1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63 
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 				    const struct ethtool_ops *ops);
66 
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
69 #define NET_RX_DROP		1	/* packet dropped */
70 
71 /*
72  * Transmit return codes: transmit return codes originate from three different
73  * namespaces:
74  *
75  * - qdisc return codes
76  * - driver transmit return codes
77  * - errno values
78  *
79  * Drivers are allowed to return any one of those in their hard_start_xmit()
80  * function. Real network devices commonly used with qdiscs should only return
81  * the driver transmit return codes though - when qdiscs are used, the actual
82  * transmission happens asynchronously, so the value is not propagated to
83  * higher layers. Virtual network devices transmit synchronously, in this case
84  * the driver transmit return codes are consumed by dev_queue_xmit(), all
85  * others are propagated to higher layers.
86  */
87 
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS	0x00
90 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
91 #define NET_XMIT_CN		0x02	/* congestion notification	*/
92 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
93 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
94 
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96  * indicates that the device will soon be dropping packets, or already drops
97  * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100 
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK		0xf0
103 
104 enum netdev_tx {
105 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
106 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
107 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
108 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111 
112 /*
113  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115  */
dev_xmit_complete(int rc)116 static inline bool dev_xmit_complete(int rc)
117 {
118 	/*
119 	 * Positive cases with an skb consumed by a driver:
120 	 * - successful transmission (rc == NETDEV_TX_OK)
121 	 * - error while transmitting (rc < 0)
122 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 	 */
124 	if (likely(rc < NET_XMIT_MASK))
125 		return true;
126 
127 	return false;
128 }
129 
130 /*
131  *	Compute the worst case header length according to the protocols
132  *	used.
133  */
134 
135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136 # if defined(CONFIG_MAC80211_MESH)
137 #  define LL_MAX_HEADER 128
138 # else
139 #  define LL_MAX_HEADER 96
140 # endif
141 #else
142 # define LL_MAX_HEADER 32
143 #endif
144 
145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147 #define MAX_HEADER LL_MAX_HEADER
148 #else
149 #define MAX_HEADER (LL_MAX_HEADER + 48)
150 #endif
151 
152 /*
153  *	Old network device statistics. Fields are native words
154  *	(unsigned long) so they can be read and written atomically.
155  */
156 
157 struct net_device_stats {
158 	unsigned long	rx_packets;
159 	unsigned long	tx_packets;
160 	unsigned long	rx_bytes;
161 	unsigned long	tx_bytes;
162 	unsigned long	rx_errors;
163 	unsigned long	tx_errors;
164 	unsigned long	rx_dropped;
165 	unsigned long	tx_dropped;
166 	unsigned long	multicast;
167 	unsigned long	collisions;
168 	unsigned long	rx_length_errors;
169 	unsigned long	rx_over_errors;
170 	unsigned long	rx_crc_errors;
171 	unsigned long	rx_frame_errors;
172 	unsigned long	rx_fifo_errors;
173 	unsigned long	rx_missed_errors;
174 	unsigned long	tx_aborted_errors;
175 	unsigned long	tx_carrier_errors;
176 	unsigned long	tx_fifo_errors;
177 	unsigned long	tx_heartbeat_errors;
178 	unsigned long	tx_window_errors;
179 	unsigned long	rx_compressed;
180 	unsigned long	tx_compressed;
181 };
182 
183 
184 #include <linux/cache.h>
185 #include <linux/skbuff.h>
186 
187 #ifdef CONFIG_RPS
188 #include <linux/static_key.h>
189 extern struct static_key rps_needed;
190 #endif
191 
192 struct neighbour;
193 struct neigh_parms;
194 struct sk_buff;
195 
196 struct netdev_hw_addr {
197 	struct list_head	list;
198 	unsigned char		addr[MAX_ADDR_LEN];
199 	unsigned char		type;
200 #define NETDEV_HW_ADDR_T_LAN		1
201 #define NETDEV_HW_ADDR_T_SAN		2
202 #define NETDEV_HW_ADDR_T_SLAVE		3
203 #define NETDEV_HW_ADDR_T_UNICAST	4
204 #define NETDEV_HW_ADDR_T_MULTICAST	5
205 	bool			global_use;
206 	int			sync_cnt;
207 	int			refcount;
208 	int			synced;
209 	struct rcu_head		rcu_head;
210 };
211 
212 struct netdev_hw_addr_list {
213 	struct list_head	list;
214 	int			count;
215 };
216 
217 #define netdev_hw_addr_list_count(l) ((l)->count)
218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219 #define netdev_hw_addr_list_for_each(ha, l) \
220 	list_for_each_entry(ha, &(l)->list, list)
221 
222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224 #define netdev_for_each_uc_addr(ha, dev) \
225 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
226 
227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229 #define netdev_for_each_mc_addr(ha, dev) \
230 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
231 
232 struct hh_cache {
233 	u16		hh_len;
234 	u16		__pad;
235 	seqlock_t	hh_lock;
236 
237 	/* cached hardware header; allow for machine alignment needs.        */
238 #define HH_DATA_MOD	16
239 #define HH_DATA_OFF(__len) \
240 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241 #define HH_DATA_ALIGN(__len) \
242 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
244 };
245 
246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247  * Alternative is:
248  *   dev->hard_header_len ? (dev->hard_header_len +
249  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
250  *
251  * We could use other alignment values, but we must maintain the
252  * relationship HH alignment <= LL alignment.
253  */
254 #define LL_RESERVED_SPACE(dev) \
255 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258 
259 struct header_ops {
260 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
261 			   unsigned short type, const void *daddr,
262 			   const void *saddr, unsigned int len);
263 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
264 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265 	void	(*cache_update)(struct hh_cache *hh,
266 				const struct net_device *dev,
267 				const unsigned char *haddr);
268 };
269 
270 /* These flag bits are private to the generic network queueing
271  * layer, they may not be explicitly referenced by any other
272  * code.
273  */
274 
275 enum netdev_state_t {
276 	__LINK_STATE_START,
277 	__LINK_STATE_PRESENT,
278 	__LINK_STATE_NOCARRIER,
279 	__LINK_STATE_LINKWATCH_PENDING,
280 	__LINK_STATE_DORMANT,
281 };
282 
283 
284 /*
285  * This structure holds at boot time configured netdevice settings. They
286  * are then used in the device probing.
287  */
288 struct netdev_boot_setup {
289 	char name[IFNAMSIZ];
290 	struct ifmap map;
291 };
292 #define NETDEV_BOOT_SETUP_MAX 8
293 
294 int __init netdev_boot_setup(char *str);
295 
296 /*
297  * Structure for NAPI scheduling similar to tasklet but with weighting
298  */
299 struct napi_struct {
300 	/* The poll_list must only be managed by the entity which
301 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
302 	 * whoever atomically sets that bit can add this napi_struct
303 	 * to the per-cpu poll_list, and whoever clears that bit
304 	 * can remove from the list right before clearing the bit.
305 	 */
306 	struct list_head	poll_list;
307 
308 	unsigned long		state;
309 	int			weight;
310 	unsigned int		gro_count;
311 	int			(*poll)(struct napi_struct *, int);
312 #ifdef CONFIG_NETPOLL
313 	spinlock_t		poll_lock;
314 	int			poll_owner;
315 #endif
316 	struct net_device	*dev;
317 	struct sk_buff		*gro_list;
318 	struct sk_buff		*skb;
319 	struct hrtimer		timer;
320 	struct list_head	dev_list;
321 	struct hlist_node	napi_hash_node;
322 	unsigned int		napi_id;
323 };
324 
325 enum {
326 	NAPI_STATE_SCHED,	/* Poll is scheduled */
327 	NAPI_STATE_DISABLE,	/* Disable pending */
328 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
329 	NAPI_STATE_HASHED,	/* In NAPI hash */
330 };
331 
332 enum gro_result {
333 	GRO_MERGED,
334 	GRO_MERGED_FREE,
335 	GRO_HELD,
336 	GRO_NORMAL,
337 	GRO_DROP,
338 };
339 typedef enum gro_result gro_result_t;
340 
341 /*
342  * enum rx_handler_result - Possible return values for rx_handlers.
343  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
344  * further.
345  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
346  * case skb->dev was changed by rx_handler.
347  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
348  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
349  *
350  * rx_handlers are functions called from inside __netif_receive_skb(), to do
351  * special processing of the skb, prior to delivery to protocol handlers.
352  *
353  * Currently, a net_device can only have a single rx_handler registered. Trying
354  * to register a second rx_handler will return -EBUSY.
355  *
356  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
357  * To unregister a rx_handler on a net_device, use
358  * netdev_rx_handler_unregister().
359  *
360  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
361  * do with the skb.
362  *
363  * If the rx_handler consumed to skb in some way, it should return
364  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
365  * the skb to be delivered in some other ways.
366  *
367  * If the rx_handler changed skb->dev, to divert the skb to another
368  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
369  * new device will be called if it exists.
370  *
371  * If the rx_handler consider the skb should be ignored, it should return
372  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
373  * are registered on exact device (ptype->dev == skb->dev).
374  *
375  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
376  * delivered, it should return RX_HANDLER_PASS.
377  *
378  * A device without a registered rx_handler will behave as if rx_handler
379  * returned RX_HANDLER_PASS.
380  */
381 
382 enum rx_handler_result {
383 	RX_HANDLER_CONSUMED,
384 	RX_HANDLER_ANOTHER,
385 	RX_HANDLER_EXACT,
386 	RX_HANDLER_PASS,
387 };
388 typedef enum rx_handler_result rx_handler_result_t;
389 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
390 
391 void __napi_schedule(struct napi_struct *n);
392 void __napi_schedule_irqoff(struct napi_struct *n);
393 
napi_disable_pending(struct napi_struct * n)394 static inline bool napi_disable_pending(struct napi_struct *n)
395 {
396 	return test_bit(NAPI_STATE_DISABLE, &n->state);
397 }
398 
399 /**
400  *	napi_schedule_prep - check if napi can be scheduled
401  *	@n: napi context
402  *
403  * Test if NAPI routine is already running, and if not mark
404  * it as running.  This is used as a condition variable
405  * insure only one NAPI poll instance runs.  We also make
406  * sure there is no pending NAPI disable.
407  */
napi_schedule_prep(struct napi_struct * n)408 static inline bool napi_schedule_prep(struct napi_struct *n)
409 {
410 	return !napi_disable_pending(n) &&
411 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
412 }
413 
414 /**
415  *	napi_schedule - schedule NAPI poll
416  *	@n: napi context
417  *
418  * Schedule NAPI poll routine to be called if it is not already
419  * running.
420  */
napi_schedule(struct napi_struct * n)421 static inline void napi_schedule(struct napi_struct *n)
422 {
423 	if (napi_schedule_prep(n))
424 		__napi_schedule(n);
425 }
426 
427 /**
428  *	napi_schedule_irqoff - schedule NAPI poll
429  *	@n: napi context
430  *
431  * Variant of napi_schedule(), assuming hard irqs are masked.
432  */
napi_schedule_irqoff(struct napi_struct * n)433 static inline void napi_schedule_irqoff(struct napi_struct *n)
434 {
435 	if (napi_schedule_prep(n))
436 		__napi_schedule_irqoff(n);
437 }
438 
439 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
napi_reschedule(struct napi_struct * napi)440 static inline bool napi_reschedule(struct napi_struct *napi)
441 {
442 	if (napi_schedule_prep(napi)) {
443 		__napi_schedule(napi);
444 		return true;
445 	}
446 	return false;
447 }
448 
449 void __napi_complete(struct napi_struct *n);
450 void napi_complete_done(struct napi_struct *n, int work_done);
451 /**
452  *	napi_complete - NAPI processing complete
453  *	@n: napi context
454  *
455  * Mark NAPI processing as complete.
456  * Consider using napi_complete_done() instead.
457  */
napi_complete(struct napi_struct * n)458 static inline void napi_complete(struct napi_struct *n)
459 {
460 	return napi_complete_done(n, 0);
461 }
462 
463 /**
464  *	napi_by_id - lookup a NAPI by napi_id
465  *	@napi_id: hashed napi_id
466  *
467  * lookup @napi_id in napi_hash table
468  * must be called under rcu_read_lock()
469  */
470 struct napi_struct *napi_by_id(unsigned int napi_id);
471 
472 /**
473  *	napi_hash_add - add a NAPI to global hashtable
474  *	@napi: napi context
475  *
476  * generate a new napi_id and store a @napi under it in napi_hash
477  */
478 void napi_hash_add(struct napi_struct *napi);
479 
480 /**
481  *	napi_hash_del - remove a NAPI from global table
482  *	@napi: napi context
483  *
484  * Warning: caller must observe rcu grace period
485  * before freeing memory containing @napi
486  */
487 void napi_hash_del(struct napi_struct *napi);
488 
489 /**
490  *	napi_disable - prevent NAPI from scheduling
491  *	@n: napi context
492  *
493  * Stop NAPI from being scheduled on this context.
494  * Waits till any outstanding processing completes.
495  */
496 void napi_disable(struct napi_struct *n);
497 
498 /**
499  *	napi_enable - enable NAPI scheduling
500  *	@n: napi context
501  *
502  * Resume NAPI from being scheduled on this context.
503  * Must be paired with napi_disable.
504  */
napi_enable(struct napi_struct * n)505 static inline void napi_enable(struct napi_struct *n)
506 {
507 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
508 	smp_mb__before_atomic();
509 	clear_bit(NAPI_STATE_SCHED, &n->state);
510 }
511 
512 #ifdef CONFIG_SMP
513 /**
514  *	napi_synchronize - wait until NAPI is not running
515  *	@n: napi context
516  *
517  * Wait until NAPI is done being scheduled on this context.
518  * Waits till any outstanding processing completes but
519  * does not disable future activations.
520  */
napi_synchronize(const struct napi_struct * n)521 static inline void napi_synchronize(const struct napi_struct *n)
522 {
523 	while (test_bit(NAPI_STATE_SCHED, &n->state))
524 		msleep(1);
525 }
526 #else
527 # define napi_synchronize(n)	barrier()
528 #endif
529 
530 enum netdev_queue_state_t {
531 	__QUEUE_STATE_DRV_XOFF,
532 	__QUEUE_STATE_STACK_XOFF,
533 	__QUEUE_STATE_FROZEN,
534 };
535 
536 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
537 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
538 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
539 
540 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
541 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
542 					QUEUE_STATE_FROZEN)
543 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
544 					QUEUE_STATE_FROZEN)
545 
546 /*
547  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
548  * netif_tx_* functions below are used to manipulate this flag.  The
549  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
550  * queue independently.  The netif_xmit_*stopped functions below are called
551  * to check if the queue has been stopped by the driver or stack (either
552  * of the XOFF bits are set in the state).  Drivers should not need to call
553  * netif_xmit*stopped functions, they should only be using netif_tx_*.
554  */
555 
556 struct netdev_queue {
557 /*
558  * read mostly part
559  */
560 	struct net_device	*dev;
561 	struct Qdisc __rcu	*qdisc;
562 	struct Qdisc		*qdisc_sleeping;
563 #ifdef CONFIG_SYSFS
564 	struct kobject		kobj;
565 #endif
566 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
567 	int			numa_node;
568 #endif
569 /*
570  * write mostly part
571  */
572 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
573 	int			xmit_lock_owner;
574 	/*
575 	 * please use this field instead of dev->trans_start
576 	 */
577 	unsigned long		trans_start;
578 
579 	/*
580 	 * Number of TX timeouts for this queue
581 	 * (/sys/class/net/DEV/Q/trans_timeout)
582 	 */
583 	unsigned long		trans_timeout;
584 
585 	unsigned long		state;
586 
587 #ifdef CONFIG_BQL
588 	struct dql		dql;
589 #endif
590 	unsigned long		tx_maxrate;
591 } ____cacheline_aligned_in_smp;
592 
netdev_queue_numa_node_read(const struct netdev_queue * q)593 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
594 {
595 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
596 	return q->numa_node;
597 #else
598 	return NUMA_NO_NODE;
599 #endif
600 }
601 
netdev_queue_numa_node_write(struct netdev_queue * q,int node)602 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
603 {
604 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
605 	q->numa_node = node;
606 #endif
607 }
608 
609 #ifdef CONFIG_RPS
610 /*
611  * This structure holds an RPS map which can be of variable length.  The
612  * map is an array of CPUs.
613  */
614 struct rps_map {
615 	unsigned int len;
616 	struct rcu_head rcu;
617 	u16 cpus[0];
618 };
619 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
620 
621 /*
622  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
623  * tail pointer for that CPU's input queue at the time of last enqueue, and
624  * a hardware filter index.
625  */
626 struct rps_dev_flow {
627 	u16 cpu;
628 	u16 filter;
629 	unsigned int last_qtail;
630 };
631 #define RPS_NO_FILTER 0xffff
632 
633 /*
634  * The rps_dev_flow_table structure contains a table of flow mappings.
635  */
636 struct rps_dev_flow_table {
637 	unsigned int mask;
638 	struct rcu_head rcu;
639 	struct rps_dev_flow flows[0];
640 };
641 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
642     ((_num) * sizeof(struct rps_dev_flow)))
643 
644 /*
645  * The rps_sock_flow_table contains mappings of flows to the last CPU
646  * on which they were processed by the application (set in recvmsg).
647  * Each entry is a 32bit value. Upper part is the high order bits
648  * of flow hash, lower part is cpu number.
649  * rps_cpu_mask is used to partition the space, depending on number of
650  * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
651  * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
652  * meaning we use 32-6=26 bits for the hash.
653  */
654 struct rps_sock_flow_table {
655 	u32	mask;
656 
657 	u32	ents[0] ____cacheline_aligned_in_smp;
658 };
659 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
660 
661 #define RPS_NO_CPU 0xffff
662 
663 extern u32 rps_cpu_mask;
664 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
665 
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)666 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
667 					u32 hash)
668 {
669 	if (table && hash) {
670 		unsigned int index = hash & table->mask;
671 		u32 val = hash & ~rps_cpu_mask;
672 
673 		/* We only give a hint, preemption can change cpu under us */
674 		val |= raw_smp_processor_id();
675 
676 		if (table->ents[index] != val)
677 			table->ents[index] = val;
678 	}
679 }
680 
681 #ifdef CONFIG_RFS_ACCEL
682 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
683 			 u16 filter_id);
684 #endif
685 #endif /* CONFIG_RPS */
686 
687 /* This structure contains an instance of an RX queue. */
688 struct netdev_rx_queue {
689 #ifdef CONFIG_RPS
690 	struct rps_map __rcu		*rps_map;
691 	struct rps_dev_flow_table __rcu	*rps_flow_table;
692 #endif
693 	struct kobject			kobj;
694 	struct net_device		*dev;
695 } ____cacheline_aligned_in_smp;
696 
697 /*
698  * RX queue sysfs structures and functions.
699  */
700 struct rx_queue_attribute {
701 	struct attribute attr;
702 	ssize_t (*show)(struct netdev_rx_queue *queue,
703 	    struct rx_queue_attribute *attr, char *buf);
704 	ssize_t (*store)(struct netdev_rx_queue *queue,
705 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
706 };
707 
708 #ifdef CONFIG_XPS
709 /*
710  * This structure holds an XPS map which can be of variable length.  The
711  * map is an array of queues.
712  */
713 struct xps_map {
714 	unsigned int len;
715 	unsigned int alloc_len;
716 	struct rcu_head rcu;
717 	u16 queues[0];
718 };
719 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
720 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
721     / sizeof(u16))
722 
723 /*
724  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
725  */
726 struct xps_dev_maps {
727 	struct rcu_head rcu;
728 	struct xps_map __rcu *cpu_map[0];
729 };
730 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
731     (nr_cpu_ids * sizeof(struct xps_map *)))
732 #endif /* CONFIG_XPS */
733 
734 #define TC_MAX_QUEUE	16
735 #define TC_BITMASK	15
736 /* HW offloaded queuing disciplines txq count and offset maps */
737 struct netdev_tc_txq {
738 	u16 count;
739 	u16 offset;
740 };
741 
742 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
743 /*
744  * This structure is to hold information about the device
745  * configured to run FCoE protocol stack.
746  */
747 struct netdev_fcoe_hbainfo {
748 	char	manufacturer[64];
749 	char	serial_number[64];
750 	char	hardware_version[64];
751 	char	driver_version[64];
752 	char	optionrom_version[64];
753 	char	firmware_version[64];
754 	char	model[256];
755 	char	model_description[256];
756 };
757 #endif
758 
759 #define MAX_PHYS_ITEM_ID_LEN 32
760 
761 /* This structure holds a unique identifier to identify some
762  * physical item (port for example) used by a netdevice.
763  */
764 struct netdev_phys_item_id {
765 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
766 	unsigned char id_len;
767 };
768 
769 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
770 				       struct sk_buff *skb);
771 
772 /*
773  * This structure defines the management hooks for network devices.
774  * The following hooks can be defined; unless noted otherwise, they are
775  * optional and can be filled with a null pointer.
776  *
777  * int (*ndo_init)(struct net_device *dev);
778  *     This function is called once when network device is registered.
779  *     The network device can use this to any late stage initializaton
780  *     or semantic validattion. It can fail with an error code which will
781  *     be propogated back to register_netdev
782  *
783  * void (*ndo_uninit)(struct net_device *dev);
784  *     This function is called when device is unregistered or when registration
785  *     fails. It is not called if init fails.
786  *
787  * int (*ndo_open)(struct net_device *dev);
788  *     This function is called when network device transistions to the up
789  *     state.
790  *
791  * int (*ndo_stop)(struct net_device *dev);
792  *     This function is called when network device transistions to the down
793  *     state.
794  *
795  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
796  *                               struct net_device *dev);
797  *	Called when a packet needs to be transmitted.
798  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
799  *	the queue before that can happen; it's for obsolete devices and weird
800  *	corner cases, but the stack really does a non-trivial amount
801  *	of useless work if you return NETDEV_TX_BUSY.
802  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
803  *	Required can not be NULL.
804  *
805  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
806  *                         void *accel_priv, select_queue_fallback_t fallback);
807  *	Called to decide which queue to when device supports multiple
808  *	transmit queues.
809  *
810  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
811  *	This function is called to allow device receiver to make
812  *	changes to configuration when multicast or promiscious is enabled.
813  *
814  * void (*ndo_set_rx_mode)(struct net_device *dev);
815  *	This function is called device changes address list filtering.
816  *	If driver handles unicast address filtering, it should set
817  *	IFF_UNICAST_FLT to its priv_flags.
818  *
819  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
820  *	This function  is called when the Media Access Control address
821  *	needs to be changed. If this interface is not defined, the
822  *	mac address can not be changed.
823  *
824  * int (*ndo_validate_addr)(struct net_device *dev);
825  *	Test if Media Access Control address is valid for the device.
826  *
827  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
828  *	Called when a user request an ioctl which can't be handled by
829  *	the generic interface code. If not defined ioctl's return
830  *	not supported error code.
831  *
832  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
833  *	Used to set network devices bus interface parameters. This interface
834  *	is retained for legacy reason, new devices should use the bus
835  *	interface (PCI) for low level management.
836  *
837  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
838  *	Called when a user wants to change the Maximum Transfer Unit
839  *	of a device. If not defined, any request to change MTU will
840  *	will return an error.
841  *
842  * void (*ndo_tx_timeout)(struct net_device *dev);
843  *	Callback uses when the transmitter has not made any progress
844  *	for dev->watchdog ticks.
845  *
846  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
847  *                      struct rtnl_link_stats64 *storage);
848  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
849  *	Called when a user wants to get the network device usage
850  *	statistics. Drivers must do one of the following:
851  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
852  *	   rtnl_link_stats64 structure passed by the caller.
853  *	2. Define @ndo_get_stats to update a net_device_stats structure
854  *	   (which should normally be dev->stats) and return a pointer to
855  *	   it. The structure may be changed asynchronously only if each
856  *	   field is written atomically.
857  *	3. Update dev->stats asynchronously and atomically, and define
858  *	   neither operation.
859  *
860  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
861  *	If device support VLAN filtering this function is called when a
862  *	VLAN id is registered.
863  *
864  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
865  *	If device support VLAN filtering this function is called when a
866  *	VLAN id is unregistered.
867  *
868  * void (*ndo_poll_controller)(struct net_device *dev);
869  *
870  *	SR-IOV management functions.
871  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
872  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
873  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
874  *			  int max_tx_rate);
875  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
876  * int (*ndo_get_vf_config)(struct net_device *dev,
877  *			    int vf, struct ifla_vf_info *ivf);
878  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
879  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
880  *			  struct nlattr *port[]);
881  *
882  *      Enable or disable the VF ability to query its RSS Redirection Table and
883  *      Hash Key. This is needed since on some devices VF share this information
884  *      with PF and querying it may adduce a theoretical security risk.
885  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
886  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
887  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
888  * 	Called to setup 'tc' number of traffic classes in the net device. This
889  * 	is always called from the stack with the rtnl lock held and netif tx
890  * 	queues stopped. This allows the netdevice to perform queue management
891  * 	safely.
892  *
893  *	Fiber Channel over Ethernet (FCoE) offload functions.
894  * int (*ndo_fcoe_enable)(struct net_device *dev);
895  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
896  *	so the underlying device can perform whatever needed configuration or
897  *	initialization to support acceleration of FCoE traffic.
898  *
899  * int (*ndo_fcoe_disable)(struct net_device *dev);
900  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
901  *	so the underlying device can perform whatever needed clean-ups to
902  *	stop supporting acceleration of FCoE traffic.
903  *
904  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
905  *			     struct scatterlist *sgl, unsigned int sgc);
906  *	Called when the FCoE Initiator wants to initialize an I/O that
907  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
908  *	perform necessary setup and returns 1 to indicate the device is set up
909  *	successfully to perform DDP on this I/O, otherwise this returns 0.
910  *
911  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
912  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
913  *	indicated by the FC exchange id 'xid', so the underlying device can
914  *	clean up and reuse resources for later DDP requests.
915  *
916  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
917  *			      struct scatterlist *sgl, unsigned int sgc);
918  *	Called when the FCoE Target wants to initialize an I/O that
919  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
920  *	perform necessary setup and returns 1 to indicate the device is set up
921  *	successfully to perform DDP on this I/O, otherwise this returns 0.
922  *
923  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
924  *			       struct netdev_fcoe_hbainfo *hbainfo);
925  *	Called when the FCoE Protocol stack wants information on the underlying
926  *	device. This information is utilized by the FCoE protocol stack to
927  *	register attributes with Fiber Channel management service as per the
928  *	FC-GS Fabric Device Management Information(FDMI) specification.
929  *
930  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
931  *	Called when the underlying device wants to override default World Wide
932  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
933  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
934  *	protocol stack to use.
935  *
936  *	RFS acceleration.
937  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
938  *			    u16 rxq_index, u32 flow_id);
939  *	Set hardware filter for RFS.  rxq_index is the target queue index;
940  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
941  *	Return the filter ID on success, or a negative error code.
942  *
943  *	Slave management functions (for bridge, bonding, etc).
944  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
945  *	Called to make another netdev an underling.
946  *
947  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
948  *	Called to release previously enslaved netdev.
949  *
950  *      Feature/offload setting functions.
951  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
952  *		netdev_features_t features);
953  *	Adjusts the requested feature flags according to device-specific
954  *	constraints, and returns the resulting flags. Must not modify
955  *	the device state.
956  *
957  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
958  *	Called to update device configuration to new features. Passed
959  *	feature set might be less than what was returned by ndo_fix_features()).
960  *	Must return >0 or -errno if it changed dev->features itself.
961  *
962  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
963  *		      struct net_device *dev,
964  *		      const unsigned char *addr, u16 vid, u16 flags)
965  *	Adds an FDB entry to dev for addr.
966  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
967  *		      struct net_device *dev,
968  *		      const unsigned char *addr, u16 vid)
969  *	Deletes the FDB entry from dev coresponding to addr.
970  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
971  *		       struct net_device *dev, struct net_device *filter_dev,
972  *		       int idx)
973  *	Used to add FDB entries to dump requests. Implementers should add
974  *	entries to skb and update idx with the number of entries.
975  *
976  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
977  *			     u16 flags)
978  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
979  *			     struct net_device *dev, u32 filter_mask,
980  *			     int nlflags)
981  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
982  *			     u16 flags);
983  *
984  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
985  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
986  *	which do not represent real hardware may define this to allow their
987  *	userspace components to manage their virtual carrier state. Devices
988  *	that determine carrier state from physical hardware properties (eg
989  *	network cables) or protocol-dependent mechanisms (eg
990  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
991  *
992  * int (*ndo_get_phys_port_id)(struct net_device *dev,
993  *			       struct netdev_phys_item_id *ppid);
994  *	Called to get ID of physical port of this device. If driver does
995  *	not implement this, it is assumed that the hw is not able to have
996  *	multiple net devices on single physical port.
997  *
998  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
999  *			      sa_family_t sa_family, __be16 port);
1000  *	Called by vxlan to notiy a driver about the UDP port and socket
1001  *	address family that vxlan is listnening to. It is called only when
1002  *	a new port starts listening. The operation is protected by the
1003  *	vxlan_net->sock_lock.
1004  *
1005  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
1006  *			      sa_family_t sa_family, __be16 port);
1007  *	Called by vxlan to notify the driver about a UDP port and socket
1008  *	address family that vxlan is not listening to anymore. The operation
1009  *	is protected by the vxlan_net->sock_lock.
1010  *
1011  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1012  *				 struct net_device *dev)
1013  *	Called by upper layer devices to accelerate switching or other
1014  *	station functionality into hardware. 'pdev is the lowerdev
1015  *	to use for the offload and 'dev' is the net device that will
1016  *	back the offload. Returns a pointer to the private structure
1017  *	the upper layer will maintain.
1018  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1019  *	Called by upper layer device to delete the station created
1020  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1021  *	the station and priv is the structure returned by the add
1022  *	operation.
1023  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1024  *				      struct net_device *dev,
1025  *				      void *priv);
1026  *	Callback to use for xmit over the accelerated station. This
1027  *	is used in place of ndo_start_xmit on accelerated net
1028  *	devices.
1029  * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1030  *					    struct net_device *dev
1031  *					    netdev_features_t features);
1032  *	Called by core transmit path to determine if device is capable of
1033  *	performing offload operations on a given packet. This is to give
1034  *	the device an opportunity to implement any restrictions that cannot
1035  *	be otherwise expressed by feature flags. The check is called with
1036  *	the set of features that the stack has calculated and it returns
1037  *	those the driver believes to be appropriate.
1038  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1039  *			     int queue_index, u32 maxrate);
1040  *	Called when a user wants to set a max-rate limitation of specific
1041  *	TX queue.
1042  * int (*ndo_get_iflink)(const struct net_device *dev);
1043  *	Called to get the iflink value of this device.
1044  */
1045 struct net_device_ops {
1046 	int			(*ndo_init)(struct net_device *dev);
1047 	void			(*ndo_uninit)(struct net_device *dev);
1048 	int			(*ndo_open)(struct net_device *dev);
1049 	int			(*ndo_stop)(struct net_device *dev);
1050 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
1051 						   struct net_device *dev);
1052 	u16			(*ndo_select_queue)(struct net_device *dev,
1053 						    struct sk_buff *skb,
1054 						    void *accel_priv,
1055 						    select_queue_fallback_t fallback);
1056 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1057 						       int flags);
1058 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1059 	int			(*ndo_set_mac_address)(struct net_device *dev,
1060 						       void *addr);
1061 	int			(*ndo_validate_addr)(struct net_device *dev);
1062 	int			(*ndo_do_ioctl)(struct net_device *dev,
1063 					        struct ifreq *ifr, int cmd);
1064 	int			(*ndo_set_config)(struct net_device *dev,
1065 					          struct ifmap *map);
1066 	int			(*ndo_change_mtu)(struct net_device *dev,
1067 						  int new_mtu);
1068 	int			(*ndo_neigh_setup)(struct net_device *dev,
1069 						   struct neigh_parms *);
1070 	void			(*ndo_tx_timeout) (struct net_device *dev);
1071 
1072 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1073 						     struct rtnl_link_stats64 *storage);
1074 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1075 
1076 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1077 						       __be16 proto, u16 vid);
1078 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1079 						        __be16 proto, u16 vid);
1080 #ifdef CONFIG_NET_POLL_CONTROLLER
1081 	void                    (*ndo_poll_controller)(struct net_device *dev);
1082 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1083 						     struct netpoll_info *info);
1084 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1085 #endif
1086 #ifdef CONFIG_NET_RX_BUSY_POLL
1087 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1088 #endif
1089 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1090 						  int queue, u8 *mac);
1091 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1092 						   int queue, u16 vlan, u8 qos);
1093 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1094 						   int vf, int min_tx_rate,
1095 						   int max_tx_rate);
1096 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1097 						       int vf, bool setting);
1098 	int			(*ndo_get_vf_config)(struct net_device *dev,
1099 						     int vf,
1100 						     struct ifla_vf_info *ivf);
1101 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1102 							 int vf, int link_state);
1103 	int			(*ndo_set_vf_port)(struct net_device *dev,
1104 						   int vf,
1105 						   struct nlattr *port[]);
1106 	int			(*ndo_get_vf_port)(struct net_device *dev,
1107 						   int vf, struct sk_buff *skb);
1108 	int			(*ndo_set_vf_rss_query_en)(
1109 						   struct net_device *dev,
1110 						   int vf, bool setting);
1111 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1112 #if IS_ENABLED(CONFIG_FCOE)
1113 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1114 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1115 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1116 						      u16 xid,
1117 						      struct scatterlist *sgl,
1118 						      unsigned int sgc);
1119 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1120 						     u16 xid);
1121 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1122 						       u16 xid,
1123 						       struct scatterlist *sgl,
1124 						       unsigned int sgc);
1125 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1126 							struct netdev_fcoe_hbainfo *hbainfo);
1127 #endif
1128 
1129 #if IS_ENABLED(CONFIG_LIBFCOE)
1130 #define NETDEV_FCOE_WWNN 0
1131 #define NETDEV_FCOE_WWPN 1
1132 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1133 						    u64 *wwn, int type);
1134 #endif
1135 
1136 #ifdef CONFIG_RFS_ACCEL
1137 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1138 						     const struct sk_buff *skb,
1139 						     u16 rxq_index,
1140 						     u32 flow_id);
1141 #endif
1142 	int			(*ndo_add_slave)(struct net_device *dev,
1143 						 struct net_device *slave_dev);
1144 	int			(*ndo_del_slave)(struct net_device *dev,
1145 						 struct net_device *slave_dev);
1146 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1147 						    netdev_features_t features);
1148 	int			(*ndo_set_features)(struct net_device *dev,
1149 						    netdev_features_t features);
1150 	int			(*ndo_neigh_construct)(struct neighbour *n);
1151 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1152 
1153 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1154 					       struct nlattr *tb[],
1155 					       struct net_device *dev,
1156 					       const unsigned char *addr,
1157 					       u16 vid,
1158 					       u16 flags);
1159 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1160 					       struct nlattr *tb[],
1161 					       struct net_device *dev,
1162 					       const unsigned char *addr,
1163 					       u16 vid);
1164 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1165 						struct netlink_callback *cb,
1166 						struct net_device *dev,
1167 						struct net_device *filter_dev,
1168 						int idx);
1169 
1170 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1171 						      struct nlmsghdr *nlh,
1172 						      u16 flags);
1173 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1174 						      u32 pid, u32 seq,
1175 						      struct net_device *dev,
1176 						      u32 filter_mask,
1177 						      int nlflags);
1178 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1179 						      struct nlmsghdr *nlh,
1180 						      u16 flags);
1181 	int			(*ndo_change_carrier)(struct net_device *dev,
1182 						      bool new_carrier);
1183 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1184 							struct netdev_phys_item_id *ppid);
1185 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1186 							  char *name, size_t len);
1187 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1188 						      sa_family_t sa_family,
1189 						      __be16 port);
1190 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1191 						      sa_family_t sa_family,
1192 						      __be16 port);
1193 
1194 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1195 							struct net_device *dev);
1196 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1197 							void *priv);
1198 
1199 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1200 							struct net_device *dev,
1201 							void *priv);
1202 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1203 	netdev_features_t	(*ndo_features_check) (struct sk_buff *skb,
1204 						       struct net_device *dev,
1205 						       netdev_features_t features);
1206 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1207 						      int queue_index,
1208 						      u32 maxrate);
1209 	int			(*ndo_get_iflink)(const struct net_device *dev);
1210 };
1211 
1212 /**
1213  * enum net_device_priv_flags - &struct net_device priv_flags
1214  *
1215  * These are the &struct net_device, they are only set internally
1216  * by drivers and used in the kernel. These flags are invisible to
1217  * userspace, this means that the order of these flags can change
1218  * during any kernel release.
1219  *
1220  * You should have a pretty good reason to be extending these flags.
1221  *
1222  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1223  * @IFF_EBRIDGE: Ethernet bridging device
1224  * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1225  * @IFF_MASTER_8023AD: bonding master, 802.3ad
1226  * @IFF_MASTER_ALB: bonding master, balance-alb
1227  * @IFF_BONDING: bonding master or slave
1228  * @IFF_SLAVE_NEEDARP: need ARPs for validation
1229  * @IFF_ISATAP: ISATAP interface (RFC4214)
1230  * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1231  * @IFF_WAN_HDLC: WAN HDLC device
1232  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1233  *	release skb->dst
1234  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1235  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1236  * @IFF_MACVLAN_PORT: device used as macvlan port
1237  * @IFF_BRIDGE_PORT: device used as bridge port
1238  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1239  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1240  * @IFF_UNICAST_FLT: Supports unicast filtering
1241  * @IFF_TEAM_PORT: device used as team port
1242  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1243  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1244  *	change when it's running
1245  * @IFF_MACVLAN: Macvlan device
1246  */
1247 enum netdev_priv_flags {
1248 	IFF_802_1Q_VLAN			= 1<<0,
1249 	IFF_EBRIDGE			= 1<<1,
1250 	IFF_SLAVE_INACTIVE		= 1<<2,
1251 	IFF_MASTER_8023AD		= 1<<3,
1252 	IFF_MASTER_ALB			= 1<<4,
1253 	IFF_BONDING			= 1<<5,
1254 	IFF_SLAVE_NEEDARP		= 1<<6,
1255 	IFF_ISATAP			= 1<<7,
1256 	IFF_MASTER_ARPMON		= 1<<8,
1257 	IFF_WAN_HDLC			= 1<<9,
1258 	IFF_XMIT_DST_RELEASE		= 1<<10,
1259 	IFF_DONT_BRIDGE			= 1<<11,
1260 	IFF_DISABLE_NETPOLL		= 1<<12,
1261 	IFF_MACVLAN_PORT		= 1<<13,
1262 	IFF_BRIDGE_PORT			= 1<<14,
1263 	IFF_OVS_DATAPATH		= 1<<15,
1264 	IFF_TX_SKB_SHARING		= 1<<16,
1265 	IFF_UNICAST_FLT			= 1<<17,
1266 	IFF_TEAM_PORT			= 1<<18,
1267 	IFF_SUPP_NOFCS			= 1<<19,
1268 	IFF_LIVE_ADDR_CHANGE		= 1<<20,
1269 	IFF_MACVLAN			= 1<<21,
1270 	IFF_XMIT_DST_RELEASE_PERM	= 1<<22,
1271 	IFF_IPVLAN_MASTER		= 1<<23,
1272 	IFF_IPVLAN_SLAVE		= 1<<24,
1273 };
1274 
1275 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1276 #define IFF_EBRIDGE			IFF_EBRIDGE
1277 #define IFF_SLAVE_INACTIVE		IFF_SLAVE_INACTIVE
1278 #define IFF_MASTER_8023AD		IFF_MASTER_8023AD
1279 #define IFF_MASTER_ALB			IFF_MASTER_ALB
1280 #define IFF_BONDING			IFF_BONDING
1281 #define IFF_SLAVE_NEEDARP		IFF_SLAVE_NEEDARP
1282 #define IFF_ISATAP			IFF_ISATAP
1283 #define IFF_MASTER_ARPMON		IFF_MASTER_ARPMON
1284 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1285 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1286 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1287 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1288 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1289 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1290 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1291 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1292 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1293 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1294 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1295 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1296 #define IFF_MACVLAN			IFF_MACVLAN
1297 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1298 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1299 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1300 
1301 /**
1302  *	struct net_device - The DEVICE structure.
1303  *		Actually, this whole structure is a big mistake.  It mixes I/O
1304  *		data with strictly "high-level" data, and it has to know about
1305  *		almost every data structure used in the INET module.
1306  *
1307  *	@name:	This is the first field of the "visible" part of this structure
1308  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1309  *	 	of the interface.
1310  *
1311  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1312  *	@ifalias:	SNMP alias
1313  *	@mem_end:	Shared memory end
1314  *	@mem_start:	Shared memory start
1315  *	@base_addr:	Device I/O address
1316  *	@irq:		Device IRQ number
1317  *
1318  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1319  *
1320  *	@state:		Generic network queuing layer state, see netdev_state_t
1321  *	@dev_list:	The global list of network devices
1322  *	@napi_list:	List entry, that is used for polling napi devices
1323  *	@unreg_list:	List entry, that is used, when we are unregistering the
1324  *			device, see the function unregister_netdev
1325  *	@close_list:	List entry, that is used, when we are closing the device
1326  *
1327  *	@adj_list:	Directly linked devices, like slaves for bonding
1328  *	@all_adj_list:	All linked devices, *including* neighbours
1329  *	@features:	Currently active device features
1330  *	@hw_features:	User-changeable features
1331  *
1332  *	@wanted_features:	User-requested features
1333  *	@vlan_features:		Mask of features inheritable by VLAN devices
1334  *
1335  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1336  *				This field indicates what encapsulation
1337  *				offloads the hardware is capable of doing,
1338  *				and drivers will need to set them appropriately.
1339  *
1340  *	@mpls_features:	Mask of features inheritable by MPLS
1341  *
1342  *	@ifindex:	interface index
1343  *	@group:		The group, that the device belongs to
1344  *
1345  *	@stats:		Statistics struct, which was left as a legacy, use
1346  *			rtnl_link_stats64 instead
1347  *
1348  *	@rx_dropped:	Dropped packets by core network,
1349  *			do not use this in drivers
1350  *	@tx_dropped:	Dropped packets by core network,
1351  *			do not use this in drivers
1352  *
1353  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1354  *				instead of ioctl,
1355  *				see <net/iw_handler.h> for details.
1356  *	@wireless_data:	Instance data managed by the core of wireless extensions
1357  *
1358  *	@netdev_ops:	Includes several pointers to callbacks,
1359  *			if one wants to override the ndo_*() functions
1360  *	@ethtool_ops:	Management operations
1361  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1362  *			of Layer 2 headers.
1363  *
1364  *	@flags:		Interface flags (a la BSD)
1365  *	@priv_flags:	Like 'flags' but invisible to userspace,
1366  *			see if.h for the definitions
1367  *	@gflags:	Global flags ( kept as legacy )
1368  *	@padded:	How much padding added by alloc_netdev()
1369  *	@operstate:	RFC2863 operstate
1370  *	@link_mode:	Mapping policy to operstate
1371  *	@if_port:	Selectable AUI, TP, ...
1372  *	@dma:		DMA channel
1373  *	@mtu:		Interface MTU value
1374  *	@type:		Interface hardware type
1375  *	@hard_header_len: Hardware header length
1376  *
1377  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1378  *			  cases can this be guaranteed
1379  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1380  *			  cases can this be guaranteed. Some cases also use
1381  *			  LL_MAX_HEADER instead to allocate the skb
1382  *
1383  *	interface address info:
1384  *
1385  * 	@perm_addr:		Permanent hw address
1386  * 	@addr_assign_type:	Hw address assignment type
1387  * 	@addr_len:		Hardware address length
1388  * 	@neigh_priv_len;	Used in neigh_alloc(),
1389  * 				initialized only in atm/clip.c
1390  * 	@dev_id:		Used to differentiate devices that share
1391  * 				the same link layer address
1392  * 	@dev_port:		Used to differentiate devices that share
1393  * 				the same function
1394  *	@addr_list_lock:	XXX: need comments on this one
1395  *	@uc_promisc:		Counter, that indicates, that promiscuous mode
1396  *				has been enabled due to the need to listen to
1397  *				additional unicast addresses in a device that
1398  *				does not implement ndo_set_rx_mode()
1399  *	@uc:			unicast mac addresses
1400  *	@mc:			multicast mac addresses
1401  *	@dev_addrs:		list of device hw addresses
1402  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1403  *	@promiscuity:		Number of times, the NIC is told to work in
1404  *				Promiscuous mode, if it becomes 0 the NIC will
1405  *				exit from working in Promiscuous mode
1406  *	@allmulti:		Counter, enables or disables allmulticast mode
1407  *
1408  *	@vlan_info:	VLAN info
1409  *	@dsa_ptr:	dsa specific data
1410  *	@tipc_ptr:	TIPC specific data
1411  *	@atalk_ptr:	AppleTalk link
1412  *	@ip_ptr:	IPv4 specific data
1413  *	@dn_ptr:	DECnet specific data
1414  *	@ip6_ptr:	IPv6 specific data
1415  *	@ax25_ptr:	AX.25 specific data
1416  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1417  *
1418  *	@last_rx:	Time of last Rx
1419  *	@dev_addr:	Hw address (before bcast,
1420  *			because most packets are unicast)
1421  *
1422  *	@_rx:			Array of RX queues
1423  *	@num_rx_queues:		Number of RX queues
1424  *				allocated at register_netdev() time
1425  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1426  *
1427  *	@rx_handler:		handler for received packets
1428  *	@rx_handler_data: 	XXX: need comments on this one
1429  *	@ingress_queue:		XXX: need comments on this one
1430  *	@broadcast:		hw bcast address
1431  *
1432  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1433  *			indexed by RX queue number. Assigned by driver.
1434  *			This must only be set if the ndo_rx_flow_steer
1435  *			operation is defined
1436  *	@index_hlist:		Device index hash chain
1437  *
1438  *	@_tx:			Array of TX queues
1439  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1440  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1441  *	@qdisc:			Root qdisc from userspace point of view
1442  *	@tx_queue_len:		Max frames per queue allowed
1443  *	@tx_global_lock: 	XXX: need comments on this one
1444  *
1445  *	@xps_maps:	XXX: need comments on this one
1446  *
1447  *	@trans_start:		Time (in jiffies) of last Tx
1448  *	@watchdog_timeo:	Represents the timeout that is used by
1449  *				the watchdog ( see dev_watchdog() )
1450  *	@watchdog_timer:	List of timers
1451  *
1452  *	@pcpu_refcnt:		Number of references to this device
1453  *	@todo_list:		Delayed register/unregister
1454  *	@link_watch_list:	XXX: need comments on this one
1455  *
1456  *	@reg_state:		Register/unregister state machine
1457  *	@dismantle:		Device is going to be freed
1458  *	@rtnl_link_state:	This enum represents the phases of creating
1459  *				a new link
1460  *
1461  *	@destructor:		Called from unregister,
1462  *				can be used to call free_netdev
1463  *	@npinfo:		XXX: need comments on this one
1464  * 	@nd_net:		Network namespace this network device is inside
1465  *
1466  * 	@ml_priv:	Mid-layer private
1467  * 	@lstats:	Loopback statistics
1468  * 	@tstats:	Tunnel statistics
1469  * 	@dstats:	Dummy statistics
1470  * 	@vstats:	Virtual ethernet statistics
1471  *
1472  *	@garp_port:	GARP
1473  *	@mrp_port:	MRP
1474  *
1475  *	@dev:		Class/net/name entry
1476  *	@sysfs_groups:	Space for optional device, statistics and wireless
1477  *			sysfs groups
1478  *
1479  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1480  *	@rtnl_link_ops:	Rtnl_link_ops
1481  *
1482  *	@gso_max_size:	Maximum size of generic segmentation offload
1483  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1484  *			NIC for GSO
1485  *	@gso_min_segs:	Minimum number of segments that can be passed to the
1486  *			NIC for GSO
1487  *
1488  *	@dcbnl_ops:	Data Center Bridging netlink ops
1489  *	@num_tc:	Number of traffic classes in the net device
1490  *	@tc_to_txq:	XXX: need comments on this one
1491  *	@prio_tc_map	XXX: need comments on this one
1492  *
1493  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1494  *
1495  *	@priomap:	XXX: need comments on this one
1496  *	@phydev:	Physical device may attach itself
1497  *			for hardware timestamping
1498  *
1499  *	@qdisc_tx_busylock:	XXX: need comments on this one
1500  *
1501  *	FIXME: cleanup struct net_device such that network protocol info
1502  *	moves out.
1503  */
1504 
1505 struct net_device {
1506 	char			name[IFNAMSIZ];
1507 	struct hlist_node	name_hlist;
1508 	char 			*ifalias;
1509 	/*
1510 	 *	I/O specific fields
1511 	 *	FIXME: Merge these and struct ifmap into one
1512 	 */
1513 	unsigned long		mem_end;
1514 	unsigned long		mem_start;
1515 	unsigned long		base_addr;
1516 	int			irq;
1517 
1518 	atomic_t		carrier_changes;
1519 
1520 	/*
1521 	 *	Some hardware also needs these fields (state,dev_list,
1522 	 *	napi_list,unreg_list,close_list) but they are not
1523 	 *	part of the usual set specified in Space.c.
1524 	 */
1525 
1526 	unsigned long		state;
1527 
1528 	struct list_head	dev_list;
1529 	struct list_head	napi_list;
1530 	struct list_head	unreg_list;
1531 	struct list_head	close_list;
1532 	struct list_head	ptype_all;
1533 	struct list_head	ptype_specific;
1534 
1535 	struct {
1536 		struct list_head upper;
1537 		struct list_head lower;
1538 	} adj_list;
1539 
1540 	struct {
1541 		struct list_head upper;
1542 		struct list_head lower;
1543 	} all_adj_list;
1544 
1545 	netdev_features_t	features;
1546 	netdev_features_t	hw_features;
1547 	netdev_features_t	wanted_features;
1548 	netdev_features_t	vlan_features;
1549 	netdev_features_t	hw_enc_features;
1550 	netdev_features_t	mpls_features;
1551 
1552 	int			ifindex;
1553 	int			group;
1554 
1555 	struct net_device_stats	stats;
1556 
1557 	atomic_long_t		rx_dropped;
1558 	atomic_long_t		tx_dropped;
1559 
1560 #ifdef CONFIG_WIRELESS_EXT
1561 	const struct iw_handler_def *	wireless_handlers;
1562 	struct iw_public_data *	wireless_data;
1563 #endif
1564 	const struct net_device_ops *netdev_ops;
1565 	const struct ethtool_ops *ethtool_ops;
1566 #ifdef CONFIG_NET_SWITCHDEV
1567 	const struct swdev_ops *swdev_ops;
1568 #endif
1569 
1570 	const struct header_ops *header_ops;
1571 
1572 	unsigned int		flags;
1573 	unsigned int		priv_flags;
1574 
1575 	unsigned short		gflags;
1576 	unsigned short		padded;
1577 
1578 	unsigned char		operstate;
1579 	unsigned char		link_mode;
1580 
1581 	unsigned char		if_port;
1582 	unsigned char		dma;
1583 
1584 	unsigned int		mtu;
1585 	unsigned short		type;
1586 	unsigned short		hard_header_len;
1587 
1588 	unsigned short		needed_headroom;
1589 	unsigned short		needed_tailroom;
1590 
1591 	/* Interface address info. */
1592 	unsigned char		perm_addr[MAX_ADDR_LEN];
1593 	unsigned char		addr_assign_type;
1594 	unsigned char		addr_len;
1595 	unsigned short		neigh_priv_len;
1596 	unsigned short          dev_id;
1597 	unsigned short          dev_port;
1598 	spinlock_t		addr_list_lock;
1599 	unsigned char		name_assign_type;
1600 	bool			uc_promisc;
1601 	struct netdev_hw_addr_list	uc;
1602 	struct netdev_hw_addr_list	mc;
1603 	struct netdev_hw_addr_list	dev_addrs;
1604 
1605 #ifdef CONFIG_SYSFS
1606 	struct kset		*queues_kset;
1607 #endif
1608 	unsigned int		promiscuity;
1609 	unsigned int		allmulti;
1610 
1611 
1612 	/* Protocol specific pointers */
1613 
1614 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1615 	struct vlan_info __rcu	*vlan_info;
1616 #endif
1617 #if IS_ENABLED(CONFIG_NET_DSA)
1618 	struct dsa_switch_tree	*dsa_ptr;
1619 #endif
1620 #if IS_ENABLED(CONFIG_TIPC)
1621 	struct tipc_bearer __rcu *tipc_ptr;
1622 #endif
1623 	void 			*atalk_ptr;
1624 	struct in_device __rcu	*ip_ptr;
1625 	struct dn_dev __rcu     *dn_ptr;
1626 	struct inet6_dev __rcu	*ip6_ptr;
1627 	void			*ax25_ptr;
1628 	struct wireless_dev	*ieee80211_ptr;
1629 	struct wpan_dev		*ieee802154_ptr;
1630 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1631 	struct mpls_dev __rcu	*mpls_ptr;
1632 #endif
1633 
1634 /*
1635  * Cache lines mostly used on receive path (including eth_type_trans())
1636  */
1637 	unsigned long		last_rx;
1638 
1639 	/* Interface address info used in eth_type_trans() */
1640 	unsigned char		*dev_addr;
1641 
1642 
1643 #ifdef CONFIG_SYSFS
1644 	struct netdev_rx_queue	*_rx;
1645 
1646 	unsigned int		num_rx_queues;
1647 	unsigned int		real_num_rx_queues;
1648 
1649 #endif
1650 
1651 	unsigned long		gro_flush_timeout;
1652 	rx_handler_func_t __rcu	*rx_handler;
1653 	void __rcu		*rx_handler_data;
1654 
1655 	struct netdev_queue __rcu *ingress_queue;
1656 	unsigned char		broadcast[MAX_ADDR_LEN];
1657 #ifdef CONFIG_RFS_ACCEL
1658 	struct cpu_rmap		*rx_cpu_rmap;
1659 #endif
1660 	struct hlist_node	index_hlist;
1661 
1662 /*
1663  * Cache lines mostly used on transmit path
1664  */
1665 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1666 	unsigned int		num_tx_queues;
1667 	unsigned int		real_num_tx_queues;
1668 	struct Qdisc		*qdisc;
1669 	unsigned long		tx_queue_len;
1670 	spinlock_t		tx_global_lock;
1671 	int			watchdog_timeo;
1672 
1673 #ifdef CONFIG_XPS
1674 	struct xps_dev_maps __rcu *xps_maps;
1675 #endif
1676 
1677 	/* These may be needed for future network-power-down code. */
1678 
1679 	/*
1680 	 * trans_start here is expensive for high speed devices on SMP,
1681 	 * please use netdev_queue->trans_start instead.
1682 	 */
1683 	unsigned long		trans_start;
1684 
1685 	struct timer_list	watchdog_timer;
1686 
1687 	int __percpu		*pcpu_refcnt;
1688 	struct list_head	todo_list;
1689 
1690 	struct list_head	link_watch_list;
1691 
1692 	enum { NETREG_UNINITIALIZED=0,
1693 	       NETREG_REGISTERED,	/* completed register_netdevice */
1694 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1695 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1696 	       NETREG_RELEASED,		/* called free_netdev */
1697 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1698 	} reg_state:8;
1699 
1700 	bool dismantle;
1701 
1702 	enum {
1703 		RTNL_LINK_INITIALIZED,
1704 		RTNL_LINK_INITIALIZING,
1705 	} rtnl_link_state:16;
1706 
1707 	void (*destructor)(struct net_device *dev);
1708 
1709 #ifdef CONFIG_NETPOLL
1710 	struct netpoll_info __rcu	*npinfo;
1711 #endif
1712 
1713 	possible_net_t			nd_net;
1714 
1715 	/* mid-layer private */
1716 	union {
1717 		void					*ml_priv;
1718 		struct pcpu_lstats __percpu		*lstats;
1719 		struct pcpu_sw_netstats __percpu	*tstats;
1720 		struct pcpu_dstats __percpu		*dstats;
1721 		struct pcpu_vstats __percpu		*vstats;
1722 	};
1723 
1724 	struct garp_port __rcu	*garp_port;
1725 	struct mrp_port __rcu	*mrp_port;
1726 
1727 	struct device	dev;
1728 	const struct attribute_group *sysfs_groups[4];
1729 	const struct attribute_group *sysfs_rx_queue_group;
1730 
1731 	const struct rtnl_link_ops *rtnl_link_ops;
1732 
1733 	/* for setting kernel sock attribute on TCP connection setup */
1734 #define GSO_MAX_SIZE		65536
1735 	unsigned int		gso_max_size;
1736 #define GSO_MAX_SEGS		65535
1737 	u16			gso_max_segs;
1738 	u16			gso_min_segs;
1739 #ifdef CONFIG_DCB
1740 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1741 #endif
1742 	u8 num_tc;
1743 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1744 	u8 prio_tc_map[TC_BITMASK + 1];
1745 
1746 #if IS_ENABLED(CONFIG_FCOE)
1747 	unsigned int		fcoe_ddp_xid;
1748 #endif
1749 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1750 	struct netprio_map __rcu *priomap;
1751 #endif
1752 	struct phy_device *phydev;
1753 	struct lock_class_key *qdisc_tx_busylock;
1754 };
1755 #define to_net_dev(d) container_of(d, struct net_device, dev)
1756 
1757 #define	NETDEV_ALIGN		32
1758 
1759 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)1760 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1761 {
1762 	return dev->prio_tc_map[prio & TC_BITMASK];
1763 }
1764 
1765 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)1766 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1767 {
1768 	if (tc >= dev->num_tc)
1769 		return -EINVAL;
1770 
1771 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1772 	return 0;
1773 }
1774 
1775 static inline
netdev_reset_tc(struct net_device * dev)1776 void netdev_reset_tc(struct net_device *dev)
1777 {
1778 	dev->num_tc = 0;
1779 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1780 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1781 }
1782 
1783 static inline
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)1784 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1785 {
1786 	if (tc >= dev->num_tc)
1787 		return -EINVAL;
1788 
1789 	dev->tc_to_txq[tc].count = count;
1790 	dev->tc_to_txq[tc].offset = offset;
1791 	return 0;
1792 }
1793 
1794 static inline
netdev_set_num_tc(struct net_device * dev,u8 num_tc)1795 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1796 {
1797 	if (num_tc > TC_MAX_QUEUE)
1798 		return -EINVAL;
1799 
1800 	dev->num_tc = num_tc;
1801 	return 0;
1802 }
1803 
1804 static inline
netdev_get_num_tc(struct net_device * dev)1805 int netdev_get_num_tc(struct net_device *dev)
1806 {
1807 	return dev->num_tc;
1808 }
1809 
1810 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)1811 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1812 					 unsigned int index)
1813 {
1814 	return &dev->_tx[index];
1815 }
1816 
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)1817 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1818 						    const struct sk_buff *skb)
1819 {
1820 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1821 }
1822 
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)1823 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1824 					    void (*f)(struct net_device *,
1825 						      struct netdev_queue *,
1826 						      void *),
1827 					    void *arg)
1828 {
1829 	unsigned int i;
1830 
1831 	for (i = 0; i < dev->num_tx_queues; i++)
1832 		f(dev, &dev->_tx[i], arg);
1833 }
1834 
1835 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1836 				    struct sk_buff *skb,
1837 				    void *accel_priv);
1838 
1839 /*
1840  * Net namespace inlines
1841  */
1842 static inline
dev_net(const struct net_device * dev)1843 struct net *dev_net(const struct net_device *dev)
1844 {
1845 	return read_pnet(&dev->nd_net);
1846 }
1847 
1848 static inline
dev_net_set(struct net_device * dev,struct net * net)1849 void dev_net_set(struct net_device *dev, struct net *net)
1850 {
1851 	write_pnet(&dev->nd_net, net);
1852 }
1853 
netdev_uses_dsa(struct net_device * dev)1854 static inline bool netdev_uses_dsa(struct net_device *dev)
1855 {
1856 #if IS_ENABLED(CONFIG_NET_DSA)
1857 	if (dev->dsa_ptr != NULL)
1858 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
1859 #endif
1860 	return false;
1861 }
1862 
1863 /**
1864  *	netdev_priv - access network device private data
1865  *	@dev: network device
1866  *
1867  * Get network device private data
1868  */
netdev_priv(const struct net_device * dev)1869 static inline void *netdev_priv(const struct net_device *dev)
1870 {
1871 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1872 }
1873 
1874 /* Set the sysfs physical device reference for the network logical device
1875  * if set prior to registration will cause a symlink during initialization.
1876  */
1877 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1878 
1879 /* Set the sysfs device type for the network logical device to allow
1880  * fine-grained identification of different network device types. For
1881  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1882  */
1883 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1884 
1885 /* Default NAPI poll() weight
1886  * Device drivers are strongly advised to not use bigger value
1887  */
1888 #define NAPI_POLL_WEIGHT 64
1889 
1890 /**
1891  *	netif_napi_add - initialize a napi context
1892  *	@dev:  network device
1893  *	@napi: napi context
1894  *	@poll: polling function
1895  *	@weight: default weight
1896  *
1897  * netif_napi_add() must be used to initialize a napi context prior to calling
1898  * *any* of the other napi related functions.
1899  */
1900 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1901 		    int (*poll)(struct napi_struct *, int), int weight);
1902 
1903 /**
1904  *  netif_napi_del - remove a napi context
1905  *  @napi: napi context
1906  *
1907  *  netif_napi_del() removes a napi context from the network device napi list
1908  */
1909 void netif_napi_del(struct napi_struct *napi);
1910 
1911 struct napi_gro_cb {
1912 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1913 	void *frag0;
1914 
1915 	/* Length of frag0. */
1916 	unsigned int frag0_len;
1917 
1918 	/* This indicates where we are processing relative to skb->data. */
1919 	int data_offset;
1920 
1921 	/* This is non-zero if the packet cannot be merged with the new skb. */
1922 	u16	flush;
1923 
1924 	/* Save the IP ID here and check when we get to the transport layer */
1925 	u16	flush_id;
1926 
1927 	/* Number of segments aggregated. */
1928 	u16	count;
1929 
1930 	/* Start offset for remote checksum offload */
1931 	u16	gro_remcsum_start;
1932 
1933 	/* jiffies when first packet was created/queued */
1934 	unsigned long age;
1935 
1936 	/* Used in ipv6_gro_receive() and foo-over-udp */
1937 	u16	proto;
1938 
1939 	/* This is non-zero if the packet may be of the same flow. */
1940 	u8	same_flow:1;
1941 
1942 	/* Used in udp_gro_receive */
1943 	u8	udp_mark:1;
1944 
1945 	/* GRO checksum is valid */
1946 	u8	csum_valid:1;
1947 
1948 	/* Number of checksums via CHECKSUM_UNNECESSARY */
1949 	u8	csum_cnt:3;
1950 
1951 	/* Free the skb? */
1952 	u8	free:2;
1953 #define NAPI_GRO_FREE		  1
1954 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1955 
1956 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
1957 	u8	is_ipv6:1;
1958 
1959 	/* 7 bit hole */
1960 
1961 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
1962 	__wsum	csum;
1963 
1964 	/* used in skb_gro_receive() slow path */
1965 	struct sk_buff *last;
1966 };
1967 
1968 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1969 
1970 struct packet_type {
1971 	__be16			type;	/* This is really htons(ether_type). */
1972 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1973 	int			(*func) (struct sk_buff *,
1974 					 struct net_device *,
1975 					 struct packet_type *,
1976 					 struct net_device *);
1977 	bool			(*id_match)(struct packet_type *ptype,
1978 					    struct sock *sk);
1979 	void			*af_packet_priv;
1980 	struct list_head	list;
1981 };
1982 
1983 struct offload_callbacks {
1984 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1985 						netdev_features_t features);
1986 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1987 						 struct sk_buff *skb);
1988 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
1989 };
1990 
1991 struct packet_offload {
1992 	__be16			 type;	/* This is really htons(ether_type). */
1993 	struct offload_callbacks callbacks;
1994 	struct list_head	 list;
1995 };
1996 
1997 struct udp_offload;
1998 
1999 struct udp_offload_callbacks {
2000 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2001 						 struct sk_buff *skb,
2002 						 struct udp_offload *uoff);
2003 	int			(*gro_complete)(struct sk_buff *skb,
2004 						int nhoff,
2005 						struct udp_offload *uoff);
2006 };
2007 
2008 struct udp_offload {
2009 	__be16			 port;
2010 	u8			 ipproto;
2011 	struct udp_offload_callbacks callbacks;
2012 };
2013 
2014 /* often modified stats are per cpu, other are shared (netdev->stats) */
2015 struct pcpu_sw_netstats {
2016 	u64     rx_packets;
2017 	u64     rx_bytes;
2018 	u64     tx_packets;
2019 	u64     tx_bytes;
2020 	struct u64_stats_sync   syncp;
2021 };
2022 
2023 #define netdev_alloc_pcpu_stats(type)				\
2024 ({								\
2025 	typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2026 	if (pcpu_stats)	{					\
2027 		int __cpu;					\
2028 		for_each_possible_cpu(__cpu) {			\
2029 			typeof(type) *stat;			\
2030 			stat = per_cpu_ptr(pcpu_stats, __cpu);	\
2031 			u64_stats_init(&stat->syncp);		\
2032 		}						\
2033 	}							\
2034 	pcpu_stats;						\
2035 })
2036 
2037 #include <linux/notifier.h>
2038 
2039 /* netdevice notifier chain. Please remember to update the rtnetlink
2040  * notification exclusion list in rtnetlink_event() when adding new
2041  * types.
2042  */
2043 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2044 #define NETDEV_DOWN	0x0002
2045 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2046 				   detected a hardware crash and restarted
2047 				   - we can use this eg to kick tcp sessions
2048 				   once done */
2049 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2050 #define NETDEV_REGISTER 0x0005
2051 #define NETDEV_UNREGISTER	0x0006
2052 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2053 #define NETDEV_CHANGEADDR	0x0008
2054 #define NETDEV_GOING_DOWN	0x0009
2055 #define NETDEV_CHANGENAME	0x000A
2056 #define NETDEV_FEAT_CHANGE	0x000B
2057 #define NETDEV_BONDING_FAILOVER 0x000C
2058 #define NETDEV_PRE_UP		0x000D
2059 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2060 #define NETDEV_POST_TYPE_CHANGE	0x000F
2061 #define NETDEV_POST_INIT	0x0010
2062 #define NETDEV_UNREGISTER_FINAL 0x0011
2063 #define NETDEV_RELEASE		0x0012
2064 #define NETDEV_NOTIFY_PEERS	0x0013
2065 #define NETDEV_JOIN		0x0014
2066 #define NETDEV_CHANGEUPPER	0x0015
2067 #define NETDEV_RESEND_IGMP	0x0016
2068 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2069 #define NETDEV_CHANGEINFODATA	0x0018
2070 #define NETDEV_BONDING_INFO	0x0019
2071 
2072 int register_netdevice_notifier(struct notifier_block *nb);
2073 int unregister_netdevice_notifier(struct notifier_block *nb);
2074 
2075 struct netdev_notifier_info {
2076 	struct net_device *dev;
2077 };
2078 
2079 struct netdev_notifier_change_info {
2080 	struct netdev_notifier_info info; /* must be first */
2081 	unsigned int flags_changed;
2082 };
2083 
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)2084 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2085 					     struct net_device *dev)
2086 {
2087 	info->dev = dev;
2088 }
2089 
2090 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)2091 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2092 {
2093 	return info->dev;
2094 }
2095 
2096 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2097 
2098 
2099 extern rwlock_t				dev_base_lock;		/* Device list lock */
2100 
2101 #define for_each_netdev(net, d)		\
2102 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2103 #define for_each_netdev_reverse(net, d)	\
2104 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2105 #define for_each_netdev_rcu(net, d)		\
2106 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2107 #define for_each_netdev_safe(net, d, n)	\
2108 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2109 #define for_each_netdev_continue(net, d)		\
2110 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2111 #define for_each_netdev_continue_rcu(net, d)		\
2112 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2113 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2114 		for_each_netdev_rcu(&init_net, slave)	\
2115 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2116 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2117 
next_net_device(struct net_device * dev)2118 static inline struct net_device *next_net_device(struct net_device *dev)
2119 {
2120 	struct list_head *lh;
2121 	struct net *net;
2122 
2123 	net = dev_net(dev);
2124 	lh = dev->dev_list.next;
2125 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2126 }
2127 
next_net_device_rcu(struct net_device * dev)2128 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2129 {
2130 	struct list_head *lh;
2131 	struct net *net;
2132 
2133 	net = dev_net(dev);
2134 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2135 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2136 }
2137 
first_net_device(struct net * net)2138 static inline struct net_device *first_net_device(struct net *net)
2139 {
2140 	return list_empty(&net->dev_base_head) ? NULL :
2141 		net_device_entry(net->dev_base_head.next);
2142 }
2143 
first_net_device_rcu(struct net * net)2144 static inline struct net_device *first_net_device_rcu(struct net *net)
2145 {
2146 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2147 
2148 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2149 }
2150 
2151 int netdev_boot_setup_check(struct net_device *dev);
2152 unsigned long netdev_boot_base(const char *prefix, int unit);
2153 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2154 				       const char *hwaddr);
2155 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2156 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2157 void dev_add_pack(struct packet_type *pt);
2158 void dev_remove_pack(struct packet_type *pt);
2159 void __dev_remove_pack(struct packet_type *pt);
2160 void dev_add_offload(struct packet_offload *po);
2161 void dev_remove_offload(struct packet_offload *po);
2162 
2163 int dev_get_iflink(const struct net_device *dev);
2164 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2165 				      unsigned short mask);
2166 struct net_device *dev_get_by_name(struct net *net, const char *name);
2167 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2168 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2169 int dev_alloc_name(struct net_device *dev, const char *name);
2170 int dev_open(struct net_device *dev);
2171 int dev_close(struct net_device *dev);
2172 int dev_close_many(struct list_head *head, bool unlink);
2173 void dev_disable_lro(struct net_device *dev);
2174 int dev_loopback_xmit(struct sock *sk, struct sk_buff *newskb);
2175 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb);
dev_queue_xmit(struct sk_buff * skb)2176 static inline int dev_queue_xmit(struct sk_buff *skb)
2177 {
2178 	return dev_queue_xmit_sk(skb->sk, skb);
2179 }
2180 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2181 int register_netdevice(struct net_device *dev);
2182 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2183 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)2184 static inline void unregister_netdevice(struct net_device *dev)
2185 {
2186 	unregister_netdevice_queue(dev, NULL);
2187 }
2188 
2189 int netdev_refcnt_read(const struct net_device *dev);
2190 void free_netdev(struct net_device *dev);
2191 void netdev_freemem(struct net_device *dev);
2192 void synchronize_net(void);
2193 int init_dummy_netdev(struct net_device *dev);
2194 
2195 DECLARE_PER_CPU(int, xmit_recursion);
dev_recursion_level(void)2196 static inline int dev_recursion_level(void)
2197 {
2198 	return this_cpu_read(xmit_recursion);
2199 }
2200 
2201 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2202 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2203 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2204 int netdev_get_name(struct net *net, char *name, int ifindex);
2205 int dev_restart(struct net_device *dev);
2206 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2207 
skb_gro_offset(const struct sk_buff * skb)2208 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2209 {
2210 	return NAPI_GRO_CB(skb)->data_offset;
2211 }
2212 
skb_gro_len(const struct sk_buff * skb)2213 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2214 {
2215 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2216 }
2217 
skb_gro_pull(struct sk_buff * skb,unsigned int len)2218 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2219 {
2220 	NAPI_GRO_CB(skb)->data_offset += len;
2221 }
2222 
skb_gro_header_fast(struct sk_buff * skb,unsigned int offset)2223 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2224 					unsigned int offset)
2225 {
2226 	return NAPI_GRO_CB(skb)->frag0 + offset;
2227 }
2228 
skb_gro_header_hard(struct sk_buff * skb,unsigned int hlen)2229 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2230 {
2231 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2232 }
2233 
skb_gro_header_slow(struct sk_buff * skb,unsigned int hlen,unsigned int offset)2234 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2235 					unsigned int offset)
2236 {
2237 	if (!pskb_may_pull(skb, hlen))
2238 		return NULL;
2239 
2240 	NAPI_GRO_CB(skb)->frag0 = NULL;
2241 	NAPI_GRO_CB(skb)->frag0_len = 0;
2242 	return skb->data + offset;
2243 }
2244 
skb_gro_network_header(struct sk_buff * skb)2245 static inline void *skb_gro_network_header(struct sk_buff *skb)
2246 {
2247 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2248 	       skb_network_offset(skb);
2249 }
2250 
skb_gro_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2251 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2252 					const void *start, unsigned int len)
2253 {
2254 	if (NAPI_GRO_CB(skb)->csum_valid)
2255 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2256 						  csum_partial(start, len, 0));
2257 }
2258 
2259 /* GRO checksum functions. These are logical equivalents of the normal
2260  * checksum functions (in skbuff.h) except that they operate on the GRO
2261  * offsets and fields in sk_buff.
2262  */
2263 
2264 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2265 
skb_at_gro_remcsum_start(struct sk_buff * skb)2266 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2267 {
2268 	return (NAPI_GRO_CB(skb)->gro_remcsum_start - skb_headroom(skb) ==
2269 		skb_gro_offset(skb));
2270 }
2271 
__skb_gro_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)2272 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2273 						      bool zero_okay,
2274 						      __sum16 check)
2275 {
2276 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2277 		skb_checksum_start_offset(skb) <
2278 		 skb_gro_offset(skb)) &&
2279 		!skb_at_gro_remcsum_start(skb) &&
2280 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2281 		(!zero_okay || check));
2282 }
2283 
__skb_gro_checksum_validate_complete(struct sk_buff * skb,__wsum psum)2284 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2285 							   __wsum psum)
2286 {
2287 	if (NAPI_GRO_CB(skb)->csum_valid &&
2288 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2289 		return 0;
2290 
2291 	NAPI_GRO_CB(skb)->csum = psum;
2292 
2293 	return __skb_gro_checksum_complete(skb);
2294 }
2295 
skb_gro_incr_csum_unnecessary(struct sk_buff * skb)2296 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2297 {
2298 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2299 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2300 		NAPI_GRO_CB(skb)->csum_cnt--;
2301 	} else {
2302 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2303 		 * verified a new top level checksum or an encapsulated one
2304 		 * during GRO. This saves work if we fallback to normal path.
2305 		 */
2306 		__skb_incr_checksum_unnecessary(skb);
2307 	}
2308 }
2309 
2310 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2311 				    compute_pseudo)			\
2312 ({									\
2313 	__sum16 __ret = 0;						\
2314 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2315 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2316 				compute_pseudo(skb, proto));		\
2317 	if (__ret)							\
2318 		__skb_mark_checksum_bad(skb);				\
2319 	else								\
2320 		skb_gro_incr_csum_unnecessary(skb);			\
2321 	__ret;								\
2322 })
2323 
2324 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2325 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2326 
2327 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2328 					     compute_pseudo)		\
2329 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2330 
2331 #define skb_gro_checksum_simple_validate(skb)				\
2332 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2333 
__skb_gro_checksum_convert_check(struct sk_buff * skb)2334 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2335 {
2336 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2337 		!NAPI_GRO_CB(skb)->csum_valid);
2338 }
2339 
__skb_gro_checksum_convert(struct sk_buff * skb,__sum16 check,__wsum pseudo)2340 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2341 					      __sum16 check, __wsum pseudo)
2342 {
2343 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2344 	NAPI_GRO_CB(skb)->csum_valid = 1;
2345 }
2346 
2347 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2348 do {									\
2349 	if (__skb_gro_checksum_convert_check(skb))			\
2350 		__skb_gro_checksum_convert(skb, check,			\
2351 					   compute_pseudo(skb, proto));	\
2352 } while (0)
2353 
2354 struct gro_remcsum {
2355 	int offset;
2356 	__wsum delta;
2357 };
2358 
skb_gro_remcsum_init(struct gro_remcsum * grc)2359 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2360 {
2361 	grc->offset = 0;
2362 	grc->delta = 0;
2363 }
2364 
skb_gro_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,struct gro_remcsum * grc,bool nopartial)2365 static inline void skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2366 					   int start, int offset,
2367 					   struct gro_remcsum *grc,
2368 					   bool nopartial)
2369 {
2370 	__wsum delta;
2371 
2372 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2373 
2374 	if (!nopartial) {
2375 		NAPI_GRO_CB(skb)->gro_remcsum_start =
2376 		    ((unsigned char *)ptr + start) - skb->head;
2377 		return;
2378 	}
2379 
2380 	delta = remcsum_adjust(ptr, NAPI_GRO_CB(skb)->csum, start, offset);
2381 
2382 	/* Adjust skb->csum since we changed the packet */
2383 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2384 
2385 	grc->offset = (ptr + offset) - (void *)skb->head;
2386 	grc->delta = delta;
2387 }
2388 
skb_gro_remcsum_cleanup(struct sk_buff * skb,struct gro_remcsum * grc)2389 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2390 					   struct gro_remcsum *grc)
2391 {
2392 	if (!grc->delta)
2393 		return;
2394 
2395 	remcsum_unadjust((__sum16 *)(skb->head + grc->offset), grc->delta);
2396 }
2397 
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)2398 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2399 				  unsigned short type,
2400 				  const void *daddr, const void *saddr,
2401 				  unsigned int len)
2402 {
2403 	if (!dev->header_ops || !dev->header_ops->create)
2404 		return 0;
2405 
2406 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2407 }
2408 
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)2409 static inline int dev_parse_header(const struct sk_buff *skb,
2410 				   unsigned char *haddr)
2411 {
2412 	const struct net_device *dev = skb->dev;
2413 
2414 	if (!dev->header_ops || !dev->header_ops->parse)
2415 		return 0;
2416 	return dev->header_ops->parse(skb, haddr);
2417 }
2418 
2419 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2420 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
unregister_gifconf(unsigned int family)2421 static inline int unregister_gifconf(unsigned int family)
2422 {
2423 	return register_gifconf(family, NULL);
2424 }
2425 
2426 #ifdef CONFIG_NET_FLOW_LIMIT
2427 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2428 struct sd_flow_limit {
2429 	u64			count;
2430 	unsigned int		num_buckets;
2431 	unsigned int		history_head;
2432 	u16			history[FLOW_LIMIT_HISTORY];
2433 	u8			buckets[];
2434 };
2435 
2436 extern int netdev_flow_limit_table_len;
2437 #endif /* CONFIG_NET_FLOW_LIMIT */
2438 
2439 /*
2440  * Incoming packets are placed on per-cpu queues
2441  */
2442 struct softnet_data {
2443 	struct list_head	poll_list;
2444 	struct sk_buff_head	process_queue;
2445 
2446 	/* stats */
2447 	unsigned int		processed;
2448 	unsigned int		time_squeeze;
2449 	unsigned int		cpu_collision;
2450 	unsigned int		received_rps;
2451 #ifdef CONFIG_RPS
2452 	struct softnet_data	*rps_ipi_list;
2453 #endif
2454 #ifdef CONFIG_NET_FLOW_LIMIT
2455 	struct sd_flow_limit __rcu *flow_limit;
2456 #endif
2457 	struct Qdisc		*output_queue;
2458 	struct Qdisc		**output_queue_tailp;
2459 	struct sk_buff		*completion_queue;
2460 
2461 #ifdef CONFIG_RPS
2462 	/* Elements below can be accessed between CPUs for RPS */
2463 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2464 	struct softnet_data	*rps_ipi_next;
2465 	unsigned int		cpu;
2466 	unsigned int		input_queue_head;
2467 	unsigned int		input_queue_tail;
2468 #endif
2469 	unsigned int		dropped;
2470 	struct sk_buff_head	input_pkt_queue;
2471 	struct napi_struct	backlog;
2472 
2473 };
2474 
input_queue_head_incr(struct softnet_data * sd)2475 static inline void input_queue_head_incr(struct softnet_data *sd)
2476 {
2477 #ifdef CONFIG_RPS
2478 	sd->input_queue_head++;
2479 #endif
2480 }
2481 
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)2482 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2483 					      unsigned int *qtail)
2484 {
2485 #ifdef CONFIG_RPS
2486 	*qtail = ++sd->input_queue_tail;
2487 #endif
2488 }
2489 
2490 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2491 
2492 void __netif_schedule(struct Qdisc *q);
2493 void netif_schedule_queue(struct netdev_queue *txq);
2494 
netif_tx_schedule_all(struct net_device * dev)2495 static inline void netif_tx_schedule_all(struct net_device *dev)
2496 {
2497 	unsigned int i;
2498 
2499 	for (i = 0; i < dev->num_tx_queues; i++)
2500 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2501 }
2502 
netif_tx_start_queue(struct netdev_queue * dev_queue)2503 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2504 {
2505 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2506 }
2507 
2508 /**
2509  *	netif_start_queue - allow transmit
2510  *	@dev: network device
2511  *
2512  *	Allow upper layers to call the device hard_start_xmit routine.
2513  */
netif_start_queue(struct net_device * dev)2514 static inline void netif_start_queue(struct net_device *dev)
2515 {
2516 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2517 }
2518 
netif_tx_start_all_queues(struct net_device * dev)2519 static inline void netif_tx_start_all_queues(struct net_device *dev)
2520 {
2521 	unsigned int i;
2522 
2523 	for (i = 0; i < dev->num_tx_queues; i++) {
2524 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2525 		netif_tx_start_queue(txq);
2526 	}
2527 }
2528 
2529 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2530 
2531 /**
2532  *	netif_wake_queue - restart transmit
2533  *	@dev: network device
2534  *
2535  *	Allow upper layers to call the device hard_start_xmit routine.
2536  *	Used for flow control when transmit resources are available.
2537  */
netif_wake_queue(struct net_device * dev)2538 static inline void netif_wake_queue(struct net_device *dev)
2539 {
2540 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2541 }
2542 
netif_tx_wake_all_queues(struct net_device * dev)2543 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2544 {
2545 	unsigned int i;
2546 
2547 	for (i = 0; i < dev->num_tx_queues; i++) {
2548 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2549 		netif_tx_wake_queue(txq);
2550 	}
2551 }
2552 
netif_tx_stop_queue(struct netdev_queue * dev_queue)2553 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2554 {
2555 	if (WARN_ON(!dev_queue)) {
2556 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2557 		return;
2558 	}
2559 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2560 }
2561 
2562 /**
2563  *	netif_stop_queue - stop transmitted packets
2564  *	@dev: network device
2565  *
2566  *	Stop upper layers calling the device hard_start_xmit routine.
2567  *	Used for flow control when transmit resources are unavailable.
2568  */
netif_stop_queue(struct net_device * dev)2569 static inline void netif_stop_queue(struct net_device *dev)
2570 {
2571 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2572 }
2573 
netif_tx_stop_all_queues(struct net_device * dev)2574 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2575 {
2576 	unsigned int i;
2577 
2578 	for (i = 0; i < dev->num_tx_queues; i++) {
2579 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2580 		netif_tx_stop_queue(txq);
2581 	}
2582 }
2583 
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)2584 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2585 {
2586 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2587 }
2588 
2589 /**
2590  *	netif_queue_stopped - test if transmit queue is flowblocked
2591  *	@dev: network device
2592  *
2593  *	Test if transmit queue on device is currently unable to send.
2594  */
netif_queue_stopped(const struct net_device * dev)2595 static inline bool netif_queue_stopped(const struct net_device *dev)
2596 {
2597 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2598 }
2599 
netif_xmit_stopped(const struct netdev_queue * dev_queue)2600 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2601 {
2602 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2603 }
2604 
2605 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)2606 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2607 {
2608 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2609 }
2610 
2611 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)2612 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2613 {
2614 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2615 }
2616 
2617 /**
2618  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2619  *	@dev_queue: pointer to transmit queue
2620  *
2621  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2622  * to give appropriate hint to the cpu.
2623  */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)2624 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2625 {
2626 #ifdef CONFIG_BQL
2627 	prefetchw(&dev_queue->dql.num_queued);
2628 #endif
2629 }
2630 
2631 /**
2632  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2633  *	@dev_queue: pointer to transmit queue
2634  *
2635  * BQL enabled drivers might use this helper in their TX completion path,
2636  * to give appropriate hint to the cpu.
2637  */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)2638 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2639 {
2640 #ifdef CONFIG_BQL
2641 	prefetchw(&dev_queue->dql.limit);
2642 #endif
2643 }
2644 
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)2645 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2646 					unsigned int bytes)
2647 {
2648 #ifdef CONFIG_BQL
2649 	dql_queued(&dev_queue->dql, bytes);
2650 
2651 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2652 		return;
2653 
2654 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2655 
2656 	/*
2657 	 * The XOFF flag must be set before checking the dql_avail below,
2658 	 * because in netdev_tx_completed_queue we update the dql_completed
2659 	 * before checking the XOFF flag.
2660 	 */
2661 	smp_mb();
2662 
2663 	/* check again in case another CPU has just made room avail */
2664 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2665 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2666 #endif
2667 }
2668 
2669 /**
2670  * 	netdev_sent_queue - report the number of bytes queued to hardware
2671  * 	@dev: network device
2672  * 	@bytes: number of bytes queued to the hardware device queue
2673  *
2674  * 	Report the number of bytes queued for sending/completion to the network
2675  * 	device hardware queue. @bytes should be a good approximation and should
2676  * 	exactly match netdev_completed_queue() @bytes
2677  */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)2678 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2679 {
2680 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2681 }
2682 
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)2683 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2684 					     unsigned int pkts, unsigned int bytes)
2685 {
2686 #ifdef CONFIG_BQL
2687 	if (unlikely(!bytes))
2688 		return;
2689 
2690 	dql_completed(&dev_queue->dql, bytes);
2691 
2692 	/*
2693 	 * Without the memory barrier there is a small possiblity that
2694 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2695 	 * be stopped forever
2696 	 */
2697 	smp_mb();
2698 
2699 	if (dql_avail(&dev_queue->dql) < 0)
2700 		return;
2701 
2702 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2703 		netif_schedule_queue(dev_queue);
2704 #endif
2705 }
2706 
2707 /**
2708  * 	netdev_completed_queue - report bytes and packets completed by device
2709  * 	@dev: network device
2710  * 	@pkts: actual number of packets sent over the medium
2711  * 	@bytes: actual number of bytes sent over the medium
2712  *
2713  * 	Report the number of bytes and packets transmitted by the network device
2714  * 	hardware queue over the physical medium, @bytes must exactly match the
2715  * 	@bytes amount passed to netdev_sent_queue()
2716  */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)2717 static inline void netdev_completed_queue(struct net_device *dev,
2718 					  unsigned int pkts, unsigned int bytes)
2719 {
2720 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2721 }
2722 
netdev_tx_reset_queue(struct netdev_queue * q)2723 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2724 {
2725 #ifdef CONFIG_BQL
2726 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2727 	dql_reset(&q->dql);
2728 #endif
2729 }
2730 
2731 /**
2732  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2733  * 	@dev_queue: network device
2734  *
2735  * 	Reset the bytes and packet count of a network device and clear the
2736  * 	software flow control OFF bit for this network device
2737  */
netdev_reset_queue(struct net_device * dev_queue)2738 static inline void netdev_reset_queue(struct net_device *dev_queue)
2739 {
2740 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2741 }
2742 
2743 /**
2744  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2745  * 	@dev: network device
2746  * 	@queue_index: given tx queue index
2747  *
2748  * 	Returns 0 if given tx queue index >= number of device tx queues,
2749  * 	otherwise returns the originally passed tx queue index.
2750  */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)2751 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2752 {
2753 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2754 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2755 				     dev->name, queue_index,
2756 				     dev->real_num_tx_queues);
2757 		return 0;
2758 	}
2759 
2760 	return queue_index;
2761 }
2762 
2763 /**
2764  *	netif_running - test if up
2765  *	@dev: network device
2766  *
2767  *	Test if the device has been brought up.
2768  */
netif_running(const struct net_device * dev)2769 static inline bool netif_running(const struct net_device *dev)
2770 {
2771 	return test_bit(__LINK_STATE_START, &dev->state);
2772 }
2773 
2774 /*
2775  * Routines to manage the subqueues on a device.  We only need start
2776  * stop, and a check if it's stopped.  All other device management is
2777  * done at the overall netdevice level.
2778  * Also test the device if we're multiqueue.
2779  */
2780 
2781 /**
2782  *	netif_start_subqueue - allow sending packets on subqueue
2783  *	@dev: network device
2784  *	@queue_index: sub queue index
2785  *
2786  * Start individual transmit queue of a device with multiple transmit queues.
2787  */
netif_start_subqueue(struct net_device * dev,u16 queue_index)2788 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2789 {
2790 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2791 
2792 	netif_tx_start_queue(txq);
2793 }
2794 
2795 /**
2796  *	netif_stop_subqueue - stop sending packets on subqueue
2797  *	@dev: network device
2798  *	@queue_index: sub queue index
2799  *
2800  * Stop individual transmit queue of a device with multiple transmit queues.
2801  */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)2802 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2803 {
2804 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2805 	netif_tx_stop_queue(txq);
2806 }
2807 
2808 /**
2809  *	netif_subqueue_stopped - test status of subqueue
2810  *	@dev: network device
2811  *	@queue_index: sub queue index
2812  *
2813  * Check individual transmit queue of a device with multiple transmit queues.
2814  */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)2815 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2816 					    u16 queue_index)
2817 {
2818 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2819 
2820 	return netif_tx_queue_stopped(txq);
2821 }
2822 
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)2823 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2824 					  struct sk_buff *skb)
2825 {
2826 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2827 }
2828 
2829 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2830 
2831 #ifdef CONFIG_XPS
2832 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2833 			u16 index);
2834 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2835 static inline int netif_set_xps_queue(struct net_device *dev,
2836 				      const struct cpumask *mask,
2837 				      u16 index)
2838 {
2839 	return 0;
2840 }
2841 #endif
2842 
2843 /*
2844  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2845  * as a distribution range limit for the returned value.
2846  */
skb_tx_hash(const struct net_device * dev,struct sk_buff * skb)2847 static inline u16 skb_tx_hash(const struct net_device *dev,
2848 			      struct sk_buff *skb)
2849 {
2850 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2851 }
2852 
2853 /**
2854  *	netif_is_multiqueue - test if device has multiple transmit queues
2855  *	@dev: network device
2856  *
2857  * Check if device has multiple transmit queues
2858  */
netif_is_multiqueue(const struct net_device * dev)2859 static inline bool netif_is_multiqueue(const struct net_device *dev)
2860 {
2861 	return dev->num_tx_queues > 1;
2862 }
2863 
2864 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2865 
2866 #ifdef CONFIG_SYSFS
2867 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2868 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2869 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2870 						unsigned int rxq)
2871 {
2872 	return 0;
2873 }
2874 #endif
2875 
2876 #ifdef CONFIG_SYSFS
get_netdev_rx_queue_index(struct netdev_rx_queue * queue)2877 static inline unsigned int get_netdev_rx_queue_index(
2878 		struct netdev_rx_queue *queue)
2879 {
2880 	struct net_device *dev = queue->dev;
2881 	int index = queue - dev->_rx;
2882 
2883 	BUG_ON(index >= dev->num_rx_queues);
2884 	return index;
2885 }
2886 #endif
2887 
2888 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2889 int netif_get_num_default_rss_queues(void);
2890 
2891 enum skb_free_reason {
2892 	SKB_REASON_CONSUMED,
2893 	SKB_REASON_DROPPED,
2894 };
2895 
2896 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2897 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2898 
2899 /*
2900  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2901  * interrupt context or with hardware interrupts being disabled.
2902  * (in_irq() || irqs_disabled())
2903  *
2904  * We provide four helpers that can be used in following contexts :
2905  *
2906  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2907  *  replacing kfree_skb(skb)
2908  *
2909  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2910  *  Typically used in place of consume_skb(skb) in TX completion path
2911  *
2912  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2913  *  replacing kfree_skb(skb)
2914  *
2915  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2916  *  and consumed a packet. Used in place of consume_skb(skb)
2917  */
dev_kfree_skb_irq(struct sk_buff * skb)2918 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2919 {
2920 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2921 }
2922 
dev_consume_skb_irq(struct sk_buff * skb)2923 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2924 {
2925 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2926 }
2927 
dev_kfree_skb_any(struct sk_buff * skb)2928 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2929 {
2930 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2931 }
2932 
dev_consume_skb_any(struct sk_buff * skb)2933 static inline void dev_consume_skb_any(struct sk_buff *skb)
2934 {
2935 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2936 }
2937 
2938 int netif_rx(struct sk_buff *skb);
2939 int netif_rx_ni(struct sk_buff *skb);
2940 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb);
netif_receive_skb(struct sk_buff * skb)2941 static inline int netif_receive_skb(struct sk_buff *skb)
2942 {
2943 	return netif_receive_skb_sk(skb->sk, skb);
2944 }
2945 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2946 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2947 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2948 gro_result_t napi_gro_frags(struct napi_struct *napi);
2949 struct packet_offload *gro_find_receive_by_type(__be16 type);
2950 struct packet_offload *gro_find_complete_by_type(__be16 type);
2951 
napi_free_frags(struct napi_struct * napi)2952 static inline void napi_free_frags(struct napi_struct *napi)
2953 {
2954 	kfree_skb(napi->skb);
2955 	napi->skb = NULL;
2956 }
2957 
2958 int netdev_rx_handler_register(struct net_device *dev,
2959 			       rx_handler_func_t *rx_handler,
2960 			       void *rx_handler_data);
2961 void netdev_rx_handler_unregister(struct net_device *dev);
2962 
2963 bool dev_valid_name(const char *name);
2964 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2965 int dev_ethtool(struct net *net, struct ifreq *);
2966 unsigned int dev_get_flags(const struct net_device *);
2967 int __dev_change_flags(struct net_device *, unsigned int flags);
2968 int dev_change_flags(struct net_device *, unsigned int);
2969 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2970 			unsigned int gchanges);
2971 int dev_change_name(struct net_device *, const char *);
2972 int dev_set_alias(struct net_device *, const char *, size_t);
2973 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2974 int dev_set_mtu(struct net_device *, int);
2975 void dev_set_group(struct net_device *, int);
2976 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2977 int dev_change_carrier(struct net_device *, bool new_carrier);
2978 int dev_get_phys_port_id(struct net_device *dev,
2979 			 struct netdev_phys_item_id *ppid);
2980 int dev_get_phys_port_name(struct net_device *dev,
2981 			   char *name, size_t len);
2982 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
2983 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2984 				    struct netdev_queue *txq, int *ret);
2985 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2986 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2987 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2988 
2989 extern int		netdev_budget;
2990 
2991 /* Called by rtnetlink.c:rtnl_unlock() */
2992 void netdev_run_todo(void);
2993 
2994 /**
2995  *	dev_put - release reference to device
2996  *	@dev: network device
2997  *
2998  * Release reference to device to allow it to be freed.
2999  */
dev_put(struct net_device * dev)3000 static inline void dev_put(struct net_device *dev)
3001 {
3002 	this_cpu_dec(*dev->pcpu_refcnt);
3003 }
3004 
3005 /**
3006  *	dev_hold - get reference to device
3007  *	@dev: network device
3008  *
3009  * Hold reference to device to keep it from being freed.
3010  */
dev_hold(struct net_device * dev)3011 static inline void dev_hold(struct net_device *dev)
3012 {
3013 	this_cpu_inc(*dev->pcpu_refcnt);
3014 }
3015 
3016 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3017  * and _off may be called from IRQ context, but it is caller
3018  * who is responsible for serialization of these calls.
3019  *
3020  * The name carrier is inappropriate, these functions should really be
3021  * called netif_lowerlayer_*() because they represent the state of any
3022  * kind of lower layer not just hardware media.
3023  */
3024 
3025 void linkwatch_init_dev(struct net_device *dev);
3026 void linkwatch_fire_event(struct net_device *dev);
3027 void linkwatch_forget_dev(struct net_device *dev);
3028 
3029 /**
3030  *	netif_carrier_ok - test if carrier present
3031  *	@dev: network device
3032  *
3033  * Check if carrier is present on device
3034  */
netif_carrier_ok(const struct net_device * dev)3035 static inline bool netif_carrier_ok(const struct net_device *dev)
3036 {
3037 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3038 }
3039 
3040 unsigned long dev_trans_start(struct net_device *dev);
3041 
3042 void __netdev_watchdog_up(struct net_device *dev);
3043 
3044 void netif_carrier_on(struct net_device *dev);
3045 
3046 void netif_carrier_off(struct net_device *dev);
3047 
3048 /**
3049  *	netif_dormant_on - mark device as dormant.
3050  *	@dev: network device
3051  *
3052  * Mark device as dormant (as per RFC2863).
3053  *
3054  * The dormant state indicates that the relevant interface is not
3055  * actually in a condition to pass packets (i.e., it is not 'up') but is
3056  * in a "pending" state, waiting for some external event.  For "on-
3057  * demand" interfaces, this new state identifies the situation where the
3058  * interface is waiting for events to place it in the up state.
3059  *
3060  */
netif_dormant_on(struct net_device * dev)3061 static inline void netif_dormant_on(struct net_device *dev)
3062 {
3063 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3064 		linkwatch_fire_event(dev);
3065 }
3066 
3067 /**
3068  *	netif_dormant_off - set device as not dormant.
3069  *	@dev: network device
3070  *
3071  * Device is not in dormant state.
3072  */
netif_dormant_off(struct net_device * dev)3073 static inline void netif_dormant_off(struct net_device *dev)
3074 {
3075 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3076 		linkwatch_fire_event(dev);
3077 }
3078 
3079 /**
3080  *	netif_dormant - test if carrier present
3081  *	@dev: network device
3082  *
3083  * Check if carrier is present on device
3084  */
netif_dormant(const struct net_device * dev)3085 static inline bool netif_dormant(const struct net_device *dev)
3086 {
3087 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3088 }
3089 
3090 
3091 /**
3092  *	netif_oper_up - test if device is operational
3093  *	@dev: network device
3094  *
3095  * Check if carrier is operational
3096  */
netif_oper_up(const struct net_device * dev)3097 static inline bool netif_oper_up(const struct net_device *dev)
3098 {
3099 	return (dev->operstate == IF_OPER_UP ||
3100 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3101 }
3102 
3103 /**
3104  *	netif_device_present - is device available or removed
3105  *	@dev: network device
3106  *
3107  * Check if device has not been removed from system.
3108  */
netif_device_present(struct net_device * dev)3109 static inline bool netif_device_present(struct net_device *dev)
3110 {
3111 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3112 }
3113 
3114 void netif_device_detach(struct net_device *dev);
3115 
3116 void netif_device_attach(struct net_device *dev);
3117 
3118 /*
3119  * Network interface message level settings
3120  */
3121 
3122 enum {
3123 	NETIF_MSG_DRV		= 0x0001,
3124 	NETIF_MSG_PROBE		= 0x0002,
3125 	NETIF_MSG_LINK		= 0x0004,
3126 	NETIF_MSG_TIMER		= 0x0008,
3127 	NETIF_MSG_IFDOWN	= 0x0010,
3128 	NETIF_MSG_IFUP		= 0x0020,
3129 	NETIF_MSG_RX_ERR	= 0x0040,
3130 	NETIF_MSG_TX_ERR	= 0x0080,
3131 	NETIF_MSG_TX_QUEUED	= 0x0100,
3132 	NETIF_MSG_INTR		= 0x0200,
3133 	NETIF_MSG_TX_DONE	= 0x0400,
3134 	NETIF_MSG_RX_STATUS	= 0x0800,
3135 	NETIF_MSG_PKTDATA	= 0x1000,
3136 	NETIF_MSG_HW		= 0x2000,
3137 	NETIF_MSG_WOL		= 0x4000,
3138 };
3139 
3140 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3141 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3142 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3143 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3144 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3145 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3146 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3147 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3148 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3149 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3150 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3151 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3152 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3153 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3154 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3155 
netif_msg_init(int debug_value,int default_msg_enable_bits)3156 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3157 {
3158 	/* use default */
3159 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3160 		return default_msg_enable_bits;
3161 	if (debug_value == 0)	/* no output */
3162 		return 0;
3163 	/* set low N bits */
3164 	return (1 << debug_value) - 1;
3165 }
3166 
__netif_tx_lock(struct netdev_queue * txq,int cpu)3167 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3168 {
3169 	spin_lock(&txq->_xmit_lock);
3170 	txq->xmit_lock_owner = cpu;
3171 }
3172 
__netif_tx_lock_bh(struct netdev_queue * txq)3173 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3174 {
3175 	spin_lock_bh(&txq->_xmit_lock);
3176 	txq->xmit_lock_owner = smp_processor_id();
3177 }
3178 
__netif_tx_trylock(struct netdev_queue * txq)3179 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3180 {
3181 	bool ok = spin_trylock(&txq->_xmit_lock);
3182 	if (likely(ok))
3183 		txq->xmit_lock_owner = smp_processor_id();
3184 	return ok;
3185 }
3186 
__netif_tx_unlock(struct netdev_queue * txq)3187 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3188 {
3189 	txq->xmit_lock_owner = -1;
3190 	spin_unlock(&txq->_xmit_lock);
3191 }
3192 
__netif_tx_unlock_bh(struct netdev_queue * txq)3193 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3194 {
3195 	txq->xmit_lock_owner = -1;
3196 	spin_unlock_bh(&txq->_xmit_lock);
3197 }
3198 
txq_trans_update(struct netdev_queue * txq)3199 static inline void txq_trans_update(struct netdev_queue *txq)
3200 {
3201 	if (txq->xmit_lock_owner != -1)
3202 		txq->trans_start = jiffies;
3203 }
3204 
3205 /**
3206  *	netif_tx_lock - grab network device transmit lock
3207  *	@dev: network device
3208  *
3209  * Get network device transmit lock
3210  */
netif_tx_lock(struct net_device * dev)3211 static inline void netif_tx_lock(struct net_device *dev)
3212 {
3213 	unsigned int i;
3214 	int cpu;
3215 
3216 	spin_lock(&dev->tx_global_lock);
3217 	cpu = smp_processor_id();
3218 	for (i = 0; i < dev->num_tx_queues; i++) {
3219 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3220 
3221 		/* We are the only thread of execution doing a
3222 		 * freeze, but we have to grab the _xmit_lock in
3223 		 * order to synchronize with threads which are in
3224 		 * the ->hard_start_xmit() handler and already
3225 		 * checked the frozen bit.
3226 		 */
3227 		__netif_tx_lock(txq, cpu);
3228 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3229 		__netif_tx_unlock(txq);
3230 	}
3231 }
3232 
netif_tx_lock_bh(struct net_device * dev)3233 static inline void netif_tx_lock_bh(struct net_device *dev)
3234 {
3235 	local_bh_disable();
3236 	netif_tx_lock(dev);
3237 }
3238 
netif_tx_unlock(struct net_device * dev)3239 static inline void netif_tx_unlock(struct net_device *dev)
3240 {
3241 	unsigned int i;
3242 
3243 	for (i = 0; i < dev->num_tx_queues; i++) {
3244 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3245 
3246 		/* No need to grab the _xmit_lock here.  If the
3247 		 * queue is not stopped for another reason, we
3248 		 * force a schedule.
3249 		 */
3250 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3251 		netif_schedule_queue(txq);
3252 	}
3253 	spin_unlock(&dev->tx_global_lock);
3254 }
3255 
netif_tx_unlock_bh(struct net_device * dev)3256 static inline void netif_tx_unlock_bh(struct net_device *dev)
3257 {
3258 	netif_tx_unlock(dev);
3259 	local_bh_enable();
3260 }
3261 
3262 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3263 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3264 		__netif_tx_lock(txq, cpu);		\
3265 	}						\
3266 }
3267 
3268 #define HARD_TX_TRYLOCK(dev, txq)			\
3269 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3270 		__netif_tx_trylock(txq) :		\
3271 		true )
3272 
3273 #define HARD_TX_UNLOCK(dev, txq) {			\
3274 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3275 		__netif_tx_unlock(txq);			\
3276 	}						\
3277 }
3278 
netif_tx_disable(struct net_device * dev)3279 static inline void netif_tx_disable(struct net_device *dev)
3280 {
3281 	unsigned int i;
3282 	int cpu;
3283 
3284 	local_bh_disable();
3285 	cpu = smp_processor_id();
3286 	for (i = 0; i < dev->num_tx_queues; i++) {
3287 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3288 
3289 		__netif_tx_lock(txq, cpu);
3290 		netif_tx_stop_queue(txq);
3291 		__netif_tx_unlock(txq);
3292 	}
3293 	local_bh_enable();
3294 }
3295 
netif_addr_lock(struct net_device * dev)3296 static inline void netif_addr_lock(struct net_device *dev)
3297 {
3298 	spin_lock(&dev->addr_list_lock);
3299 }
3300 
netif_addr_lock_nested(struct net_device * dev)3301 static inline void netif_addr_lock_nested(struct net_device *dev)
3302 {
3303 	int subclass = SINGLE_DEPTH_NESTING;
3304 
3305 	if (dev->netdev_ops->ndo_get_lock_subclass)
3306 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3307 
3308 	spin_lock_nested(&dev->addr_list_lock, subclass);
3309 }
3310 
netif_addr_lock_bh(struct net_device * dev)3311 static inline void netif_addr_lock_bh(struct net_device *dev)
3312 {
3313 	spin_lock_bh(&dev->addr_list_lock);
3314 }
3315 
netif_addr_unlock(struct net_device * dev)3316 static inline void netif_addr_unlock(struct net_device *dev)
3317 {
3318 	spin_unlock(&dev->addr_list_lock);
3319 }
3320 
netif_addr_unlock_bh(struct net_device * dev)3321 static inline void netif_addr_unlock_bh(struct net_device *dev)
3322 {
3323 	spin_unlock_bh(&dev->addr_list_lock);
3324 }
3325 
3326 /*
3327  * dev_addrs walker. Should be used only for read access. Call with
3328  * rcu_read_lock held.
3329  */
3330 #define for_each_dev_addr(dev, ha) \
3331 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3332 
3333 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3334 
3335 void ether_setup(struct net_device *dev);
3336 
3337 /* Support for loadable net-drivers */
3338 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3339 				    unsigned char name_assign_type,
3340 				    void (*setup)(struct net_device *),
3341 				    unsigned int txqs, unsigned int rxqs);
3342 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3343 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3344 
3345 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3346 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3347 			 count)
3348 
3349 int register_netdev(struct net_device *dev);
3350 void unregister_netdev(struct net_device *dev);
3351 
3352 /* General hardware address lists handling functions */
3353 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3354 		   struct netdev_hw_addr_list *from_list, int addr_len);
3355 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3356 		      struct netdev_hw_addr_list *from_list, int addr_len);
3357 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3358 		       struct net_device *dev,
3359 		       int (*sync)(struct net_device *, const unsigned char *),
3360 		       int (*unsync)(struct net_device *,
3361 				     const unsigned char *));
3362 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3363 			  struct net_device *dev,
3364 			  int (*unsync)(struct net_device *,
3365 					const unsigned char *));
3366 void __hw_addr_init(struct netdev_hw_addr_list *list);
3367 
3368 /* Functions used for device addresses handling */
3369 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3370 		 unsigned char addr_type);
3371 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3372 		 unsigned char addr_type);
3373 void dev_addr_flush(struct net_device *dev);
3374 int dev_addr_init(struct net_device *dev);
3375 
3376 /* Functions used for unicast addresses handling */
3377 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3378 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3379 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3380 int dev_uc_sync(struct net_device *to, struct net_device *from);
3381 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3382 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3383 void dev_uc_flush(struct net_device *dev);
3384 void dev_uc_init(struct net_device *dev);
3385 
3386 /**
3387  *  __dev_uc_sync - Synchonize device's unicast list
3388  *  @dev:  device to sync
3389  *  @sync: function to call if address should be added
3390  *  @unsync: function to call if address should be removed
3391  *
3392  *  Add newly added addresses to the interface, and release
3393  *  addresses that have been deleted.
3394  **/
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))3395 static inline int __dev_uc_sync(struct net_device *dev,
3396 				int (*sync)(struct net_device *,
3397 					    const unsigned char *),
3398 				int (*unsync)(struct net_device *,
3399 					      const unsigned char *))
3400 {
3401 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3402 }
3403 
3404 /**
3405  *  __dev_uc_unsync - Remove synchronized addresses from device
3406  *  @dev:  device to sync
3407  *  @unsync: function to call if address should be removed
3408  *
3409  *  Remove all addresses that were added to the device by dev_uc_sync().
3410  **/
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))3411 static inline void __dev_uc_unsync(struct net_device *dev,
3412 				   int (*unsync)(struct net_device *,
3413 						 const unsigned char *))
3414 {
3415 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3416 }
3417 
3418 /* Functions used for multicast addresses handling */
3419 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3420 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3421 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3422 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3423 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3424 int dev_mc_sync(struct net_device *to, struct net_device *from);
3425 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3426 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3427 void dev_mc_flush(struct net_device *dev);
3428 void dev_mc_init(struct net_device *dev);
3429 
3430 /**
3431  *  __dev_mc_sync - Synchonize device's multicast list
3432  *  @dev:  device to sync
3433  *  @sync: function to call if address should be added
3434  *  @unsync: function to call if address should be removed
3435  *
3436  *  Add newly added addresses to the interface, and release
3437  *  addresses that have been deleted.
3438  **/
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))3439 static inline int __dev_mc_sync(struct net_device *dev,
3440 				int (*sync)(struct net_device *,
3441 					    const unsigned char *),
3442 				int (*unsync)(struct net_device *,
3443 					      const unsigned char *))
3444 {
3445 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3446 }
3447 
3448 /**
3449  *  __dev_mc_unsync - Remove synchronized addresses from device
3450  *  @dev:  device to sync
3451  *  @unsync: function to call if address should be removed
3452  *
3453  *  Remove all addresses that were added to the device by dev_mc_sync().
3454  **/
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))3455 static inline void __dev_mc_unsync(struct net_device *dev,
3456 				   int (*unsync)(struct net_device *,
3457 						 const unsigned char *))
3458 {
3459 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3460 }
3461 
3462 /* Functions used for secondary unicast and multicast support */
3463 void dev_set_rx_mode(struct net_device *dev);
3464 void __dev_set_rx_mode(struct net_device *dev);
3465 int dev_set_promiscuity(struct net_device *dev, int inc);
3466 int dev_set_allmulti(struct net_device *dev, int inc);
3467 void netdev_state_change(struct net_device *dev);
3468 void netdev_notify_peers(struct net_device *dev);
3469 void netdev_features_change(struct net_device *dev);
3470 /* Load a device via the kmod */
3471 void dev_load(struct net *net, const char *name);
3472 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3473 					struct rtnl_link_stats64 *storage);
3474 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3475 			     const struct net_device_stats *netdev_stats);
3476 
3477 extern int		netdev_max_backlog;
3478 extern int		netdev_tstamp_prequeue;
3479 extern int		weight_p;
3480 extern int		bpf_jit_enable;
3481 
3482 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3483 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3484 						     struct list_head **iter);
3485 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3486 						     struct list_head **iter);
3487 
3488 /* iterate through upper list, must be called under RCU read lock */
3489 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3490 	for (iter = &(dev)->adj_list.upper, \
3491 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3492 	     updev; \
3493 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3494 
3495 /* iterate through upper list, must be called under RCU read lock */
3496 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3497 	for (iter = &(dev)->all_adj_list.upper, \
3498 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3499 	     updev; \
3500 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3501 
3502 void *netdev_lower_get_next_private(struct net_device *dev,
3503 				    struct list_head **iter);
3504 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3505 					struct list_head **iter);
3506 
3507 #define netdev_for_each_lower_private(dev, priv, iter) \
3508 	for (iter = (dev)->adj_list.lower.next, \
3509 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3510 	     priv; \
3511 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3512 
3513 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3514 	for (iter = &(dev)->adj_list.lower, \
3515 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3516 	     priv; \
3517 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3518 
3519 void *netdev_lower_get_next(struct net_device *dev,
3520 				struct list_head **iter);
3521 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3522 	for (iter = &(dev)->adj_list.lower, \
3523 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3524 	     ldev; \
3525 	     ldev = netdev_lower_get_next(dev, &(iter)))
3526 
3527 void *netdev_adjacent_get_private(struct list_head *adj_list);
3528 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3529 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3530 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3531 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3532 int netdev_master_upper_dev_link(struct net_device *dev,
3533 				 struct net_device *upper_dev);
3534 int netdev_master_upper_dev_link_private(struct net_device *dev,
3535 					 struct net_device *upper_dev,
3536 					 void *private);
3537 void netdev_upper_dev_unlink(struct net_device *dev,
3538 			     struct net_device *upper_dev);
3539 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3540 void *netdev_lower_dev_get_private(struct net_device *dev,
3541 				   struct net_device *lower_dev);
3542 
3543 /* RSS keys are 40 or 52 bytes long */
3544 #define NETDEV_RSS_KEY_LEN 52
3545 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3546 void netdev_rss_key_fill(void *buffer, size_t len);
3547 
3548 int dev_get_nest_level(struct net_device *dev,
3549 		       bool (*type_check)(struct net_device *dev));
3550 int skb_checksum_help(struct sk_buff *skb);
3551 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3552 				  netdev_features_t features, bool tx_path);
3553 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3554 				    netdev_features_t features);
3555 
3556 struct netdev_bonding_info {
3557 	ifslave	slave;
3558 	ifbond	master;
3559 };
3560 
3561 struct netdev_notifier_bonding_info {
3562 	struct netdev_notifier_info info; /* must be first */
3563 	struct netdev_bonding_info  bonding_info;
3564 };
3565 
3566 void netdev_bonding_info_change(struct net_device *dev,
3567 				struct netdev_bonding_info *bonding_info);
3568 
3569 static inline
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)3570 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3571 {
3572 	return __skb_gso_segment(skb, features, true);
3573 }
3574 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3575 
can_checksum_protocol(netdev_features_t features,__be16 protocol)3576 static inline bool can_checksum_protocol(netdev_features_t features,
3577 					 __be16 protocol)
3578 {
3579 	return ((features & NETIF_F_GEN_CSUM) ||
3580 		((features & NETIF_F_V4_CSUM) &&
3581 		 protocol == htons(ETH_P_IP)) ||
3582 		((features & NETIF_F_V6_CSUM) &&
3583 		 protocol == htons(ETH_P_IPV6)) ||
3584 		((features & NETIF_F_FCOE_CRC) &&
3585 		 protocol == htons(ETH_P_FCOE)));
3586 }
3587 
3588 #ifdef CONFIG_BUG
3589 void netdev_rx_csum_fault(struct net_device *dev);
3590 #else
netdev_rx_csum_fault(struct net_device * dev)3591 static inline void netdev_rx_csum_fault(struct net_device *dev)
3592 {
3593 }
3594 #endif
3595 /* rx skb timestamps */
3596 void net_enable_timestamp(void);
3597 void net_disable_timestamp(void);
3598 
3599 #ifdef CONFIG_PROC_FS
3600 int __init dev_proc_init(void);
3601 #else
3602 #define dev_proc_init() 0
3603 #endif
3604 
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)3605 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3606 					      struct sk_buff *skb, struct net_device *dev,
3607 					      bool more)
3608 {
3609 	skb->xmit_more = more ? 1 : 0;
3610 	return ops->ndo_start_xmit(skb, dev);
3611 }
3612 
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3613 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3614 					    struct netdev_queue *txq, bool more)
3615 {
3616 	const struct net_device_ops *ops = dev->netdev_ops;
3617 	int rc;
3618 
3619 	rc = __netdev_start_xmit(ops, skb, dev, more);
3620 	if (rc == NETDEV_TX_OK)
3621 		txq_trans_update(txq);
3622 
3623 	return rc;
3624 }
3625 
3626 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3627 				const void *ns);
3628 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3629 				 const void *ns);
3630 
netdev_class_create_file(struct class_attribute * class_attr)3631 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3632 {
3633 	return netdev_class_create_file_ns(class_attr, NULL);
3634 }
3635 
netdev_class_remove_file(struct class_attribute * class_attr)3636 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3637 {
3638 	netdev_class_remove_file_ns(class_attr, NULL);
3639 }
3640 
3641 extern struct kobj_ns_type_operations net_ns_type_operations;
3642 
3643 const char *netdev_drivername(const struct net_device *dev);
3644 
3645 void linkwatch_run_queue(void);
3646 
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)3647 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3648 							  netdev_features_t f2)
3649 {
3650 	if (f1 & NETIF_F_GEN_CSUM)
3651 		f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3652 	if (f2 & NETIF_F_GEN_CSUM)
3653 		f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3654 	f1 &= f2;
3655 	if (f1 & NETIF_F_GEN_CSUM)
3656 		f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3657 
3658 	return f1;
3659 }
3660 
netdev_get_wanted_features(struct net_device * dev)3661 static inline netdev_features_t netdev_get_wanted_features(
3662 	struct net_device *dev)
3663 {
3664 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3665 }
3666 netdev_features_t netdev_increment_features(netdev_features_t all,
3667 	netdev_features_t one, netdev_features_t mask);
3668 
3669 /* Allow TSO being used on stacked device :
3670  * Performing the GSO segmentation before last device
3671  * is a performance improvement.
3672  */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)3673 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3674 							netdev_features_t mask)
3675 {
3676 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3677 }
3678 
3679 int __netdev_update_features(struct net_device *dev);
3680 void netdev_update_features(struct net_device *dev);
3681 void netdev_change_features(struct net_device *dev);
3682 
3683 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3684 					struct net_device *dev);
3685 
3686 netdev_features_t passthru_features_check(struct sk_buff *skb,
3687 					  struct net_device *dev,
3688 					  netdev_features_t features);
3689 netdev_features_t netif_skb_features(struct sk_buff *skb);
3690 
net_gso_ok(netdev_features_t features,int gso_type)3691 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3692 {
3693 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3694 
3695 	/* check flags correspondence */
3696 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3697 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3698 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3699 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3700 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3701 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3702 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3703 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3704 	BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3705 	BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3706 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3707 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3708 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3709 
3710 	return (features & feature) == feature;
3711 }
3712 
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)3713 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3714 {
3715 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3716 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3717 }
3718 
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)3719 static inline bool netif_needs_gso(struct sk_buff *skb,
3720 				   netdev_features_t features)
3721 {
3722 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3723 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3724 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3725 }
3726 
netif_set_gso_max_size(struct net_device * dev,unsigned int size)3727 static inline void netif_set_gso_max_size(struct net_device *dev,
3728 					  unsigned int size)
3729 {
3730 	dev->gso_max_size = size;
3731 }
3732 
skb_gso_error_unwind(struct sk_buff * skb,__be16 protocol,int pulled_hlen,u16 mac_offset,int mac_len)3733 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3734 					int pulled_hlen, u16 mac_offset,
3735 					int mac_len)
3736 {
3737 	skb->protocol = protocol;
3738 	skb->encapsulation = 1;
3739 	skb_push(skb, pulled_hlen);
3740 	skb_reset_transport_header(skb);
3741 	skb->mac_header = mac_offset;
3742 	skb->network_header = skb->mac_header + mac_len;
3743 	skb->mac_len = mac_len;
3744 }
3745 
netif_is_macvlan(struct net_device * dev)3746 static inline bool netif_is_macvlan(struct net_device *dev)
3747 {
3748 	return dev->priv_flags & IFF_MACVLAN;
3749 }
3750 
netif_is_macvlan_port(struct net_device * dev)3751 static inline bool netif_is_macvlan_port(struct net_device *dev)
3752 {
3753 	return dev->priv_flags & IFF_MACVLAN_PORT;
3754 }
3755 
netif_is_ipvlan(struct net_device * dev)3756 static inline bool netif_is_ipvlan(struct net_device *dev)
3757 {
3758 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
3759 }
3760 
netif_is_ipvlan_port(struct net_device * dev)3761 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3762 {
3763 	return dev->priv_flags & IFF_IPVLAN_MASTER;
3764 }
3765 
netif_is_bond_master(struct net_device * dev)3766 static inline bool netif_is_bond_master(struct net_device *dev)
3767 {
3768 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3769 }
3770 
netif_is_bond_slave(struct net_device * dev)3771 static inline bool netif_is_bond_slave(struct net_device *dev)
3772 {
3773 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3774 }
3775 
netif_supports_nofcs(struct net_device * dev)3776 static inline bool netif_supports_nofcs(struct net_device *dev)
3777 {
3778 	return dev->priv_flags & IFF_SUPP_NOFCS;
3779 }
3780 
3781 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)3782 static inline void netif_keep_dst(struct net_device *dev)
3783 {
3784 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3785 }
3786 
3787 extern struct pernet_operations __net_initdata loopback_net_ops;
3788 
3789 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3790 
3791 /* netdev_printk helpers, similar to dev_printk */
3792 
netdev_name(const struct net_device * dev)3793 static inline const char *netdev_name(const struct net_device *dev)
3794 {
3795 	if (!dev->name[0] || strchr(dev->name, '%'))
3796 		return "(unnamed net_device)";
3797 	return dev->name;
3798 }
3799 
netdev_reg_state(const struct net_device * dev)3800 static inline const char *netdev_reg_state(const struct net_device *dev)
3801 {
3802 	switch (dev->reg_state) {
3803 	case NETREG_UNINITIALIZED: return " (uninitialized)";
3804 	case NETREG_REGISTERED: return "";
3805 	case NETREG_UNREGISTERING: return " (unregistering)";
3806 	case NETREG_UNREGISTERED: return " (unregistered)";
3807 	case NETREG_RELEASED: return " (released)";
3808 	case NETREG_DUMMY: return " (dummy)";
3809 	}
3810 
3811 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3812 	return " (unknown)";
3813 }
3814 
3815 __printf(3, 4)
3816 void netdev_printk(const char *level, const struct net_device *dev,
3817 		   const char *format, ...);
3818 __printf(2, 3)
3819 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3820 __printf(2, 3)
3821 void netdev_alert(const struct net_device *dev, const char *format, ...);
3822 __printf(2, 3)
3823 void netdev_crit(const struct net_device *dev, const char *format, ...);
3824 __printf(2, 3)
3825 void netdev_err(const struct net_device *dev, const char *format, ...);
3826 __printf(2, 3)
3827 void netdev_warn(const struct net_device *dev, const char *format, ...);
3828 __printf(2, 3)
3829 void netdev_notice(const struct net_device *dev, const char *format, ...);
3830 __printf(2, 3)
3831 void netdev_info(const struct net_device *dev, const char *format, ...);
3832 
3833 #define MODULE_ALIAS_NETDEV(device) \
3834 	MODULE_ALIAS("netdev-" device)
3835 
3836 #if defined(CONFIG_DYNAMIC_DEBUG)
3837 #define netdev_dbg(__dev, format, args...)			\
3838 do {								\
3839 	dynamic_netdev_dbg(__dev, format, ##args);		\
3840 } while (0)
3841 #elif defined(DEBUG)
3842 #define netdev_dbg(__dev, format, args...)			\
3843 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
3844 #else
3845 #define netdev_dbg(__dev, format, args...)			\
3846 ({								\
3847 	if (0)							\
3848 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3849 })
3850 #endif
3851 
3852 #if defined(VERBOSE_DEBUG)
3853 #define netdev_vdbg	netdev_dbg
3854 #else
3855 
3856 #define netdev_vdbg(dev, format, args...)			\
3857 ({								\
3858 	if (0)							\
3859 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
3860 	0;							\
3861 })
3862 #endif
3863 
3864 /*
3865  * netdev_WARN() acts like dev_printk(), but with the key difference
3866  * of using a WARN/WARN_ON to get the message out, including the
3867  * file/line information and a backtrace.
3868  */
3869 #define netdev_WARN(dev, format, args...)			\
3870 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
3871 	     netdev_reg_state(dev), ##args)
3872 
3873 /* netif printk helpers, similar to netdev_printk */
3874 
3875 #define netif_printk(priv, type, level, dev, fmt, args...)	\
3876 do {					  			\
3877 	if (netif_msg_##type(priv))				\
3878 		netdev_printk(level, (dev), fmt, ##args);	\
3879 } while (0)
3880 
3881 #define netif_level(level, priv, type, dev, fmt, args...)	\
3882 do {								\
3883 	if (netif_msg_##type(priv))				\
3884 		netdev_##level(dev, fmt, ##args);		\
3885 } while (0)
3886 
3887 #define netif_emerg(priv, type, dev, fmt, args...)		\
3888 	netif_level(emerg, priv, type, dev, fmt, ##args)
3889 #define netif_alert(priv, type, dev, fmt, args...)		\
3890 	netif_level(alert, priv, type, dev, fmt, ##args)
3891 #define netif_crit(priv, type, dev, fmt, args...)		\
3892 	netif_level(crit, priv, type, dev, fmt, ##args)
3893 #define netif_err(priv, type, dev, fmt, args...)		\
3894 	netif_level(err, priv, type, dev, fmt, ##args)
3895 #define netif_warn(priv, type, dev, fmt, args...)		\
3896 	netif_level(warn, priv, type, dev, fmt, ##args)
3897 #define netif_notice(priv, type, dev, fmt, args...)		\
3898 	netif_level(notice, priv, type, dev, fmt, ##args)
3899 #define netif_info(priv, type, dev, fmt, args...)		\
3900 	netif_level(info, priv, type, dev, fmt, ##args)
3901 
3902 #if defined(CONFIG_DYNAMIC_DEBUG)
3903 #define netif_dbg(priv, type, netdev, format, args...)		\
3904 do {								\
3905 	if (netif_msg_##type(priv))				\
3906 		dynamic_netdev_dbg(netdev, format, ##args);	\
3907 } while (0)
3908 #elif defined(DEBUG)
3909 #define netif_dbg(priv, type, dev, format, args...)		\
3910 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3911 #else
3912 #define netif_dbg(priv, type, dev, format, args...)			\
3913 ({									\
3914 	if (0)								\
3915 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3916 	0;								\
3917 })
3918 #endif
3919 
3920 #if defined(VERBOSE_DEBUG)
3921 #define netif_vdbg	netif_dbg
3922 #else
3923 #define netif_vdbg(priv, type, dev, format, args...)		\
3924 ({								\
3925 	if (0)							\
3926 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3927 	0;							\
3928 })
3929 #endif
3930 
3931 /*
3932  *	The list of packet types we will receive (as opposed to discard)
3933  *	and the routines to invoke.
3934  *
3935  *	Why 16. Because with 16 the only overlap we get on a hash of the
3936  *	low nibble of the protocol value is RARP/SNAP/X.25.
3937  *
3938  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3939  *             sure which should go first, but I bet it won't make much
3940  *             difference if we are running VLANs.  The good news is that
3941  *             this protocol won't be in the list unless compiled in, so
3942  *             the average user (w/out VLANs) will not be adversely affected.
3943  *             --BLG
3944  *
3945  *		0800	IP
3946  *		8100    802.1Q VLAN
3947  *		0001	802.3
3948  *		0002	AX.25
3949  *		0004	802.2
3950  *		8035	RARP
3951  *		0005	SNAP
3952  *		0805	X.25
3953  *		0806	ARP
3954  *		8137	IPX
3955  *		0009	Localtalk
3956  *		86DD	IPv6
3957  */
3958 #define PTYPE_HASH_SIZE	(16)
3959 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
3960 
3961 #endif	/* _LINUX_NETDEVICE_H */
3962