1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/init.h>
6 #include <linux/module.h>
7 #include <linux/timer.h>
8 #include <linux/acpi_pmtmr.h>
9 #include <linux/cpufreq.h>
10 #include <linux/delay.h>
11 #include <linux/clocksource.h>
12 #include <linux/percpu.h>
13 #include <linux/timex.h>
14 #include <linux/static_key.h>
15 
16 #include <asm/hpet.h>
17 #include <asm/timer.h>
18 #include <asm/vgtod.h>
19 #include <asm/time.h>
20 #include <asm/delay.h>
21 #include <asm/hypervisor.h>
22 #include <asm/nmi.h>
23 #include <asm/x86_init.h>
24 #include <asm/geode.h>
25 
26 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
27 EXPORT_SYMBOL(cpu_khz);
28 
29 unsigned int __read_mostly tsc_khz;
30 EXPORT_SYMBOL(tsc_khz);
31 
32 /*
33  * TSC can be unstable due to cpufreq or due to unsynced TSCs
34  */
35 static int __read_mostly tsc_unstable;
36 
37 /* native_sched_clock() is called before tsc_init(), so
38    we must start with the TSC soft disabled to prevent
39    erroneous rdtsc usage on !cpu_has_tsc processors */
40 static int __read_mostly tsc_disabled = -1;
41 
42 static struct static_key __use_tsc = STATIC_KEY_INIT;
43 
44 int tsc_clocksource_reliable;
45 
46 /*
47  * Use a ring-buffer like data structure, where a writer advances the head by
48  * writing a new data entry and a reader advances the tail when it observes a
49  * new entry.
50  *
51  * Writers are made to wait on readers until there's space to write a new
52  * entry.
53  *
54  * This means that we can always use an {offset, mul} pair to compute a ns
55  * value that is 'roughly' in the right direction, even if we're writing a new
56  * {offset, mul} pair during the clock read.
57  *
58  * The down-side is that we can no longer guarantee strict monotonicity anymore
59  * (assuming the TSC was that to begin with), because while we compute the
60  * intersection point of the two clock slopes and make sure the time is
61  * continuous at the point of switching; we can no longer guarantee a reader is
62  * strictly before or after the switch point.
63  *
64  * It does mean a reader no longer needs to disable IRQs in order to avoid
65  * CPU-Freq updates messing with his times, and similarly an NMI reader will
66  * no longer run the risk of hitting half-written state.
67  */
68 
69 struct cyc2ns {
70 	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
71 	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
72 	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
73 }; /* exactly fits one cacheline */
74 
75 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
76 
cyc2ns_read_begin(void)77 struct cyc2ns_data *cyc2ns_read_begin(void)
78 {
79 	struct cyc2ns_data *head;
80 
81 	preempt_disable();
82 
83 	head = this_cpu_read(cyc2ns.head);
84 	/*
85 	 * Ensure we observe the entry when we observe the pointer to it.
86 	 * matches the wmb from cyc2ns_write_end().
87 	 */
88 	smp_read_barrier_depends();
89 	head->__count++;
90 	barrier();
91 
92 	return head;
93 }
94 
cyc2ns_read_end(struct cyc2ns_data * head)95 void cyc2ns_read_end(struct cyc2ns_data *head)
96 {
97 	barrier();
98 	/*
99 	 * If we're the outer most nested read; update the tail pointer
100 	 * when we're done. This notifies possible pending writers
101 	 * that we've observed the head pointer and that the other
102 	 * entry is now free.
103 	 */
104 	if (!--head->__count) {
105 		/*
106 		 * x86-TSO does not reorder writes with older reads;
107 		 * therefore once this write becomes visible to another
108 		 * cpu, we must be finished reading the cyc2ns_data.
109 		 *
110 		 * matches with cyc2ns_write_begin().
111 		 */
112 		this_cpu_write(cyc2ns.tail, head);
113 	}
114 	preempt_enable();
115 }
116 
117 /*
118  * Begin writing a new @data entry for @cpu.
119  *
120  * Assumes some sort of write side lock; currently 'provided' by the assumption
121  * that cpufreq will call its notifiers sequentially.
122  */
cyc2ns_write_begin(int cpu)123 static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
124 {
125 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
126 	struct cyc2ns_data *data = c2n->data;
127 
128 	if (data == c2n->head)
129 		data++;
130 
131 	/* XXX send an IPI to @cpu in order to guarantee a read? */
132 
133 	/*
134 	 * When we observe the tail write from cyc2ns_read_end(),
135 	 * the cpu must be done with that entry and its safe
136 	 * to start writing to it.
137 	 */
138 	while (c2n->tail == data)
139 		cpu_relax();
140 
141 	return data;
142 }
143 
cyc2ns_write_end(int cpu,struct cyc2ns_data * data)144 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
145 {
146 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
147 
148 	/*
149 	 * Ensure the @data writes are visible before we publish the
150 	 * entry. Matches the data-depencency in cyc2ns_read_begin().
151 	 */
152 	smp_wmb();
153 
154 	ACCESS_ONCE(c2n->head) = data;
155 }
156 
157 /*
158  * Accelerators for sched_clock()
159  * convert from cycles(64bits) => nanoseconds (64bits)
160  *  basic equation:
161  *              ns = cycles / (freq / ns_per_sec)
162  *              ns = cycles * (ns_per_sec / freq)
163  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
164  *              ns = cycles * (10^6 / cpu_khz)
165  *
166  *      Then we use scaling math (suggested by george@mvista.com) to get:
167  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
168  *              ns = cycles * cyc2ns_scale / SC
169  *
170  *      And since SC is a constant power of two, we can convert the div
171  *  into a shift.
172  *
173  *  We can use khz divisor instead of mhz to keep a better precision, since
174  *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
175  *  (mathieu.desnoyers@polymtl.ca)
176  *
177  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
178  */
179 
180 #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
181 
cyc2ns_data_init(struct cyc2ns_data * data)182 static void cyc2ns_data_init(struct cyc2ns_data *data)
183 {
184 	data->cyc2ns_mul = 0;
185 	data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
186 	data->cyc2ns_offset = 0;
187 	data->__count = 0;
188 }
189 
cyc2ns_init(int cpu)190 static void cyc2ns_init(int cpu)
191 {
192 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
193 
194 	cyc2ns_data_init(&c2n->data[0]);
195 	cyc2ns_data_init(&c2n->data[1]);
196 
197 	c2n->head = c2n->data;
198 	c2n->tail = c2n->data;
199 }
200 
cycles_2_ns(unsigned long long cyc)201 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
202 {
203 	struct cyc2ns_data *data, *tail;
204 	unsigned long long ns;
205 
206 	/*
207 	 * See cyc2ns_read_*() for details; replicated in order to avoid
208 	 * an extra few instructions that came with the abstraction.
209 	 * Notable, it allows us to only do the __count and tail update
210 	 * dance when its actually needed.
211 	 */
212 
213 	preempt_disable_notrace();
214 	data = this_cpu_read(cyc2ns.head);
215 	tail = this_cpu_read(cyc2ns.tail);
216 
217 	if (likely(data == tail)) {
218 		ns = data->cyc2ns_offset;
219 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
220 	} else {
221 		data->__count++;
222 
223 		barrier();
224 
225 		ns = data->cyc2ns_offset;
226 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
227 
228 		barrier();
229 
230 		if (!--data->__count)
231 			this_cpu_write(cyc2ns.tail, data);
232 	}
233 	preempt_enable_notrace();
234 
235 	return ns;
236 }
237 
set_cyc2ns_scale(unsigned long cpu_khz,int cpu)238 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
239 {
240 	unsigned long long tsc_now, ns_now;
241 	struct cyc2ns_data *data;
242 	unsigned long flags;
243 
244 	local_irq_save(flags);
245 	sched_clock_idle_sleep_event();
246 
247 	if (!cpu_khz)
248 		goto done;
249 
250 	data = cyc2ns_write_begin(cpu);
251 
252 	rdtscll(tsc_now);
253 	ns_now = cycles_2_ns(tsc_now);
254 
255 	/*
256 	 * Compute a new multiplier as per the above comment and ensure our
257 	 * time function is continuous; see the comment near struct
258 	 * cyc2ns_data.
259 	 */
260 	data->cyc2ns_mul =
261 		DIV_ROUND_CLOSEST(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR,
262 				  cpu_khz);
263 	data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
264 	data->cyc2ns_offset = ns_now -
265 		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
266 
267 	cyc2ns_write_end(cpu, data);
268 
269 done:
270 	sched_clock_idle_wakeup_event(0);
271 	local_irq_restore(flags);
272 }
273 /*
274  * Scheduler clock - returns current time in nanosec units.
275  */
native_sched_clock(void)276 u64 native_sched_clock(void)
277 {
278 	u64 tsc_now;
279 
280 	/*
281 	 * Fall back to jiffies if there's no TSC available:
282 	 * ( But note that we still use it if the TSC is marked
283 	 *   unstable. We do this because unlike Time Of Day,
284 	 *   the scheduler clock tolerates small errors and it's
285 	 *   very important for it to be as fast as the platform
286 	 *   can achieve it. )
287 	 */
288 	if (!static_key_false(&__use_tsc)) {
289 		/* No locking but a rare wrong value is not a big deal: */
290 		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
291 	}
292 
293 	/* read the Time Stamp Counter: */
294 	rdtscll(tsc_now);
295 
296 	/* return the value in ns */
297 	return cycles_2_ns(tsc_now);
298 }
299 
300 /* We need to define a real function for sched_clock, to override the
301    weak default version */
302 #ifdef CONFIG_PARAVIRT
sched_clock(void)303 unsigned long long sched_clock(void)
304 {
305 	return paravirt_sched_clock();
306 }
307 #else
308 unsigned long long
309 sched_clock(void) __attribute__((alias("native_sched_clock")));
310 #endif
311 
native_read_tsc(void)312 unsigned long long native_read_tsc(void)
313 {
314 	return __native_read_tsc();
315 }
316 EXPORT_SYMBOL(native_read_tsc);
317 
check_tsc_unstable(void)318 int check_tsc_unstable(void)
319 {
320 	return tsc_unstable;
321 }
322 EXPORT_SYMBOL_GPL(check_tsc_unstable);
323 
check_tsc_disabled(void)324 int check_tsc_disabled(void)
325 {
326 	return tsc_disabled;
327 }
328 EXPORT_SYMBOL_GPL(check_tsc_disabled);
329 
330 #ifdef CONFIG_X86_TSC
notsc_setup(char * str)331 int __init notsc_setup(char *str)
332 {
333 	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
334 	tsc_disabled = 1;
335 	return 1;
336 }
337 #else
338 /*
339  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
340  * in cpu/common.c
341  */
notsc_setup(char * str)342 int __init notsc_setup(char *str)
343 {
344 	setup_clear_cpu_cap(X86_FEATURE_TSC);
345 	return 1;
346 }
347 #endif
348 
349 __setup("notsc", notsc_setup);
350 
351 static int no_sched_irq_time;
352 
tsc_setup(char * str)353 static int __init tsc_setup(char *str)
354 {
355 	if (!strcmp(str, "reliable"))
356 		tsc_clocksource_reliable = 1;
357 	if (!strncmp(str, "noirqtime", 9))
358 		no_sched_irq_time = 1;
359 	return 1;
360 }
361 
362 __setup("tsc=", tsc_setup);
363 
364 #define MAX_RETRIES     5
365 #define SMI_TRESHOLD    50000
366 
367 /*
368  * Read TSC and the reference counters. Take care of SMI disturbance
369  */
tsc_read_refs(u64 * p,int hpet)370 static u64 tsc_read_refs(u64 *p, int hpet)
371 {
372 	u64 t1, t2;
373 	int i;
374 
375 	for (i = 0; i < MAX_RETRIES; i++) {
376 		t1 = get_cycles();
377 		if (hpet)
378 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
379 		else
380 			*p = acpi_pm_read_early();
381 		t2 = get_cycles();
382 		if ((t2 - t1) < SMI_TRESHOLD)
383 			return t2;
384 	}
385 	return ULLONG_MAX;
386 }
387 
388 /*
389  * Calculate the TSC frequency from HPET reference
390  */
calc_hpet_ref(u64 deltatsc,u64 hpet1,u64 hpet2)391 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
392 {
393 	u64 tmp;
394 
395 	if (hpet2 < hpet1)
396 		hpet2 += 0x100000000ULL;
397 	hpet2 -= hpet1;
398 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
399 	do_div(tmp, 1000000);
400 	do_div(deltatsc, tmp);
401 
402 	return (unsigned long) deltatsc;
403 }
404 
405 /*
406  * Calculate the TSC frequency from PMTimer reference
407  */
calc_pmtimer_ref(u64 deltatsc,u64 pm1,u64 pm2)408 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
409 {
410 	u64 tmp;
411 
412 	if (!pm1 && !pm2)
413 		return ULONG_MAX;
414 
415 	if (pm2 < pm1)
416 		pm2 += (u64)ACPI_PM_OVRRUN;
417 	pm2 -= pm1;
418 	tmp = pm2 * 1000000000LL;
419 	do_div(tmp, PMTMR_TICKS_PER_SEC);
420 	do_div(deltatsc, tmp);
421 
422 	return (unsigned long) deltatsc;
423 }
424 
425 #define CAL_MS		10
426 #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
427 #define CAL_PIT_LOOPS	1000
428 
429 #define CAL2_MS		50
430 #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
431 #define CAL2_PIT_LOOPS	5000
432 
433 
434 /*
435  * Try to calibrate the TSC against the Programmable
436  * Interrupt Timer and return the frequency of the TSC
437  * in kHz.
438  *
439  * Return ULONG_MAX on failure to calibrate.
440  */
pit_calibrate_tsc(u32 latch,unsigned long ms,int loopmin)441 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
442 {
443 	u64 tsc, t1, t2, delta;
444 	unsigned long tscmin, tscmax;
445 	int pitcnt;
446 
447 	/* Set the Gate high, disable speaker */
448 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
449 
450 	/*
451 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
452 	 * count mode), binary count. Set the latch register to 50ms
453 	 * (LSB then MSB) to begin countdown.
454 	 */
455 	outb(0xb0, 0x43);
456 	outb(latch & 0xff, 0x42);
457 	outb(latch >> 8, 0x42);
458 
459 	tsc = t1 = t2 = get_cycles();
460 
461 	pitcnt = 0;
462 	tscmax = 0;
463 	tscmin = ULONG_MAX;
464 	while ((inb(0x61) & 0x20) == 0) {
465 		t2 = get_cycles();
466 		delta = t2 - tsc;
467 		tsc = t2;
468 		if ((unsigned long) delta < tscmin)
469 			tscmin = (unsigned int) delta;
470 		if ((unsigned long) delta > tscmax)
471 			tscmax = (unsigned int) delta;
472 		pitcnt++;
473 	}
474 
475 	/*
476 	 * Sanity checks:
477 	 *
478 	 * If we were not able to read the PIT more than loopmin
479 	 * times, then we have been hit by a massive SMI
480 	 *
481 	 * If the maximum is 10 times larger than the minimum,
482 	 * then we got hit by an SMI as well.
483 	 */
484 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
485 		return ULONG_MAX;
486 
487 	/* Calculate the PIT value */
488 	delta = t2 - t1;
489 	do_div(delta, ms);
490 	return delta;
491 }
492 
493 /*
494  * This reads the current MSB of the PIT counter, and
495  * checks if we are running on sufficiently fast and
496  * non-virtualized hardware.
497  *
498  * Our expectations are:
499  *
500  *  - the PIT is running at roughly 1.19MHz
501  *
502  *  - each IO is going to take about 1us on real hardware,
503  *    but we allow it to be much faster (by a factor of 10) or
504  *    _slightly_ slower (ie we allow up to a 2us read+counter
505  *    update - anything else implies a unacceptably slow CPU
506  *    or PIT for the fast calibration to work.
507  *
508  *  - with 256 PIT ticks to read the value, we have 214us to
509  *    see the same MSB (and overhead like doing a single TSC
510  *    read per MSB value etc).
511  *
512  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
513  *    them each to take about a microsecond on real hardware.
514  *    So we expect a count value of around 100. But we'll be
515  *    generous, and accept anything over 50.
516  *
517  *  - if the PIT is stuck, and we see *many* more reads, we
518  *    return early (and the next caller of pit_expect_msb()
519  *    then consider it a failure when they don't see the
520  *    next expected value).
521  *
522  * These expectations mean that we know that we have seen the
523  * transition from one expected value to another with a fairly
524  * high accuracy, and we didn't miss any events. We can thus
525  * use the TSC value at the transitions to calculate a pretty
526  * good value for the TSC frequencty.
527  */
pit_verify_msb(unsigned char val)528 static inline int pit_verify_msb(unsigned char val)
529 {
530 	/* Ignore LSB */
531 	inb(0x42);
532 	return inb(0x42) == val;
533 }
534 
pit_expect_msb(unsigned char val,u64 * tscp,unsigned long * deltap)535 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
536 {
537 	int count;
538 	u64 tsc = 0, prev_tsc = 0;
539 
540 	for (count = 0; count < 50000; count++) {
541 		if (!pit_verify_msb(val))
542 			break;
543 		prev_tsc = tsc;
544 		tsc = get_cycles();
545 	}
546 	*deltap = get_cycles() - prev_tsc;
547 	*tscp = tsc;
548 
549 	/*
550 	 * We require _some_ success, but the quality control
551 	 * will be based on the error terms on the TSC values.
552 	 */
553 	return count > 5;
554 }
555 
556 /*
557  * How many MSB values do we want to see? We aim for
558  * a maximum error rate of 500ppm (in practice the
559  * real error is much smaller), but refuse to spend
560  * more than 50ms on it.
561  */
562 #define MAX_QUICK_PIT_MS 50
563 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
564 
quick_pit_calibrate(void)565 static unsigned long quick_pit_calibrate(void)
566 {
567 	int i;
568 	u64 tsc, delta;
569 	unsigned long d1, d2;
570 
571 	/* Set the Gate high, disable speaker */
572 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
573 
574 	/*
575 	 * Counter 2, mode 0 (one-shot), binary count
576 	 *
577 	 * NOTE! Mode 2 decrements by two (and then the
578 	 * output is flipped each time, giving the same
579 	 * final output frequency as a decrement-by-one),
580 	 * so mode 0 is much better when looking at the
581 	 * individual counts.
582 	 */
583 	outb(0xb0, 0x43);
584 
585 	/* Start at 0xffff */
586 	outb(0xff, 0x42);
587 	outb(0xff, 0x42);
588 
589 	/*
590 	 * The PIT starts counting at the next edge, so we
591 	 * need to delay for a microsecond. The easiest way
592 	 * to do that is to just read back the 16-bit counter
593 	 * once from the PIT.
594 	 */
595 	pit_verify_msb(0);
596 
597 	if (pit_expect_msb(0xff, &tsc, &d1)) {
598 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
599 			if (!pit_expect_msb(0xff-i, &delta, &d2))
600 				break;
601 
602 			/*
603 			 * Iterate until the error is less than 500 ppm
604 			 */
605 			delta -= tsc;
606 			if (d1+d2 >= delta >> 11)
607 				continue;
608 
609 			/*
610 			 * Check the PIT one more time to verify that
611 			 * all TSC reads were stable wrt the PIT.
612 			 *
613 			 * This also guarantees serialization of the
614 			 * last cycle read ('d2') in pit_expect_msb.
615 			 */
616 			if (!pit_verify_msb(0xfe - i))
617 				break;
618 			goto success;
619 		}
620 	}
621 	pr_info("Fast TSC calibration failed\n");
622 	return 0;
623 
624 success:
625 	/*
626 	 * Ok, if we get here, then we've seen the
627 	 * MSB of the PIT decrement 'i' times, and the
628 	 * error has shrunk to less than 500 ppm.
629 	 *
630 	 * As a result, we can depend on there not being
631 	 * any odd delays anywhere, and the TSC reads are
632 	 * reliable (within the error).
633 	 *
634 	 * kHz = ticks / time-in-seconds / 1000;
635 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
636 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
637 	 */
638 	delta *= PIT_TICK_RATE;
639 	do_div(delta, i*256*1000);
640 	pr_info("Fast TSC calibration using PIT\n");
641 	return delta;
642 }
643 
644 /**
645  * native_calibrate_tsc - calibrate the tsc on boot
646  */
native_calibrate_tsc(void)647 unsigned long native_calibrate_tsc(void)
648 {
649 	u64 tsc1, tsc2, delta, ref1, ref2;
650 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
651 	unsigned long flags, latch, ms, fast_calibrate;
652 	int hpet = is_hpet_enabled(), i, loopmin;
653 
654 	/* Calibrate TSC using MSR for Intel Atom SoCs */
655 	local_irq_save(flags);
656 	fast_calibrate = try_msr_calibrate_tsc();
657 	local_irq_restore(flags);
658 	if (fast_calibrate)
659 		return fast_calibrate;
660 
661 	local_irq_save(flags);
662 	fast_calibrate = quick_pit_calibrate();
663 	local_irq_restore(flags);
664 	if (fast_calibrate)
665 		return fast_calibrate;
666 
667 	/*
668 	 * Run 5 calibration loops to get the lowest frequency value
669 	 * (the best estimate). We use two different calibration modes
670 	 * here:
671 	 *
672 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
673 	 * load a timeout of 50ms. We read the time right after we
674 	 * started the timer and wait until the PIT count down reaches
675 	 * zero. In each wait loop iteration we read the TSC and check
676 	 * the delta to the previous read. We keep track of the min
677 	 * and max values of that delta. The delta is mostly defined
678 	 * by the IO time of the PIT access, so we can detect when a
679 	 * SMI/SMM disturbance happened between the two reads. If the
680 	 * maximum time is significantly larger than the minimum time,
681 	 * then we discard the result and have another try.
682 	 *
683 	 * 2) Reference counter. If available we use the HPET or the
684 	 * PMTIMER as a reference to check the sanity of that value.
685 	 * We use separate TSC readouts and check inside of the
686 	 * reference read for a SMI/SMM disturbance. We dicard
687 	 * disturbed values here as well. We do that around the PIT
688 	 * calibration delay loop as we have to wait for a certain
689 	 * amount of time anyway.
690 	 */
691 
692 	/* Preset PIT loop values */
693 	latch = CAL_LATCH;
694 	ms = CAL_MS;
695 	loopmin = CAL_PIT_LOOPS;
696 
697 	for (i = 0; i < 3; i++) {
698 		unsigned long tsc_pit_khz;
699 
700 		/*
701 		 * Read the start value and the reference count of
702 		 * hpet/pmtimer when available. Then do the PIT
703 		 * calibration, which will take at least 50ms, and
704 		 * read the end value.
705 		 */
706 		local_irq_save(flags);
707 		tsc1 = tsc_read_refs(&ref1, hpet);
708 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
709 		tsc2 = tsc_read_refs(&ref2, hpet);
710 		local_irq_restore(flags);
711 
712 		/* Pick the lowest PIT TSC calibration so far */
713 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
714 
715 		/* hpet or pmtimer available ? */
716 		if (ref1 == ref2)
717 			continue;
718 
719 		/* Check, whether the sampling was disturbed by an SMI */
720 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
721 			continue;
722 
723 		tsc2 = (tsc2 - tsc1) * 1000000LL;
724 		if (hpet)
725 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
726 		else
727 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
728 
729 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
730 
731 		/* Check the reference deviation */
732 		delta = ((u64) tsc_pit_min) * 100;
733 		do_div(delta, tsc_ref_min);
734 
735 		/*
736 		 * If both calibration results are inside a 10% window
737 		 * then we can be sure, that the calibration
738 		 * succeeded. We break out of the loop right away. We
739 		 * use the reference value, as it is more precise.
740 		 */
741 		if (delta >= 90 && delta <= 110) {
742 			pr_info("PIT calibration matches %s. %d loops\n",
743 				hpet ? "HPET" : "PMTIMER", i + 1);
744 			return tsc_ref_min;
745 		}
746 
747 		/*
748 		 * Check whether PIT failed more than once. This
749 		 * happens in virtualized environments. We need to
750 		 * give the virtual PC a slightly longer timeframe for
751 		 * the HPET/PMTIMER to make the result precise.
752 		 */
753 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
754 			latch = CAL2_LATCH;
755 			ms = CAL2_MS;
756 			loopmin = CAL2_PIT_LOOPS;
757 		}
758 	}
759 
760 	/*
761 	 * Now check the results.
762 	 */
763 	if (tsc_pit_min == ULONG_MAX) {
764 		/* PIT gave no useful value */
765 		pr_warn("Unable to calibrate against PIT\n");
766 
767 		/* We don't have an alternative source, disable TSC */
768 		if (!hpet && !ref1 && !ref2) {
769 			pr_notice("No reference (HPET/PMTIMER) available\n");
770 			return 0;
771 		}
772 
773 		/* The alternative source failed as well, disable TSC */
774 		if (tsc_ref_min == ULONG_MAX) {
775 			pr_warn("HPET/PMTIMER calibration failed\n");
776 			return 0;
777 		}
778 
779 		/* Use the alternative source */
780 		pr_info("using %s reference calibration\n",
781 			hpet ? "HPET" : "PMTIMER");
782 
783 		return tsc_ref_min;
784 	}
785 
786 	/* We don't have an alternative source, use the PIT calibration value */
787 	if (!hpet && !ref1 && !ref2) {
788 		pr_info("Using PIT calibration value\n");
789 		return tsc_pit_min;
790 	}
791 
792 	/* The alternative source failed, use the PIT calibration value */
793 	if (tsc_ref_min == ULONG_MAX) {
794 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
795 		return tsc_pit_min;
796 	}
797 
798 	/*
799 	 * The calibration values differ too much. In doubt, we use
800 	 * the PIT value as we know that there are PMTIMERs around
801 	 * running at double speed. At least we let the user know:
802 	 */
803 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
804 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
805 	pr_info("Using PIT calibration value\n");
806 	return tsc_pit_min;
807 }
808 
recalibrate_cpu_khz(void)809 int recalibrate_cpu_khz(void)
810 {
811 #ifndef CONFIG_SMP
812 	unsigned long cpu_khz_old = cpu_khz;
813 
814 	if (cpu_has_tsc) {
815 		tsc_khz = x86_platform.calibrate_tsc();
816 		cpu_khz = tsc_khz;
817 		cpu_data(0).loops_per_jiffy =
818 			cpufreq_scale(cpu_data(0).loops_per_jiffy,
819 					cpu_khz_old, cpu_khz);
820 		return 0;
821 	} else
822 		return -ENODEV;
823 #else
824 	return -ENODEV;
825 #endif
826 }
827 
828 EXPORT_SYMBOL(recalibrate_cpu_khz);
829 
830 
831 static unsigned long long cyc2ns_suspend;
832 
tsc_save_sched_clock_state(void)833 void tsc_save_sched_clock_state(void)
834 {
835 	if (!sched_clock_stable())
836 		return;
837 
838 	cyc2ns_suspend = sched_clock();
839 }
840 
841 /*
842  * Even on processors with invariant TSC, TSC gets reset in some the
843  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
844  * arbitrary value (still sync'd across cpu's) during resume from such sleep
845  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
846  * that sched_clock() continues from the point where it was left off during
847  * suspend.
848  */
tsc_restore_sched_clock_state(void)849 void tsc_restore_sched_clock_state(void)
850 {
851 	unsigned long long offset;
852 	unsigned long flags;
853 	int cpu;
854 
855 	if (!sched_clock_stable())
856 		return;
857 
858 	local_irq_save(flags);
859 
860 	/*
861 	 * We're comming out of suspend, there's no concurrency yet; don't
862 	 * bother being nice about the RCU stuff, just write to both
863 	 * data fields.
864 	 */
865 
866 	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
867 	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
868 
869 	offset = cyc2ns_suspend - sched_clock();
870 
871 	for_each_possible_cpu(cpu) {
872 		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
873 		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
874 	}
875 
876 	local_irq_restore(flags);
877 }
878 
879 #ifdef CONFIG_CPU_FREQ
880 
881 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
882  * changes.
883  *
884  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
885  * not that important because current Opteron setups do not support
886  * scaling on SMP anyroads.
887  *
888  * Should fix up last_tsc too. Currently gettimeofday in the
889  * first tick after the change will be slightly wrong.
890  */
891 
892 static unsigned int  ref_freq;
893 static unsigned long loops_per_jiffy_ref;
894 static unsigned long tsc_khz_ref;
895 
time_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)896 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
897 				void *data)
898 {
899 	struct cpufreq_freqs *freq = data;
900 	unsigned long *lpj;
901 
902 	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
903 		return 0;
904 
905 	lpj = &boot_cpu_data.loops_per_jiffy;
906 #ifdef CONFIG_SMP
907 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
908 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
909 #endif
910 
911 	if (!ref_freq) {
912 		ref_freq = freq->old;
913 		loops_per_jiffy_ref = *lpj;
914 		tsc_khz_ref = tsc_khz;
915 	}
916 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
917 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
918 		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
919 
920 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
921 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
922 			mark_tsc_unstable("cpufreq changes");
923 
924 		set_cyc2ns_scale(tsc_khz, freq->cpu);
925 	}
926 
927 	return 0;
928 }
929 
930 static struct notifier_block time_cpufreq_notifier_block = {
931 	.notifier_call  = time_cpufreq_notifier
932 };
933 
cpufreq_tsc(void)934 static int __init cpufreq_tsc(void)
935 {
936 	if (!cpu_has_tsc)
937 		return 0;
938 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
939 		return 0;
940 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
941 				CPUFREQ_TRANSITION_NOTIFIER);
942 	return 0;
943 }
944 
945 core_initcall(cpufreq_tsc);
946 
947 #endif /* CONFIG_CPU_FREQ */
948 
949 /* clocksource code */
950 
951 static struct clocksource clocksource_tsc;
952 
953 /*
954  * We used to compare the TSC to the cycle_last value in the clocksource
955  * structure to avoid a nasty time-warp. This can be observed in a
956  * very small window right after one CPU updated cycle_last under
957  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
958  * is smaller than the cycle_last reference value due to a TSC which
959  * is slighty behind. This delta is nowhere else observable, but in
960  * that case it results in a forward time jump in the range of hours
961  * due to the unsigned delta calculation of the time keeping core
962  * code, which is necessary to support wrapping clocksources like pm
963  * timer.
964  *
965  * This sanity check is now done in the core timekeeping code.
966  * checking the result of read_tsc() - cycle_last for being negative.
967  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
968  */
read_tsc(struct clocksource * cs)969 static cycle_t read_tsc(struct clocksource *cs)
970 {
971 	return (cycle_t)get_cycles();
972 }
973 
974 /*
975  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
976  */
977 static struct clocksource clocksource_tsc = {
978 	.name                   = "tsc",
979 	.rating                 = 300,
980 	.read                   = read_tsc,
981 	.mask                   = CLOCKSOURCE_MASK(64),
982 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
983 				  CLOCK_SOURCE_MUST_VERIFY,
984 	.archdata               = { .vclock_mode = VCLOCK_TSC },
985 };
986 
mark_tsc_unstable(char * reason)987 void mark_tsc_unstable(char *reason)
988 {
989 	if (!tsc_unstable) {
990 		tsc_unstable = 1;
991 		clear_sched_clock_stable();
992 		disable_sched_clock_irqtime();
993 		pr_info("Marking TSC unstable due to %s\n", reason);
994 		/* Change only the rating, when not registered */
995 		if (clocksource_tsc.mult)
996 			clocksource_mark_unstable(&clocksource_tsc);
997 		else {
998 			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
999 			clocksource_tsc.rating = 0;
1000 		}
1001 	}
1002 }
1003 
1004 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1005 
check_system_tsc_reliable(void)1006 static void __init check_system_tsc_reliable(void)
1007 {
1008 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1009 	if (is_geode_lx()) {
1010 		/* RTSC counts during suspend */
1011 #define RTSC_SUSP 0x100
1012 		unsigned long res_low, res_high;
1013 
1014 		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1015 		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1016 		if (res_low & RTSC_SUSP)
1017 			tsc_clocksource_reliable = 1;
1018 	}
1019 #endif
1020 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1021 		tsc_clocksource_reliable = 1;
1022 }
1023 
1024 /*
1025  * Make an educated guess if the TSC is trustworthy and synchronized
1026  * over all CPUs.
1027  */
unsynchronized_tsc(void)1028 int unsynchronized_tsc(void)
1029 {
1030 	if (!cpu_has_tsc || tsc_unstable)
1031 		return 1;
1032 
1033 #ifdef CONFIG_SMP
1034 	if (apic_is_clustered_box())
1035 		return 1;
1036 #endif
1037 
1038 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1039 		return 0;
1040 
1041 	if (tsc_clocksource_reliable)
1042 		return 0;
1043 	/*
1044 	 * Intel systems are normally all synchronized.
1045 	 * Exceptions must mark TSC as unstable:
1046 	 */
1047 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1048 		/* assume multi socket systems are not synchronized: */
1049 		if (num_possible_cpus() > 1)
1050 			return 1;
1051 	}
1052 
1053 	return 0;
1054 }
1055 
1056 
1057 static void tsc_refine_calibration_work(struct work_struct *work);
1058 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1059 /**
1060  * tsc_refine_calibration_work - Further refine tsc freq calibration
1061  * @work - ignored.
1062  *
1063  * This functions uses delayed work over a period of a
1064  * second to further refine the TSC freq value. Since this is
1065  * timer based, instead of loop based, we don't block the boot
1066  * process while this longer calibration is done.
1067  *
1068  * If there are any calibration anomalies (too many SMIs, etc),
1069  * or the refined calibration is off by 1% of the fast early
1070  * calibration, we throw out the new calibration and use the
1071  * early calibration.
1072  */
tsc_refine_calibration_work(struct work_struct * work)1073 static void tsc_refine_calibration_work(struct work_struct *work)
1074 {
1075 	static u64 tsc_start = -1, ref_start;
1076 	static int hpet;
1077 	u64 tsc_stop, ref_stop, delta;
1078 	unsigned long freq;
1079 
1080 	/* Don't bother refining TSC on unstable systems */
1081 	if (check_tsc_unstable())
1082 		goto out;
1083 
1084 	/*
1085 	 * Since the work is started early in boot, we may be
1086 	 * delayed the first time we expire. So set the workqueue
1087 	 * again once we know timers are working.
1088 	 */
1089 	if (tsc_start == -1) {
1090 		/*
1091 		 * Only set hpet once, to avoid mixing hardware
1092 		 * if the hpet becomes enabled later.
1093 		 */
1094 		hpet = is_hpet_enabled();
1095 		schedule_delayed_work(&tsc_irqwork, HZ);
1096 		tsc_start = tsc_read_refs(&ref_start, hpet);
1097 		return;
1098 	}
1099 
1100 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1101 
1102 	/* hpet or pmtimer available ? */
1103 	if (ref_start == ref_stop)
1104 		goto out;
1105 
1106 	/* Check, whether the sampling was disturbed by an SMI */
1107 	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1108 		goto out;
1109 
1110 	delta = tsc_stop - tsc_start;
1111 	delta *= 1000000LL;
1112 	if (hpet)
1113 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1114 	else
1115 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1116 
1117 	/* Make sure we're within 1% */
1118 	if (abs(tsc_khz - freq) > tsc_khz/100)
1119 		goto out;
1120 
1121 	tsc_khz = freq;
1122 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1123 		(unsigned long)tsc_khz / 1000,
1124 		(unsigned long)tsc_khz % 1000);
1125 
1126 out:
1127 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1128 }
1129 
1130 
init_tsc_clocksource(void)1131 static int __init init_tsc_clocksource(void)
1132 {
1133 	if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
1134 		return 0;
1135 
1136 	if (tsc_clocksource_reliable)
1137 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1138 	/* lower the rating if we already know its unstable: */
1139 	if (check_tsc_unstable()) {
1140 		clocksource_tsc.rating = 0;
1141 		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1142 	}
1143 
1144 	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1145 		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1146 
1147 	/*
1148 	 * Trust the results of the earlier calibration on systems
1149 	 * exporting a reliable TSC.
1150 	 */
1151 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1152 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1153 		return 0;
1154 	}
1155 
1156 	schedule_delayed_work(&tsc_irqwork, 0);
1157 	return 0;
1158 }
1159 /*
1160  * We use device_initcall here, to ensure we run after the hpet
1161  * is fully initialized, which may occur at fs_initcall time.
1162  */
1163 device_initcall(init_tsc_clocksource);
1164 
tsc_init(void)1165 void __init tsc_init(void)
1166 {
1167 	u64 lpj;
1168 	int cpu;
1169 
1170 	x86_init.timers.tsc_pre_init();
1171 
1172 	if (!cpu_has_tsc) {
1173 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1174 		return;
1175 	}
1176 
1177 	tsc_khz = x86_platform.calibrate_tsc();
1178 	cpu_khz = tsc_khz;
1179 
1180 	if (!tsc_khz) {
1181 		mark_tsc_unstable("could not calculate TSC khz");
1182 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1183 		return;
1184 	}
1185 
1186 	pr_info("Detected %lu.%03lu MHz processor\n",
1187 		(unsigned long)cpu_khz / 1000,
1188 		(unsigned long)cpu_khz % 1000);
1189 
1190 	/*
1191 	 * Secondary CPUs do not run through tsc_init(), so set up
1192 	 * all the scale factors for all CPUs, assuming the same
1193 	 * speed as the bootup CPU. (cpufreq notifiers will fix this
1194 	 * up if their speed diverges)
1195 	 */
1196 	for_each_possible_cpu(cpu) {
1197 		cyc2ns_init(cpu);
1198 		set_cyc2ns_scale(cpu_khz, cpu);
1199 	}
1200 
1201 	if (tsc_disabled > 0)
1202 		return;
1203 
1204 	/* now allow native_sched_clock() to use rdtsc */
1205 
1206 	tsc_disabled = 0;
1207 	static_key_slow_inc(&__use_tsc);
1208 
1209 	if (!no_sched_irq_time)
1210 		enable_sched_clock_irqtime();
1211 
1212 	lpj = ((u64)tsc_khz * 1000);
1213 	do_div(lpj, HZ);
1214 	lpj_fine = lpj;
1215 
1216 	use_tsc_delay();
1217 
1218 	if (unsynchronized_tsc())
1219 		mark_tsc_unstable("TSCs unsynchronized");
1220 
1221 	check_system_tsc_reliable();
1222 }
1223 
1224 #ifdef CONFIG_SMP
1225 /*
1226  * If we have a constant TSC and are using the TSC for the delay loop,
1227  * we can skip clock calibration if another cpu in the same socket has already
1228  * been calibrated. This assumes that CONSTANT_TSC applies to all
1229  * cpus in the socket - this should be a safe assumption.
1230  */
calibrate_delay_is_known(void)1231 unsigned long calibrate_delay_is_known(void)
1232 {
1233 	int i, cpu = smp_processor_id();
1234 
1235 	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1236 		return 0;
1237 
1238 	for_each_online_cpu(i)
1239 		if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1240 			return cpu_data(i).loops_per_jiffy;
1241 	return 0;
1242 }
1243 #endif
1244