1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/nvme.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <scsi/sg.h>
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45 #define NVME_MINORS (1U << MINORBITS)
46 #define NVME_Q_DEPTH 1024
47 #define NVME_AQ_DEPTH 256
48 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
49 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
50 #define ADMIN_TIMEOUT (admin_timeout * HZ)
51 #define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
52
53 static unsigned char admin_timeout = 60;
54 module_param(admin_timeout, byte, 0644);
55 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
56
57 unsigned char nvme_io_timeout = 30;
58 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
59 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
60
61 static unsigned char shutdown_timeout = 5;
62 module_param(shutdown_timeout, byte, 0644);
63 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
64
65 static int nvme_major;
66 module_param(nvme_major, int, 0);
67
68 static int nvme_char_major;
69 module_param(nvme_char_major, int, 0);
70
71 static int use_threaded_interrupts;
72 module_param(use_threaded_interrupts, int, 0);
73
74 static DEFINE_SPINLOCK(dev_list_lock);
75 static LIST_HEAD(dev_list);
76 static struct task_struct *nvme_thread;
77 static struct workqueue_struct *nvme_workq;
78 static wait_queue_head_t nvme_kthread_wait;
79
80 static struct class *nvme_class;
81
82 static void nvme_reset_failed_dev(struct work_struct *ws);
83 static int nvme_process_cq(struct nvme_queue *nvmeq);
84
85 struct async_cmd_info {
86 struct kthread_work work;
87 struct kthread_worker *worker;
88 struct request *req;
89 u32 result;
90 int status;
91 void *ctx;
92 };
93
94 /*
95 * An NVM Express queue. Each device has at least two (one for admin
96 * commands and one for I/O commands).
97 */
98 struct nvme_queue {
99 struct device *q_dmadev;
100 struct nvme_dev *dev;
101 char irqname[24]; /* nvme4294967295-65535\0 */
102 spinlock_t q_lock;
103 struct nvme_command *sq_cmds;
104 volatile struct nvme_completion *cqes;
105 dma_addr_t sq_dma_addr;
106 dma_addr_t cq_dma_addr;
107 u32 __iomem *q_db;
108 u16 q_depth;
109 s16 cq_vector;
110 u16 sq_head;
111 u16 sq_tail;
112 u16 cq_head;
113 u16 qid;
114 u8 cq_phase;
115 u8 cqe_seen;
116 struct async_cmd_info cmdinfo;
117 struct blk_mq_hw_ctx *hctx;
118 };
119
120 /*
121 * Check we didin't inadvertently grow the command struct
122 */
_nvme_check_size(void)123 static inline void _nvme_check_size(void)
124 {
125 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
126 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
127 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
136 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
137 }
138
139 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
140 struct nvme_completion *);
141
142 struct nvme_cmd_info {
143 nvme_completion_fn fn;
144 void *ctx;
145 int aborted;
146 struct nvme_queue *nvmeq;
147 struct nvme_iod iod[0];
148 };
149
150 /*
151 * Max size of iod being embedded in the request payload
152 */
153 #define NVME_INT_PAGES 2
154 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size)
155 #define NVME_INT_MASK 0x01
156
157 /*
158 * Will slightly overestimate the number of pages needed. This is OK
159 * as it only leads to a small amount of wasted memory for the lifetime of
160 * the I/O.
161 */
nvme_npages(unsigned size,struct nvme_dev * dev)162 static int nvme_npages(unsigned size, struct nvme_dev *dev)
163 {
164 unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
165 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
166 }
167
nvme_cmd_size(struct nvme_dev * dev)168 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
169 {
170 unsigned int ret = sizeof(struct nvme_cmd_info);
171
172 ret += sizeof(struct nvme_iod);
173 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
174 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
175
176 return ret;
177 }
178
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)179 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
180 unsigned int hctx_idx)
181 {
182 struct nvme_dev *dev = data;
183 struct nvme_queue *nvmeq = dev->queues[0];
184
185 WARN_ON(nvmeq->hctx);
186 nvmeq->hctx = hctx;
187 hctx->driver_data = nvmeq;
188 return 0;
189 }
190
nvme_admin_init_request(void * data,struct request * req,unsigned int hctx_idx,unsigned int rq_idx,unsigned int numa_node)191 static int nvme_admin_init_request(void *data, struct request *req,
192 unsigned int hctx_idx, unsigned int rq_idx,
193 unsigned int numa_node)
194 {
195 struct nvme_dev *dev = data;
196 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
197 struct nvme_queue *nvmeq = dev->queues[0];
198
199 BUG_ON(!nvmeq);
200 cmd->nvmeq = nvmeq;
201 return 0;
202 }
203
nvme_exit_hctx(struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)204 static void nvme_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
205 {
206 struct nvme_queue *nvmeq = hctx->driver_data;
207
208 nvmeq->hctx = NULL;
209 }
210
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)211 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
212 unsigned int hctx_idx)
213 {
214 struct nvme_dev *dev = data;
215 struct nvme_queue *nvmeq = dev->queues[
216 (hctx_idx % dev->queue_count) + 1];
217
218 if (!nvmeq->hctx)
219 nvmeq->hctx = hctx;
220
221 /* nvmeq queues are shared between namespaces. We assume here that
222 * blk-mq map the tags so they match up with the nvme queue tags. */
223 WARN_ON(nvmeq->hctx->tags != hctx->tags);
224
225 hctx->driver_data = nvmeq;
226 return 0;
227 }
228
nvme_init_request(void * data,struct request * req,unsigned int hctx_idx,unsigned int rq_idx,unsigned int numa_node)229 static int nvme_init_request(void *data, struct request *req,
230 unsigned int hctx_idx, unsigned int rq_idx,
231 unsigned int numa_node)
232 {
233 struct nvme_dev *dev = data;
234 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
235 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
236
237 BUG_ON(!nvmeq);
238 cmd->nvmeq = nvmeq;
239 return 0;
240 }
241
nvme_set_info(struct nvme_cmd_info * cmd,void * ctx,nvme_completion_fn handler)242 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
243 nvme_completion_fn handler)
244 {
245 cmd->fn = handler;
246 cmd->ctx = ctx;
247 cmd->aborted = 0;
248 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
249 }
250
iod_get_private(struct nvme_iod * iod)251 static void *iod_get_private(struct nvme_iod *iod)
252 {
253 return (void *) (iod->private & ~0x1UL);
254 }
255
256 /*
257 * If bit 0 is set, the iod is embedded in the request payload.
258 */
iod_should_kfree(struct nvme_iod * iod)259 static bool iod_should_kfree(struct nvme_iod *iod)
260 {
261 return (iod->private & NVME_INT_MASK) == 0;
262 }
263
264 /* Special values must be less than 0x1000 */
265 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
266 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
267 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
268 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
269
special_completion(struct nvme_queue * nvmeq,void * ctx,struct nvme_completion * cqe)270 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
271 struct nvme_completion *cqe)
272 {
273 if (ctx == CMD_CTX_CANCELLED)
274 return;
275 if (ctx == CMD_CTX_COMPLETED) {
276 dev_warn(nvmeq->q_dmadev,
277 "completed id %d twice on queue %d\n",
278 cqe->command_id, le16_to_cpup(&cqe->sq_id));
279 return;
280 }
281 if (ctx == CMD_CTX_INVALID) {
282 dev_warn(nvmeq->q_dmadev,
283 "invalid id %d completed on queue %d\n",
284 cqe->command_id, le16_to_cpup(&cqe->sq_id));
285 return;
286 }
287 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
288 }
289
cancel_cmd_info(struct nvme_cmd_info * cmd,nvme_completion_fn * fn)290 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
291 {
292 void *ctx;
293
294 if (fn)
295 *fn = cmd->fn;
296 ctx = cmd->ctx;
297 cmd->fn = special_completion;
298 cmd->ctx = CMD_CTX_CANCELLED;
299 return ctx;
300 }
301
async_req_completion(struct nvme_queue * nvmeq,void * ctx,struct nvme_completion * cqe)302 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
303 struct nvme_completion *cqe)
304 {
305 u32 result = le32_to_cpup(&cqe->result);
306 u16 status = le16_to_cpup(&cqe->status) >> 1;
307
308 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
309 ++nvmeq->dev->event_limit;
310 if (status == NVME_SC_SUCCESS)
311 dev_warn(nvmeq->q_dmadev,
312 "async event result %08x\n", result);
313 }
314
abort_completion(struct nvme_queue * nvmeq,void * ctx,struct nvme_completion * cqe)315 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
316 struct nvme_completion *cqe)
317 {
318 struct request *req = ctx;
319
320 u16 status = le16_to_cpup(&cqe->status) >> 1;
321 u32 result = le32_to_cpup(&cqe->result);
322
323 blk_mq_free_hctx_request(nvmeq->hctx, req);
324
325 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
326 ++nvmeq->dev->abort_limit;
327 }
328
async_completion(struct nvme_queue * nvmeq,void * ctx,struct nvme_completion * cqe)329 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
330 struct nvme_completion *cqe)
331 {
332 struct async_cmd_info *cmdinfo = ctx;
333 cmdinfo->result = le32_to_cpup(&cqe->result);
334 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
335 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
336 blk_mq_free_hctx_request(nvmeq->hctx, cmdinfo->req);
337 }
338
get_cmd_from_tag(struct nvme_queue * nvmeq,unsigned int tag)339 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
340 unsigned int tag)
341 {
342 struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
343 struct request *req = blk_mq_tag_to_rq(hctx->tags, tag);
344
345 return blk_mq_rq_to_pdu(req);
346 }
347
348 /*
349 * Called with local interrupts disabled and the q_lock held. May not sleep.
350 */
nvme_finish_cmd(struct nvme_queue * nvmeq,int tag,nvme_completion_fn * fn)351 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
352 nvme_completion_fn *fn)
353 {
354 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
355 void *ctx;
356 if (tag >= nvmeq->q_depth) {
357 *fn = special_completion;
358 return CMD_CTX_INVALID;
359 }
360 if (fn)
361 *fn = cmd->fn;
362 ctx = cmd->ctx;
363 cmd->fn = special_completion;
364 cmd->ctx = CMD_CTX_COMPLETED;
365 return ctx;
366 }
367
368 /**
369 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
370 * @nvmeq: The queue to use
371 * @cmd: The command to send
372 *
373 * Safe to use from interrupt context
374 */
__nvme_submit_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)375 static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
376 {
377 u16 tail = nvmeq->sq_tail;
378
379 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
380 if (++tail == nvmeq->q_depth)
381 tail = 0;
382 writel(tail, nvmeq->q_db);
383 nvmeq->sq_tail = tail;
384
385 return 0;
386 }
387
nvme_submit_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)388 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
389 {
390 unsigned long flags;
391 int ret;
392 spin_lock_irqsave(&nvmeq->q_lock, flags);
393 ret = __nvme_submit_cmd(nvmeq, cmd);
394 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
395 return ret;
396 }
397
iod_list(struct nvme_iod * iod)398 static __le64 **iod_list(struct nvme_iod *iod)
399 {
400 return ((void *)iod) + iod->offset;
401 }
402
iod_init(struct nvme_iod * iod,unsigned nbytes,unsigned nseg,unsigned long private)403 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
404 unsigned nseg, unsigned long private)
405 {
406 iod->private = private;
407 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
408 iod->npages = -1;
409 iod->length = nbytes;
410 iod->nents = 0;
411 }
412
413 static struct nvme_iod *
__nvme_alloc_iod(unsigned nseg,unsigned bytes,struct nvme_dev * dev,unsigned long priv,gfp_t gfp)414 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
415 unsigned long priv, gfp_t gfp)
416 {
417 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
418 sizeof(__le64 *) * nvme_npages(bytes, dev) +
419 sizeof(struct scatterlist) * nseg, gfp);
420
421 if (iod)
422 iod_init(iod, bytes, nseg, priv);
423
424 return iod;
425 }
426
nvme_alloc_iod(struct request * rq,struct nvme_dev * dev,gfp_t gfp)427 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
428 gfp_t gfp)
429 {
430 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
431 sizeof(struct nvme_dsm_range);
432 struct nvme_iod *iod;
433
434 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
435 size <= NVME_INT_BYTES(dev)) {
436 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
437
438 iod = cmd->iod;
439 iod_init(iod, size, rq->nr_phys_segments,
440 (unsigned long) rq | NVME_INT_MASK);
441 return iod;
442 }
443
444 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
445 (unsigned long) rq, gfp);
446 }
447
nvme_free_iod(struct nvme_dev * dev,struct nvme_iod * iod)448 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
449 {
450 const int last_prp = dev->page_size / 8 - 1;
451 int i;
452 __le64 **list = iod_list(iod);
453 dma_addr_t prp_dma = iod->first_dma;
454
455 if (iod->npages == 0)
456 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
457 for (i = 0; i < iod->npages; i++) {
458 __le64 *prp_list = list[i];
459 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
460 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
461 prp_dma = next_prp_dma;
462 }
463
464 if (iod_should_kfree(iod))
465 kfree(iod);
466 }
467
nvme_error_status(u16 status)468 static int nvme_error_status(u16 status)
469 {
470 switch (status & 0x7ff) {
471 case NVME_SC_SUCCESS:
472 return 0;
473 case NVME_SC_CAP_EXCEEDED:
474 return -ENOSPC;
475 default:
476 return -EIO;
477 }
478 }
479
480 #ifdef CONFIG_BLK_DEV_INTEGRITY
nvme_dif_prep(u32 p,u32 v,struct t10_pi_tuple * pi)481 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
482 {
483 if (be32_to_cpu(pi->ref_tag) == v)
484 pi->ref_tag = cpu_to_be32(p);
485 }
486
nvme_dif_complete(u32 p,u32 v,struct t10_pi_tuple * pi)487 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
488 {
489 if (be32_to_cpu(pi->ref_tag) == p)
490 pi->ref_tag = cpu_to_be32(v);
491 }
492
493 /**
494 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
495 *
496 * The virtual start sector is the one that was originally submitted by the
497 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
498 * start sector may be different. Remap protection information to match the
499 * physical LBA on writes, and back to the original seed on reads.
500 *
501 * Type 0 and 3 do not have a ref tag, so no remapping required.
502 */
nvme_dif_remap(struct request * req,void (* dif_swap)(u32 p,u32 v,struct t10_pi_tuple * pi))503 static void nvme_dif_remap(struct request *req,
504 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
505 {
506 struct nvme_ns *ns = req->rq_disk->private_data;
507 struct bio_integrity_payload *bip;
508 struct t10_pi_tuple *pi;
509 void *p, *pmap;
510 u32 i, nlb, ts, phys, virt;
511
512 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
513 return;
514
515 bip = bio_integrity(req->bio);
516 if (!bip)
517 return;
518
519 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
520
521 p = pmap;
522 virt = bip_get_seed(bip);
523 phys = nvme_block_nr(ns, blk_rq_pos(req));
524 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
525 ts = ns->disk->integrity->tuple_size;
526
527 for (i = 0; i < nlb; i++, virt++, phys++) {
528 pi = (struct t10_pi_tuple *)p;
529 dif_swap(phys, virt, pi);
530 p += ts;
531 }
532 kunmap_atomic(pmap);
533 }
534
nvme_noop_verify(struct blk_integrity_iter * iter)535 static int nvme_noop_verify(struct blk_integrity_iter *iter)
536 {
537 return 0;
538 }
539
nvme_noop_generate(struct blk_integrity_iter * iter)540 static int nvme_noop_generate(struct blk_integrity_iter *iter)
541 {
542 return 0;
543 }
544
545 struct blk_integrity nvme_meta_noop = {
546 .name = "NVME_META_NOOP",
547 .generate_fn = nvme_noop_generate,
548 .verify_fn = nvme_noop_verify,
549 };
550
nvme_init_integrity(struct nvme_ns * ns)551 static void nvme_init_integrity(struct nvme_ns *ns)
552 {
553 struct blk_integrity integrity;
554
555 switch (ns->pi_type) {
556 case NVME_NS_DPS_PI_TYPE3:
557 integrity = t10_pi_type3_crc;
558 break;
559 case NVME_NS_DPS_PI_TYPE1:
560 case NVME_NS_DPS_PI_TYPE2:
561 integrity = t10_pi_type1_crc;
562 break;
563 default:
564 integrity = nvme_meta_noop;
565 break;
566 }
567 integrity.tuple_size = ns->ms;
568 blk_integrity_register(ns->disk, &integrity);
569 blk_queue_max_integrity_segments(ns->queue, 1);
570 }
571 #else /* CONFIG_BLK_DEV_INTEGRITY */
nvme_dif_remap(struct request * req,void (* dif_swap)(u32 p,u32 v,struct t10_pi_tuple * pi))572 static void nvme_dif_remap(struct request *req,
573 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
574 {
575 }
nvme_dif_prep(u32 p,u32 v,struct t10_pi_tuple * pi)576 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
577 {
578 }
nvme_dif_complete(u32 p,u32 v,struct t10_pi_tuple * pi)579 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
580 {
581 }
nvme_init_integrity(struct nvme_ns * ns)582 static void nvme_init_integrity(struct nvme_ns *ns)
583 {
584 }
585 #endif
586
req_completion(struct nvme_queue * nvmeq,void * ctx,struct nvme_completion * cqe)587 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
588 struct nvme_completion *cqe)
589 {
590 struct nvme_iod *iod = ctx;
591 struct request *req = iod_get_private(iod);
592 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
593 bool requeue = false;
594
595 u16 status = le16_to_cpup(&cqe->status) >> 1;
596
597 if (unlikely(status)) {
598 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
599 && (jiffies - req->start_time) < req->timeout) {
600 unsigned long flags;
601
602 requeue = true;
603 blk_mq_requeue_request(req);
604 spin_lock_irqsave(req->q->queue_lock, flags);
605 if (!blk_queue_stopped(req->q))
606 blk_mq_kick_requeue_list(req->q);
607 spin_unlock_irqrestore(req->q->queue_lock, flags);
608 goto release_iod;
609 }
610 req->errors = nvme_error_status(status);
611 } else
612 req->errors = 0;
613
614 if (cmd_rq->aborted)
615 dev_warn(&nvmeq->dev->pci_dev->dev,
616 "completing aborted command with status:%04x\n",
617 status);
618 release_iod:
619 if (iod->nents) {
620 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg, iod->nents,
621 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
622 if (blk_integrity_rq(req)) {
623 if (!rq_data_dir(req))
624 nvme_dif_remap(req, nvme_dif_complete);
625 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->meta_sg, 1,
626 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
627 }
628 }
629 nvme_free_iod(nvmeq->dev, iod);
630
631 if (likely(!requeue))
632 blk_mq_complete_request(req);
633 }
634
635 /* length is in bytes. gfp flags indicates whether we may sleep. */
nvme_setup_prps(struct nvme_dev * dev,struct nvme_iod * iod,int total_len,gfp_t gfp)636 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
637 gfp_t gfp)
638 {
639 struct dma_pool *pool;
640 int length = total_len;
641 struct scatterlist *sg = iod->sg;
642 int dma_len = sg_dma_len(sg);
643 u64 dma_addr = sg_dma_address(sg);
644 u32 page_size = dev->page_size;
645 int offset = dma_addr & (page_size - 1);
646 __le64 *prp_list;
647 __le64 **list = iod_list(iod);
648 dma_addr_t prp_dma;
649 int nprps, i;
650
651 length -= (page_size - offset);
652 if (length <= 0)
653 return total_len;
654
655 dma_len -= (page_size - offset);
656 if (dma_len) {
657 dma_addr += (page_size - offset);
658 } else {
659 sg = sg_next(sg);
660 dma_addr = sg_dma_address(sg);
661 dma_len = sg_dma_len(sg);
662 }
663
664 if (length <= page_size) {
665 iod->first_dma = dma_addr;
666 return total_len;
667 }
668
669 nprps = DIV_ROUND_UP(length, page_size);
670 if (nprps <= (256 / 8)) {
671 pool = dev->prp_small_pool;
672 iod->npages = 0;
673 } else {
674 pool = dev->prp_page_pool;
675 iod->npages = 1;
676 }
677
678 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
679 if (!prp_list) {
680 iod->first_dma = dma_addr;
681 iod->npages = -1;
682 return (total_len - length) + page_size;
683 }
684 list[0] = prp_list;
685 iod->first_dma = prp_dma;
686 i = 0;
687 for (;;) {
688 if (i == page_size >> 3) {
689 __le64 *old_prp_list = prp_list;
690 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
691 if (!prp_list)
692 return total_len - length;
693 list[iod->npages++] = prp_list;
694 prp_list[0] = old_prp_list[i - 1];
695 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
696 i = 1;
697 }
698 prp_list[i++] = cpu_to_le64(dma_addr);
699 dma_len -= page_size;
700 dma_addr += page_size;
701 length -= page_size;
702 if (length <= 0)
703 break;
704 if (dma_len > 0)
705 continue;
706 BUG_ON(dma_len < 0);
707 sg = sg_next(sg);
708 dma_addr = sg_dma_address(sg);
709 dma_len = sg_dma_len(sg);
710 }
711
712 return total_len;
713 }
714
715 /*
716 * We reuse the small pool to allocate the 16-byte range here as it is not
717 * worth having a special pool for these or additional cases to handle freeing
718 * the iod.
719 */
nvme_submit_discard(struct nvme_queue * nvmeq,struct nvme_ns * ns,struct request * req,struct nvme_iod * iod)720 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
721 struct request *req, struct nvme_iod *iod)
722 {
723 struct nvme_dsm_range *range =
724 (struct nvme_dsm_range *)iod_list(iod)[0];
725 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
726
727 range->cattr = cpu_to_le32(0);
728 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
729 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
730
731 memset(cmnd, 0, sizeof(*cmnd));
732 cmnd->dsm.opcode = nvme_cmd_dsm;
733 cmnd->dsm.command_id = req->tag;
734 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
735 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
736 cmnd->dsm.nr = 0;
737 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
738
739 if (++nvmeq->sq_tail == nvmeq->q_depth)
740 nvmeq->sq_tail = 0;
741 writel(nvmeq->sq_tail, nvmeq->q_db);
742 }
743
nvme_submit_flush(struct nvme_queue * nvmeq,struct nvme_ns * ns,int cmdid)744 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
745 int cmdid)
746 {
747 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
748
749 memset(cmnd, 0, sizeof(*cmnd));
750 cmnd->common.opcode = nvme_cmd_flush;
751 cmnd->common.command_id = cmdid;
752 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
753
754 if (++nvmeq->sq_tail == nvmeq->q_depth)
755 nvmeq->sq_tail = 0;
756 writel(nvmeq->sq_tail, nvmeq->q_db);
757 }
758
nvme_submit_iod(struct nvme_queue * nvmeq,struct nvme_iod * iod,struct nvme_ns * ns)759 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
760 struct nvme_ns *ns)
761 {
762 struct request *req = iod_get_private(iod);
763 struct nvme_command *cmnd;
764 u16 control = 0;
765 u32 dsmgmt = 0;
766
767 if (req->cmd_flags & REQ_FUA)
768 control |= NVME_RW_FUA;
769 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
770 control |= NVME_RW_LR;
771
772 if (req->cmd_flags & REQ_RAHEAD)
773 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
774
775 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
776 memset(cmnd, 0, sizeof(*cmnd));
777
778 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
779 cmnd->rw.command_id = req->tag;
780 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
781 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
782 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
783 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
784 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
785
786 if (blk_integrity_rq(req)) {
787 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
788 switch (ns->pi_type) {
789 case NVME_NS_DPS_PI_TYPE3:
790 control |= NVME_RW_PRINFO_PRCHK_GUARD;
791 break;
792 case NVME_NS_DPS_PI_TYPE1:
793 case NVME_NS_DPS_PI_TYPE2:
794 control |= NVME_RW_PRINFO_PRCHK_GUARD |
795 NVME_RW_PRINFO_PRCHK_REF;
796 cmnd->rw.reftag = cpu_to_le32(
797 nvme_block_nr(ns, blk_rq_pos(req)));
798 break;
799 }
800 } else if (ns->ms)
801 control |= NVME_RW_PRINFO_PRACT;
802
803 cmnd->rw.control = cpu_to_le16(control);
804 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
805
806 if (++nvmeq->sq_tail == nvmeq->q_depth)
807 nvmeq->sq_tail = 0;
808 writel(nvmeq->sq_tail, nvmeq->q_db);
809
810 return 0;
811 }
812
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)813 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
814 const struct blk_mq_queue_data *bd)
815 {
816 struct nvme_ns *ns = hctx->queue->queuedata;
817 struct nvme_queue *nvmeq = hctx->driver_data;
818 struct request *req = bd->rq;
819 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
820 struct nvme_iod *iod;
821 enum dma_data_direction dma_dir;
822
823 /*
824 * If formated with metadata, require the block layer provide a buffer
825 * unless this namespace is formated such that the metadata can be
826 * stripped/generated by the controller with PRACT=1.
827 */
828 if (ns->ms && !blk_integrity_rq(req)) {
829 if (!(ns->pi_type && ns->ms == 8)) {
830 req->errors = -EFAULT;
831 blk_mq_complete_request(req);
832 return BLK_MQ_RQ_QUEUE_OK;
833 }
834 }
835
836 iod = nvme_alloc_iod(req, ns->dev, GFP_ATOMIC);
837 if (!iod)
838 return BLK_MQ_RQ_QUEUE_BUSY;
839
840 if (req->cmd_flags & REQ_DISCARD) {
841 void *range;
842 /*
843 * We reuse the small pool to allocate the 16-byte range here
844 * as it is not worth having a special pool for these or
845 * additional cases to handle freeing the iod.
846 */
847 range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
848 GFP_ATOMIC,
849 &iod->first_dma);
850 if (!range)
851 goto retry_cmd;
852 iod_list(iod)[0] = (__le64 *)range;
853 iod->npages = 0;
854 } else if (req->nr_phys_segments) {
855 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
856
857 sg_init_table(iod->sg, req->nr_phys_segments);
858 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
859 if (!iod->nents)
860 goto error_cmd;
861
862 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
863 goto retry_cmd;
864
865 if (blk_rq_bytes(req) !=
866 nvme_setup_prps(nvmeq->dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
867 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg,
868 iod->nents, dma_dir);
869 goto retry_cmd;
870 }
871 if (blk_integrity_rq(req)) {
872 if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
873 goto error_cmd;
874
875 sg_init_table(iod->meta_sg, 1);
876 if (blk_rq_map_integrity_sg(
877 req->q, req->bio, iod->meta_sg) != 1)
878 goto error_cmd;
879
880 if (rq_data_dir(req))
881 nvme_dif_remap(req, nvme_dif_prep);
882
883 if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
884 goto error_cmd;
885 }
886 }
887
888 nvme_set_info(cmd, iod, req_completion);
889 spin_lock_irq(&nvmeq->q_lock);
890 if (req->cmd_flags & REQ_DISCARD)
891 nvme_submit_discard(nvmeq, ns, req, iod);
892 else if (req->cmd_flags & REQ_FLUSH)
893 nvme_submit_flush(nvmeq, ns, req->tag);
894 else
895 nvme_submit_iod(nvmeq, iod, ns);
896
897 nvme_process_cq(nvmeq);
898 spin_unlock_irq(&nvmeq->q_lock);
899 return BLK_MQ_RQ_QUEUE_OK;
900
901 error_cmd:
902 nvme_free_iod(nvmeq->dev, iod);
903 return BLK_MQ_RQ_QUEUE_ERROR;
904 retry_cmd:
905 nvme_free_iod(nvmeq->dev, iod);
906 return BLK_MQ_RQ_QUEUE_BUSY;
907 }
908
nvme_process_cq(struct nvme_queue * nvmeq)909 static int nvme_process_cq(struct nvme_queue *nvmeq)
910 {
911 u16 head, phase;
912
913 head = nvmeq->cq_head;
914 phase = nvmeq->cq_phase;
915
916 for (;;) {
917 void *ctx;
918 nvme_completion_fn fn;
919 struct nvme_completion cqe = nvmeq->cqes[head];
920 if ((le16_to_cpu(cqe.status) & 1) != phase)
921 break;
922 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
923 if (++head == nvmeq->q_depth) {
924 head = 0;
925 phase = !phase;
926 }
927 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
928 fn(nvmeq, ctx, &cqe);
929 }
930
931 /* If the controller ignores the cq head doorbell and continuously
932 * writes to the queue, it is theoretically possible to wrap around
933 * the queue twice and mistakenly return IRQ_NONE. Linux only
934 * requires that 0.1% of your interrupts are handled, so this isn't
935 * a big problem.
936 */
937 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
938 return 0;
939
940 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
941 nvmeq->cq_head = head;
942 nvmeq->cq_phase = phase;
943
944 nvmeq->cqe_seen = 1;
945 return 1;
946 }
947
948 /* Admin queue isn't initialized as a request queue. If at some point this
949 * happens anyway, make sure to notify the user */
nvme_admin_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)950 static int nvme_admin_queue_rq(struct blk_mq_hw_ctx *hctx,
951 const struct blk_mq_queue_data *bd)
952 {
953 WARN_ON_ONCE(1);
954 return BLK_MQ_RQ_QUEUE_ERROR;
955 }
956
nvme_irq(int irq,void * data)957 static irqreturn_t nvme_irq(int irq, void *data)
958 {
959 irqreturn_t result;
960 struct nvme_queue *nvmeq = data;
961 spin_lock(&nvmeq->q_lock);
962 nvme_process_cq(nvmeq);
963 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
964 nvmeq->cqe_seen = 0;
965 spin_unlock(&nvmeq->q_lock);
966 return result;
967 }
968
nvme_irq_check(int irq,void * data)969 static irqreturn_t nvme_irq_check(int irq, void *data)
970 {
971 struct nvme_queue *nvmeq = data;
972 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
973 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
974 return IRQ_NONE;
975 return IRQ_WAKE_THREAD;
976 }
977
978 struct sync_cmd_info {
979 struct task_struct *task;
980 u32 result;
981 int status;
982 };
983
sync_completion(struct nvme_queue * nvmeq,void * ctx,struct nvme_completion * cqe)984 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
985 struct nvme_completion *cqe)
986 {
987 struct sync_cmd_info *cmdinfo = ctx;
988 cmdinfo->result = le32_to_cpup(&cqe->result);
989 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
990 wake_up_process(cmdinfo->task);
991 }
992
993 /*
994 * Returns 0 on success. If the result is negative, it's a Linux error code;
995 * if the result is positive, it's an NVM Express status code
996 */
nvme_submit_sync_cmd(struct request * req,struct nvme_command * cmd,u32 * result,unsigned timeout)997 static int nvme_submit_sync_cmd(struct request *req, struct nvme_command *cmd,
998 u32 *result, unsigned timeout)
999 {
1000 struct sync_cmd_info cmdinfo;
1001 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1002 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1003
1004 cmdinfo.task = current;
1005 cmdinfo.status = -EINTR;
1006
1007 cmd->common.command_id = req->tag;
1008
1009 nvme_set_info(cmd_rq, &cmdinfo, sync_completion);
1010
1011 set_current_state(TASK_UNINTERRUPTIBLE);
1012 nvme_submit_cmd(nvmeq, cmd);
1013 schedule();
1014
1015 if (result)
1016 *result = cmdinfo.result;
1017 return cmdinfo.status;
1018 }
1019
nvme_submit_async_admin_req(struct nvme_dev * dev)1020 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1021 {
1022 struct nvme_queue *nvmeq = dev->queues[0];
1023 struct nvme_command c;
1024 struct nvme_cmd_info *cmd_info;
1025 struct request *req;
1026
1027 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
1028 if (IS_ERR(req))
1029 return PTR_ERR(req);
1030
1031 req->cmd_flags |= REQ_NO_TIMEOUT;
1032 cmd_info = blk_mq_rq_to_pdu(req);
1033 nvme_set_info(cmd_info, NULL, async_req_completion);
1034
1035 memset(&c, 0, sizeof(c));
1036 c.common.opcode = nvme_admin_async_event;
1037 c.common.command_id = req->tag;
1038
1039 blk_mq_free_hctx_request(nvmeq->hctx, req);
1040 return __nvme_submit_cmd(nvmeq, &c);
1041 }
1042
nvme_submit_admin_async_cmd(struct nvme_dev * dev,struct nvme_command * cmd,struct async_cmd_info * cmdinfo,unsigned timeout)1043 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1044 struct nvme_command *cmd,
1045 struct async_cmd_info *cmdinfo, unsigned timeout)
1046 {
1047 struct nvme_queue *nvmeq = dev->queues[0];
1048 struct request *req;
1049 struct nvme_cmd_info *cmd_rq;
1050
1051 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1052 if (IS_ERR(req))
1053 return PTR_ERR(req);
1054
1055 req->timeout = timeout;
1056 cmd_rq = blk_mq_rq_to_pdu(req);
1057 cmdinfo->req = req;
1058 nvme_set_info(cmd_rq, cmdinfo, async_completion);
1059 cmdinfo->status = -EINTR;
1060
1061 cmd->common.command_id = req->tag;
1062
1063 return nvme_submit_cmd(nvmeq, cmd);
1064 }
1065
__nvme_submit_admin_cmd(struct nvme_dev * dev,struct nvme_command * cmd,u32 * result,unsigned timeout)1066 static int __nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
1067 u32 *result, unsigned timeout)
1068 {
1069 int res;
1070 struct request *req;
1071
1072 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1073 if (IS_ERR(req))
1074 return PTR_ERR(req);
1075 res = nvme_submit_sync_cmd(req, cmd, result, timeout);
1076 blk_mq_free_request(req);
1077 return res;
1078 }
1079
nvme_submit_admin_cmd(struct nvme_dev * dev,struct nvme_command * cmd,u32 * result)1080 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
1081 u32 *result)
1082 {
1083 return __nvme_submit_admin_cmd(dev, cmd, result, ADMIN_TIMEOUT);
1084 }
1085
nvme_submit_io_cmd(struct nvme_dev * dev,struct nvme_ns * ns,struct nvme_command * cmd,u32 * result)1086 int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1087 struct nvme_command *cmd, u32 *result)
1088 {
1089 int res;
1090 struct request *req;
1091
1092 req = blk_mq_alloc_request(ns->queue, WRITE, (GFP_KERNEL|__GFP_WAIT),
1093 false);
1094 if (IS_ERR(req))
1095 return PTR_ERR(req);
1096 res = nvme_submit_sync_cmd(req, cmd, result, NVME_IO_TIMEOUT);
1097 blk_mq_free_request(req);
1098 return res;
1099 }
1100
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1101 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1102 {
1103 struct nvme_command c;
1104
1105 memset(&c, 0, sizeof(c));
1106 c.delete_queue.opcode = opcode;
1107 c.delete_queue.qid = cpu_to_le16(id);
1108
1109 return nvme_submit_admin_cmd(dev, &c, NULL);
1110 }
1111
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1112 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1113 struct nvme_queue *nvmeq)
1114 {
1115 struct nvme_command c;
1116 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1117
1118 memset(&c, 0, sizeof(c));
1119 c.create_cq.opcode = nvme_admin_create_cq;
1120 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1121 c.create_cq.cqid = cpu_to_le16(qid);
1122 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1123 c.create_cq.cq_flags = cpu_to_le16(flags);
1124 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1125
1126 return nvme_submit_admin_cmd(dev, &c, NULL);
1127 }
1128
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1129 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1130 struct nvme_queue *nvmeq)
1131 {
1132 struct nvme_command c;
1133 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1134
1135 memset(&c, 0, sizeof(c));
1136 c.create_sq.opcode = nvme_admin_create_sq;
1137 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1138 c.create_sq.sqid = cpu_to_le16(qid);
1139 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1140 c.create_sq.sq_flags = cpu_to_le16(flags);
1141 c.create_sq.cqid = cpu_to_le16(qid);
1142
1143 return nvme_submit_admin_cmd(dev, &c, NULL);
1144 }
1145
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1146 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1147 {
1148 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1149 }
1150
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1151 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1152 {
1153 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1154 }
1155
nvme_identify(struct nvme_dev * dev,unsigned nsid,unsigned cns,dma_addr_t dma_addr)1156 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
1157 dma_addr_t dma_addr)
1158 {
1159 struct nvme_command c;
1160
1161 memset(&c, 0, sizeof(c));
1162 c.identify.opcode = nvme_admin_identify;
1163 c.identify.nsid = cpu_to_le32(nsid);
1164 c.identify.prp1 = cpu_to_le64(dma_addr);
1165 c.identify.cns = cpu_to_le32(cns);
1166
1167 return nvme_submit_admin_cmd(dev, &c, NULL);
1168 }
1169
nvme_get_features(struct nvme_dev * dev,unsigned fid,unsigned nsid,dma_addr_t dma_addr,u32 * result)1170 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1171 dma_addr_t dma_addr, u32 *result)
1172 {
1173 struct nvme_command c;
1174
1175 memset(&c, 0, sizeof(c));
1176 c.features.opcode = nvme_admin_get_features;
1177 c.features.nsid = cpu_to_le32(nsid);
1178 c.features.prp1 = cpu_to_le64(dma_addr);
1179 c.features.fid = cpu_to_le32(fid);
1180
1181 return nvme_submit_admin_cmd(dev, &c, result);
1182 }
1183
nvme_set_features(struct nvme_dev * dev,unsigned fid,unsigned dword11,dma_addr_t dma_addr,u32 * result)1184 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1185 dma_addr_t dma_addr, u32 *result)
1186 {
1187 struct nvme_command c;
1188
1189 memset(&c, 0, sizeof(c));
1190 c.features.opcode = nvme_admin_set_features;
1191 c.features.prp1 = cpu_to_le64(dma_addr);
1192 c.features.fid = cpu_to_le32(fid);
1193 c.features.dword11 = cpu_to_le32(dword11);
1194
1195 return nvme_submit_admin_cmd(dev, &c, result);
1196 }
1197
1198 /**
1199 * nvme_abort_req - Attempt aborting a request
1200 *
1201 * Schedule controller reset if the command was already aborted once before and
1202 * still hasn't been returned to the driver, or if this is the admin queue.
1203 */
nvme_abort_req(struct request * req)1204 static void nvme_abort_req(struct request *req)
1205 {
1206 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1207 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1208 struct nvme_dev *dev = nvmeq->dev;
1209 struct request *abort_req;
1210 struct nvme_cmd_info *abort_cmd;
1211 struct nvme_command cmd;
1212
1213 if (!nvmeq->qid || cmd_rq->aborted) {
1214 unsigned long flags;
1215
1216 spin_lock_irqsave(&dev_list_lock, flags);
1217 if (work_busy(&dev->reset_work))
1218 goto out;
1219 list_del_init(&dev->node);
1220 dev_warn(&dev->pci_dev->dev,
1221 "I/O %d QID %d timeout, reset controller\n",
1222 req->tag, nvmeq->qid);
1223 dev->reset_workfn = nvme_reset_failed_dev;
1224 queue_work(nvme_workq, &dev->reset_work);
1225 out:
1226 spin_unlock_irqrestore(&dev_list_lock, flags);
1227 return;
1228 }
1229
1230 if (!dev->abort_limit)
1231 return;
1232
1233 abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1234 false);
1235 if (IS_ERR(abort_req))
1236 return;
1237
1238 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1239 nvme_set_info(abort_cmd, abort_req, abort_completion);
1240
1241 memset(&cmd, 0, sizeof(cmd));
1242 cmd.abort.opcode = nvme_admin_abort_cmd;
1243 cmd.abort.cid = req->tag;
1244 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1245 cmd.abort.command_id = abort_req->tag;
1246
1247 --dev->abort_limit;
1248 cmd_rq->aborted = 1;
1249
1250 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1251 nvmeq->qid);
1252 if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
1253 dev_warn(nvmeq->q_dmadev,
1254 "Could not abort I/O %d QID %d",
1255 req->tag, nvmeq->qid);
1256 blk_mq_free_request(abort_req);
1257 }
1258 }
1259
nvme_cancel_queue_ios(struct blk_mq_hw_ctx * hctx,struct request * req,void * data,bool reserved)1260 static void nvme_cancel_queue_ios(struct blk_mq_hw_ctx *hctx,
1261 struct request *req, void *data, bool reserved)
1262 {
1263 struct nvme_queue *nvmeq = data;
1264 void *ctx;
1265 nvme_completion_fn fn;
1266 struct nvme_cmd_info *cmd;
1267 struct nvme_completion cqe;
1268
1269 if (!blk_mq_request_started(req))
1270 return;
1271
1272 cmd = blk_mq_rq_to_pdu(req);
1273
1274 if (cmd->ctx == CMD_CTX_CANCELLED)
1275 return;
1276
1277 if (blk_queue_dying(req->q))
1278 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1279 else
1280 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1281
1282
1283 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1284 req->tag, nvmeq->qid);
1285 ctx = cancel_cmd_info(cmd, &fn);
1286 fn(nvmeq, ctx, &cqe);
1287 }
1288
nvme_timeout(struct request * req,bool reserved)1289 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1290 {
1291 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1292 struct nvme_queue *nvmeq = cmd->nvmeq;
1293
1294 dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1295 nvmeq->qid);
1296 spin_lock_irq(&nvmeq->q_lock);
1297 nvme_abort_req(req);
1298 spin_unlock_irq(&nvmeq->q_lock);
1299
1300 /*
1301 * The aborted req will be completed on receiving the abort req.
1302 * We enable the timer again. If hit twice, it'll cause a device reset,
1303 * as the device then is in a faulty state.
1304 */
1305 return BLK_EH_RESET_TIMER;
1306 }
1307
nvme_free_queue(struct nvme_queue * nvmeq)1308 static void nvme_free_queue(struct nvme_queue *nvmeq)
1309 {
1310 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1311 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1312 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1313 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1314 kfree(nvmeq);
1315 }
1316
nvme_free_queues(struct nvme_dev * dev,int lowest)1317 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1318 {
1319 int i;
1320
1321 for (i = dev->queue_count - 1; i >= lowest; i--) {
1322 struct nvme_queue *nvmeq = dev->queues[i];
1323 dev->queue_count--;
1324 dev->queues[i] = NULL;
1325 nvme_free_queue(nvmeq);
1326 }
1327 }
1328
1329 /**
1330 * nvme_suspend_queue - put queue into suspended state
1331 * @nvmeq - queue to suspend
1332 */
nvme_suspend_queue(struct nvme_queue * nvmeq)1333 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1334 {
1335 int vector;
1336
1337 spin_lock_irq(&nvmeq->q_lock);
1338 if (nvmeq->cq_vector == -1) {
1339 spin_unlock_irq(&nvmeq->q_lock);
1340 return 1;
1341 }
1342 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1343 nvmeq->dev->online_queues--;
1344 nvmeq->cq_vector = -1;
1345 spin_unlock_irq(&nvmeq->q_lock);
1346
1347 if (!nvmeq->qid && nvmeq->dev->admin_q)
1348 blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1349
1350 irq_set_affinity_hint(vector, NULL);
1351 free_irq(vector, nvmeq);
1352
1353 return 0;
1354 }
1355
nvme_clear_queue(struct nvme_queue * nvmeq)1356 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1357 {
1358 struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
1359
1360 spin_lock_irq(&nvmeq->q_lock);
1361 if (hctx && hctx->tags)
1362 blk_mq_tag_busy_iter(hctx, nvme_cancel_queue_ios, nvmeq);
1363 spin_unlock_irq(&nvmeq->q_lock);
1364 }
1365
nvme_disable_queue(struct nvme_dev * dev,int qid)1366 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1367 {
1368 struct nvme_queue *nvmeq = dev->queues[qid];
1369
1370 if (!nvmeq)
1371 return;
1372 if (nvme_suspend_queue(nvmeq))
1373 return;
1374
1375 /* Don't tell the adapter to delete the admin queue.
1376 * Don't tell a removed adapter to delete IO queues. */
1377 if (qid && readl(&dev->bar->csts) != -1) {
1378 adapter_delete_sq(dev, qid);
1379 adapter_delete_cq(dev, qid);
1380 }
1381
1382 spin_lock_irq(&nvmeq->q_lock);
1383 nvme_process_cq(nvmeq);
1384 spin_unlock_irq(&nvmeq->q_lock);
1385 }
1386
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1387 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1388 int depth)
1389 {
1390 struct device *dmadev = &dev->pci_dev->dev;
1391 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1392 if (!nvmeq)
1393 return NULL;
1394
1395 nvmeq->cqes = dma_zalloc_coherent(dmadev, CQ_SIZE(depth),
1396 &nvmeq->cq_dma_addr, GFP_KERNEL);
1397 if (!nvmeq->cqes)
1398 goto free_nvmeq;
1399
1400 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1401 &nvmeq->sq_dma_addr, GFP_KERNEL);
1402 if (!nvmeq->sq_cmds)
1403 goto free_cqdma;
1404
1405 nvmeq->q_dmadev = dmadev;
1406 nvmeq->dev = dev;
1407 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1408 dev->instance, qid);
1409 spin_lock_init(&nvmeq->q_lock);
1410 nvmeq->cq_head = 0;
1411 nvmeq->cq_phase = 1;
1412 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1413 nvmeq->q_depth = depth;
1414 nvmeq->qid = qid;
1415 dev->queue_count++;
1416 dev->queues[qid] = nvmeq;
1417
1418 return nvmeq;
1419
1420 free_cqdma:
1421 dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1422 nvmeq->cq_dma_addr);
1423 free_nvmeq:
1424 kfree(nvmeq);
1425 return NULL;
1426 }
1427
queue_request_irq(struct nvme_dev * dev,struct nvme_queue * nvmeq,const char * name)1428 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1429 const char *name)
1430 {
1431 if (use_threaded_interrupts)
1432 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1433 nvme_irq_check, nvme_irq, IRQF_SHARED,
1434 name, nvmeq);
1435 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1436 IRQF_SHARED, name, nvmeq);
1437 }
1438
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1439 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1440 {
1441 struct nvme_dev *dev = nvmeq->dev;
1442
1443 spin_lock_irq(&nvmeq->q_lock);
1444 nvmeq->sq_tail = 0;
1445 nvmeq->cq_head = 0;
1446 nvmeq->cq_phase = 1;
1447 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1448 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1449 dev->online_queues++;
1450 spin_unlock_irq(&nvmeq->q_lock);
1451 }
1452
nvme_create_queue(struct nvme_queue * nvmeq,int qid)1453 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1454 {
1455 struct nvme_dev *dev = nvmeq->dev;
1456 int result;
1457
1458 nvmeq->cq_vector = qid - 1;
1459 result = adapter_alloc_cq(dev, qid, nvmeq);
1460 if (result < 0)
1461 return result;
1462
1463 result = adapter_alloc_sq(dev, qid, nvmeq);
1464 if (result < 0)
1465 goto release_cq;
1466
1467 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1468 if (result < 0)
1469 goto release_sq;
1470
1471 nvme_init_queue(nvmeq, qid);
1472 return result;
1473
1474 release_sq:
1475 adapter_delete_sq(dev, qid);
1476 release_cq:
1477 adapter_delete_cq(dev, qid);
1478 return result;
1479 }
1480
nvme_wait_ready(struct nvme_dev * dev,u64 cap,bool enabled)1481 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1482 {
1483 unsigned long timeout;
1484 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1485
1486 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1487
1488 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1489 msleep(100);
1490 if (fatal_signal_pending(current))
1491 return -EINTR;
1492 if (time_after(jiffies, timeout)) {
1493 dev_err(&dev->pci_dev->dev,
1494 "Device not ready; aborting %s\n", enabled ?
1495 "initialisation" : "reset");
1496 return -ENODEV;
1497 }
1498 }
1499
1500 return 0;
1501 }
1502
1503 /*
1504 * If the device has been passed off to us in an enabled state, just clear
1505 * the enabled bit. The spec says we should set the 'shutdown notification
1506 * bits', but doing so may cause the device to complete commands to the
1507 * admin queue ... and we don't know what memory that might be pointing at!
1508 */
nvme_disable_ctrl(struct nvme_dev * dev,u64 cap)1509 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1510 {
1511 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1512 dev->ctrl_config &= ~NVME_CC_ENABLE;
1513 writel(dev->ctrl_config, &dev->bar->cc);
1514
1515 return nvme_wait_ready(dev, cap, false);
1516 }
1517
nvme_enable_ctrl(struct nvme_dev * dev,u64 cap)1518 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1519 {
1520 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1521 dev->ctrl_config |= NVME_CC_ENABLE;
1522 writel(dev->ctrl_config, &dev->bar->cc);
1523
1524 return nvme_wait_ready(dev, cap, true);
1525 }
1526
nvme_shutdown_ctrl(struct nvme_dev * dev)1527 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1528 {
1529 unsigned long timeout;
1530
1531 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1532 dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1533
1534 writel(dev->ctrl_config, &dev->bar->cc);
1535
1536 timeout = SHUTDOWN_TIMEOUT + jiffies;
1537 while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1538 NVME_CSTS_SHST_CMPLT) {
1539 msleep(100);
1540 if (fatal_signal_pending(current))
1541 return -EINTR;
1542 if (time_after(jiffies, timeout)) {
1543 dev_err(&dev->pci_dev->dev,
1544 "Device shutdown incomplete; abort shutdown\n");
1545 return -ENODEV;
1546 }
1547 }
1548
1549 return 0;
1550 }
1551
1552 static struct blk_mq_ops nvme_mq_admin_ops = {
1553 .queue_rq = nvme_admin_queue_rq,
1554 .map_queue = blk_mq_map_queue,
1555 .init_hctx = nvme_admin_init_hctx,
1556 .exit_hctx = nvme_exit_hctx,
1557 .init_request = nvme_admin_init_request,
1558 .timeout = nvme_timeout,
1559 };
1560
1561 static struct blk_mq_ops nvme_mq_ops = {
1562 .queue_rq = nvme_queue_rq,
1563 .map_queue = blk_mq_map_queue,
1564 .init_hctx = nvme_init_hctx,
1565 .exit_hctx = nvme_exit_hctx,
1566 .init_request = nvme_init_request,
1567 .timeout = nvme_timeout,
1568 };
1569
nvme_dev_remove_admin(struct nvme_dev * dev)1570 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1571 {
1572 if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1573 blk_cleanup_queue(dev->admin_q);
1574 blk_mq_free_tag_set(&dev->admin_tagset);
1575 }
1576 }
1577
nvme_alloc_admin_tags(struct nvme_dev * dev)1578 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1579 {
1580 if (!dev->admin_q) {
1581 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1582 dev->admin_tagset.nr_hw_queues = 1;
1583 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1584 dev->admin_tagset.reserved_tags = 1;
1585 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1586 dev->admin_tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
1587 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1588 dev->admin_tagset.driver_data = dev;
1589
1590 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1591 return -ENOMEM;
1592
1593 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1594 if (IS_ERR(dev->admin_q)) {
1595 blk_mq_free_tag_set(&dev->admin_tagset);
1596 return -ENOMEM;
1597 }
1598 if (!blk_get_queue(dev->admin_q)) {
1599 nvme_dev_remove_admin(dev);
1600 return -ENODEV;
1601 }
1602 } else
1603 blk_mq_unfreeze_queue(dev->admin_q);
1604
1605 return 0;
1606 }
1607
nvme_configure_admin_queue(struct nvme_dev * dev)1608 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1609 {
1610 int result;
1611 u32 aqa;
1612 u64 cap = readq(&dev->bar->cap);
1613 struct nvme_queue *nvmeq;
1614 unsigned page_shift = PAGE_SHIFT;
1615 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1616 unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1617
1618 if (page_shift < dev_page_min) {
1619 dev_err(&dev->pci_dev->dev,
1620 "Minimum device page size (%u) too large for "
1621 "host (%u)\n", 1 << dev_page_min,
1622 1 << page_shift);
1623 return -ENODEV;
1624 }
1625 if (page_shift > dev_page_max) {
1626 dev_info(&dev->pci_dev->dev,
1627 "Device maximum page size (%u) smaller than "
1628 "host (%u); enabling work-around\n",
1629 1 << dev_page_max, 1 << page_shift);
1630 page_shift = dev_page_max;
1631 }
1632
1633 result = nvme_disable_ctrl(dev, cap);
1634 if (result < 0)
1635 return result;
1636
1637 nvmeq = dev->queues[0];
1638 if (!nvmeq) {
1639 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1640 if (!nvmeq)
1641 return -ENOMEM;
1642 }
1643
1644 aqa = nvmeq->q_depth - 1;
1645 aqa |= aqa << 16;
1646
1647 dev->page_size = 1 << page_shift;
1648
1649 dev->ctrl_config = NVME_CC_CSS_NVM;
1650 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1651 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1652 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1653
1654 writel(aqa, &dev->bar->aqa);
1655 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1656 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1657
1658 result = nvme_enable_ctrl(dev, cap);
1659 if (result)
1660 goto free_nvmeq;
1661
1662 nvmeq->cq_vector = 0;
1663 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1664 if (result)
1665 goto free_nvmeq;
1666
1667 return result;
1668
1669 free_nvmeq:
1670 nvme_free_queues(dev, 0);
1671 return result;
1672 }
1673
nvme_map_user_pages(struct nvme_dev * dev,int write,unsigned long addr,unsigned length)1674 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1675 unsigned long addr, unsigned length)
1676 {
1677 int i, err, count, nents, offset;
1678 struct scatterlist *sg;
1679 struct page **pages;
1680 struct nvme_iod *iod;
1681
1682 if (addr & 3)
1683 return ERR_PTR(-EINVAL);
1684 if (!length || length > INT_MAX - PAGE_SIZE)
1685 return ERR_PTR(-EINVAL);
1686
1687 offset = offset_in_page(addr);
1688 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1689 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1690 if (!pages)
1691 return ERR_PTR(-ENOMEM);
1692
1693 err = get_user_pages_fast(addr, count, 1, pages);
1694 if (err < count) {
1695 count = err;
1696 err = -EFAULT;
1697 goto put_pages;
1698 }
1699
1700 err = -ENOMEM;
1701 iod = __nvme_alloc_iod(count, length, dev, 0, GFP_KERNEL);
1702 if (!iod)
1703 goto put_pages;
1704
1705 sg = iod->sg;
1706 sg_init_table(sg, count);
1707 for (i = 0; i < count; i++) {
1708 sg_set_page(&sg[i], pages[i],
1709 min_t(unsigned, length, PAGE_SIZE - offset),
1710 offset);
1711 length -= (PAGE_SIZE - offset);
1712 offset = 0;
1713 }
1714 sg_mark_end(&sg[i - 1]);
1715 iod->nents = count;
1716
1717 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1718 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1719 if (!nents)
1720 goto free_iod;
1721
1722 kfree(pages);
1723 return iod;
1724
1725 free_iod:
1726 kfree(iod);
1727 put_pages:
1728 for (i = 0; i < count; i++)
1729 put_page(pages[i]);
1730 kfree(pages);
1731 return ERR_PTR(err);
1732 }
1733
nvme_unmap_user_pages(struct nvme_dev * dev,int write,struct nvme_iod * iod)1734 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1735 struct nvme_iod *iod)
1736 {
1737 int i;
1738
1739 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1740 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1741
1742 for (i = 0; i < iod->nents; i++)
1743 put_page(sg_page(&iod->sg[i]));
1744 }
1745
nvme_submit_io(struct nvme_ns * ns,struct nvme_user_io __user * uio)1746 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1747 {
1748 struct nvme_dev *dev = ns->dev;
1749 struct nvme_user_io io;
1750 struct nvme_command c;
1751 unsigned length, meta_len, prp_len;
1752 int status, write;
1753 struct nvme_iod *iod;
1754 dma_addr_t meta_dma = 0;
1755 void *meta = NULL;
1756 void __user *metadata;
1757
1758 if (copy_from_user(&io, uio, sizeof(io)))
1759 return -EFAULT;
1760 length = (io.nblocks + 1) << ns->lba_shift;
1761 meta_len = (io.nblocks + 1) * ns->ms;
1762
1763 if (meta_len && ((io.metadata & 3) || !io.metadata) && !ns->ext)
1764 return -EINVAL;
1765 else if (meta_len && ns->ext) {
1766 length += meta_len;
1767 meta_len = 0;
1768 }
1769
1770 metadata = (void __user *)(unsigned long)io.metadata;
1771
1772 write = io.opcode & 1;
1773
1774 switch (io.opcode) {
1775 case nvme_cmd_write:
1776 case nvme_cmd_read:
1777 case nvme_cmd_compare:
1778 iod = nvme_map_user_pages(dev, write, io.addr, length);
1779 break;
1780 default:
1781 return -EINVAL;
1782 }
1783
1784 if (IS_ERR(iod))
1785 return PTR_ERR(iod);
1786
1787 prp_len = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1788 if (length != prp_len) {
1789 status = -ENOMEM;
1790 goto unmap;
1791 }
1792 if (meta_len) {
1793 meta = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1794 &meta_dma, GFP_KERNEL);
1795
1796 if (!meta) {
1797 status = -ENOMEM;
1798 goto unmap;
1799 }
1800 if (write) {
1801 if (copy_from_user(meta, metadata, meta_len)) {
1802 status = -EFAULT;
1803 goto unmap;
1804 }
1805 }
1806 }
1807
1808 memset(&c, 0, sizeof(c));
1809 c.rw.opcode = io.opcode;
1810 c.rw.flags = io.flags;
1811 c.rw.nsid = cpu_to_le32(ns->ns_id);
1812 c.rw.slba = cpu_to_le64(io.slba);
1813 c.rw.length = cpu_to_le16(io.nblocks);
1814 c.rw.control = cpu_to_le16(io.control);
1815 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1816 c.rw.reftag = cpu_to_le32(io.reftag);
1817 c.rw.apptag = cpu_to_le16(io.apptag);
1818 c.rw.appmask = cpu_to_le16(io.appmask);
1819 c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1820 c.rw.prp2 = cpu_to_le64(iod->first_dma);
1821 c.rw.metadata = cpu_to_le64(meta_dma);
1822 status = nvme_submit_io_cmd(dev, ns, &c, NULL);
1823 unmap:
1824 nvme_unmap_user_pages(dev, write, iod);
1825 nvme_free_iod(dev, iod);
1826 if (meta) {
1827 if (status == NVME_SC_SUCCESS && !write) {
1828 if (copy_to_user(metadata, meta, meta_len))
1829 status = -EFAULT;
1830 }
1831 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta, meta_dma);
1832 }
1833 return status;
1834 }
1835
nvme_user_cmd(struct nvme_dev * dev,struct nvme_ns * ns,struct nvme_passthru_cmd __user * ucmd)1836 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1837 struct nvme_passthru_cmd __user *ucmd)
1838 {
1839 struct nvme_passthru_cmd cmd;
1840 struct nvme_command c;
1841 int status, length;
1842 struct nvme_iod *uninitialized_var(iod);
1843 unsigned timeout;
1844
1845 if (!capable(CAP_SYS_ADMIN))
1846 return -EACCES;
1847 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1848 return -EFAULT;
1849
1850 memset(&c, 0, sizeof(c));
1851 c.common.opcode = cmd.opcode;
1852 c.common.flags = cmd.flags;
1853 c.common.nsid = cpu_to_le32(cmd.nsid);
1854 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1855 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1856 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1857 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1858 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1859 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1860 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1861 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1862
1863 length = cmd.data_len;
1864 if (cmd.data_len) {
1865 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1866 length);
1867 if (IS_ERR(iod))
1868 return PTR_ERR(iod);
1869 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1870 c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1871 c.common.prp2 = cpu_to_le64(iod->first_dma);
1872 }
1873
1874 timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1875 ADMIN_TIMEOUT;
1876
1877 if (length != cmd.data_len)
1878 status = -ENOMEM;
1879 else if (ns) {
1880 struct request *req;
1881
1882 req = blk_mq_alloc_request(ns->queue, WRITE,
1883 (GFP_KERNEL|__GFP_WAIT), false);
1884 if (IS_ERR(req))
1885 status = PTR_ERR(req);
1886 else {
1887 status = nvme_submit_sync_cmd(req, &c, &cmd.result,
1888 timeout);
1889 blk_mq_free_request(req);
1890 }
1891 } else
1892 status = __nvme_submit_admin_cmd(dev, &c, &cmd.result, timeout);
1893
1894 if (cmd.data_len) {
1895 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1896 nvme_free_iod(dev, iod);
1897 }
1898
1899 if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1900 sizeof(cmd.result)))
1901 status = -EFAULT;
1902
1903 return status;
1904 }
1905
nvme_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1906 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1907 unsigned long arg)
1908 {
1909 struct nvme_ns *ns = bdev->bd_disk->private_data;
1910
1911 switch (cmd) {
1912 case NVME_IOCTL_ID:
1913 force_successful_syscall_return();
1914 return ns->ns_id;
1915 case NVME_IOCTL_ADMIN_CMD:
1916 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1917 case NVME_IOCTL_IO_CMD:
1918 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1919 case NVME_IOCTL_SUBMIT_IO:
1920 return nvme_submit_io(ns, (void __user *)arg);
1921 case SG_GET_VERSION_NUM:
1922 return nvme_sg_get_version_num((void __user *)arg);
1923 case SG_IO:
1924 return nvme_sg_io(ns, (void __user *)arg);
1925 default:
1926 return -ENOTTY;
1927 }
1928 }
1929
1930 #ifdef CONFIG_COMPAT
nvme_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1931 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1932 unsigned int cmd, unsigned long arg)
1933 {
1934 switch (cmd) {
1935 case SG_IO:
1936 return -ENOIOCTLCMD;
1937 }
1938 return nvme_ioctl(bdev, mode, cmd, arg);
1939 }
1940 #else
1941 #define nvme_compat_ioctl NULL
1942 #endif
1943
nvme_open(struct block_device * bdev,fmode_t mode)1944 static int nvme_open(struct block_device *bdev, fmode_t mode)
1945 {
1946 int ret = 0;
1947 struct nvme_ns *ns;
1948
1949 spin_lock(&dev_list_lock);
1950 ns = bdev->bd_disk->private_data;
1951 if (!ns)
1952 ret = -ENXIO;
1953 else if (!kref_get_unless_zero(&ns->dev->kref))
1954 ret = -ENXIO;
1955 spin_unlock(&dev_list_lock);
1956
1957 return ret;
1958 }
1959
1960 static void nvme_free_dev(struct kref *kref);
1961
nvme_release(struct gendisk * disk,fmode_t mode)1962 static void nvme_release(struct gendisk *disk, fmode_t mode)
1963 {
1964 struct nvme_ns *ns = disk->private_data;
1965 struct nvme_dev *dev = ns->dev;
1966
1967 kref_put(&dev->kref, nvme_free_dev);
1968 }
1969
nvme_getgeo(struct block_device * bd,struct hd_geometry * geo)1970 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1971 {
1972 /* some standard values */
1973 geo->heads = 1 << 6;
1974 geo->sectors = 1 << 5;
1975 geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1976 return 0;
1977 }
1978
nvme_config_discard(struct nvme_ns * ns)1979 static void nvme_config_discard(struct nvme_ns *ns)
1980 {
1981 u32 logical_block_size = queue_logical_block_size(ns->queue);
1982 ns->queue->limits.discard_zeroes_data = 0;
1983 ns->queue->limits.discard_alignment = logical_block_size;
1984 ns->queue->limits.discard_granularity = logical_block_size;
1985 ns->queue->limits.max_discard_sectors = 0xffffffff;
1986 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1987 }
1988
nvme_revalidate_disk(struct gendisk * disk)1989 static int nvme_revalidate_disk(struct gendisk *disk)
1990 {
1991 struct nvme_ns *ns = disk->private_data;
1992 struct nvme_dev *dev = ns->dev;
1993 struct nvme_id_ns *id;
1994 dma_addr_t dma_addr;
1995 u8 lbaf, pi_type;
1996 u16 old_ms;
1997 unsigned short bs;
1998
1999 id = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
2000 GFP_KERNEL);
2001 if (!id) {
2002 dev_warn(&dev->pci_dev->dev, "%s: Memory alocation failure\n",
2003 __func__);
2004 return 0;
2005 }
2006 if (nvme_identify(dev, ns->ns_id, 0, dma_addr)) {
2007 dev_warn(&dev->pci_dev->dev,
2008 "identify failed ns:%d, setting capacity to 0\n",
2009 ns->ns_id);
2010 memset(id, 0, sizeof(*id));
2011 }
2012
2013 old_ms = ns->ms;
2014 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2015 ns->lba_shift = id->lbaf[lbaf].ds;
2016 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
2017 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
2018
2019 /*
2020 * If identify namespace failed, use default 512 byte block size so
2021 * block layer can use before failing read/write for 0 capacity.
2022 */
2023 if (ns->lba_shift == 0)
2024 ns->lba_shift = 9;
2025 bs = 1 << ns->lba_shift;
2026
2027 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
2028 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2029 id->dps & NVME_NS_DPS_PI_MASK : 0;
2030
2031 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
2032 ns->ms != old_ms ||
2033 bs != queue_logical_block_size(disk->queue) ||
2034 (ns->ms && ns->ext)))
2035 blk_integrity_unregister(disk);
2036
2037 ns->pi_type = pi_type;
2038 blk_queue_logical_block_size(ns->queue, bs);
2039
2040 if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
2041 !ns->ext)
2042 nvme_init_integrity(ns);
2043
2044 if (id->ncap == 0 || (ns->ms && !blk_get_integrity(disk)))
2045 set_capacity(disk, 0);
2046 else
2047 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2048
2049 if (dev->oncs & NVME_CTRL_ONCS_DSM)
2050 nvme_config_discard(ns);
2051
2052 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
2053 return 0;
2054 }
2055
2056 static const struct block_device_operations nvme_fops = {
2057 .owner = THIS_MODULE,
2058 .ioctl = nvme_ioctl,
2059 .compat_ioctl = nvme_compat_ioctl,
2060 .open = nvme_open,
2061 .release = nvme_release,
2062 .getgeo = nvme_getgeo,
2063 .revalidate_disk= nvme_revalidate_disk,
2064 };
2065
nvme_kthread(void * data)2066 static int nvme_kthread(void *data)
2067 {
2068 struct nvme_dev *dev, *next;
2069
2070 while (!kthread_should_stop()) {
2071 set_current_state(TASK_INTERRUPTIBLE);
2072 spin_lock(&dev_list_lock);
2073 list_for_each_entry_safe(dev, next, &dev_list, node) {
2074 int i;
2075 if (readl(&dev->bar->csts) & NVME_CSTS_CFS) {
2076 if (work_busy(&dev->reset_work))
2077 continue;
2078 list_del_init(&dev->node);
2079 dev_warn(&dev->pci_dev->dev,
2080 "Failed status: %x, reset controller\n",
2081 readl(&dev->bar->csts));
2082 dev->reset_workfn = nvme_reset_failed_dev;
2083 queue_work(nvme_workq, &dev->reset_work);
2084 continue;
2085 }
2086 for (i = 0; i < dev->queue_count; i++) {
2087 struct nvme_queue *nvmeq = dev->queues[i];
2088 if (!nvmeq)
2089 continue;
2090 spin_lock_irq(&nvmeq->q_lock);
2091 nvme_process_cq(nvmeq);
2092
2093 while ((i == 0) && (dev->event_limit > 0)) {
2094 if (nvme_submit_async_admin_req(dev))
2095 break;
2096 dev->event_limit--;
2097 }
2098 spin_unlock_irq(&nvmeq->q_lock);
2099 }
2100 }
2101 spin_unlock(&dev_list_lock);
2102 schedule_timeout(round_jiffies_relative(HZ));
2103 }
2104 return 0;
2105 }
2106
nvme_alloc_ns(struct nvme_dev * dev,unsigned nsid)2107 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2108 {
2109 struct nvme_ns *ns;
2110 struct gendisk *disk;
2111 int node = dev_to_node(&dev->pci_dev->dev);
2112
2113 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2114 if (!ns)
2115 return;
2116
2117 ns->queue = blk_mq_init_queue(&dev->tagset);
2118 if (IS_ERR(ns->queue))
2119 goto out_free_ns;
2120 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2121 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2122 queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
2123 ns->dev = dev;
2124 ns->queue->queuedata = ns;
2125
2126 disk = alloc_disk_node(0, node);
2127 if (!disk)
2128 goto out_free_queue;
2129
2130 ns->ns_id = nsid;
2131 ns->disk = disk;
2132 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2133 list_add_tail(&ns->list, &dev->namespaces);
2134
2135 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2136 if (dev->max_hw_sectors)
2137 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2138 if (dev->stripe_size)
2139 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2140 if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2141 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2142
2143 disk->major = nvme_major;
2144 disk->first_minor = 0;
2145 disk->fops = &nvme_fops;
2146 disk->private_data = ns;
2147 disk->queue = ns->queue;
2148 disk->driverfs_dev = dev->device;
2149 disk->flags = GENHD_FL_EXT_DEVT;
2150 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2151
2152 /*
2153 * Initialize capacity to 0 until we establish the namespace format and
2154 * setup integrity extentions if necessary. The revalidate_disk after
2155 * add_disk allows the driver to register with integrity if the format
2156 * requires it.
2157 */
2158 set_capacity(disk, 0);
2159 nvme_revalidate_disk(ns->disk);
2160 add_disk(ns->disk);
2161 if (ns->ms)
2162 revalidate_disk(ns->disk);
2163 return;
2164 out_free_queue:
2165 blk_cleanup_queue(ns->queue);
2166 out_free_ns:
2167 kfree(ns);
2168 }
2169
nvme_create_io_queues(struct nvme_dev * dev)2170 static void nvme_create_io_queues(struct nvme_dev *dev)
2171 {
2172 unsigned i;
2173
2174 for (i = dev->queue_count; i <= dev->max_qid; i++)
2175 if (!nvme_alloc_queue(dev, i, dev->q_depth))
2176 break;
2177
2178 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2179 if (nvme_create_queue(dev->queues[i], i))
2180 break;
2181 }
2182
set_queue_count(struct nvme_dev * dev,int count)2183 static int set_queue_count(struct nvme_dev *dev, int count)
2184 {
2185 int status;
2186 u32 result;
2187 u32 q_count = (count - 1) | ((count - 1) << 16);
2188
2189 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2190 &result);
2191 if (status < 0)
2192 return status;
2193 if (status > 0) {
2194 dev_err(&dev->pci_dev->dev, "Could not set queue count (%d)\n",
2195 status);
2196 return 0;
2197 }
2198 return min(result & 0xffff, result >> 16) + 1;
2199 }
2200
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)2201 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2202 {
2203 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2204 }
2205
nvme_setup_io_queues(struct nvme_dev * dev)2206 static int nvme_setup_io_queues(struct nvme_dev *dev)
2207 {
2208 struct nvme_queue *adminq = dev->queues[0];
2209 struct pci_dev *pdev = dev->pci_dev;
2210 int result, i, vecs, nr_io_queues, size;
2211
2212 nr_io_queues = num_possible_cpus();
2213 result = set_queue_count(dev, nr_io_queues);
2214 if (result <= 0)
2215 return result;
2216 if (result < nr_io_queues)
2217 nr_io_queues = result;
2218
2219 size = db_bar_size(dev, nr_io_queues);
2220 if (size > 8192) {
2221 iounmap(dev->bar);
2222 do {
2223 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2224 if (dev->bar)
2225 break;
2226 if (!--nr_io_queues)
2227 return -ENOMEM;
2228 size = db_bar_size(dev, nr_io_queues);
2229 } while (1);
2230 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2231 adminq->q_db = dev->dbs;
2232 }
2233
2234 /* Deregister the admin queue's interrupt */
2235 free_irq(dev->entry[0].vector, adminq);
2236
2237 /*
2238 * If we enable msix early due to not intx, disable it again before
2239 * setting up the full range we need.
2240 */
2241 if (!pdev->irq)
2242 pci_disable_msix(pdev);
2243
2244 for (i = 0; i < nr_io_queues; i++)
2245 dev->entry[i].entry = i;
2246 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2247 if (vecs < 0) {
2248 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2249 if (vecs < 0) {
2250 vecs = 1;
2251 } else {
2252 for (i = 0; i < vecs; i++)
2253 dev->entry[i].vector = i + pdev->irq;
2254 }
2255 }
2256
2257 /*
2258 * Should investigate if there's a performance win from allocating
2259 * more queues than interrupt vectors; it might allow the submission
2260 * path to scale better, even if the receive path is limited by the
2261 * number of interrupts.
2262 */
2263 nr_io_queues = vecs;
2264 dev->max_qid = nr_io_queues;
2265
2266 result = queue_request_irq(dev, adminq, adminq->irqname);
2267 if (result)
2268 goto free_queues;
2269
2270 /* Free previously allocated queues that are no longer usable */
2271 nvme_free_queues(dev, nr_io_queues + 1);
2272 nvme_create_io_queues(dev);
2273
2274 return 0;
2275
2276 free_queues:
2277 nvme_free_queues(dev, 1);
2278 return result;
2279 }
2280
2281 /*
2282 * Return: error value if an error occurred setting up the queues or calling
2283 * Identify Device. 0 if these succeeded, even if adding some of the
2284 * namespaces failed. At the moment, these failures are silent. TBD which
2285 * failures should be reported.
2286 */
nvme_dev_add(struct nvme_dev * dev)2287 static int nvme_dev_add(struct nvme_dev *dev)
2288 {
2289 struct pci_dev *pdev = dev->pci_dev;
2290 int res;
2291 unsigned nn, i;
2292 struct nvme_id_ctrl *ctrl;
2293 void *mem;
2294 dma_addr_t dma_addr;
2295 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2296
2297 mem = dma_alloc_coherent(&pdev->dev, 4096, &dma_addr, GFP_KERNEL);
2298 if (!mem)
2299 return -ENOMEM;
2300
2301 res = nvme_identify(dev, 0, 1, dma_addr);
2302 if (res) {
2303 dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
2304 dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
2305 return -EIO;
2306 }
2307
2308 ctrl = mem;
2309 nn = le32_to_cpup(&ctrl->nn);
2310 dev->oncs = le16_to_cpup(&ctrl->oncs);
2311 dev->abort_limit = ctrl->acl + 1;
2312 dev->vwc = ctrl->vwc;
2313 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2314 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2315 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2316 if (ctrl->mdts)
2317 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2318 if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2319 (pdev->device == 0x0953) && ctrl->vs[3]) {
2320 unsigned int max_hw_sectors;
2321
2322 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2323 max_hw_sectors = dev->stripe_size >> (shift - 9);
2324 if (dev->max_hw_sectors) {
2325 dev->max_hw_sectors = min(max_hw_sectors,
2326 dev->max_hw_sectors);
2327 } else
2328 dev->max_hw_sectors = max_hw_sectors;
2329 }
2330 dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
2331
2332 dev->tagset.ops = &nvme_mq_ops;
2333 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2334 dev->tagset.timeout = NVME_IO_TIMEOUT;
2335 dev->tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
2336 dev->tagset.queue_depth =
2337 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2338 dev->tagset.cmd_size = nvme_cmd_size(dev);
2339 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2340 dev->tagset.driver_data = dev;
2341
2342 if (blk_mq_alloc_tag_set(&dev->tagset))
2343 return 0;
2344
2345 for (i = 1; i <= nn; i++)
2346 nvme_alloc_ns(dev, i);
2347
2348 return 0;
2349 }
2350
nvme_dev_map(struct nvme_dev * dev)2351 static int nvme_dev_map(struct nvme_dev *dev)
2352 {
2353 u64 cap;
2354 int bars, result = -ENOMEM;
2355 struct pci_dev *pdev = dev->pci_dev;
2356
2357 if (pci_enable_device_mem(pdev))
2358 return result;
2359
2360 dev->entry[0].vector = pdev->irq;
2361 pci_set_master(pdev);
2362 bars = pci_select_bars(pdev, IORESOURCE_MEM);
2363 if (!bars)
2364 goto disable_pci;
2365
2366 if (pci_request_selected_regions(pdev, bars, "nvme"))
2367 goto disable_pci;
2368
2369 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2370 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2371 goto disable;
2372
2373 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2374 if (!dev->bar)
2375 goto disable;
2376
2377 if (readl(&dev->bar->csts) == -1) {
2378 result = -ENODEV;
2379 goto unmap;
2380 }
2381
2382 /*
2383 * Some devices don't advertse INTx interrupts, pre-enable a single
2384 * MSIX vec for setup. We'll adjust this later.
2385 */
2386 if (!pdev->irq) {
2387 result = pci_enable_msix(pdev, dev->entry, 1);
2388 if (result < 0)
2389 goto unmap;
2390 }
2391
2392 cap = readq(&dev->bar->cap);
2393 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2394 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2395 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2396
2397 return 0;
2398
2399 unmap:
2400 iounmap(dev->bar);
2401 dev->bar = NULL;
2402 disable:
2403 pci_release_regions(pdev);
2404 disable_pci:
2405 pci_disable_device(pdev);
2406 return result;
2407 }
2408
nvme_dev_unmap(struct nvme_dev * dev)2409 static void nvme_dev_unmap(struct nvme_dev *dev)
2410 {
2411 if (dev->pci_dev->msi_enabled)
2412 pci_disable_msi(dev->pci_dev);
2413 else if (dev->pci_dev->msix_enabled)
2414 pci_disable_msix(dev->pci_dev);
2415
2416 if (dev->bar) {
2417 iounmap(dev->bar);
2418 dev->bar = NULL;
2419 pci_release_regions(dev->pci_dev);
2420 }
2421
2422 if (pci_is_enabled(dev->pci_dev))
2423 pci_disable_device(dev->pci_dev);
2424 }
2425
2426 struct nvme_delq_ctx {
2427 struct task_struct *waiter;
2428 struct kthread_worker *worker;
2429 atomic_t refcount;
2430 };
2431
nvme_wait_dq(struct nvme_delq_ctx * dq,struct nvme_dev * dev)2432 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2433 {
2434 dq->waiter = current;
2435 mb();
2436
2437 for (;;) {
2438 set_current_state(TASK_KILLABLE);
2439 if (!atomic_read(&dq->refcount))
2440 break;
2441 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2442 fatal_signal_pending(current)) {
2443 /*
2444 * Disable the controller first since we can't trust it
2445 * at this point, but leave the admin queue enabled
2446 * until all queue deletion requests are flushed.
2447 * FIXME: This may take a while if there are more h/w
2448 * queues than admin tags.
2449 */
2450 set_current_state(TASK_RUNNING);
2451 nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2452 nvme_clear_queue(dev->queues[0]);
2453 flush_kthread_worker(dq->worker);
2454 nvme_disable_queue(dev, 0);
2455 return;
2456 }
2457 }
2458 set_current_state(TASK_RUNNING);
2459 }
2460
nvme_put_dq(struct nvme_delq_ctx * dq)2461 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2462 {
2463 atomic_dec(&dq->refcount);
2464 if (dq->waiter)
2465 wake_up_process(dq->waiter);
2466 }
2467
nvme_get_dq(struct nvme_delq_ctx * dq)2468 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2469 {
2470 atomic_inc(&dq->refcount);
2471 return dq;
2472 }
2473
nvme_del_queue_end(struct nvme_queue * nvmeq)2474 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2475 {
2476 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2477 nvme_put_dq(dq);
2478 }
2479
adapter_async_del_queue(struct nvme_queue * nvmeq,u8 opcode,kthread_work_func_t fn)2480 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2481 kthread_work_func_t fn)
2482 {
2483 struct nvme_command c;
2484
2485 memset(&c, 0, sizeof(c));
2486 c.delete_queue.opcode = opcode;
2487 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2488
2489 init_kthread_work(&nvmeq->cmdinfo.work, fn);
2490 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2491 ADMIN_TIMEOUT);
2492 }
2493
nvme_del_cq_work_handler(struct kthread_work * work)2494 static void nvme_del_cq_work_handler(struct kthread_work *work)
2495 {
2496 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2497 cmdinfo.work);
2498 nvme_del_queue_end(nvmeq);
2499 }
2500
nvme_delete_cq(struct nvme_queue * nvmeq)2501 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2502 {
2503 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2504 nvme_del_cq_work_handler);
2505 }
2506
nvme_del_sq_work_handler(struct kthread_work * work)2507 static void nvme_del_sq_work_handler(struct kthread_work *work)
2508 {
2509 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2510 cmdinfo.work);
2511 int status = nvmeq->cmdinfo.status;
2512
2513 if (!status)
2514 status = nvme_delete_cq(nvmeq);
2515 if (status)
2516 nvme_del_queue_end(nvmeq);
2517 }
2518
nvme_delete_sq(struct nvme_queue * nvmeq)2519 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2520 {
2521 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2522 nvme_del_sq_work_handler);
2523 }
2524
nvme_del_queue_start(struct kthread_work * work)2525 static void nvme_del_queue_start(struct kthread_work *work)
2526 {
2527 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2528 cmdinfo.work);
2529 if (nvme_delete_sq(nvmeq))
2530 nvme_del_queue_end(nvmeq);
2531 }
2532
nvme_disable_io_queues(struct nvme_dev * dev)2533 static void nvme_disable_io_queues(struct nvme_dev *dev)
2534 {
2535 int i;
2536 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2537 struct nvme_delq_ctx dq;
2538 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2539 &worker, "nvme%d", dev->instance);
2540
2541 if (IS_ERR(kworker_task)) {
2542 dev_err(&dev->pci_dev->dev,
2543 "Failed to create queue del task\n");
2544 for (i = dev->queue_count - 1; i > 0; i--)
2545 nvme_disable_queue(dev, i);
2546 return;
2547 }
2548
2549 dq.waiter = NULL;
2550 atomic_set(&dq.refcount, 0);
2551 dq.worker = &worker;
2552 for (i = dev->queue_count - 1; i > 0; i--) {
2553 struct nvme_queue *nvmeq = dev->queues[i];
2554
2555 if (nvme_suspend_queue(nvmeq))
2556 continue;
2557 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2558 nvmeq->cmdinfo.worker = dq.worker;
2559 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2560 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2561 }
2562 nvme_wait_dq(&dq, dev);
2563 kthread_stop(kworker_task);
2564 }
2565
2566 /*
2567 * Remove the node from the device list and check
2568 * for whether or not we need to stop the nvme_thread.
2569 */
nvme_dev_list_remove(struct nvme_dev * dev)2570 static void nvme_dev_list_remove(struct nvme_dev *dev)
2571 {
2572 struct task_struct *tmp = NULL;
2573
2574 spin_lock(&dev_list_lock);
2575 list_del_init(&dev->node);
2576 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2577 tmp = nvme_thread;
2578 nvme_thread = NULL;
2579 }
2580 spin_unlock(&dev_list_lock);
2581
2582 if (tmp)
2583 kthread_stop(tmp);
2584 }
2585
nvme_freeze_queues(struct nvme_dev * dev)2586 static void nvme_freeze_queues(struct nvme_dev *dev)
2587 {
2588 struct nvme_ns *ns;
2589
2590 list_for_each_entry(ns, &dev->namespaces, list) {
2591 blk_mq_freeze_queue_start(ns->queue);
2592
2593 spin_lock(ns->queue->queue_lock);
2594 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2595 spin_unlock(ns->queue->queue_lock);
2596
2597 blk_mq_cancel_requeue_work(ns->queue);
2598 blk_mq_stop_hw_queues(ns->queue);
2599 }
2600 }
2601
nvme_unfreeze_queues(struct nvme_dev * dev)2602 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2603 {
2604 struct nvme_ns *ns;
2605
2606 list_for_each_entry(ns, &dev->namespaces, list) {
2607 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2608 blk_mq_unfreeze_queue(ns->queue);
2609 blk_mq_start_stopped_hw_queues(ns->queue, true);
2610 blk_mq_kick_requeue_list(ns->queue);
2611 }
2612 }
2613
nvme_dev_shutdown(struct nvme_dev * dev)2614 static void nvme_dev_shutdown(struct nvme_dev *dev)
2615 {
2616 int i;
2617 u32 csts = -1;
2618
2619 nvme_dev_list_remove(dev);
2620
2621 if (dev->bar) {
2622 nvme_freeze_queues(dev);
2623 csts = readl(&dev->bar->csts);
2624 }
2625 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2626 for (i = dev->queue_count - 1; i >= 0; i--) {
2627 struct nvme_queue *nvmeq = dev->queues[i];
2628 nvme_suspend_queue(nvmeq);
2629 }
2630 } else {
2631 nvme_disable_io_queues(dev);
2632 nvme_shutdown_ctrl(dev);
2633 nvme_disable_queue(dev, 0);
2634 }
2635 nvme_dev_unmap(dev);
2636
2637 for (i = dev->queue_count - 1; i >= 0; i--)
2638 nvme_clear_queue(dev->queues[i]);
2639 }
2640
nvme_dev_remove(struct nvme_dev * dev)2641 static void nvme_dev_remove(struct nvme_dev *dev)
2642 {
2643 struct nvme_ns *ns;
2644
2645 list_for_each_entry(ns, &dev->namespaces, list) {
2646 if (ns->disk->flags & GENHD_FL_UP) {
2647 if (blk_get_integrity(ns->disk))
2648 blk_integrity_unregister(ns->disk);
2649 del_gendisk(ns->disk);
2650 }
2651 if (!blk_queue_dying(ns->queue)) {
2652 blk_mq_abort_requeue_list(ns->queue);
2653 blk_cleanup_queue(ns->queue);
2654 }
2655 }
2656 }
2657
nvme_setup_prp_pools(struct nvme_dev * dev)2658 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2659 {
2660 struct device *dmadev = &dev->pci_dev->dev;
2661 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2662 PAGE_SIZE, PAGE_SIZE, 0);
2663 if (!dev->prp_page_pool)
2664 return -ENOMEM;
2665
2666 /* Optimisation for I/Os between 4k and 128k */
2667 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2668 256, 256, 0);
2669 if (!dev->prp_small_pool) {
2670 dma_pool_destroy(dev->prp_page_pool);
2671 return -ENOMEM;
2672 }
2673 return 0;
2674 }
2675
nvme_release_prp_pools(struct nvme_dev * dev)2676 static void nvme_release_prp_pools(struct nvme_dev *dev)
2677 {
2678 dma_pool_destroy(dev->prp_page_pool);
2679 dma_pool_destroy(dev->prp_small_pool);
2680 }
2681
2682 static DEFINE_IDA(nvme_instance_ida);
2683
nvme_set_instance(struct nvme_dev * dev)2684 static int nvme_set_instance(struct nvme_dev *dev)
2685 {
2686 int instance, error;
2687
2688 do {
2689 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2690 return -ENODEV;
2691
2692 spin_lock(&dev_list_lock);
2693 error = ida_get_new(&nvme_instance_ida, &instance);
2694 spin_unlock(&dev_list_lock);
2695 } while (error == -EAGAIN);
2696
2697 if (error)
2698 return -ENODEV;
2699
2700 dev->instance = instance;
2701 return 0;
2702 }
2703
nvme_release_instance(struct nvme_dev * dev)2704 static void nvme_release_instance(struct nvme_dev *dev)
2705 {
2706 spin_lock(&dev_list_lock);
2707 ida_remove(&nvme_instance_ida, dev->instance);
2708 spin_unlock(&dev_list_lock);
2709 }
2710
nvme_free_namespaces(struct nvme_dev * dev)2711 static void nvme_free_namespaces(struct nvme_dev *dev)
2712 {
2713 struct nvme_ns *ns, *next;
2714
2715 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2716 list_del(&ns->list);
2717
2718 spin_lock(&dev_list_lock);
2719 ns->disk->private_data = NULL;
2720 spin_unlock(&dev_list_lock);
2721
2722 put_disk(ns->disk);
2723 kfree(ns);
2724 }
2725 }
2726
nvme_free_dev(struct kref * kref)2727 static void nvme_free_dev(struct kref *kref)
2728 {
2729 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2730
2731 pci_dev_put(dev->pci_dev);
2732 put_device(dev->device);
2733 nvme_free_namespaces(dev);
2734 nvme_release_instance(dev);
2735 blk_mq_free_tag_set(&dev->tagset);
2736 blk_put_queue(dev->admin_q);
2737 kfree(dev->queues);
2738 kfree(dev->entry);
2739 kfree(dev);
2740 }
2741
nvme_dev_open(struct inode * inode,struct file * f)2742 static int nvme_dev_open(struct inode *inode, struct file *f)
2743 {
2744 struct nvme_dev *dev;
2745 int instance = iminor(inode);
2746 int ret = -ENODEV;
2747
2748 spin_lock(&dev_list_lock);
2749 list_for_each_entry(dev, &dev_list, node) {
2750 if (dev->instance == instance) {
2751 if (!dev->admin_q) {
2752 ret = -EWOULDBLOCK;
2753 break;
2754 }
2755 if (!kref_get_unless_zero(&dev->kref))
2756 break;
2757 f->private_data = dev;
2758 ret = 0;
2759 break;
2760 }
2761 }
2762 spin_unlock(&dev_list_lock);
2763
2764 return ret;
2765 }
2766
nvme_dev_release(struct inode * inode,struct file * f)2767 static int nvme_dev_release(struct inode *inode, struct file *f)
2768 {
2769 struct nvme_dev *dev = f->private_data;
2770 kref_put(&dev->kref, nvme_free_dev);
2771 return 0;
2772 }
2773
nvme_dev_ioctl(struct file * f,unsigned int cmd,unsigned long arg)2774 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2775 {
2776 struct nvme_dev *dev = f->private_data;
2777 struct nvme_ns *ns;
2778
2779 switch (cmd) {
2780 case NVME_IOCTL_ADMIN_CMD:
2781 return nvme_user_cmd(dev, NULL, (void __user *)arg);
2782 case NVME_IOCTL_IO_CMD:
2783 if (list_empty(&dev->namespaces))
2784 return -ENOTTY;
2785 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2786 return nvme_user_cmd(dev, ns, (void __user *)arg);
2787 default:
2788 return -ENOTTY;
2789 }
2790 }
2791
2792 static const struct file_operations nvme_dev_fops = {
2793 .owner = THIS_MODULE,
2794 .open = nvme_dev_open,
2795 .release = nvme_dev_release,
2796 .unlocked_ioctl = nvme_dev_ioctl,
2797 .compat_ioctl = nvme_dev_ioctl,
2798 };
2799
nvme_set_irq_hints(struct nvme_dev * dev)2800 static void nvme_set_irq_hints(struct nvme_dev *dev)
2801 {
2802 struct nvme_queue *nvmeq;
2803 int i;
2804
2805 for (i = 0; i < dev->online_queues; i++) {
2806 nvmeq = dev->queues[i];
2807
2808 if (!nvmeq->hctx)
2809 continue;
2810
2811 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2812 nvmeq->hctx->cpumask);
2813 }
2814 }
2815
nvme_dev_start(struct nvme_dev * dev)2816 static int nvme_dev_start(struct nvme_dev *dev)
2817 {
2818 int result;
2819 bool start_thread = false;
2820
2821 result = nvme_dev_map(dev);
2822 if (result)
2823 return result;
2824
2825 result = nvme_configure_admin_queue(dev);
2826 if (result)
2827 goto unmap;
2828
2829 spin_lock(&dev_list_lock);
2830 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2831 start_thread = true;
2832 nvme_thread = NULL;
2833 }
2834 list_add(&dev->node, &dev_list);
2835 spin_unlock(&dev_list_lock);
2836
2837 if (start_thread) {
2838 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2839 wake_up_all(&nvme_kthread_wait);
2840 } else
2841 wait_event_killable(nvme_kthread_wait, nvme_thread);
2842
2843 if (IS_ERR_OR_NULL(nvme_thread)) {
2844 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2845 goto disable;
2846 }
2847
2848 nvme_init_queue(dev->queues[0], 0);
2849 result = nvme_alloc_admin_tags(dev);
2850 if (result)
2851 goto disable;
2852
2853 result = nvme_setup_io_queues(dev);
2854 if (result)
2855 goto free_tags;
2856
2857 nvme_set_irq_hints(dev);
2858
2859 dev->event_limit = 1;
2860 return result;
2861
2862 free_tags:
2863 nvme_dev_remove_admin(dev);
2864 disable:
2865 nvme_disable_queue(dev, 0);
2866 nvme_dev_list_remove(dev);
2867 unmap:
2868 nvme_dev_unmap(dev);
2869 return result;
2870 }
2871
nvme_remove_dead_ctrl(void * arg)2872 static int nvme_remove_dead_ctrl(void *arg)
2873 {
2874 struct nvme_dev *dev = (struct nvme_dev *)arg;
2875 struct pci_dev *pdev = dev->pci_dev;
2876
2877 if (pci_get_drvdata(pdev))
2878 pci_stop_and_remove_bus_device_locked(pdev);
2879 kref_put(&dev->kref, nvme_free_dev);
2880 return 0;
2881 }
2882
nvme_remove_disks(struct work_struct * ws)2883 static void nvme_remove_disks(struct work_struct *ws)
2884 {
2885 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2886
2887 nvme_free_queues(dev, 1);
2888 nvme_dev_remove(dev);
2889 }
2890
nvme_dev_resume(struct nvme_dev * dev)2891 static int nvme_dev_resume(struct nvme_dev *dev)
2892 {
2893 int ret;
2894
2895 ret = nvme_dev_start(dev);
2896 if (ret)
2897 return ret;
2898 if (dev->online_queues < 2) {
2899 spin_lock(&dev_list_lock);
2900 dev->reset_workfn = nvme_remove_disks;
2901 queue_work(nvme_workq, &dev->reset_work);
2902 spin_unlock(&dev_list_lock);
2903 } else {
2904 nvme_unfreeze_queues(dev);
2905 nvme_set_irq_hints(dev);
2906 }
2907 return 0;
2908 }
2909
nvme_dev_reset(struct nvme_dev * dev)2910 static void nvme_dev_reset(struct nvme_dev *dev)
2911 {
2912 nvme_dev_shutdown(dev);
2913 if (nvme_dev_resume(dev)) {
2914 dev_warn(&dev->pci_dev->dev, "Device failed to resume\n");
2915 kref_get(&dev->kref);
2916 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2917 dev->instance))) {
2918 dev_err(&dev->pci_dev->dev,
2919 "Failed to start controller remove task\n");
2920 kref_put(&dev->kref, nvme_free_dev);
2921 }
2922 }
2923 }
2924
nvme_reset_failed_dev(struct work_struct * ws)2925 static void nvme_reset_failed_dev(struct work_struct *ws)
2926 {
2927 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2928 nvme_dev_reset(dev);
2929 }
2930
nvme_reset_workfn(struct work_struct * work)2931 static void nvme_reset_workfn(struct work_struct *work)
2932 {
2933 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2934 dev->reset_workfn(work);
2935 }
2936
2937 static void nvme_async_probe(struct work_struct *work);
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)2938 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2939 {
2940 int node, result = -ENOMEM;
2941 struct nvme_dev *dev;
2942
2943 node = dev_to_node(&pdev->dev);
2944 if (node == NUMA_NO_NODE)
2945 set_dev_node(&pdev->dev, 0);
2946
2947 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2948 if (!dev)
2949 return -ENOMEM;
2950 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2951 GFP_KERNEL, node);
2952 if (!dev->entry)
2953 goto free;
2954 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2955 GFP_KERNEL, node);
2956 if (!dev->queues)
2957 goto free;
2958
2959 INIT_LIST_HEAD(&dev->namespaces);
2960 dev->reset_workfn = nvme_reset_failed_dev;
2961 INIT_WORK(&dev->reset_work, nvme_reset_workfn);
2962 dev->pci_dev = pci_dev_get(pdev);
2963 pci_set_drvdata(pdev, dev);
2964 result = nvme_set_instance(dev);
2965 if (result)
2966 goto put_pci;
2967
2968 result = nvme_setup_prp_pools(dev);
2969 if (result)
2970 goto release;
2971
2972 kref_init(&dev->kref);
2973 dev->device = device_create(nvme_class, &pdev->dev,
2974 MKDEV(nvme_char_major, dev->instance),
2975 dev, "nvme%d", dev->instance);
2976 if (IS_ERR(dev->device)) {
2977 result = PTR_ERR(dev->device);
2978 goto release_pools;
2979 }
2980 get_device(dev->device);
2981
2982 INIT_LIST_HEAD(&dev->node);
2983 INIT_WORK(&dev->probe_work, nvme_async_probe);
2984 schedule_work(&dev->probe_work);
2985 return 0;
2986
2987 release_pools:
2988 nvme_release_prp_pools(dev);
2989 release:
2990 nvme_release_instance(dev);
2991 put_pci:
2992 pci_dev_put(dev->pci_dev);
2993 free:
2994 kfree(dev->queues);
2995 kfree(dev->entry);
2996 kfree(dev);
2997 return result;
2998 }
2999
nvme_async_probe(struct work_struct * work)3000 static void nvme_async_probe(struct work_struct *work)
3001 {
3002 struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
3003 int result;
3004
3005 result = nvme_dev_start(dev);
3006 if (result)
3007 goto reset;
3008
3009 if (dev->online_queues > 1)
3010 result = nvme_dev_add(dev);
3011 if (result)
3012 goto reset;
3013
3014 nvme_set_irq_hints(dev);
3015 return;
3016 reset:
3017 if (!work_busy(&dev->reset_work)) {
3018 dev->reset_workfn = nvme_reset_failed_dev;
3019 queue_work(nvme_workq, &dev->reset_work);
3020 }
3021 }
3022
nvme_reset_notify(struct pci_dev * pdev,bool prepare)3023 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3024 {
3025 struct nvme_dev *dev = pci_get_drvdata(pdev);
3026
3027 if (prepare)
3028 nvme_dev_shutdown(dev);
3029 else
3030 nvme_dev_resume(dev);
3031 }
3032
nvme_shutdown(struct pci_dev * pdev)3033 static void nvme_shutdown(struct pci_dev *pdev)
3034 {
3035 struct nvme_dev *dev = pci_get_drvdata(pdev);
3036 nvme_dev_shutdown(dev);
3037 }
3038
nvme_remove(struct pci_dev * pdev)3039 static void nvme_remove(struct pci_dev *pdev)
3040 {
3041 struct nvme_dev *dev = pci_get_drvdata(pdev);
3042
3043 spin_lock(&dev_list_lock);
3044 list_del_init(&dev->node);
3045 spin_unlock(&dev_list_lock);
3046
3047 pci_set_drvdata(pdev, NULL);
3048 flush_work(&dev->probe_work);
3049 flush_work(&dev->reset_work);
3050 nvme_dev_shutdown(dev);
3051 nvme_dev_remove(dev);
3052 nvme_dev_remove_admin(dev);
3053 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3054 nvme_free_queues(dev, 0);
3055 nvme_release_prp_pools(dev);
3056 kref_put(&dev->kref, nvme_free_dev);
3057 }
3058
3059 /* These functions are yet to be implemented */
3060 #define nvme_error_detected NULL
3061 #define nvme_dump_registers NULL
3062 #define nvme_link_reset NULL
3063 #define nvme_slot_reset NULL
3064 #define nvme_error_resume NULL
3065
3066 #ifdef CONFIG_PM_SLEEP
nvme_suspend(struct device * dev)3067 static int nvme_suspend(struct device *dev)
3068 {
3069 struct pci_dev *pdev = to_pci_dev(dev);
3070 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3071
3072 nvme_dev_shutdown(ndev);
3073 return 0;
3074 }
3075
nvme_resume(struct device * dev)3076 static int nvme_resume(struct device *dev)
3077 {
3078 struct pci_dev *pdev = to_pci_dev(dev);
3079 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3080
3081 if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
3082 ndev->reset_workfn = nvme_reset_failed_dev;
3083 queue_work(nvme_workq, &ndev->reset_work);
3084 }
3085 return 0;
3086 }
3087 #endif
3088
3089 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3090
3091 static const struct pci_error_handlers nvme_err_handler = {
3092 .error_detected = nvme_error_detected,
3093 .mmio_enabled = nvme_dump_registers,
3094 .link_reset = nvme_link_reset,
3095 .slot_reset = nvme_slot_reset,
3096 .resume = nvme_error_resume,
3097 .reset_notify = nvme_reset_notify,
3098 };
3099
3100 /* Move to pci_ids.h later */
3101 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
3102
3103 static const struct pci_device_id nvme_id_table[] = {
3104 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3105 { 0, }
3106 };
3107 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3108
3109 static struct pci_driver nvme_driver = {
3110 .name = "nvme",
3111 .id_table = nvme_id_table,
3112 .probe = nvme_probe,
3113 .remove = nvme_remove,
3114 .shutdown = nvme_shutdown,
3115 .driver = {
3116 .pm = &nvme_dev_pm_ops,
3117 },
3118 .err_handler = &nvme_err_handler,
3119 };
3120
nvme_init(void)3121 static int __init nvme_init(void)
3122 {
3123 int result;
3124
3125 init_waitqueue_head(&nvme_kthread_wait);
3126
3127 nvme_workq = create_singlethread_workqueue("nvme");
3128 if (!nvme_workq)
3129 return -ENOMEM;
3130
3131 result = register_blkdev(nvme_major, "nvme");
3132 if (result < 0)
3133 goto kill_workq;
3134 else if (result > 0)
3135 nvme_major = result;
3136
3137 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3138 &nvme_dev_fops);
3139 if (result < 0)
3140 goto unregister_blkdev;
3141 else if (result > 0)
3142 nvme_char_major = result;
3143
3144 nvme_class = class_create(THIS_MODULE, "nvme");
3145 if (IS_ERR(nvme_class)) {
3146 result = PTR_ERR(nvme_class);
3147 goto unregister_chrdev;
3148 }
3149
3150 result = pci_register_driver(&nvme_driver);
3151 if (result)
3152 goto destroy_class;
3153 return 0;
3154
3155 destroy_class:
3156 class_destroy(nvme_class);
3157 unregister_chrdev:
3158 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3159 unregister_blkdev:
3160 unregister_blkdev(nvme_major, "nvme");
3161 kill_workq:
3162 destroy_workqueue(nvme_workq);
3163 return result;
3164 }
3165
nvme_exit(void)3166 static void __exit nvme_exit(void)
3167 {
3168 pci_unregister_driver(&nvme_driver);
3169 unregister_blkdev(nvme_major, "nvme");
3170 destroy_workqueue(nvme_workq);
3171 class_destroy(nvme_class);
3172 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3173 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3174 _nvme_check_size();
3175 }
3176
3177 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3178 MODULE_LICENSE("GPL");
3179 MODULE_VERSION("1.0");
3180 module_init(nvme_init);
3181 module_exit(nvme_exit);
3182