 	case CCDC_INPUT_CCP2B:
462 		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIB;
463 		break;
464 
465 	case CCDC_INPUT_CSI2C:
466 		ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIC;
467 		break;
468 
469 	default:
470 		return;
471 	}
472 
473 	ispctrl_val |= ((shift/2) << ISPCTRL_SHIFT_SHIFT) & ISPCTRL_SHIFT_MASK;
474 
475 	isp_reg_writel(isp, ispctrl_val, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
476 }
477 
omap3isp_hist_dma_done(struct isp_device * isp)478 void omap3isp_hist_dma_done(struct isp_device *isp)
479 {
480 	if (omap3isp_ccdc_busy(&isp->isp_ccdc) ||
481 	    omap3isp_stat_pcr_busy(&isp->isp_hist)) {
482 		/* Histogram cannot be enabled in this frame anymore */
483 		atomic_set(&isp->isp_hist.buf_err, 1);
484 		dev_dbg(isp->dev, "hist: Out of synchronization with "
485 				  "CCDC. Ignoring next buffer.\n");
486 	}
487 }
488 
isp_isr_dbg(struct isp_device * isp,u32 irqstatus)489 static inline void isp_isr_dbg(struct isp_device *isp, u32 irqstatus)
490 {
491 	static const char *name[] = {
492 		"CSIA_IRQ",
493 		"res1",
494 		"res2",
495 		"CSIB_LCM_IRQ",
496 		"CSIB_IRQ",
497 		"res5",
498 		"res6",
499 		"res7",
500 		"CCDC_VD0_IRQ",
501 		"CCDC_VD1_IRQ",
502 		"CCDC_VD2_IRQ",
503 		"CCDC_ERR_IRQ",
504 		"H3A_AF_DONE_IRQ",
505 		"H3A_AWB_DONE_IRQ",
506 		"res14",
507 		"res15",
508 		"HIST_DONE_IRQ",
509 		"CCDC_LSC_DONE",
510 		"CCDC_LSC_PREFETCH_COMPLETED",
511 		"CCDC_LSC_PREFETCH_ERROR",
512 		"PRV_DONE_IRQ",
513 		"CBUFF_IRQ",
514 		"res22",
515 		"res23",
516 		"RSZ_DONE_IRQ",
517 		"OVF_IRQ",
518 		"res26",
519 		"res27",
520 		"MMU_ERR_IRQ",
521 		"OCP_ERR_IRQ",
522 		"SEC_ERR_IRQ",
523 		"HS_VS_IRQ",
524 	};
525 	int i;
526 
527 	dev_dbg(isp->dev, "ISP IRQ: ");
528 
529 	for (i = 0; i < ARRAY_SIZE(name); i++) {
530 		if ((1 << i) & irqstatus)
531 			printk(KERN_CONT "%s ", name[i]);
532 	}
533 	printk(KERN_CONT "\n");
534 }
535 
isp_isr_sbl(struct isp_device * isp)536 static void isp_isr_sbl(struct isp_device *isp)
537 {
538 	struct device *dev = isp->dev;
539 	struct isp_pipeline *pipe;
540 	u32 sbl_pcr;
541 
542 	/*
543 	 * Handle shared buffer logic overflows for video buffers.
544 	 * ISPSBL_PCR_CCDCPRV_2_RSZ_OVF can be safely ignored.
545 	 */
546 	sbl_pcr = isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
547 	isp_reg_writel(isp, sbl_pcr, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
548 	sbl_pcr &= ~ISPSBL_PCR_CCDCPRV_2_RSZ_OVF;
549 
550 	if (sbl_pcr)
551 		dev_dbg(dev, "SBL overflow (PCR = 0x%08x)\n", sbl_pcr);
552 
553 	if (sbl_pcr & ISPSBL_PCR_CSIB_WBL_OVF) {
554 		pipe = to_isp_pipeline(&isp->isp_ccp2.subdev.entity);
555 		if (pipe != NULL)
556 			pipe->error = true;
557 	}
558 
559 	if (sbl_pcr & ISPSBL_PCR_CSIA_WBL_OVF) {
560 		pipe = to_isp_pipeline(&isp->isp_csi2a.subdev.entity);
561 		if (pipe != NULL)
562 			pipe->error = true;
563 	}
564 
565 	if (sbl_pcr & ISPSBL_PCR_CCDC_WBL_OVF) {
566 		pipe = to_isp_pipeline(&isp->isp_ccdc.subdev.entity);
567 		if (pipe != NULL)
568 			pipe->error = true;
569 	}
570 
571 	if (sbl_pcr & ISPSBL_PCR_PRV_WBL_OVF) {
572 		pipe = to_isp_pipeline(&isp->isp_prev.subdev.entity);
573 		if (pipe != NULL)
574 			pipe->error = true;
575 	}
576 
577 	if (sbl_pcr & (ISPSBL_PCR_RSZ1_WBL_OVF
578 		       | ISPSBL_PCR_RSZ2_WBL_OVF
579 		       | ISPSBL_PCR_RSZ3_WBL_OVF
580 		       | ISPSBL_PCR_RSZ4_WBL_OVF)) {
581 		pipe = to_isp_pipeline(&isp->isp_res.subdev.entity);
582 		if (pipe != NULL)
583 			pipe->error = true;
584 	}
585 
586 	if (sbl_pcr & ISPSBL_PCR_H3A_AF_WBL_OVF)
587 		omap3isp_stat_sbl_overflow(&isp->isp_af);
588 
589 	if (sbl_pcr & ISPSBL_PCR_H3A_AEAWB_WBL_OVF)
590 		omap3isp_stat_sbl_overflow(&isp->isp_aewb);
591 }
592 
593 /*
594  * isp_isr - Interrupt Service Routine for Camera ISP module.
595  * @irq: Not used currently.
596  * @_isp: Pointer to the OMAP3 ISP device
597  *
598  * Handles the corresponding callback if plugged in.
599  */
isp_isr(int irq,void * _isp)600 static irqreturn_t isp_isr(int irq, void *_isp)
601 {
602 	static const u32 ccdc_events = IRQ0STATUS_CCDC_LSC_PREF_ERR_IRQ |
603 				       IRQ0STATUS_CCDC_LSC_DONE_IRQ |
604 				       IRQ0STATUS_CCDC_VD0_IRQ |
605 				       IRQ0STATUS_CCDC_VD1_IRQ |
606 				       IRQ0STATUS_HS_VS_IRQ;
607 	struct isp_device *isp = _isp;
608 	u32 irqstatus;
609 
610 	irqstatus = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
611 	isp_reg_writel(isp, irqstatus, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
612 
613 	isp_isr_sbl(isp);
614 
615 	if (irqstatus & IRQ0STATUS_CSIA_IRQ)
616 		omap3isp_csi2_isr(&isp->isp_csi2a);
617 
618 	if (irqstatus & IRQ0STATUS_CSIB_IRQ)
619 		omap3isp_ccp2_isr(&isp->isp_ccp2);
620 
621 	if (irqstatus & IRQ0STATUS_CCDC_VD0_IRQ) {
622 		if (isp->isp_ccdc.output & CCDC_OUTPUT_PREVIEW)
623 			omap3isp_preview_isr_frame_sync(&isp->isp_prev);
624 		if (isp->isp_ccdc.output & CCDC_OUTPUT_RESIZER)
625 			omap3isp_resizer_isr_frame_sync(&isp->isp_res);
626 		omap3isp_stat_isr_frame_sync(&isp->isp_aewb);
627 		omap3isp_stat_isr_frame_sync(&isp->isp_af);
628 		omap3isp_stat_isr_frame_sync(&isp->isp_hist);
629 	}
630 
631 	if (irqstatus & ccdc_events)
632 		omap3isp_ccdc_isr(&isp->isp_ccdc, irqstatus & ccdc_events);
633 
634 	if (irqstatus & IRQ0STATUS_PRV_DONE_IRQ) {
635 		if (isp->isp_prev.output & PREVIEW_OUTPUT_RESIZER)
636 			omap3isp_resizer_isr_frame_sync(&isp->isp_res);
637 		omap3isp_preview_isr(&isp->isp_prev);
638 	}
639 
640 	if (irqstatus & IRQ0STATUS_RSZ_DONE_IRQ)
641 		omap3isp_resizer_isr(&isp->isp_res);
642 
643 	if (irqstatus & IRQ0STATUS_H3A_AWB_DONE_IRQ)
644 		omap3isp_stat_isr(&isp->isp_aewb);
645 
646 	if (irqstatus & IRQ0STATUS_H3A_AF_DONE_IRQ)
647 		omap3isp_stat_isr(&isp->isp_af);
648 
649 	if (irqstatus & IRQ0STATUS_HIST_DONE_IRQ)
650 		omap3isp_stat_isr(&isp->isp_hist);
651 
652 	omap3isp_flush(isp);
653 
654 #if defined(DEBUG) && defined(ISP_ISR_DEBUG)
655 	isp_isr_dbg(isp, irqstatus);
656 #endif
657 
658 	return IRQ_HANDLED;
659 }
660 
661 /* -----------------------------------------------------------------------------
662  * Pipeline power management
663  *
664  * Entities must be powered up when part of a pipeline that contains at least
665  * one open video device node.
666  *
667  * To achieve this use the entity use_count field to track the number of users.
668  * For entities corresponding to video device nodes the use_count field stores
669  * the users count of the node. For entities corresponding to subdevs the
670  * use_count field stores the total number of users of all video device nodes
671  * in the pipeline.
672  *
673  * The omap3isp_pipeline_pm_use() function must be called in the open() and
674  * close() handlers of video device nodes. It increments or decrements the use
675  * count of all subdev entities in the pipeline.
676  *
677  * To react to link management on powered pipelines, the link setup notification
678  * callback updates the use count of all entities in the source and sink sides
679  * of the link.
680  */
681 
682 /*
683  * isp_pipeline_pm_use_count - Count the number of users of a pipeline
684  * @entity: The entity
685  *
686  * Return the total number of users of all video device nodes in the pipeline.
687  */
isp_pipeline_pm_use_count(struct media_entity * entity)688 static int isp_pipeline_pm_use_count(struct media_entity *entity)
689 {
690 	struct media_entity_graph graph;
691 	int use = 0;
692 
693 	media_entity_graph_walk_start(&graph, entity);
694 
695 	while ((entity = media_entity_graph_walk_next(&graph))) {
696 		if (media_entity_type(entity) == MEDIA_ENT_T_DEVNODE)
697 			use += entity->use_count;
698 	}
699 
700 	return use;
701 }
702 
703 /*
704  * isp_pipeline_pm_power_one - Apply power change to an entity
705  * @entity: The entity
706  * @change: Use count change
707  *
708  * Change the entity use count by @change. If the entity is a subdev update its
709  * power state by calling the core::s_power operation when the use count goes
710  * from 0 to != 0 or from != 0 to 0.
711  *
712  * Return 0 on success or a negative error code on failure.
713  */
isp_pipeline_pm_power_one(struct media_entity * entity,int change)714 static int isp_pipeline_pm_power_one(struct media_entity *entity, int change)
715 {
716 	struct v4l2_subdev *subdev;
717 	int ret;
718 
719 	subdev = media_entity_type(entity) == MEDIA_ENT_T_V4L2_SUBDEV
720 	       ? media_entity_to_v4l2_subdev(entity) : NULL;
721 
722 	if (entity->use_count == 0 && change > 0 && subdev != NULL) {
723 		ret = v4l2_subdev_call(subdev, core, s_power, 1);
724 		if (ret < 0 && ret != -ENOIOCTLCMD)
725 			return ret;
726 	}
727 
728 	entity->use_count += change;
729 	WARN_ON(entity->use_count < 0);
730 
731 	if (entity->use_count == 0 && change < 0 && subdev != NULL)
732 		v4l2_subdev_call(subdev, core, s_power, 0);
733 
734 	return 0;
735 }
736 
737 /*
738  * isp_pipeline_pm_power - Apply power change to all entities in a pipeline
739  * @entity: The entity
740  * @change: Use count change
741  *
742  * Walk the pipeline to update the use count and the power state of all non-node
743  * entities.
744  *
745  * Return 0 on success or a negative error code on failure.
746  */
isp_pipeline_pm_power(struct media_entity * entity,int change)747 static int isp_pipeline_pm_power(struct media_entity *entity, int change)
748 {
749 	struct media_entity_graph graph;
750 	struct media_entity *first = entity;
751 	int ret = 0;
752 
753 	if (!change)
754 		return 0;
755 
756 	media_entity_graph_walk_start(&graph, entity);
757 
758 	while (!ret && (entity = media_entity_graph_walk_next(&graph)))
759 		if (media_entity_type(entity) != MEDIA_ENT_T_DEVNODE)
760 			ret = isp_pipeline_pm_power_one(entity, change);
761 
762 	if (!ret)
763 		return 0;
764 
765 	media_entity_graph_walk_start(&graph, first);
766 
767 	while ((first = media_entity_graph_walk_next(&graph))
768 	       && first != entity)
769 		if (media_entity_type(first) != MEDIA_ENT_T_DEVNODE)
770 			isp_pipeline_pm_power_one(first, -change);
771 
772 	return ret;
773 }
774 
775 /*
776  * omap3isp_pipeline_pm_use - Update the use count of an entity
777  * @entity: The entity
778  * @use: Use (1) or stop using (0) the entity
779  *
780  * Update the use count of all entities in the pipeline and power entities on or
781  * off accordingly.
782  *
783  * Return 0 on success or a negative error code on failure. Powering entities
784  * off is assumed to never fail. No failure can occur when the use parameter is
785  * set to 0.
786  */
omap3isp_pipeline_pm_use(struct media_entity * entity,int use)787 int omap3isp_pipeline_pm_use(struct media_entity *entity, int use)
788 {
789 	int change = use ? 1 : -1;
790 	int ret;
791 
792 	mutex_lock(&entity->parent->graph_mutex);
793 
794 	/* Apply use count to node. */
795 	entity->use_count += change;
796 	WARN_ON(entity->use_count < 0);
797 
798 	/* Apply power change to connected non-nodes. */
799 	ret = isp_pipeline_pm_power(entity, change);
800 	if (ret < 0)
801 		entity->use_count -= change;
802 
803 	mutex_unlock(&entity->parent->graph_mutex);
804 
805 	return ret;
806 }
807 
808 /*
809  * isp_pipeline_link_notify - Link management notification callback
810  * @link: The link
811  * @flags: New link flags that will be applied
812  * @notification: The link's state change notification type (MEDIA_DEV_NOTIFY_*)
813  *
814  * React to link management on powered pipelines by updating the use count of
815  * all entities in the source and sink sides of the link. Entities are powered
816  * on or off accordingly.
817  *
818  * Return 0 on success or a negative error code on failure. Powering entities
819  * off is assumed to never fail. This function will not fail for disconnection
820  * events.
821  */
isp_pipeline_link_notify(struct media_link * link,u32 flags,unsigned int notification)822 static int isp_pipeline_link_notify(struct media_link *link, u32 flags,
823 				    unsigned int notification)
824 {
825 	struct media_entity *source = link->source->entity;
826 	struct media_entity *sink = link->sink->entity;
827 	int source_use = isp_pipeline_pm_use_count(source);
828 	int sink_use = isp_pipeline_pm_use_count(sink);
829 	int ret;
830 
831 	if (notification == MEDIA_DEV_NOTIFY_POST_LINK_CH &&
832 	    !(flags & MEDIA_LNK_FL_ENABLED)) {
833 		/* Powering off entities is assumed to never fail. */
834 		isp_pipeline_pm_power(source, -sink_use);
835 		isp_pipeline_pm_power(sink, -source_use);
836 		return 0;
837 	}
838 
839 	if (notification == MEDIA_DEV_NOTIFY_PRE_LINK_CH &&
840 		(flags & MEDIA_LNK_FL_ENABLED)) {
841 
842 		ret = isp_pipeline_pm_power(source, sink_use);
843 		if (ret < 0)
844 			return ret;
845 
846 		ret = isp_pipeline_pm_power(sink, source_use);
847 		if (ret < 0)
848 			isp_pipeline_pm_power(source, -sink_use);
849 
850 		return ret;
851 	}
852 
853 	return 0;
854 }
855 
856 /* -----------------------------------------------------------------------------
857  * Pipeline stream management
858  */
859 
860 /*
861  * isp_pipeline_enable - Enable streaming on a pipeline
862  * @pipe: ISP pipeline
863  * @mode: Stream mode (single shot or continuous)
864  *
865  * Walk the entities chain starting at the pipeline output video node and start
866  * all modules in the chain in the given mode.
867  *
868  * Return 0 if successful, or the return value of the failed video::s_stream
869  * operation otherwise.
870  */
isp_pipeline_enable(struct isp_pipeline * pipe,enum isp_pipeline_stream_state mode)871 static int isp_pipeline_enable(struct isp_pipeline *pipe,
872 			       enum isp_pipeline_stream_state mode)
873 {
874 	struct isp_device *isp = pipe->output->isp;
875 	struct media_entity *entity;
876 	struct media_pad *pad;
877 	struct v4l2_subdev *subdev;
878 	unsigned long flags;
879 	int ret;
880 
881 	/* Refuse to start streaming if an entity included in the pipeline has
882 	 * crashed. This check must be performed before the loop below to avoid
883 	 * starting entities if the pipeline won't start anyway (those entities
884 	 * would then likely fail to stop, making the problem worse).
885 	 */
886 	if (pipe->entities & isp->crashed)
887 		return -EIO;
888 
889 	spin_lock_irqsave(&pipe->lock, flags);
890 	pipe->state &= ~(ISP_PIPELINE_IDLE_INPUT | ISP_PIPELINE_IDLE_OUTPUT);
891 	spin_unlock_irqrestore(&pipe->lock, flags);
892 
893 	pipe->do_propagation = false;
894 
895 	entity = &pipe->output->video.entity;
896 	while (1) {
897 		pad = &entity->pads[0];
898 		if (!(pad->flags & MEDIA_PAD_FL_SINK))
899 			break;
900 
901 		pad = media_entity_remote_pad(pad);
902 		if (pad == NULL ||
903 		    media_entity_type(pad->entity) != MEDIA_ENT_T_V4L2_SUBDEV)
904 			break;
905 
906 		entity = pad->entity;
907 		subdev = media_entity_to_v4l2_subdev(entity);
908 
909 		ret = v4l2_subdev_call(subdev, video, s_stream, mode);
910 		if (ret < 0 && ret != -ENOIOCTLCMD)
911 			return ret;
912 
913 		if (subdev == &isp->isp_ccdc.subdev) {
914 			v4l2_subdev_call(&isp->isp_aewb.subdev, video,
915 					s_stream, mode);
916 			v4l2_subdev_call(&isp->isp_af.subdev, video,
917 					s_stream, mode);
918 			v4l2_subdev_call(&isp->isp_hist.subdev, video,
919 					s_stream, mode);
920 			pipe->do_propagation = true;
921 		}
922 	}
923 
924 	return 0;
925 }
926 
isp_pipeline_wait_resizer(struct isp_device * isp)927 static int isp_pipeline_wait_resizer(struct isp_device *isp)
928 {
929 	return omap3isp_resizer_busy(&isp->isp_res);
930 }
931 
isp_pipeline_wait_preview(struct isp_device * isp)932 static int isp_pipeline_wait_preview(struct isp_device *isp)
933 {
934 	return omap3isp_preview_busy(&isp->isp_prev);
935 }
936 
isp_pipeline_wait_ccdc(struct isp_device * isp)937 static int isp_pipeline_wait_ccdc(struct isp_device *isp)
938 {
939 	return omap3isp_stat_busy(&isp->isp_af)
940 	    || omap3isp_stat_busy(&isp->isp_aewb)
941 	    || omap3isp_stat_busy(&isp->isp_hist)
942 	    || omap3isp_ccdc_busy(&isp->isp_ccdc);
943 }
944 
945 #define ISP_STOP_TIMEOUT	msecs_to_jiffies(1000)
946 
isp_pipeline_wait(struct isp_device * isp,int (* busy)(struct isp_device * isp))947 static int isp_pipeline_wait(struct isp_device *isp,
948 			     int(*busy)(struct isp_device *isp))
949 {
950 	unsigned long timeout = jiffies + ISP_STOP_TIMEOUT;
951 
952 	while (!time_after(jiffies, timeout)) {
953 		if (!busy(isp))
954 			return 0;
955 	}
956 
957 	return 1;
958 }
959 
960 /*
961  * isp_pipeline_disable - Disable streaming on a pipeline
962  * @pipe: ISP pipeline
963  *
964  * Walk the entities chain starting at the pipeline output video node and stop
965  * all modules in the chain. Wait synchronously for the modules to be stopped if
966  * necessary.
967  *
968  * Return 0 if all modules have been properly stopped, or -ETIMEDOUT if a module
969  * can't be stopped (in which case a software reset of the ISP is probably
970  * necessary).
971  */
isp_pipeline_disable(struct isp_pipeline * pipe)972 static int isp_pipeline_disable(struct isp_pipeline *pipe)
973 {
974 	struct isp_device *isp = pipe->output->isp;
975 	struct media_entity *entity;
976 	struct media_pad *pad;
977 	struct v4l2_subdev *subdev;
978 	int failure = 0;
979 	int ret;
980 
981 	/*
982 	 * We need to stop all the modules after CCDC first or they'll
983 	 * never stop since they may not get a full frame from CCDC.
984 	 */
985 	entity = &pipe->output->video.entity;
986 	while (1) {
987 		pad = &entity->pads[0];
988 		if (!(pad->flags & MEDIA_PAD_FL_SINK))
989 			break;
990 
991 		pad = media_entity_remote_pad(pad);
992 		if (pad == NULL ||
993 		    media_entity_type(pad->entity) != MEDIA_ENT_T_V4L2_SUBDEV)
994 			break;
995 
996 		entity = pad->entity;
997 		subdev = media_entity_to_v4l2_subdev(entity);
998 
999 		if (subdev == &isp->isp_ccdc.subdev) {
1000 			v4l2_subdev_call(&isp->isp_aewb.subdev,
1001 					 video, s_stream, 0);
1002 			v4l2_subdev_call(&isp->isp_af.subdev,
1003 					 video, s_stream, 0);
1004 			v4l2_subdev_call(&isp->isp_hist.subdev,
1005 					 video, s_stream, 0);
1006 		}
1007 
1008 		ret = v4l2_subdev_call(subdev, video, s_stream, 0);
1009 
1010 		if (subdev == &isp->isp_res.subdev)
1011 			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_resizer);
1012 		else if (subdev == &isp->isp_prev.subdev)
1013 			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_preview);
1014 		else if (subdev == &isp->isp_ccdc.subdev)
1015 			ret |= isp_pipeline_wait(isp, isp_pipeline_wait_ccdc);
1016 
1017 		/* Handle stop failures. An entity that fails to stop can
1018 		 * usually just be restarted. Flag the stop failure nonetheless
1019 		 * to trigger an ISP reset the next time the device is released,
1020 		 * just in case.
1021 		 *
1022 		 * The preview engine is a special case. A failure to stop can
1023 		 * mean a hardware crash. When that happens the preview engine
1024 		 * won't respond to read/write operations on the L4 bus anymore,
1025 		 * resulting in a bus fault and a kernel oops next time it gets
1026 		 * accessed. Mark it as crashed to prevent pipelines including
1027 		 * it from being started.
1028 		 */
1029 		if (ret) {
1030 			dev_info(isp->dev, "Unable to stop %s\n", subdev->name);
1031 			isp->stop_failure = true;
1032 			if (subdev == &isp->isp_prev.subdev)
1033 				isp->crashed |= 1U << subdev->entity.id;
1034 			failure = -ETIMEDOUT;
1035 		}
1036 	}
1037 
1038 	return failure;
1039 }
1040 
1041 /*
1042  * omap3isp_pipeline_set_stream - Enable/disable streaming on a pipeline
1043  * @pipe: ISP pipeline
1044  * @state: Stream state (stopped, single shot or continuous)
1045  *
1046  * Set the pipeline to the given stream state. Pipelines can be started in
1047  * single-shot or continuous mode.
1048  *
1049  * Return 0 if successful, or the return value of the failed video::s_stream
1050  * operation otherwise. The pipeline state is not updated when the operation
1051  * fails, except when stopping the pipeline.
1052  */
omap3isp_pipeline_set_stream(struct isp_pipeline * pipe,enum isp_pipeline_stream_state state)1053 int omap3isp_pipeline_set_stream(struct isp_pipeline *pipe,
1054 				 enum isp_pipeline_stream_state state)
1055 {
1056 	int ret;
1057 
1058 	if (state == ISP_PIPELINE_STREAM_STOPPED)
1059 		ret = isp_pipeline_disable(pipe);
1060 	else
1061 		ret = isp_pipeline_enable(pipe, state);
1062 
1063 	if (ret == 0 || state == ISP_PIPELINE_STREAM_STOPPED)
1064 		pipe->stream_state = state;
1065 
1066 	return ret;
1067 }
1068 
1069 /*
1070  * omap3isp_pipeline_cancel_stream - Cancel stream on a pipeline
1071  * @pipe: ISP pipeline
1072  *
1073  * Cancelling a stream mark all buffers on all video nodes in the pipeline as
1074  * erroneous and makes sure no new buffer can be queued. This function is called
1075  * when a fatal error that prevents any further operation on the pipeline
1076  * occurs.
1077  */
omap3isp_pipeline_cancel_stream(struct isp_pipeline * pipe)1078 void omap3isp_pipeline_cancel_stream(struct isp_pipeline *pipe)
1079 {
1080 	if (pipe->input)
1081 		omap3isp_video_cancel_stream(pipe->input);
1082 	if (pipe->output)
1083 		omap3isp_video_cancel_stream(pipe->output);
1084 }
1085 
1086 /*
1087  * isp_pipeline_resume - Resume streaming on a pipeline
1088  * @pipe: ISP pipeline
1089  *
1090  * Resume video output and input and re-enable pipeline.
1091  */
isp_pipeline_resume(struct isp_pipeline * pipe)1092 static void isp_pipeline_resume(struct isp_pipeline *pipe)
1093 {
1094 	int singleshot = pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT;
1095 
1096 	omap3isp_video_resume(pipe->output, !singleshot);
1097 	if (singleshot)
1098 		omap3isp_video_resume(pipe->input, 0);
1099 	isp_pipeline_enable(pipe, pipe->stream_state);
1100 }
1101 
1102 /*
1103  * isp_pipeline_suspend - Suspend streaming on a pipeline
1104  * @pipe: ISP pipeline
1105  *
1106  * Suspend pipeline.
1107  */
isp_pipeline_suspend(struct isp_pipeline * pipe)1108 static void isp_pipeline_suspend(struct isp_pipeline *pipe)
1109 {
1110 	isp_pipeline_disable(pipe);
1111 }
1112 
1113 /*
1114  * isp_pipeline_is_last - Verify if entity has an enabled link to the output
1115  * 			  video node
1116  * @me: ISP module's media entity
1117  *
1118  * Returns 1 if the entity has an enabled link to the output video node or 0
1119  * otherwise. It's true only while pipeline can have no more than one output
1120  * node.
1121  */
isp_pipeline_is_last(struct media_entity * me)1122 static int isp_pipeline_is_last(struct media_entity *me)
1123 {
1124 	struct isp_pipeline *pipe;
1125 	struct media_pad *pad;
1126 
1127 	if (!me->pipe)
1128 		return 0;
1129 	pipe = to_isp_pipeline(me);
1130 	if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED)
1131 		return 0;
1132 	pad = media_entity_remote_pad(&pipe->output->pad);
1133 	return pad->entity == me;
1134 }
1135 
1136 /*
1137  * isp_suspend_module_pipeline - Suspend pipeline to which belongs the module
1138  * @me: ISP module's media entity
1139  *
1140  * Suspend the whole pipeline if module's entity has an enabled link to the
1141  * output video node. It works only while pipeline can have no more than one
1142  * output node.
1143  */
isp_suspend_module_pipeline(struct media_entity * me)1144 static void isp_suspend_module_pipeline(struct media_entity *me)
1145 {
1146 	if (isp_pipeline_is_last(me))
1147 		isp_pipeline_suspend(to_isp_pipeline(me));
1148 }
1149 
1150 /*
1151  * isp_resume_module_pipeline - Resume pipeline to which belongs the module
1152  * @me: ISP module's media entity
1153  *
1154  * Resume the whole pipeline if module's entity has an enabled link to the
1155  * output video node. It works only while pipeline can have no more than one
1156  * output node.
1157  */
isp_resume_module_pipeline(struct media_entity * me)1158 static void isp_resume_module_pipeline(struct media_entity *me)
1159 {
1160 	if (isp_pipeline_is_last(me))
1161 		isp_pipeline_resume(to_isp_pipeline(me));
1162 }
1163 
1164 /*
1165  * isp_suspend_modules - Suspend ISP submodules.
1166  * @isp: OMAP3 ISP device
1167  *
1168  * Returns 0 if suspend left in idle state all the submodules properly,
1169  * or returns 1 if a general Reset is required to suspend the submodules.
1170  */
isp_suspend_modules(struct isp_device * isp)1171 static int isp_suspend_modules(struct isp_device *isp)
1172 {
1173 	unsigned long timeout;
1174 
1175 	omap3isp_stat_suspend(&isp->isp_aewb);
1176 	omap3isp_stat_suspend(&isp->isp_af);
1177 	omap3isp_stat_suspend(&isp->isp_hist);
1178 	isp_suspend_module_pipeline(&isp->isp_res.subdev.entity);
1179 	isp_suspend_module_pipeline(&isp->isp_prev.subdev.entity);
1180 	isp_suspend_module_pipeline(&isp->isp_ccdc.subdev.entity);
1181 	isp_suspend_module_pipeline(&isp->isp_csi2a.subdev.entity);
1182 	isp_suspend_module_pipeline(&isp->isp_ccp2.subdev.entity);
1183 
1184 	timeout = jiffies + ISP_STOP_TIMEOUT;
1185 	while (omap3isp_stat_busy(&isp->isp_af)
1186 	    || omap3isp_stat_busy(&isp->isp_aewb)
1187 	    || omap3isp_stat_busy(&isp->isp_hist)
1188 	    || omap3isp_preview_busy(&isp->isp_prev)
1189 	    || omap3isp_resizer_busy(&isp->isp_res)
1190 	    || omap3isp_ccdc_busy(&isp->isp_ccdc)) {
1191 		if (time_after(jiffies, timeout)) {
1192 			dev_info(isp->dev, "can't stop modules.\n");
1193 			return 1;
1194 		}
1195 		msleep(1);
1196 	}
1197 
1198 	return 0;
1199 }
1200 
1201 /*
1202  * isp_resume_modules - Resume ISP submodules.
1203  * @isp: OMAP3 ISP device
1204  */
isp_resume_modules(struct isp_device * isp)1205 static void isp_resume_modules(struct isp_device *isp)
1206 {
1207 	omap3isp_stat_resume(&isp->isp_aewb);
1208 	omap3isp_stat_resume(&isp->isp_af);
1209 	omap3isp_stat_resume(&isp->isp_hist);
1210 	isp_resume_module_pipeline(&isp->isp_res.subdev.entity);
1211 	isp_resume_module_pipeline(&isp->isp_prev.subdev.entity);
1212 	isp_resume_module_pipeline(&isp->isp_ccdc.subdev.entity);
1213 	isp_resume_module_pipeline(&isp->isp_csi2a.subdev.entity);
1214 	isp_resume_module_pipeline(&isp->isp_ccp2.subdev.entity);
1215 }
1216 
1217 /*
1218  * isp_reset - Reset ISP with a timeout wait for idle.
1219  * @isp: OMAP3 ISP device
1220  */
isp_reset(struct isp_device * isp)1221 static int isp_reset(struct isp_device *isp)
1222 {
1223 	unsigned long timeout = 0;
1224 
1225 	isp_reg_writel(isp,
1226 		       isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG)
1227 		       | ISP_SYSCONFIG_SOFTRESET,
1228 		       OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
1229 	while (!(isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN,
1230 			       ISP_SYSSTATUS) & 0x1)) {
1231 		if (timeout++ > 10000) {
1232 			dev_alert(isp->dev, "cannot reset ISP\n");
1233 			return -ETIMEDOUT;
1234 		}
1235 		udelay(1);
1236 	}
1237 
1238 	isp->stop_failure = false;
1239 	isp->crashed = 0;
1240 	return 0;
1241 }
1242 
1243 /*
1244  * isp_save_context - Saves the values of the ISP module registers.
1245  * @isp: OMAP3 ISP device
1246  * @reg_list: Structure containing pairs of register address and value to
1247  *            modify on OMAP.
1248  */
1249 static void
isp_save_context(struct isp_device * isp,struct isp_reg * reg_list)1250 isp_save_context(struct isp_device *isp, struct isp_reg *reg_list)
1251 {
1252 	struct isp_reg *next = reg_list;
1253 
1254 	for (; next->reg != ISP_TOK_TERM; next++)
1255 		next->val = isp_reg_readl(isp, next->mmio_range, next->reg);
1256 }
1257 
1258 /*
1259  * isp_restore_context - Restores the values of the ISP module registers.
1260  * @isp: OMAP3 ISP device
1261  * @reg_list: Structure containing pairs of register address and value to
1262  *            modify on OMAP.
1263  */
1264 static void
isp_restore_context(struct isp_device * isp,struct isp_reg * reg_list)1265 isp_restore_context(struct isp_device *isp, struct isp_reg *reg_list)
1266 {
1267 	struct isp_reg *next = reg_list;
1268 
1269 	for (; next->reg != ISP_TOK_TERM; next++)
1270 		isp_reg_writel(isp, next->val, next->mmio_range, next->reg);
1271 }
1272 
1273 /*
1274  * isp_save_ctx - Saves ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1275  * @isp: OMAP3 ISP device
1276  *
1277  * Routine for saving the context of each module in the ISP.
1278  * CCDC, HIST, H3A, PREV, RESZ and MMU.
1279  */
isp_save_ctx(struct isp_device * isp)1280 static void isp_save_ctx(struct isp_device *isp)
1281 {
1282 	isp_save_context(isp, isp_reg_list);
1283 	omap_iommu_save_ctx(isp->dev);
1284 }
1285 
1286 /*
1287  * isp_restore_ctx - Restores ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1288  * @isp: OMAP3 ISP device
1289  *
1290  * Routine for restoring the context of each module in the ISP.
1291  * CCDC, HIST, H3A, PREV, RESZ and MMU.
1292  */
isp_restore_ctx(struct isp_device * isp)1293 static void isp_restore_ctx(struct isp_device *isp)
1294 {
1295 	isp_restore_context(isp, isp_reg_list);
1296 	omap_iommu_restore_ctx(isp->dev);
1297 	omap3isp_ccdc_restore_context(isp);
1298 	omap3isp_preview_restore_context(isp);
1299 }
1300 
1301 /* -----------------------------------------------------------------------------
1302  * SBL resources management
1303  */
1304 #define OMAP3_ISP_SBL_READ	(OMAP3_ISP_SBL_CSI1_READ | \
1305 				 OMAP3_ISP_SBL_CCDC_LSC_READ | \
1306 				 OMAP3_ISP_SBL_PREVIEW_READ | \
1307 				 OMAP3_ISP_SBL_RESIZER_READ)
1308 #define OMAP3_ISP_SBL_WRITE	(OMAP3_ISP_SBL_CSI1_WRITE | \
1309 				 OMAP3_ISP_SBL_CSI2A_WRITE | \
1310 				 OMAP3_ISP_SBL_CSI2C_WRITE | \
1311 				 OMAP3_ISP_SBL_CCDC_WRITE | \
1312 				 OMAP3_ISP_SBL_PREVIEW_WRITE)
1313 
omap3isp_sbl_enable(struct isp_device * isp,enum isp_sbl_resource res)1314 void omap3isp_sbl_enable(struct isp_device *isp, enum isp_sbl_resource res)
1315 {
1316 	u32 sbl = 0;
1317 
1318 	isp->sbl_resources |= res;
1319 
1320 	if (isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ)
1321 		sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1322 
1323 	if (isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ)
1324 		sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1325 
1326 	if (isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE)
1327 		sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1328 
1329 	if (isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE)
1330 		sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1331 
1332 	if (isp->sbl_resources & OMAP3_ISP_SBL_WRITE)
1333 		sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1334 
1335 	if (isp->sbl_resources & OMAP3_ISP_SBL_READ)
1336 		sbl |= ISPCTRL_SBL_RD_RAM_EN;
1337 
1338 	isp_reg_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1339 }
1340 
omap3isp_sbl_disable(struct isp_device * isp,enum isp_sbl_resource res)1341 void omap3isp_sbl_disable(struct isp_device *isp, enum isp_sbl_resource res)
1342 {
1343 	u32 sbl = 0;
1344 
1345 	isp->sbl_resources &= ~res;
1346 
1347 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ))
1348 		sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1349 
1350 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ))
1351 		sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1352 
1353 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE))
1354 		sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1355 
1356 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE))
1357 		sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1358 
1359 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_WRITE))
1360 		sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1361 
1362 	if (!(isp->sbl_resources & OMAP3_ISP_SBL_READ))
1363 		sbl |= ISPCTRL_SBL_RD_RAM_EN;
1364 
1365 	isp_reg_clr(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1366 }
1367 
1368 /*
1369  * isp_module_sync_idle - Helper to sync module with its idle state
1370  * @me: ISP submodule's media entity
1371  * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1372  * @stopping: flag which tells module wants to stop
1373  *
1374  * This function checks if ISP submodule needs to wait for next interrupt. If
1375  * yes, makes the caller to sleep while waiting for such event.
1376  */
omap3isp_module_sync_idle(struct media_entity * me,wait_queue_head_t * wait,atomic_t * stopping)1377 int omap3isp_module_sync_idle(struct media_entity *me, wait_queue_head_t *wait,
1378 			      atomic_t *stopping)
1379 {
1380 	struct isp_pipeline *pipe = to_isp_pipeline(me);
1381 
1382 	if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED ||
1383 	    (pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT &&
1384 	     !isp_pipeline_ready(pipe)))
1385 		return 0;
1386 
1387 	/*
1388 	 * atomic_set() doesn't include memory barrier on ARM platform for SMP
1389 	 * scenario. We'll call it here to avoid race conditions.
1390 	 */
1391 	atomic_set(stopping, 1);
1392 	smp_mb();
1393 
1394 	/*
1395 	 * If module is the last one, it's writing to memory. In this case,
1396 	 * it's necessary to check if the module is already paused due to
1397 	 * DMA queue underrun or if it has to wait for next interrupt to be
1398 	 * idle.
1399 	 * If it isn't the last one, the function won't sleep but *stopping
1400 	 * will still be set to warn next submodule caller's interrupt the
1401 	 * module wants to be idle.
1402 	 */
1403 	if (isp_pipeline_is_last(me)) {
1404 		struct isp_video *video = pipe->output;
1405 		unsigned long flags;
1406 		spin_lock_irqsave(&video->irqlock, flags);
1407 		if (video->dmaqueue_flags & ISP_VIDEO_DMAQUEUE_UNDERRUN) {
1408 			spin_unlock_irqrestore(&video->irqlock, flags);
1409 			atomic_set(stopping, 0);
1410 			smp_mb();
1411 			return 0;
1412 		}
1413 		spin_unlock_irqrestore(&video->irqlock, flags);
1414 		if (!wait_event_timeout(*wait, !atomic_read(stopping),
1415 					msecs_to_jiffies(1000))) {
1416 			atomic_set(stopping, 0);
1417 			smp_mb();
1418 			return -ETIMEDOUT;
1419 		}
1420 	}
1421 
1422 	return 0;
1423 }
1424 
1425 /*
1426  * omap3isp_module_sync_is_stopping - Helper to verify if module was stopping
1427  * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1428  * @stopping: flag which tells module wants to stop
1429  *
1430  * This function checks if ISP submodule was stopping. In case of yes, it
1431  * notices the caller by setting stopping to 0 and waking up the wait queue.
1432  * Returns 1 if it was stopping or 0 otherwise.
1433  */
omap3isp_module_sync_is_stopping(wait_queue_head_t * wait,atomic_t * stopping)1434 int omap3isp_module_sync_is_stopping(wait_queue_head_t *wait,
1435 				     atomic_t *stopping)
1436 {
1437 	if (atomic_cmpxchg(stopping, 1, 0)) {
1438 		wake_up(wait);
1439 		return 1;
1440 	}
1441 
1442 	return 0;
1443 }
1444 
1445 /* --------------------------------------------------------------------------
1446  * Clock management
1447  */
1448 
1449 #define ISPCTRL_CLKS_MASK	(ISPCTRL_H3A_CLK_EN | \
1450 				 ISPCTRL_HIST_CLK_EN | \
1451 				 ISPCTRL_RSZ_CLK_EN | \
1452 				 (ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN) | \
1453 				 (ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN))
1454 
__isp_subclk_update(struct isp_device * isp)1455 static void __isp_subclk_update(struct isp_device *isp)
1456 {
1457 	u32 clk = 0;
1458 
1459 	/* AEWB and AF share the same clock. */
1460 	if (isp->subclk_resources &
1461 	    (OMAP3_ISP_SUBCLK_AEWB | OMAP3_ISP_SUBCLK_AF))
1462 		clk |= ISPCTRL_H3A_CLK_EN;
1463 
1464 	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_HIST)
1465 		clk |= ISPCTRL_HIST_CLK_EN;
1466 
1467 	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_RESIZER)
1468 		clk |= ISPCTRL_RSZ_CLK_EN;
1469 
1470 	/* NOTE: For CCDC & Preview submodules, we need to affect internal
1471 	 *       RAM as well.
1472 	 */
1473 	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_CCDC)
1474 		clk |= ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN;
1475 
1476 	if (isp->subclk_resources & OMAP3_ISP_SUBCLK_PREVIEW)
1477 		clk |= ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN;
1478 
1479 	isp_reg_clr_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL,
1480 			ISPCTRL_CLKS_MASK, clk);
1481 }
1482 
omap3isp_subclk_enable(struct isp_device * isp,enum isp_subclk_resource res)1483 void omap3isp_subclk_enable(struct isp_device *isp,
1484 			    enum isp_subclk_resource res)
1485 {
1486 	isp->subclk_resources |= res;
1487 
1488 	__isp_subclk_update(isp);
1489 }
1490 
omap3isp_subclk_disable(struct isp_device * isp,enum isp_subclk_resource res)1491 void omap3isp_subclk_disable(struct isp_device *isp,
1492 			     enum isp_subclk_resource res)
1493 {
1494 	isp->subclk_resources &= ~res;
1495 
1496 	__isp_subclk_update(isp);
1497 }
1498 
1499 /*
1500  * isp_enable_clocks - Enable ISP clocks
1501  * @isp: OMAP3 ISP device
1502  *
1503  * Return 0 if successful, or clk_prepare_enable return value if any of them
1504  * fails.
1505  */
isp_enable_clocks(struct isp_device * isp)1506 static int isp_enable_clocks(struct isp_device *isp)
1507 {
1508 	int r;
1509 	unsigned long rate;
1510 
1511 	r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_ICK]);
1512 	if (r) {
1513 		dev_err(isp->dev, "failed to enable cam_ick clock\n");
1514 		goto out_clk_enable_ick;
1515 	}
1516 	r = clk_set_rate(isp->clock[ISP_CLK_CAM_MCLK], CM_CAM_MCLK_HZ);
1517 	if (r) {
1518 		dev_err(isp->dev, "clk_set_rate for cam_mclk failed\n");
1519 		goto out_clk_enable_mclk;
1520 	}
1521 	r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_MCLK]);
1522 	if (r) {
1523 		dev_err(isp->dev, "failed to enable cam_mclk clock\n");
1524 		goto out_clk_enable_mclk;
1525 	}
1526 	rate = clk_get_rate(isp->clock[ISP_CLK_CAM_MCLK]);
1527 	if (rate != CM_CAM_MCLK_HZ)
1528 		dev_warn(isp->dev, "unexpected cam_mclk rate:\n"
1529 				   " expected : %d\n"
1530 				   " actual   : %ld\n", CM_CAM_MCLK_HZ, rate);
1531 	r = clk_prepare_enable(isp->clock[ISP_CLK_CSI2_FCK]);
1532 	if (r) {
1533 		dev_err(isp->dev, "failed to enable csi2_fck clock\n");
1534 		goto out_clk_enable_csi2_fclk;
1535 	}
1536 	return 0;
1537 
1538 out_clk_enable_csi2_fclk:
1539 	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1540 out_clk_enable_mclk:
1541 	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1542 out_clk_enable_ick:
1543 	return r;
1544 }
1545 
1546 /*
1547  * isp_disable_clocks - Disable ISP clocks
1548  * @isp: OMAP3 ISP device
1549  */
isp_disable_clocks(struct isp_device * isp)1550 static void isp_disable_clocks(struct isp_device *isp)
1551 {
1552 	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1553 	clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1554 	clk_disable_unprepare(isp->clock[ISP_CLK_CSI2_FCK]);
1555 }
1556 
1557 static const char *isp_clocks[] = {
1558 	"cam_ick",
1559 	"cam_mclk",
1560 	"csi2_96m_fck",
1561 	"l3_ick",
1562 };
1563 
isp_get_clocks(struct isp_device * isp)1564 static int isp_get_clocks(struct isp_device *isp)
1565 {
1566 	struct clk *clk;
1567 	unsigned int i;
1568 
1569 	for (i = 0; i < ARRAY_SIZE(isp_clocks); ++i) {
1570 		clk = devm_clk_get(isp->dev, isp_clocks[i]);
1571 		if (IS_ERR(clk)) {
1572 			dev_err(isp->dev, "clk_get %s failed\n", isp_clocks[i]);
1573 			return PTR_ERR(clk);
1574 		}
1575 
1576 		isp->clock[i] = clk;
1577 	}
1578 
1579 	return 0;
1580 }
1581 
1582 /*
1583  * omap3isp_get - Acquire the ISP resource.
1584  *
1585  * Initializes the clocks for the first acquire.
1586  *
1587  * Increment the reference count on the ISP. If the first reference is taken,
1588  * enable clocks and power-up all submodules.
1589  *
1590  * Return a pointer to the ISP device structure, or NULL if an error occurred.
1591  */
__omap3isp_get(struct isp_device * isp,bool irq)1592 static struct isp_device *__omap3isp_get(struct isp_device *isp, bool irq)
1593 {
1594 	struct isp_device *__isp = isp;
1595 
1596 	if (isp == NULL)
1597 		return NULL;
1598 
1599 	mutex_lock(&isp->isp_mutex);
1600 	if (isp->ref_count > 0)
1601 		goto out;
1602 
1603 	if (isp_enable_clocks(isp) < 0) {
1604 		__isp = NULL;
1605 		goto out;
1606 	}
1607 
1608 	/* We don't want to restore context before saving it! */
1609 	if (isp->has_context)
1610 		isp_restore_ctx(isp);
1611 
1612 	if (irq)
1613 		isp_enable_interrupts(isp);
1614 
1615 out:
1616 	if (__isp != NULL)
1617 		isp->ref_count++;
1618 	mutex_unlock(&isp->isp_mutex);
1619 
1620 	return __isp;
1621 }
1622 
omap3isp_get(struct isp_device * isp)1623 struct isp_device *omap3isp_get(struct isp_device *isp)
1624 {
1625 	return __omap3isp_get(isp, true);
1626 }
1627 
1628 /*
1629  * omap3isp_put - Release the ISP
1630  *
1631  * Decrement the reference count on the ISP. If the last reference is released,
1632  * power-down all submodules, disable clocks and free temporary buffers.
1633  */
__omap3isp_put(struct isp_device * isp,bool save_ctx)1634 static void __omap3isp_put(struct isp_device *isp, bool save_ctx)
1635 {
1636 	if (isp == NULL)
1637 		return;
1638 
1639 	mutex_lock(&isp->isp_mutex);
1640 	BUG_ON(isp->ref_count == 0);
1641 	if (--isp->ref_count == 0) {
1642 		isp_disable_interrupts(isp);
1643 		if (save_ctx) {
1644 			isp_save_ctx(isp);
1645 			isp->has_context = 1;
1646 		}
1647 		/* Reset the ISP if an entity has failed to stop. This is the
1648 		 * only way to recover from such conditions.
1649 		 */
1650 		if (isp->crashed || isp->stop_failure)
1651 			isp_reset(isp);
1652 		isp_disable_clocks(isp);
1653 	}
1654 	mutex_unlock(&isp->isp_mutex);
1655 }
1656 
omap3isp_put(struct isp_device * isp)1657 void omap3isp_put(struct isp_device *isp)
1658 {
1659 	__omap3isp_put(isp, true);
1660 }
1661 
1662 /* --------------------------------------------------------------------------
1663  * Platform device driver
1664  */
1665 
1666 /*
1667  * omap3isp_print_status - Prints the values of the ISP Control Module registers
1668  * @isp: OMAP3 ISP device
1669  */
1670 #define ISP_PRINT_REGISTER(isp, name)\
1671 	dev_dbg(isp->dev, "###ISP " #name "=0x%08x\n", \
1672 		isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_##name))
1673 #define SBL_PRINT_REGISTER(isp, name)\
1674 	dev_dbg(isp->dev, "###SBL " #name "=0x%08x\n", \
1675 		isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_##name))
1676 
omap3isp_print_status(struct isp_device * isp)1677 void omap3isp_print_status(struct isp_device *isp)
1678 {
1679 	dev_dbg(isp->dev, "-------------ISP Register dump--------------\n");
1680 
1681 	ISP_PRINT_REGISTER(isp, SYSCONFIG);
1682 	ISP_PRINT_REGISTER(isp, SYSSTATUS);
1683 	ISP_PRINT_REGISTER(isp, IRQ0ENABLE);
1684 	ISP_PRINT_REGISTER(isp, IRQ0STATUS);
1685 	ISP_PRINT_REGISTER(isp, TCTRL_GRESET_LENGTH);
1686 	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_REPLAY);
1687 	ISP_PRINT_REGISTER(isp, CTRL);
1688 	ISP_PRINT_REGISTER(isp, TCTRL_CTRL);
1689 	ISP_PRINT_REGISTER(isp, TCTRL_FRAME);
1690 	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_DELAY);
1691 	ISP_PRINT_REGISTER(isp, TCTRL_STRB_DELAY);
1692 	ISP_PRINT_REGISTER(isp, TCTRL_SHUT_DELAY);
1693 	ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_LENGTH);
1694 	ISP_PRINT_REGISTER(isp, TCTRL_STRB_LENGTH);
1695 	ISP_PRINT_REGISTER(isp, TCTRL_SHUT_LENGTH);
1696 
1697 	SBL_PRINT_REGISTER(isp, PCR);
1698 	SBL_PRINT_REGISTER(isp, SDR_REQ_EXP);
1699 
1700 	dev_dbg(isp->dev, "--------------------------------------------\n");
1701 }
1702 
1703 #ifdef CONFIG_PM
1704 
1705 /*
1706  * Power management support.
1707  *
1708  * As the ISP can't properly handle an input video stream interruption on a non
1709  * frame boundary, the ISP pipelines need to be stopped before sensors get
1710  * suspended. However, as suspending the sensors can require a running clock,
1711  * which can be provided by the ISP, the ISP can't be completely suspended
1712  * before the sensor.
1713  *
1714  * To solve this problem power management support is split into prepare/complete
1715  * and suspend/resume operations. The pipelines are stopped in prepare() and the
1716  * ISP clocks get disabled in suspend(). Similarly, the clocks are reenabled in
1717  * resume(), and the the pipelines are restarted in complete().
1718  *
1719  * TODO: PM dependencies between the ISP and sensors are not modelled explicitly
1720  * yet.
1721  */
isp_pm_prepare(struct device * dev)1722 static int isp_pm_prepare(struct device *dev)
1723 {
1724 	struct isp_device *isp = dev_get_drvdata(dev);
1725 	int reset;
1726 
1727 	WARN_ON(mutex_is_locked(&isp->isp_mutex));
1728 
1729 	if (isp->ref_count == 0)
1730 		return 0;
1731 
1732 	reset = isp_suspend_modules(isp);
1733 	isp_disable_interrupts(isp);
1734 	isp_save_ctx(isp);
1735 	if (reset)
1736 		isp_reset(isp);
1737 
1738 	return 0;
1739 }
1740 
isp_pm_suspend(struct device * dev)1741 static int isp_pm_suspend(struct device *dev)
1742 {
1743 	struct isp_device *isp = dev_get_drvdata(dev);
1744 
1745 	WARN_ON(mutex_is_locked(&isp->isp_mutex));
1746 
1747 	if (isp->ref_count)
1748 		isp_disable_clocks(isp);
1749 
1750 	return 0;
1751 }
1752 
isp_pm_resume(struct device * dev)1753 static int isp_pm_resume(struct device *dev)
1754 {
1755 	struct isp_device *isp = dev_get_drvdata(dev);
1756 
1757 	if (isp->ref_count == 0)
1758 		return 0;
1759 
1760 	return isp_enable_clocks(isp);
1761 }
1762 
isp_pm_complete(struct device * dev)1763 static void isp_pm_complete(struct device *dev)
1764 {
1765 	struct isp_device *isp = dev_get_drvdata(dev);
1766 
1767 	if (isp->ref_count == 0)
1768 		return;
1769 
1770 	isp_restore_ctx(isp);
1771 	isp_enable_interrupts(isp);
1772 	isp_resume_modules(isp);
1773 }
1774 
1775 #else
1776 
1777 #define isp_pm_prepare	NULL
1778 #define isp_pm_suspend	NULL
1779 #define isp_pm_resume	NULL
1780 #define isp_pm_complete	NULL
1781 
1782 #endif /* CONFIG_PM */
1783 
isp_unregister_entities(struct isp_device * isp)1784 static void isp_unregister_entities(struct isp_device *isp)
1785 {
1786 	omap3isp_csi2_unregister_entities(&isp->isp_csi2a);
1787 	omap3isp_ccp2_unregister_entities(&isp->isp_ccp2);
1788 	omap3isp_ccdc_unregister_entities(&isp->isp_ccdc);
1789 	omap3isp_preview_unregister_entities(&isp->isp_prev);
1790 	omap3isp_resizer_unregister_entities(&isp->isp_res);
1791 	omap3isp_stat_unregister_entities(&isp->isp_aewb);
1792 	omap3isp_stat_unregister_entities(&isp->isp_af);
1793 	omap3isp_stat_unregister_entities(&isp->isp_hist);
1794 
1795 	v4l2_device_unregister(&isp->v4l2_dev);
1796 	media_device_unregister(&isp->media_dev);
1797 }
1798 
1799 /*
1800  * isp_register_subdev - Register a sub-device
1801  * @isp: OMAP3 ISP device
1802  * @isp_subdev: platform data related to a sub-device
1803  *
1804  * Register an I2C sub-device which has not been registered by other
1805  * means (such as the Device Tree).
1806  *
1807  * Return a pointer to the sub-device if it has been successfully
1808  * registered, or NULL otherwise.
1809  */
1810 static struct v4l2_subdev *
isp_register_subdev(struct isp_device * isp,struct isp_platform_subdev * isp_subdev)1811 isp_register_subdev(struct isp_device *isp,
1812 		    struct isp_platform_subdev *isp_subdev)
1813 {
1814 	struct i2c_adapter *adapter;
1815 	struct v4l2_subdev *sd;
1816 
1817 	if (isp_subdev->board_info == NULL)
1818 		return NULL;
1819 
1820 	adapter = i2c_get_adapter(isp_subdev->i2c_adapter_id);
1821 	if (adapter == NULL) {
1822 		dev_err(isp->dev,
1823 			"%s: Unable to get I2C adapter %d for device %s\n",
1824 			__func__, isp_subdev->i2c_adapter_id,
1825 			isp_subdev->board_info->type);
1826 		return NULL;
1827 	}
1828 
1829 	sd = v4l2_i2c_new_subdev_board(&isp->v4l2_dev, adapter,
1830 				       isp_subdev->board_info, NULL);
1831 	if (sd == NULL) {
1832 		dev_err(isp->dev, "%s: Unable to register subdev %s\n",
1833 			__func__, isp_subdev->board_info->type);
1834 		return NULL;
1835 	}
1836 
1837 	return sd;
1838 }
1839 
isp_link_entity(struct isp_device * isp,struct media_entity * entity,enum isp_interface_type interface)1840 static int isp_link_entity(
1841 	struct isp_device *isp, struct media_entity *entity,
1842 	enum isp_interface_type interface)
1843 {
1844 	struct media_entity *input;
1845 	unsigned int flags;
1846 	unsigned int pad;
1847 	unsigned int i;
1848 
1849 	/* Connect the sensor to the correct interface module.
1850 	 * Parallel sensors are connected directly to the CCDC, while
1851 	 * serial sensors are connected to the CSI2a, CCP2b or CSI2c
1852 	 * receiver through CSIPHY1 or CSIPHY2.
1853 	 */
1854 	switch (interface) {
1855 	case ISP_INTERFACE_PARALLEL:
1856 		input = &isp->isp_ccdc.subdev.entity;
1857 		pad = CCDC_PAD_SINK;
1858 		flags = 0;
1859 		break;
1860 
1861 	case ISP_INTERFACE_CSI2A_PHY2:
1862 		input = &isp->isp_csi2a.subdev.entity;
1863 		pad = CSI2_PAD_SINK;
1864 		flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1865 		break;
1866 
1867 	case ISP_INTERFACE_CCP2B_PHY1:
1868 	case ISP_INTERFACE_CCP2B_PHY2:
1869 		input = &isp->isp_ccp2.subdev.entity;
1870 		pad = CCP2_PAD_SINK;
1871 		flags = 0;
1872 		break;
1873 
1874 	case ISP_INTERFACE_CSI2C_PHY1:
1875 		input = &isp->isp_csi2c.subdev.entity;
1876 		pad = CSI2_PAD_SINK;
1877 		flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1878 		break;
1879 
1880 	default:
1881 		dev_err(isp->dev, "%s: invalid interface type %u\n", __func__,
1882 			interface);
1883 		return -EINVAL;
1884 	}
1885 
1886 	/*
1887 	 * Not all interfaces are available on all revisions of the
1888 	 * ISP. The sub-devices of those interfaces aren't initialised
1889 	 * in such a case. Check this by ensuring the num_pads is
1890 	 * non-zero.
1891 	 */
1892 	if (!input->num_pads) {
1893 		dev_err(isp->dev, "%s: invalid input %u\n", entity->name,
1894 			interface);
1895 		return -EINVAL;
1896 	}
1897 
1898 	for (i = 0; i < entity->num_pads; i++) {
1899 		if (entity->pads[i].flags & MEDIA_PAD_FL_SOURCE)
1900 			break;
1901 	}
1902 	if (i == entity->num_pads) {
1903 		dev_err(isp->dev, "%s: no source pad in external entity\n",
1904 			__func__);
1905 		return -EINVAL;
1906 	}
1907 
1908 	return media_entity_create_link(entity, i, input, pad, flags);
1909 }
1910 
isp_register_entities(struct isp_device * isp)1911 static int isp_register_entities(struct isp_device *isp)
1912 {
1913 	struct isp_platform_data *pdata = isp->pdata;
1914 	struct isp_platform_subdev *isp_subdev;
1915 	int ret;
1916 
1917 	isp->media_dev.dev = isp->dev;
1918 	strlcpy(isp->media_dev.model, "TI OMAP3 ISP",
1919 		sizeof(isp->media_dev.model));
1920 	isp->media_dev.hw_revision = isp->revision;
1921 	isp->media_dev.link_notify = isp_pipeline_link_notify;
1922 	ret = media_device_register(&isp->media_dev);
1923 	if (ret < 0) {
1924 		dev_err(isp->dev, "%s: Media device registration failed (%d)\n",
1925 			__func__, ret);
1926 		return ret;
1927 	}
1928 
1929 	isp->v4l2_dev.mdev = &isp->media_dev;
1930 	ret = v4l2_device_register(isp->dev, &isp->v4l2_dev);
1931 	if (ret < 0) {
1932 		dev_err(isp->dev, "%s: V4L2 device registration failed (%d)\n",
1933 			__func__, ret);
1934 		goto done;
1935 	}
1936 
1937 	/* Register internal entities */
1938 	ret = omap3isp_ccp2_register_entities(&isp->isp_ccp2, &isp->v4l2_dev);
1939 	if (ret < 0)
1940 		goto done;
1941 
1942 	ret = omap3isp_csi2_register_entities(&isp->isp_csi2a, &isp->v4l2_dev);
1943 	if (ret < 0)
1944 		goto done;
1945 
1946 	ret = omap3isp_ccdc_register_entities(&isp->isp_ccdc, &isp->v4l2_dev);
1947 	if (ret < 0)
1948 		goto done;
1949 
1950 	ret = omap3isp_preview_register_entities(&isp->isp_prev,
1951 						 &isp->v4l2_dev);
1952 	if (ret < 0)
1953 		goto done;
1954 
1955 	ret = omap3isp_resizer_register_entities(&isp->isp_res, &isp->v4l2_dev);
1956 	if (ret < 0)
1957 		goto done;
1958 
1959 	ret = omap3isp_stat_register_entities(&isp->isp_aewb, &isp->v4l2_dev);
1960 	if (ret < 0)
1961 		goto done;
1962 
1963 	ret = omap3isp_stat_register_entities(&isp->isp_af, &isp->v4l2_dev);
1964 	if (ret < 0)
1965 		goto done;
1966 
1967 	ret = omap3isp_stat_register_entities(&isp->isp_hist, &isp->v4l2_dev);
1968 	if (ret < 0)
1969 		goto done;
1970 
1971 	/*
1972 	 * Device Tree --- the external sub-devices will be registered
1973 	 * later. The same goes for the sub-device node registration.
1974 	 */
1975 	if (isp->dev->of_node)
1976 		return 0;
1977 
1978 	/* Register external entities */
1979 	for (isp_subdev = pdata ? pdata->subdevs : NULL;
1980 	     isp_subdev && isp_subdev->board_info; isp_subdev++) {
1981 		struct v4l2_subdev *sd;
1982 
1983 		sd = isp_register_subdev(isp, isp_subdev);
1984 
1985 		/*
1986 		 * No bus information --- this is either a flash or a
1987 		 * lens subdev.
1988 		 */
1989 		if (!sd || !isp_subdev->bus)
1990 			continue;
1991 
1992 		sd->host_priv = isp_subdev->bus;
1993 
1994 		ret = isp_link_entity(isp, &sd->entity,
1995 				      isp_subdev->bus->interface);
1996 		if (ret < 0)
1997 			goto done;
1998 	}
1999 
2000 	ret = v4l2_device_register_subdev_nodes(&isp->v4l2_dev);
2001 
2002 done:
2003 	if (ret < 0) {
2004 		isp_unregister_entities(isp);
2005 		v4l2_async_notifier_unregister(&isp->notifier);
2006 	}
2007 
2008 	return ret;
2009 }
2010 
isp_cleanup_modules(struct isp_device * isp)2011 static void isp_cleanup_modules(struct isp_device *isp)
2012 {
2013 	omap3isp_h3a_aewb_cleanup(isp);
2014 	omap3isp_h3a_af_cleanup(isp);
2015 	omap3isp_hist_cleanup(isp);
2016 	omap3isp_resizer_cleanup(isp);
2017 	omap3isp_preview_cleanup(isp);
2018 	omap3isp_ccdc_cleanup(isp);
2019 	omap3isp_ccp2_cleanup(isp);
2020 	omap3isp_csi2_cleanup(isp);
2021 }
2022 
isp_initialize_modules(struct isp_device * isp)2023 static int isp_initialize_modules(struct isp_device *isp)
2024 {
2025 	int ret;
2026 
2027 	ret = omap3isp_csiphy_init(isp);
2028 	if (ret < 0) {
2029 		dev_err(isp->dev, "CSI PHY initialization failed\n");
2030 		goto error_csiphy;
2031 	}
2032 
2033 	ret = omap3isp_csi2_init(isp);
2034 	if (ret < 0) {
2035 		dev_err(isp->dev, "CSI2 initialization failed\n");
2036 		goto error_csi2;
2037 	}
2038 
2039 	ret = omap3isp_ccp2_init(isp);
2040 	if (ret < 0) {
2041 		dev_err(isp->dev, "CCP2 initialization failed\n");
2042 		goto error_ccp2;
2043 	}
2044 
2045 	ret = omap3isp_ccdc_init(isp);
2046 	if (ret < 0) {
2047 		dev_err(isp->dev, "CCDC initialization failed\n");
2048 		goto error_ccdc;
2049 	}
2050 
2051 	ret = omap3isp_preview_init(isp);
2052 	if (ret < 0) {
2053 		dev_err(isp->dev, "Preview initialization failed\n");
2054 		goto error_preview;
2055 	}
2056 
2057 	ret = omap3isp_resizer_init(isp);
2058 	if (ret < 0) {
2059 		dev_err(isp->dev, "Resizer initialization failed\n");
2060 		goto error_resizer;
2061 	}
2062 
2063 	ret = omap3isp_hist_init(isp);
2064 	if (ret < 0) {
2065 		dev_err(isp->dev, "Histogram initialization failed\n");
2066 		goto error_hist;
2067 	}
2068 
2069 	ret = omap3isp_h3a_aewb_init(isp);
2070 	if (ret < 0) {
2071 		dev_err(isp->dev, "H3A AEWB initialization failed\n");
2072 		goto error_h3a_aewb;
2073 	}
2074 
2075 	ret = omap3isp_h3a_af_init(isp);
2076 	if (ret < 0) {
2077 		dev_err(isp->dev, "H3A AF initialization failed\n");
2078 		goto error_h3a_af;
2079 	}
2080 
2081 	/* Connect the submodules. */
2082 	ret = media_entity_create_link(
2083 			&isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE,
2084 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
2085 	if (ret < 0)
2086 		goto error_link;
2087 
2088 	ret = media_entity_create_link(
2089 			&isp->isp_ccp2.subdev.entity, CCP2_PAD_SOURCE,
2090 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
2091 	if (ret < 0)
2092 		goto error_link;
2093 
2094 	ret = media_entity_create_link(
2095 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
2096 			&isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0);
2097 	if (ret < 0)
2098 		goto error_link;
2099 
2100 	ret = media_entity_create_link(
2101 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF,
2102 			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
2103 	if (ret < 0)
2104 		goto error_link;
2105 
2106 	ret = media_entity_create_link(
2107 			&isp->isp_prev.subdev.entity, PREV_PAD_SOURCE,
2108 			&isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
2109 	if (ret < 0)
2110 		goto error_link;
2111 
2112 	ret = media_entity_create_link(
2113 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
2114 			&isp->isp_aewb.subdev.entity, 0,
2115 			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
2116 	if (ret < 0)
2117 		goto error_link;
2118 
2119 	ret = media_entity_create_link(
2120 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
2121 			&isp->isp_af.subdev.entity, 0,
2122 			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
2123 	if (ret < 0)
2124 		goto error_link;
2125 
2126 	ret = media_entity_create_link(
2127 			&isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
2128 			&isp->isp_hist.subdev.entity, 0,
2129 			MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
2130 	if (ret < 0)
2131 		goto error_link;
2132 
2133 	return 0;
2134 
2135 error_link:
2136 	omap3isp_h3a_af_cleanup(isp);
2137 error_h3a_af:
2138 	omap3isp_h3a_aewb_cleanup(isp);
2139 error_h3a_aewb:
2140 	omap3isp_hist_cleanup(isp);
2141 error_hist:
2142 	omap3isp_resizer_cleanup(isp);
2143 error_resizer:
2144 	omap3isp_preview_cleanup(isp);
2145 error_preview:
2146 	omap3isp_ccdc_cleanup(isp);
2147 error_ccdc:
2148 	omap3isp_ccp2_cleanup(isp);
2149 error_ccp2:
2150 	omap3isp_csi2_cleanup(isp);
2151 error_csi2:
2152 error_csiphy:
2153 	return ret;
2154 }
2155 
isp_detach_iommu(struct isp_device * isp)2156 static void isp_detach_iommu(struct isp_device *isp)
2157 {
2158 	arm_iommu_release_mapping(isp->mapping);
2159 	isp->mapping = NULL;
2160 	iommu_group_remove_device(isp->dev);
2161 }
2162 
isp_attach_iommu(struct isp_device * isp)2163 static int isp_attach_iommu(struct isp_device *isp)
2164 {
2165 	struct dma_iommu_mapping *mapping;
2166 	struct iommu_group *group;
2167 	int ret;
2168 
2169 	/* Create a device group and add the device to it. */
2170 	group = iommu_group_alloc();
2171 	if (IS_ERR(group)) {
2172 		dev_err(isp->dev, "failed to allocate IOMMU group\n");
2173 		return PTR_ERR(group);
2174 	}
2175 
2176 	ret = iommu_group_add_device(group, isp->dev);
2177 	iommu_group_put(group);
2178 
2179 	if (ret < 0) {
2180 		dev_err(isp->dev, "failed to add device to IPMMU group\n");
2181 		return ret;
2182 	}
2183 
2184 	/*
2185 	 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
2186 	 * VAs. This will allocate a corresponding IOMMU domain.
2187 	 */
2188 	mapping = arm_iommu_create_mapping(&platform_bus_type, SZ_1G, SZ_2G);
2189 	if (IS_ERR(mapping)) {
2190 		dev_err(isp->dev, "failed to create ARM IOMMU mapping\n");
2191 		ret = PTR_ERR(mapping);
2192 		goto error;
2193 	}
2194 
2195 	isp->mapping = mapping;
2196 
2197 	/* Attach the ARM VA mapping to the device. */
2198 	ret = arm_iommu_attach_device(isp->dev, mapping);
2199 	if (ret < 0) {
2200 		dev_err(isp->dev, "failed to attach device to VA mapping\n");
2201 		goto error;
2202 	}
2203 
2204 	return 0;
2205 
2206 error:
2207 	isp_detach_iommu(isp);
2208 	return ret;
2209 }
2210 
2211 /*
2212  * isp_remove - Remove ISP platform device
2213  * @pdev: Pointer to ISP platform device
2214  *
2215  * Always returns 0.
2216  */
isp_remove(struct platform_device * pdev)2217 static int isp_remove(struct platform_device *pdev)
2218 {
2219 	struct isp_device *isp = platform_get_drvdata(pdev);
2220 
2221 	v4l2_async_notifier_unregister(&isp->notifier);
2222 	isp_unregister_entities(isp);
2223 	isp_cleanup_modules(isp);
2224 	isp_xclk_cleanup(isp);
2225 
2226 	__omap3isp_get(isp, false);
2227 	isp_detach_iommu(isp);
2228 	__omap3isp_put(isp, false);
2229 
2230 	return 0;
2231 }
2232 
2233 enum isp_of_phy {
2234 	ISP_OF_PHY_PARALLEL = 0,
2235 	ISP_OF_PHY_CSIPHY1,
2236 	ISP_OF_PHY_CSIPHY2,
2237 };
2238 
isp_of_parse_node(struct device * dev,struct device_node * node,struct isp_async_subdev * isd)2239 static int isp_of_parse_node(struct device *dev, struct device_node *node,
2240 			     struct isp_async_subdev *isd)
2241 {
2242 	struct isp_bus_cfg *buscfg = &isd->bus;
2243 	struct v4l2_of_endpoint vep;
2244 	unsigned int i;
2245 
2246 	v4l2_of_parse_endpoint(node, &vep);
2247 
2248 	dev_dbg(dev, "parsing endpoint %s, interface %u\n", node->full_name,
2249 		vep.base.port);
2250 
2251 	switch (vep.base.port) {
2252 	case ISP_OF_PHY_PARALLEL:
2253 		buscfg->interface = ISP_INTERFACE_PARALLEL;
2254 		buscfg->bus.parallel.data_lane_shift =
2255 			vep.bus.parallel.data_shift;
2256 		buscfg->bus.parallel.clk_pol =
2257 			!!(vep.bus.parallel.flags
2258 			   & V4L2_MBUS_PCLK_SAMPLE_FALLING);
2259 		buscfg->bus.parallel.hs_pol =
2260 			!!(vep.bus.parallel.flags & V4L2_MBUS_VSYNC_ACTIVE_LOW);
2261 		buscfg->bus.parallel.vs_pol =
2262 			!!(vep.bus.parallel.flags & V4L2_MBUS_HSYNC_ACTIVE_LOW);
2263 		buscfg->bus.parallel.fld_pol =
2264 			!!(vep.bus.parallel.flags & V4L2_MBUS_FIELD_EVEN_LOW);
2265 		buscfg->bus.parallel.data_pol =
2266 			!!(vep.bus.parallel.flags & V4L2_MBUS_DATA_ACTIVE_LOW);
2267 		break;
2268 
2269 	case ISP_OF_PHY_CSIPHY1:
2270 	case ISP_OF_PHY_CSIPHY2:
2271 		/* FIXME: always assume CSI-2 for now. */
2272 		switch (vep.base.port) {
2273 		case ISP_OF_PHY_CSIPHY1:
2274 			buscfg->interface = ISP_INTERFACE_CSI2C_PHY1;
2275 			break;
2276 		case ISP_OF_PHY_CSIPHY2:
2277 			buscfg->interface = ISP_INTERFACE_CSI2A_PHY2;
2278 			break;
2279 		}
2280 		buscfg->bus.csi2.lanecfg.clk.pos = vep.bus.mipi_csi2.clock_lane;
2281 		buscfg->bus.csi2.lanecfg.clk.pol =
2282 			vep.bus.mipi_csi2.lane_polarities[0];
2283 		dev_dbg(dev, "clock lane polarity %u, pos %u\n",
2284 			buscfg->bus.csi2.lanecfg.clk.pol,
2285 			buscfg->bus.csi2.lanecfg.clk.pos);
2286 
2287 		for (i = 0; i < ISP_CSIPHY2_NUM_DATA_LANES; i++) {
2288 			buscfg->bus.csi2.lanecfg.data[i].pos =
2289 				vep.bus.mipi_csi2.data_lanes[i];
2290 			buscfg->bus.csi2.lanecfg.data[i].pol =
2291 				vep.bus.mipi_csi2.lane_polarities[i + 1];
2292 			dev_dbg(dev, "data lane %u polarity %u, pos %u\n", i,
2293 				buscfg->bus.csi2.lanecfg.data[i].pol,
2294 				buscfg->bus.csi2.lanecfg.data[i].pos);
2295 		}
2296 
2297 		/*
2298 		 * FIXME: now we assume the CRC is always there.
2299 		 * Implement a way to obtain this information from the
2300 		 * sensor. Frame descriptors, perhaps?
2301 		 */
2302 		buscfg->bus.csi2.crc = 1;
2303 		break;
2304 
2305 	default:
2306 		dev_warn(dev, "%s: invalid interface %u\n", node->full_name,
2307 			 vep.base.port);
2308 		break;
2309 	}
2310 
2311 	return 0;
2312 }
2313 
isp_of_parse_nodes(struct device * dev,struct v4l2_async_notifier * notifier)2314 static int isp_of_parse_nodes(struct device *dev,
2315 			      struct v4l2_async_notifier *notifier)
2316 {
2317 	struct device_node *node = NULL;
2318 
2319 	notifier->subdevs = devm_kcalloc(
2320 		dev, ISP_MAX_SUBDEVS, sizeof(*notifier->subdevs), GFP_KERNEL);
2321 	if (!notifier->subdevs)
2322 		return -ENOMEM;
2323 
2324 	while (notifier->num_subdevs < ISP_MAX_SUBDEVS &&
2325 	       (node = of_graph_get_next_endpoint(dev->of_node, node))) {
2326 		struct isp_async_subdev *isd;
2327 
2328 		isd = devm_kzalloc(dev, sizeof(*isd), GFP_KERNEL);
2329 		if (!isd) {
2330 			of_node_put(node);
2331 			return -ENOMEM;
2332 		}
2333 
2334 		notifier->subdevs[notifier->num_subdevs] = &isd->asd;
2335 
2336 		if (isp_of_parse_node(dev, node, isd)) {
2337 			of_node_put(node);
2338 			return -EINVAL;
2339 		}
2340 
2341 		isd->asd.match.of.node = of_graph_get_remote_port_parent(node);
2342 		of_node_put(node);
2343 		if (!isd->asd.match.of.node) {
2344 			dev_warn(dev, "bad remote port parent\n");
2345 			return -EINVAL;
2346 		}
2347 
2348 		isd->asd.match_type = V4L2_ASYNC_MATCH_OF;
2349 		notifier->num_subdevs++;
2350 	}
2351 
2352 	return notifier->num_subdevs;
2353 }
2354 
isp_subdev_notifier_bound(struct v4l2_async_notifier * async,struct v4l2_subdev * subdev,struct v4l2_async_subdev * asd)2355 static int isp_subdev_notifier_bound(struct v4l2_async_notifier *async,
2356 				     struct v4l2_subdev *subdev,
2357 				     struct v4l2_async_subdev *asd)
2358 {
2359 	struct isp_device *isp = container_of(async, struct isp_device,
2360 					      notifier);
2361 	struct isp_async_subdev *isd =
2362 		container_of(asd, struct isp_async_subdev, asd);
2363 	int ret;
2364 
2365 	ret = isp_link_entity(isp, &subdev->entity, isd->bus.interface);
2366 	if (ret < 0)
2367 		return ret;
2368 
2369 	isd->sd = subdev;
2370 	isd->sd->host_priv = &isd->bus;
2371 
2372 	return ret;
2373 }
2374 
isp_subdev_notifier_complete(struct v4l2_async_notifier * async)2375 static int isp_subdev_notifier_complete(struct v4l2_async_notifier *async)
2376 {
2377 	struct isp_device *isp = container_of(async, struct isp_device,
2378 					      notifier);
2379 
2380 	return v4l2_device_register_subdev_nodes(&isp->v4l2_dev);
2381 }
2382 
2383 /*
2384  * isp_probe - Probe ISP platform device
2385  * @pdev: Pointer to ISP platform device
2386  *
2387  * Returns 0 if successful,
2388  *   -ENOMEM if no memory available,
2389  *   -ENODEV if no platform device resources found
2390  *     or no space for remapping registers,
2391  *   -EINVAL if couldn't install ISR,
2392  *   or clk_get return error value.
2393  */
isp_probe(struct platform_device * pdev)2394 static int isp_probe(struct platform_device *pdev)
2395 {
2396 	struct isp_device *isp;
2397 	struct resource *mem;
2398 	int ret;
2399 	int i, m;
2400 
2401 	isp = devm_kzalloc(&pdev->dev, sizeof(*isp), GFP_KERNEL);
2402 	if (!isp) {
2403 		dev_err(&pdev->dev, "could not allocate memory\n");
2404 		return -ENOMEM;
2405 	}
2406 
2407 	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
2408 		ret = of_property_read_u32(pdev->dev.of_node, "ti,phy-type",
2409 					   &isp->phy_type);
2410 		if (ret)
2411 			return ret;
2412 
2413 		isp->syscon = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
2414 							      "syscon");
2415 		if (IS_ERR(isp->syscon))
2416 			return PTR_ERR(isp->syscon);
2417 
2418 		ret = of_property_read_u32_index(pdev->dev.of_node, "syscon", 1,
2419 						 &isp->syscon_offset);
2420 		if (ret)
2421 			return ret;
2422 
2423 		ret = isp_of_parse_nodes(&pdev->dev, &isp->notifier);
2424 		if (ret < 0)
2425 			return ret;
2426 		ret = v4l2_async_notifier_register(&isp->v4l2_dev,
2427 						   &isp->notifier);
2428 		if (ret)
2429 			return ret;
2430 	} else {
2431 		isp->pdata = pdev->dev.platform_data;
2432 		isp->syscon = syscon_regmap_lookup_by_pdevname("syscon.0");
2433 		if (IS_ERR(isp->syscon))
2434 			return PTR_ERR(isp->syscon);
2435 		dev_warn(&pdev->dev,
2436 			 "Platform data support is deprecated! Please move to DT now!\n");
2437 	}
2438 
2439 	isp->autoidle = autoidle;
2440 
2441 	mutex_init(&isp->isp_mutex);
2442 	spin_lock_init(&isp->stat_lock);
2443 
2444 	isp->dev = &pdev->dev;
2445 	isp->ref_count = 0;
2446 
2447 	ret = dma_coerce_mask_and_coherent(isp->dev, DMA_BIT_MASK(32));
2448 	if (ret)
2449 		goto error;
2450 
2451 	platform_set_drvdata(pdev, isp);
2452 
2453 	/* Regulators */
2454 	isp->isp_csiphy1.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy1");
2455 	isp->isp_csiphy2.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy2");
2456 
2457 	/* Clocks
2458 	 *
2459 	 * The ISP clock tree is revision-dependent. We thus need to enable ICLK
2460 	 * manually to read the revision before calling __omap3isp_get().
2461 	 *
2462 	 * Start by mapping the ISP MMIO area, which is in two pieces.
2463 	 * The ISP IOMMU is in between. Map both now, and fill in the
2464 	 * ISP revision specific portions a little later in the
2465 	 * function.
2466 	 */
2467 	for (i = 0; i < 2; i++) {
2468 		unsigned int map_idx = i ? OMAP3_ISP_IOMEM_CSI2A_REGS1 : 0;
2469 
2470 		mem = platform_get_resource(pdev, IORESOURCE_MEM, i);
2471 		isp->mmio_base[map_idx] =
2472 			devm_ioremap_resource(isp->dev, mem);
2473 		if (IS_ERR(isp->mmio_base[map_idx]))
2474 			return PTR_ERR(isp->mmio_base[map_idx]);
2475 	}
2476 
2477 	ret = isp_get_clocks(isp);
2478 	if (ret < 0)
2479 		goto error;
2480 
2481 	ret = clk_enable(isp->clock[ISP_CLK_CAM_ICK]);
2482 	if (ret < 0)
2483 		goto error;
2484 
2485 	isp->revision = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
2486 	dev_info(isp->dev, "Revision %d.%d found\n",
2487 		 (isp->revision & 0xf0) >> 4, isp->revision & 0x0f);
2488 
2489 	clk_disable(isp->clock[ISP_CLK_CAM_ICK]);
2490 
2491 	if (__omap3isp_get(isp, false) == NULL) {
2492 		ret = -ENODEV;
2493 		goto error;
2494 	}
2495 
2496 	ret = isp_reset(isp);
2497 	if (ret < 0)
2498 		goto error_isp;
2499 
2500 	ret = isp_xclk_init(isp);
2501 	if (ret < 0)
2502 		goto error_isp;
2503 
2504 	/* Memory resources */
2505 	for (m = 0; m < ARRAY_SIZE(isp_res_maps); m++)
2506 		if (isp->revision == isp_res_maps[m].isp_rev)
2507 			break;
2508 
2509 	if (m == ARRAY_SIZE(isp_res_maps)) {
2510 		dev_err(isp->dev, "No resource map found for ISP rev %d.%d\n",
2511 			(isp->revision & 0xf0) >> 4, isp->revision & 0xf);
2512 		ret = -ENODEV;
2513 		goto error_isp;
2514 	}
2515 
2516 	if (!IS_ENABLED(CONFIG_OF) || !pdev->dev.of_node) {
2517 		isp->syscon_offset = isp_res_maps[m].syscon_offset;
2518 		isp->phy_type = isp_res_maps[m].phy_type;
2519 	}
2520 
2521 	for (i = 1; i < OMAP3_ISP_IOMEM_CSI2A_REGS1; i++)
2522 		isp->mmio_base[i] =
2523 			isp->mmio_base[0] + isp_res_maps[m].offset[i];
2524 
2525 	for (i = OMAP3_ISP_IOMEM_CSIPHY2; i < OMAP3_ISP_IOMEM_LAST; i++)
2526 		isp->mmio_base[i] =
2527 			isp->mmio_base[OMAP3_ISP_IOMEM_CSI2A_REGS1]
2528 			+ isp_res_maps[m].offset[i];
2529 
2530 	isp->mmio_hist_base_phys =
2531 		mem->start + isp_res_maps[m].offset[OMAP3_ISP_IOMEM_HIST];
2532 
2533 	/* IOMMU */
2534 	ret = isp_attach_iommu(isp);
2535 	if (ret < 0) {
2536 		dev_err(&pdev->dev, "unable to attach to IOMMU\n");
2537 		goto error_isp;
2538 	}
2539 
2540 	/* Interrupt */
2541 	isp->irq_num = platform_get_irq(pdev, 0);
2542 	if (isp->irq_num <= 0) {
2543 		dev_err(isp->dev, "No IRQ resource\n");
2544 		ret = -ENODEV;
2545 		goto error_iommu;
2546 	}
2547 
2548 	if (devm_request_irq(isp->dev, isp->irq_num, isp_isr, IRQF_SHARED,
2549 			     "OMAP3 ISP", isp)) {
2550 		dev_err(isp->dev, "Unable to request IRQ\n");
2551 		ret = -EINVAL;
2552 		goto error_iommu;
2553 	}
2554 
2555 	/* Entities */
2556 	ret = isp_initialize_modules(isp);
2557 	if (ret < 0)
2558 		goto error_iommu;
2559 
2560 	isp->notifier.bound = isp_subdev_notifier_bound;
2561 	isp->notifier.complete = isp_subdev_notifier_complete;
2562 
2563 	ret = isp_register_entities(isp);
2564 	if (ret < 0)
2565 		goto error_modules;
2566 
2567 	isp_core_init(isp, 1);
2568 	omap3isp_put(isp);
2569 
2570 	return 0;
2571 
2572 error_modules:
2573 	isp_cleanup_modules(isp);
2574 error_iommu:
2575 	isp_detach_iommu(isp);
2576 error_isp:
2577 	isp_xclk_cleanup(isp);
2578 	__omap3isp_put(isp, false);
2579 error:
2580 	mutex_destroy(&isp->isp_mutex);
2581 
2582 	return ret;
2583 }
2584 
2585 static const struct dev_pm_ops omap3isp_pm_ops = {
2586 	.prepare = isp_pm_prepare,
2587 	.suspend = isp_pm_suspend,
2588 	.resume = isp_pm_resume,
2589 	.complete = isp_pm_complete,
2590 };
2591 
2592 static struct platform_device_id omap3isp_id_table[] = {
2593 	{ "omap3isp", 0 },
2594 	{ },
2595 };
2596 MODULE_DEVICE_TABLE(platform, omap3isp_id_table);
2597 
2598 static const struct of_device_id omap3isp_of_table[] = {
2599 	{ .compatible = "ti,omap3-isp" },
2600 	{ },
2601 };
2602 
2603 static struct platform_driver omap3isp_driver = {
2604 	.probe = isp_probe,
2605 	.remove = isp_remove,
2606 	.id_table = omap3isp_id_table,
2607 	.driver = {
2608 		.name = "omap3isp",
2609 		.pm	= &omap3isp_pm_ops,
2610 		.of_match_table = omap3isp_of_table,
2611 	},
2612 };
2613 
2614 module_platform_driver(omap3isp_driver);
2615 
2616 MODULE_AUTHOR("Nokia Corporation");
2617 MODULE_DESCRIPTION("TI OMAP3 ISP driver");
2618 MODULE_LICENSE("GPL");
2619 MODULE_VERSION(ISP_VIDEO_DRIVER_VERSION);
2620