1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
63 
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 				    const struct ethtool_ops *ops);
66 
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
69 #define NET_RX_DROP		1	/* packet dropped */
70 
71 /*
72  * Transmit return codes: transmit return codes originate from three different
73  * namespaces:
74  *
75  * - qdisc return codes
76  * - driver transmit return codes
77  * - errno values
78  *
79  * Drivers are allowed to return any one of those in their hard_start_xmit()
80  * function. Real network devices commonly used with qdiscs should only return
81  * the driver transmit return codes though - when qdiscs are used, the actual
82  * transmission happens asynchronously, so the value is not propagated to
83  * higher layers. Virtual network devices transmit synchronously, in this case
84  * the driver transmit return codes are consumed by dev_queue_xmit(), all
85  * others are propagated to higher layers.
86  */
87 
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS	0x00
90 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
91 #define NET_XMIT_CN		0x02	/* congestion notification	*/
92 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
93 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
94 
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96  * indicates that the device will soon be dropping packets, or already drops
97  * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100 
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK		0xf0
103 
104 enum netdev_tx {
105 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
106 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
107 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
108 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111 
112 /*
113  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115  */
dev_xmit_complete(int rc)116 static inline bool dev_xmit_complete(int rc)
117 {
118 	/*
119 	 * Positive cases with an skb consumed by a driver:
120 	 * - successful transmission (rc == NETDEV_TX_OK)
121 	 * - error while transmitting (rc < 0)
122 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 	 */
124 	if (likely(rc < NET_XMIT_MASK))
125 		return true;
126 
127 	return false;
128 }
129 
130 /*
131  *	Compute the worst case header length according to the protocols
132  *	used.
133  */
134 
135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136 # if defined(CONFIG_MAC80211_MESH)
137 #  define LL_MAX_HEADER 128
138 # else
139 #  define LL_MAX_HEADER 96
140 # endif
141 #else
142 # define LL_MAX_HEADER 32
143 #endif
144 
145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147 #define MAX_HEADER LL_MAX_HEADER
148 #else
149 #define MAX_HEADER (LL_MAX_HEADER + 48)
150 #endif
151 
152 /*
153  *	Old network device statistics. Fields are native words
154  *	(unsigned long) so they can be read and written atomically.
155  */
156 
157 struct net_device_stats {
158 	unsigned long	rx_packets;
159 	unsigned long	tx_packets;
160 	unsigned long	rx_bytes;
161 	unsigned long	tx_bytes;
162 	unsigned long	rx_errors;
163 	unsigned long	tx_errors;
164 	unsigned long	rx_dropped;
165 	unsigned long	tx_dropped;
166 	unsigned long	multicast;
167 	unsigned long	collisions;
168 	unsigned long	rx_length_errors;
169 	unsigned long	rx_over_errors;
170 	unsigned long	rx_crc_errors;
171 	unsigned long	rx_frame_errors;
172 	unsigned long	rx_fifo_errors;
173 	unsigned long	rx_missed_errors;
174 	unsigned long	tx_aborted_errors;
175 	unsigned long	tx_carrier_errors;
176 	unsigned long	tx_fifo_errors;
177 	unsigned long	tx_heartbeat_errors;
178 	unsigned long	tx_window_errors;
179 	unsigned long	rx_compressed;
180 	unsigned long	tx_compressed;
181 };
182 
183 
184 #include <linux/cache.h>
185 #include <linux/skbuff.h>
186 
187 #ifdef CONFIG_RPS
188 #include <linux/static_key.h>
189 extern struct static_key rps_needed;
190 #endif
191 
192 struct neighbour;
193 struct neigh_parms;
194 struct sk_buff;
195 
196 struct netdev_hw_addr {
197 	struct list_head	list;
198 	unsigned char		addr[MAX_ADDR_LEN];
199 	unsigned char		type;
200 #define NETDEV_HW_ADDR_T_LAN		1
201 #define NETDEV_HW_ADDR_T_SAN		2
202 #define NETDEV_HW_ADDR_T_SLAVE		3
203 #define NETDEV_HW_ADDR_T_UNICAST	4
204 #define NETDEV_HW_ADDR_T_MULTICAST	5
205 	bool			global_use;
206 	int			sync_cnt;
207 	int			refcount;
208 	int			synced;
209 	struct rcu_head		rcu_head;
210 };
211 
212 struct netdev_hw_addr_list {
213 	struct list_head	list;
214 	int			count;
215 };
216 
217 #define netdev_hw_addr_list_count(l) ((l)->count)
218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219 #define netdev_hw_addr_list_for_each(ha, l) \
220 	list_for_each_entry(ha, &(l)->list, list)
221 
222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224 #define netdev_for_each_uc_addr(ha, dev) \
225 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
226 
227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229 #define netdev_for_each_mc_addr(ha, dev) \
230 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
231 
232 struct hh_cache {
233 	u16		hh_len;
234 	u16		__pad;
235 	seqlock_t	hh_lock;
236 
237 	/* cached hardware header; allow for machine alignment needs.        */
238 #define HH_DATA_MOD	16
239 #define HH_DATA_OFF(__len) \
240 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241 #define HH_DATA_ALIGN(__len) \
242 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
244 };
245 
246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247  * Alternative is:
248  *   dev->hard_header_len ? (dev->hard_header_len +
249  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
250  *
251  * We could use other alignment values, but we must maintain the
252  * relationship HH alignment <= LL alignment.
253  */
254 #define LL_RESERVED_SPACE(dev) \
255 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258 
259 struct header_ops {
260 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
261 			   unsigned short type, const void *daddr,
262 			   const void *saddr, unsigned int len);
263 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
264 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265 	void	(*cache_update)(struct hh_cache *hh,
266 				const struct net_device *dev,
267 				const unsigned char *haddr);
268 	bool	(*validate)(const char *ll_header, unsigned int len);
269 };
270 
271 /* These flag bits are private to the generic network queueing
272  * layer, they may not be explicitly referenced by any other
273  * code.
274  */
275 
276 enum netdev_state_t {
277 	__LINK_STATE_START,
278 	__LINK_STATE_PRESENT,
279 	__LINK_STATE_NOCARRIER,
280 	__LINK_STATE_LINKWATCH_PENDING,
281 	__LINK_STATE_DORMANT,
282 };
283 
284 
285 /*
286  * This structure holds at boot time configured netdevice settings. They
287  * are then used in the device probing.
288  */
289 struct netdev_boot_setup {
290 	char name[IFNAMSIZ];
291 	struct ifmap map;
292 };
293 #define NETDEV_BOOT_SETUP_MAX 8
294 
295 int __init netdev_boot_setup(char *str);
296 
297 /*
298  * Structure for NAPI scheduling similar to tasklet but with weighting
299  */
300 struct napi_struct {
301 	/* The poll_list must only be managed by the entity which
302 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
303 	 * whoever atomically sets that bit can add this napi_struct
304 	 * to the per-cpu poll_list, and whoever clears that bit
305 	 * can remove from the list right before clearing the bit.
306 	 */
307 	struct list_head	poll_list;
308 
309 	unsigned long		state;
310 	int			weight;
311 	unsigned int		gro_count;
312 	int			(*poll)(struct napi_struct *, int);
313 #ifdef CONFIG_NETPOLL
314 	spinlock_t		poll_lock;
315 	int			poll_owner;
316 #endif
317 	struct net_device	*dev;
318 	struct sk_buff		*gro_list;
319 	struct sk_buff		*skb;
320 	struct hrtimer		timer;
321 	struct list_head	dev_list;
322 	struct hlist_node	napi_hash_node;
323 	unsigned int		napi_id;
324 };
325 
326 enum {
327 	NAPI_STATE_SCHED,	/* Poll is scheduled */
328 	NAPI_STATE_DISABLE,	/* Disable pending */
329 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
330 	NAPI_STATE_HASHED,	/* In NAPI hash */
331 };
332 
333 enum gro_result {
334 	GRO_MERGED,
335 	GRO_MERGED_FREE,
336 	GRO_HELD,
337 	GRO_NORMAL,
338 	GRO_DROP,
339 };
340 typedef enum gro_result gro_result_t;
341 
342 /*
343  * enum rx_handler_result - Possible return values for rx_handlers.
344  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
345  * further.
346  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
347  * case skb->dev was changed by rx_handler.
348  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
349  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
350  *
351  * rx_handlers are functions called from inside __netif_receive_skb(), to do
352  * special processing of the skb, prior to delivery to protocol handlers.
353  *
354  * Currently, a net_device can only have a single rx_handler registered. Trying
355  * to register a second rx_handler will return -EBUSY.
356  *
357  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
358  * To unregister a rx_handler on a net_device, use
359  * netdev_rx_handler_unregister().
360  *
361  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
362  * do with the skb.
363  *
364  * If the rx_handler consumed to skb in some way, it should return
365  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
366  * the skb to be delivered in some other ways.
367  *
368  * If the rx_handler changed skb->dev, to divert the skb to another
369  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
370  * new device will be called if it exists.
371  *
372  * If the rx_handler consider the skb should be ignored, it should return
373  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
374  * are registered on exact device (ptype->dev == skb->dev).
375  *
376  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
377  * delivered, it should return RX_HANDLER_PASS.
378  *
379  * A device without a registered rx_handler will behave as if rx_handler
380  * returned RX_HANDLER_PASS.
381  */
382 
383 enum rx_handler_result {
384 	RX_HANDLER_CONSUMED,
385 	RX_HANDLER_ANOTHER,
386 	RX_HANDLER_EXACT,
387 	RX_HANDLER_PASS,
388 };
389 typedef enum rx_handler_result rx_handler_result_t;
390 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
391 
392 void __napi_schedule(struct napi_struct *n);
393 void __napi_schedule_irqoff(struct napi_struct *n);
394 
napi_disable_pending(struct napi_struct * n)395 static inline bool napi_disable_pending(struct napi_struct *n)
396 {
397 	return test_bit(NAPI_STATE_DISABLE, &n->state);
398 }
399 
400 /**
401  *	napi_schedule_prep - check if napi can be scheduled
402  *	@n: napi context
403  *
404  * Test if NAPI routine is already running, and if not mark
405  * it as running.  This is used as a condition variable
406  * insure only one NAPI poll instance runs.  We also make
407  * sure there is no pending NAPI disable.
408  */
napi_schedule_prep(struct napi_struct * n)409 static inline bool napi_schedule_prep(struct napi_struct *n)
410 {
411 	return !napi_disable_pending(n) &&
412 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
413 }
414 
415 /**
416  *	napi_schedule - schedule NAPI poll
417  *	@n: napi context
418  *
419  * Schedule NAPI poll routine to be called if it is not already
420  * running.
421  */
napi_schedule(struct napi_struct * n)422 static inline void napi_schedule(struct napi_struct *n)
423 {
424 	if (napi_schedule_prep(n))
425 		__napi_schedule(n);
426 }
427 
428 /**
429  *	napi_schedule_irqoff - schedule NAPI poll
430  *	@n: napi context
431  *
432  * Variant of napi_schedule(), assuming hard irqs are masked.
433  */
napi_schedule_irqoff(struct napi_struct * n)434 static inline void napi_schedule_irqoff(struct napi_struct *n)
435 {
436 	if (napi_schedule_prep(n))
437 		__napi_schedule_irqoff(n);
438 }
439 
440 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
napi_reschedule(struct napi_struct * napi)441 static inline bool napi_reschedule(struct napi_struct *napi)
442 {
443 	if (napi_schedule_prep(napi)) {
444 		__napi_schedule(napi);
445 		return true;
446 	}
447 	return false;
448 }
449 
450 void __napi_complete(struct napi_struct *n);
451 void napi_complete_done(struct napi_struct *n, int work_done);
452 /**
453  *	napi_complete - NAPI processing complete
454  *	@n: napi context
455  *
456  * Mark NAPI processing as complete.
457  * Consider using napi_complete_done() instead.
458  */
napi_complete(struct napi_struct * n)459 static inline void napi_complete(struct napi_struct *n)
460 {
461 	return napi_complete_done(n, 0);
462 }
463 
464 /**
465  *	napi_by_id - lookup a NAPI by napi_id
466  *	@napi_id: hashed napi_id
467  *
468  * lookup @napi_id in napi_hash table
469  * must be called under rcu_read_lock()
470  */
471 struct napi_struct *napi_by_id(unsigned int napi_id);
472 
473 /**
474  *	napi_hash_add - add a NAPI to global hashtable
475  *	@napi: napi context
476  *
477  * generate a new napi_id and store a @napi under it in napi_hash
478  */
479 void napi_hash_add(struct napi_struct *napi);
480 
481 /**
482  *	napi_hash_del - remove a NAPI from global table
483  *	@napi: napi context
484  *
485  * Warning: caller must observe rcu grace period
486  * before freeing memory containing @napi
487  */
488 void napi_hash_del(struct napi_struct *napi);
489 
490 /**
491  *	napi_disable - prevent NAPI from scheduling
492  *	@n: napi context
493  *
494  * Stop NAPI from being scheduled on this context.
495  * Waits till any outstanding processing completes.
496  */
497 void napi_disable(struct napi_struct *n);
498 
499 /**
500  *	napi_enable - enable NAPI scheduling
501  *	@n: napi context
502  *
503  * Resume NAPI from being scheduled on this context.
504  * Must be paired with napi_disable.
505  */
napi_enable(struct napi_struct * n)506 static inline void napi_enable(struct napi_struct *n)
507 {
508 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
509 	smp_mb__before_atomic();
510 	clear_bit(NAPI_STATE_SCHED, &n->state);
511 	clear_bit(NAPI_STATE_NPSVC, &n->state);
512 }
513 
514 #ifdef CONFIG_SMP
515 /**
516  *	napi_synchronize - wait until NAPI is not running
517  *	@n: napi context
518  *
519  * Wait until NAPI is done being scheduled on this context.
520  * Waits till any outstanding processing completes but
521  * does not disable future activations.
522  */
napi_synchronize(const struct napi_struct * n)523 static inline void napi_synchronize(const struct napi_struct *n)
524 {
525 	while (test_bit(NAPI_STATE_SCHED, &n->state))
526 		msleep(1);
527 }
528 #else
529 # define napi_synchronize(n)	barrier()
530 #endif
531 
532 enum netdev_queue_state_t {
533 	__QUEUE_STATE_DRV_XOFF,
534 	__QUEUE_STATE_STACK_XOFF,
535 	__QUEUE_STATE_FROZEN,
536 };
537 
538 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
539 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
540 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
541 
542 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
543 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
544 					QUEUE_STATE_FROZEN)
545 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
546 					QUEUE_STATE_FROZEN)
547 
548 /*
549  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
550  * netif_tx_* functions below are used to manipulate this flag.  The
551  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
552  * queue independently.  The netif_xmit_*stopped functions below are called
553  * to check if the queue has been stopped by the driver or stack (either
554  * of the XOFF bits are set in the state).  Drivers should not need to call
555  * netif_xmit*stopped functions, they should only be using netif_tx_*.
556  */
557 
558 struct netdev_queue {
559 /*
560  * read mostly part
561  */
562 	struct net_device	*dev;
563 	struct Qdisc __rcu	*qdisc;
564 	struct Qdisc		*qdisc_sleeping;
565 #ifdef CONFIG_SYSFS
566 	struct kobject		kobj;
567 #endif
568 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
569 	int			numa_node;
570 #endif
571 /*
572  * write mostly part
573  */
574 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
575 	int			xmit_lock_owner;
576 	/*
577 	 * please use this field instead of dev->trans_start
578 	 */
579 	unsigned long		trans_start;
580 
581 	/*
582 	 * Number of TX timeouts for this queue
583 	 * (/sys/class/net/DEV/Q/trans_timeout)
584 	 */
585 	unsigned long		trans_timeout;
586 
587 	unsigned long		state;
588 
589 #ifdef CONFIG_BQL
590 	struct dql		dql;
591 #endif
592 	unsigned long		tx_maxrate;
593 } ____cacheline_aligned_in_smp;
594 
netdev_queue_numa_node_read(const struct netdev_queue * q)595 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
596 {
597 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
598 	return q->numa_node;
599 #else
600 	return NUMA_NO_NODE;
601 #endif
602 }
603 
netdev_queue_numa_node_write(struct netdev_queue * q,int node)604 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
605 {
606 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
607 	q->numa_node = node;
608 #endif
609 }
610 
611 #ifdef CONFIG_RPS
612 /*
613  * This structure holds an RPS map which can be of variable length.  The
614  * map is an array of CPUs.
615  */
616 struct rps_map {
617 	unsigned int len;
618 	struct rcu_head rcu;
619 	u16 cpus[0];
620 };
621 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
622 
623 /*
624  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
625  * tail pointer for that CPU's input queue at the time of last enqueue, and
626  * a hardware filter index.
627  */
628 struct rps_dev_flow {
629 	u16 cpu;
630 	u16 filter;
631 	unsigned int last_qtail;
632 };
633 #define RPS_NO_FILTER 0xffff
634 
635 /*
636  * The rps_dev_flow_table structure contains a table of flow mappings.
637  */
638 struct rps_dev_flow_table {
639 	unsigned int mask;
640 	struct rcu_head rcu;
641 	struct rps_dev_flow flows[0];
642 };
643 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
644     ((_num) * sizeof(struct rps_dev_flow)))
645 
646 /*
647  * The rps_sock_flow_table contains mappings of flows to the last CPU
648  * on which they were processed by the application (set in recvmsg).
649  * Each entry is a 32bit value. Upper part is the high order bits
650  * of flow hash, lower part is cpu number.
651  * rps_cpu_mask is used to partition the space, depending on number of
652  * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
653  * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
654  * meaning we use 32-6=26 bits for the hash.
655  */
656 struct rps_sock_flow_table {
657 	u32	mask;
658 
659 	u32	ents[0] ____cacheline_aligned_in_smp;
660 };
661 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
662 
663 #define RPS_NO_CPU 0xffff
664 
665 extern u32 rps_cpu_mask;
666 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
667 
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)668 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
669 					u32 hash)
670 {
671 	if (table && hash) {
672 		unsigned int index = hash & table->mask;
673 		u32 val = hash & ~rps_cpu_mask;
674 
675 		/* We only give a hint, preemption can change cpu under us */
676 		val |= raw_smp_processor_id();
677 
678 		if (table->ents[index] != val)
679 			table->ents[index] = val;
680 	}
681 }
682 
683 #ifdef CONFIG_RFS_ACCEL
684 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
685 			 u16 filter_id);
686 #endif
687 #endif /* CONFIG_RPS */
688 
689 /* This structure contains an instance of an RX queue. */
690 struct netdev_rx_queue {
691 #ifdef CONFIG_RPS
692 	struct rps_map __rcu		*rps_map;
693 	struct rps_dev_flow_table __rcu	*rps_flow_table;
694 #endif
695 	struct kobject			kobj;
696 	struct net_device		*dev;
697 } ____cacheline_aligned_in_smp;
698 
699 /*
700  * RX queue sysfs structures and functions.
701  */
702 struct rx_queue_attribute {
703 	struct attribute attr;
704 	ssize_t (*show)(struct netdev_rx_queue *queue,
705 	    struct rx_queue_attribute *attr, char *buf);
706 	ssize_t (*store)(struct netdev_rx_queue *queue,
707 	    struct rx_queue_attribute *attr, const char *buf, size_t len);
708 };
709 
710 #ifdef CONFIG_XPS
711 /*
712  * This structure holds an XPS map which can be of variable length.  The
713  * map is an array of queues.
714  */
715 struct xps_map {
716 	unsigned int len;
717 	unsigned int alloc_len;
718 	struct rcu_head rcu;
719 	u16 queues[0];
720 };
721 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
722 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
723        - sizeof(struct xps_map)) / sizeof(u16))
724 
725 /*
726  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
727  */
728 struct xps_dev_maps {
729 	struct rcu_head rcu;
730 	struct xps_map __rcu *cpu_map[0];
731 };
732 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
733     (nr_cpu_ids * sizeof(struct xps_map *)))
734 #endif /* CONFIG_XPS */
735 
736 #define TC_MAX_QUEUE	16
737 #define TC_BITMASK	15
738 /* HW offloaded queuing disciplines txq count and offset maps */
739 struct netdev_tc_txq {
740 	u16 count;
741 	u16 offset;
742 };
743 
744 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
745 /*
746  * This structure is to hold information about the device
747  * configured to run FCoE protocol stack.
748  */
749 struct netdev_fcoe_hbainfo {
750 	char	manufacturer[64];
751 	char	serial_number[64];
752 	char	hardware_version[64];
753 	char	driver_version[64];
754 	char	optionrom_version[64];
755 	char	firmware_version[64];
756 	char	model[256];
757 	char	model_description[256];
758 };
759 #endif
760 
761 #define MAX_PHYS_ITEM_ID_LEN 32
762 
763 /* This structure holds a unique identifier to identify some
764  * physical item (port for example) used by a netdevice.
765  */
766 struct netdev_phys_item_id {
767 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
768 	unsigned char id_len;
769 };
770 
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)771 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
772 					    struct netdev_phys_item_id *b)
773 {
774 	return a->id_len == b->id_len &&
775 	       memcmp(a->id, b->id, a->id_len) == 0;
776 }
777 
778 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
779 				       struct sk_buff *skb);
780 
781 /*
782  * This structure defines the management hooks for network devices.
783  * The following hooks can be defined; unless noted otherwise, they are
784  * optional and can be filled with a null pointer.
785  *
786  * int (*ndo_init)(struct net_device *dev);
787  *     This function is called once when network device is registered.
788  *     The network device can use this to any late stage initializaton
789  *     or semantic validattion. It can fail with an error code which will
790  *     be propogated back to register_netdev
791  *
792  * void (*ndo_uninit)(struct net_device *dev);
793  *     This function is called when device is unregistered or when registration
794  *     fails. It is not called if init fails.
795  *
796  * int (*ndo_open)(struct net_device *dev);
797  *     This function is called when network device transistions to the up
798  *     state.
799  *
800  * int (*ndo_stop)(struct net_device *dev);
801  *     This function is called when network device transistions to the down
802  *     state.
803  *
804  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
805  *                               struct net_device *dev);
806  *	Called when a packet needs to be transmitted.
807  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
808  *	the queue before that can happen; it's for obsolete devices and weird
809  *	corner cases, but the stack really does a non-trivial amount
810  *	of useless work if you return NETDEV_TX_BUSY.
811  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
812  *	Required can not be NULL.
813  *
814  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
815  *                         void *accel_priv, select_queue_fallback_t fallback);
816  *	Called to decide which queue to when device supports multiple
817  *	transmit queues.
818  *
819  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
820  *	This function is called to allow device receiver to make
821  *	changes to configuration when multicast or promiscious is enabled.
822  *
823  * void (*ndo_set_rx_mode)(struct net_device *dev);
824  *	This function is called device changes address list filtering.
825  *	If driver handles unicast address filtering, it should set
826  *	IFF_UNICAST_FLT to its priv_flags.
827  *
828  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
829  *	This function  is called when the Media Access Control address
830  *	needs to be changed. If this interface is not defined, the
831  *	mac address can not be changed.
832  *
833  * int (*ndo_validate_addr)(struct net_device *dev);
834  *	Test if Media Access Control address is valid for the device.
835  *
836  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
837  *	Called when a user request an ioctl which can't be handled by
838  *	the generic interface code. If not defined ioctl's return
839  *	not supported error code.
840  *
841  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
842  *	Used to set network devices bus interface parameters. This interface
843  *	is retained for legacy reason, new devices should use the bus
844  *	interface (PCI) for low level management.
845  *
846  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
847  *	Called when a user wants to change the Maximum Transfer Unit
848  *	of a device. If not defined, any request to change MTU will
849  *	will return an error.
850  *
851  * void (*ndo_tx_timeout)(struct net_device *dev);
852  *	Callback uses when the transmitter has not made any progress
853  *	for dev->watchdog ticks.
854  *
855  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
856  *                      struct rtnl_link_stats64 *storage);
857  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
858  *	Called when a user wants to get the network device usage
859  *	statistics. Drivers must do one of the following:
860  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
861  *	   rtnl_link_stats64 structure passed by the caller.
862  *	2. Define @ndo_get_stats to update a net_device_stats structure
863  *	   (which should normally be dev->stats) and return a pointer to
864  *	   it. The structure may be changed asynchronously only if each
865  *	   field is written atomically.
866  *	3. Update dev->stats asynchronously and atomically, and define
867  *	   neither operation.
868  *
869  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
870  *	If device support VLAN filtering this function is called when a
871  *	VLAN id is registered.
872  *
873  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
874  *	If device support VLAN filtering this function is called when a
875  *	VLAN id is unregistered.
876  *
877  * void (*ndo_poll_controller)(struct net_device *dev);
878  *
879  *	SR-IOV management functions.
880  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
881  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
882  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
883  *			  int max_tx_rate);
884  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
885  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
886  * int (*ndo_get_vf_config)(struct net_device *dev,
887  *			    int vf, struct ifla_vf_info *ivf);
888  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
889  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
890  *			  struct nlattr *port[]);
891  *
892  *      Enable or disable the VF ability to query its RSS Redirection Table and
893  *      Hash Key. This is needed since on some devices VF share this information
894  *      with PF and querying it may adduce a theoretical security risk.
895  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
896  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
897  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
898  * 	Called to setup 'tc' number of traffic classes in the net device. This
899  * 	is always called from the stack with the rtnl lock held and netif tx
900  * 	queues stopped. This allows the netdevice to perform queue management
901  * 	safely.
902  *
903  *	Fiber Channel over Ethernet (FCoE) offload functions.
904  * int (*ndo_fcoe_enable)(struct net_device *dev);
905  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
906  *	so the underlying device can perform whatever needed configuration or
907  *	initialization to support acceleration of FCoE traffic.
908  *
909  * int (*ndo_fcoe_disable)(struct net_device *dev);
910  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
911  *	so the underlying device can perform whatever needed clean-ups to
912  *	stop supporting acceleration of FCoE traffic.
913  *
914  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
915  *			     struct scatterlist *sgl, unsigned int sgc);
916  *	Called when the FCoE Initiator wants to initialize an I/O that
917  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
918  *	perform necessary setup and returns 1 to indicate the device is set up
919  *	successfully to perform DDP on this I/O, otherwise this returns 0.
920  *
921  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
922  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
923  *	indicated by the FC exchange id 'xid', so the underlying device can
924  *	clean up and reuse resources for later DDP requests.
925  *
926  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
927  *			      struct scatterlist *sgl, unsigned int sgc);
928  *	Called when the FCoE Target wants to initialize an I/O that
929  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
930  *	perform necessary setup and returns 1 to indicate the device is set up
931  *	successfully to perform DDP on this I/O, otherwise this returns 0.
932  *
933  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
934  *			       struct netdev_fcoe_hbainfo *hbainfo);
935  *	Called when the FCoE Protocol stack wants information on the underlying
936  *	device. This information is utilized by the FCoE protocol stack to
937  *	register attributes with Fiber Channel management service as per the
938  *	FC-GS Fabric Device Management Information(FDMI) specification.
939  *
940  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
941  *	Called when the underlying device wants to override default World Wide
942  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
943  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
944  *	protocol stack to use.
945  *
946  *	RFS acceleration.
947  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
948  *			    u16 rxq_index, u32 flow_id);
949  *	Set hardware filter for RFS.  rxq_index is the target queue index;
950  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
951  *	Return the filter ID on success, or a negative error code.
952  *
953  *	Slave management functions (for bridge, bonding, etc).
954  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
955  *	Called to make another netdev an underling.
956  *
957  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
958  *	Called to release previously enslaved netdev.
959  *
960  *      Feature/offload setting functions.
961  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
962  *		netdev_features_t features);
963  *	Adjusts the requested feature flags according to device-specific
964  *	constraints, and returns the resulting flags. Must not modify
965  *	the device state.
966  *
967  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
968  *	Called to update device configuration to new features. Passed
969  *	feature set might be less than what was returned by ndo_fix_features()).
970  *	Must return >0 or -errno if it changed dev->features itself.
971  *
972  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
973  *		      struct net_device *dev,
974  *		      const unsigned char *addr, u16 vid, u16 flags)
975  *	Adds an FDB entry to dev for addr.
976  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
977  *		      struct net_device *dev,
978  *		      const unsigned char *addr, u16 vid)
979  *	Deletes the FDB entry from dev coresponding to addr.
980  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
981  *		       struct net_device *dev, struct net_device *filter_dev,
982  *		       int idx)
983  *	Used to add FDB entries to dump requests. Implementers should add
984  *	entries to skb and update idx with the number of entries.
985  *
986  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
987  *			     u16 flags)
988  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
989  *			     struct net_device *dev, u32 filter_mask,
990  *			     int nlflags)
991  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
992  *			     u16 flags);
993  *
994  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
995  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
996  *	which do not represent real hardware may define this to allow their
997  *	userspace components to manage their virtual carrier state. Devices
998  *	that determine carrier state from physical hardware properties (eg
999  *	network cables) or protocol-dependent mechanisms (eg
1000  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1001  *
1002  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1003  *			       struct netdev_phys_item_id *ppid);
1004  *	Called to get ID of physical port of this device. If driver does
1005  *	not implement this, it is assumed that the hw is not able to have
1006  *	multiple net devices on single physical port.
1007  *
1008  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
1009  *			      sa_family_t sa_family, __be16 port);
1010  *	Called by vxlan to notiy a driver about the UDP port and socket
1011  *	address family that vxlan is listnening to. It is called only when
1012  *	a new port starts listening. The operation is protected by the
1013  *	vxlan_net->sock_lock.
1014  *
1015  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
1016  *			      sa_family_t sa_family, __be16 port);
1017  *	Called by vxlan to notify the driver about a UDP port and socket
1018  *	address family that vxlan is not listening to anymore. The operation
1019  *	is protected by the vxlan_net->sock_lock.
1020  *
1021  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1022  *				 struct net_device *dev)
1023  *	Called by upper layer devices to accelerate switching or other
1024  *	station functionality into hardware. 'pdev is the lowerdev
1025  *	to use for the offload and 'dev' is the net device that will
1026  *	back the offload. Returns a pointer to the private structure
1027  *	the upper layer will maintain.
1028  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1029  *	Called by upper layer device to delete the station created
1030  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1031  *	the station and priv is the structure returned by the add
1032  *	operation.
1033  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1034  *				      struct net_device *dev,
1035  *				      void *priv);
1036  *	Callback to use for xmit over the accelerated station. This
1037  *	is used in place of ndo_start_xmit on accelerated net
1038  *	devices.
1039  * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1040  *					    struct net_device *dev
1041  *					    netdev_features_t features);
1042  *	Called by core transmit path to determine if device is capable of
1043  *	performing offload operations on a given packet. This is to give
1044  *	the device an opportunity to implement any restrictions that cannot
1045  *	be otherwise expressed by feature flags. The check is called with
1046  *	the set of features that the stack has calculated and it returns
1047  *	those the driver believes to be appropriate.
1048  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1049  *			     int queue_index, u32 maxrate);
1050  *	Called when a user wants to set a max-rate limitation of specific
1051  *	TX queue.
1052  * int (*ndo_get_iflink)(const struct net_device *dev);
1053  *	Called to get the iflink value of this device.
1054  * void (*ndo_change_proto_down)(struct net_device *dev,
1055  *				  bool proto_down);
1056  *	This function is used to pass protocol port error state information
1057  *	to the switch driver. The switch driver can react to the proto_down
1058  *      by doing a phys down on the associated switch port.
1059  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1060  *	This function is used to get egress tunnel information for given skb.
1061  *	This is useful for retrieving outer tunnel header parameters while
1062  *	sampling packet.
1063  *
1064  */
1065 struct net_device_ops {
1066 	int			(*ndo_init)(struct net_device *dev);
1067 	void			(*ndo_uninit)(struct net_device *dev);
1068 	int			(*ndo_open)(struct net_device *dev);
1069 	int			(*ndo_stop)(struct net_device *dev);
1070 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
1071 						   struct net_device *dev);
1072 	u16			(*ndo_select_queue)(struct net_device *dev,
1073 						    struct sk_buff *skb,
1074 						    void *accel_priv,
1075 						    select_queue_fallback_t fallback);
1076 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1077 						       int flags);
1078 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1079 	int			(*ndo_set_mac_address)(struct net_device *dev,
1080 						       void *addr);
1081 	int			(*ndo_validate_addr)(struct net_device *dev);
1082 	int			(*ndo_do_ioctl)(struct net_device *dev,
1083 					        struct ifreq *ifr, int cmd);
1084 	int			(*ndo_set_config)(struct net_device *dev,
1085 					          struct ifmap *map);
1086 	int			(*ndo_change_mtu)(struct net_device *dev,
1087 						  int new_mtu);
1088 	int			(*ndo_neigh_setup)(struct net_device *dev,
1089 						   struct neigh_parms *);
1090 	void			(*ndo_tx_timeout) (struct net_device *dev);
1091 
1092 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1093 						     struct rtnl_link_stats64 *storage);
1094 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1095 
1096 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1097 						       __be16 proto, u16 vid);
1098 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1099 						        __be16 proto, u16 vid);
1100 #ifdef CONFIG_NET_POLL_CONTROLLER
1101 	void                    (*ndo_poll_controller)(struct net_device *dev);
1102 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1103 						     struct netpoll_info *info);
1104 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1105 #endif
1106 #ifdef CONFIG_NET_RX_BUSY_POLL
1107 	int			(*ndo_busy_poll)(struct napi_struct *dev);
1108 #endif
1109 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1110 						  int queue, u8 *mac);
1111 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1112 						   int queue, u16 vlan, u8 qos);
1113 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1114 						   int vf, int min_tx_rate,
1115 						   int max_tx_rate);
1116 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1117 						       int vf, bool setting);
1118 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1119 						    int vf, bool setting);
1120 	int			(*ndo_get_vf_config)(struct net_device *dev,
1121 						     int vf,
1122 						     struct ifla_vf_info *ivf);
1123 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1124 							 int vf, int link_state);
1125 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1126 						    int vf,
1127 						    struct ifla_vf_stats
1128 						    *vf_stats);
1129 	int			(*ndo_set_vf_port)(struct net_device *dev,
1130 						   int vf,
1131 						   struct nlattr *port[]);
1132 	int			(*ndo_get_vf_port)(struct net_device *dev,
1133 						   int vf, struct sk_buff *skb);
1134 	int			(*ndo_set_vf_rss_query_en)(
1135 						   struct net_device *dev,
1136 						   int vf, bool setting);
1137 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
1138 #if IS_ENABLED(CONFIG_FCOE)
1139 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1140 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1141 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1142 						      u16 xid,
1143 						      struct scatterlist *sgl,
1144 						      unsigned int sgc);
1145 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1146 						     u16 xid);
1147 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1148 						       u16 xid,
1149 						       struct scatterlist *sgl,
1150 						       unsigned int sgc);
1151 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1152 							struct netdev_fcoe_hbainfo *hbainfo);
1153 #endif
1154 
1155 #if IS_ENABLED(CONFIG_LIBFCOE)
1156 #define NETDEV_FCOE_WWNN 0
1157 #define NETDEV_FCOE_WWPN 1
1158 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1159 						    u64 *wwn, int type);
1160 #endif
1161 
1162 #ifdef CONFIG_RFS_ACCEL
1163 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1164 						     const struct sk_buff *skb,
1165 						     u16 rxq_index,
1166 						     u32 flow_id);
1167 #endif
1168 	int			(*ndo_add_slave)(struct net_device *dev,
1169 						 struct net_device *slave_dev);
1170 	int			(*ndo_del_slave)(struct net_device *dev,
1171 						 struct net_device *slave_dev);
1172 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1173 						    netdev_features_t features);
1174 	int			(*ndo_set_features)(struct net_device *dev,
1175 						    netdev_features_t features);
1176 	int			(*ndo_neigh_construct)(struct neighbour *n);
1177 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1178 
1179 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1180 					       struct nlattr *tb[],
1181 					       struct net_device *dev,
1182 					       const unsigned char *addr,
1183 					       u16 vid,
1184 					       u16 flags);
1185 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1186 					       struct nlattr *tb[],
1187 					       struct net_device *dev,
1188 					       const unsigned char *addr,
1189 					       u16 vid);
1190 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1191 						struct netlink_callback *cb,
1192 						struct net_device *dev,
1193 						struct net_device *filter_dev,
1194 						int idx);
1195 
1196 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1197 						      struct nlmsghdr *nlh,
1198 						      u16 flags);
1199 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1200 						      u32 pid, u32 seq,
1201 						      struct net_device *dev,
1202 						      u32 filter_mask,
1203 						      int nlflags);
1204 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1205 						      struct nlmsghdr *nlh,
1206 						      u16 flags);
1207 	int			(*ndo_change_carrier)(struct net_device *dev,
1208 						      bool new_carrier);
1209 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1210 							struct netdev_phys_item_id *ppid);
1211 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1212 							  char *name, size_t len);
1213 	void			(*ndo_add_vxlan_port)(struct  net_device *dev,
1214 						      sa_family_t sa_family,
1215 						      __be16 port);
1216 	void			(*ndo_del_vxlan_port)(struct  net_device *dev,
1217 						      sa_family_t sa_family,
1218 						      __be16 port);
1219 
1220 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1221 							struct net_device *dev);
1222 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1223 							void *priv);
1224 
1225 	netdev_tx_t		(*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1226 							struct net_device *dev,
1227 							void *priv);
1228 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1229 	netdev_features_t	(*ndo_features_check) (struct sk_buff *skb,
1230 						       struct net_device *dev,
1231 						       netdev_features_t features);
1232 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1233 						      int queue_index,
1234 						      u32 maxrate);
1235 	int			(*ndo_get_iflink)(const struct net_device *dev);
1236 	int			(*ndo_change_proto_down)(struct net_device *dev,
1237 							 bool proto_down);
1238 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1239 						       struct sk_buff *skb);
1240 };
1241 
1242 /**
1243  * enum net_device_priv_flags - &struct net_device priv_flags
1244  *
1245  * These are the &struct net_device, they are only set internally
1246  * by drivers and used in the kernel. These flags are invisible to
1247  * userspace, this means that the order of these flags can change
1248  * during any kernel release.
1249  *
1250  * You should have a pretty good reason to be extending these flags.
1251  *
1252  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1253  * @IFF_EBRIDGE: Ethernet bridging device
1254  * @IFF_BONDING: bonding master or slave
1255  * @IFF_ISATAP: ISATAP interface (RFC4214)
1256  * @IFF_WAN_HDLC: WAN HDLC device
1257  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1258  *	release skb->dst
1259  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1260  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1261  * @IFF_MACVLAN_PORT: device used as macvlan port
1262  * @IFF_BRIDGE_PORT: device used as bridge port
1263  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1264  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1265  * @IFF_UNICAST_FLT: Supports unicast filtering
1266  * @IFF_TEAM_PORT: device used as team port
1267  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1268  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1269  *	change when it's running
1270  * @IFF_MACVLAN: Macvlan device
1271  * @IFF_L3MDEV_MASTER: device is an L3 master device
1272  * @IFF_NO_QUEUE: device can run without qdisc attached
1273  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1274  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1275  */
1276 enum netdev_priv_flags {
1277 	IFF_802_1Q_VLAN			= 1<<0,
1278 	IFF_EBRIDGE			= 1<<1,
1279 	IFF_BONDING			= 1<<2,
1280 	IFF_ISATAP			= 1<<3,
1281 	IFF_WAN_HDLC			= 1<<4,
1282 	IFF_XMIT_DST_RELEASE		= 1<<5,
1283 	IFF_DONT_BRIDGE			= 1<<6,
1284 	IFF_DISABLE_NETPOLL		= 1<<7,
1285 	IFF_MACVLAN_PORT		= 1<<8,
1286 	IFF_BRIDGE_PORT			= 1<<9,
1287 	IFF_OVS_DATAPATH		= 1<<10,
1288 	IFF_TX_SKB_SHARING		= 1<<11,
1289 	IFF_UNICAST_FLT			= 1<<12,
1290 	IFF_TEAM_PORT			= 1<<13,
1291 	IFF_SUPP_NOFCS			= 1<<14,
1292 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1293 	IFF_MACVLAN			= 1<<16,
1294 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1295 	IFF_IPVLAN_MASTER		= 1<<18,
1296 	IFF_IPVLAN_SLAVE		= 1<<19,
1297 	IFF_L3MDEV_MASTER		= 1<<20,
1298 	IFF_NO_QUEUE			= 1<<21,
1299 	IFF_OPENVSWITCH			= 1<<22,
1300 	IFF_L3MDEV_SLAVE		= 1<<23,
1301 };
1302 
1303 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1304 #define IFF_EBRIDGE			IFF_EBRIDGE
1305 #define IFF_BONDING			IFF_BONDING
1306 #define IFF_ISATAP			IFF_ISATAP
1307 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1308 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1309 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1310 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1311 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1312 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1313 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1314 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1315 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1316 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1317 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1318 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1319 #define IFF_MACVLAN			IFF_MACVLAN
1320 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1321 #define IFF_IPVLAN_MASTER		IFF_IPVLAN_MASTER
1322 #define IFF_IPVLAN_SLAVE		IFF_IPVLAN_SLAVE
1323 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1324 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1325 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1326 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1327 
1328 /**
1329  *	struct net_device - The DEVICE structure.
1330  *		Actually, this whole structure is a big mistake.  It mixes I/O
1331  *		data with strictly "high-level" data, and it has to know about
1332  *		almost every data structure used in the INET module.
1333  *
1334  *	@name:	This is the first field of the "visible" part of this structure
1335  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1336  *	 	of the interface.
1337  *
1338  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1339  *	@ifalias:	SNMP alias
1340  *	@mem_end:	Shared memory end
1341  *	@mem_start:	Shared memory start
1342  *	@base_addr:	Device I/O address
1343  *	@irq:		Device IRQ number
1344  *
1345  *	@carrier_changes:	Stats to monitor carrier on<->off transitions
1346  *
1347  *	@state:		Generic network queuing layer state, see netdev_state_t
1348  *	@dev_list:	The global list of network devices
1349  *	@napi_list:	List entry, that is used for polling napi devices
1350  *	@unreg_list:	List entry, that is used, when we are unregistering the
1351  *			device, see the function unregister_netdev
1352  *	@close_list:	List entry, that is used, when we are closing the device
1353  *
1354  *	@adj_list:	Directly linked devices, like slaves for bonding
1355  *	@all_adj_list:	All linked devices, *including* neighbours
1356  *	@features:	Currently active device features
1357  *	@hw_features:	User-changeable features
1358  *
1359  *	@wanted_features:	User-requested features
1360  *	@vlan_features:		Mask of features inheritable by VLAN devices
1361  *
1362  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1363  *				This field indicates what encapsulation
1364  *				offloads the hardware is capable of doing,
1365  *				and drivers will need to set them appropriately.
1366  *
1367  *	@mpls_features:	Mask of features inheritable by MPLS
1368  *
1369  *	@ifindex:	interface index
1370  *	@group:		The group, that the device belongs to
1371  *
1372  *	@stats:		Statistics struct, which was left as a legacy, use
1373  *			rtnl_link_stats64 instead
1374  *
1375  *	@rx_dropped:	Dropped packets by core network,
1376  *			do not use this in drivers
1377  *	@tx_dropped:	Dropped packets by core network,
1378  *			do not use this in drivers
1379  *
1380  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1381  *				instead of ioctl,
1382  *				see <net/iw_handler.h> for details.
1383  *	@wireless_data:	Instance data managed by the core of wireless extensions
1384  *
1385  *	@netdev_ops:	Includes several pointers to callbacks,
1386  *			if one wants to override the ndo_*() functions
1387  *	@ethtool_ops:	Management operations
1388  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1389  *			of Layer 2 headers.
1390  *
1391  *	@flags:		Interface flags (a la BSD)
1392  *	@priv_flags:	Like 'flags' but invisible to userspace,
1393  *			see if.h for the definitions
1394  *	@gflags:	Global flags ( kept as legacy )
1395  *	@padded:	How much padding added by alloc_netdev()
1396  *	@operstate:	RFC2863 operstate
1397  *	@link_mode:	Mapping policy to operstate
1398  *	@if_port:	Selectable AUI, TP, ...
1399  *	@dma:		DMA channel
1400  *	@mtu:		Interface MTU value
1401  *	@type:		Interface hardware type
1402  *	@hard_header_len: Maximum hardware header length.
1403  *
1404  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1405  *			  cases can this be guaranteed
1406  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1407  *			  cases can this be guaranteed. Some cases also use
1408  *			  LL_MAX_HEADER instead to allocate the skb
1409  *
1410  *	interface address info:
1411  *
1412  * 	@perm_addr:		Permanent hw address
1413  * 	@addr_assign_type:	Hw address assignment type
1414  * 	@addr_len:		Hardware address length
1415  * 	@neigh_priv_len;	Used in neigh_alloc(),
1416  * 				initialized only in atm/clip.c
1417  * 	@dev_id:		Used to differentiate devices that share
1418  * 				the same link layer address
1419  * 	@dev_port:		Used to differentiate devices that share
1420  * 				the same function
1421  *	@addr_list_lock:	XXX: need comments on this one
1422  *	@uc_promisc:		Counter, that indicates, that promiscuous mode
1423  *				has been enabled due to the need to listen to
1424  *				additional unicast addresses in a device that
1425  *				does not implement ndo_set_rx_mode()
1426  *	@uc:			unicast mac addresses
1427  *	@mc:			multicast mac addresses
1428  *	@dev_addrs:		list of device hw addresses
1429  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1430  *	@promiscuity:		Number of times, the NIC is told to work in
1431  *				Promiscuous mode, if it becomes 0 the NIC will
1432  *				exit from working in Promiscuous mode
1433  *	@allmulti:		Counter, enables or disables allmulticast mode
1434  *
1435  *	@vlan_info:	VLAN info
1436  *	@dsa_ptr:	dsa specific data
1437  *	@tipc_ptr:	TIPC specific data
1438  *	@atalk_ptr:	AppleTalk link
1439  *	@ip_ptr:	IPv4 specific data
1440  *	@dn_ptr:	DECnet specific data
1441  *	@ip6_ptr:	IPv6 specific data
1442  *	@ax25_ptr:	AX.25 specific data
1443  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1444  *
1445  *	@last_rx:	Time of last Rx
1446  *	@dev_addr:	Hw address (before bcast,
1447  *			because most packets are unicast)
1448  *
1449  *	@_rx:			Array of RX queues
1450  *	@num_rx_queues:		Number of RX queues
1451  *				allocated at register_netdev() time
1452  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1453  *
1454  *	@rx_handler:		handler for received packets
1455  *	@rx_handler_data: 	XXX: need comments on this one
1456  *	@ingress_queue:		XXX: need comments on this one
1457  *	@broadcast:		hw bcast address
1458  *
1459  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1460  *			indexed by RX queue number. Assigned by driver.
1461  *			This must only be set if the ndo_rx_flow_steer
1462  *			operation is defined
1463  *	@index_hlist:		Device index hash chain
1464  *
1465  *	@_tx:			Array of TX queues
1466  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1467  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1468  *	@qdisc:			Root qdisc from userspace point of view
1469  *	@tx_queue_len:		Max frames per queue allowed
1470  *	@tx_global_lock: 	XXX: need comments on this one
1471  *
1472  *	@xps_maps:	XXX: need comments on this one
1473  *
1474  *	@offload_fwd_mark:	Offload device fwding mark
1475  *
1476  *	@trans_start:		Time (in jiffies) of last Tx
1477  *	@watchdog_timeo:	Represents the timeout that is used by
1478  *				the watchdog ( see dev_watchdog() )
1479  *	@watchdog_timer:	List of timers
1480  *
1481  *	@pcpu_refcnt:		Number of references to this device
1482  *	@todo_list:		Delayed register/unregister
1483  *	@link_watch_list:	XXX: need comments on this one
1484  *
1485  *	@reg_state:		Register/unregister state machine
1486  *	@dismantle:		Device is going to be freed
1487  *	@rtnl_link_state:	This enum represents the phases of creating
1488  *				a new link
1489  *
1490  *	@destructor:		Called from unregister,
1491  *				can be used to call free_netdev
1492  *	@npinfo:		XXX: need comments on this one
1493  * 	@nd_net:		Network namespace this network device is inside
1494  *
1495  * 	@ml_priv:	Mid-layer private
1496  * 	@lstats:	Loopback statistics
1497  * 	@tstats:	Tunnel statistics
1498  * 	@dstats:	Dummy statistics
1499  * 	@vstats:	Virtual ethernet statistics
1500  *
1501  *	@garp_port:	GARP
1502  *	@mrp_port:	MRP
1503  *
1504  *	@dev:		Class/net/name entry
1505  *	@sysfs_groups:	Space for optional device, statistics and wireless
1506  *			sysfs groups
1507  *
1508  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1509  *	@rtnl_link_ops:	Rtnl_link_ops
1510  *
1511  *	@gso_max_size:	Maximum size of generic segmentation offload
1512  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1513  *			NIC for GSO
1514  *	@gso_min_segs:	Minimum number of segments that can be passed to the
1515  *			NIC for GSO
1516  *
1517  *	@dcbnl_ops:	Data Center Bridging netlink ops
1518  *	@num_tc:	Number of traffic classes in the net device
1519  *	@tc_to_txq:	XXX: need comments on this one
1520  *	@prio_tc_map	XXX: need comments on this one
1521  *
1522  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1523  *
1524  *	@priomap:	XXX: need comments on this one
1525  *	@phydev:	Physical device may attach itself
1526  *			for hardware timestamping
1527  *
1528  *	@qdisc_tx_busylock:	XXX: need comments on this one
1529  *
1530  *	@proto_down:	protocol port state information can be sent to the
1531  *			switch driver and used to set the phys state of the
1532  *			switch port.
1533  *
1534  *	FIXME: cleanup struct net_device such that network protocol info
1535  *	moves out.
1536  */
1537 
1538 struct net_device {
1539 	char			name[IFNAMSIZ];
1540 	struct hlist_node	name_hlist;
1541 	char 			*ifalias;
1542 	/*
1543 	 *	I/O specific fields
1544 	 *	FIXME: Merge these and struct ifmap into one
1545 	 */
1546 	unsigned long		mem_end;
1547 	unsigned long		mem_start;
1548 	unsigned long		base_addr;
1549 	int			irq;
1550 
1551 	atomic_t		carrier_changes;
1552 
1553 	/*
1554 	 *	Some hardware also needs these fields (state,dev_list,
1555 	 *	napi_list,unreg_list,close_list) but they are not
1556 	 *	part of the usual set specified in Space.c.
1557 	 */
1558 
1559 	unsigned long		state;
1560 
1561 	struct list_head	dev_list;
1562 	struct list_head	napi_list;
1563 	struct list_head	unreg_list;
1564 	struct list_head	close_list;
1565 	struct list_head	ptype_all;
1566 	struct list_head	ptype_specific;
1567 
1568 	struct {
1569 		struct list_head upper;
1570 		struct list_head lower;
1571 	} adj_list;
1572 
1573 	struct {
1574 		struct list_head upper;
1575 		struct list_head lower;
1576 	} all_adj_list;
1577 
1578 	netdev_features_t	features;
1579 	netdev_features_t	hw_features;
1580 	netdev_features_t	wanted_features;
1581 	netdev_features_t	vlan_features;
1582 	netdev_features_t	hw_enc_features;
1583 	netdev_features_t	mpls_features;
1584 
1585 	int			ifindex;
1586 	int			group;
1587 
1588 	struct net_device_stats	stats;
1589 
1590 	atomic_long_t		rx_dropped;
1591 	atomic_long_t		tx_dropped;
1592 
1593 #ifdef CONFIG_WIRELESS_EXT
1594 	const struct iw_handler_def *	wireless_handlers;
1595 	struct iw_public_data *	wireless_data;
1596 #endif
1597 	const struct net_device_ops *netdev_ops;
1598 	const struct ethtool_ops *ethtool_ops;
1599 #ifdef CONFIG_NET_SWITCHDEV
1600 	const struct switchdev_ops *switchdev_ops;
1601 #endif
1602 #ifdef CONFIG_NET_L3_MASTER_DEV
1603 	const struct l3mdev_ops	*l3mdev_ops;
1604 #endif
1605 
1606 	const struct header_ops *header_ops;
1607 
1608 	unsigned int		flags;
1609 	unsigned int		priv_flags;
1610 
1611 	unsigned short		gflags;
1612 	unsigned short		padded;
1613 
1614 	unsigned char		operstate;
1615 	unsigned char		link_mode;
1616 
1617 	unsigned char		if_port;
1618 	unsigned char		dma;
1619 
1620 	unsigned int		mtu;
1621 	unsigned short		type;
1622 	unsigned short		hard_header_len;
1623 
1624 	unsigned short		needed_headroom;
1625 	unsigned short		needed_tailroom;
1626 
1627 	/* Interface address info. */
1628 	unsigned char		perm_addr[MAX_ADDR_LEN];
1629 	unsigned char		addr_assign_type;
1630 	unsigned char		addr_len;
1631 	unsigned short		neigh_priv_len;
1632 	unsigned short          dev_id;
1633 	unsigned short          dev_port;
1634 	spinlock_t		addr_list_lock;
1635 	unsigned char		name_assign_type;
1636 	bool			uc_promisc;
1637 	struct netdev_hw_addr_list	uc;
1638 	struct netdev_hw_addr_list	mc;
1639 	struct netdev_hw_addr_list	dev_addrs;
1640 
1641 #ifdef CONFIG_SYSFS
1642 	struct kset		*queues_kset;
1643 #endif
1644 	unsigned int		promiscuity;
1645 	unsigned int		allmulti;
1646 
1647 
1648 	/* Protocol specific pointers */
1649 
1650 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1651 	struct vlan_info __rcu	*vlan_info;
1652 #endif
1653 #if IS_ENABLED(CONFIG_NET_DSA)
1654 	struct dsa_switch_tree	*dsa_ptr;
1655 #endif
1656 #if IS_ENABLED(CONFIG_TIPC)
1657 	struct tipc_bearer __rcu *tipc_ptr;
1658 #endif
1659 	void 			*atalk_ptr;
1660 	struct in_device __rcu	*ip_ptr;
1661 	struct dn_dev __rcu     *dn_ptr;
1662 	struct inet6_dev __rcu	*ip6_ptr;
1663 	void			*ax25_ptr;
1664 	struct wireless_dev	*ieee80211_ptr;
1665 	struct wpan_dev		*ieee802154_ptr;
1666 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1667 	struct mpls_dev __rcu	*mpls_ptr;
1668 #endif
1669 
1670 /*
1671  * Cache lines mostly used on receive path (including eth_type_trans())
1672  */
1673 	unsigned long		last_rx;
1674 
1675 	/* Interface address info used in eth_type_trans() */
1676 	unsigned char		*dev_addr;
1677 
1678 
1679 #ifdef CONFIG_SYSFS
1680 	struct netdev_rx_queue	*_rx;
1681 
1682 	unsigned int		num_rx_queues;
1683 	unsigned int		real_num_rx_queues;
1684 
1685 #endif
1686 
1687 	unsigned long		gro_flush_timeout;
1688 	rx_handler_func_t __rcu	*rx_handler;
1689 	void __rcu		*rx_handler_data;
1690 
1691 #ifdef CONFIG_NET_CLS_ACT
1692 	struct tcf_proto __rcu  *ingress_cl_list;
1693 #endif
1694 	struct netdev_queue __rcu *ingress_queue;
1695 #ifdef CONFIG_NETFILTER_INGRESS
1696 	struct list_head	nf_hooks_ingress;
1697 #endif
1698 
1699 	unsigned char		broadcast[MAX_ADDR_LEN];
1700 #ifdef CONFIG_RFS_ACCEL
1701 	struct cpu_rmap		*rx_cpu_rmap;
1702 #endif
1703 	struct hlist_node	index_hlist;
1704 
1705 /*
1706  * Cache lines mostly used on transmit path
1707  */
1708 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1709 	unsigned int		num_tx_queues;
1710 	unsigned int		real_num_tx_queues;
1711 	struct Qdisc		*qdisc;
1712 	unsigned long		tx_queue_len;
1713 	spinlock_t		tx_global_lock;
1714 	int			watchdog_timeo;
1715 
1716 #ifdef CONFIG_XPS
1717 	struct xps_dev_maps __rcu *xps_maps;
1718 #endif
1719 
1720 #ifdef CONFIG_NET_SWITCHDEV
1721 	u32			offload_fwd_mark;
1722 #endif
1723 
1724 	/* These may be needed for future network-power-down code. */
1725 
1726 	/*
1727 	 * trans_start here is expensive for high speed devices on SMP,
1728 	 * please use netdev_queue->trans_start instead.
1729 	 */
1730 	unsigned long		trans_start;
1731 
1732 	struct timer_list	watchdog_timer;
1733 
1734 	int __percpu		*pcpu_refcnt;
1735 	struct list_head	todo_list;
1736 
1737 	struct list_head	link_watch_list;
1738 
1739 	enum { NETREG_UNINITIALIZED=0,
1740 	       NETREG_REGISTERED,	/* completed register_netdevice */
1741 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1742 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1743 	       NETREG_RELEASED,		/* called free_netdev */
1744 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1745 	} reg_state:8;
1746 
1747 	bool dismantle;
1748 
1749 	enum {
1750 		RTNL_LINK_INITIALIZED,
1751 		RTNL_LINK_INITIALIZING,
1752 	} rtnl_link_state:16;
1753 
1754 	void (*destructor)(struct net_device *dev);
1755 
1756 #ifdef CONFIG_NETPOLL
1757 	struct netpoll_info __rcu	*npinfo;
1758 #endif
1759 
1760 	possible_net_t			nd_net;
1761 
1762 	/* mid-layer private */
1763 	union {
1764 		void					*ml_priv;
1765 		struct pcpu_lstats __percpu		*lstats;
1766 		struct pcpu_sw_netstats __percpu	*tstats;
1767 		struct pcpu_dstats __percpu		*dstats;
1768 		struct pcpu_vstats __percpu		*vstats;
1769 	};
1770 
1771 	struct garp_port __rcu	*garp_port;
1772 	struct mrp_port __rcu	*mrp_port;
1773 
1774 	struct device	dev;
1775 	const struct attribute_group *sysfs_groups[4];
1776 	const struct attribute_group *sysfs_rx_queue_group;
1777 
1778 	const struct rtnl_link_ops *rtnl_link_ops;
1779 
1780 	/* for setting kernel sock attribute on TCP connection setup */
1781 #define GSO_MAX_SIZE		65536
1782 	unsigned int		gso_max_size;
1783 #define GSO_MAX_SEGS		65535
1784 	u16			gso_max_segs;
1785 	u16			gso_min_segs;
1786 #ifdef CONFIG_DCB
1787 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1788 #endif
1789 	u8 num_tc;
1790 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1791 	u8 prio_tc_map[TC_BITMASK + 1];
1792 
1793 #if IS_ENABLED(CONFIG_FCOE)
1794 	unsigned int		fcoe_ddp_xid;
1795 #endif
1796 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1797 	struct netprio_map __rcu *priomap;
1798 #endif
1799 	struct phy_device *phydev;
1800 	struct lock_class_key *qdisc_tx_busylock;
1801 	bool proto_down;
1802 };
1803 #define to_net_dev(d) container_of(d, struct net_device, dev)
1804 
1805 #define	NETDEV_ALIGN		32
1806 
1807 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)1808 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1809 {
1810 	return dev->prio_tc_map[prio & TC_BITMASK];
1811 }
1812 
1813 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)1814 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1815 {
1816 	if (tc >= dev->num_tc)
1817 		return -EINVAL;
1818 
1819 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1820 	return 0;
1821 }
1822 
1823 static inline
netdev_reset_tc(struct net_device * dev)1824 void netdev_reset_tc(struct net_device *dev)
1825 {
1826 	dev->num_tc = 0;
1827 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1828 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1829 }
1830 
1831 static inline
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)1832 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1833 {
1834 	if (tc >= dev->num_tc)
1835 		return -EINVAL;
1836 
1837 	dev->tc_to_txq[tc].count = count;
1838 	dev->tc_to_txq[tc].offset = offset;
1839 	return 0;
1840 }
1841 
1842 static inline
netdev_set_num_tc(struct net_device * dev,u8 num_tc)1843 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1844 {
1845 	if (num_tc > TC_MAX_QUEUE)
1846 		return -EINVAL;
1847 
1848 	dev->num_tc = num_tc;
1849 	return 0;
1850 }
1851 
1852 static inline
netdev_get_num_tc(struct net_device * dev)1853 int netdev_get_num_tc(struct net_device *dev)
1854 {
1855 	return dev->num_tc;
1856 }
1857 
1858 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)1859 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1860 					 unsigned int index)
1861 {
1862 	return &dev->_tx[index];
1863 }
1864 
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)1865 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1866 						    const struct sk_buff *skb)
1867 {
1868 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1869 }
1870 
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)1871 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1872 					    void (*f)(struct net_device *,
1873 						      struct netdev_queue *,
1874 						      void *),
1875 					    void *arg)
1876 {
1877 	unsigned int i;
1878 
1879 	for (i = 0; i < dev->num_tx_queues; i++)
1880 		f(dev, &dev->_tx[i], arg);
1881 }
1882 
1883 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1884 				    struct sk_buff *skb,
1885 				    void *accel_priv);
1886 
1887 /*
1888  * Net namespace inlines
1889  */
1890 static inline
dev_net(const struct net_device * dev)1891 struct net *dev_net(const struct net_device *dev)
1892 {
1893 	return read_pnet(&dev->nd_net);
1894 }
1895 
1896 static inline
dev_net_set(struct net_device * dev,struct net * net)1897 void dev_net_set(struct net_device *dev, struct net *net)
1898 {
1899 	write_pnet(&dev->nd_net, net);
1900 }
1901 
netdev_uses_dsa(struct net_device * dev)1902 static inline bool netdev_uses_dsa(struct net_device *dev)
1903 {
1904 #if IS_ENABLED(CONFIG_NET_DSA)
1905 	if (dev->dsa_ptr != NULL)
1906 		return dsa_uses_tagged_protocol(dev->dsa_ptr);
1907 #endif
1908 	return false;
1909 }
1910 
1911 /**
1912  *	netdev_priv - access network device private data
1913  *	@dev: network device
1914  *
1915  * Get network device private data
1916  */
netdev_priv(const struct net_device * dev)1917 static inline void *netdev_priv(const struct net_device *dev)
1918 {
1919 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1920 }
1921 
1922 /* Set the sysfs physical device reference for the network logical device
1923  * if set prior to registration will cause a symlink during initialization.
1924  */
1925 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1926 
1927 /* Set the sysfs device type for the network logical device to allow
1928  * fine-grained identification of different network device types. For
1929  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1930  */
1931 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1932 
1933 /* Default NAPI poll() weight
1934  * Device drivers are strongly advised to not use bigger value
1935  */
1936 #define NAPI_POLL_WEIGHT 64
1937 
1938 /**
1939  *	netif_napi_add - initialize a napi context
1940  *	@dev:  network device
1941  *	@napi: napi context
1942  *	@poll: polling function
1943  *	@weight: default weight
1944  *
1945  * netif_napi_add() must be used to initialize a napi context prior to calling
1946  * *any* of the other napi related functions.
1947  */
1948 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1949 		    int (*poll)(struct napi_struct *, int), int weight);
1950 
1951 /**
1952  *  netif_napi_del - remove a napi context
1953  *  @napi: napi context
1954  *
1955  *  netif_napi_del() removes a napi context from the network device napi list
1956  */
1957 void netif_napi_del(struct napi_struct *napi);
1958 
1959 struct napi_gro_cb {
1960 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1961 	void *frag0;
1962 
1963 	/* Length of frag0. */
1964 	unsigned int frag0_len;
1965 
1966 	/* This indicates where we are processing relative to skb->data. */
1967 	int data_offset;
1968 
1969 	/* This is non-zero if the packet cannot be merged with the new skb. */
1970 	u16	flush;
1971 
1972 	/* Save the IP ID here and check when we get to the transport layer */
1973 	u16	flush_id;
1974 
1975 	/* Number of segments aggregated. */
1976 	u16	count;
1977 
1978 	/* Start offset for remote checksum offload */
1979 	u16	gro_remcsum_start;
1980 
1981 	/* jiffies when first packet was created/queued */
1982 	unsigned long age;
1983 
1984 	/* Used in ipv6_gro_receive() and foo-over-udp */
1985 	u16	proto;
1986 
1987 	/* This is non-zero if the packet may be of the same flow. */
1988 	u8	same_flow:1;
1989 
1990 	/* Used in udp_gro_receive */
1991 	u8	udp_mark:1;
1992 
1993 	/* GRO checksum is valid */
1994 	u8	csum_valid:1;
1995 
1996 	/* Number of checksums via CHECKSUM_UNNECESSARY */
1997 	u8	csum_cnt:3;
1998 
1999 	/* Free the skb? */
2000 	u8	free:2;
2001 #define NAPI_GRO_FREE		  1
2002 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2003 
2004 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2005 	u8	is_ipv6:1;
2006 
2007 	/* 7 bit hole */
2008 
2009 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2010 	__wsum	csum;
2011 
2012 	/* used in skb_gro_receive() slow path */
2013 	struct sk_buff *last;
2014 };
2015 
2016 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2017 
2018 struct packet_type {
2019 	__be16			type;	/* This is really htons(ether_type). */
2020 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2021 	int			(*func) (struct sk_buff *,
2022 					 struct net_device *,
2023 					 struct packet_type *,
2024 					 struct net_device *);
2025 	bool			(*id_match)(struct packet_type *ptype,
2026 					    struct sock *sk);
2027 	void			*af_packet_priv;
2028 	struct list_head	list;
2029 };
2030 
2031 struct offload_callbacks {
2032 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2033 						netdev_features_t features);
2034 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2035 						 struct sk_buff *skb);
2036 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2037 };
2038 
2039 struct packet_offload {
2040 	__be16			 type;	/* This is really htons(ether_type). */
2041 	u16			 priority;
2042 	struct offload_callbacks callbacks;
2043 	struct list_head	 list;
2044 };
2045 
2046 struct udp_offload;
2047 
2048 struct udp_offload_callbacks {
2049 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
2050 						 struct sk_buff *skb,
2051 						 struct udp_offload *uoff);
2052 	int			(*gro_complete)(struct sk_buff *skb,
2053 						int nhoff,
2054 						struct udp_offload *uoff);
2055 };
2056 
2057 struct udp_offload {
2058 	__be16			 port;
2059 	u8			 ipproto;
2060 	struct udp_offload_callbacks callbacks;
2061 };
2062 
2063 /* often modified stats are per cpu, other are shared (netdev->stats) */
2064 struct pcpu_sw_netstats {
2065 	u64     rx_packets;
2066 	u64     rx_bytes;
2067 	u64     tx_packets;
2068 	u64     tx_bytes;
2069 	struct u64_stats_sync   syncp;
2070 };
2071 
2072 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2073 ({									\
2074 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2075 	if (pcpu_stats)	{						\
2076 		int __cpu;						\
2077 		for_each_possible_cpu(__cpu) {				\
2078 			typeof(type) *stat;				\
2079 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2080 			u64_stats_init(&stat->syncp);			\
2081 		}							\
2082 	}								\
2083 	pcpu_stats;							\
2084 })
2085 
2086 #define netdev_alloc_pcpu_stats(type)					\
2087 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2088 
2089 #include <linux/notifier.h>
2090 
2091 /* netdevice notifier chain. Please remember to update the rtnetlink
2092  * notification exclusion list in rtnetlink_event() when adding new
2093  * types.
2094  */
2095 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
2096 #define NETDEV_DOWN	0x0002
2097 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
2098 				   detected a hardware crash and restarted
2099 				   - we can use this eg to kick tcp sessions
2100 				   once done */
2101 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
2102 #define NETDEV_REGISTER 0x0005
2103 #define NETDEV_UNREGISTER	0x0006
2104 #define NETDEV_CHANGEMTU	0x0007 /* notify after mtu change happened */
2105 #define NETDEV_CHANGEADDR	0x0008
2106 #define NETDEV_GOING_DOWN	0x0009
2107 #define NETDEV_CHANGENAME	0x000A
2108 #define NETDEV_FEAT_CHANGE	0x000B
2109 #define NETDEV_BONDING_FAILOVER 0x000C
2110 #define NETDEV_PRE_UP		0x000D
2111 #define NETDEV_PRE_TYPE_CHANGE	0x000E
2112 #define NETDEV_POST_TYPE_CHANGE	0x000F
2113 #define NETDEV_POST_INIT	0x0010
2114 #define NETDEV_UNREGISTER_FINAL 0x0011
2115 #define NETDEV_RELEASE		0x0012
2116 #define NETDEV_NOTIFY_PEERS	0x0013
2117 #define NETDEV_JOIN		0x0014
2118 #define NETDEV_CHANGEUPPER	0x0015
2119 #define NETDEV_RESEND_IGMP	0x0016
2120 #define NETDEV_PRECHANGEMTU	0x0017 /* notify before mtu change happened */
2121 #define NETDEV_CHANGEINFODATA	0x0018
2122 #define NETDEV_BONDING_INFO	0x0019
2123 #define NETDEV_PRECHANGEUPPER	0x001A
2124 
2125 int register_netdevice_notifier(struct notifier_block *nb);
2126 int unregister_netdevice_notifier(struct notifier_block *nb);
2127 
2128 struct netdev_notifier_info {
2129 	struct net_device *dev;
2130 };
2131 
2132 struct netdev_notifier_change_info {
2133 	struct netdev_notifier_info info; /* must be first */
2134 	unsigned int flags_changed;
2135 };
2136 
2137 struct netdev_notifier_changeupper_info {
2138 	struct netdev_notifier_info info; /* must be first */
2139 	struct net_device *upper_dev; /* new upper dev */
2140 	bool master; /* is upper dev master */
2141 	bool linking; /* is the nofication for link or unlink */
2142 };
2143 
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)2144 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2145 					     struct net_device *dev)
2146 {
2147 	info->dev = dev;
2148 }
2149 
2150 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)2151 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2152 {
2153 	return info->dev;
2154 }
2155 
2156 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2157 
2158 
2159 extern rwlock_t				dev_base_lock;		/* Device list lock */
2160 
2161 #define for_each_netdev(net, d)		\
2162 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2163 #define for_each_netdev_reverse(net, d)	\
2164 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2165 #define for_each_netdev_rcu(net, d)		\
2166 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2167 #define for_each_netdev_safe(net, d, n)	\
2168 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2169 #define for_each_netdev_continue(net, d)		\
2170 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2171 #define for_each_netdev_continue_rcu(net, d)		\
2172 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2173 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2174 		for_each_netdev_rcu(&init_net, slave)	\
2175 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2176 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2177 
next_net_device(struct net_device * dev)2178 static inline struct net_device *next_net_device(struct net_device *dev)
2179 {
2180 	struct list_head *lh;
2181 	struct net *net;
2182 
2183 	net = dev_net(dev);
2184 	lh = dev->dev_list.next;
2185 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2186 }
2187 
next_net_device_rcu(struct net_device * dev)2188 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2189 {
2190 	struct list_head *lh;
2191 	struct net *net;
2192 
2193 	net = dev_net(dev);
2194 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2195 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2196 }
2197 
first_net_device(struct net * net)2198 static inline struct net_device *first_net_device(struct net *net)
2199 {
2200 	return list_empty(&net->dev_base_head) ? NULL :
2201 		net_device_entry(net->dev_base_head.next);
2202 }
2203 
first_net_device_rcu(struct net * net)2204 static inline struct net_device *first_net_device_rcu(struct net *net)
2205 {
2206 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2207 
2208 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2209 }
2210 
2211 int netdev_boot_setup_check(struct net_device *dev);
2212 unsigned long netdev_boot_base(const char *prefix, int unit);
2213 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2214 				       const char *hwaddr);
2215 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2216 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2217 void dev_add_pack(struct packet_type *pt);
2218 void dev_remove_pack(struct packet_type *pt);
2219 void __dev_remove_pack(struct packet_type *pt);
2220 void dev_add_offload(struct packet_offload *po);
2221 void dev_remove_offload(struct packet_offload *po);
2222 
2223 int dev_get_iflink(const struct net_device *dev);
2224 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2225 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2226 				      unsigned short mask);
2227 struct net_device *dev_get_by_name(struct net *net, const char *name);
2228 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2229 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2230 int dev_alloc_name(struct net_device *dev, const char *name);
2231 int dev_open(struct net_device *dev);
2232 int dev_close(struct net_device *dev);
2233 int dev_close_many(struct list_head *head, bool unlink);
2234 void dev_disable_lro(struct net_device *dev);
2235 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2236 int dev_queue_xmit(struct sk_buff *skb);
2237 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2238 int register_netdevice(struct net_device *dev);
2239 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2240 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)2241 static inline void unregister_netdevice(struct net_device *dev)
2242 {
2243 	unregister_netdevice_queue(dev, NULL);
2244 }
2245 
2246 int netdev_refcnt_read(const struct net_device *dev);
2247 void free_netdev(struct net_device *dev);
2248 void netdev_freemem(struct net_device *dev);
2249 void synchronize_net(void);
2250 int init_dummy_netdev(struct net_device *dev);
2251 
2252 DECLARE_PER_CPU(int, xmit_recursion);
dev_recursion_level(void)2253 static inline int dev_recursion_level(void)
2254 {
2255 	return this_cpu_read(xmit_recursion);
2256 }
2257 
2258 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2259 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2260 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2261 int netdev_get_name(struct net *net, char *name, int ifindex);
2262 int dev_restart(struct net_device *dev);
2263 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2264 
skb_gro_offset(const struct sk_buff * skb)2265 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2266 {
2267 	return NAPI_GRO_CB(skb)->data_offset;
2268 }
2269 
skb_gro_len(const struct sk_buff * skb)2270 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2271 {
2272 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2273 }
2274 
skb_gro_pull(struct sk_buff * skb,unsigned int len)2275 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2276 {
2277 	NAPI_GRO_CB(skb)->data_offset += len;
2278 }
2279 
skb_gro_header_fast(struct sk_buff * skb,unsigned int offset)2280 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2281 					unsigned int offset)
2282 {
2283 	return NAPI_GRO_CB(skb)->frag0 + offset;
2284 }
2285 
skb_gro_header_hard(struct sk_buff * skb,unsigned int hlen)2286 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2287 {
2288 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2289 }
2290 
skb_gro_header_slow(struct sk_buff * skb,unsigned int hlen,unsigned int offset)2291 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2292 					unsigned int offset)
2293 {
2294 	if (!pskb_may_pull(skb, hlen))
2295 		return NULL;
2296 
2297 	NAPI_GRO_CB(skb)->frag0 = NULL;
2298 	NAPI_GRO_CB(skb)->frag0_len = 0;
2299 	return skb->data + offset;
2300 }
2301 
skb_gro_network_header(struct sk_buff * skb)2302 static inline void *skb_gro_network_header(struct sk_buff *skb)
2303 {
2304 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2305 	       skb_network_offset(skb);
2306 }
2307 
skb_gro_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2308 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2309 					const void *start, unsigned int len)
2310 {
2311 	if (NAPI_GRO_CB(skb)->csum_valid)
2312 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2313 						  csum_partial(start, len, 0));
2314 }
2315 
2316 /* GRO checksum functions. These are logical equivalents of the normal
2317  * checksum functions (in skbuff.h) except that they operate on the GRO
2318  * offsets and fields in sk_buff.
2319  */
2320 
2321 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2322 
skb_at_gro_remcsum_start(struct sk_buff * skb)2323 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2324 {
2325 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2326 }
2327 
__skb_gro_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)2328 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2329 						      bool zero_okay,
2330 						      __sum16 check)
2331 {
2332 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2333 		skb_checksum_start_offset(skb) <
2334 		 skb_gro_offset(skb)) &&
2335 		!skb_at_gro_remcsum_start(skb) &&
2336 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2337 		(!zero_okay || check));
2338 }
2339 
__skb_gro_checksum_validate_complete(struct sk_buff * skb,__wsum psum)2340 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2341 							   __wsum psum)
2342 {
2343 	if (NAPI_GRO_CB(skb)->csum_valid &&
2344 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2345 		return 0;
2346 
2347 	NAPI_GRO_CB(skb)->csum = psum;
2348 
2349 	return __skb_gro_checksum_complete(skb);
2350 }
2351 
skb_gro_incr_csum_unnecessary(struct sk_buff * skb)2352 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2353 {
2354 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2355 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2356 		NAPI_GRO_CB(skb)->csum_cnt--;
2357 	} else {
2358 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2359 		 * verified a new top level checksum or an encapsulated one
2360 		 * during GRO. This saves work if we fallback to normal path.
2361 		 */
2362 		__skb_incr_checksum_unnecessary(skb);
2363 	}
2364 }
2365 
2366 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2367 				    compute_pseudo)			\
2368 ({									\
2369 	__sum16 __ret = 0;						\
2370 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2371 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2372 				compute_pseudo(skb, proto));		\
2373 	if (__ret)							\
2374 		__skb_mark_checksum_bad(skb);				\
2375 	else								\
2376 		skb_gro_incr_csum_unnecessary(skb);			\
2377 	__ret;								\
2378 })
2379 
2380 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2381 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2382 
2383 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2384 					     compute_pseudo)		\
2385 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2386 
2387 #define skb_gro_checksum_simple_validate(skb)				\
2388 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2389 
__skb_gro_checksum_convert_check(struct sk_buff * skb)2390 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2391 {
2392 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2393 		!NAPI_GRO_CB(skb)->csum_valid);
2394 }
2395 
__skb_gro_checksum_convert(struct sk_buff * skb,__sum16 check,__wsum pseudo)2396 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2397 					      __sum16 check, __wsum pseudo)
2398 {
2399 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2400 	NAPI_GRO_CB(skb)->csum_valid = 1;
2401 }
2402 
2403 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2404 do {									\
2405 	if (__skb_gro_checksum_convert_check(skb))			\
2406 		__skb_gro_checksum_convert(skb, check,			\
2407 					   compute_pseudo(skb, proto));	\
2408 } while (0)
2409 
2410 struct gro_remcsum {
2411 	int offset;
2412 	__wsum delta;
2413 };
2414 
skb_gro_remcsum_init(struct gro_remcsum * grc)2415 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2416 {
2417 	grc->offset = 0;
2418 	grc->delta = 0;
2419 }
2420 
skb_gro_remcsum_process(struct sk_buff * skb,void * ptr,unsigned int off,size_t hdrlen,int start,int offset,struct gro_remcsum * grc,bool nopartial)2421 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2422 					    unsigned int off, size_t hdrlen,
2423 					    int start, int offset,
2424 					    struct gro_remcsum *grc,
2425 					    bool nopartial)
2426 {
2427 	__wsum delta;
2428 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2429 
2430 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2431 
2432 	if (!nopartial) {
2433 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2434 		return ptr;
2435 	}
2436 
2437 	ptr = skb_gro_header_fast(skb, off);
2438 	if (skb_gro_header_hard(skb, off + plen)) {
2439 		ptr = skb_gro_header_slow(skb, off + plen, off);
2440 		if (!ptr)
2441 			return NULL;
2442 	}
2443 
2444 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2445 			       start, offset);
2446 
2447 	/* Adjust skb->csum since we changed the packet */
2448 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2449 
2450 	grc->offset = off + hdrlen + offset;
2451 	grc->delta = delta;
2452 
2453 	return ptr;
2454 }
2455 
skb_gro_remcsum_cleanup(struct sk_buff * skb,struct gro_remcsum * grc)2456 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2457 					   struct gro_remcsum *grc)
2458 {
2459 	void *ptr;
2460 	size_t plen = grc->offset + sizeof(u16);
2461 
2462 	if (!grc->delta)
2463 		return;
2464 
2465 	ptr = skb_gro_header_fast(skb, grc->offset);
2466 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2467 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2468 		if (!ptr)
2469 			return;
2470 	}
2471 
2472 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2473 }
2474 
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)2475 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2476 				  unsigned short type,
2477 				  const void *daddr, const void *saddr,
2478 				  unsigned int len)
2479 {
2480 	if (!dev->header_ops || !dev->header_ops->create)
2481 		return 0;
2482 
2483 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2484 }
2485 
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)2486 static inline int dev_parse_header(const struct sk_buff *skb,
2487 				   unsigned char *haddr)
2488 {
2489 	const struct net_device *dev = skb->dev;
2490 
2491 	if (!dev->header_ops || !dev->header_ops->parse)
2492 		return 0;
2493 	return dev->header_ops->parse(skb, haddr);
2494 }
2495 
2496 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)2497 static inline bool dev_validate_header(const struct net_device *dev,
2498 				       char *ll_header, int len)
2499 {
2500 	if (likely(len >= dev->hard_header_len))
2501 		return true;
2502 
2503 	if (capable(CAP_SYS_RAWIO)) {
2504 		memset(ll_header + len, 0, dev->hard_header_len - len);
2505 		return true;
2506 	}
2507 
2508 	if (dev->header_ops && dev->header_ops->validate)
2509 		return dev->header_ops->validate(ll_header, len);
2510 
2511 	return false;
2512 }
2513 
2514 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2515 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
unregister_gifconf(unsigned int family)2516 static inline int unregister_gifconf(unsigned int family)
2517 {
2518 	return register_gifconf(family, NULL);
2519 }
2520 
2521 #ifdef CONFIG_NET_FLOW_LIMIT
2522 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2523 struct sd_flow_limit {
2524 	u64			count;
2525 	unsigned int		num_buckets;
2526 	unsigned int		history_head;
2527 	u16			history[FLOW_LIMIT_HISTORY];
2528 	u8			buckets[];
2529 };
2530 
2531 extern int netdev_flow_limit_table_len;
2532 #endif /* CONFIG_NET_FLOW_LIMIT */
2533 
2534 /*
2535  * Incoming packets are placed on per-cpu queues
2536  */
2537 struct softnet_data {
2538 	struct list_head	poll_list;
2539 	struct sk_buff_head	process_queue;
2540 
2541 	/* stats */
2542 	unsigned int		processed;
2543 	unsigned int		time_squeeze;
2544 	unsigned int		cpu_collision;
2545 	unsigned int		received_rps;
2546 #ifdef CONFIG_RPS
2547 	struct softnet_data	*rps_ipi_list;
2548 #endif
2549 #ifdef CONFIG_NET_FLOW_LIMIT
2550 	struct sd_flow_limit __rcu *flow_limit;
2551 #endif
2552 	struct Qdisc		*output_queue;
2553 	struct Qdisc		**output_queue_tailp;
2554 	struct sk_buff		*completion_queue;
2555 
2556 #ifdef CONFIG_RPS
2557 	/* Elements below can be accessed between CPUs for RPS */
2558 	struct call_single_data	csd ____cacheline_aligned_in_smp;
2559 	struct softnet_data	*rps_ipi_next;
2560 	unsigned int		cpu;
2561 	unsigned int		input_queue_head;
2562 	unsigned int		input_queue_tail;
2563 #endif
2564 	unsigned int		dropped;
2565 	struct sk_buff_head	input_pkt_queue;
2566 	struct napi_struct	backlog;
2567 
2568 };
2569 
input_queue_head_incr(struct softnet_data * sd)2570 static inline void input_queue_head_incr(struct softnet_data *sd)
2571 {
2572 #ifdef CONFIG_RPS
2573 	sd->input_queue_head++;
2574 #endif
2575 }
2576 
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)2577 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2578 					      unsigned int *qtail)
2579 {
2580 #ifdef CONFIG_RPS
2581 	*qtail = ++sd->input_queue_tail;
2582 #endif
2583 }
2584 
2585 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2586 
2587 void __netif_schedule(struct Qdisc *q);
2588 void netif_schedule_queue(struct netdev_queue *txq);
2589 
netif_tx_schedule_all(struct net_device * dev)2590 static inline void netif_tx_schedule_all(struct net_device *dev)
2591 {
2592 	unsigned int i;
2593 
2594 	for (i = 0; i < dev->num_tx_queues; i++)
2595 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
2596 }
2597 
netif_tx_start_queue(struct netdev_queue * dev_queue)2598 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2599 {
2600 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2601 }
2602 
2603 /**
2604  *	netif_start_queue - allow transmit
2605  *	@dev: network device
2606  *
2607  *	Allow upper layers to call the device hard_start_xmit routine.
2608  */
netif_start_queue(struct net_device * dev)2609 static inline void netif_start_queue(struct net_device *dev)
2610 {
2611 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2612 }
2613 
netif_tx_start_all_queues(struct net_device * dev)2614 static inline void netif_tx_start_all_queues(struct net_device *dev)
2615 {
2616 	unsigned int i;
2617 
2618 	for (i = 0; i < dev->num_tx_queues; i++) {
2619 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2620 		netif_tx_start_queue(txq);
2621 	}
2622 }
2623 
2624 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2625 
2626 /**
2627  *	netif_wake_queue - restart transmit
2628  *	@dev: network device
2629  *
2630  *	Allow upper layers to call the device hard_start_xmit routine.
2631  *	Used for flow control when transmit resources are available.
2632  */
netif_wake_queue(struct net_device * dev)2633 static inline void netif_wake_queue(struct net_device *dev)
2634 {
2635 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2636 }
2637 
netif_tx_wake_all_queues(struct net_device * dev)2638 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2639 {
2640 	unsigned int i;
2641 
2642 	for (i = 0; i < dev->num_tx_queues; i++) {
2643 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2644 		netif_tx_wake_queue(txq);
2645 	}
2646 }
2647 
netif_tx_stop_queue(struct netdev_queue * dev_queue)2648 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2649 {
2650 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2651 }
2652 
2653 /**
2654  *	netif_stop_queue - stop transmitted packets
2655  *	@dev: network device
2656  *
2657  *	Stop upper layers calling the device hard_start_xmit routine.
2658  *	Used for flow control when transmit resources are unavailable.
2659  */
netif_stop_queue(struct net_device * dev)2660 static inline void netif_stop_queue(struct net_device *dev)
2661 {
2662 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2663 }
2664 
2665 void netif_tx_stop_all_queues(struct net_device *dev);
2666 
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)2667 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2668 {
2669 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2670 }
2671 
2672 /**
2673  *	netif_queue_stopped - test if transmit queue is flowblocked
2674  *	@dev: network device
2675  *
2676  *	Test if transmit queue on device is currently unable to send.
2677  */
netif_queue_stopped(const struct net_device * dev)2678 static inline bool netif_queue_stopped(const struct net_device *dev)
2679 {
2680 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2681 }
2682 
netif_xmit_stopped(const struct netdev_queue * dev_queue)2683 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2684 {
2685 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2686 }
2687 
2688 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)2689 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2690 {
2691 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2692 }
2693 
2694 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)2695 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2696 {
2697 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2698 }
2699 
2700 /**
2701  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2702  *	@dev_queue: pointer to transmit queue
2703  *
2704  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2705  * to give appropriate hint to the cpu.
2706  */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)2707 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2708 {
2709 #ifdef CONFIG_BQL
2710 	prefetchw(&dev_queue->dql.num_queued);
2711 #endif
2712 }
2713 
2714 /**
2715  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2716  *	@dev_queue: pointer to transmit queue
2717  *
2718  * BQL enabled drivers might use this helper in their TX completion path,
2719  * to give appropriate hint to the cpu.
2720  */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)2721 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2722 {
2723 #ifdef CONFIG_BQL
2724 	prefetchw(&dev_queue->dql.limit);
2725 #endif
2726 }
2727 
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)2728 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2729 					unsigned int bytes)
2730 {
2731 #ifdef CONFIG_BQL
2732 	dql_queued(&dev_queue->dql, bytes);
2733 
2734 	if (likely(dql_avail(&dev_queue->dql) >= 0))
2735 		return;
2736 
2737 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2738 
2739 	/*
2740 	 * The XOFF flag must be set before checking the dql_avail below,
2741 	 * because in netdev_tx_completed_queue we update the dql_completed
2742 	 * before checking the XOFF flag.
2743 	 */
2744 	smp_mb();
2745 
2746 	/* check again in case another CPU has just made room avail */
2747 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2748 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2749 #endif
2750 }
2751 
2752 /**
2753  * 	netdev_sent_queue - report the number of bytes queued to hardware
2754  * 	@dev: network device
2755  * 	@bytes: number of bytes queued to the hardware device queue
2756  *
2757  * 	Report the number of bytes queued for sending/completion to the network
2758  * 	device hardware queue. @bytes should be a good approximation and should
2759  * 	exactly match netdev_completed_queue() @bytes
2760  */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)2761 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2762 {
2763 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2764 }
2765 
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)2766 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2767 					     unsigned int pkts, unsigned int bytes)
2768 {
2769 #ifdef CONFIG_BQL
2770 	if (unlikely(!bytes))
2771 		return;
2772 
2773 	dql_completed(&dev_queue->dql, bytes);
2774 
2775 	/*
2776 	 * Without the memory barrier there is a small possiblity that
2777 	 * netdev_tx_sent_queue will miss the update and cause the queue to
2778 	 * be stopped forever
2779 	 */
2780 	smp_mb();
2781 
2782 	if (dql_avail(&dev_queue->dql) < 0)
2783 		return;
2784 
2785 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2786 		netif_schedule_queue(dev_queue);
2787 #endif
2788 }
2789 
2790 /**
2791  * 	netdev_completed_queue - report bytes and packets completed by device
2792  * 	@dev: network device
2793  * 	@pkts: actual number of packets sent over the medium
2794  * 	@bytes: actual number of bytes sent over the medium
2795  *
2796  * 	Report the number of bytes and packets transmitted by the network device
2797  * 	hardware queue over the physical medium, @bytes must exactly match the
2798  * 	@bytes amount passed to netdev_sent_queue()
2799  */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)2800 static inline void netdev_completed_queue(struct net_device *dev,
2801 					  unsigned int pkts, unsigned int bytes)
2802 {
2803 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2804 }
2805 
netdev_tx_reset_queue(struct netdev_queue * q)2806 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2807 {
2808 #ifdef CONFIG_BQL
2809 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2810 	dql_reset(&q->dql);
2811 #endif
2812 }
2813 
2814 /**
2815  * 	netdev_reset_queue - reset the packets and bytes count of a network device
2816  * 	@dev_queue: network device
2817  *
2818  * 	Reset the bytes and packet count of a network device and clear the
2819  * 	software flow control OFF bit for this network device
2820  */
netdev_reset_queue(struct net_device * dev_queue)2821 static inline void netdev_reset_queue(struct net_device *dev_queue)
2822 {
2823 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2824 }
2825 
2826 /**
2827  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
2828  * 	@dev: network device
2829  * 	@queue_index: given tx queue index
2830  *
2831  * 	Returns 0 if given tx queue index >= number of device tx queues,
2832  * 	otherwise returns the originally passed tx queue index.
2833  */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)2834 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2835 {
2836 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2837 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2838 				     dev->name, queue_index,
2839 				     dev->real_num_tx_queues);
2840 		return 0;
2841 	}
2842 
2843 	return queue_index;
2844 }
2845 
2846 /**
2847  *	netif_running - test if up
2848  *	@dev: network device
2849  *
2850  *	Test if the device has been brought up.
2851  */
netif_running(const struct net_device * dev)2852 static inline bool netif_running(const struct net_device *dev)
2853 {
2854 	return test_bit(__LINK_STATE_START, &dev->state);
2855 }
2856 
2857 /*
2858  * Routines to manage the subqueues on a device.  We only need start
2859  * stop, and a check if it's stopped.  All other device management is
2860  * done at the overall netdevice level.
2861  * Also test the device if we're multiqueue.
2862  */
2863 
2864 /**
2865  *	netif_start_subqueue - allow sending packets on subqueue
2866  *	@dev: network device
2867  *	@queue_index: sub queue index
2868  *
2869  * Start individual transmit queue of a device with multiple transmit queues.
2870  */
netif_start_subqueue(struct net_device * dev,u16 queue_index)2871 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2872 {
2873 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2874 
2875 	netif_tx_start_queue(txq);
2876 }
2877 
2878 /**
2879  *	netif_stop_subqueue - stop sending packets on subqueue
2880  *	@dev: network device
2881  *	@queue_index: sub queue index
2882  *
2883  * Stop individual transmit queue of a device with multiple transmit queues.
2884  */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)2885 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2886 {
2887 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2888 	netif_tx_stop_queue(txq);
2889 }
2890 
2891 /**
2892  *	netif_subqueue_stopped - test status of subqueue
2893  *	@dev: network device
2894  *	@queue_index: sub queue index
2895  *
2896  * Check individual transmit queue of a device with multiple transmit queues.
2897  */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)2898 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2899 					    u16 queue_index)
2900 {
2901 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2902 
2903 	return netif_tx_queue_stopped(txq);
2904 }
2905 
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)2906 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2907 					  struct sk_buff *skb)
2908 {
2909 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2910 }
2911 
2912 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2913 
2914 #ifdef CONFIG_XPS
2915 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2916 			u16 index);
2917 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2918 static inline int netif_set_xps_queue(struct net_device *dev,
2919 				      const struct cpumask *mask,
2920 				      u16 index)
2921 {
2922 	return 0;
2923 }
2924 #endif
2925 
2926 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2927 		  unsigned int num_tx_queues);
2928 
2929 /*
2930  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2931  * as a distribution range limit for the returned value.
2932  */
skb_tx_hash(const struct net_device * dev,struct sk_buff * skb)2933 static inline u16 skb_tx_hash(const struct net_device *dev,
2934 			      struct sk_buff *skb)
2935 {
2936 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2937 }
2938 
2939 /**
2940  *	netif_is_multiqueue - test if device has multiple transmit queues
2941  *	@dev: network device
2942  *
2943  * Check if device has multiple transmit queues
2944  */
netif_is_multiqueue(const struct net_device * dev)2945 static inline bool netif_is_multiqueue(const struct net_device *dev)
2946 {
2947 	return dev->num_tx_queues > 1;
2948 }
2949 
2950 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2951 
2952 #ifdef CONFIG_SYSFS
2953 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2954 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2955 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2956 						unsigned int rxq)
2957 {
2958 	return 0;
2959 }
2960 #endif
2961 
2962 #ifdef CONFIG_SYSFS
get_netdev_rx_queue_index(struct netdev_rx_queue * queue)2963 static inline unsigned int get_netdev_rx_queue_index(
2964 		struct netdev_rx_queue *queue)
2965 {
2966 	struct net_device *dev = queue->dev;
2967 	int index = queue - dev->_rx;
2968 
2969 	BUG_ON(index >= dev->num_rx_queues);
2970 	return index;
2971 }
2972 #endif
2973 
2974 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
2975 int netif_get_num_default_rss_queues(void);
2976 
2977 enum skb_free_reason {
2978 	SKB_REASON_CONSUMED,
2979 	SKB_REASON_DROPPED,
2980 };
2981 
2982 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2983 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2984 
2985 /*
2986  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2987  * interrupt context or with hardware interrupts being disabled.
2988  * (in_irq() || irqs_disabled())
2989  *
2990  * We provide four helpers that can be used in following contexts :
2991  *
2992  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2993  *  replacing kfree_skb(skb)
2994  *
2995  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2996  *  Typically used in place of consume_skb(skb) in TX completion path
2997  *
2998  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2999  *  replacing kfree_skb(skb)
3000  *
3001  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3002  *  and consumed a packet. Used in place of consume_skb(skb)
3003  */
dev_kfree_skb_irq(struct sk_buff * skb)3004 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3005 {
3006 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3007 }
3008 
dev_consume_skb_irq(struct sk_buff * skb)3009 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3010 {
3011 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3012 }
3013 
dev_kfree_skb_any(struct sk_buff * skb)3014 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3015 {
3016 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3017 }
3018 
dev_consume_skb_any(struct sk_buff * skb)3019 static inline void dev_consume_skb_any(struct sk_buff *skb)
3020 {
3021 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3022 }
3023 
3024 int netif_rx(struct sk_buff *skb);
3025 int netif_rx_ni(struct sk_buff *skb);
3026 int netif_receive_skb(struct sk_buff *skb);
3027 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3028 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3029 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3030 gro_result_t napi_gro_frags(struct napi_struct *napi);
3031 struct packet_offload *gro_find_receive_by_type(__be16 type);
3032 struct packet_offload *gro_find_complete_by_type(__be16 type);
3033 
napi_free_frags(struct napi_struct * napi)3034 static inline void napi_free_frags(struct napi_struct *napi)
3035 {
3036 	kfree_skb(napi->skb);
3037 	napi->skb = NULL;
3038 }
3039 
3040 int netdev_rx_handler_register(struct net_device *dev,
3041 			       rx_handler_func_t *rx_handler,
3042 			       void *rx_handler_data);
3043 void netdev_rx_handler_unregister(struct net_device *dev);
3044 
3045 bool dev_valid_name(const char *name);
3046 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3047 int dev_ethtool(struct net *net, struct ifreq *);
3048 unsigned int dev_get_flags(const struct net_device *);
3049 int __dev_change_flags(struct net_device *, unsigned int flags);
3050 int dev_change_flags(struct net_device *, unsigned int);
3051 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3052 			unsigned int gchanges);
3053 int dev_change_name(struct net_device *, const char *);
3054 int dev_set_alias(struct net_device *, const char *, size_t);
3055 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3056 int dev_set_mtu(struct net_device *, int);
3057 void dev_set_group(struct net_device *, int);
3058 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3059 int dev_change_carrier(struct net_device *, bool new_carrier);
3060 int dev_get_phys_port_id(struct net_device *dev,
3061 			 struct netdev_phys_item_id *ppid);
3062 int dev_get_phys_port_name(struct net_device *dev,
3063 			   char *name, size_t len);
3064 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3065 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3066 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3067 				    struct netdev_queue *txq, int *ret);
3068 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3069 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3070 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3071 
3072 extern int		netdev_budget;
3073 
3074 /* Called by rtnetlink.c:rtnl_unlock() */
3075 void netdev_run_todo(void);
3076 
3077 /**
3078  *	dev_put - release reference to device
3079  *	@dev: network device
3080  *
3081  * Release reference to device to allow it to be freed.
3082  */
dev_put(struct net_device * dev)3083 static inline void dev_put(struct net_device *dev)
3084 {
3085 	this_cpu_dec(*dev->pcpu_refcnt);
3086 }
3087 
3088 /**
3089  *	dev_hold - get reference to device
3090  *	@dev: network device
3091  *
3092  * Hold reference to device to keep it from being freed.
3093  */
dev_hold(struct net_device * dev)3094 static inline void dev_hold(struct net_device *dev)
3095 {
3096 	this_cpu_inc(*dev->pcpu_refcnt);
3097 }
3098 
3099 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3100  * and _off may be called from IRQ context, but it is caller
3101  * who is responsible for serialization of these calls.
3102  *
3103  * The name carrier is inappropriate, these functions should really be
3104  * called netif_lowerlayer_*() because they represent the state of any
3105  * kind of lower layer not just hardware media.
3106  */
3107 
3108 void linkwatch_init_dev(struct net_device *dev);
3109 void linkwatch_fire_event(struct net_device *dev);
3110 void linkwatch_forget_dev(struct net_device *dev);
3111 
3112 /**
3113  *	netif_carrier_ok - test if carrier present
3114  *	@dev: network device
3115  *
3116  * Check if carrier is present on device
3117  */
netif_carrier_ok(const struct net_device * dev)3118 static inline bool netif_carrier_ok(const struct net_device *dev)
3119 {
3120 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3121 }
3122 
3123 unsigned long dev_trans_start(struct net_device *dev);
3124 
3125 void __netdev_watchdog_up(struct net_device *dev);
3126 
3127 void netif_carrier_on(struct net_device *dev);
3128 
3129 void netif_carrier_off(struct net_device *dev);
3130 
3131 /**
3132  *	netif_dormant_on - mark device as dormant.
3133  *	@dev: network device
3134  *
3135  * Mark device as dormant (as per RFC2863).
3136  *
3137  * The dormant state indicates that the relevant interface is not
3138  * actually in a condition to pass packets (i.e., it is not 'up') but is
3139  * in a "pending" state, waiting for some external event.  For "on-
3140  * demand" interfaces, this new state identifies the situation where the
3141  * interface is waiting for events to place it in the up state.
3142  *
3143  */
netif_dormant_on(struct net_device * dev)3144 static inline void netif_dormant_on(struct net_device *dev)
3145 {
3146 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3147 		linkwatch_fire_event(dev);
3148 }
3149 
3150 /**
3151  *	netif_dormant_off - set device as not dormant.
3152  *	@dev: network device
3153  *
3154  * Device is not in dormant state.
3155  */
netif_dormant_off(struct net_device * dev)3156 static inline void netif_dormant_off(struct net_device *dev)
3157 {
3158 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3159 		linkwatch_fire_event(dev);
3160 }
3161 
3162 /**
3163  *	netif_dormant - test if carrier present
3164  *	@dev: network device
3165  *
3166  * Check if carrier is present on device
3167  */
netif_dormant(const struct net_device * dev)3168 static inline bool netif_dormant(const struct net_device *dev)
3169 {
3170 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3171 }
3172 
3173 
3174 /**
3175  *	netif_oper_up - test if device is operational
3176  *	@dev: network device
3177  *
3178  * Check if carrier is operational
3179  */
netif_oper_up(const struct net_device * dev)3180 static inline bool netif_oper_up(const struct net_device *dev)
3181 {
3182 	return (dev->operstate == IF_OPER_UP ||
3183 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3184 }
3185 
3186 /**
3187  *	netif_device_present - is device available or removed
3188  *	@dev: network device
3189  *
3190  * Check if device has not been removed from system.
3191  */
netif_device_present(struct net_device * dev)3192 static inline bool netif_device_present(struct net_device *dev)
3193 {
3194 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3195 }
3196 
3197 void netif_device_detach(struct net_device *dev);
3198 
3199 void netif_device_attach(struct net_device *dev);
3200 
3201 /*
3202  * Network interface message level settings
3203  */
3204 
3205 enum {
3206 	NETIF_MSG_DRV		= 0x0001,
3207 	NETIF_MSG_PROBE		= 0x0002,
3208 	NETIF_MSG_LINK		= 0x0004,
3209 	NETIF_MSG_TIMER		= 0x0008,
3210 	NETIF_MSG_IFDOWN	= 0x0010,
3211 	NETIF_MSG_IFUP		= 0x0020,
3212 	NETIF_MSG_RX_ERR	= 0x0040,
3213 	NETIF_MSG_TX_ERR	= 0x0080,
3214 	NETIF_MSG_TX_QUEUED	= 0x0100,
3215 	NETIF_MSG_INTR		= 0x0200,
3216 	NETIF_MSG_TX_DONE	= 0x0400,
3217 	NETIF_MSG_RX_STATUS	= 0x0800,
3218 	NETIF_MSG_PKTDATA	= 0x1000,
3219 	NETIF_MSG_HW		= 0x2000,
3220 	NETIF_MSG_WOL		= 0x4000,
3221 };
3222 
3223 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3224 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3225 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3226 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3227 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3228 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3229 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3230 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3231 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3232 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3233 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3234 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3235 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3236 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3237 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3238 
netif_msg_init(int debug_value,int default_msg_enable_bits)3239 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3240 {
3241 	/* use default */
3242 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3243 		return default_msg_enable_bits;
3244 	if (debug_value == 0)	/* no output */
3245 		return 0;
3246 	/* set low N bits */
3247 	return (1 << debug_value) - 1;
3248 }
3249 
__netif_tx_lock(struct netdev_queue * txq,int cpu)3250 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3251 {
3252 	spin_lock(&txq->_xmit_lock);
3253 	txq->xmit_lock_owner = cpu;
3254 }
3255 
__netif_tx_lock_bh(struct netdev_queue * txq)3256 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3257 {
3258 	spin_lock_bh(&txq->_xmit_lock);
3259 	txq->xmit_lock_owner = smp_processor_id();
3260 }
3261 
__netif_tx_trylock(struct netdev_queue * txq)3262 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3263 {
3264 	bool ok = spin_trylock(&txq->_xmit_lock);
3265 	if (likely(ok))
3266 		txq->xmit_lock_owner = smp_processor_id();
3267 	return ok;
3268 }
3269 
__netif_tx_unlock(struct netdev_queue * txq)3270 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3271 {
3272 	txq->xmit_lock_owner = -1;
3273 	spin_unlock(&txq->_xmit_lock);
3274 }
3275 
__netif_tx_unlock_bh(struct netdev_queue * txq)3276 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3277 {
3278 	txq->xmit_lock_owner = -1;
3279 	spin_unlock_bh(&txq->_xmit_lock);
3280 }
3281 
txq_trans_update(struct netdev_queue * txq)3282 static inline void txq_trans_update(struct netdev_queue *txq)
3283 {
3284 	if (txq->xmit_lock_owner != -1)
3285 		txq->trans_start = jiffies;
3286 }
3287 
3288 /**
3289  *	netif_tx_lock - grab network device transmit lock
3290  *	@dev: network device
3291  *
3292  * Get network device transmit lock
3293  */
netif_tx_lock(struct net_device * dev)3294 static inline void netif_tx_lock(struct net_device *dev)
3295 {
3296 	unsigned int i;
3297 	int cpu;
3298 
3299 	spin_lock(&dev->tx_global_lock);
3300 	cpu = smp_processor_id();
3301 	for (i = 0; i < dev->num_tx_queues; i++) {
3302 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3303 
3304 		/* We are the only thread of execution doing a
3305 		 * freeze, but we have to grab the _xmit_lock in
3306 		 * order to synchronize with threads which are in
3307 		 * the ->hard_start_xmit() handler and already
3308 		 * checked the frozen bit.
3309 		 */
3310 		__netif_tx_lock(txq, cpu);
3311 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3312 		__netif_tx_unlock(txq);
3313 	}
3314 }
3315 
netif_tx_lock_bh(struct net_device * dev)3316 static inline void netif_tx_lock_bh(struct net_device *dev)
3317 {
3318 	local_bh_disable();
3319 	netif_tx_lock(dev);
3320 }
3321 
netif_tx_unlock(struct net_device * dev)3322 static inline void netif_tx_unlock(struct net_device *dev)
3323 {
3324 	unsigned int i;
3325 
3326 	for (i = 0; i < dev->num_tx_queues; i++) {
3327 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3328 
3329 		/* No need to grab the _xmit_lock here.  If the
3330 		 * queue is not stopped for another reason, we
3331 		 * force a schedule.
3332 		 */
3333 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3334 		netif_schedule_queue(txq);
3335 	}
3336 	spin_unlock(&dev->tx_global_lock);
3337 }
3338 
netif_tx_unlock_bh(struct net_device * dev)3339 static inline void netif_tx_unlock_bh(struct net_device *dev)
3340 {
3341 	netif_tx_unlock(dev);
3342 	local_bh_enable();
3343 }
3344 
3345 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3346 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3347 		__netif_tx_lock(txq, cpu);		\
3348 	}						\
3349 }
3350 
3351 #define HARD_TX_TRYLOCK(dev, txq)			\
3352 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3353 		__netif_tx_trylock(txq) :		\
3354 		true )
3355 
3356 #define HARD_TX_UNLOCK(dev, txq) {			\
3357 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3358 		__netif_tx_unlock(txq);			\
3359 	}						\
3360 }
3361 
netif_tx_disable(struct net_device * dev)3362 static inline void netif_tx_disable(struct net_device *dev)
3363 {
3364 	unsigned int i;
3365 	int cpu;
3366 
3367 	local_bh_disable();
3368 	cpu = smp_processor_id();
3369 	for (i = 0; i < dev->num_tx_queues; i++) {
3370 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3371 
3372 		__netif_tx_lock(txq, cpu);
3373 		netif_tx_stop_queue(txq);
3374 		__netif_tx_unlock(txq);
3375 	}
3376 	local_bh_enable();
3377 }
3378 
netif_addr_lock(struct net_device * dev)3379 static inline void netif_addr_lock(struct net_device *dev)
3380 {
3381 	spin_lock(&dev->addr_list_lock);
3382 }
3383 
netif_addr_lock_nested(struct net_device * dev)3384 static inline void netif_addr_lock_nested(struct net_device *dev)
3385 {
3386 	int subclass = SINGLE_DEPTH_NESTING;
3387 
3388 	if (dev->netdev_ops->ndo_get_lock_subclass)
3389 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3390 
3391 	spin_lock_nested(&dev->addr_list_lock, subclass);
3392 }
3393 
netif_addr_lock_bh(struct net_device * dev)3394 static inline void netif_addr_lock_bh(struct net_device *dev)
3395 {
3396 	spin_lock_bh(&dev->addr_list_lock);
3397 }
3398 
netif_addr_unlock(struct net_device * dev)3399 static inline void netif_addr_unlock(struct net_device *dev)
3400 {
3401 	spin_unlock(&dev->addr_list_lock);
3402 }
3403 
netif_addr_unlock_bh(struct net_device * dev)3404 static inline void netif_addr_unlock_bh(struct net_device *dev)
3405 {
3406 	spin_unlock_bh(&dev->addr_list_lock);
3407 }
3408 
3409 /*
3410  * dev_addrs walker. Should be used only for read access. Call with
3411  * rcu_read_lock held.
3412  */
3413 #define for_each_dev_addr(dev, ha) \
3414 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3415 
3416 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3417 
3418 void ether_setup(struct net_device *dev);
3419 
3420 /* Support for loadable net-drivers */
3421 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3422 				    unsigned char name_assign_type,
3423 				    void (*setup)(struct net_device *),
3424 				    unsigned int txqs, unsigned int rxqs);
3425 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3426 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3427 
3428 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3429 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3430 			 count)
3431 
3432 int register_netdev(struct net_device *dev);
3433 void unregister_netdev(struct net_device *dev);
3434 
3435 /* General hardware address lists handling functions */
3436 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3437 		   struct netdev_hw_addr_list *from_list, int addr_len);
3438 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3439 		      struct netdev_hw_addr_list *from_list, int addr_len);
3440 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3441 		       struct net_device *dev,
3442 		       int (*sync)(struct net_device *, const unsigned char *),
3443 		       int (*unsync)(struct net_device *,
3444 				     const unsigned char *));
3445 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3446 			  struct net_device *dev,
3447 			  int (*unsync)(struct net_device *,
3448 					const unsigned char *));
3449 void __hw_addr_init(struct netdev_hw_addr_list *list);
3450 
3451 /* Functions used for device addresses handling */
3452 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3453 		 unsigned char addr_type);
3454 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3455 		 unsigned char addr_type);
3456 void dev_addr_flush(struct net_device *dev);
3457 int dev_addr_init(struct net_device *dev);
3458 
3459 /* Functions used for unicast addresses handling */
3460 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3461 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3462 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3463 int dev_uc_sync(struct net_device *to, struct net_device *from);
3464 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3465 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3466 void dev_uc_flush(struct net_device *dev);
3467 void dev_uc_init(struct net_device *dev);
3468 
3469 /**
3470  *  __dev_uc_sync - Synchonize device's unicast list
3471  *  @dev:  device to sync
3472  *  @sync: function to call if address should be added
3473  *  @unsync: function to call if address should be removed
3474  *
3475  *  Add newly added addresses to the interface, and release
3476  *  addresses that have been deleted.
3477  **/
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))3478 static inline int __dev_uc_sync(struct net_device *dev,
3479 				int (*sync)(struct net_device *,
3480 					    const unsigned char *),
3481 				int (*unsync)(struct net_device *,
3482 					      const unsigned char *))
3483 {
3484 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3485 }
3486 
3487 /**
3488  *  __dev_uc_unsync - Remove synchronized addresses from device
3489  *  @dev:  device to sync
3490  *  @unsync: function to call if address should be removed
3491  *
3492  *  Remove all addresses that were added to the device by dev_uc_sync().
3493  **/
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))3494 static inline void __dev_uc_unsync(struct net_device *dev,
3495 				   int (*unsync)(struct net_device *,
3496 						 const unsigned char *))
3497 {
3498 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
3499 }
3500 
3501 /* Functions used for multicast addresses handling */
3502 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3503 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3504 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3505 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3506 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3507 int dev_mc_sync(struct net_device *to, struct net_device *from);
3508 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3509 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3510 void dev_mc_flush(struct net_device *dev);
3511 void dev_mc_init(struct net_device *dev);
3512 
3513 /**
3514  *  __dev_mc_sync - Synchonize device's multicast list
3515  *  @dev:  device to sync
3516  *  @sync: function to call if address should be added
3517  *  @unsync: function to call if address should be removed
3518  *
3519  *  Add newly added addresses to the interface, and release
3520  *  addresses that have been deleted.
3521  **/
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))3522 static inline int __dev_mc_sync(struct net_device *dev,
3523 				int (*sync)(struct net_device *,
3524 					    const unsigned char *),
3525 				int (*unsync)(struct net_device *,
3526 					      const unsigned char *))
3527 {
3528 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3529 }
3530 
3531 /**
3532  *  __dev_mc_unsync - Remove synchronized addresses from device
3533  *  @dev:  device to sync
3534  *  @unsync: function to call if address should be removed
3535  *
3536  *  Remove all addresses that were added to the device by dev_mc_sync().
3537  **/
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))3538 static inline void __dev_mc_unsync(struct net_device *dev,
3539 				   int (*unsync)(struct net_device *,
3540 						 const unsigned char *))
3541 {
3542 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
3543 }
3544 
3545 /* Functions used for secondary unicast and multicast support */
3546 void dev_set_rx_mode(struct net_device *dev);
3547 void __dev_set_rx_mode(struct net_device *dev);
3548 int dev_set_promiscuity(struct net_device *dev, int inc);
3549 int dev_set_allmulti(struct net_device *dev, int inc);
3550 void netdev_state_change(struct net_device *dev);
3551 void netdev_notify_peers(struct net_device *dev);
3552 void netdev_features_change(struct net_device *dev);
3553 /* Load a device via the kmod */
3554 void dev_load(struct net *net, const char *name);
3555 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3556 					struct rtnl_link_stats64 *storage);
3557 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3558 			     const struct net_device_stats *netdev_stats);
3559 
3560 extern int		netdev_max_backlog;
3561 extern int		netdev_tstamp_prequeue;
3562 extern int		weight_p;
3563 extern int		bpf_jit_enable;
3564 
3565 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3566 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3567 						     struct list_head **iter);
3568 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3569 						     struct list_head **iter);
3570 
3571 /* iterate through upper list, must be called under RCU read lock */
3572 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3573 	for (iter = &(dev)->adj_list.upper, \
3574 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3575 	     updev; \
3576 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3577 
3578 /* iterate through upper list, must be called under RCU read lock */
3579 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3580 	for (iter = &(dev)->all_adj_list.upper, \
3581 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3582 	     updev; \
3583 	     updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3584 
3585 void *netdev_lower_get_next_private(struct net_device *dev,
3586 				    struct list_head **iter);
3587 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3588 					struct list_head **iter);
3589 
3590 #define netdev_for_each_lower_private(dev, priv, iter) \
3591 	for (iter = (dev)->adj_list.lower.next, \
3592 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
3593 	     priv; \
3594 	     priv = netdev_lower_get_next_private(dev, &(iter)))
3595 
3596 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3597 	for (iter = &(dev)->adj_list.lower, \
3598 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3599 	     priv; \
3600 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3601 
3602 void *netdev_lower_get_next(struct net_device *dev,
3603 				struct list_head **iter);
3604 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3605 	for (iter = &(dev)->adj_list.lower, \
3606 	     ldev = netdev_lower_get_next(dev, &(iter)); \
3607 	     ldev; \
3608 	     ldev = netdev_lower_get_next(dev, &(iter)))
3609 
3610 void *netdev_adjacent_get_private(struct list_head *adj_list);
3611 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3612 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3613 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3614 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3615 int netdev_master_upper_dev_link(struct net_device *dev,
3616 				 struct net_device *upper_dev);
3617 int netdev_master_upper_dev_link_private(struct net_device *dev,
3618 					 struct net_device *upper_dev,
3619 					 void *private);
3620 void netdev_upper_dev_unlink(struct net_device *dev,
3621 			     struct net_device *upper_dev);
3622 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3623 void *netdev_lower_dev_get_private(struct net_device *dev,
3624 				   struct net_device *lower_dev);
3625 
3626 /* RSS keys are 40 or 52 bytes long */
3627 #define NETDEV_RSS_KEY_LEN 52
3628 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3629 void netdev_rss_key_fill(void *buffer, size_t len);
3630 
3631 int dev_get_nest_level(struct net_device *dev,
3632 		       bool (*type_check)(struct net_device *dev));
3633 int skb_checksum_help(struct sk_buff *skb);
3634 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3635 				  netdev_features_t features, bool tx_path);
3636 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3637 				    netdev_features_t features);
3638 
3639 struct netdev_bonding_info {
3640 	ifslave	slave;
3641 	ifbond	master;
3642 };
3643 
3644 struct netdev_notifier_bonding_info {
3645 	struct netdev_notifier_info info; /* must be first */
3646 	struct netdev_bonding_info  bonding_info;
3647 };
3648 
3649 void netdev_bonding_info_change(struct net_device *dev,
3650 				struct netdev_bonding_info *bonding_info);
3651 
3652 static inline
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)3653 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3654 {
3655 	return __skb_gso_segment(skb, features, true);
3656 }
3657 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3658 
can_checksum_protocol(netdev_features_t features,__be16 protocol)3659 static inline bool can_checksum_protocol(netdev_features_t features,
3660 					 __be16 protocol)
3661 {
3662 	return ((features & NETIF_F_GEN_CSUM) ||
3663 		((features & NETIF_F_V4_CSUM) &&
3664 		 protocol == htons(ETH_P_IP)) ||
3665 		((features & NETIF_F_V6_CSUM) &&
3666 		 protocol == htons(ETH_P_IPV6)) ||
3667 		((features & NETIF_F_FCOE_CRC) &&
3668 		 protocol == htons(ETH_P_FCOE)));
3669 }
3670 
3671 #ifdef CONFIG_BUG
3672 void netdev_rx_csum_fault(struct net_device *dev);
3673 #else
netdev_rx_csum_fault(struct net_device * dev)3674 static inline void netdev_rx_csum_fault(struct net_device *dev)
3675 {
3676 }
3677 #endif
3678 /* rx skb timestamps */
3679 void net_enable_timestamp(void);
3680 void net_disable_timestamp(void);
3681 
3682 #ifdef CONFIG_PROC_FS
3683 int __init dev_proc_init(void);
3684 #else
3685 #define dev_proc_init() 0
3686 #endif
3687 
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)3688 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3689 					      struct sk_buff *skb, struct net_device *dev,
3690 					      bool more)
3691 {
3692 	skb->xmit_more = more ? 1 : 0;
3693 	return ops->ndo_start_xmit(skb, dev);
3694 }
3695 
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3696 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3697 					    struct netdev_queue *txq, bool more)
3698 {
3699 	const struct net_device_ops *ops = dev->netdev_ops;
3700 	int rc;
3701 
3702 	rc = __netdev_start_xmit(ops, skb, dev, more);
3703 	if (rc == NETDEV_TX_OK)
3704 		txq_trans_update(txq);
3705 
3706 	return rc;
3707 }
3708 
3709 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3710 				const void *ns);
3711 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3712 				 const void *ns);
3713 
netdev_class_create_file(struct class_attribute * class_attr)3714 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3715 {
3716 	return netdev_class_create_file_ns(class_attr, NULL);
3717 }
3718 
netdev_class_remove_file(struct class_attribute * class_attr)3719 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3720 {
3721 	netdev_class_remove_file_ns(class_attr, NULL);
3722 }
3723 
3724 extern struct kobj_ns_type_operations net_ns_type_operations;
3725 
3726 const char *netdev_drivername(const struct net_device *dev);
3727 
3728 void linkwatch_run_queue(void);
3729 
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)3730 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3731 							  netdev_features_t f2)
3732 {
3733 	if (f1 & NETIF_F_GEN_CSUM)
3734 		f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3735 	if (f2 & NETIF_F_GEN_CSUM)
3736 		f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3737 	f1 &= f2;
3738 	if (f1 & NETIF_F_GEN_CSUM)
3739 		f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3740 
3741 	return f1;
3742 }
3743 
netdev_get_wanted_features(struct net_device * dev)3744 static inline netdev_features_t netdev_get_wanted_features(
3745 	struct net_device *dev)
3746 {
3747 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
3748 }
3749 netdev_features_t netdev_increment_features(netdev_features_t all,
3750 	netdev_features_t one, netdev_features_t mask);
3751 
3752 /* Allow TSO being used on stacked device :
3753  * Performing the GSO segmentation before last device
3754  * is a performance improvement.
3755  */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)3756 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3757 							netdev_features_t mask)
3758 {
3759 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3760 }
3761 
3762 int __netdev_update_features(struct net_device *dev);
3763 void netdev_update_features(struct net_device *dev);
3764 void netdev_change_features(struct net_device *dev);
3765 
3766 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3767 					struct net_device *dev);
3768 
3769 netdev_features_t passthru_features_check(struct sk_buff *skb,
3770 					  struct net_device *dev,
3771 					  netdev_features_t features);
3772 netdev_features_t netif_skb_features(struct sk_buff *skb);
3773 
net_gso_ok(netdev_features_t features,int gso_type)3774 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3775 {
3776 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3777 
3778 	/* check flags correspondence */
3779 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3780 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3781 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3782 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3783 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3784 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3785 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3786 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3787 	BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3788 	BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3789 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3790 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3791 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3792 
3793 	return (features & feature) == feature;
3794 }
3795 
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)3796 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3797 {
3798 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3799 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3800 }
3801 
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)3802 static inline bool netif_needs_gso(struct sk_buff *skb,
3803 				   netdev_features_t features)
3804 {
3805 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3806 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3807 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3808 }
3809 
netif_set_gso_max_size(struct net_device * dev,unsigned int size)3810 static inline void netif_set_gso_max_size(struct net_device *dev,
3811 					  unsigned int size)
3812 {
3813 	dev->gso_max_size = size;
3814 }
3815 
skb_gso_error_unwind(struct sk_buff * skb,__be16 protocol,int pulled_hlen,u16 mac_offset,int mac_len)3816 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3817 					int pulled_hlen, u16 mac_offset,
3818 					int mac_len)
3819 {
3820 	skb->protocol = protocol;
3821 	skb->encapsulation = 1;
3822 	skb_push(skb, pulled_hlen);
3823 	skb_reset_transport_header(skb);
3824 	skb->mac_header = mac_offset;
3825 	skb->network_header = skb->mac_header + mac_len;
3826 	skb->mac_len = mac_len;
3827 }
3828 
netif_is_macvlan(struct net_device * dev)3829 static inline bool netif_is_macvlan(struct net_device *dev)
3830 {
3831 	return dev->priv_flags & IFF_MACVLAN;
3832 }
3833 
netif_is_macvlan_port(struct net_device * dev)3834 static inline bool netif_is_macvlan_port(struct net_device *dev)
3835 {
3836 	return dev->priv_flags & IFF_MACVLAN_PORT;
3837 }
3838 
netif_is_ipvlan(struct net_device * dev)3839 static inline bool netif_is_ipvlan(struct net_device *dev)
3840 {
3841 	return dev->priv_flags & IFF_IPVLAN_SLAVE;
3842 }
3843 
netif_is_ipvlan_port(struct net_device * dev)3844 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3845 {
3846 	return dev->priv_flags & IFF_IPVLAN_MASTER;
3847 }
3848 
netif_is_bond_master(struct net_device * dev)3849 static inline bool netif_is_bond_master(struct net_device *dev)
3850 {
3851 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3852 }
3853 
netif_is_bond_slave(struct net_device * dev)3854 static inline bool netif_is_bond_slave(struct net_device *dev)
3855 {
3856 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3857 }
3858 
netif_supports_nofcs(struct net_device * dev)3859 static inline bool netif_supports_nofcs(struct net_device *dev)
3860 {
3861 	return dev->priv_flags & IFF_SUPP_NOFCS;
3862 }
3863 
netif_is_l3_master(const struct net_device * dev)3864 static inline bool netif_is_l3_master(const struct net_device *dev)
3865 {
3866 	return dev->priv_flags & IFF_L3MDEV_MASTER;
3867 }
3868 
netif_is_l3_slave(const struct net_device * dev)3869 static inline bool netif_is_l3_slave(const struct net_device *dev)
3870 {
3871 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
3872 }
3873 
netif_is_bridge_master(const struct net_device * dev)3874 static inline bool netif_is_bridge_master(const struct net_device *dev)
3875 {
3876 	return dev->priv_flags & IFF_EBRIDGE;
3877 }
3878 
netif_is_bridge_port(const struct net_device * dev)3879 static inline bool netif_is_bridge_port(const struct net_device *dev)
3880 {
3881 	return dev->priv_flags & IFF_BRIDGE_PORT;
3882 }
3883 
netif_is_ovs_master(const struct net_device * dev)3884 static inline bool netif_is_ovs_master(const struct net_device *dev)
3885 {
3886 	return dev->priv_flags & IFF_OPENVSWITCH;
3887 }
3888 
3889 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)3890 static inline void netif_keep_dst(struct net_device *dev)
3891 {
3892 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3893 }
3894 
3895 extern struct pernet_operations __net_initdata loopback_net_ops;
3896 
3897 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3898 
3899 /* netdev_printk helpers, similar to dev_printk */
3900 
netdev_name(const struct net_device * dev)3901 static inline const char *netdev_name(const struct net_device *dev)
3902 {
3903 	if (!dev->name[0] || strchr(dev->name, '%'))
3904 		return "(unnamed net_device)";
3905 	return dev->name;
3906 }
3907 
netdev_reg_state(const struct net_device * dev)3908 static inline const char *netdev_reg_state(const struct net_device *dev)
3909 {
3910 	switch (dev->reg_state) {
3911 	case NETREG_UNINITIALIZED: return " (uninitialized)";
3912 	case NETREG_REGISTERED: return "";
3913 	case NETREG_UNREGISTERING: return " (unregistering)";
3914 	case NETREG_UNREGISTERED: return " (unregistered)";
3915 	case NETREG_RELEASED: return " (released)";
3916 	case NETREG_DUMMY: return " (dummy)";
3917 	}
3918 
3919 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3920 	return " (unknown)";
3921 }
3922 
3923 __printf(3, 4)
3924 void netdev_printk(const char *level, const struct net_device *dev,
3925 		   const char *format, ...);
3926 __printf(2, 3)
3927 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3928 __printf(2, 3)
3929 void netdev_alert(const struct net_device *dev, const char *format, ...);
3930 __printf(2, 3)
3931 void netdev_crit(const struct net_device *dev, const char *format, ...);
3932 __printf(2, 3)
3933 void netdev_err(const struct net_device *dev, const char *format, ...);
3934 __printf(2, 3)
3935 void netdev_warn(const struct net_device *dev, const char *format, ...);
3936 __printf(2, 3)
3937 void netdev_notice(const struct net_device *dev, const char *format, ...);
3938 __printf(2, 3)
3939 void netdev_info(const struct net_device *dev, const char *format, ...);
3940 
3941 #define MODULE_ALIAS_NETDEV(device) \
3942 	MODULE_ALIAS("netdev-" device)
3943 
3944 #if defined(CONFIG_DYNAMIC_DEBUG)
3945 #define netdev_dbg(__dev, format, args...)			\
3946 do {								\
3947 	dynamic_netdev_dbg(__dev, format, ##args);		\
3948 } while (0)
3949 #elif defined(DEBUG)
3950 #define netdev_dbg(__dev, format, args...)			\
3951 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
3952 #else
3953 #define netdev_dbg(__dev, format, args...)			\
3954 ({								\
3955 	if (0)							\
3956 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3957 })
3958 #endif
3959 
3960 #if defined(VERBOSE_DEBUG)
3961 #define netdev_vdbg	netdev_dbg
3962 #else
3963 
3964 #define netdev_vdbg(dev, format, args...)			\
3965 ({								\
3966 	if (0)							\
3967 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
3968 	0;							\
3969 })
3970 #endif
3971 
3972 /*
3973  * netdev_WARN() acts like dev_printk(), but with the key difference
3974  * of using a WARN/WARN_ON to get the message out, including the
3975  * file/line information and a backtrace.
3976  */
3977 #define netdev_WARN(dev, format, args...)			\
3978 	WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),	\
3979 	     netdev_reg_state(dev), ##args)
3980 
3981 /* netif printk helpers, similar to netdev_printk */
3982 
3983 #define netif_printk(priv, type, level, dev, fmt, args...)	\
3984 do {					  			\
3985 	if (netif_msg_##type(priv))				\
3986 		netdev_printk(level, (dev), fmt, ##args);	\
3987 } while (0)
3988 
3989 #define netif_level(level, priv, type, dev, fmt, args...)	\
3990 do {								\
3991 	if (netif_msg_##type(priv))				\
3992 		netdev_##level(dev, fmt, ##args);		\
3993 } while (0)
3994 
3995 #define netif_emerg(priv, type, dev, fmt, args...)		\
3996 	netif_level(emerg, priv, type, dev, fmt, ##args)
3997 #define netif_alert(priv, type, dev, fmt, args...)		\
3998 	netif_level(alert, priv, type, dev, fmt, ##args)
3999 #define netif_crit(priv, type, dev, fmt, args...)		\
4000 	netif_level(crit, priv, type, dev, fmt, ##args)
4001 #define netif_err(priv, type, dev, fmt, args...)		\
4002 	netif_level(err, priv, type, dev, fmt, ##args)
4003 #define netif_warn(priv, type, dev, fmt, args...)		\
4004 	netif_level(warn, priv, type, dev, fmt, ##args)
4005 #define netif_notice(priv, type, dev, fmt, args...)		\
4006 	netif_level(notice, priv, type, dev, fmt, ##args)
4007 #define netif_info(priv, type, dev, fmt, args...)		\
4008 	netif_level(info, priv, type, dev, fmt, ##args)
4009 
4010 #if defined(CONFIG_DYNAMIC_DEBUG)
4011 #define netif_dbg(priv, type, netdev, format, args...)		\
4012 do {								\
4013 	if (netif_msg_##type(priv))				\
4014 		dynamic_netdev_dbg(netdev, format, ##args);	\
4015 } while (0)
4016 #elif defined(DEBUG)
4017 #define netif_dbg(priv, type, dev, format, args...)		\
4018 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4019 #else
4020 #define netif_dbg(priv, type, dev, format, args...)			\
4021 ({									\
4022 	if (0)								\
4023 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4024 	0;								\
4025 })
4026 #endif
4027 
4028 #if defined(VERBOSE_DEBUG)
4029 #define netif_vdbg	netif_dbg
4030 #else
4031 #define netif_vdbg(priv, type, dev, format, args...)		\
4032 ({								\
4033 	if (0)							\
4034 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4035 	0;							\
4036 })
4037 #endif
4038 
4039 /*
4040  *	The list of packet types we will receive (as opposed to discard)
4041  *	and the routines to invoke.
4042  *
4043  *	Why 16. Because with 16 the only overlap we get on a hash of the
4044  *	low nibble of the protocol value is RARP/SNAP/X.25.
4045  *
4046  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4047  *             sure which should go first, but I bet it won't make much
4048  *             difference if we are running VLANs.  The good news is that
4049  *             this protocol won't be in the list unless compiled in, so
4050  *             the average user (w/out VLANs) will not be adversely affected.
4051  *             --BLG
4052  *
4053  *		0800	IP
4054  *		8100    802.1Q VLAN
4055  *		0001	802.3
4056  *		0002	AX.25
4057  *		0004	802.2
4058  *		8035	RARP
4059  *		0005	SNAP
4060  *		0805	X.25
4061  *		0806	ARP
4062  *		8137	IPX
4063  *		0009	Localtalk
4064  *		86DD	IPv6
4065  */
4066 #define PTYPE_HASH_SIZE	(16)
4067 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4068 
4069 #endif	/* _LINUX_NETDEVICE_H */
4070