1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/nvme.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <scsi/sg.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44 
45 #define NVME_MINORS		(1U << MINORBITS)
46 #define NVME_Q_DEPTH		1024
47 #define NVME_AQ_DEPTH		256
48 #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
49 #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
50 #define ADMIN_TIMEOUT		(admin_timeout * HZ)
51 #define SHUTDOWN_TIMEOUT	(shutdown_timeout * HZ)
52 
53 static unsigned char admin_timeout = 60;
54 module_param(admin_timeout, byte, 0644);
55 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
56 
57 unsigned char nvme_io_timeout = 30;
58 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
59 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
60 
61 static unsigned char shutdown_timeout = 5;
62 module_param(shutdown_timeout, byte, 0644);
63 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
64 
65 static int nvme_major;
66 module_param(nvme_major, int, 0);
67 
68 static int nvme_char_major;
69 module_param(nvme_char_major, int, 0);
70 
71 static int use_threaded_interrupts;
72 module_param(use_threaded_interrupts, int, 0);
73 
74 static DEFINE_SPINLOCK(dev_list_lock);
75 static LIST_HEAD(dev_list);
76 static struct task_struct *nvme_thread;
77 static struct workqueue_struct *nvme_workq;
78 static wait_queue_head_t nvme_kthread_wait;
79 
80 static struct class *nvme_class;
81 
82 static void nvme_reset_failed_dev(struct work_struct *ws);
83 static int nvme_process_cq(struct nvme_queue *nvmeq);
84 
85 struct async_cmd_info {
86 	struct kthread_work work;
87 	struct kthread_worker *worker;
88 	struct request *req;
89 	u32 result;
90 	int status;
91 	void *ctx;
92 };
93 
94 /*
95  * An NVM Express queue.  Each device has at least two (one for admin
96  * commands and one for I/O commands).
97  */
98 struct nvme_queue {
99 	struct device *q_dmadev;
100 	struct nvme_dev *dev;
101 	char irqname[24];	/* nvme4294967295-65535\0 */
102 	spinlock_t q_lock;
103 	struct nvme_command *sq_cmds;
104 	volatile struct nvme_completion *cqes;
105 	dma_addr_t sq_dma_addr;
106 	dma_addr_t cq_dma_addr;
107 	u32 __iomem *q_db;
108 	u16 q_depth;
109 	s16 cq_vector;
110 	u16 sq_head;
111 	u16 sq_tail;
112 	u16 cq_head;
113 	u16 qid;
114 	u8 cq_phase;
115 	u8 cqe_seen;
116 	struct async_cmd_info cmdinfo;
117 	struct blk_mq_hw_ctx *hctx;
118 };
119 
120 /*
121  * Check we didin't inadvertently grow the command struct
122  */
_nvme_check_size(void)123 static inline void _nvme_check_size(void)
124 {
125 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
126 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
127 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
128 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
129 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
130 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
131 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
132 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
136 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
137 }
138 
139 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
140 						struct nvme_completion *);
141 
142 struct nvme_cmd_info {
143 	nvme_completion_fn fn;
144 	void *ctx;
145 	int aborted;
146 	struct nvme_queue *nvmeq;
147 	struct nvme_iod iod[0];
148 };
149 
150 /*
151  * Max size of iod being embedded in the request payload
152  */
153 #define NVME_INT_PAGES		2
154 #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->page_size)
155 #define NVME_INT_MASK		0x01
156 
157 /*
158  * Will slightly overestimate the number of pages needed.  This is OK
159  * as it only leads to a small amount of wasted memory for the lifetime of
160  * the I/O.
161  */
nvme_npages(unsigned size,struct nvme_dev * dev)162 static int nvme_npages(unsigned size, struct nvme_dev *dev)
163 {
164 	unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
165 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
166 }
167 
nvme_cmd_size(struct nvme_dev * dev)168 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
169 {
170 	unsigned int ret = sizeof(struct nvme_cmd_info);
171 
172 	ret += sizeof(struct nvme_iod);
173 	ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
174 	ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
175 
176 	return ret;
177 }
178 
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)179 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
180 				unsigned int hctx_idx)
181 {
182 	struct nvme_dev *dev = data;
183 	struct nvme_queue *nvmeq = dev->queues[0];
184 
185 	WARN_ON(nvmeq->hctx);
186 	nvmeq->hctx = hctx;
187 	hctx->driver_data = nvmeq;
188 	return 0;
189 }
190 
nvme_admin_init_request(void * data,struct request * req,unsigned int hctx_idx,unsigned int rq_idx,unsigned int numa_node)191 static int nvme_admin_init_request(void *data, struct request *req,
192 				unsigned int hctx_idx, unsigned int rq_idx,
193 				unsigned int numa_node)
194 {
195 	struct nvme_dev *dev = data;
196 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
197 	struct nvme_queue *nvmeq = dev->queues[0];
198 
199 	BUG_ON(!nvmeq);
200 	cmd->nvmeq = nvmeq;
201 	return 0;
202 }
203 
nvme_exit_hctx(struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)204 static void nvme_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
205 {
206 	struct nvme_queue *nvmeq = hctx->driver_data;
207 
208 	nvmeq->hctx = NULL;
209 }
210 
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)211 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
212 			  unsigned int hctx_idx)
213 {
214 	struct nvme_dev *dev = data;
215 	struct nvme_queue *nvmeq = dev->queues[
216 					(hctx_idx % dev->queue_count) + 1];
217 
218 	if (!nvmeq->hctx)
219 		nvmeq->hctx = hctx;
220 
221 	/* nvmeq queues are shared between namespaces. We assume here that
222 	 * blk-mq map the tags so they match up with the nvme queue tags. */
223 	WARN_ON(nvmeq->hctx->tags != hctx->tags);
224 
225 	hctx->driver_data = nvmeq;
226 	return 0;
227 }
228 
nvme_init_request(void * data,struct request * req,unsigned int hctx_idx,unsigned int rq_idx,unsigned int numa_node)229 static int nvme_init_request(void *data, struct request *req,
230 				unsigned int hctx_idx, unsigned int rq_idx,
231 				unsigned int numa_node)
232 {
233 	struct nvme_dev *dev = data;
234 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
235 	struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
236 
237 	BUG_ON(!nvmeq);
238 	cmd->nvmeq = nvmeq;
239 	return 0;
240 }
241 
nvme_set_info(struct nvme_cmd_info * cmd,void * ctx,nvme_completion_fn handler)242 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
243 				nvme_completion_fn handler)
244 {
245 	cmd->fn = handler;
246 	cmd->ctx = ctx;
247 	cmd->aborted = 0;
248 	blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
249 }
250 
iod_get_private(struct nvme_iod * iod)251 static void *iod_get_private(struct nvme_iod *iod)
252 {
253 	return (void *) (iod->private & ~0x1UL);
254 }
255 
256 /*
257  * If bit 0 is set, the iod is embedded in the request payload.
258  */
iod_should_kfree(struct nvme_iod * iod)259 static bool iod_should_kfree(struct nvme_iod *iod)
260 {
261 	return (iod->private & NVME_INT_MASK) == 0;
262 }
263 
264 /* Special values must be less than 0x1000 */
265 #define CMD_CTX_BASE		((void *)POISON_POINTER_DELTA)
266 #define CMD_CTX_CANCELLED	(0x30C + CMD_CTX_BASE)
267 #define CMD_CTX_COMPLETED	(0x310 + CMD_CTX_BASE)
268 #define CMD_CTX_INVALID		(0x314 + CMD_CTX_BASE)
269 
special_completion(struct nvme_queue * nvmeq,void * ctx,struct nvme_completion * cqe)270 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
271 						struct nvme_completion *cqe)
272 {
273 	if (ctx == CMD_CTX_CANCELLED)
274 		return;
275 	if (ctx == CMD_CTX_COMPLETED) {
276 		dev_warn(nvmeq->q_dmadev,
277 				"completed id %d twice on queue %d\n",
278 				cqe->command_id, le16_to_cpup(&cqe->sq_id));
279 		return;
280 	}
281 	if (ctx == CMD_CTX_INVALID) {
282 		dev_warn(nvmeq->q_dmadev,
283 				"invalid id %d completed on queue %d\n",
284 				cqe->command_id, le16_to_cpup(&cqe->sq_id));
285 		return;
286 	}
287 	dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
288 }
289 
cancel_cmd_info(struct nvme_cmd_info * cmd,nvme_completion_fn * fn)290 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
291 {
292 	void *ctx;
293 
294 	if (fn)
295 		*fn = cmd->fn;
296 	ctx = cmd->ctx;
297 	cmd->fn = special_completion;
298 	cmd->ctx = CMD_CTX_CANCELLED;
299 	return ctx;
300 }
301 
async_req_completion(struct nvme_queue * nvmeq,void * ctx,struct nvme_completion * cqe)302 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
303 						struct nvme_completion *cqe)
304 {
305 	u32 result = le32_to_cpup(&cqe->result);
306 	u16 status = le16_to_cpup(&cqe->status) >> 1;
307 
308 	if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
309 		++nvmeq->dev->event_limit;
310 	if (status == NVME_SC_SUCCESS)
311 		dev_warn(nvmeq->q_dmadev,
312 			"async event result %08x\n", result);
313 }
314 
abort_completion(struct nvme_queue * nvmeq,void * ctx,struct nvme_completion * cqe)315 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
316 						struct nvme_completion *cqe)
317 {
318 	struct request *req = ctx;
319 
320 	u16 status = le16_to_cpup(&cqe->status) >> 1;
321 	u32 result = le32_to_cpup(&cqe->result);
322 
323 	blk_mq_free_hctx_request(nvmeq->hctx, req);
324 
325 	dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
326 	++nvmeq->dev->abort_limit;
327 }
328 
async_completion(struct nvme_queue * nvmeq,void * ctx,struct nvme_completion * cqe)329 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
330 						struct nvme_completion *cqe)
331 {
332 	struct async_cmd_info *cmdinfo = ctx;
333 	cmdinfo->result = le32_to_cpup(&cqe->result);
334 	cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
335 	queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
336 	blk_mq_free_hctx_request(nvmeq->hctx, cmdinfo->req);
337 }
338 
get_cmd_from_tag(struct nvme_queue * nvmeq,unsigned int tag)339 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
340 				  unsigned int tag)
341 {
342 	struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
343 	struct request *req = blk_mq_tag_to_rq(hctx->tags, tag);
344 
345 	return blk_mq_rq_to_pdu(req);
346 }
347 
348 /*
349  * Called with local interrupts disabled and the q_lock held.  May not sleep.
350  */
nvme_finish_cmd(struct nvme_queue * nvmeq,int tag,nvme_completion_fn * fn)351 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
352 						nvme_completion_fn *fn)
353 {
354 	struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
355 	void *ctx;
356 	if (tag >= nvmeq->q_depth) {
357 		*fn = special_completion;
358 		return CMD_CTX_INVALID;
359 	}
360 	if (fn)
361 		*fn = cmd->fn;
362 	ctx = cmd->ctx;
363 	cmd->fn = special_completion;
364 	cmd->ctx = CMD_CTX_COMPLETED;
365 	return ctx;
366 }
367 
368 /**
369  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
370  * @nvmeq: The queue to use
371  * @cmd: The command to send
372  *
373  * Safe to use from interrupt context
374  */
__nvme_submit_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)375 static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
376 {
377 	u16 tail = nvmeq->sq_tail;
378 
379 	memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
380 	if (++tail == nvmeq->q_depth)
381 		tail = 0;
382 	writel(tail, nvmeq->q_db);
383 	nvmeq->sq_tail = tail;
384 
385 	return 0;
386 }
387 
nvme_submit_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)388 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
389 {
390 	unsigned long flags;
391 	int ret;
392 	spin_lock_irqsave(&nvmeq->q_lock, flags);
393 	ret = __nvme_submit_cmd(nvmeq, cmd);
394 	spin_unlock_irqrestore(&nvmeq->q_lock, flags);
395 	return ret;
396 }
397 
iod_list(struct nvme_iod * iod)398 static __le64 **iod_list(struct nvme_iod *iod)
399 {
400 	return ((void *)iod) + iod->offset;
401 }
402 
iod_init(struct nvme_iod * iod,unsigned nbytes,unsigned nseg,unsigned long private)403 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
404 			    unsigned nseg, unsigned long private)
405 {
406 	iod->private = private;
407 	iod->offset = offsetof(struct nvme_iod, sg[nseg]);
408 	iod->npages = -1;
409 	iod->length = nbytes;
410 	iod->nents = 0;
411 }
412 
413 static struct nvme_iod *
__nvme_alloc_iod(unsigned nseg,unsigned bytes,struct nvme_dev * dev,unsigned long priv,gfp_t gfp)414 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
415 		 unsigned long priv, gfp_t gfp)
416 {
417 	struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
418 				sizeof(__le64 *) * nvme_npages(bytes, dev) +
419 				sizeof(struct scatterlist) * nseg, gfp);
420 
421 	if (iod)
422 		iod_init(iod, bytes, nseg, priv);
423 
424 	return iod;
425 }
426 
nvme_alloc_iod(struct request * rq,struct nvme_dev * dev,gfp_t gfp)427 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
428 			               gfp_t gfp)
429 {
430 	unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
431                                                 sizeof(struct nvme_dsm_range);
432 	struct nvme_iod *iod;
433 
434 	if (rq->nr_phys_segments <= NVME_INT_PAGES &&
435 	    size <= NVME_INT_BYTES(dev)) {
436 		struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
437 
438 		iod = cmd->iod;
439 		iod_init(iod, size, rq->nr_phys_segments,
440 				(unsigned long) rq | NVME_INT_MASK);
441 		return iod;
442 	}
443 
444 	return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
445 				(unsigned long) rq, gfp);
446 }
447 
nvme_free_iod(struct nvme_dev * dev,struct nvme_iod * iod)448 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
449 {
450 	const int last_prp = dev->page_size / 8 - 1;
451 	int i;
452 	__le64 **list = iod_list(iod);
453 	dma_addr_t prp_dma = iod->first_dma;
454 
455 	if (iod->npages == 0)
456 		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
457 	for (i = 0; i < iod->npages; i++) {
458 		__le64 *prp_list = list[i];
459 		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
460 		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
461 		prp_dma = next_prp_dma;
462 	}
463 
464 	if (iod_should_kfree(iod))
465 		kfree(iod);
466 }
467 
nvme_error_status(u16 status)468 static int nvme_error_status(u16 status)
469 {
470 	switch (status & 0x7ff) {
471 	case NVME_SC_SUCCESS:
472 		return 0;
473 	case NVME_SC_CAP_EXCEEDED:
474 		return -ENOSPC;
475 	default:
476 		return -EIO;
477 	}
478 }
479 
480 #ifdef CONFIG_BLK_DEV_INTEGRITY
nvme_dif_prep(u32 p,u32 v,struct t10_pi_tuple * pi)481 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
482 {
483 	if (be32_to_cpu(pi->ref_tag) == v)
484 		pi->ref_tag = cpu_to_be32(p);
485 }
486 
nvme_dif_complete(u32 p,u32 v,struct t10_pi_tuple * pi)487 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
488 {
489 	if (be32_to_cpu(pi->ref_tag) == p)
490 		pi->ref_tag = cpu_to_be32(v);
491 }
492 
493 /**
494  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
495  *
496  * The virtual start sector is the one that was originally submitted by the
497  * block layer.	Due to partitioning, MD/DM cloning, etc. the actual physical
498  * start sector may be different. Remap protection information to match the
499  * physical LBA on writes, and back to the original seed on reads.
500  *
501  * Type 0 and 3 do not have a ref tag, so no remapping required.
502  */
nvme_dif_remap(struct request * req,void (* dif_swap)(u32 p,u32 v,struct t10_pi_tuple * pi))503 static void nvme_dif_remap(struct request *req,
504 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
505 {
506 	struct nvme_ns *ns = req->rq_disk->private_data;
507 	struct bio_integrity_payload *bip;
508 	struct t10_pi_tuple *pi;
509 	void *p, *pmap;
510 	u32 i, nlb, ts, phys, virt;
511 
512 	if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
513 		return;
514 
515 	bip = bio_integrity(req->bio);
516 	if (!bip)
517 		return;
518 
519 	pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
520 
521 	p = pmap;
522 	virt = bip_get_seed(bip);
523 	phys = nvme_block_nr(ns, blk_rq_pos(req));
524 	nlb = (blk_rq_bytes(req) >> ns->lba_shift);
525 	ts = ns->disk->integrity->tuple_size;
526 
527 	for (i = 0; i < nlb; i++, virt++, phys++) {
528 		pi = (struct t10_pi_tuple *)p;
529 		dif_swap(phys, virt, pi);
530 		p += ts;
531 	}
532 	kunmap_atomic(pmap);
533 }
534 
nvme_noop_verify(struct blk_integrity_iter * iter)535 static int nvme_noop_verify(struct blk_integrity_iter *iter)
536 {
537 	return 0;
538 }
539 
nvme_noop_generate(struct blk_integrity_iter * iter)540 static int nvme_noop_generate(struct blk_integrity_iter *iter)
541 {
542 	return 0;
543 }
544 
545 struct blk_integrity nvme_meta_noop = {
546 	.name			= "NVME_META_NOOP",
547 	.generate_fn		= nvme_noop_generate,
548 	.verify_fn		= nvme_noop_verify,
549 };
550 
nvme_init_integrity(struct nvme_ns * ns)551 static void nvme_init_integrity(struct nvme_ns *ns)
552 {
553 	struct blk_integrity integrity;
554 
555 	switch (ns->pi_type) {
556 	case NVME_NS_DPS_PI_TYPE3:
557 		integrity = t10_pi_type3_crc;
558 		break;
559 	case NVME_NS_DPS_PI_TYPE1:
560 	case NVME_NS_DPS_PI_TYPE2:
561 		integrity = t10_pi_type1_crc;
562 		break;
563 	default:
564 		integrity = nvme_meta_noop;
565 		break;
566 	}
567 	integrity.tuple_size = ns->ms;
568 	blk_integrity_register(ns->disk, &integrity);
569 	blk_queue_max_integrity_segments(ns->queue, 1);
570 }
571 #else /* CONFIG_BLK_DEV_INTEGRITY */
nvme_dif_remap(struct request * req,void (* dif_swap)(u32 p,u32 v,struct t10_pi_tuple * pi))572 static void nvme_dif_remap(struct request *req,
573 			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
574 {
575 }
nvme_dif_prep(u32 p,u32 v,struct t10_pi_tuple * pi)576 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
577 {
578 }
nvme_dif_complete(u32 p,u32 v,struct t10_pi_tuple * pi)579 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
580 {
581 }
nvme_init_integrity(struct nvme_ns * ns)582 static void nvme_init_integrity(struct nvme_ns *ns)
583 {
584 }
585 #endif
586 
req_completion(struct nvme_queue * nvmeq,void * ctx,struct nvme_completion * cqe)587 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
588 						struct nvme_completion *cqe)
589 {
590 	struct nvme_iod *iod = ctx;
591 	struct request *req = iod_get_private(iod);
592 	struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
593 	bool requeue = false;
594 
595 	u16 status = le16_to_cpup(&cqe->status) >> 1;
596 
597 	if (unlikely(status)) {
598 		if (!(status & NVME_SC_DNR || blk_noretry_request(req))
599 		    && (jiffies - req->start_time) < req->timeout) {
600 			unsigned long flags;
601 
602 			requeue = true;
603 			blk_mq_requeue_request(req);
604 			spin_lock_irqsave(req->q->queue_lock, flags);
605 			if (!blk_queue_stopped(req->q))
606 				blk_mq_kick_requeue_list(req->q);
607 			spin_unlock_irqrestore(req->q->queue_lock, flags);
608 			goto release_iod;
609 		}
610 		req->errors = nvme_error_status(status);
611 	} else
612 		req->errors = 0;
613 
614 	if (cmd_rq->aborted)
615 		dev_warn(&nvmeq->dev->pci_dev->dev,
616 			"completing aborted command with status:%04x\n",
617 			status);
618  release_iod:
619 	if (iod->nents) {
620 		dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg, iod->nents,
621 			rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
622 		if (blk_integrity_rq(req)) {
623 			if (!rq_data_dir(req))
624 				nvme_dif_remap(req, nvme_dif_complete);
625 			dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->meta_sg, 1,
626 				rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
627 		}
628 	}
629 	nvme_free_iod(nvmeq->dev, iod);
630 
631 	if (likely(!requeue))
632 		blk_mq_complete_request(req);
633 }
634 
635 /* length is in bytes.  gfp flags indicates whether we may sleep. */
nvme_setup_prps(struct nvme_dev * dev,struct nvme_iod * iod,int total_len,gfp_t gfp)636 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
637 								gfp_t gfp)
638 {
639 	struct dma_pool *pool;
640 	int length = total_len;
641 	struct scatterlist *sg = iod->sg;
642 	int dma_len = sg_dma_len(sg);
643 	u64 dma_addr = sg_dma_address(sg);
644 	u32 page_size = dev->page_size;
645 	int offset = dma_addr & (page_size - 1);
646 	__le64 *prp_list;
647 	__le64 **list = iod_list(iod);
648 	dma_addr_t prp_dma;
649 	int nprps, i;
650 
651 	length -= (page_size - offset);
652 	if (length <= 0)
653 		return total_len;
654 
655 	dma_len -= (page_size - offset);
656 	if (dma_len) {
657 		dma_addr += (page_size - offset);
658 	} else {
659 		sg = sg_next(sg);
660 		dma_addr = sg_dma_address(sg);
661 		dma_len = sg_dma_len(sg);
662 	}
663 
664 	if (length <= page_size) {
665 		iod->first_dma = dma_addr;
666 		return total_len;
667 	}
668 
669 	nprps = DIV_ROUND_UP(length, page_size);
670 	if (nprps <= (256 / 8)) {
671 		pool = dev->prp_small_pool;
672 		iod->npages = 0;
673 	} else {
674 		pool = dev->prp_page_pool;
675 		iod->npages = 1;
676 	}
677 
678 	prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
679 	if (!prp_list) {
680 		iod->first_dma = dma_addr;
681 		iod->npages = -1;
682 		return (total_len - length) + page_size;
683 	}
684 	list[0] = prp_list;
685 	iod->first_dma = prp_dma;
686 	i = 0;
687 	for (;;) {
688 		if (i == page_size >> 3) {
689 			__le64 *old_prp_list = prp_list;
690 			prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
691 			if (!prp_list)
692 				return total_len - length;
693 			list[iod->npages++] = prp_list;
694 			prp_list[0] = old_prp_list[i - 1];
695 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
696 			i = 1;
697 		}
698 		prp_list[i++] = cpu_to_le64(dma_addr);
699 		dma_len -= page_size;
700 		dma_addr += page_size;
701 		length -= page_size;
702 		if (length <= 0)
703 			break;
704 		if (dma_len > 0)
705 			continue;
706 		BUG_ON(dma_len < 0);
707 		sg = sg_next(sg);
708 		dma_addr = sg_dma_address(sg);
709 		dma_len = sg_dma_len(sg);
710 	}
711 
712 	return total_len;
713 }
714 
715 /*
716  * We reuse the small pool to allocate the 16-byte range here as it is not
717  * worth having a special pool for these or additional cases to handle freeing
718  * the iod.
719  */
nvme_submit_discard(struct nvme_queue * nvmeq,struct nvme_ns * ns,struct request * req,struct nvme_iod * iod)720 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
721 		struct request *req, struct nvme_iod *iod)
722 {
723 	struct nvme_dsm_range *range =
724 				(struct nvme_dsm_range *)iod_list(iod)[0];
725 	struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
726 
727 	range->cattr = cpu_to_le32(0);
728 	range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
729 	range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
730 
731 	memset(cmnd, 0, sizeof(*cmnd));
732 	cmnd->dsm.opcode = nvme_cmd_dsm;
733 	cmnd->dsm.command_id = req->tag;
734 	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
735 	cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
736 	cmnd->dsm.nr = 0;
737 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
738 
739 	if (++nvmeq->sq_tail == nvmeq->q_depth)
740 		nvmeq->sq_tail = 0;
741 	writel(nvmeq->sq_tail, nvmeq->q_db);
742 }
743 
nvme_submit_flush(struct nvme_queue * nvmeq,struct nvme_ns * ns,int cmdid)744 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
745 								int cmdid)
746 {
747 	struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
748 
749 	memset(cmnd, 0, sizeof(*cmnd));
750 	cmnd->common.opcode = nvme_cmd_flush;
751 	cmnd->common.command_id = cmdid;
752 	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
753 
754 	if (++nvmeq->sq_tail == nvmeq->q_depth)
755 		nvmeq->sq_tail = 0;
756 	writel(nvmeq->sq_tail, nvmeq->q_db);
757 }
758 
nvme_submit_iod(struct nvme_queue * nvmeq,struct nvme_iod * iod,struct nvme_ns * ns)759 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
760 							struct nvme_ns *ns)
761 {
762 	struct request *req = iod_get_private(iod);
763 	struct nvme_command *cmnd;
764 	u16 control = 0;
765 	u32 dsmgmt = 0;
766 
767 	if (req->cmd_flags & REQ_FUA)
768 		control |= NVME_RW_FUA;
769 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
770 		control |= NVME_RW_LR;
771 
772 	if (req->cmd_flags & REQ_RAHEAD)
773 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
774 
775 	cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
776 	memset(cmnd, 0, sizeof(*cmnd));
777 
778 	cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
779 	cmnd->rw.command_id = req->tag;
780 	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
781 	cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
782 	cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
783 	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
784 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
785 
786 	if (blk_integrity_rq(req)) {
787 		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
788 		switch (ns->pi_type) {
789 		case NVME_NS_DPS_PI_TYPE3:
790 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
791 			break;
792 		case NVME_NS_DPS_PI_TYPE1:
793 		case NVME_NS_DPS_PI_TYPE2:
794 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
795 					NVME_RW_PRINFO_PRCHK_REF;
796 			cmnd->rw.reftag = cpu_to_le32(
797 					nvme_block_nr(ns, blk_rq_pos(req)));
798 			break;
799 		}
800 	} else if (ns->ms)
801 		control |= NVME_RW_PRINFO_PRACT;
802 
803 	cmnd->rw.control = cpu_to_le16(control);
804 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
805 
806 	if (++nvmeq->sq_tail == nvmeq->q_depth)
807 		nvmeq->sq_tail = 0;
808 	writel(nvmeq->sq_tail, nvmeq->q_db);
809 
810 	return 0;
811 }
812 
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)813 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
814 			 const struct blk_mq_queue_data *bd)
815 {
816 	struct nvme_ns *ns = hctx->queue->queuedata;
817 	struct nvme_queue *nvmeq = hctx->driver_data;
818 	struct request *req = bd->rq;
819 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
820 	struct nvme_iod *iod;
821 	enum dma_data_direction dma_dir;
822 
823 	/*
824 	 * If formated with metadata, require the block layer provide a buffer
825 	 * unless this namespace is formated such that the metadata can be
826 	 * stripped/generated by the controller with PRACT=1.
827 	 */
828 	if (ns->ms && !blk_integrity_rq(req)) {
829 		if (!(ns->pi_type && ns->ms == 8)) {
830 			req->errors = -EFAULT;
831 			blk_mq_complete_request(req);
832 			return BLK_MQ_RQ_QUEUE_OK;
833 		}
834 	}
835 
836 	iod = nvme_alloc_iod(req, ns->dev, GFP_ATOMIC);
837 	if (!iod)
838 		return BLK_MQ_RQ_QUEUE_BUSY;
839 
840 	if (req->cmd_flags & REQ_DISCARD) {
841 		void *range;
842 		/*
843 		 * We reuse the small pool to allocate the 16-byte range here
844 		 * as it is not worth having a special pool for these or
845 		 * additional cases to handle freeing the iod.
846 		 */
847 		range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
848 						GFP_ATOMIC,
849 						&iod->first_dma);
850 		if (!range)
851 			goto retry_cmd;
852 		iod_list(iod)[0] = (__le64 *)range;
853 		iod->npages = 0;
854 	} else if (req->nr_phys_segments) {
855 		dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
856 
857 		sg_init_table(iod->sg, req->nr_phys_segments);
858 		iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
859 		if (!iod->nents)
860 			goto error_cmd;
861 
862 		if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
863 			goto retry_cmd;
864 
865 		if (blk_rq_bytes(req) !=
866                     nvme_setup_prps(nvmeq->dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
867 			dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg,
868 					iod->nents, dma_dir);
869 			goto retry_cmd;
870 		}
871 		if (blk_integrity_rq(req)) {
872 			if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
873 				goto error_cmd;
874 
875 			sg_init_table(iod->meta_sg, 1);
876 			if (blk_rq_map_integrity_sg(
877 					req->q, req->bio, iod->meta_sg) != 1)
878 				goto error_cmd;
879 
880 			if (rq_data_dir(req))
881 				nvme_dif_remap(req, nvme_dif_prep);
882 
883 			if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
884 				goto error_cmd;
885 		}
886 	}
887 
888 	nvme_set_info(cmd, iod, req_completion);
889 	spin_lock_irq(&nvmeq->q_lock);
890 	if (req->cmd_flags & REQ_DISCARD)
891 		nvme_submit_discard(nvmeq, ns, req, iod);
892 	else if (req->cmd_flags & REQ_FLUSH)
893 		nvme_submit_flush(nvmeq, ns, req->tag);
894 	else
895 		nvme_submit_iod(nvmeq, iod, ns);
896 
897 	nvme_process_cq(nvmeq);
898 	spin_unlock_irq(&nvmeq->q_lock);
899 	return BLK_MQ_RQ_QUEUE_OK;
900 
901  error_cmd:
902 	nvme_free_iod(nvmeq->dev, iod);
903 	return BLK_MQ_RQ_QUEUE_ERROR;
904  retry_cmd:
905 	nvme_free_iod(nvmeq->dev, iod);
906 	return BLK_MQ_RQ_QUEUE_BUSY;
907 }
908 
nvme_process_cq(struct nvme_queue * nvmeq)909 static int nvme_process_cq(struct nvme_queue *nvmeq)
910 {
911 	u16 head, phase;
912 
913 	head = nvmeq->cq_head;
914 	phase = nvmeq->cq_phase;
915 
916 	for (;;) {
917 		void *ctx;
918 		nvme_completion_fn fn;
919 		struct nvme_completion cqe = nvmeq->cqes[head];
920 		if ((le16_to_cpu(cqe.status) & 1) != phase)
921 			break;
922 		nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
923 		if (++head == nvmeq->q_depth) {
924 			head = 0;
925 			phase = !phase;
926 		}
927 		ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
928 		fn(nvmeq, ctx, &cqe);
929 	}
930 
931 	/* If the controller ignores the cq head doorbell and continuously
932 	 * writes to the queue, it is theoretically possible to wrap around
933 	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
934 	 * requires that 0.1% of your interrupts are handled, so this isn't
935 	 * a big problem.
936 	 */
937 	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
938 		return 0;
939 
940 	writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
941 	nvmeq->cq_head = head;
942 	nvmeq->cq_phase = phase;
943 
944 	nvmeq->cqe_seen = 1;
945 	return 1;
946 }
947 
948 /* Admin queue isn't initialized as a request queue. If at some point this
949  * happens anyway, make sure to notify the user */
nvme_admin_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)950 static int nvme_admin_queue_rq(struct blk_mq_hw_ctx *hctx,
951 			       const struct blk_mq_queue_data *bd)
952 {
953 	WARN_ON_ONCE(1);
954 	return BLK_MQ_RQ_QUEUE_ERROR;
955 }
956 
nvme_irq(int irq,void * data)957 static irqreturn_t nvme_irq(int irq, void *data)
958 {
959 	irqreturn_t result;
960 	struct nvme_queue *nvmeq = data;
961 	spin_lock(&nvmeq->q_lock);
962 	nvme_process_cq(nvmeq);
963 	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
964 	nvmeq->cqe_seen = 0;
965 	spin_unlock(&nvmeq->q_lock);
966 	return result;
967 }
968 
nvme_irq_check(int irq,void * data)969 static irqreturn_t nvme_irq_check(int irq, void *data)
970 {
971 	struct nvme_queue *nvmeq = data;
972 	struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
973 	if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
974 		return IRQ_NONE;
975 	return IRQ_WAKE_THREAD;
976 }
977 
978 struct sync_cmd_info {
979 	struct task_struct *task;
980 	u32 result;
981 	int status;
982 };
983 
sync_completion(struct nvme_queue * nvmeq,void * ctx,struct nvme_completion * cqe)984 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
985 						struct nvme_completion *cqe)
986 {
987 	struct sync_cmd_info *cmdinfo = ctx;
988 	cmdinfo->result = le32_to_cpup(&cqe->result);
989 	cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
990 	wake_up_process(cmdinfo->task);
991 }
992 
993 /*
994  * Returns 0 on success.  If the result is negative, it's a Linux error code;
995  * if the result is positive, it's an NVM Express status code
996  */
nvme_submit_sync_cmd(struct request * req,struct nvme_command * cmd,u32 * result,unsigned timeout)997 static int nvme_submit_sync_cmd(struct request *req, struct nvme_command *cmd,
998 						u32 *result, unsigned timeout)
999 {
1000 	struct sync_cmd_info cmdinfo;
1001 	struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1002 	struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1003 
1004 	cmdinfo.task = current;
1005 	cmdinfo.status = -EINTR;
1006 
1007 	cmd->common.command_id = req->tag;
1008 
1009 	nvme_set_info(cmd_rq, &cmdinfo, sync_completion);
1010 
1011 	set_current_state(TASK_UNINTERRUPTIBLE);
1012 	nvme_submit_cmd(nvmeq, cmd);
1013 	schedule();
1014 
1015 	if (result)
1016 		*result = cmdinfo.result;
1017 	return cmdinfo.status;
1018 }
1019 
nvme_submit_async_admin_req(struct nvme_dev * dev)1020 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1021 {
1022 	struct nvme_queue *nvmeq = dev->queues[0];
1023 	struct nvme_command c;
1024 	struct nvme_cmd_info *cmd_info;
1025 	struct request *req;
1026 
1027 	req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
1028 	if (IS_ERR(req))
1029 		return PTR_ERR(req);
1030 
1031 	req->cmd_flags |= REQ_NO_TIMEOUT;
1032 	cmd_info = blk_mq_rq_to_pdu(req);
1033 	nvme_set_info(cmd_info, NULL, async_req_completion);
1034 
1035 	memset(&c, 0, sizeof(c));
1036 	c.common.opcode = nvme_admin_async_event;
1037 	c.common.command_id = req->tag;
1038 
1039 	blk_mq_free_hctx_request(nvmeq->hctx, req);
1040 	return __nvme_submit_cmd(nvmeq, &c);
1041 }
1042 
nvme_submit_admin_async_cmd(struct nvme_dev * dev,struct nvme_command * cmd,struct async_cmd_info * cmdinfo,unsigned timeout)1043 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1044 			struct nvme_command *cmd,
1045 			struct async_cmd_info *cmdinfo, unsigned timeout)
1046 {
1047 	struct nvme_queue *nvmeq = dev->queues[0];
1048 	struct request *req;
1049 	struct nvme_cmd_info *cmd_rq;
1050 
1051 	req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1052 	if (IS_ERR(req))
1053 		return PTR_ERR(req);
1054 
1055 	req->timeout = timeout;
1056 	cmd_rq = blk_mq_rq_to_pdu(req);
1057 	cmdinfo->req = req;
1058 	nvme_set_info(cmd_rq, cmdinfo, async_completion);
1059 	cmdinfo->status = -EINTR;
1060 
1061 	cmd->common.command_id = req->tag;
1062 
1063 	return nvme_submit_cmd(nvmeq, cmd);
1064 }
1065 
__nvme_submit_admin_cmd(struct nvme_dev * dev,struct nvme_command * cmd,u32 * result,unsigned timeout)1066 static int __nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
1067 						u32 *result, unsigned timeout)
1068 {
1069 	int res;
1070 	struct request *req;
1071 
1072 	req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1073 	if (IS_ERR(req))
1074 		return PTR_ERR(req);
1075 	res = nvme_submit_sync_cmd(req, cmd, result, timeout);
1076 	blk_mq_free_request(req);
1077 	return res;
1078 }
1079 
nvme_submit_admin_cmd(struct nvme_dev * dev,struct nvme_command * cmd,u32 * result)1080 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
1081 								u32 *result)
1082 {
1083 	return __nvme_submit_admin_cmd(dev, cmd, result, ADMIN_TIMEOUT);
1084 }
1085 
nvme_submit_io_cmd(struct nvme_dev * dev,struct nvme_ns * ns,struct nvme_command * cmd,u32 * result)1086 int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1087 					struct nvme_command *cmd, u32 *result)
1088 {
1089 	int res;
1090 	struct request *req;
1091 
1092 	req = blk_mq_alloc_request(ns->queue, WRITE, (GFP_KERNEL|__GFP_WAIT),
1093 									false);
1094 	if (IS_ERR(req))
1095 		return PTR_ERR(req);
1096 	res = nvme_submit_sync_cmd(req, cmd, result, NVME_IO_TIMEOUT);
1097 	blk_mq_free_request(req);
1098 	return res;
1099 }
1100 
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1101 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1102 {
1103 	struct nvme_command c;
1104 
1105 	memset(&c, 0, sizeof(c));
1106 	c.delete_queue.opcode = opcode;
1107 	c.delete_queue.qid = cpu_to_le16(id);
1108 
1109 	return nvme_submit_admin_cmd(dev, &c, NULL);
1110 }
1111 
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1112 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1113 						struct nvme_queue *nvmeq)
1114 {
1115 	struct nvme_command c;
1116 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1117 
1118 	memset(&c, 0, sizeof(c));
1119 	c.create_cq.opcode = nvme_admin_create_cq;
1120 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1121 	c.create_cq.cqid = cpu_to_le16(qid);
1122 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1123 	c.create_cq.cq_flags = cpu_to_le16(flags);
1124 	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1125 
1126 	return nvme_submit_admin_cmd(dev, &c, NULL);
1127 }
1128 
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1129 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1130 						struct nvme_queue *nvmeq)
1131 {
1132 	struct nvme_command c;
1133 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1134 
1135 	memset(&c, 0, sizeof(c));
1136 	c.create_sq.opcode = nvme_admin_create_sq;
1137 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1138 	c.create_sq.sqid = cpu_to_le16(qid);
1139 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1140 	c.create_sq.sq_flags = cpu_to_le16(flags);
1141 	c.create_sq.cqid = cpu_to_le16(qid);
1142 
1143 	return nvme_submit_admin_cmd(dev, &c, NULL);
1144 }
1145 
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1146 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1147 {
1148 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1149 }
1150 
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1151 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1152 {
1153 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1154 }
1155 
nvme_identify(struct nvme_dev * dev,unsigned nsid,unsigned cns,dma_addr_t dma_addr)1156 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
1157 							dma_addr_t dma_addr)
1158 {
1159 	struct nvme_command c;
1160 
1161 	memset(&c, 0, sizeof(c));
1162 	c.identify.opcode = nvme_admin_identify;
1163 	c.identify.nsid = cpu_to_le32(nsid);
1164 	c.identify.prp1 = cpu_to_le64(dma_addr);
1165 	c.identify.cns = cpu_to_le32(cns);
1166 
1167 	return nvme_submit_admin_cmd(dev, &c, NULL);
1168 }
1169 
nvme_get_features(struct nvme_dev * dev,unsigned fid,unsigned nsid,dma_addr_t dma_addr,u32 * result)1170 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1171 					dma_addr_t dma_addr, u32 *result)
1172 {
1173 	struct nvme_command c;
1174 
1175 	memset(&c, 0, sizeof(c));
1176 	c.features.opcode = nvme_admin_get_features;
1177 	c.features.nsid = cpu_to_le32(nsid);
1178 	c.features.prp1 = cpu_to_le64(dma_addr);
1179 	c.features.fid = cpu_to_le32(fid);
1180 
1181 	return nvme_submit_admin_cmd(dev, &c, result);
1182 }
1183 
nvme_set_features(struct nvme_dev * dev,unsigned fid,unsigned dword11,dma_addr_t dma_addr,u32 * result)1184 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1185 					dma_addr_t dma_addr, u32 *result)
1186 {
1187 	struct nvme_command c;
1188 
1189 	memset(&c, 0, sizeof(c));
1190 	c.features.opcode = nvme_admin_set_features;
1191 	c.features.prp1 = cpu_to_le64(dma_addr);
1192 	c.features.fid = cpu_to_le32(fid);
1193 	c.features.dword11 = cpu_to_le32(dword11);
1194 
1195 	return nvme_submit_admin_cmd(dev, &c, result);
1196 }
1197 
1198 /**
1199  * nvme_abort_req - Attempt aborting a request
1200  *
1201  * Schedule controller reset if the command was already aborted once before and
1202  * still hasn't been returned to the driver, or if this is the admin queue.
1203  */
nvme_abort_req(struct request * req)1204 static void nvme_abort_req(struct request *req)
1205 {
1206 	struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1207 	struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1208 	struct nvme_dev *dev = nvmeq->dev;
1209 	struct request *abort_req;
1210 	struct nvme_cmd_info *abort_cmd;
1211 	struct nvme_command cmd;
1212 
1213 	if (!nvmeq->qid || cmd_rq->aborted) {
1214 		unsigned long flags;
1215 
1216 		spin_lock_irqsave(&dev_list_lock, flags);
1217 		if (work_busy(&dev->reset_work))
1218 			goto out;
1219 		list_del_init(&dev->node);
1220 		dev_warn(&dev->pci_dev->dev,
1221 			"I/O %d QID %d timeout, reset controller\n",
1222 							req->tag, nvmeq->qid);
1223 		dev->reset_workfn = nvme_reset_failed_dev;
1224 		queue_work(nvme_workq, &dev->reset_work);
1225  out:
1226 		spin_unlock_irqrestore(&dev_list_lock, flags);
1227 		return;
1228 	}
1229 
1230 	if (!dev->abort_limit)
1231 		return;
1232 
1233 	abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1234 									false);
1235 	if (IS_ERR(abort_req))
1236 		return;
1237 
1238 	abort_cmd = blk_mq_rq_to_pdu(abort_req);
1239 	nvme_set_info(abort_cmd, abort_req, abort_completion);
1240 
1241 	memset(&cmd, 0, sizeof(cmd));
1242 	cmd.abort.opcode = nvme_admin_abort_cmd;
1243 	cmd.abort.cid = req->tag;
1244 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1245 	cmd.abort.command_id = abort_req->tag;
1246 
1247 	--dev->abort_limit;
1248 	cmd_rq->aborted = 1;
1249 
1250 	dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1251 							nvmeq->qid);
1252 	if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
1253 		dev_warn(nvmeq->q_dmadev,
1254 				"Could not abort I/O %d QID %d",
1255 				req->tag, nvmeq->qid);
1256 		blk_mq_free_request(abort_req);
1257 	}
1258 }
1259 
nvme_cancel_queue_ios(struct blk_mq_hw_ctx * hctx,struct request * req,void * data,bool reserved)1260 static void nvme_cancel_queue_ios(struct blk_mq_hw_ctx *hctx,
1261 				struct request *req, void *data, bool reserved)
1262 {
1263 	struct nvme_queue *nvmeq = data;
1264 	void *ctx;
1265 	nvme_completion_fn fn;
1266 	struct nvme_cmd_info *cmd;
1267 	struct nvme_completion cqe;
1268 
1269 	if (!blk_mq_request_started(req))
1270 		return;
1271 
1272 	cmd = blk_mq_rq_to_pdu(req);
1273 
1274 	if (cmd->ctx == CMD_CTX_CANCELLED)
1275 		return;
1276 
1277 	if (blk_queue_dying(req->q))
1278 		cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1279 	else
1280 		cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1281 
1282 
1283 	dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1284 						req->tag, nvmeq->qid);
1285 	ctx = cancel_cmd_info(cmd, &fn);
1286 	fn(nvmeq, ctx, &cqe);
1287 }
1288 
nvme_timeout(struct request * req,bool reserved)1289 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1290 {
1291 	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1292 	struct nvme_queue *nvmeq = cmd->nvmeq;
1293 
1294 	dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1295 							nvmeq->qid);
1296 	spin_lock_irq(&nvmeq->q_lock);
1297 	nvme_abort_req(req);
1298 	spin_unlock_irq(&nvmeq->q_lock);
1299 
1300 	/*
1301 	 * The aborted req will be completed on receiving the abort req.
1302 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1303 	 * as the device then is in a faulty state.
1304 	 */
1305 	return BLK_EH_RESET_TIMER;
1306 }
1307 
nvme_free_queue(struct nvme_queue * nvmeq)1308 static void nvme_free_queue(struct nvme_queue *nvmeq)
1309 {
1310 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1311 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1312 	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1313 					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1314 	kfree(nvmeq);
1315 }
1316 
nvme_free_queues(struct nvme_dev * dev,int lowest)1317 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1318 {
1319 	int i;
1320 
1321 	for (i = dev->queue_count - 1; i >= lowest; i--) {
1322 		struct nvme_queue *nvmeq = dev->queues[i];
1323 		dev->queue_count--;
1324 		dev->queues[i] = NULL;
1325 		nvme_free_queue(nvmeq);
1326 	}
1327 }
1328 
1329 /**
1330  * nvme_suspend_queue - put queue into suspended state
1331  * @nvmeq - queue to suspend
1332  */
nvme_suspend_queue(struct nvme_queue * nvmeq)1333 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1334 {
1335 	int vector;
1336 
1337 	spin_lock_irq(&nvmeq->q_lock);
1338 	if (nvmeq->cq_vector == -1) {
1339 		spin_unlock_irq(&nvmeq->q_lock);
1340 		return 1;
1341 	}
1342 	vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1343 	nvmeq->dev->online_queues--;
1344 	nvmeq->cq_vector = -1;
1345 	spin_unlock_irq(&nvmeq->q_lock);
1346 
1347 	if (!nvmeq->qid && nvmeq->dev->admin_q)
1348 		blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1349 
1350 	irq_set_affinity_hint(vector, NULL);
1351 	free_irq(vector, nvmeq);
1352 
1353 	return 0;
1354 }
1355 
nvme_clear_queue(struct nvme_queue * nvmeq)1356 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1357 {
1358 	struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
1359 
1360 	spin_lock_irq(&nvmeq->q_lock);
1361 	if (hctx && hctx->tags)
1362 		blk_mq_tag_busy_iter(hctx, nvme_cancel_queue_ios, nvmeq);
1363 	spin_unlock_irq(&nvmeq->q_lock);
1364 }
1365 
nvme_disable_queue(struct nvme_dev * dev,int qid)1366 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1367 {
1368 	struct nvme_queue *nvmeq = dev->queues[qid];
1369 
1370 	if (!nvmeq)
1371 		return;
1372 	if (nvme_suspend_queue(nvmeq))
1373 		return;
1374 
1375 	/* Don't tell the adapter to delete the admin queue.
1376 	 * Don't tell a removed adapter to delete IO queues. */
1377 	if (qid && readl(&dev->bar->csts) != -1) {
1378 		adapter_delete_sq(dev, qid);
1379 		adapter_delete_cq(dev, qid);
1380 	}
1381 
1382 	spin_lock_irq(&nvmeq->q_lock);
1383 	nvme_process_cq(nvmeq);
1384 	spin_unlock_irq(&nvmeq->q_lock);
1385 }
1386 
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1387 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1388 							int depth)
1389 {
1390 	struct device *dmadev = &dev->pci_dev->dev;
1391 	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1392 	if (!nvmeq)
1393 		return NULL;
1394 
1395 	nvmeq->cqes = dma_zalloc_coherent(dmadev, CQ_SIZE(depth),
1396 					  &nvmeq->cq_dma_addr, GFP_KERNEL);
1397 	if (!nvmeq->cqes)
1398 		goto free_nvmeq;
1399 
1400 	nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1401 					&nvmeq->sq_dma_addr, GFP_KERNEL);
1402 	if (!nvmeq->sq_cmds)
1403 		goto free_cqdma;
1404 
1405 	nvmeq->q_dmadev = dmadev;
1406 	nvmeq->dev = dev;
1407 	snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1408 			dev->instance, qid);
1409 	spin_lock_init(&nvmeq->q_lock);
1410 	nvmeq->cq_head = 0;
1411 	nvmeq->cq_phase = 1;
1412 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1413 	nvmeq->q_depth = depth;
1414 	nvmeq->qid = qid;
1415 	dev->queue_count++;
1416 	dev->queues[qid] = nvmeq;
1417 
1418 	return nvmeq;
1419 
1420  free_cqdma:
1421 	dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1422 							nvmeq->cq_dma_addr);
1423  free_nvmeq:
1424 	kfree(nvmeq);
1425 	return NULL;
1426 }
1427 
queue_request_irq(struct nvme_dev * dev,struct nvme_queue * nvmeq,const char * name)1428 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1429 							const char *name)
1430 {
1431 	if (use_threaded_interrupts)
1432 		return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1433 					nvme_irq_check, nvme_irq, IRQF_SHARED,
1434 					name, nvmeq);
1435 	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1436 				IRQF_SHARED, name, nvmeq);
1437 }
1438 
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1439 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1440 {
1441 	struct nvme_dev *dev = nvmeq->dev;
1442 
1443 	spin_lock_irq(&nvmeq->q_lock);
1444 	nvmeq->sq_tail = 0;
1445 	nvmeq->cq_head = 0;
1446 	nvmeq->cq_phase = 1;
1447 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1448 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1449 	dev->online_queues++;
1450 	spin_unlock_irq(&nvmeq->q_lock);
1451 }
1452 
nvme_create_queue(struct nvme_queue * nvmeq,int qid)1453 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1454 {
1455 	struct nvme_dev *dev = nvmeq->dev;
1456 	int result;
1457 
1458 	nvmeq->cq_vector = qid - 1;
1459 	result = adapter_alloc_cq(dev, qid, nvmeq);
1460 	if (result < 0)
1461 		return result;
1462 
1463 	result = adapter_alloc_sq(dev, qid, nvmeq);
1464 	if (result < 0)
1465 		goto release_cq;
1466 
1467 	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1468 	if (result < 0)
1469 		goto release_sq;
1470 
1471 	nvme_init_queue(nvmeq, qid);
1472 	return result;
1473 
1474  release_sq:
1475 	adapter_delete_sq(dev, qid);
1476  release_cq:
1477 	adapter_delete_cq(dev, qid);
1478 	return result;
1479 }
1480 
nvme_wait_ready(struct nvme_dev * dev,u64 cap,bool enabled)1481 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1482 {
1483 	unsigned long timeout;
1484 	u32 bit = enabled ? NVME_CSTS_RDY : 0;
1485 
1486 	timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1487 
1488 	while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1489 		msleep(100);
1490 		if (fatal_signal_pending(current))
1491 			return -EINTR;
1492 		if (time_after(jiffies, timeout)) {
1493 			dev_err(&dev->pci_dev->dev,
1494 				"Device not ready; aborting %s\n", enabled ?
1495 						"initialisation" : "reset");
1496 			return -ENODEV;
1497 		}
1498 	}
1499 
1500 	return 0;
1501 }
1502 
1503 /*
1504  * If the device has been passed off to us in an enabled state, just clear
1505  * the enabled bit.  The spec says we should set the 'shutdown notification
1506  * bits', but doing so may cause the device to complete commands to the
1507  * admin queue ... and we don't know what memory that might be pointing at!
1508  */
nvme_disable_ctrl(struct nvme_dev * dev,u64 cap)1509 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1510 {
1511 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1512 	dev->ctrl_config &= ~NVME_CC_ENABLE;
1513 	writel(dev->ctrl_config, &dev->bar->cc);
1514 
1515 	return nvme_wait_ready(dev, cap, false);
1516 }
1517 
nvme_enable_ctrl(struct nvme_dev * dev,u64 cap)1518 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1519 {
1520 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1521 	dev->ctrl_config |= NVME_CC_ENABLE;
1522 	writel(dev->ctrl_config, &dev->bar->cc);
1523 
1524 	return nvme_wait_ready(dev, cap, true);
1525 }
1526 
nvme_shutdown_ctrl(struct nvme_dev * dev)1527 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1528 {
1529 	unsigned long timeout;
1530 
1531 	dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1532 	dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1533 
1534 	writel(dev->ctrl_config, &dev->bar->cc);
1535 
1536 	timeout = SHUTDOWN_TIMEOUT + jiffies;
1537 	while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1538 							NVME_CSTS_SHST_CMPLT) {
1539 		msleep(100);
1540 		if (fatal_signal_pending(current))
1541 			return -EINTR;
1542 		if (time_after(jiffies, timeout)) {
1543 			dev_err(&dev->pci_dev->dev,
1544 				"Device shutdown incomplete; abort shutdown\n");
1545 			return -ENODEV;
1546 		}
1547 	}
1548 
1549 	return 0;
1550 }
1551 
1552 static struct blk_mq_ops nvme_mq_admin_ops = {
1553 	.queue_rq	= nvme_admin_queue_rq,
1554 	.map_queue	= blk_mq_map_queue,
1555 	.init_hctx	= nvme_admin_init_hctx,
1556 	.exit_hctx	= nvme_exit_hctx,
1557 	.init_request	= nvme_admin_init_request,
1558 	.timeout	= nvme_timeout,
1559 };
1560 
1561 static struct blk_mq_ops nvme_mq_ops = {
1562 	.queue_rq	= nvme_queue_rq,
1563 	.map_queue	= blk_mq_map_queue,
1564 	.init_hctx	= nvme_init_hctx,
1565 	.exit_hctx	= nvme_exit_hctx,
1566 	.init_request	= nvme_init_request,
1567 	.timeout	= nvme_timeout,
1568 };
1569 
nvme_dev_remove_admin(struct nvme_dev * dev)1570 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1571 {
1572 	if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1573 		blk_cleanup_queue(dev->admin_q);
1574 		blk_mq_free_tag_set(&dev->admin_tagset);
1575 	}
1576 }
1577 
nvme_alloc_admin_tags(struct nvme_dev * dev)1578 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1579 {
1580 	if (!dev->admin_q) {
1581 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1582 		dev->admin_tagset.nr_hw_queues = 1;
1583 		dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1584 		dev->admin_tagset.reserved_tags = 1;
1585 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1586 		dev->admin_tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
1587 		dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1588 		dev->admin_tagset.driver_data = dev;
1589 
1590 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1591 			return -ENOMEM;
1592 
1593 		dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1594 		if (IS_ERR(dev->admin_q)) {
1595 			blk_mq_free_tag_set(&dev->admin_tagset);
1596 			return -ENOMEM;
1597 		}
1598 		if (!blk_get_queue(dev->admin_q)) {
1599 			nvme_dev_remove_admin(dev);
1600 			return -ENODEV;
1601 		}
1602 	} else
1603 		blk_mq_unfreeze_queue(dev->admin_q);
1604 
1605 	return 0;
1606 }
1607 
nvme_configure_admin_queue(struct nvme_dev * dev)1608 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1609 {
1610 	int result;
1611 	u32 aqa;
1612 	u64 cap = readq(&dev->bar->cap);
1613 	struct nvme_queue *nvmeq;
1614 	unsigned page_shift = PAGE_SHIFT;
1615 	unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1616 	unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1617 
1618 	if (page_shift < dev_page_min) {
1619 		dev_err(&dev->pci_dev->dev,
1620 				"Minimum device page size (%u) too large for "
1621 				"host (%u)\n", 1 << dev_page_min,
1622 				1 << page_shift);
1623 		return -ENODEV;
1624 	}
1625 	if (page_shift > dev_page_max) {
1626 		dev_info(&dev->pci_dev->dev,
1627 				"Device maximum page size (%u) smaller than "
1628 				"host (%u); enabling work-around\n",
1629 				1 << dev_page_max, 1 << page_shift);
1630 		page_shift = dev_page_max;
1631 	}
1632 
1633 	result = nvme_disable_ctrl(dev, cap);
1634 	if (result < 0)
1635 		return result;
1636 
1637 	nvmeq = dev->queues[0];
1638 	if (!nvmeq) {
1639 		nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1640 		if (!nvmeq)
1641 			return -ENOMEM;
1642 	}
1643 
1644 	aqa = nvmeq->q_depth - 1;
1645 	aqa |= aqa << 16;
1646 
1647 	dev->page_size = 1 << page_shift;
1648 
1649 	dev->ctrl_config = NVME_CC_CSS_NVM;
1650 	dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1651 	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1652 	dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1653 
1654 	writel(aqa, &dev->bar->aqa);
1655 	writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1656 	writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1657 
1658 	result = nvme_enable_ctrl(dev, cap);
1659 	if (result)
1660 		goto free_nvmeq;
1661 
1662 	nvmeq->cq_vector = 0;
1663 	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1664 	if (result)
1665 		goto free_nvmeq;
1666 
1667 	return result;
1668 
1669  free_nvmeq:
1670 	nvme_free_queues(dev, 0);
1671 	return result;
1672 }
1673 
nvme_map_user_pages(struct nvme_dev * dev,int write,unsigned long addr,unsigned length)1674 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1675 				unsigned long addr, unsigned length)
1676 {
1677 	int i, err, count, nents, offset;
1678 	struct scatterlist *sg;
1679 	struct page **pages;
1680 	struct nvme_iod *iod;
1681 
1682 	if (addr & 3)
1683 		return ERR_PTR(-EINVAL);
1684 	if (!length || length > INT_MAX - PAGE_SIZE)
1685 		return ERR_PTR(-EINVAL);
1686 
1687 	offset = offset_in_page(addr);
1688 	count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1689 	pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1690 	if (!pages)
1691 		return ERR_PTR(-ENOMEM);
1692 
1693 	err = get_user_pages_fast(addr, count, 1, pages);
1694 	if (err < count) {
1695 		count = err;
1696 		err = -EFAULT;
1697 		goto put_pages;
1698 	}
1699 
1700 	err = -ENOMEM;
1701 	iod = __nvme_alloc_iod(count, length, dev, 0, GFP_KERNEL);
1702 	if (!iod)
1703 		goto put_pages;
1704 
1705 	sg = iod->sg;
1706 	sg_init_table(sg, count);
1707 	for (i = 0; i < count; i++) {
1708 		sg_set_page(&sg[i], pages[i],
1709 			    min_t(unsigned, length, PAGE_SIZE - offset),
1710 			    offset);
1711 		length -= (PAGE_SIZE - offset);
1712 		offset = 0;
1713 	}
1714 	sg_mark_end(&sg[i - 1]);
1715 	iod->nents = count;
1716 
1717 	nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1718 				write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1719 	if (!nents)
1720 		goto free_iod;
1721 
1722 	kfree(pages);
1723 	return iod;
1724 
1725  free_iod:
1726 	kfree(iod);
1727  put_pages:
1728 	for (i = 0; i < count; i++)
1729 		put_page(pages[i]);
1730 	kfree(pages);
1731 	return ERR_PTR(err);
1732 }
1733 
nvme_unmap_user_pages(struct nvme_dev * dev,int write,struct nvme_iod * iod)1734 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1735 			struct nvme_iod *iod)
1736 {
1737 	int i;
1738 
1739 	dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1740 				write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1741 
1742 	for (i = 0; i < iod->nents; i++)
1743 		put_page(sg_page(&iod->sg[i]));
1744 }
1745 
nvme_submit_io(struct nvme_ns * ns,struct nvme_user_io __user * uio)1746 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1747 {
1748 	struct nvme_dev *dev = ns->dev;
1749 	struct nvme_user_io io;
1750 	struct nvme_command c;
1751 	unsigned length, meta_len, prp_len;
1752 	int status, write;
1753 	struct nvme_iod *iod;
1754 	dma_addr_t meta_dma = 0;
1755 	void *meta = NULL;
1756 	void __user *metadata;
1757 
1758 	if (copy_from_user(&io, uio, sizeof(io)))
1759 		return -EFAULT;
1760 	length = (io.nblocks + 1) << ns->lba_shift;
1761 	meta_len = (io.nblocks + 1) * ns->ms;
1762 
1763 	if (meta_len && ((io.metadata & 3) || !io.metadata) && !ns->ext)
1764 		return -EINVAL;
1765 	else if (meta_len && ns->ext) {
1766 		length += meta_len;
1767 		meta_len = 0;
1768 	}
1769 
1770 	metadata = (void __user *)(unsigned long)io.metadata;
1771 
1772 	write = io.opcode & 1;
1773 
1774 	switch (io.opcode) {
1775 	case nvme_cmd_write:
1776 	case nvme_cmd_read:
1777 	case nvme_cmd_compare:
1778 		iod = nvme_map_user_pages(dev, write, io.addr, length);
1779 		break;
1780 	default:
1781 		return -EINVAL;
1782 	}
1783 
1784 	if (IS_ERR(iod))
1785 		return PTR_ERR(iod);
1786 
1787 	prp_len = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1788 	if (length != prp_len) {
1789 		status = -ENOMEM;
1790 		goto unmap;
1791 	}
1792 	if (meta_len) {
1793 		meta = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1794 						&meta_dma, GFP_KERNEL);
1795 
1796 		if (!meta) {
1797 			status = -ENOMEM;
1798 			goto unmap;
1799 		}
1800 		if (write) {
1801 			if (copy_from_user(meta, metadata, meta_len)) {
1802 				status = -EFAULT;
1803 				goto unmap;
1804 			}
1805 		}
1806 	}
1807 
1808 	memset(&c, 0, sizeof(c));
1809 	c.rw.opcode = io.opcode;
1810 	c.rw.flags = io.flags;
1811 	c.rw.nsid = cpu_to_le32(ns->ns_id);
1812 	c.rw.slba = cpu_to_le64(io.slba);
1813 	c.rw.length = cpu_to_le16(io.nblocks);
1814 	c.rw.control = cpu_to_le16(io.control);
1815 	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1816 	c.rw.reftag = cpu_to_le32(io.reftag);
1817 	c.rw.apptag = cpu_to_le16(io.apptag);
1818 	c.rw.appmask = cpu_to_le16(io.appmask);
1819 	c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1820 	c.rw.prp2 = cpu_to_le64(iod->first_dma);
1821 	c.rw.metadata = cpu_to_le64(meta_dma);
1822 	status = nvme_submit_io_cmd(dev, ns, &c, NULL);
1823  unmap:
1824 	nvme_unmap_user_pages(dev, write, iod);
1825 	nvme_free_iod(dev, iod);
1826 	if (meta) {
1827 		if (status == NVME_SC_SUCCESS && !write) {
1828 			if (copy_to_user(metadata, meta, meta_len))
1829 				status = -EFAULT;
1830 		}
1831 		dma_free_coherent(&dev->pci_dev->dev, meta_len, meta, meta_dma);
1832 	}
1833 	return status;
1834 }
1835 
nvme_user_cmd(struct nvme_dev * dev,struct nvme_ns * ns,struct nvme_passthru_cmd __user * ucmd)1836 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1837 			struct nvme_passthru_cmd __user *ucmd)
1838 {
1839 	struct nvme_passthru_cmd cmd;
1840 	struct nvme_command c;
1841 	int status, length;
1842 	struct nvme_iod *uninitialized_var(iod);
1843 	unsigned timeout;
1844 
1845 	if (!capable(CAP_SYS_ADMIN))
1846 		return -EACCES;
1847 	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1848 		return -EFAULT;
1849 
1850 	memset(&c, 0, sizeof(c));
1851 	c.common.opcode = cmd.opcode;
1852 	c.common.flags = cmd.flags;
1853 	c.common.nsid = cpu_to_le32(cmd.nsid);
1854 	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1855 	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1856 	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1857 	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1858 	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1859 	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1860 	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1861 	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1862 
1863 	length = cmd.data_len;
1864 	if (cmd.data_len) {
1865 		iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1866 								length);
1867 		if (IS_ERR(iod))
1868 			return PTR_ERR(iod);
1869 		length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1870 		c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1871 		c.common.prp2 = cpu_to_le64(iod->first_dma);
1872 	}
1873 
1874 	timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1875 								ADMIN_TIMEOUT;
1876 
1877 	if (length != cmd.data_len)
1878 		status = -ENOMEM;
1879 	else if (ns) {
1880 		struct request *req;
1881 
1882 		req = blk_mq_alloc_request(ns->queue, WRITE,
1883 						(GFP_KERNEL|__GFP_WAIT), false);
1884 		if (IS_ERR(req))
1885 			status = PTR_ERR(req);
1886 		else {
1887 			status = nvme_submit_sync_cmd(req, &c, &cmd.result,
1888 								timeout);
1889 			blk_mq_free_request(req);
1890 		}
1891 	} else
1892 		status = __nvme_submit_admin_cmd(dev, &c, &cmd.result, timeout);
1893 
1894 	if (cmd.data_len) {
1895 		nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1896 		nvme_free_iod(dev, iod);
1897 	}
1898 
1899 	if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1900 							sizeof(cmd.result)))
1901 		status = -EFAULT;
1902 
1903 	return status;
1904 }
1905 
nvme_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1906 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1907 							unsigned long arg)
1908 {
1909 	struct nvme_ns *ns = bdev->bd_disk->private_data;
1910 
1911 	switch (cmd) {
1912 	case NVME_IOCTL_ID:
1913 		force_successful_syscall_return();
1914 		return ns->ns_id;
1915 	case NVME_IOCTL_ADMIN_CMD:
1916 		return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1917 	case NVME_IOCTL_IO_CMD:
1918 		return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1919 	case NVME_IOCTL_SUBMIT_IO:
1920 		return nvme_submit_io(ns, (void __user *)arg);
1921 	case SG_GET_VERSION_NUM:
1922 		return nvme_sg_get_version_num((void __user *)arg);
1923 	case SG_IO:
1924 		return nvme_sg_io(ns, (void __user *)arg);
1925 	default:
1926 		return -ENOTTY;
1927 	}
1928 }
1929 
1930 #ifdef CONFIG_COMPAT
nvme_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1931 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1932 					unsigned int cmd, unsigned long arg)
1933 {
1934 	switch (cmd) {
1935 	case SG_IO:
1936 		return -ENOIOCTLCMD;
1937 	}
1938 	return nvme_ioctl(bdev, mode, cmd, arg);
1939 }
1940 #else
1941 #define nvme_compat_ioctl	NULL
1942 #endif
1943 
nvme_open(struct block_device * bdev,fmode_t mode)1944 static int nvme_open(struct block_device *bdev, fmode_t mode)
1945 {
1946 	int ret = 0;
1947 	struct nvme_ns *ns;
1948 
1949 	spin_lock(&dev_list_lock);
1950 	ns = bdev->bd_disk->private_data;
1951 	if (!ns)
1952 		ret = -ENXIO;
1953 	else if (!kref_get_unless_zero(&ns->dev->kref))
1954 		ret = -ENXIO;
1955 	spin_unlock(&dev_list_lock);
1956 
1957 	return ret;
1958 }
1959 
1960 static void nvme_free_dev(struct kref *kref);
1961 
nvme_release(struct gendisk * disk,fmode_t mode)1962 static void nvme_release(struct gendisk *disk, fmode_t mode)
1963 {
1964 	struct nvme_ns *ns = disk->private_data;
1965 	struct nvme_dev *dev = ns->dev;
1966 
1967 	kref_put(&dev->kref, nvme_free_dev);
1968 }
1969 
nvme_getgeo(struct block_device * bd,struct hd_geometry * geo)1970 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1971 {
1972 	/* some standard values */
1973 	geo->heads = 1 << 6;
1974 	geo->sectors = 1 << 5;
1975 	geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1976 	return 0;
1977 }
1978 
nvme_config_discard(struct nvme_ns * ns)1979 static void nvme_config_discard(struct nvme_ns *ns)
1980 {
1981 	u32 logical_block_size = queue_logical_block_size(ns->queue);
1982 	ns->queue->limits.discard_zeroes_data = 0;
1983 	ns->queue->limits.discard_alignment = logical_block_size;
1984 	ns->queue->limits.discard_granularity = logical_block_size;
1985 	ns->queue->limits.max_discard_sectors = 0xffffffff;
1986 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1987 }
1988 
nvme_revalidate_disk(struct gendisk * disk)1989 static int nvme_revalidate_disk(struct gendisk *disk)
1990 {
1991 	struct nvme_ns *ns = disk->private_data;
1992 	struct nvme_dev *dev = ns->dev;
1993 	struct nvme_id_ns *id;
1994 	dma_addr_t dma_addr;
1995 	u8 lbaf, pi_type;
1996 	u16 old_ms;
1997 	unsigned short bs;
1998 
1999 	id = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
2000 								GFP_KERNEL);
2001 	if (!id) {
2002 		dev_warn(&dev->pci_dev->dev, "%s: Memory alocation failure\n",
2003 								__func__);
2004 		return 0;
2005 	}
2006 	if (nvme_identify(dev, ns->ns_id, 0, dma_addr)) {
2007 		dev_warn(&dev->pci_dev->dev,
2008 			"identify failed ns:%d, setting capacity to 0\n",
2009 			ns->ns_id);
2010 		memset(id, 0, sizeof(*id));
2011 	}
2012 
2013 	old_ms = ns->ms;
2014 	lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2015 	ns->lba_shift = id->lbaf[lbaf].ds;
2016 	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2017 	ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
2018 
2019 	/*
2020 	 * If identify namespace failed, use default 512 byte block size so
2021 	 * block layer can use before failing read/write for 0 capacity.
2022 	 */
2023 	if (ns->lba_shift == 0)
2024 		ns->lba_shift = 9;
2025 	bs = 1 << ns->lba_shift;
2026 
2027 	/* XXX: PI implementation requires metadata equal t10 pi tuple size */
2028 	pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2029 					id->dps & NVME_NS_DPS_PI_MASK : 0;
2030 
2031 	if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
2032 				ns->ms != old_ms ||
2033 				bs != queue_logical_block_size(disk->queue) ||
2034 				(ns->ms && ns->ext)))
2035 		blk_integrity_unregister(disk);
2036 
2037 	ns->pi_type = pi_type;
2038 	blk_queue_logical_block_size(ns->queue, bs);
2039 
2040 	if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
2041 								!ns->ext)
2042 		nvme_init_integrity(ns);
2043 
2044 	if (id->ncap == 0 || (ns->ms && !blk_get_integrity(disk)))
2045 		set_capacity(disk, 0);
2046 	else
2047 		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2048 
2049 	if (dev->oncs & NVME_CTRL_ONCS_DSM)
2050 		nvme_config_discard(ns);
2051 
2052 	dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
2053 	return 0;
2054 }
2055 
2056 static const struct block_device_operations nvme_fops = {
2057 	.owner		= THIS_MODULE,
2058 	.ioctl		= nvme_ioctl,
2059 	.compat_ioctl	= nvme_compat_ioctl,
2060 	.open		= nvme_open,
2061 	.release	= nvme_release,
2062 	.getgeo		= nvme_getgeo,
2063 	.revalidate_disk= nvme_revalidate_disk,
2064 };
2065 
nvme_kthread(void * data)2066 static int nvme_kthread(void *data)
2067 {
2068 	struct nvme_dev *dev, *next;
2069 
2070 	while (!kthread_should_stop()) {
2071 		set_current_state(TASK_INTERRUPTIBLE);
2072 		spin_lock(&dev_list_lock);
2073 		list_for_each_entry_safe(dev, next, &dev_list, node) {
2074 			int i;
2075 			if (readl(&dev->bar->csts) & NVME_CSTS_CFS) {
2076 				if (work_busy(&dev->reset_work))
2077 					continue;
2078 				list_del_init(&dev->node);
2079 				dev_warn(&dev->pci_dev->dev,
2080 					"Failed status: %x, reset controller\n",
2081 					readl(&dev->bar->csts));
2082 				dev->reset_workfn = nvme_reset_failed_dev;
2083 				queue_work(nvme_workq, &dev->reset_work);
2084 				continue;
2085 			}
2086 			for (i = 0; i < dev->queue_count; i++) {
2087 				struct nvme_queue *nvmeq = dev->queues[i];
2088 				if (!nvmeq)
2089 					continue;
2090 				spin_lock_irq(&nvmeq->q_lock);
2091 				nvme_process_cq(nvmeq);
2092 
2093 				while ((i == 0) && (dev->event_limit > 0)) {
2094 					if (nvme_submit_async_admin_req(dev))
2095 						break;
2096 					dev->event_limit--;
2097 				}
2098 				spin_unlock_irq(&nvmeq->q_lock);
2099 			}
2100 		}
2101 		spin_unlock(&dev_list_lock);
2102 		schedule_timeout(round_jiffies_relative(HZ));
2103 	}
2104 	return 0;
2105 }
2106 
nvme_alloc_ns(struct nvme_dev * dev,unsigned nsid)2107 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2108 {
2109 	struct nvme_ns *ns;
2110 	struct gendisk *disk;
2111 	int node = dev_to_node(&dev->pci_dev->dev);
2112 
2113 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2114 	if (!ns)
2115 		return;
2116 
2117 	ns->queue = blk_mq_init_queue(&dev->tagset);
2118 	if (IS_ERR(ns->queue))
2119 		goto out_free_ns;
2120 	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2121 	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2122 	queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
2123 	ns->dev = dev;
2124 	ns->queue->queuedata = ns;
2125 
2126 	disk = alloc_disk_node(0, node);
2127 	if (!disk)
2128 		goto out_free_queue;
2129 
2130 	ns->ns_id = nsid;
2131 	ns->disk = disk;
2132 	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2133 	list_add_tail(&ns->list, &dev->namespaces);
2134 
2135 	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2136 	if (dev->max_hw_sectors)
2137 		blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2138 	if (dev->stripe_size)
2139 		blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2140 	if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2141 		blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2142 
2143 	disk->major = nvme_major;
2144 	disk->first_minor = 0;
2145 	disk->fops = &nvme_fops;
2146 	disk->private_data = ns;
2147 	disk->queue = ns->queue;
2148 	disk->driverfs_dev = dev->device;
2149 	disk->flags = GENHD_FL_EXT_DEVT;
2150 	sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2151 
2152 	/*
2153 	 * Initialize capacity to 0 until we establish the namespace format and
2154 	 * setup integrity extentions if necessary. The revalidate_disk after
2155 	 * add_disk allows the driver to register with integrity if the format
2156 	 * requires it.
2157 	 */
2158 	set_capacity(disk, 0);
2159 	nvme_revalidate_disk(ns->disk);
2160 	add_disk(ns->disk);
2161 	if (ns->ms)
2162 		revalidate_disk(ns->disk);
2163 	return;
2164  out_free_queue:
2165 	blk_cleanup_queue(ns->queue);
2166  out_free_ns:
2167 	kfree(ns);
2168 }
2169 
nvme_create_io_queues(struct nvme_dev * dev)2170 static void nvme_create_io_queues(struct nvme_dev *dev)
2171 {
2172 	unsigned i;
2173 
2174 	for (i = dev->queue_count; i <= dev->max_qid; i++)
2175 		if (!nvme_alloc_queue(dev, i, dev->q_depth))
2176 			break;
2177 
2178 	for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2179 		if (nvme_create_queue(dev->queues[i], i))
2180 			break;
2181 }
2182 
set_queue_count(struct nvme_dev * dev,int count)2183 static int set_queue_count(struct nvme_dev *dev, int count)
2184 {
2185 	int status;
2186 	u32 result;
2187 	u32 q_count = (count - 1) | ((count - 1) << 16);
2188 
2189 	status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2190 								&result);
2191 	if (status < 0)
2192 		return status;
2193 	if (status > 0) {
2194 		dev_err(&dev->pci_dev->dev, "Could not set queue count (%d)\n",
2195 									status);
2196 		return 0;
2197 	}
2198 	return min(result & 0xffff, result >> 16) + 1;
2199 }
2200 
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)2201 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2202 {
2203 	return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2204 }
2205 
nvme_setup_io_queues(struct nvme_dev * dev)2206 static int nvme_setup_io_queues(struct nvme_dev *dev)
2207 {
2208 	struct nvme_queue *adminq = dev->queues[0];
2209 	struct pci_dev *pdev = dev->pci_dev;
2210 	int result, i, vecs, nr_io_queues, size;
2211 
2212 	nr_io_queues = num_possible_cpus();
2213 	result = set_queue_count(dev, nr_io_queues);
2214 	if (result <= 0)
2215 		return result;
2216 	if (result < nr_io_queues)
2217 		nr_io_queues = result;
2218 
2219 	size = db_bar_size(dev, nr_io_queues);
2220 	if (size > 8192) {
2221 		iounmap(dev->bar);
2222 		do {
2223 			dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2224 			if (dev->bar)
2225 				break;
2226 			if (!--nr_io_queues)
2227 				return -ENOMEM;
2228 			size = db_bar_size(dev, nr_io_queues);
2229 		} while (1);
2230 		dev->dbs = ((void __iomem *)dev->bar) + 4096;
2231 		adminq->q_db = dev->dbs;
2232 	}
2233 
2234 	/* Deregister the admin queue's interrupt */
2235 	free_irq(dev->entry[0].vector, adminq);
2236 
2237 	/*
2238 	 * If we enable msix early due to not intx, disable it again before
2239 	 * setting up the full range we need.
2240 	 */
2241 	if (!pdev->irq)
2242 		pci_disable_msix(pdev);
2243 
2244 	for (i = 0; i < nr_io_queues; i++)
2245 		dev->entry[i].entry = i;
2246 	vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2247 	if (vecs < 0) {
2248 		vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2249 		if (vecs < 0) {
2250 			vecs = 1;
2251 		} else {
2252 			for (i = 0; i < vecs; i++)
2253 				dev->entry[i].vector = i + pdev->irq;
2254 		}
2255 	}
2256 
2257 	/*
2258 	 * Should investigate if there's a performance win from allocating
2259 	 * more queues than interrupt vectors; it might allow the submission
2260 	 * path to scale better, even if the receive path is limited by the
2261 	 * number of interrupts.
2262 	 */
2263 	nr_io_queues = vecs;
2264 	dev->max_qid = nr_io_queues;
2265 
2266 	result = queue_request_irq(dev, adminq, adminq->irqname);
2267 	if (result)
2268 		goto free_queues;
2269 
2270 	/* Free previously allocated queues that are no longer usable */
2271 	nvme_free_queues(dev, nr_io_queues + 1);
2272 	nvme_create_io_queues(dev);
2273 
2274 	return 0;
2275 
2276  free_queues:
2277 	nvme_free_queues(dev, 1);
2278 	return result;
2279 }
2280 
2281 /*
2282  * Return: error value if an error occurred setting up the queues or calling
2283  * Identify Device.  0 if these succeeded, even if adding some of the
2284  * namespaces failed.  At the moment, these failures are silent.  TBD which
2285  * failures should be reported.
2286  */
nvme_dev_add(struct nvme_dev * dev)2287 static int nvme_dev_add(struct nvme_dev *dev)
2288 {
2289 	struct pci_dev *pdev = dev->pci_dev;
2290 	int res;
2291 	unsigned nn, i;
2292 	struct nvme_id_ctrl *ctrl;
2293 	void *mem;
2294 	dma_addr_t dma_addr;
2295 	int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2296 
2297 	mem = dma_alloc_coherent(&pdev->dev, 4096, &dma_addr, GFP_KERNEL);
2298 	if (!mem)
2299 		return -ENOMEM;
2300 
2301 	res = nvme_identify(dev, 0, 1, dma_addr);
2302 	if (res) {
2303 		dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
2304 		dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
2305 		return -EIO;
2306 	}
2307 
2308 	ctrl = mem;
2309 	nn = le32_to_cpup(&ctrl->nn);
2310 	dev->oncs = le16_to_cpup(&ctrl->oncs);
2311 	dev->abort_limit = ctrl->acl + 1;
2312 	dev->vwc = ctrl->vwc;
2313 	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2314 	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2315 	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2316 	if (ctrl->mdts)
2317 		dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2318 	if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2319 			(pdev->device == 0x0953) && ctrl->vs[3]) {
2320 		unsigned int max_hw_sectors;
2321 
2322 		dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2323 		max_hw_sectors = dev->stripe_size >> (shift - 9);
2324 		if (dev->max_hw_sectors) {
2325 			dev->max_hw_sectors = min(max_hw_sectors,
2326 							dev->max_hw_sectors);
2327 		} else
2328 			dev->max_hw_sectors = max_hw_sectors;
2329 	}
2330 	dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
2331 
2332 	dev->tagset.ops = &nvme_mq_ops;
2333 	dev->tagset.nr_hw_queues = dev->online_queues - 1;
2334 	dev->tagset.timeout = NVME_IO_TIMEOUT;
2335 	dev->tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
2336 	dev->tagset.queue_depth =
2337 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2338 	dev->tagset.cmd_size = nvme_cmd_size(dev);
2339 	dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2340 	dev->tagset.driver_data = dev;
2341 
2342 	if (blk_mq_alloc_tag_set(&dev->tagset))
2343 		return 0;
2344 
2345 	for (i = 1; i <= nn; i++)
2346 		nvme_alloc_ns(dev, i);
2347 
2348 	return 0;
2349 }
2350 
nvme_dev_map(struct nvme_dev * dev)2351 static int nvme_dev_map(struct nvme_dev *dev)
2352 {
2353 	u64 cap;
2354 	int bars, result = -ENOMEM;
2355 	struct pci_dev *pdev = dev->pci_dev;
2356 
2357 	if (pci_enable_device_mem(pdev))
2358 		return result;
2359 
2360 	dev->entry[0].vector = pdev->irq;
2361 	pci_set_master(pdev);
2362 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
2363 	if (!bars)
2364 		goto disable_pci;
2365 
2366 	if (pci_request_selected_regions(pdev, bars, "nvme"))
2367 		goto disable_pci;
2368 
2369 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2370 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2371 		goto disable;
2372 
2373 	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2374 	if (!dev->bar)
2375 		goto disable;
2376 
2377 	if (readl(&dev->bar->csts) == -1) {
2378 		result = -ENODEV;
2379 		goto unmap;
2380 	}
2381 
2382 	/*
2383 	 * Some devices don't advertse INTx interrupts, pre-enable a single
2384 	 * MSIX vec for setup. We'll adjust this later.
2385 	 */
2386 	if (!pdev->irq) {
2387 		result = pci_enable_msix(pdev, dev->entry, 1);
2388 		if (result < 0)
2389 			goto unmap;
2390 	}
2391 
2392 	cap = readq(&dev->bar->cap);
2393 	dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2394 	dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2395 	dev->dbs = ((void __iomem *)dev->bar) + 4096;
2396 
2397 	return 0;
2398 
2399  unmap:
2400 	iounmap(dev->bar);
2401 	dev->bar = NULL;
2402  disable:
2403 	pci_release_regions(pdev);
2404  disable_pci:
2405 	pci_disable_device(pdev);
2406 	return result;
2407 }
2408 
nvme_dev_unmap(struct nvme_dev * dev)2409 static void nvme_dev_unmap(struct nvme_dev *dev)
2410 {
2411 	if (dev->pci_dev->msi_enabled)
2412 		pci_disable_msi(dev->pci_dev);
2413 	else if (dev->pci_dev->msix_enabled)
2414 		pci_disable_msix(dev->pci_dev);
2415 
2416 	if (dev->bar) {
2417 		iounmap(dev->bar);
2418 		dev->bar = NULL;
2419 		pci_release_regions(dev->pci_dev);
2420 	}
2421 
2422 	if (pci_is_enabled(dev->pci_dev))
2423 		pci_disable_device(dev->pci_dev);
2424 }
2425 
2426 struct nvme_delq_ctx {
2427 	struct task_struct *waiter;
2428 	struct kthread_worker *worker;
2429 	atomic_t refcount;
2430 };
2431 
nvme_wait_dq(struct nvme_delq_ctx * dq,struct nvme_dev * dev)2432 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2433 {
2434 	dq->waiter = current;
2435 	mb();
2436 
2437 	for (;;) {
2438 		set_current_state(TASK_KILLABLE);
2439 		if (!atomic_read(&dq->refcount))
2440 			break;
2441 		if (!schedule_timeout(ADMIN_TIMEOUT) ||
2442 					fatal_signal_pending(current)) {
2443 			/*
2444 			 * Disable the controller first since we can't trust it
2445 			 * at this point, but leave the admin queue enabled
2446 			 * until all queue deletion requests are flushed.
2447 			 * FIXME: This may take a while if there are more h/w
2448 			 * queues than admin tags.
2449 			 */
2450 			set_current_state(TASK_RUNNING);
2451 			nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2452 			nvme_clear_queue(dev->queues[0]);
2453 			flush_kthread_worker(dq->worker);
2454 			nvme_disable_queue(dev, 0);
2455 			return;
2456 		}
2457 	}
2458 	set_current_state(TASK_RUNNING);
2459 }
2460 
nvme_put_dq(struct nvme_delq_ctx * dq)2461 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2462 {
2463 	atomic_dec(&dq->refcount);
2464 	if (dq->waiter)
2465 		wake_up_process(dq->waiter);
2466 }
2467 
nvme_get_dq(struct nvme_delq_ctx * dq)2468 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2469 {
2470 	atomic_inc(&dq->refcount);
2471 	return dq;
2472 }
2473 
nvme_del_queue_end(struct nvme_queue * nvmeq)2474 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2475 {
2476 	struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2477 	nvme_put_dq(dq);
2478 }
2479 
adapter_async_del_queue(struct nvme_queue * nvmeq,u8 opcode,kthread_work_func_t fn)2480 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2481 						kthread_work_func_t fn)
2482 {
2483 	struct nvme_command c;
2484 
2485 	memset(&c, 0, sizeof(c));
2486 	c.delete_queue.opcode = opcode;
2487 	c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2488 
2489 	init_kthread_work(&nvmeq->cmdinfo.work, fn);
2490 	return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2491 								ADMIN_TIMEOUT);
2492 }
2493 
nvme_del_cq_work_handler(struct kthread_work * work)2494 static void nvme_del_cq_work_handler(struct kthread_work *work)
2495 {
2496 	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2497 							cmdinfo.work);
2498 	nvme_del_queue_end(nvmeq);
2499 }
2500 
nvme_delete_cq(struct nvme_queue * nvmeq)2501 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2502 {
2503 	return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2504 						nvme_del_cq_work_handler);
2505 }
2506 
nvme_del_sq_work_handler(struct kthread_work * work)2507 static void nvme_del_sq_work_handler(struct kthread_work *work)
2508 {
2509 	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2510 							cmdinfo.work);
2511 	int status = nvmeq->cmdinfo.status;
2512 
2513 	if (!status)
2514 		status = nvme_delete_cq(nvmeq);
2515 	if (status)
2516 		nvme_del_queue_end(nvmeq);
2517 }
2518 
nvme_delete_sq(struct nvme_queue * nvmeq)2519 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2520 {
2521 	return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2522 						nvme_del_sq_work_handler);
2523 }
2524 
nvme_del_queue_start(struct kthread_work * work)2525 static void nvme_del_queue_start(struct kthread_work *work)
2526 {
2527 	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2528 							cmdinfo.work);
2529 	if (nvme_delete_sq(nvmeq))
2530 		nvme_del_queue_end(nvmeq);
2531 }
2532 
nvme_disable_io_queues(struct nvme_dev * dev)2533 static void nvme_disable_io_queues(struct nvme_dev *dev)
2534 {
2535 	int i;
2536 	DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2537 	struct nvme_delq_ctx dq;
2538 	struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2539 					&worker, "nvme%d", dev->instance);
2540 
2541 	if (IS_ERR(kworker_task)) {
2542 		dev_err(&dev->pci_dev->dev,
2543 			"Failed to create queue del task\n");
2544 		for (i = dev->queue_count - 1; i > 0; i--)
2545 			nvme_disable_queue(dev, i);
2546 		return;
2547 	}
2548 
2549 	dq.waiter = NULL;
2550 	atomic_set(&dq.refcount, 0);
2551 	dq.worker = &worker;
2552 	for (i = dev->queue_count - 1; i > 0; i--) {
2553 		struct nvme_queue *nvmeq = dev->queues[i];
2554 
2555 		if (nvme_suspend_queue(nvmeq))
2556 			continue;
2557 		nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2558 		nvmeq->cmdinfo.worker = dq.worker;
2559 		init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2560 		queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2561 	}
2562 	nvme_wait_dq(&dq, dev);
2563 	kthread_stop(kworker_task);
2564 }
2565 
2566 /*
2567 * Remove the node from the device list and check
2568 * for whether or not we need to stop the nvme_thread.
2569 */
nvme_dev_list_remove(struct nvme_dev * dev)2570 static void nvme_dev_list_remove(struct nvme_dev *dev)
2571 {
2572 	struct task_struct *tmp = NULL;
2573 
2574 	spin_lock(&dev_list_lock);
2575 	list_del_init(&dev->node);
2576 	if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2577 		tmp = nvme_thread;
2578 		nvme_thread = NULL;
2579 	}
2580 	spin_unlock(&dev_list_lock);
2581 
2582 	if (tmp)
2583 		kthread_stop(tmp);
2584 }
2585 
nvme_freeze_queues(struct nvme_dev * dev)2586 static void nvme_freeze_queues(struct nvme_dev *dev)
2587 {
2588 	struct nvme_ns *ns;
2589 
2590 	list_for_each_entry(ns, &dev->namespaces, list) {
2591 		blk_mq_freeze_queue_start(ns->queue);
2592 
2593 		spin_lock(ns->queue->queue_lock);
2594 		queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2595 		spin_unlock(ns->queue->queue_lock);
2596 
2597 		blk_mq_cancel_requeue_work(ns->queue);
2598 		blk_mq_stop_hw_queues(ns->queue);
2599 	}
2600 }
2601 
nvme_unfreeze_queues(struct nvme_dev * dev)2602 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2603 {
2604 	struct nvme_ns *ns;
2605 
2606 	list_for_each_entry(ns, &dev->namespaces, list) {
2607 		queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2608 		blk_mq_unfreeze_queue(ns->queue);
2609 		blk_mq_start_stopped_hw_queues(ns->queue, true);
2610 		blk_mq_kick_requeue_list(ns->queue);
2611 	}
2612 }
2613 
nvme_dev_shutdown(struct nvme_dev * dev)2614 static void nvme_dev_shutdown(struct nvme_dev *dev)
2615 {
2616 	int i;
2617 	u32 csts = -1;
2618 
2619 	nvme_dev_list_remove(dev);
2620 
2621 	if (dev->bar) {
2622 		nvme_freeze_queues(dev);
2623 		csts = readl(&dev->bar->csts);
2624 	}
2625 	if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2626 		for (i = dev->queue_count - 1; i >= 0; i--) {
2627 			struct nvme_queue *nvmeq = dev->queues[i];
2628 			nvme_suspend_queue(nvmeq);
2629 		}
2630 	} else {
2631 		nvme_disable_io_queues(dev);
2632 		nvme_shutdown_ctrl(dev);
2633 		nvme_disable_queue(dev, 0);
2634 	}
2635 	nvme_dev_unmap(dev);
2636 
2637 	for (i = dev->queue_count - 1; i >= 0; i--)
2638 		nvme_clear_queue(dev->queues[i]);
2639 }
2640 
nvme_dev_remove(struct nvme_dev * dev)2641 static void nvme_dev_remove(struct nvme_dev *dev)
2642 {
2643 	struct nvme_ns *ns;
2644 
2645 	list_for_each_entry(ns, &dev->namespaces, list) {
2646 		if (ns->disk->flags & GENHD_FL_UP) {
2647 			if (blk_get_integrity(ns->disk))
2648 				blk_integrity_unregister(ns->disk);
2649 			del_gendisk(ns->disk);
2650 		}
2651 		if (!blk_queue_dying(ns->queue)) {
2652 			blk_mq_abort_requeue_list(ns->queue);
2653 			blk_cleanup_queue(ns->queue);
2654 		}
2655 	}
2656 }
2657 
nvme_setup_prp_pools(struct nvme_dev * dev)2658 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2659 {
2660 	struct device *dmadev = &dev->pci_dev->dev;
2661 	dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2662 						PAGE_SIZE, PAGE_SIZE, 0);
2663 	if (!dev->prp_page_pool)
2664 		return -ENOMEM;
2665 
2666 	/* Optimisation for I/Os between 4k and 128k */
2667 	dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2668 						256, 256, 0);
2669 	if (!dev->prp_small_pool) {
2670 		dma_pool_destroy(dev->prp_page_pool);
2671 		return -ENOMEM;
2672 	}
2673 	return 0;
2674 }
2675 
nvme_release_prp_pools(struct nvme_dev * dev)2676 static void nvme_release_prp_pools(struct nvme_dev *dev)
2677 {
2678 	dma_pool_destroy(dev->prp_page_pool);
2679 	dma_pool_destroy(dev->prp_small_pool);
2680 }
2681 
2682 static DEFINE_IDA(nvme_instance_ida);
2683 
nvme_set_instance(struct nvme_dev * dev)2684 static int nvme_set_instance(struct nvme_dev *dev)
2685 {
2686 	int instance, error;
2687 
2688 	do {
2689 		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2690 			return -ENODEV;
2691 
2692 		spin_lock(&dev_list_lock);
2693 		error = ida_get_new(&nvme_instance_ida, &instance);
2694 		spin_unlock(&dev_list_lock);
2695 	} while (error == -EAGAIN);
2696 
2697 	if (error)
2698 		return -ENODEV;
2699 
2700 	dev->instance = instance;
2701 	return 0;
2702 }
2703 
nvme_release_instance(struct nvme_dev * dev)2704 static void nvme_release_instance(struct nvme_dev *dev)
2705 {
2706 	spin_lock(&dev_list_lock);
2707 	ida_remove(&nvme_instance_ida, dev->instance);
2708 	spin_unlock(&dev_list_lock);
2709 }
2710 
nvme_free_namespaces(struct nvme_dev * dev)2711 static void nvme_free_namespaces(struct nvme_dev *dev)
2712 {
2713 	struct nvme_ns *ns, *next;
2714 
2715 	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2716 		list_del(&ns->list);
2717 
2718 		spin_lock(&dev_list_lock);
2719 		ns->disk->private_data = NULL;
2720 		spin_unlock(&dev_list_lock);
2721 
2722 		put_disk(ns->disk);
2723 		kfree(ns);
2724 	}
2725 }
2726 
nvme_free_dev(struct kref * kref)2727 static void nvme_free_dev(struct kref *kref)
2728 {
2729 	struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2730 
2731 	pci_dev_put(dev->pci_dev);
2732 	put_device(dev->device);
2733 	nvme_free_namespaces(dev);
2734 	nvme_release_instance(dev);
2735 	blk_mq_free_tag_set(&dev->tagset);
2736 	blk_put_queue(dev->admin_q);
2737 	kfree(dev->queues);
2738 	kfree(dev->entry);
2739 	kfree(dev);
2740 }
2741 
nvme_dev_open(struct inode * inode,struct file * f)2742 static int nvme_dev_open(struct inode *inode, struct file *f)
2743 {
2744 	struct nvme_dev *dev;
2745 	int instance = iminor(inode);
2746 	int ret = -ENODEV;
2747 
2748 	spin_lock(&dev_list_lock);
2749 	list_for_each_entry(dev, &dev_list, node) {
2750 		if (dev->instance == instance) {
2751 			if (!dev->admin_q) {
2752 				ret = -EWOULDBLOCK;
2753 				break;
2754 			}
2755 			if (!kref_get_unless_zero(&dev->kref))
2756 				break;
2757 			f->private_data = dev;
2758 			ret = 0;
2759 			break;
2760 		}
2761 	}
2762 	spin_unlock(&dev_list_lock);
2763 
2764 	return ret;
2765 }
2766 
nvme_dev_release(struct inode * inode,struct file * f)2767 static int nvme_dev_release(struct inode *inode, struct file *f)
2768 {
2769 	struct nvme_dev *dev = f->private_data;
2770 	kref_put(&dev->kref, nvme_free_dev);
2771 	return 0;
2772 }
2773 
nvme_dev_ioctl(struct file * f,unsigned int cmd,unsigned long arg)2774 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2775 {
2776 	struct nvme_dev *dev = f->private_data;
2777 	struct nvme_ns *ns;
2778 
2779 	switch (cmd) {
2780 	case NVME_IOCTL_ADMIN_CMD:
2781 		return nvme_user_cmd(dev, NULL, (void __user *)arg);
2782 	case NVME_IOCTL_IO_CMD:
2783 		if (list_empty(&dev->namespaces))
2784 			return -ENOTTY;
2785 		ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2786 		return nvme_user_cmd(dev, ns, (void __user *)arg);
2787 	default:
2788 		return -ENOTTY;
2789 	}
2790 }
2791 
2792 static const struct file_operations nvme_dev_fops = {
2793 	.owner		= THIS_MODULE,
2794 	.open		= nvme_dev_open,
2795 	.release	= nvme_dev_release,
2796 	.unlocked_ioctl	= nvme_dev_ioctl,
2797 	.compat_ioctl	= nvme_dev_ioctl,
2798 };
2799 
nvme_set_irq_hints(struct nvme_dev * dev)2800 static void nvme_set_irq_hints(struct nvme_dev *dev)
2801 {
2802 	struct nvme_queue *nvmeq;
2803 	int i;
2804 
2805 	for (i = 0; i < dev->online_queues; i++) {
2806 		nvmeq = dev->queues[i];
2807 
2808 		if (!nvmeq->hctx)
2809 			continue;
2810 
2811 		irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2812 							nvmeq->hctx->cpumask);
2813 	}
2814 }
2815 
nvme_dev_start(struct nvme_dev * dev)2816 static int nvme_dev_start(struct nvme_dev *dev)
2817 {
2818 	int result;
2819 	bool start_thread = false;
2820 
2821 	result = nvme_dev_map(dev);
2822 	if (result)
2823 		return result;
2824 
2825 	result = nvme_configure_admin_queue(dev);
2826 	if (result)
2827 		goto unmap;
2828 
2829 	spin_lock(&dev_list_lock);
2830 	if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2831 		start_thread = true;
2832 		nvme_thread = NULL;
2833 	}
2834 	list_add(&dev->node, &dev_list);
2835 	spin_unlock(&dev_list_lock);
2836 
2837 	if (start_thread) {
2838 		nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2839 		wake_up_all(&nvme_kthread_wait);
2840 	} else
2841 		wait_event_killable(nvme_kthread_wait, nvme_thread);
2842 
2843 	if (IS_ERR_OR_NULL(nvme_thread)) {
2844 		result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2845 		goto disable;
2846 	}
2847 
2848 	nvme_init_queue(dev->queues[0], 0);
2849 	result = nvme_alloc_admin_tags(dev);
2850 	if (result)
2851 		goto disable;
2852 
2853 	result = nvme_setup_io_queues(dev);
2854 	if (result)
2855 		goto free_tags;
2856 
2857 	nvme_set_irq_hints(dev);
2858 
2859 	dev->event_limit = 1;
2860 	return result;
2861 
2862  free_tags:
2863 	nvme_dev_remove_admin(dev);
2864  disable:
2865 	nvme_disable_queue(dev, 0);
2866 	nvme_dev_list_remove(dev);
2867  unmap:
2868 	nvme_dev_unmap(dev);
2869 	return result;
2870 }
2871 
nvme_remove_dead_ctrl(void * arg)2872 static int nvme_remove_dead_ctrl(void *arg)
2873 {
2874 	struct nvme_dev *dev = (struct nvme_dev *)arg;
2875 	struct pci_dev *pdev = dev->pci_dev;
2876 
2877 	if (pci_get_drvdata(pdev))
2878 		pci_stop_and_remove_bus_device_locked(pdev);
2879 	kref_put(&dev->kref, nvme_free_dev);
2880 	return 0;
2881 }
2882 
nvme_remove_disks(struct work_struct * ws)2883 static void nvme_remove_disks(struct work_struct *ws)
2884 {
2885 	struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2886 
2887 	nvme_free_queues(dev, 1);
2888 	nvme_dev_remove(dev);
2889 }
2890 
nvme_dev_resume(struct nvme_dev * dev)2891 static int nvme_dev_resume(struct nvme_dev *dev)
2892 {
2893 	int ret;
2894 
2895 	ret = nvme_dev_start(dev);
2896 	if (ret)
2897 		return ret;
2898 	if (dev->online_queues < 2) {
2899 		spin_lock(&dev_list_lock);
2900 		dev->reset_workfn = nvme_remove_disks;
2901 		queue_work(nvme_workq, &dev->reset_work);
2902 		spin_unlock(&dev_list_lock);
2903 	} else {
2904 		nvme_unfreeze_queues(dev);
2905 		nvme_set_irq_hints(dev);
2906 	}
2907 	return 0;
2908 }
2909 
nvme_dev_reset(struct nvme_dev * dev)2910 static void nvme_dev_reset(struct nvme_dev *dev)
2911 {
2912 	nvme_dev_shutdown(dev);
2913 	if (nvme_dev_resume(dev)) {
2914 		dev_warn(&dev->pci_dev->dev, "Device failed to resume\n");
2915 		kref_get(&dev->kref);
2916 		if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2917 							dev->instance))) {
2918 			dev_err(&dev->pci_dev->dev,
2919 				"Failed to start controller remove task\n");
2920 			kref_put(&dev->kref, nvme_free_dev);
2921 		}
2922 	}
2923 }
2924 
nvme_reset_failed_dev(struct work_struct * ws)2925 static void nvme_reset_failed_dev(struct work_struct *ws)
2926 {
2927 	struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2928 	nvme_dev_reset(dev);
2929 }
2930 
nvme_reset_workfn(struct work_struct * work)2931 static void nvme_reset_workfn(struct work_struct *work)
2932 {
2933 	struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2934 	dev->reset_workfn(work);
2935 }
2936 
2937 static void nvme_async_probe(struct work_struct *work);
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)2938 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2939 {
2940 	int node, result = -ENOMEM;
2941 	struct nvme_dev *dev;
2942 
2943 	node = dev_to_node(&pdev->dev);
2944 	if (node == NUMA_NO_NODE)
2945 		set_dev_node(&pdev->dev, 0);
2946 
2947 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2948 	if (!dev)
2949 		return -ENOMEM;
2950 	dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2951 							GFP_KERNEL, node);
2952 	if (!dev->entry)
2953 		goto free;
2954 	dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2955 							GFP_KERNEL, node);
2956 	if (!dev->queues)
2957 		goto free;
2958 
2959 	INIT_LIST_HEAD(&dev->namespaces);
2960 	dev->reset_workfn = nvme_reset_failed_dev;
2961 	INIT_WORK(&dev->reset_work, nvme_reset_workfn);
2962 	dev->pci_dev = pci_dev_get(pdev);
2963 	pci_set_drvdata(pdev, dev);
2964 	result = nvme_set_instance(dev);
2965 	if (result)
2966 		goto put_pci;
2967 
2968 	result = nvme_setup_prp_pools(dev);
2969 	if (result)
2970 		goto release;
2971 
2972 	kref_init(&dev->kref);
2973 	dev->device = device_create(nvme_class, &pdev->dev,
2974 				MKDEV(nvme_char_major, dev->instance),
2975 				dev, "nvme%d", dev->instance);
2976 	if (IS_ERR(dev->device)) {
2977 		result = PTR_ERR(dev->device);
2978 		goto release_pools;
2979 	}
2980 	get_device(dev->device);
2981 
2982 	INIT_LIST_HEAD(&dev->node);
2983 	INIT_WORK(&dev->probe_work, nvme_async_probe);
2984 	schedule_work(&dev->probe_work);
2985 	return 0;
2986 
2987  release_pools:
2988 	nvme_release_prp_pools(dev);
2989  release:
2990 	nvme_release_instance(dev);
2991  put_pci:
2992 	pci_dev_put(dev->pci_dev);
2993  free:
2994 	kfree(dev->queues);
2995 	kfree(dev->entry);
2996 	kfree(dev);
2997 	return result;
2998 }
2999 
nvme_async_probe(struct work_struct * work)3000 static void nvme_async_probe(struct work_struct *work)
3001 {
3002 	struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
3003 	int result;
3004 
3005 	result = nvme_dev_start(dev);
3006 	if (result)
3007 		goto reset;
3008 
3009 	if (dev->online_queues > 1)
3010 		result = nvme_dev_add(dev);
3011 	if (result)
3012 		goto reset;
3013 
3014 	nvme_set_irq_hints(dev);
3015 	return;
3016  reset:
3017 	if (!work_busy(&dev->reset_work)) {
3018 		dev->reset_workfn = nvme_reset_failed_dev;
3019 		queue_work(nvme_workq, &dev->reset_work);
3020 	}
3021 }
3022 
nvme_reset_notify(struct pci_dev * pdev,bool prepare)3023 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3024 {
3025 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3026 
3027 	if (prepare)
3028 		nvme_dev_shutdown(dev);
3029 	else
3030 		nvme_dev_resume(dev);
3031 }
3032 
nvme_shutdown(struct pci_dev * pdev)3033 static void nvme_shutdown(struct pci_dev *pdev)
3034 {
3035 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3036 	nvme_dev_shutdown(dev);
3037 }
3038 
nvme_remove(struct pci_dev * pdev)3039 static void nvme_remove(struct pci_dev *pdev)
3040 {
3041 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3042 
3043 	spin_lock(&dev_list_lock);
3044 	list_del_init(&dev->node);
3045 	spin_unlock(&dev_list_lock);
3046 
3047 	pci_set_drvdata(pdev, NULL);
3048 	flush_work(&dev->probe_work);
3049 	flush_work(&dev->reset_work);
3050 	nvme_dev_shutdown(dev);
3051 	nvme_dev_remove(dev);
3052 	nvme_dev_remove_admin(dev);
3053 	device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3054 	nvme_free_queues(dev, 0);
3055 	nvme_release_prp_pools(dev);
3056 	kref_put(&dev->kref, nvme_free_dev);
3057 }
3058 
3059 /* These functions are yet to be implemented */
3060 #define nvme_error_detected NULL
3061 #define nvme_dump_registers NULL
3062 #define nvme_link_reset NULL
3063 #define nvme_slot_reset NULL
3064 #define nvme_error_resume NULL
3065 
3066 #ifdef CONFIG_PM_SLEEP
nvme_suspend(struct device * dev)3067 static int nvme_suspend(struct device *dev)
3068 {
3069 	struct pci_dev *pdev = to_pci_dev(dev);
3070 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3071 
3072 	nvme_dev_shutdown(ndev);
3073 	return 0;
3074 }
3075 
nvme_resume(struct device * dev)3076 static int nvme_resume(struct device *dev)
3077 {
3078 	struct pci_dev *pdev = to_pci_dev(dev);
3079 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3080 
3081 	if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
3082 		ndev->reset_workfn = nvme_reset_failed_dev;
3083 		queue_work(nvme_workq, &ndev->reset_work);
3084 	}
3085 	return 0;
3086 }
3087 #endif
3088 
3089 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3090 
3091 static const struct pci_error_handlers nvme_err_handler = {
3092 	.error_detected	= nvme_error_detected,
3093 	.mmio_enabled	= nvme_dump_registers,
3094 	.link_reset	= nvme_link_reset,
3095 	.slot_reset	= nvme_slot_reset,
3096 	.resume		= nvme_error_resume,
3097 	.reset_notify	= nvme_reset_notify,
3098 };
3099 
3100 /* Move to pci_ids.h later */
3101 #define PCI_CLASS_STORAGE_EXPRESS	0x010802
3102 
3103 static const struct pci_device_id nvme_id_table[] = {
3104 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3105 	{ 0, }
3106 };
3107 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3108 
3109 static struct pci_driver nvme_driver = {
3110 	.name		= "nvme",
3111 	.id_table	= nvme_id_table,
3112 	.probe		= nvme_probe,
3113 	.remove		= nvme_remove,
3114 	.shutdown	= nvme_shutdown,
3115 	.driver		= {
3116 		.pm	= &nvme_dev_pm_ops,
3117 	},
3118 	.err_handler	= &nvme_err_handler,
3119 };
3120 
nvme_init(void)3121 static int __init nvme_init(void)
3122 {
3123 	int result;
3124 
3125 	init_waitqueue_head(&nvme_kthread_wait);
3126 
3127 	nvme_workq = create_singlethread_workqueue("nvme");
3128 	if (!nvme_workq)
3129 		return -ENOMEM;
3130 
3131 	result = register_blkdev(nvme_major, "nvme");
3132 	if (result < 0)
3133 		goto kill_workq;
3134 	else if (result > 0)
3135 		nvme_major = result;
3136 
3137 	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3138 							&nvme_dev_fops);
3139 	if (result < 0)
3140 		goto unregister_blkdev;
3141 	else if (result > 0)
3142 		nvme_char_major = result;
3143 
3144 	nvme_class = class_create(THIS_MODULE, "nvme");
3145 	if (IS_ERR(nvme_class)) {
3146 		result = PTR_ERR(nvme_class);
3147 		goto unregister_chrdev;
3148 	}
3149 
3150 	result = pci_register_driver(&nvme_driver);
3151 	if (result)
3152 		goto destroy_class;
3153 	return 0;
3154 
3155  destroy_class:
3156 	class_destroy(nvme_class);
3157  unregister_chrdev:
3158 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3159  unregister_blkdev:
3160 	unregister_blkdev(nvme_major, "nvme");
3161  kill_workq:
3162 	destroy_workqueue(nvme_workq);
3163 	return result;
3164 }
3165 
nvme_exit(void)3166 static void __exit nvme_exit(void)
3167 {
3168 	pci_unregister_driver(&nvme_driver);
3169 	unregister_blkdev(nvme_major, "nvme");
3170 	destroy_workqueue(nvme_workq);
3171 	class_destroy(nvme_class);
3172 	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3173 	BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3174 	_nvme_check_size();
3175 }
3176 
3177 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3178 MODULE_LICENSE("GPL");
3179 MODULE_VERSION("1.0");
3180 module_init(nvme_init);
3181 module_exit(nvme_exit);
3182