1 /*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 *
8 * Additional technical information is available on
9 * http://www.linux-mtd.infradead.org/doc/nand.html
10 *
11 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
12 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
13 *
14 * Credits:
15 * David Woodhouse for adding multichip support
16 *
17 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
18 * rework for 2K page size chips
19 *
20 * TODO:
21 * Enable cached programming for 2k page size chips
22 * Check, if mtd->ecctype should be set to MTD_ECC_HW
23 * if we have HW ECC support.
24 * BBT table is not serialized, has to be fixed
25 *
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License version 2 as
28 * published by the Free Software Foundation.
29 *
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/module.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/err.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/mm.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/nand_bch.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
49 #include <linux/io.h>
50 #include <linux/mtd/partitions.h>
51
52 /* Define default oob placement schemes for large and small page devices */
53 static struct nand_ecclayout nand_oob_8 = {
54 .eccbytes = 3,
55 .eccpos = {0, 1, 2},
56 .oobfree = {
57 {.offset = 3,
58 .length = 2},
59 {.offset = 6,
60 .length = 2} }
61 };
62
63 static struct nand_ecclayout nand_oob_16 = {
64 .eccbytes = 6,
65 .eccpos = {0, 1, 2, 3, 6, 7},
66 .oobfree = {
67 {.offset = 8,
68 . length = 8} }
69 };
70
71 static struct nand_ecclayout nand_oob_64 = {
72 .eccbytes = 24,
73 .eccpos = {
74 40, 41, 42, 43, 44, 45, 46, 47,
75 48, 49, 50, 51, 52, 53, 54, 55,
76 56, 57, 58, 59, 60, 61, 62, 63},
77 .oobfree = {
78 {.offset = 2,
79 .length = 38} }
80 };
81
82 static struct nand_ecclayout nand_oob_128 = {
83 .eccbytes = 48,
84 .eccpos = {
85 80, 81, 82, 83, 84, 85, 86, 87,
86 88, 89, 90, 91, 92, 93, 94, 95,
87 96, 97, 98, 99, 100, 101, 102, 103,
88 104, 105, 106, 107, 108, 109, 110, 111,
89 112, 113, 114, 115, 116, 117, 118, 119,
90 120, 121, 122, 123, 124, 125, 126, 127},
91 .oobfree = {
92 {.offset = 2,
93 .length = 78} }
94 };
95
96 static int nand_get_device(struct mtd_info *mtd, int new_state);
97
98 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
99 struct mtd_oob_ops *ops);
100
101 /*
102 * For devices which display every fart in the system on a separate LED. Is
103 * compiled away when LED support is disabled.
104 */
105 DEFINE_LED_TRIGGER(nand_led_trigger);
106
check_offs_len(struct mtd_info * mtd,loff_t ofs,uint64_t len)107 static int check_offs_len(struct mtd_info *mtd,
108 loff_t ofs, uint64_t len)
109 {
110 struct nand_chip *chip = mtd->priv;
111 int ret = 0;
112
113 /* Start address must align on block boundary */
114 if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
115 pr_debug("%s: unaligned address\n", __func__);
116 ret = -EINVAL;
117 }
118
119 /* Length must align on block boundary */
120 if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
121 pr_debug("%s: length not block aligned\n", __func__);
122 ret = -EINVAL;
123 }
124
125 return ret;
126 }
127
128 /**
129 * nand_release_device - [GENERIC] release chip
130 * @mtd: MTD device structure
131 *
132 * Release chip lock and wake up anyone waiting on the device.
133 */
nand_release_device(struct mtd_info * mtd)134 static void nand_release_device(struct mtd_info *mtd)
135 {
136 struct nand_chip *chip = mtd->priv;
137
138 /* Release the controller and the chip */
139 spin_lock(&chip->controller->lock);
140 chip->controller->active = NULL;
141 chip->state = FL_READY;
142 wake_up(&chip->controller->wq);
143 spin_unlock(&chip->controller->lock);
144 }
145
146 /**
147 * nand_read_byte - [DEFAULT] read one byte from the chip
148 * @mtd: MTD device structure
149 *
150 * Default read function for 8bit buswidth
151 */
nand_read_byte(struct mtd_info * mtd)152 static uint8_t nand_read_byte(struct mtd_info *mtd)
153 {
154 struct nand_chip *chip = mtd->priv;
155 return readb(chip->IO_ADDR_R);
156 }
157
158 /**
159 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
160 * @mtd: MTD device structure
161 *
162 * Default read function for 16bit buswidth with endianness conversion.
163 *
164 */
nand_read_byte16(struct mtd_info * mtd)165 static uint8_t nand_read_byte16(struct mtd_info *mtd)
166 {
167 struct nand_chip *chip = mtd->priv;
168 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
169 }
170
171 /**
172 * nand_read_word - [DEFAULT] read one word from the chip
173 * @mtd: MTD device structure
174 *
175 * Default read function for 16bit buswidth without endianness conversion.
176 */
nand_read_word(struct mtd_info * mtd)177 static u16 nand_read_word(struct mtd_info *mtd)
178 {
179 struct nand_chip *chip = mtd->priv;
180 return readw(chip->IO_ADDR_R);
181 }
182
183 /**
184 * nand_select_chip - [DEFAULT] control CE line
185 * @mtd: MTD device structure
186 * @chipnr: chipnumber to select, -1 for deselect
187 *
188 * Default select function for 1 chip devices.
189 */
nand_select_chip(struct mtd_info * mtd,int chipnr)190 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
191 {
192 struct nand_chip *chip = mtd->priv;
193
194 switch (chipnr) {
195 case -1:
196 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
197 break;
198 case 0:
199 break;
200
201 default:
202 BUG();
203 }
204 }
205
206 /**
207 * nand_write_byte - [DEFAULT] write single byte to chip
208 * @mtd: MTD device structure
209 * @byte: value to write
210 *
211 * Default function to write a byte to I/O[7:0]
212 */
nand_write_byte(struct mtd_info * mtd,uint8_t byte)213 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
214 {
215 struct nand_chip *chip = mtd->priv;
216
217 chip->write_buf(mtd, &byte, 1);
218 }
219
220 /**
221 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
222 * @mtd: MTD device structure
223 * @byte: value to write
224 *
225 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
226 */
nand_write_byte16(struct mtd_info * mtd,uint8_t byte)227 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
228 {
229 struct nand_chip *chip = mtd->priv;
230 uint16_t word = byte;
231
232 /*
233 * It's not entirely clear what should happen to I/O[15:8] when writing
234 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
235 *
236 * When the host supports a 16-bit bus width, only data is
237 * transferred at the 16-bit width. All address and command line
238 * transfers shall use only the lower 8-bits of the data bus. During
239 * command transfers, the host may place any value on the upper
240 * 8-bits of the data bus. During address transfers, the host shall
241 * set the upper 8-bits of the data bus to 00h.
242 *
243 * One user of the write_byte callback is nand_onfi_set_features. The
244 * four parameters are specified to be written to I/O[7:0], but this is
245 * neither an address nor a command transfer. Let's assume a 0 on the
246 * upper I/O lines is OK.
247 */
248 chip->write_buf(mtd, (uint8_t *)&word, 2);
249 }
250
251 /**
252 * nand_write_buf - [DEFAULT] write buffer to chip
253 * @mtd: MTD device structure
254 * @buf: data buffer
255 * @len: number of bytes to write
256 *
257 * Default write function for 8bit buswidth.
258 */
nand_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)259 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
260 {
261 struct nand_chip *chip = mtd->priv;
262
263 iowrite8_rep(chip->IO_ADDR_W, buf, len);
264 }
265
266 /**
267 * nand_read_buf - [DEFAULT] read chip data into buffer
268 * @mtd: MTD device structure
269 * @buf: buffer to store date
270 * @len: number of bytes to read
271 *
272 * Default read function for 8bit buswidth.
273 */
nand_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)274 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
275 {
276 struct nand_chip *chip = mtd->priv;
277
278 ioread8_rep(chip->IO_ADDR_R, buf, len);
279 }
280
281 /**
282 * nand_write_buf16 - [DEFAULT] write buffer to chip
283 * @mtd: MTD device structure
284 * @buf: data buffer
285 * @len: number of bytes to write
286 *
287 * Default write function for 16bit buswidth.
288 */
nand_write_buf16(struct mtd_info * mtd,const uint8_t * buf,int len)289 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
290 {
291 struct nand_chip *chip = mtd->priv;
292 u16 *p = (u16 *) buf;
293
294 iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
295 }
296
297 /**
298 * nand_read_buf16 - [DEFAULT] read chip data into buffer
299 * @mtd: MTD device structure
300 * @buf: buffer to store date
301 * @len: number of bytes to read
302 *
303 * Default read function for 16bit buswidth.
304 */
nand_read_buf16(struct mtd_info * mtd,uint8_t * buf,int len)305 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
306 {
307 struct nand_chip *chip = mtd->priv;
308 u16 *p = (u16 *) buf;
309
310 ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
311 }
312
313 /**
314 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
315 * @mtd: MTD device structure
316 * @ofs: offset from device start
317 * @getchip: 0, if the chip is already selected
318 *
319 * Check, if the block is bad.
320 */
nand_block_bad(struct mtd_info * mtd,loff_t ofs,int getchip)321 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
322 {
323 int page, chipnr, res = 0, i = 0;
324 struct nand_chip *chip = mtd->priv;
325 u16 bad;
326
327 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
328 ofs += mtd->erasesize - mtd->writesize;
329
330 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
331
332 if (getchip) {
333 chipnr = (int)(ofs >> chip->chip_shift);
334
335 nand_get_device(mtd, FL_READING);
336
337 /* Select the NAND device */
338 chip->select_chip(mtd, chipnr);
339 }
340
341 do {
342 if (chip->options & NAND_BUSWIDTH_16) {
343 chip->cmdfunc(mtd, NAND_CMD_READOOB,
344 chip->badblockpos & 0xFE, page);
345 bad = cpu_to_le16(chip->read_word(mtd));
346 if (chip->badblockpos & 0x1)
347 bad >>= 8;
348 else
349 bad &= 0xFF;
350 } else {
351 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
352 page);
353 bad = chip->read_byte(mtd);
354 }
355
356 if (likely(chip->badblockbits == 8))
357 res = bad != 0xFF;
358 else
359 res = hweight8(bad) < chip->badblockbits;
360 ofs += mtd->writesize;
361 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
362 i++;
363 } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
364
365 if (getchip) {
366 chip->select_chip(mtd, -1);
367 nand_release_device(mtd);
368 }
369
370 return res;
371 }
372
373 /**
374 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
375 * @mtd: MTD device structure
376 * @ofs: offset from device start
377 *
378 * This is the default implementation, which can be overridden by a hardware
379 * specific driver. It provides the details for writing a bad block marker to a
380 * block.
381 */
nand_default_block_markbad(struct mtd_info * mtd,loff_t ofs)382 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
383 {
384 struct nand_chip *chip = mtd->priv;
385 struct mtd_oob_ops ops;
386 uint8_t buf[2] = { 0, 0 };
387 int ret = 0, res, i = 0;
388
389 memset(&ops, 0, sizeof(ops));
390 ops.oobbuf = buf;
391 ops.ooboffs = chip->badblockpos;
392 if (chip->options & NAND_BUSWIDTH_16) {
393 ops.ooboffs &= ~0x01;
394 ops.len = ops.ooblen = 2;
395 } else {
396 ops.len = ops.ooblen = 1;
397 }
398 ops.mode = MTD_OPS_PLACE_OOB;
399
400 /* Write to first/last page(s) if necessary */
401 if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
402 ofs += mtd->erasesize - mtd->writesize;
403 do {
404 res = nand_do_write_oob(mtd, ofs, &ops);
405 if (!ret)
406 ret = res;
407
408 i++;
409 ofs += mtd->writesize;
410 } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
411
412 return ret;
413 }
414
415 /**
416 * nand_block_markbad_lowlevel - mark a block bad
417 * @mtd: MTD device structure
418 * @ofs: offset from device start
419 *
420 * This function performs the generic NAND bad block marking steps (i.e., bad
421 * block table(s) and/or marker(s)). We only allow the hardware driver to
422 * specify how to write bad block markers to OOB (chip->block_markbad).
423 *
424 * We try operations in the following order:
425 * (1) erase the affected block, to allow OOB marker to be written cleanly
426 * (2) write bad block marker to OOB area of affected block (unless flag
427 * NAND_BBT_NO_OOB_BBM is present)
428 * (3) update the BBT
429 * Note that we retain the first error encountered in (2) or (3), finish the
430 * procedures, and dump the error in the end.
431 */
nand_block_markbad_lowlevel(struct mtd_info * mtd,loff_t ofs)432 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
433 {
434 struct nand_chip *chip = mtd->priv;
435 int res, ret = 0;
436
437 if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
438 struct erase_info einfo;
439
440 /* Attempt erase before marking OOB */
441 memset(&einfo, 0, sizeof(einfo));
442 einfo.mtd = mtd;
443 einfo.addr = ofs;
444 einfo.len = 1ULL << chip->phys_erase_shift;
445 nand_erase_nand(mtd, &einfo, 0);
446
447 /* Write bad block marker to OOB */
448 nand_get_device(mtd, FL_WRITING);
449 ret = chip->block_markbad(mtd, ofs);
450 nand_release_device(mtd);
451 }
452
453 /* Mark block bad in BBT */
454 if (chip->bbt) {
455 res = nand_markbad_bbt(mtd, ofs);
456 if (!ret)
457 ret = res;
458 }
459
460 if (!ret)
461 mtd->ecc_stats.badblocks++;
462
463 return ret;
464 }
465
466 /**
467 * nand_check_wp - [GENERIC] check if the chip is write protected
468 * @mtd: MTD device structure
469 *
470 * Check, if the device is write protected. The function expects, that the
471 * device is already selected.
472 */
nand_check_wp(struct mtd_info * mtd)473 static int nand_check_wp(struct mtd_info *mtd)
474 {
475 struct nand_chip *chip = mtd->priv;
476
477 /* Broken xD cards report WP despite being writable */
478 if (chip->options & NAND_BROKEN_XD)
479 return 0;
480
481 /* Check the WP bit */
482 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
483 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
484 }
485
486 /**
487 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
488 * @mtd: MTD device structure
489 * @ofs: offset from device start
490 *
491 * Check if the block is marked as reserved.
492 */
nand_block_isreserved(struct mtd_info * mtd,loff_t ofs)493 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
494 {
495 struct nand_chip *chip = mtd->priv;
496
497 if (!chip->bbt)
498 return 0;
499 /* Return info from the table */
500 return nand_isreserved_bbt(mtd, ofs);
501 }
502
503 /**
504 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
505 * @mtd: MTD device structure
506 * @ofs: offset from device start
507 * @getchip: 0, if the chip is already selected
508 * @allowbbt: 1, if its allowed to access the bbt area
509 *
510 * Check, if the block is bad. Either by reading the bad block table or
511 * calling of the scan function.
512 */
nand_block_checkbad(struct mtd_info * mtd,loff_t ofs,int getchip,int allowbbt)513 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
514 int allowbbt)
515 {
516 struct nand_chip *chip = mtd->priv;
517
518 if (!chip->bbt)
519 return chip->block_bad(mtd, ofs, getchip);
520
521 /* Return info from the table */
522 return nand_isbad_bbt(mtd, ofs, allowbbt);
523 }
524
525 /**
526 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
527 * @mtd: MTD device structure
528 * @timeo: Timeout
529 *
530 * Helper function for nand_wait_ready used when needing to wait in interrupt
531 * context.
532 */
panic_nand_wait_ready(struct mtd_info * mtd,unsigned long timeo)533 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
534 {
535 struct nand_chip *chip = mtd->priv;
536 int i;
537
538 /* Wait for the device to get ready */
539 for (i = 0; i < timeo; i++) {
540 if (chip->dev_ready(mtd))
541 break;
542 touch_softlockup_watchdog();
543 mdelay(1);
544 }
545 }
546
547 /* Wait for the ready pin, after a command. The timeout is caught later. */
nand_wait_ready(struct mtd_info * mtd)548 void nand_wait_ready(struct mtd_info *mtd)
549 {
550 struct nand_chip *chip = mtd->priv;
551 unsigned long timeo = jiffies + msecs_to_jiffies(20);
552
553 /* 400ms timeout */
554 if (in_interrupt() || oops_in_progress)
555 return panic_nand_wait_ready(mtd, 400);
556
557 led_trigger_event(nand_led_trigger, LED_FULL);
558 /* Wait until command is processed or timeout occurs */
559 do {
560 if (chip->dev_ready(mtd))
561 break;
562 touch_softlockup_watchdog();
563 } while (time_before(jiffies, timeo));
564 led_trigger_event(nand_led_trigger, LED_OFF);
565 }
566 EXPORT_SYMBOL_GPL(nand_wait_ready);
567
568 /**
569 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
570 * @mtd: MTD device structure
571 * @timeo: Timeout in ms
572 *
573 * Wait for status ready (i.e. command done) or timeout.
574 */
nand_wait_status_ready(struct mtd_info * mtd,unsigned long timeo)575 static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
576 {
577 register struct nand_chip *chip = mtd->priv;
578
579 timeo = jiffies + msecs_to_jiffies(timeo);
580 do {
581 if ((chip->read_byte(mtd) & NAND_STATUS_READY))
582 break;
583 touch_softlockup_watchdog();
584 } while (time_before(jiffies, timeo));
585 };
586
587 /**
588 * nand_command - [DEFAULT] Send command to NAND device
589 * @mtd: MTD device structure
590 * @command: the command to be sent
591 * @column: the column address for this command, -1 if none
592 * @page_addr: the page address for this command, -1 if none
593 *
594 * Send command to NAND device. This function is used for small page devices
595 * (512 Bytes per page).
596 */
nand_command(struct mtd_info * mtd,unsigned int command,int column,int page_addr)597 static void nand_command(struct mtd_info *mtd, unsigned int command,
598 int column, int page_addr)
599 {
600 register struct nand_chip *chip = mtd->priv;
601 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
602
603 /* Write out the command to the device */
604 if (command == NAND_CMD_SEQIN) {
605 int readcmd;
606
607 if (column >= mtd->writesize) {
608 /* OOB area */
609 column -= mtd->writesize;
610 readcmd = NAND_CMD_READOOB;
611 } else if (column < 256) {
612 /* First 256 bytes --> READ0 */
613 readcmd = NAND_CMD_READ0;
614 } else {
615 column -= 256;
616 readcmd = NAND_CMD_READ1;
617 }
618 chip->cmd_ctrl(mtd, readcmd, ctrl);
619 ctrl &= ~NAND_CTRL_CHANGE;
620 }
621 chip->cmd_ctrl(mtd, command, ctrl);
622
623 /* Address cycle, when necessary */
624 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
625 /* Serially input address */
626 if (column != -1) {
627 /* Adjust columns for 16 bit buswidth */
628 if (chip->options & NAND_BUSWIDTH_16 &&
629 !nand_opcode_8bits(command))
630 column >>= 1;
631 chip->cmd_ctrl(mtd, column, ctrl);
632 ctrl &= ~NAND_CTRL_CHANGE;
633 }
634 if (page_addr != -1) {
635 chip->cmd_ctrl(mtd, page_addr, ctrl);
636 ctrl &= ~NAND_CTRL_CHANGE;
637 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
638 /* One more address cycle for devices > 32MiB */
639 if (chip->chipsize > (32 << 20))
640 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
641 }
642 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
643
644 /*
645 * Program and erase have their own busy handlers status and sequential
646 * in needs no delay
647 */
648 switch (command) {
649
650 case NAND_CMD_PAGEPROG:
651 case NAND_CMD_ERASE1:
652 case NAND_CMD_ERASE2:
653 case NAND_CMD_SEQIN:
654 case NAND_CMD_STATUS:
655 return;
656
657 case NAND_CMD_RESET:
658 if (chip->dev_ready)
659 break;
660 udelay(chip->chip_delay);
661 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
662 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
663 chip->cmd_ctrl(mtd,
664 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
665 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
666 nand_wait_status_ready(mtd, 250);
667 return;
668
669 /* This applies to read commands */
670 default:
671 /*
672 * If we don't have access to the busy pin, we apply the given
673 * command delay
674 */
675 if (!chip->dev_ready) {
676 udelay(chip->chip_delay);
677 return;
678 }
679 }
680 /*
681 * Apply this short delay always to ensure that we do wait tWB in
682 * any case on any machine.
683 */
684 ndelay(100);
685
686 nand_wait_ready(mtd);
687 }
688
689 /**
690 * nand_command_lp - [DEFAULT] Send command to NAND large page device
691 * @mtd: MTD device structure
692 * @command: the command to be sent
693 * @column: the column address for this command, -1 if none
694 * @page_addr: the page address for this command, -1 if none
695 *
696 * Send command to NAND device. This is the version for the new large page
697 * devices. We don't have the separate regions as we have in the small page
698 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
699 */
nand_command_lp(struct mtd_info * mtd,unsigned int command,int column,int page_addr)700 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
701 int column, int page_addr)
702 {
703 register struct nand_chip *chip = mtd->priv;
704
705 /* Emulate NAND_CMD_READOOB */
706 if (command == NAND_CMD_READOOB) {
707 column += mtd->writesize;
708 command = NAND_CMD_READ0;
709 }
710
711 /* Command latch cycle */
712 chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
713
714 if (column != -1 || page_addr != -1) {
715 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
716
717 /* Serially input address */
718 if (column != -1) {
719 /* Adjust columns for 16 bit buswidth */
720 if (chip->options & NAND_BUSWIDTH_16 &&
721 !nand_opcode_8bits(command))
722 column >>= 1;
723 chip->cmd_ctrl(mtd, column, ctrl);
724 ctrl &= ~NAND_CTRL_CHANGE;
725 chip->cmd_ctrl(mtd, column >> 8, ctrl);
726 }
727 if (page_addr != -1) {
728 chip->cmd_ctrl(mtd, page_addr, ctrl);
729 chip->cmd_ctrl(mtd, page_addr >> 8,
730 NAND_NCE | NAND_ALE);
731 /* One more address cycle for devices > 128MiB */
732 if (chip->chipsize > (128 << 20))
733 chip->cmd_ctrl(mtd, page_addr >> 16,
734 NAND_NCE | NAND_ALE);
735 }
736 }
737 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
738
739 /*
740 * Program and erase have their own busy handlers status, sequential
741 * in and status need no delay.
742 */
743 switch (command) {
744
745 case NAND_CMD_CACHEDPROG:
746 case NAND_CMD_PAGEPROG:
747 case NAND_CMD_ERASE1:
748 case NAND_CMD_ERASE2:
749 case NAND_CMD_SEQIN:
750 case NAND_CMD_RNDIN:
751 case NAND_CMD_STATUS:
752 return;
753
754 case NAND_CMD_RESET:
755 if (chip->dev_ready)
756 break;
757 udelay(chip->chip_delay);
758 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
759 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
760 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
761 NAND_NCE | NAND_CTRL_CHANGE);
762 /* EZ-NAND can take upto 250ms as per ONFi v4.0 */
763 nand_wait_status_ready(mtd, 250);
764 return;
765
766 case NAND_CMD_RNDOUT:
767 /* No ready / busy check necessary */
768 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
769 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
770 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
771 NAND_NCE | NAND_CTRL_CHANGE);
772 return;
773
774 case NAND_CMD_READ0:
775 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
776 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
777 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
778 NAND_NCE | NAND_CTRL_CHANGE);
779
780 /* This applies to read commands */
781 default:
782 /*
783 * If we don't have access to the busy pin, we apply the given
784 * command delay.
785 */
786 if (!chip->dev_ready) {
787 udelay(chip->chip_delay);
788 return;
789 }
790 }
791
792 /*
793 * Apply this short delay always to ensure that we do wait tWB in
794 * any case on any machine.
795 */
796 ndelay(100);
797
798 nand_wait_ready(mtd);
799 }
800
801 /**
802 * panic_nand_get_device - [GENERIC] Get chip for selected access
803 * @chip: the nand chip descriptor
804 * @mtd: MTD device structure
805 * @new_state: the state which is requested
806 *
807 * Used when in panic, no locks are taken.
808 */
panic_nand_get_device(struct nand_chip * chip,struct mtd_info * mtd,int new_state)809 static void panic_nand_get_device(struct nand_chip *chip,
810 struct mtd_info *mtd, int new_state)
811 {
812 /* Hardware controller shared among independent devices */
813 chip->controller->active = chip;
814 chip->state = new_state;
815 }
816
817 /**
818 * nand_get_device - [GENERIC] Get chip for selected access
819 * @mtd: MTD device structure
820 * @new_state: the state which is requested
821 *
822 * Get the device and lock it for exclusive access
823 */
824 static int
nand_get_device(struct mtd_info * mtd,int new_state)825 nand_get_device(struct mtd_info *mtd, int new_state)
826 {
827 struct nand_chip *chip = mtd->priv;
828 spinlock_t *lock = &chip->controller->lock;
829 wait_queue_head_t *wq = &chip->controller->wq;
830 DECLARE_WAITQUEUE(wait, current);
831 retry:
832 spin_lock(lock);
833
834 /* Hardware controller shared among independent devices */
835 if (!chip->controller->active)
836 chip->controller->active = chip;
837
838 if (chip->controller->active == chip && chip->state == FL_READY) {
839 chip->state = new_state;
840 spin_unlock(lock);
841 return 0;
842 }
843 if (new_state == FL_PM_SUSPENDED) {
844 if (chip->controller->active->state == FL_PM_SUSPENDED) {
845 chip->state = FL_PM_SUSPENDED;
846 spin_unlock(lock);
847 return 0;
848 }
849 }
850 set_current_state(TASK_UNINTERRUPTIBLE);
851 add_wait_queue(wq, &wait);
852 spin_unlock(lock);
853 schedule();
854 remove_wait_queue(wq, &wait);
855 goto retry;
856 }
857
858 /**
859 * panic_nand_wait - [GENERIC] wait until the command is done
860 * @mtd: MTD device structure
861 * @chip: NAND chip structure
862 * @timeo: timeout
863 *
864 * Wait for command done. This is a helper function for nand_wait used when
865 * we are in interrupt context. May happen when in panic and trying to write
866 * an oops through mtdoops.
867 */
panic_nand_wait(struct mtd_info * mtd,struct nand_chip * chip,unsigned long timeo)868 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
869 unsigned long timeo)
870 {
871 int i;
872 for (i = 0; i < timeo; i++) {
873 if (chip->dev_ready) {
874 if (chip->dev_ready(mtd))
875 break;
876 } else {
877 if (chip->read_byte(mtd) & NAND_STATUS_READY)
878 break;
879 }
880 mdelay(1);
881 }
882 }
883
884 /**
885 * nand_wait - [DEFAULT] wait until the command is done
886 * @mtd: MTD device structure
887 * @chip: NAND chip structure
888 *
889 * Wait for command done. This applies to erase and program only. Erase can
890 * take up to 400ms and program up to 20ms according to general NAND and
891 * SmartMedia specs.
892 */
nand_wait(struct mtd_info * mtd,struct nand_chip * chip)893 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
894 {
895
896 int status, state = chip->state;
897 unsigned long timeo = (state == FL_ERASING ? 400 : 20);
898
899 led_trigger_event(nand_led_trigger, LED_FULL);
900
901 /*
902 * Apply this short delay always to ensure that we do wait tWB in any
903 * case on any machine.
904 */
905 ndelay(100);
906
907 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
908
909 if (in_interrupt() || oops_in_progress)
910 panic_nand_wait(mtd, chip, timeo);
911 else {
912 timeo = jiffies + msecs_to_jiffies(timeo);
913 while (time_before(jiffies, timeo)) {
914 if (chip->dev_ready) {
915 if (chip->dev_ready(mtd))
916 break;
917 } else {
918 if (chip->read_byte(mtd) & NAND_STATUS_READY)
919 break;
920 }
921 cond_resched();
922 }
923 }
924 led_trigger_event(nand_led_trigger, LED_OFF);
925
926 status = (int)chip->read_byte(mtd);
927 /* This can happen if in case of timeout or buggy dev_ready */
928 WARN_ON(!(status & NAND_STATUS_READY));
929 return status;
930 }
931
932 /**
933 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
934 * @mtd: mtd info
935 * @ofs: offset to start unlock from
936 * @len: length to unlock
937 * @invert: when = 0, unlock the range of blocks within the lower and
938 * upper boundary address
939 * when = 1, unlock the range of blocks outside the boundaries
940 * of the lower and upper boundary address
941 *
942 * Returs unlock status.
943 */
__nand_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len,int invert)944 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
945 uint64_t len, int invert)
946 {
947 int ret = 0;
948 int status, page;
949 struct nand_chip *chip = mtd->priv;
950
951 /* Submit address of first page to unlock */
952 page = ofs >> chip->page_shift;
953 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
954
955 /* Submit address of last page to unlock */
956 page = (ofs + len) >> chip->page_shift;
957 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
958 (page | invert) & chip->pagemask);
959
960 /* Call wait ready function */
961 status = chip->waitfunc(mtd, chip);
962 /* See if device thinks it succeeded */
963 if (status & NAND_STATUS_FAIL) {
964 pr_debug("%s: error status = 0x%08x\n",
965 __func__, status);
966 ret = -EIO;
967 }
968
969 return ret;
970 }
971
972 /**
973 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
974 * @mtd: mtd info
975 * @ofs: offset to start unlock from
976 * @len: length to unlock
977 *
978 * Returns unlock status.
979 */
nand_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)980 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
981 {
982 int ret = 0;
983 int chipnr;
984 struct nand_chip *chip = mtd->priv;
985
986 pr_debug("%s: start = 0x%012llx, len = %llu\n",
987 __func__, (unsigned long long)ofs, len);
988
989 if (check_offs_len(mtd, ofs, len))
990 return -EINVAL;
991
992 /* Align to last block address if size addresses end of the device */
993 if (ofs + len == mtd->size)
994 len -= mtd->erasesize;
995
996 nand_get_device(mtd, FL_UNLOCKING);
997
998 /* Shift to get chip number */
999 chipnr = ofs >> chip->chip_shift;
1000
1001 chip->select_chip(mtd, chipnr);
1002
1003 /*
1004 * Reset the chip.
1005 * If we want to check the WP through READ STATUS and check the bit 7
1006 * we must reset the chip
1007 * some operation can also clear the bit 7 of status register
1008 * eg. erase/program a locked block
1009 */
1010 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1011
1012 /* Check, if it is write protected */
1013 if (nand_check_wp(mtd)) {
1014 pr_debug("%s: device is write protected!\n",
1015 __func__);
1016 ret = -EIO;
1017 goto out;
1018 }
1019
1020 ret = __nand_unlock(mtd, ofs, len, 0);
1021
1022 out:
1023 chip->select_chip(mtd, -1);
1024 nand_release_device(mtd);
1025
1026 return ret;
1027 }
1028 EXPORT_SYMBOL(nand_unlock);
1029
1030 /**
1031 * nand_lock - [REPLACEABLE] locks all blocks present in the device
1032 * @mtd: mtd info
1033 * @ofs: offset to start unlock from
1034 * @len: length to unlock
1035 *
1036 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1037 * have this feature, but it allows only to lock all blocks, not for specified
1038 * range for block. Implementing 'lock' feature by making use of 'unlock', for
1039 * now.
1040 *
1041 * Returns lock status.
1042 */
nand_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1043 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1044 {
1045 int ret = 0;
1046 int chipnr, status, page;
1047 struct nand_chip *chip = mtd->priv;
1048
1049 pr_debug("%s: start = 0x%012llx, len = %llu\n",
1050 __func__, (unsigned long long)ofs, len);
1051
1052 if (check_offs_len(mtd, ofs, len))
1053 return -EINVAL;
1054
1055 nand_get_device(mtd, FL_LOCKING);
1056
1057 /* Shift to get chip number */
1058 chipnr = ofs >> chip->chip_shift;
1059
1060 chip->select_chip(mtd, chipnr);
1061
1062 /*
1063 * Reset the chip.
1064 * If we want to check the WP through READ STATUS and check the bit 7
1065 * we must reset the chip
1066 * some operation can also clear the bit 7 of status register
1067 * eg. erase/program a locked block
1068 */
1069 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1070
1071 /* Check, if it is write protected */
1072 if (nand_check_wp(mtd)) {
1073 pr_debug("%s: device is write protected!\n",
1074 __func__);
1075 status = MTD_ERASE_FAILED;
1076 ret = -EIO;
1077 goto out;
1078 }
1079
1080 /* Submit address of first page to lock */
1081 page = ofs >> chip->page_shift;
1082 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1083
1084 /* Call wait ready function */
1085 status = chip->waitfunc(mtd, chip);
1086 /* See if device thinks it succeeded */
1087 if (status & NAND_STATUS_FAIL) {
1088 pr_debug("%s: error status = 0x%08x\n",
1089 __func__, status);
1090 ret = -EIO;
1091 goto out;
1092 }
1093
1094 ret = __nand_unlock(mtd, ofs, len, 0x1);
1095
1096 out:
1097 chip->select_chip(mtd, -1);
1098 nand_release_device(mtd);
1099
1100 return ret;
1101 }
1102 EXPORT_SYMBOL(nand_lock);
1103
1104 /**
1105 * nand_read_page_raw - [INTERN] read raw page data without ecc
1106 * @mtd: mtd info structure
1107 * @chip: nand chip info structure
1108 * @buf: buffer to store read data
1109 * @oob_required: caller requires OOB data read to chip->oob_poi
1110 * @page: page number to read
1111 *
1112 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1113 */
nand_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1114 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1115 uint8_t *buf, int oob_required, int page)
1116 {
1117 chip->read_buf(mtd, buf, mtd->writesize);
1118 if (oob_required)
1119 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1120 return 0;
1121 }
1122
1123 /**
1124 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1125 * @mtd: mtd info structure
1126 * @chip: nand chip info structure
1127 * @buf: buffer to store read data
1128 * @oob_required: caller requires OOB data read to chip->oob_poi
1129 * @page: page number to read
1130 *
1131 * We need a special oob layout and handling even when OOB isn't used.
1132 */
nand_read_page_raw_syndrome(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1133 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1134 struct nand_chip *chip, uint8_t *buf,
1135 int oob_required, int page)
1136 {
1137 int eccsize = chip->ecc.size;
1138 int eccbytes = chip->ecc.bytes;
1139 uint8_t *oob = chip->oob_poi;
1140 int steps, size;
1141
1142 for (steps = chip->ecc.steps; steps > 0; steps--) {
1143 chip->read_buf(mtd, buf, eccsize);
1144 buf += eccsize;
1145
1146 if (chip->ecc.prepad) {
1147 chip->read_buf(mtd, oob, chip->ecc.prepad);
1148 oob += chip->ecc.prepad;
1149 }
1150
1151 chip->read_buf(mtd, oob, eccbytes);
1152 oob += eccbytes;
1153
1154 if (chip->ecc.postpad) {
1155 chip->read_buf(mtd, oob, chip->ecc.postpad);
1156 oob += chip->ecc.postpad;
1157 }
1158 }
1159
1160 size = mtd->oobsize - (oob - chip->oob_poi);
1161 if (size)
1162 chip->read_buf(mtd, oob, size);
1163
1164 return 0;
1165 }
1166
1167 /**
1168 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1169 * @mtd: mtd info structure
1170 * @chip: nand chip info structure
1171 * @buf: buffer to store read data
1172 * @oob_required: caller requires OOB data read to chip->oob_poi
1173 * @page: page number to read
1174 */
nand_read_page_swecc(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1175 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1176 uint8_t *buf, int oob_required, int page)
1177 {
1178 int i, eccsize = chip->ecc.size;
1179 int eccbytes = chip->ecc.bytes;
1180 int eccsteps = chip->ecc.steps;
1181 uint8_t *p = buf;
1182 uint8_t *ecc_calc = chip->buffers->ecccalc;
1183 uint8_t *ecc_code = chip->buffers->ecccode;
1184 uint32_t *eccpos = chip->ecc.layout->eccpos;
1185 unsigned int max_bitflips = 0;
1186
1187 chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1188
1189 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1190 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1191
1192 for (i = 0; i < chip->ecc.total; i++)
1193 ecc_code[i] = chip->oob_poi[eccpos[i]];
1194
1195 eccsteps = chip->ecc.steps;
1196 p = buf;
1197
1198 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1199 int stat;
1200
1201 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1202 if (stat < 0) {
1203 mtd->ecc_stats.failed++;
1204 } else {
1205 mtd->ecc_stats.corrected += stat;
1206 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1207 }
1208 }
1209 return max_bitflips;
1210 }
1211
1212 /**
1213 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1214 * @mtd: mtd info structure
1215 * @chip: nand chip info structure
1216 * @data_offs: offset of requested data within the page
1217 * @readlen: data length
1218 * @bufpoi: buffer to store read data
1219 * @page: page number to read
1220 */
nand_read_subpage(struct mtd_info * mtd,struct nand_chip * chip,uint32_t data_offs,uint32_t readlen,uint8_t * bufpoi,int page)1221 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1222 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1223 int page)
1224 {
1225 int start_step, end_step, num_steps;
1226 uint32_t *eccpos = chip->ecc.layout->eccpos;
1227 uint8_t *p;
1228 int data_col_addr, i, gaps = 0;
1229 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1230 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1231 int index;
1232 unsigned int max_bitflips = 0;
1233
1234 /* Column address within the page aligned to ECC size (256bytes) */
1235 start_step = data_offs / chip->ecc.size;
1236 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1237 num_steps = end_step - start_step + 1;
1238 index = start_step * chip->ecc.bytes;
1239
1240 /* Data size aligned to ECC ecc.size */
1241 datafrag_len = num_steps * chip->ecc.size;
1242 eccfrag_len = num_steps * chip->ecc.bytes;
1243
1244 data_col_addr = start_step * chip->ecc.size;
1245 /* If we read not a page aligned data */
1246 if (data_col_addr != 0)
1247 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1248
1249 p = bufpoi + data_col_addr;
1250 chip->read_buf(mtd, p, datafrag_len);
1251
1252 /* Calculate ECC */
1253 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1254 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1255
1256 /*
1257 * The performance is faster if we position offsets according to
1258 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1259 */
1260 for (i = 0; i < eccfrag_len - 1; i++) {
1261 if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1262 gaps = 1;
1263 break;
1264 }
1265 }
1266 if (gaps) {
1267 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1268 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1269 } else {
1270 /*
1271 * Send the command to read the particular ECC bytes take care
1272 * about buswidth alignment in read_buf.
1273 */
1274 aligned_pos = eccpos[index] & ~(busw - 1);
1275 aligned_len = eccfrag_len;
1276 if (eccpos[index] & (busw - 1))
1277 aligned_len++;
1278 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1279 aligned_len++;
1280
1281 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1282 mtd->writesize + aligned_pos, -1);
1283 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1284 }
1285
1286 for (i = 0; i < eccfrag_len; i++)
1287 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1288
1289 p = bufpoi + data_col_addr;
1290 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1291 int stat;
1292
1293 stat = chip->ecc.correct(mtd, p,
1294 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1295 if (stat < 0) {
1296 mtd->ecc_stats.failed++;
1297 } else {
1298 mtd->ecc_stats.corrected += stat;
1299 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1300 }
1301 }
1302 return max_bitflips;
1303 }
1304
1305 /**
1306 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1307 * @mtd: mtd info structure
1308 * @chip: nand chip info structure
1309 * @buf: buffer to store read data
1310 * @oob_required: caller requires OOB data read to chip->oob_poi
1311 * @page: page number to read
1312 *
1313 * Not for syndrome calculating ECC controllers which need a special oob layout.
1314 */
nand_read_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1315 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1316 uint8_t *buf, int oob_required, int page)
1317 {
1318 int i, eccsize = chip->ecc.size;
1319 int eccbytes = chip->ecc.bytes;
1320 int eccsteps = chip->ecc.steps;
1321 uint8_t *p = buf;
1322 uint8_t *ecc_calc = chip->buffers->ecccalc;
1323 uint8_t *ecc_code = chip->buffers->ecccode;
1324 uint32_t *eccpos = chip->ecc.layout->eccpos;
1325 unsigned int max_bitflips = 0;
1326
1327 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1328 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1329 chip->read_buf(mtd, p, eccsize);
1330 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1331 }
1332 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1333
1334 for (i = 0; i < chip->ecc.total; i++)
1335 ecc_code[i] = chip->oob_poi[eccpos[i]];
1336
1337 eccsteps = chip->ecc.steps;
1338 p = buf;
1339
1340 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1341 int stat;
1342
1343 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1344 if (stat < 0) {
1345 mtd->ecc_stats.failed++;
1346 } else {
1347 mtd->ecc_stats.corrected += stat;
1348 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1349 }
1350 }
1351 return max_bitflips;
1352 }
1353
1354 /**
1355 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1356 * @mtd: mtd info structure
1357 * @chip: nand chip info structure
1358 * @buf: buffer to store read data
1359 * @oob_required: caller requires OOB data read to chip->oob_poi
1360 * @page: page number to read
1361 *
1362 * Hardware ECC for large page chips, require OOB to be read first. For this
1363 * ECC mode, the write_page method is re-used from ECC_HW. These methods
1364 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1365 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1366 * the data area, by overwriting the NAND manufacturer bad block markings.
1367 */
nand_read_page_hwecc_oob_first(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1368 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1369 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1370 {
1371 int i, eccsize = chip->ecc.size;
1372 int eccbytes = chip->ecc.bytes;
1373 int eccsteps = chip->ecc.steps;
1374 uint8_t *p = buf;
1375 uint8_t *ecc_code = chip->buffers->ecccode;
1376 uint32_t *eccpos = chip->ecc.layout->eccpos;
1377 uint8_t *ecc_calc = chip->buffers->ecccalc;
1378 unsigned int max_bitflips = 0;
1379
1380 /* Read the OOB area first */
1381 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1382 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1383 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1384
1385 for (i = 0; i < chip->ecc.total; i++)
1386 ecc_code[i] = chip->oob_poi[eccpos[i]];
1387
1388 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1389 int stat;
1390
1391 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1392 chip->read_buf(mtd, p, eccsize);
1393 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1394
1395 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1396 if (stat < 0) {
1397 mtd->ecc_stats.failed++;
1398 } else {
1399 mtd->ecc_stats.corrected += stat;
1400 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1401 }
1402 }
1403 return max_bitflips;
1404 }
1405
1406 /**
1407 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1408 * @mtd: mtd info structure
1409 * @chip: nand chip info structure
1410 * @buf: buffer to store read data
1411 * @oob_required: caller requires OOB data read to chip->oob_poi
1412 * @page: page number to read
1413 *
1414 * The hw generator calculates the error syndrome automatically. Therefore we
1415 * need a special oob layout and handling.
1416 */
nand_read_page_syndrome(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1417 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1418 uint8_t *buf, int oob_required, int page)
1419 {
1420 int i, eccsize = chip->ecc.size;
1421 int eccbytes = chip->ecc.bytes;
1422 int eccsteps = chip->ecc.steps;
1423 uint8_t *p = buf;
1424 uint8_t *oob = chip->oob_poi;
1425 unsigned int max_bitflips = 0;
1426
1427 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1428 int stat;
1429
1430 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1431 chip->read_buf(mtd, p, eccsize);
1432
1433 if (chip->ecc.prepad) {
1434 chip->read_buf(mtd, oob, chip->ecc.prepad);
1435 oob += chip->ecc.prepad;
1436 }
1437
1438 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1439 chip->read_buf(mtd, oob, eccbytes);
1440 stat = chip->ecc.correct(mtd, p, oob, NULL);
1441
1442 if (stat < 0) {
1443 mtd->ecc_stats.failed++;
1444 } else {
1445 mtd->ecc_stats.corrected += stat;
1446 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1447 }
1448
1449 oob += eccbytes;
1450
1451 if (chip->ecc.postpad) {
1452 chip->read_buf(mtd, oob, chip->ecc.postpad);
1453 oob += chip->ecc.postpad;
1454 }
1455 }
1456
1457 /* Calculate remaining oob bytes */
1458 i = mtd->oobsize - (oob - chip->oob_poi);
1459 if (i)
1460 chip->read_buf(mtd, oob, i);
1461
1462 return max_bitflips;
1463 }
1464
1465 /**
1466 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1467 * @chip: nand chip structure
1468 * @oob: oob destination address
1469 * @ops: oob ops structure
1470 * @len: size of oob to transfer
1471 */
nand_transfer_oob(struct nand_chip * chip,uint8_t * oob,struct mtd_oob_ops * ops,size_t len)1472 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1473 struct mtd_oob_ops *ops, size_t len)
1474 {
1475 switch (ops->mode) {
1476
1477 case MTD_OPS_PLACE_OOB:
1478 case MTD_OPS_RAW:
1479 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1480 return oob + len;
1481
1482 case MTD_OPS_AUTO_OOB: {
1483 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1484 uint32_t boffs = 0, roffs = ops->ooboffs;
1485 size_t bytes = 0;
1486
1487 for (; free->length && len; free++, len -= bytes) {
1488 /* Read request not from offset 0? */
1489 if (unlikely(roffs)) {
1490 if (roffs >= free->length) {
1491 roffs -= free->length;
1492 continue;
1493 }
1494 boffs = free->offset + roffs;
1495 bytes = min_t(size_t, len,
1496 (free->length - roffs));
1497 roffs = 0;
1498 } else {
1499 bytes = min_t(size_t, len, free->length);
1500 boffs = free->offset;
1501 }
1502 memcpy(oob, chip->oob_poi + boffs, bytes);
1503 oob += bytes;
1504 }
1505 return oob;
1506 }
1507 default:
1508 BUG();
1509 }
1510 return NULL;
1511 }
1512
1513 /**
1514 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1515 * @mtd: MTD device structure
1516 * @retry_mode: the retry mode to use
1517 *
1518 * Some vendors supply a special command to shift the Vt threshold, to be used
1519 * when there are too many bitflips in a page (i.e., ECC error). After setting
1520 * a new threshold, the host should retry reading the page.
1521 */
nand_setup_read_retry(struct mtd_info * mtd,int retry_mode)1522 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1523 {
1524 struct nand_chip *chip = mtd->priv;
1525
1526 pr_debug("setting READ RETRY mode %d\n", retry_mode);
1527
1528 if (retry_mode >= chip->read_retries)
1529 return -EINVAL;
1530
1531 if (!chip->setup_read_retry)
1532 return -EOPNOTSUPP;
1533
1534 return chip->setup_read_retry(mtd, retry_mode);
1535 }
1536
1537 /**
1538 * nand_do_read_ops - [INTERN] Read data with ECC
1539 * @mtd: MTD device structure
1540 * @from: offset to read from
1541 * @ops: oob ops structure
1542 *
1543 * Internal function. Called with chip held.
1544 */
nand_do_read_ops(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1545 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1546 struct mtd_oob_ops *ops)
1547 {
1548 int chipnr, page, realpage, col, bytes, aligned, oob_required;
1549 struct nand_chip *chip = mtd->priv;
1550 int ret = 0;
1551 uint32_t readlen = ops->len;
1552 uint32_t oobreadlen = ops->ooblen;
1553 uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1554 mtd->oobavail : mtd->oobsize;
1555
1556 uint8_t *bufpoi, *oob, *buf;
1557 int use_bufpoi;
1558 unsigned int max_bitflips = 0;
1559 int retry_mode = 0;
1560 bool ecc_fail = false;
1561
1562 chipnr = (int)(from >> chip->chip_shift);
1563 chip->select_chip(mtd, chipnr);
1564
1565 realpage = (int)(from >> chip->page_shift);
1566 page = realpage & chip->pagemask;
1567
1568 col = (int)(from & (mtd->writesize - 1));
1569
1570 buf = ops->datbuf;
1571 oob = ops->oobbuf;
1572 oob_required = oob ? 1 : 0;
1573
1574 while (1) {
1575 unsigned int ecc_failures = mtd->ecc_stats.failed;
1576
1577 bytes = min(mtd->writesize - col, readlen);
1578 aligned = (bytes == mtd->writesize);
1579
1580 if (!aligned)
1581 use_bufpoi = 1;
1582 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1583 use_bufpoi = !virt_addr_valid(buf);
1584 else
1585 use_bufpoi = 0;
1586
1587 /* Is the current page in the buffer? */
1588 if (realpage != chip->pagebuf || oob) {
1589 bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1590
1591 if (use_bufpoi && aligned)
1592 pr_debug("%s: using read bounce buffer for buf@%p\n",
1593 __func__, buf);
1594
1595 read_retry:
1596 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1597
1598 /*
1599 * Now read the page into the buffer. Absent an error,
1600 * the read methods return max bitflips per ecc step.
1601 */
1602 if (unlikely(ops->mode == MTD_OPS_RAW))
1603 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1604 oob_required,
1605 page);
1606 else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1607 !oob)
1608 ret = chip->ecc.read_subpage(mtd, chip,
1609 col, bytes, bufpoi,
1610 page);
1611 else
1612 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1613 oob_required, page);
1614 if (ret < 0) {
1615 if (use_bufpoi)
1616 /* Invalidate page cache */
1617 chip->pagebuf = -1;
1618 break;
1619 }
1620
1621 max_bitflips = max_t(unsigned int, max_bitflips, ret);
1622
1623 /* Transfer not aligned data */
1624 if (use_bufpoi) {
1625 if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1626 !(mtd->ecc_stats.failed - ecc_failures) &&
1627 (ops->mode != MTD_OPS_RAW)) {
1628 chip->pagebuf = realpage;
1629 chip->pagebuf_bitflips = ret;
1630 } else {
1631 /* Invalidate page cache */
1632 chip->pagebuf = -1;
1633 }
1634 memcpy(buf, chip->buffers->databuf + col, bytes);
1635 }
1636
1637 if (unlikely(oob)) {
1638 int toread = min(oobreadlen, max_oobsize);
1639
1640 if (toread) {
1641 oob = nand_transfer_oob(chip,
1642 oob, ops, toread);
1643 oobreadlen -= toread;
1644 }
1645 }
1646
1647 if (chip->options & NAND_NEED_READRDY) {
1648 /* Apply delay or wait for ready/busy pin */
1649 if (!chip->dev_ready)
1650 udelay(chip->chip_delay);
1651 else
1652 nand_wait_ready(mtd);
1653 }
1654
1655 if (mtd->ecc_stats.failed - ecc_failures) {
1656 if (retry_mode + 1 < chip->read_retries) {
1657 retry_mode++;
1658 ret = nand_setup_read_retry(mtd,
1659 retry_mode);
1660 if (ret < 0)
1661 break;
1662
1663 /* Reset failures; retry */
1664 mtd->ecc_stats.failed = ecc_failures;
1665 goto read_retry;
1666 } else {
1667 /* No more retry modes; real failure */
1668 ecc_fail = true;
1669 }
1670 }
1671
1672 buf += bytes;
1673 } else {
1674 memcpy(buf, chip->buffers->databuf + col, bytes);
1675 buf += bytes;
1676 max_bitflips = max_t(unsigned int, max_bitflips,
1677 chip->pagebuf_bitflips);
1678 }
1679
1680 readlen -= bytes;
1681
1682 /* Reset to retry mode 0 */
1683 if (retry_mode) {
1684 ret = nand_setup_read_retry(mtd, 0);
1685 if (ret < 0)
1686 break;
1687 retry_mode = 0;
1688 }
1689
1690 if (!readlen)
1691 break;
1692
1693 /* For subsequent reads align to page boundary */
1694 col = 0;
1695 /* Increment page address */
1696 realpage++;
1697
1698 page = realpage & chip->pagemask;
1699 /* Check, if we cross a chip boundary */
1700 if (!page) {
1701 chipnr++;
1702 chip->select_chip(mtd, -1);
1703 chip->select_chip(mtd, chipnr);
1704 }
1705 }
1706 chip->select_chip(mtd, -1);
1707
1708 ops->retlen = ops->len - (size_t) readlen;
1709 if (oob)
1710 ops->oobretlen = ops->ooblen - oobreadlen;
1711
1712 if (ret < 0)
1713 return ret;
1714
1715 if (ecc_fail)
1716 return -EBADMSG;
1717
1718 return max_bitflips;
1719 }
1720
1721 /**
1722 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1723 * @mtd: MTD device structure
1724 * @from: offset to read from
1725 * @len: number of bytes to read
1726 * @retlen: pointer to variable to store the number of read bytes
1727 * @buf: the databuffer to put data
1728 *
1729 * Get hold of the chip and call nand_do_read.
1730 */
nand_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,uint8_t * buf)1731 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1732 size_t *retlen, uint8_t *buf)
1733 {
1734 struct mtd_oob_ops ops;
1735 int ret;
1736
1737 nand_get_device(mtd, FL_READING);
1738 memset(&ops, 0, sizeof(ops));
1739 ops.len = len;
1740 ops.datbuf = buf;
1741 ops.mode = MTD_OPS_PLACE_OOB;
1742 ret = nand_do_read_ops(mtd, from, &ops);
1743 *retlen = ops.retlen;
1744 nand_release_device(mtd);
1745 return ret;
1746 }
1747
1748 /**
1749 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1750 * @mtd: mtd info structure
1751 * @chip: nand chip info structure
1752 * @page: page number to read
1753 */
nand_read_oob_std(struct mtd_info * mtd,struct nand_chip * chip,int page)1754 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1755 int page)
1756 {
1757 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1758 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1759 return 0;
1760 }
1761
1762 /**
1763 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1764 * with syndromes
1765 * @mtd: mtd info structure
1766 * @chip: nand chip info structure
1767 * @page: page number to read
1768 */
nand_read_oob_syndrome(struct mtd_info * mtd,struct nand_chip * chip,int page)1769 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1770 int page)
1771 {
1772 int length = mtd->oobsize;
1773 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1774 int eccsize = chip->ecc.size;
1775 uint8_t *bufpoi = chip->oob_poi;
1776 int i, toread, sndrnd = 0, pos;
1777
1778 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1779 for (i = 0; i < chip->ecc.steps; i++) {
1780 if (sndrnd) {
1781 pos = eccsize + i * (eccsize + chunk);
1782 if (mtd->writesize > 512)
1783 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1784 else
1785 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1786 } else
1787 sndrnd = 1;
1788 toread = min_t(int, length, chunk);
1789 chip->read_buf(mtd, bufpoi, toread);
1790 bufpoi += toread;
1791 length -= toread;
1792 }
1793 if (length > 0)
1794 chip->read_buf(mtd, bufpoi, length);
1795
1796 return 0;
1797 }
1798
1799 /**
1800 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1801 * @mtd: mtd info structure
1802 * @chip: nand chip info structure
1803 * @page: page number to write
1804 */
nand_write_oob_std(struct mtd_info * mtd,struct nand_chip * chip,int page)1805 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1806 int page)
1807 {
1808 int status = 0;
1809 const uint8_t *buf = chip->oob_poi;
1810 int length = mtd->oobsize;
1811
1812 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1813 chip->write_buf(mtd, buf, length);
1814 /* Send command to program the OOB data */
1815 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1816
1817 status = chip->waitfunc(mtd, chip);
1818
1819 return status & NAND_STATUS_FAIL ? -EIO : 0;
1820 }
1821
1822 /**
1823 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1824 * with syndrome - only for large page flash
1825 * @mtd: mtd info structure
1826 * @chip: nand chip info structure
1827 * @page: page number to write
1828 */
nand_write_oob_syndrome(struct mtd_info * mtd,struct nand_chip * chip,int page)1829 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1830 struct nand_chip *chip, int page)
1831 {
1832 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1833 int eccsize = chip->ecc.size, length = mtd->oobsize;
1834 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1835 const uint8_t *bufpoi = chip->oob_poi;
1836
1837 /*
1838 * data-ecc-data-ecc ... ecc-oob
1839 * or
1840 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1841 */
1842 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1843 pos = steps * (eccsize + chunk);
1844 steps = 0;
1845 } else
1846 pos = eccsize;
1847
1848 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1849 for (i = 0; i < steps; i++) {
1850 if (sndcmd) {
1851 if (mtd->writesize <= 512) {
1852 uint32_t fill = 0xFFFFFFFF;
1853
1854 len = eccsize;
1855 while (len > 0) {
1856 int num = min_t(int, len, 4);
1857 chip->write_buf(mtd, (uint8_t *)&fill,
1858 num);
1859 len -= num;
1860 }
1861 } else {
1862 pos = eccsize + i * (eccsize + chunk);
1863 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1864 }
1865 } else
1866 sndcmd = 1;
1867 len = min_t(int, length, chunk);
1868 chip->write_buf(mtd, bufpoi, len);
1869 bufpoi += len;
1870 length -= len;
1871 }
1872 if (length > 0)
1873 chip->write_buf(mtd, bufpoi, length);
1874
1875 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1876 status = chip->waitfunc(mtd, chip);
1877
1878 return status & NAND_STATUS_FAIL ? -EIO : 0;
1879 }
1880
1881 /**
1882 * nand_do_read_oob - [INTERN] NAND read out-of-band
1883 * @mtd: MTD device structure
1884 * @from: offset to read from
1885 * @ops: oob operations description structure
1886 *
1887 * NAND read out-of-band data from the spare area.
1888 */
nand_do_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1889 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1890 struct mtd_oob_ops *ops)
1891 {
1892 int page, realpage, chipnr;
1893 struct nand_chip *chip = mtd->priv;
1894 struct mtd_ecc_stats stats;
1895 int readlen = ops->ooblen;
1896 int len;
1897 uint8_t *buf = ops->oobbuf;
1898 int ret = 0;
1899
1900 pr_debug("%s: from = 0x%08Lx, len = %i\n",
1901 __func__, (unsigned long long)from, readlen);
1902
1903 stats = mtd->ecc_stats;
1904
1905 if (ops->mode == MTD_OPS_AUTO_OOB)
1906 len = chip->ecc.layout->oobavail;
1907 else
1908 len = mtd->oobsize;
1909
1910 if (unlikely(ops->ooboffs >= len)) {
1911 pr_debug("%s: attempt to start read outside oob\n",
1912 __func__);
1913 return -EINVAL;
1914 }
1915
1916 /* Do not allow reads past end of device */
1917 if (unlikely(from >= mtd->size ||
1918 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1919 (from >> chip->page_shift)) * len)) {
1920 pr_debug("%s: attempt to read beyond end of device\n",
1921 __func__);
1922 return -EINVAL;
1923 }
1924
1925 chipnr = (int)(from >> chip->chip_shift);
1926 chip->select_chip(mtd, chipnr);
1927
1928 /* Shift to get page */
1929 realpage = (int)(from >> chip->page_shift);
1930 page = realpage & chip->pagemask;
1931
1932 while (1) {
1933 if (ops->mode == MTD_OPS_RAW)
1934 ret = chip->ecc.read_oob_raw(mtd, chip, page);
1935 else
1936 ret = chip->ecc.read_oob(mtd, chip, page);
1937
1938 if (ret < 0)
1939 break;
1940
1941 len = min(len, readlen);
1942 buf = nand_transfer_oob(chip, buf, ops, len);
1943
1944 if (chip->options & NAND_NEED_READRDY) {
1945 /* Apply delay or wait for ready/busy pin */
1946 if (!chip->dev_ready)
1947 udelay(chip->chip_delay);
1948 else
1949 nand_wait_ready(mtd);
1950 }
1951
1952 readlen -= len;
1953 if (!readlen)
1954 break;
1955
1956 /* Increment page address */
1957 realpage++;
1958
1959 page = realpage & chip->pagemask;
1960 /* Check, if we cross a chip boundary */
1961 if (!page) {
1962 chipnr++;
1963 chip->select_chip(mtd, -1);
1964 chip->select_chip(mtd, chipnr);
1965 }
1966 }
1967 chip->select_chip(mtd, -1);
1968
1969 ops->oobretlen = ops->ooblen - readlen;
1970
1971 if (ret < 0)
1972 return ret;
1973
1974 if (mtd->ecc_stats.failed - stats.failed)
1975 return -EBADMSG;
1976
1977 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1978 }
1979
1980 /**
1981 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1982 * @mtd: MTD device structure
1983 * @from: offset to read from
1984 * @ops: oob operation description structure
1985 *
1986 * NAND read data and/or out-of-band data.
1987 */
nand_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1988 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1989 struct mtd_oob_ops *ops)
1990 {
1991 int ret = -ENOTSUPP;
1992
1993 ops->retlen = 0;
1994
1995 /* Do not allow reads past end of device */
1996 if (ops->datbuf && (from + ops->len) > mtd->size) {
1997 pr_debug("%s: attempt to read beyond end of device\n",
1998 __func__);
1999 return -EINVAL;
2000 }
2001
2002 nand_get_device(mtd, FL_READING);
2003
2004 switch (ops->mode) {
2005 case MTD_OPS_PLACE_OOB:
2006 case MTD_OPS_AUTO_OOB:
2007 case MTD_OPS_RAW:
2008 break;
2009
2010 default:
2011 goto out;
2012 }
2013
2014 if (!ops->datbuf)
2015 ret = nand_do_read_oob(mtd, from, ops);
2016 else
2017 ret = nand_do_read_ops(mtd, from, ops);
2018
2019 out:
2020 nand_release_device(mtd);
2021 return ret;
2022 }
2023
2024
2025 /**
2026 * nand_write_page_raw - [INTERN] raw page write function
2027 * @mtd: mtd info structure
2028 * @chip: nand chip info structure
2029 * @buf: data buffer
2030 * @oob_required: must write chip->oob_poi to OOB
2031 *
2032 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2033 */
nand_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required)2034 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2035 const uint8_t *buf, int oob_required)
2036 {
2037 chip->write_buf(mtd, buf, mtd->writesize);
2038 if (oob_required)
2039 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2040
2041 return 0;
2042 }
2043
2044 /**
2045 * nand_write_page_raw_syndrome - [INTERN] raw page write function
2046 * @mtd: mtd info structure
2047 * @chip: nand chip info structure
2048 * @buf: data buffer
2049 * @oob_required: must write chip->oob_poi to OOB
2050 *
2051 * We need a special oob layout and handling even when ECC isn't checked.
2052 */
nand_write_page_raw_syndrome(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required)2053 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2054 struct nand_chip *chip,
2055 const uint8_t *buf, int oob_required)
2056 {
2057 int eccsize = chip->ecc.size;
2058 int eccbytes = chip->ecc.bytes;
2059 uint8_t *oob = chip->oob_poi;
2060 int steps, size;
2061
2062 for (steps = chip->ecc.steps; steps > 0; steps--) {
2063 chip->write_buf(mtd, buf, eccsize);
2064 buf += eccsize;
2065
2066 if (chip->ecc.prepad) {
2067 chip->write_buf(mtd, oob, chip->ecc.prepad);
2068 oob += chip->ecc.prepad;
2069 }
2070
2071 chip->write_buf(mtd, oob, eccbytes);
2072 oob += eccbytes;
2073
2074 if (chip->ecc.postpad) {
2075 chip->write_buf(mtd, oob, chip->ecc.postpad);
2076 oob += chip->ecc.postpad;
2077 }
2078 }
2079
2080 size = mtd->oobsize - (oob - chip->oob_poi);
2081 if (size)
2082 chip->write_buf(mtd, oob, size);
2083
2084 return 0;
2085 }
2086 /**
2087 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2088 * @mtd: mtd info structure
2089 * @chip: nand chip info structure
2090 * @buf: data buffer
2091 * @oob_required: must write chip->oob_poi to OOB
2092 */
nand_write_page_swecc(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required)2093 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2094 const uint8_t *buf, int oob_required)
2095 {
2096 int i, eccsize = chip->ecc.size;
2097 int eccbytes = chip->ecc.bytes;
2098 int eccsteps = chip->ecc.steps;
2099 uint8_t *ecc_calc = chip->buffers->ecccalc;
2100 const uint8_t *p = buf;
2101 uint32_t *eccpos = chip->ecc.layout->eccpos;
2102
2103 /* Software ECC calculation */
2104 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2105 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2106
2107 for (i = 0; i < chip->ecc.total; i++)
2108 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2109
2110 return chip->ecc.write_page_raw(mtd, chip, buf, 1);
2111 }
2112
2113 /**
2114 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2115 * @mtd: mtd info structure
2116 * @chip: nand chip info structure
2117 * @buf: data buffer
2118 * @oob_required: must write chip->oob_poi to OOB
2119 */
nand_write_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required)2120 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2121 const uint8_t *buf, int oob_required)
2122 {
2123 int i, eccsize = chip->ecc.size;
2124 int eccbytes = chip->ecc.bytes;
2125 int eccsteps = chip->ecc.steps;
2126 uint8_t *ecc_calc = chip->buffers->ecccalc;
2127 const uint8_t *p = buf;
2128 uint32_t *eccpos = chip->ecc.layout->eccpos;
2129
2130 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2131 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2132 chip->write_buf(mtd, p, eccsize);
2133 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2134 }
2135
2136 for (i = 0; i < chip->ecc.total; i++)
2137 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2138
2139 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2140
2141 return 0;
2142 }
2143
2144
2145 /**
2146 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2147 * @mtd: mtd info structure
2148 * @chip: nand chip info structure
2149 * @offset: column address of subpage within the page
2150 * @data_len: data length
2151 * @buf: data buffer
2152 * @oob_required: must write chip->oob_poi to OOB
2153 */
nand_write_subpage_hwecc(struct mtd_info * mtd,struct nand_chip * chip,uint32_t offset,uint32_t data_len,const uint8_t * buf,int oob_required)2154 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2155 struct nand_chip *chip, uint32_t offset,
2156 uint32_t data_len, const uint8_t *buf,
2157 int oob_required)
2158 {
2159 uint8_t *oob_buf = chip->oob_poi;
2160 uint8_t *ecc_calc = chip->buffers->ecccalc;
2161 int ecc_size = chip->ecc.size;
2162 int ecc_bytes = chip->ecc.bytes;
2163 int ecc_steps = chip->ecc.steps;
2164 uint32_t *eccpos = chip->ecc.layout->eccpos;
2165 uint32_t start_step = offset / ecc_size;
2166 uint32_t end_step = (offset + data_len - 1) / ecc_size;
2167 int oob_bytes = mtd->oobsize / ecc_steps;
2168 int step, i;
2169
2170 for (step = 0; step < ecc_steps; step++) {
2171 /* configure controller for WRITE access */
2172 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2173
2174 /* write data (untouched subpages already masked by 0xFF) */
2175 chip->write_buf(mtd, buf, ecc_size);
2176
2177 /* mask ECC of un-touched subpages by padding 0xFF */
2178 if ((step < start_step) || (step > end_step))
2179 memset(ecc_calc, 0xff, ecc_bytes);
2180 else
2181 chip->ecc.calculate(mtd, buf, ecc_calc);
2182
2183 /* mask OOB of un-touched subpages by padding 0xFF */
2184 /* if oob_required, preserve OOB metadata of written subpage */
2185 if (!oob_required || (step < start_step) || (step > end_step))
2186 memset(oob_buf, 0xff, oob_bytes);
2187
2188 buf += ecc_size;
2189 ecc_calc += ecc_bytes;
2190 oob_buf += oob_bytes;
2191 }
2192
2193 /* copy calculated ECC for whole page to chip->buffer->oob */
2194 /* this include masked-value(0xFF) for unwritten subpages */
2195 ecc_calc = chip->buffers->ecccalc;
2196 for (i = 0; i < chip->ecc.total; i++)
2197 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2198
2199 /* write OOB buffer to NAND device */
2200 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2201
2202 return 0;
2203 }
2204
2205
2206 /**
2207 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2208 * @mtd: mtd info structure
2209 * @chip: nand chip info structure
2210 * @buf: data buffer
2211 * @oob_required: must write chip->oob_poi to OOB
2212 *
2213 * The hw generator calculates the error syndrome automatically. Therefore we
2214 * need a special oob layout and handling.
2215 */
nand_write_page_syndrome(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required)2216 static int nand_write_page_syndrome(struct mtd_info *mtd,
2217 struct nand_chip *chip,
2218 const uint8_t *buf, int oob_required)
2219 {
2220 int i, eccsize = chip->ecc.size;
2221 int eccbytes = chip->ecc.bytes;
2222 int eccsteps = chip->ecc.steps;
2223 const uint8_t *p = buf;
2224 uint8_t *oob = chip->oob_poi;
2225
2226 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2227
2228 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2229 chip->write_buf(mtd, p, eccsize);
2230
2231 if (chip->ecc.prepad) {
2232 chip->write_buf(mtd, oob, chip->ecc.prepad);
2233 oob += chip->ecc.prepad;
2234 }
2235
2236 chip->ecc.calculate(mtd, p, oob);
2237 chip->write_buf(mtd, oob, eccbytes);
2238 oob += eccbytes;
2239
2240 if (chip->ecc.postpad) {
2241 chip->write_buf(mtd, oob, chip->ecc.postpad);
2242 oob += chip->ecc.postpad;
2243 }
2244 }
2245
2246 /* Calculate remaining oob bytes */
2247 i = mtd->oobsize - (oob - chip->oob_poi);
2248 if (i)
2249 chip->write_buf(mtd, oob, i);
2250
2251 return 0;
2252 }
2253
2254 /**
2255 * nand_write_page - [REPLACEABLE] write one page
2256 * @mtd: MTD device structure
2257 * @chip: NAND chip descriptor
2258 * @offset: address offset within the page
2259 * @data_len: length of actual data to be written
2260 * @buf: the data to write
2261 * @oob_required: must write chip->oob_poi to OOB
2262 * @page: page number to write
2263 * @cached: cached programming
2264 * @raw: use _raw version of write_page
2265 */
nand_write_page(struct mtd_info * mtd,struct nand_chip * chip,uint32_t offset,int data_len,const uint8_t * buf,int oob_required,int page,int cached,int raw)2266 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2267 uint32_t offset, int data_len, const uint8_t *buf,
2268 int oob_required, int page, int cached, int raw)
2269 {
2270 int status, subpage;
2271
2272 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2273 chip->ecc.write_subpage)
2274 subpage = offset || (data_len < mtd->writesize);
2275 else
2276 subpage = 0;
2277
2278 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2279
2280 if (unlikely(raw))
2281 status = chip->ecc.write_page_raw(mtd, chip, buf,
2282 oob_required);
2283 else if (subpage)
2284 status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2285 buf, oob_required);
2286 else
2287 status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2288
2289 if (status < 0)
2290 return status;
2291
2292 /*
2293 * Cached progamming disabled for now. Not sure if it's worth the
2294 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2295 */
2296 cached = 0;
2297
2298 if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2299
2300 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2301 status = chip->waitfunc(mtd, chip);
2302 /*
2303 * See if operation failed and additional status checks are
2304 * available.
2305 */
2306 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2307 status = chip->errstat(mtd, chip, FL_WRITING, status,
2308 page);
2309
2310 if (status & NAND_STATUS_FAIL)
2311 return -EIO;
2312 } else {
2313 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2314 status = chip->waitfunc(mtd, chip);
2315 }
2316
2317 return 0;
2318 }
2319
2320 /**
2321 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2322 * @mtd: MTD device structure
2323 * @oob: oob data buffer
2324 * @len: oob data write length
2325 * @ops: oob ops structure
2326 */
nand_fill_oob(struct mtd_info * mtd,uint8_t * oob,size_t len,struct mtd_oob_ops * ops)2327 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2328 struct mtd_oob_ops *ops)
2329 {
2330 struct nand_chip *chip = mtd->priv;
2331
2332 /*
2333 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2334 * data from a previous OOB read.
2335 */
2336 memset(chip->oob_poi, 0xff, mtd->oobsize);
2337
2338 switch (ops->mode) {
2339
2340 case MTD_OPS_PLACE_OOB:
2341 case MTD_OPS_RAW:
2342 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2343 return oob + len;
2344
2345 case MTD_OPS_AUTO_OOB: {
2346 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2347 uint32_t boffs = 0, woffs = ops->ooboffs;
2348 size_t bytes = 0;
2349
2350 for (; free->length && len; free++, len -= bytes) {
2351 /* Write request not from offset 0? */
2352 if (unlikely(woffs)) {
2353 if (woffs >= free->length) {
2354 woffs -= free->length;
2355 continue;
2356 }
2357 boffs = free->offset + woffs;
2358 bytes = min_t(size_t, len,
2359 (free->length - woffs));
2360 woffs = 0;
2361 } else {
2362 bytes = min_t(size_t, len, free->length);
2363 boffs = free->offset;
2364 }
2365 memcpy(chip->oob_poi + boffs, oob, bytes);
2366 oob += bytes;
2367 }
2368 return oob;
2369 }
2370 default:
2371 BUG();
2372 }
2373 return NULL;
2374 }
2375
2376 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2377
2378 /**
2379 * nand_do_write_ops - [INTERN] NAND write with ECC
2380 * @mtd: MTD device structure
2381 * @to: offset to write to
2382 * @ops: oob operations description structure
2383 *
2384 * NAND write with ECC.
2385 */
nand_do_write_ops(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2386 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2387 struct mtd_oob_ops *ops)
2388 {
2389 int chipnr, realpage, page, blockmask, column;
2390 struct nand_chip *chip = mtd->priv;
2391 uint32_t writelen = ops->len;
2392
2393 uint32_t oobwritelen = ops->ooblen;
2394 uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2395 mtd->oobavail : mtd->oobsize;
2396
2397 uint8_t *oob = ops->oobbuf;
2398 uint8_t *buf = ops->datbuf;
2399 int ret;
2400 int oob_required = oob ? 1 : 0;
2401
2402 ops->retlen = 0;
2403 if (!writelen)
2404 return 0;
2405
2406 /* Reject writes, which are not page aligned */
2407 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2408 pr_notice("%s: attempt to write non page aligned data\n",
2409 __func__);
2410 return -EINVAL;
2411 }
2412
2413 column = to & (mtd->writesize - 1);
2414
2415 chipnr = (int)(to >> chip->chip_shift);
2416 chip->select_chip(mtd, chipnr);
2417
2418 /* Check, if it is write protected */
2419 if (nand_check_wp(mtd)) {
2420 ret = -EIO;
2421 goto err_out;
2422 }
2423
2424 realpage = (int)(to >> chip->page_shift);
2425 page = realpage & chip->pagemask;
2426 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2427
2428 /* Invalidate the page cache, when we write to the cached page */
2429 if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2430 ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2431 chip->pagebuf = -1;
2432
2433 /* Don't allow multipage oob writes with offset */
2434 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2435 ret = -EINVAL;
2436 goto err_out;
2437 }
2438
2439 while (1) {
2440 int bytes = mtd->writesize;
2441 int cached = writelen > bytes && page != blockmask;
2442 uint8_t *wbuf = buf;
2443 int use_bufpoi;
2444 int part_pagewr = (column || writelen < (mtd->writesize - 1));
2445
2446 if (part_pagewr)
2447 use_bufpoi = 1;
2448 else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2449 use_bufpoi = !virt_addr_valid(buf);
2450 else
2451 use_bufpoi = 0;
2452
2453 /* Partial page write?, or need to use bounce buffer */
2454 if (use_bufpoi) {
2455 pr_debug("%s: using write bounce buffer for buf@%p\n",
2456 __func__, buf);
2457 cached = 0;
2458 if (part_pagewr)
2459 bytes = min_t(int, bytes - column, writelen);
2460 chip->pagebuf = -1;
2461 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2462 memcpy(&chip->buffers->databuf[column], buf, bytes);
2463 wbuf = chip->buffers->databuf;
2464 }
2465
2466 if (unlikely(oob)) {
2467 size_t len = min(oobwritelen, oobmaxlen);
2468 oob = nand_fill_oob(mtd, oob, len, ops);
2469 oobwritelen -= len;
2470 } else {
2471 /* We still need to erase leftover OOB data */
2472 memset(chip->oob_poi, 0xff, mtd->oobsize);
2473 }
2474 ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2475 oob_required, page, cached,
2476 (ops->mode == MTD_OPS_RAW));
2477 if (ret)
2478 break;
2479
2480 writelen -= bytes;
2481 if (!writelen)
2482 break;
2483
2484 column = 0;
2485 buf += bytes;
2486 realpage++;
2487
2488 page = realpage & chip->pagemask;
2489 /* Check, if we cross a chip boundary */
2490 if (!page) {
2491 chipnr++;
2492 chip->select_chip(mtd, -1);
2493 chip->select_chip(mtd, chipnr);
2494 }
2495 }
2496
2497 ops->retlen = ops->len - writelen;
2498 if (unlikely(oob))
2499 ops->oobretlen = ops->ooblen;
2500
2501 err_out:
2502 chip->select_chip(mtd, -1);
2503 return ret;
2504 }
2505
2506 /**
2507 * panic_nand_write - [MTD Interface] NAND write with ECC
2508 * @mtd: MTD device structure
2509 * @to: offset to write to
2510 * @len: number of bytes to write
2511 * @retlen: pointer to variable to store the number of written bytes
2512 * @buf: the data to write
2513 *
2514 * NAND write with ECC. Used when performing writes in interrupt context, this
2515 * may for example be called by mtdoops when writing an oops while in panic.
2516 */
panic_nand_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const uint8_t * buf)2517 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2518 size_t *retlen, const uint8_t *buf)
2519 {
2520 struct nand_chip *chip = mtd->priv;
2521 struct mtd_oob_ops ops;
2522 int ret;
2523
2524 /* Wait for the device to get ready */
2525 panic_nand_wait(mtd, chip, 400);
2526
2527 /* Grab the device */
2528 panic_nand_get_device(chip, mtd, FL_WRITING);
2529
2530 memset(&ops, 0, sizeof(ops));
2531 ops.len = len;
2532 ops.datbuf = (uint8_t *)buf;
2533 ops.mode = MTD_OPS_PLACE_OOB;
2534
2535 ret = nand_do_write_ops(mtd, to, &ops);
2536
2537 *retlen = ops.retlen;
2538 return ret;
2539 }
2540
2541 /**
2542 * nand_write - [MTD Interface] NAND write with ECC
2543 * @mtd: MTD device structure
2544 * @to: offset to write to
2545 * @len: number of bytes to write
2546 * @retlen: pointer to variable to store the number of written bytes
2547 * @buf: the data to write
2548 *
2549 * NAND write with ECC.
2550 */
nand_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const uint8_t * buf)2551 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2552 size_t *retlen, const uint8_t *buf)
2553 {
2554 struct mtd_oob_ops ops;
2555 int ret;
2556
2557 nand_get_device(mtd, FL_WRITING);
2558 memset(&ops, 0, sizeof(ops));
2559 ops.len = len;
2560 ops.datbuf = (uint8_t *)buf;
2561 ops.mode = MTD_OPS_PLACE_OOB;
2562 ret = nand_do_write_ops(mtd, to, &ops);
2563 *retlen = ops.retlen;
2564 nand_release_device(mtd);
2565 return ret;
2566 }
2567
2568 /**
2569 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2570 * @mtd: MTD device structure
2571 * @to: offset to write to
2572 * @ops: oob operation description structure
2573 *
2574 * NAND write out-of-band.
2575 */
nand_do_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2576 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2577 struct mtd_oob_ops *ops)
2578 {
2579 int chipnr, page, status, len;
2580 struct nand_chip *chip = mtd->priv;
2581
2582 pr_debug("%s: to = 0x%08x, len = %i\n",
2583 __func__, (unsigned int)to, (int)ops->ooblen);
2584
2585 if (ops->mode == MTD_OPS_AUTO_OOB)
2586 len = chip->ecc.layout->oobavail;
2587 else
2588 len = mtd->oobsize;
2589
2590 /* Do not allow write past end of page */
2591 if ((ops->ooboffs + ops->ooblen) > len) {
2592 pr_debug("%s: attempt to write past end of page\n",
2593 __func__);
2594 return -EINVAL;
2595 }
2596
2597 if (unlikely(ops->ooboffs >= len)) {
2598 pr_debug("%s: attempt to start write outside oob\n",
2599 __func__);
2600 return -EINVAL;
2601 }
2602
2603 /* Do not allow write past end of device */
2604 if (unlikely(to >= mtd->size ||
2605 ops->ooboffs + ops->ooblen >
2606 ((mtd->size >> chip->page_shift) -
2607 (to >> chip->page_shift)) * len)) {
2608 pr_debug("%s: attempt to write beyond end of device\n",
2609 __func__);
2610 return -EINVAL;
2611 }
2612
2613 chipnr = (int)(to >> chip->chip_shift);
2614 chip->select_chip(mtd, chipnr);
2615
2616 /* Shift to get page */
2617 page = (int)(to >> chip->page_shift);
2618
2619 /*
2620 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2621 * of my DiskOnChip 2000 test units) will clear the whole data page too
2622 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2623 * it in the doc2000 driver in August 1999. dwmw2.
2624 */
2625 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2626
2627 /* Check, if it is write protected */
2628 if (nand_check_wp(mtd)) {
2629 chip->select_chip(mtd, -1);
2630 return -EROFS;
2631 }
2632
2633 /* Invalidate the page cache, if we write to the cached page */
2634 if (page == chip->pagebuf)
2635 chip->pagebuf = -1;
2636
2637 nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2638
2639 if (ops->mode == MTD_OPS_RAW)
2640 status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2641 else
2642 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2643
2644 chip->select_chip(mtd, -1);
2645
2646 if (status)
2647 return status;
2648
2649 ops->oobretlen = ops->ooblen;
2650
2651 return 0;
2652 }
2653
2654 /**
2655 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2656 * @mtd: MTD device structure
2657 * @to: offset to write to
2658 * @ops: oob operation description structure
2659 */
nand_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2660 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2661 struct mtd_oob_ops *ops)
2662 {
2663 int ret = -ENOTSUPP;
2664
2665 ops->retlen = 0;
2666
2667 /* Do not allow writes past end of device */
2668 if (ops->datbuf && (to + ops->len) > mtd->size) {
2669 pr_debug("%s: attempt to write beyond end of device\n",
2670 __func__);
2671 return -EINVAL;
2672 }
2673
2674 nand_get_device(mtd, FL_WRITING);
2675
2676 switch (ops->mode) {
2677 case MTD_OPS_PLACE_OOB:
2678 case MTD_OPS_AUTO_OOB:
2679 case MTD_OPS_RAW:
2680 break;
2681
2682 default:
2683 goto out;
2684 }
2685
2686 if (!ops->datbuf)
2687 ret = nand_do_write_oob(mtd, to, ops);
2688 else
2689 ret = nand_do_write_ops(mtd, to, ops);
2690
2691 out:
2692 nand_release_device(mtd);
2693 return ret;
2694 }
2695
2696 /**
2697 * single_erase - [GENERIC] NAND standard block erase command function
2698 * @mtd: MTD device structure
2699 * @page: the page address of the block which will be erased
2700 *
2701 * Standard erase command for NAND chips. Returns NAND status.
2702 */
single_erase(struct mtd_info * mtd,int page)2703 static int single_erase(struct mtd_info *mtd, int page)
2704 {
2705 struct nand_chip *chip = mtd->priv;
2706 /* Send commands to erase a block */
2707 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2708 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2709
2710 return chip->waitfunc(mtd, chip);
2711 }
2712
2713 /**
2714 * nand_erase - [MTD Interface] erase block(s)
2715 * @mtd: MTD device structure
2716 * @instr: erase instruction
2717 *
2718 * Erase one ore more blocks.
2719 */
nand_erase(struct mtd_info * mtd,struct erase_info * instr)2720 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2721 {
2722 return nand_erase_nand(mtd, instr, 0);
2723 }
2724
2725 /**
2726 * nand_erase_nand - [INTERN] erase block(s)
2727 * @mtd: MTD device structure
2728 * @instr: erase instruction
2729 * @allowbbt: allow erasing the bbt area
2730 *
2731 * Erase one ore more blocks.
2732 */
nand_erase_nand(struct mtd_info * mtd,struct erase_info * instr,int allowbbt)2733 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2734 int allowbbt)
2735 {
2736 int page, status, pages_per_block, ret, chipnr;
2737 struct nand_chip *chip = mtd->priv;
2738 loff_t len;
2739
2740 pr_debug("%s: start = 0x%012llx, len = %llu\n",
2741 __func__, (unsigned long long)instr->addr,
2742 (unsigned long long)instr->len);
2743
2744 if (check_offs_len(mtd, instr->addr, instr->len))
2745 return -EINVAL;
2746
2747 /* Grab the lock and see if the device is available */
2748 nand_get_device(mtd, FL_ERASING);
2749
2750 /* Shift to get first page */
2751 page = (int)(instr->addr >> chip->page_shift);
2752 chipnr = (int)(instr->addr >> chip->chip_shift);
2753
2754 /* Calculate pages in each block */
2755 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2756
2757 /* Select the NAND device */
2758 chip->select_chip(mtd, chipnr);
2759
2760 /* Check, if it is write protected */
2761 if (nand_check_wp(mtd)) {
2762 pr_debug("%s: device is write protected!\n",
2763 __func__);
2764 instr->state = MTD_ERASE_FAILED;
2765 goto erase_exit;
2766 }
2767
2768 /* Loop through the pages */
2769 len = instr->len;
2770
2771 instr->state = MTD_ERASING;
2772
2773 while (len) {
2774 /* Check if we have a bad block, we do not erase bad blocks! */
2775 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2776 chip->page_shift, 0, allowbbt)) {
2777 pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2778 __func__, page);
2779 instr->state = MTD_ERASE_FAILED;
2780 goto erase_exit;
2781 }
2782
2783 /*
2784 * Invalidate the page cache, if we erase the block which
2785 * contains the current cached page.
2786 */
2787 if (page <= chip->pagebuf && chip->pagebuf <
2788 (page + pages_per_block))
2789 chip->pagebuf = -1;
2790
2791 status = chip->erase(mtd, page & chip->pagemask);
2792
2793 /*
2794 * See if operation failed and additional status checks are
2795 * available
2796 */
2797 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2798 status = chip->errstat(mtd, chip, FL_ERASING,
2799 status, page);
2800
2801 /* See if block erase succeeded */
2802 if (status & NAND_STATUS_FAIL) {
2803 pr_debug("%s: failed erase, page 0x%08x\n",
2804 __func__, page);
2805 instr->state = MTD_ERASE_FAILED;
2806 instr->fail_addr =
2807 ((loff_t)page << chip->page_shift);
2808 goto erase_exit;
2809 }
2810
2811 /* Increment page address and decrement length */
2812 len -= (1ULL << chip->phys_erase_shift);
2813 page += pages_per_block;
2814
2815 /* Check, if we cross a chip boundary */
2816 if (len && !(page & chip->pagemask)) {
2817 chipnr++;
2818 chip->select_chip(mtd, -1);
2819 chip->select_chip(mtd, chipnr);
2820 }
2821 }
2822 instr->state = MTD_ERASE_DONE;
2823
2824 erase_exit:
2825
2826 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2827
2828 /* Deselect and wake up anyone waiting on the device */
2829 chip->select_chip(mtd, -1);
2830 nand_release_device(mtd);
2831
2832 /* Do call back function */
2833 if (!ret)
2834 mtd_erase_callback(instr);
2835
2836 /* Return more or less happy */
2837 return ret;
2838 }
2839
2840 /**
2841 * nand_sync - [MTD Interface] sync
2842 * @mtd: MTD device structure
2843 *
2844 * Sync is actually a wait for chip ready function.
2845 */
nand_sync(struct mtd_info * mtd)2846 static void nand_sync(struct mtd_info *mtd)
2847 {
2848 pr_debug("%s: called\n", __func__);
2849
2850 /* Grab the lock and see if the device is available */
2851 nand_get_device(mtd, FL_SYNCING);
2852 /* Release it and go back */
2853 nand_release_device(mtd);
2854 }
2855
2856 /**
2857 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2858 * @mtd: MTD device structure
2859 * @offs: offset relative to mtd start
2860 */
nand_block_isbad(struct mtd_info * mtd,loff_t offs)2861 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2862 {
2863 return nand_block_checkbad(mtd, offs, 1, 0);
2864 }
2865
2866 /**
2867 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2868 * @mtd: MTD device structure
2869 * @ofs: offset relative to mtd start
2870 */
nand_block_markbad(struct mtd_info * mtd,loff_t ofs)2871 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2872 {
2873 int ret;
2874
2875 ret = nand_block_isbad(mtd, ofs);
2876 if (ret) {
2877 /* If it was bad already, return success and do nothing */
2878 if (ret > 0)
2879 return 0;
2880 return ret;
2881 }
2882
2883 return nand_block_markbad_lowlevel(mtd, ofs);
2884 }
2885
2886 /**
2887 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2888 * @mtd: MTD device structure
2889 * @chip: nand chip info structure
2890 * @addr: feature address.
2891 * @subfeature_param: the subfeature parameters, a four bytes array.
2892 */
nand_onfi_set_features(struct mtd_info * mtd,struct nand_chip * chip,int addr,uint8_t * subfeature_param)2893 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2894 int addr, uint8_t *subfeature_param)
2895 {
2896 int status;
2897 int i;
2898
2899 if (!chip->onfi_version ||
2900 !(le16_to_cpu(chip->onfi_params.opt_cmd)
2901 & ONFI_OPT_CMD_SET_GET_FEATURES))
2902 return -EINVAL;
2903
2904 chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2905 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2906 chip->write_byte(mtd, subfeature_param[i]);
2907
2908 status = chip->waitfunc(mtd, chip);
2909 if (status & NAND_STATUS_FAIL)
2910 return -EIO;
2911 return 0;
2912 }
2913
2914 /**
2915 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
2916 * @mtd: MTD device structure
2917 * @chip: nand chip info structure
2918 * @addr: feature address.
2919 * @subfeature_param: the subfeature parameters, a four bytes array.
2920 */
nand_onfi_get_features(struct mtd_info * mtd,struct nand_chip * chip,int addr,uint8_t * subfeature_param)2921 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2922 int addr, uint8_t *subfeature_param)
2923 {
2924 int i;
2925
2926 if (!chip->onfi_version ||
2927 !(le16_to_cpu(chip->onfi_params.opt_cmd)
2928 & ONFI_OPT_CMD_SET_GET_FEATURES))
2929 return -EINVAL;
2930
2931 /* clear the sub feature parameters */
2932 memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2933
2934 chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2935 for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2936 *subfeature_param++ = chip->read_byte(mtd);
2937 return 0;
2938 }
2939
2940 /**
2941 * nand_suspend - [MTD Interface] Suspend the NAND flash
2942 * @mtd: MTD device structure
2943 */
nand_suspend(struct mtd_info * mtd)2944 static int nand_suspend(struct mtd_info *mtd)
2945 {
2946 return nand_get_device(mtd, FL_PM_SUSPENDED);
2947 }
2948
2949 /**
2950 * nand_resume - [MTD Interface] Resume the NAND flash
2951 * @mtd: MTD device structure
2952 */
nand_resume(struct mtd_info * mtd)2953 static void nand_resume(struct mtd_info *mtd)
2954 {
2955 struct nand_chip *chip = mtd->priv;
2956
2957 if (chip->state == FL_PM_SUSPENDED)
2958 nand_release_device(mtd);
2959 else
2960 pr_err("%s called for a chip which is not in suspended state\n",
2961 __func__);
2962 }
2963
2964 /**
2965 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
2966 * prevent further operations
2967 * @mtd: MTD device structure
2968 */
nand_shutdown(struct mtd_info * mtd)2969 static void nand_shutdown(struct mtd_info *mtd)
2970 {
2971 nand_get_device(mtd, FL_SHUTDOWN);
2972 }
2973
2974 /* Set default functions */
nand_set_defaults(struct nand_chip * chip,int busw)2975 static void nand_set_defaults(struct nand_chip *chip, int busw)
2976 {
2977 /* check for proper chip_delay setup, set 20us if not */
2978 if (!chip->chip_delay)
2979 chip->chip_delay = 20;
2980
2981 /* check, if a user supplied command function given */
2982 if (chip->cmdfunc == NULL)
2983 chip->cmdfunc = nand_command;
2984
2985 /* check, if a user supplied wait function given */
2986 if (chip->waitfunc == NULL)
2987 chip->waitfunc = nand_wait;
2988
2989 if (!chip->select_chip)
2990 chip->select_chip = nand_select_chip;
2991
2992 /* set for ONFI nand */
2993 if (!chip->onfi_set_features)
2994 chip->onfi_set_features = nand_onfi_set_features;
2995 if (!chip->onfi_get_features)
2996 chip->onfi_get_features = nand_onfi_get_features;
2997
2998 /* If called twice, pointers that depend on busw may need to be reset */
2999 if (!chip->read_byte || chip->read_byte == nand_read_byte)
3000 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
3001 if (!chip->read_word)
3002 chip->read_word = nand_read_word;
3003 if (!chip->block_bad)
3004 chip->block_bad = nand_block_bad;
3005 if (!chip->block_markbad)
3006 chip->block_markbad = nand_default_block_markbad;
3007 if (!chip->write_buf || chip->write_buf == nand_write_buf)
3008 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
3009 if (!chip->write_byte || chip->write_byte == nand_write_byte)
3010 chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
3011 if (!chip->read_buf || chip->read_buf == nand_read_buf)
3012 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
3013 if (!chip->scan_bbt)
3014 chip->scan_bbt = nand_default_bbt;
3015
3016 if (!chip->controller) {
3017 chip->controller = &chip->hwcontrol;
3018 spin_lock_init(&chip->controller->lock);
3019 init_waitqueue_head(&chip->controller->wq);
3020 }
3021
3022 }
3023
3024 /* Sanitize ONFI strings so we can safely print them */
sanitize_string(uint8_t * s,size_t len)3025 static void sanitize_string(uint8_t *s, size_t len)
3026 {
3027 ssize_t i;
3028
3029 /* Null terminate */
3030 s[len - 1] = 0;
3031
3032 /* Remove non printable chars */
3033 for (i = 0; i < len - 1; i++) {
3034 if (s[i] < ' ' || s[i] > 127)
3035 s[i] = '?';
3036 }
3037
3038 /* Remove trailing spaces */
3039 strim(s);
3040 }
3041
onfi_crc16(u16 crc,u8 const * p,size_t len)3042 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3043 {
3044 int i;
3045 while (len--) {
3046 crc ^= *p++ << 8;
3047 for (i = 0; i < 8; i++)
3048 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3049 }
3050
3051 return crc;
3052 }
3053
3054 /* Parse the Extended Parameter Page. */
nand_flash_detect_ext_param_page(struct mtd_info * mtd,struct nand_chip * chip,struct nand_onfi_params * p)3055 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3056 struct nand_chip *chip, struct nand_onfi_params *p)
3057 {
3058 struct onfi_ext_param_page *ep;
3059 struct onfi_ext_section *s;
3060 struct onfi_ext_ecc_info *ecc;
3061 uint8_t *cursor;
3062 int ret = -EINVAL;
3063 int len;
3064 int i;
3065
3066 len = le16_to_cpu(p->ext_param_page_length) * 16;
3067 ep = kmalloc(len, GFP_KERNEL);
3068 if (!ep)
3069 return -ENOMEM;
3070
3071 /* Send our own NAND_CMD_PARAM. */
3072 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3073
3074 /* Use the Change Read Column command to skip the ONFI param pages. */
3075 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3076 sizeof(*p) * p->num_of_param_pages , -1);
3077
3078 /* Read out the Extended Parameter Page. */
3079 chip->read_buf(mtd, (uint8_t *)ep, len);
3080 if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3081 != le16_to_cpu(ep->crc))) {
3082 pr_debug("fail in the CRC.\n");
3083 goto ext_out;
3084 }
3085
3086 /*
3087 * Check the signature.
3088 * Do not strictly follow the ONFI spec, maybe changed in future.
3089 */
3090 if (strncmp(ep->sig, "EPPS", 4)) {
3091 pr_debug("The signature is invalid.\n");
3092 goto ext_out;
3093 }
3094
3095 /* find the ECC section. */
3096 cursor = (uint8_t *)(ep + 1);
3097 for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3098 s = ep->sections + i;
3099 if (s->type == ONFI_SECTION_TYPE_2)
3100 break;
3101 cursor += s->length * 16;
3102 }
3103 if (i == ONFI_EXT_SECTION_MAX) {
3104 pr_debug("We can not find the ECC section.\n");
3105 goto ext_out;
3106 }
3107
3108 /* get the info we want. */
3109 ecc = (struct onfi_ext_ecc_info *)cursor;
3110
3111 if (!ecc->codeword_size) {
3112 pr_debug("Invalid codeword size\n");
3113 goto ext_out;
3114 }
3115
3116 chip->ecc_strength_ds = ecc->ecc_bits;
3117 chip->ecc_step_ds = 1 << ecc->codeword_size;
3118 ret = 0;
3119
3120 ext_out:
3121 kfree(ep);
3122 return ret;
3123 }
3124
nand_setup_read_retry_micron(struct mtd_info * mtd,int retry_mode)3125 static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3126 {
3127 struct nand_chip *chip = mtd->priv;
3128 uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3129
3130 return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3131 feature);
3132 }
3133
3134 /*
3135 * Configure chip properties from Micron vendor-specific ONFI table
3136 */
nand_onfi_detect_micron(struct nand_chip * chip,struct nand_onfi_params * p)3137 static void nand_onfi_detect_micron(struct nand_chip *chip,
3138 struct nand_onfi_params *p)
3139 {
3140 struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3141
3142 if (le16_to_cpu(p->vendor_revision) < 1)
3143 return;
3144
3145 chip->read_retries = micron->read_retry_options;
3146 chip->setup_read_retry = nand_setup_read_retry_micron;
3147 }
3148
3149 /*
3150 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3151 */
nand_flash_detect_onfi(struct mtd_info * mtd,struct nand_chip * chip,int * busw)3152 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3153 int *busw)
3154 {
3155 struct nand_onfi_params *p = &chip->onfi_params;
3156 int i, j;
3157 int val;
3158
3159 /* Try ONFI for unknown chip or LP */
3160 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3161 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3162 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3163 return 0;
3164
3165 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3166 for (i = 0; i < 3; i++) {
3167 for (j = 0; j < sizeof(*p); j++)
3168 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3169 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3170 le16_to_cpu(p->crc)) {
3171 break;
3172 }
3173 }
3174
3175 if (i == 3) {
3176 pr_err("Could not find valid ONFI parameter page; aborting\n");
3177 return 0;
3178 }
3179
3180 /* Check version */
3181 val = le16_to_cpu(p->revision);
3182 if (val & (1 << 5))
3183 chip->onfi_version = 23;
3184 else if (val & (1 << 4))
3185 chip->onfi_version = 22;
3186 else if (val & (1 << 3))
3187 chip->onfi_version = 21;
3188 else if (val & (1 << 2))
3189 chip->onfi_version = 20;
3190 else if (val & (1 << 1))
3191 chip->onfi_version = 10;
3192
3193 if (!chip->onfi_version) {
3194 pr_info("unsupported ONFI version: %d\n", val);
3195 return 0;
3196 }
3197
3198 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3199 sanitize_string(p->model, sizeof(p->model));
3200 if (!mtd->name)
3201 mtd->name = p->model;
3202
3203 mtd->writesize = le32_to_cpu(p->byte_per_page);
3204
3205 /*
3206 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3207 * (don't ask me who thought of this...). MTD assumes that these
3208 * dimensions will be power-of-2, so just truncate the remaining area.
3209 */
3210 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3211 mtd->erasesize *= mtd->writesize;
3212
3213 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3214
3215 /* See erasesize comment */
3216 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3217 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3218 chip->bits_per_cell = p->bits_per_cell;
3219
3220 if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3221 *busw = NAND_BUSWIDTH_16;
3222 else
3223 *busw = 0;
3224
3225 if (p->ecc_bits != 0xff) {
3226 chip->ecc_strength_ds = p->ecc_bits;
3227 chip->ecc_step_ds = 512;
3228 } else if (chip->onfi_version >= 21 &&
3229 (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3230
3231 /*
3232 * The nand_flash_detect_ext_param_page() uses the
3233 * Change Read Column command which maybe not supported
3234 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3235 * now. We do not replace user supplied command function.
3236 */
3237 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3238 chip->cmdfunc = nand_command_lp;
3239
3240 /* The Extended Parameter Page is supported since ONFI 2.1. */
3241 if (nand_flash_detect_ext_param_page(mtd, chip, p))
3242 pr_warn("Failed to detect ONFI extended param page\n");
3243 } else {
3244 pr_warn("Could not retrieve ONFI ECC requirements\n");
3245 }
3246
3247 if (p->jedec_id == NAND_MFR_MICRON)
3248 nand_onfi_detect_micron(chip, p);
3249
3250 return 1;
3251 }
3252
3253 /*
3254 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3255 */
nand_flash_detect_jedec(struct mtd_info * mtd,struct nand_chip * chip,int * busw)3256 static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3257 int *busw)
3258 {
3259 struct nand_jedec_params *p = &chip->jedec_params;
3260 struct jedec_ecc_info *ecc;
3261 int val;
3262 int i, j;
3263
3264 /* Try JEDEC for unknown chip or LP */
3265 chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3266 if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3267 chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3268 chip->read_byte(mtd) != 'C')
3269 return 0;
3270
3271 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3272 for (i = 0; i < 3; i++) {
3273 for (j = 0; j < sizeof(*p); j++)
3274 ((uint8_t *)p)[j] = chip->read_byte(mtd);
3275
3276 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3277 le16_to_cpu(p->crc))
3278 break;
3279 }
3280
3281 if (i == 3) {
3282 pr_err("Could not find valid JEDEC parameter page; aborting\n");
3283 return 0;
3284 }
3285
3286 /* Check version */
3287 val = le16_to_cpu(p->revision);
3288 if (val & (1 << 2))
3289 chip->jedec_version = 10;
3290 else if (val & (1 << 1))
3291 chip->jedec_version = 1; /* vendor specific version */
3292
3293 if (!chip->jedec_version) {
3294 pr_info("unsupported JEDEC version: %d\n", val);
3295 return 0;
3296 }
3297
3298 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3299 sanitize_string(p->model, sizeof(p->model));
3300 if (!mtd->name)
3301 mtd->name = p->model;
3302
3303 mtd->writesize = le32_to_cpu(p->byte_per_page);
3304
3305 /* Please reference to the comment for nand_flash_detect_onfi. */
3306 mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3307 mtd->erasesize *= mtd->writesize;
3308
3309 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3310
3311 /* Please reference to the comment for nand_flash_detect_onfi. */
3312 chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3313 chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3314 chip->bits_per_cell = p->bits_per_cell;
3315
3316 if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3317 *busw = NAND_BUSWIDTH_16;
3318 else
3319 *busw = 0;
3320
3321 /* ECC info */
3322 ecc = &p->ecc_info[0];
3323
3324 if (ecc->codeword_size >= 9) {
3325 chip->ecc_strength_ds = ecc->ecc_bits;
3326 chip->ecc_step_ds = 1 << ecc->codeword_size;
3327 } else {
3328 pr_warn("Invalid codeword size\n");
3329 }
3330
3331 return 1;
3332 }
3333
3334 /*
3335 * nand_id_has_period - Check if an ID string has a given wraparound period
3336 * @id_data: the ID string
3337 * @arrlen: the length of the @id_data array
3338 * @period: the period of repitition
3339 *
3340 * Check if an ID string is repeated within a given sequence of bytes at
3341 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3342 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3343 * if the repetition has a period of @period; otherwise, returns zero.
3344 */
nand_id_has_period(u8 * id_data,int arrlen,int period)3345 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3346 {
3347 int i, j;
3348 for (i = 0; i < period; i++)
3349 for (j = i + period; j < arrlen; j += period)
3350 if (id_data[i] != id_data[j])
3351 return 0;
3352 return 1;
3353 }
3354
3355 /*
3356 * nand_id_len - Get the length of an ID string returned by CMD_READID
3357 * @id_data: the ID string
3358 * @arrlen: the length of the @id_data array
3359
3360 * Returns the length of the ID string, according to known wraparound/trailing
3361 * zero patterns. If no pattern exists, returns the length of the array.
3362 */
nand_id_len(u8 * id_data,int arrlen)3363 static int nand_id_len(u8 *id_data, int arrlen)
3364 {
3365 int last_nonzero, period;
3366
3367 /* Find last non-zero byte */
3368 for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3369 if (id_data[last_nonzero])
3370 break;
3371
3372 /* All zeros */
3373 if (last_nonzero < 0)
3374 return 0;
3375
3376 /* Calculate wraparound period */
3377 for (period = 1; period < arrlen; period++)
3378 if (nand_id_has_period(id_data, arrlen, period))
3379 break;
3380
3381 /* There's a repeated pattern */
3382 if (period < arrlen)
3383 return period;
3384
3385 /* There are trailing zeros */
3386 if (last_nonzero < arrlen - 1)
3387 return last_nonzero + 1;
3388
3389 /* No pattern detected */
3390 return arrlen;
3391 }
3392
3393 /* Extract the bits of per cell from the 3rd byte of the extended ID */
nand_get_bits_per_cell(u8 cellinfo)3394 static int nand_get_bits_per_cell(u8 cellinfo)
3395 {
3396 int bits;
3397
3398 bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3399 bits >>= NAND_CI_CELLTYPE_SHIFT;
3400 return bits + 1;
3401 }
3402
3403 /*
3404 * Many new NAND share similar device ID codes, which represent the size of the
3405 * chip. The rest of the parameters must be decoded according to generic or
3406 * manufacturer-specific "extended ID" decoding patterns.
3407 */
nand_decode_ext_id(struct mtd_info * mtd,struct nand_chip * chip,u8 id_data[8],int * busw)3408 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3409 u8 id_data[8], int *busw)
3410 {
3411 int extid, id_len;
3412 /* The 3rd id byte holds MLC / multichip data */
3413 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3414 /* The 4th id byte is the important one */
3415 extid = id_data[3];
3416
3417 id_len = nand_id_len(id_data, 8);
3418
3419 /*
3420 * Field definitions are in the following datasheets:
3421 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3422 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3423 * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
3424 *
3425 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3426 * ID to decide what to do.
3427 */
3428 if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3429 !nand_is_slc(chip) && id_data[5] != 0x00) {
3430 /* Calc pagesize */
3431 mtd->writesize = 2048 << (extid & 0x03);
3432 extid >>= 2;
3433 /* Calc oobsize */
3434 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3435 case 1:
3436 mtd->oobsize = 128;
3437 break;
3438 case 2:
3439 mtd->oobsize = 218;
3440 break;
3441 case 3:
3442 mtd->oobsize = 400;
3443 break;
3444 case 4:
3445 mtd->oobsize = 436;
3446 break;
3447 case 5:
3448 mtd->oobsize = 512;
3449 break;
3450 case 6:
3451 mtd->oobsize = 640;
3452 break;
3453 case 7:
3454 default: /* Other cases are "reserved" (unknown) */
3455 mtd->oobsize = 1024;
3456 break;
3457 }
3458 extid >>= 2;
3459 /* Calc blocksize */
3460 mtd->erasesize = (128 * 1024) <<
3461 (((extid >> 1) & 0x04) | (extid & 0x03));
3462 *busw = 0;
3463 } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3464 !nand_is_slc(chip)) {
3465 unsigned int tmp;
3466
3467 /* Calc pagesize */
3468 mtd->writesize = 2048 << (extid & 0x03);
3469 extid >>= 2;
3470 /* Calc oobsize */
3471 switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3472 case 0:
3473 mtd->oobsize = 128;
3474 break;
3475 case 1:
3476 mtd->oobsize = 224;
3477 break;
3478 case 2:
3479 mtd->oobsize = 448;
3480 break;
3481 case 3:
3482 mtd->oobsize = 64;
3483 break;
3484 case 4:
3485 mtd->oobsize = 32;
3486 break;
3487 case 5:
3488 mtd->oobsize = 16;
3489 break;
3490 default:
3491 mtd->oobsize = 640;
3492 break;
3493 }
3494 extid >>= 2;
3495 /* Calc blocksize */
3496 tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3497 if (tmp < 0x03)
3498 mtd->erasesize = (128 * 1024) << tmp;
3499 else if (tmp == 0x03)
3500 mtd->erasesize = 768 * 1024;
3501 else
3502 mtd->erasesize = (64 * 1024) << tmp;
3503 *busw = 0;
3504 } else {
3505 /* Calc pagesize */
3506 mtd->writesize = 1024 << (extid & 0x03);
3507 extid >>= 2;
3508 /* Calc oobsize */
3509 mtd->oobsize = (8 << (extid & 0x01)) *
3510 (mtd->writesize >> 9);
3511 extid >>= 2;
3512 /* Calc blocksize. Blocksize is multiples of 64KiB */
3513 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3514 extid >>= 2;
3515 /* Get buswidth information */
3516 *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3517
3518 /*
3519 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3520 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3521 * follows:
3522 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3523 * 110b -> 24nm
3524 * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC
3525 */
3526 if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3527 nand_is_slc(chip) &&
3528 (id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3529 !(id_data[4] & 0x80) /* !BENAND */) {
3530 mtd->oobsize = 32 * mtd->writesize >> 9;
3531 }
3532
3533 }
3534 }
3535
3536 /*
3537 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3538 * decodes a matching ID table entry and assigns the MTD size parameters for
3539 * the chip.
3540 */
nand_decode_id(struct mtd_info * mtd,struct nand_chip * chip,struct nand_flash_dev * type,u8 id_data[8],int * busw)3541 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3542 struct nand_flash_dev *type, u8 id_data[8],
3543 int *busw)
3544 {
3545 int maf_id = id_data[0];
3546
3547 mtd->erasesize = type->erasesize;
3548 mtd->writesize = type->pagesize;
3549 mtd->oobsize = mtd->writesize / 32;
3550 *busw = type->options & NAND_BUSWIDTH_16;
3551
3552 /* All legacy ID NAND are small-page, SLC */
3553 chip->bits_per_cell = 1;
3554
3555 /*
3556 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3557 * some Spansion chips have erasesize that conflicts with size
3558 * listed in nand_ids table.
3559 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3560 */
3561 if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3562 && id_data[6] == 0x00 && id_data[7] == 0x00
3563 && mtd->writesize == 512) {
3564 mtd->erasesize = 128 * 1024;
3565 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3566 }
3567 }
3568
3569 /*
3570 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3571 * heuristic patterns using various detected parameters (e.g., manufacturer,
3572 * page size, cell-type information).
3573 */
nand_decode_bbm_options(struct mtd_info * mtd,struct nand_chip * chip,u8 id_data[8])3574 static void nand_decode_bbm_options(struct mtd_info *mtd,
3575 struct nand_chip *chip, u8 id_data[8])
3576 {
3577 int maf_id = id_data[0];
3578
3579 /* Set the bad block position */
3580 if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3581 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3582 else
3583 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3584
3585 /*
3586 * Bad block marker is stored in the last page of each block on Samsung
3587 * and Hynix MLC devices; stored in first two pages of each block on
3588 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3589 * AMD/Spansion, and Macronix. All others scan only the first page.
3590 */
3591 if (!nand_is_slc(chip) &&
3592 (maf_id == NAND_MFR_SAMSUNG ||
3593 maf_id == NAND_MFR_HYNIX))
3594 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3595 else if ((nand_is_slc(chip) &&
3596 (maf_id == NAND_MFR_SAMSUNG ||
3597 maf_id == NAND_MFR_HYNIX ||
3598 maf_id == NAND_MFR_TOSHIBA ||
3599 maf_id == NAND_MFR_AMD ||
3600 maf_id == NAND_MFR_MACRONIX)) ||
3601 (mtd->writesize == 2048 &&
3602 maf_id == NAND_MFR_MICRON))
3603 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3604 }
3605
is_full_id_nand(struct nand_flash_dev * type)3606 static inline bool is_full_id_nand(struct nand_flash_dev *type)
3607 {
3608 return type->id_len;
3609 }
3610
find_full_id_nand(struct mtd_info * mtd,struct nand_chip * chip,struct nand_flash_dev * type,u8 * id_data,int * busw)3611 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3612 struct nand_flash_dev *type, u8 *id_data, int *busw)
3613 {
3614 if (!strncmp(type->id, id_data, type->id_len)) {
3615 mtd->writesize = type->pagesize;
3616 mtd->erasesize = type->erasesize;
3617 mtd->oobsize = type->oobsize;
3618
3619 chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3620 chip->chipsize = (uint64_t)type->chipsize << 20;
3621 chip->options |= type->options;
3622 chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3623 chip->ecc_step_ds = NAND_ECC_STEP(type);
3624 chip->onfi_timing_mode_default =
3625 type->onfi_timing_mode_default;
3626
3627 *busw = type->options & NAND_BUSWIDTH_16;
3628
3629 if (!mtd->name)
3630 mtd->name = type->name;
3631
3632 return true;
3633 }
3634 return false;
3635 }
3636
3637 /*
3638 * Get the flash and manufacturer id and lookup if the type is supported.
3639 */
nand_get_flash_type(struct mtd_info * mtd,struct nand_chip * chip,int * maf_id,int * dev_id,struct nand_flash_dev * type)3640 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3641 struct nand_chip *chip,
3642 int *maf_id, int *dev_id,
3643 struct nand_flash_dev *type)
3644 {
3645 int busw;
3646 int i, maf_idx;
3647 u8 id_data[8];
3648
3649 /* Select the device */
3650 chip->select_chip(mtd, 0);
3651
3652 /*
3653 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3654 * after power-up.
3655 */
3656 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3657
3658 /* Send the command for reading device ID */
3659 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3660
3661 /* Read manufacturer and device IDs */
3662 *maf_id = chip->read_byte(mtd);
3663 *dev_id = chip->read_byte(mtd);
3664
3665 /*
3666 * Try again to make sure, as some systems the bus-hold or other
3667 * interface concerns can cause random data which looks like a
3668 * possibly credible NAND flash to appear. If the two results do
3669 * not match, ignore the device completely.
3670 */
3671
3672 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3673
3674 /* Read entire ID string */
3675 for (i = 0; i < 8; i++)
3676 id_data[i] = chip->read_byte(mtd);
3677
3678 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3679 pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3680 *maf_id, *dev_id, id_data[0], id_data[1]);
3681 return ERR_PTR(-ENODEV);
3682 }
3683
3684 if (!type)
3685 type = nand_flash_ids;
3686
3687 for (; type->name != NULL; type++) {
3688 if (is_full_id_nand(type)) {
3689 if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3690 goto ident_done;
3691 } else if (*dev_id == type->dev_id) {
3692 break;
3693 }
3694 }
3695
3696 chip->onfi_version = 0;
3697 if (!type->name || !type->pagesize) {
3698 /* Check if the chip is ONFI compliant */
3699 if (nand_flash_detect_onfi(mtd, chip, &busw))
3700 goto ident_done;
3701
3702 /* Check if the chip is JEDEC compliant */
3703 if (nand_flash_detect_jedec(mtd, chip, &busw))
3704 goto ident_done;
3705 }
3706
3707 if (!type->name)
3708 return ERR_PTR(-ENODEV);
3709
3710 if (!mtd->name)
3711 mtd->name = type->name;
3712
3713 chip->chipsize = (uint64_t)type->chipsize << 20;
3714
3715 if (!type->pagesize && chip->init_size) {
3716 /* Set the pagesize, oobsize, erasesize by the driver */
3717 busw = chip->init_size(mtd, chip, id_data);
3718 } else if (!type->pagesize) {
3719 /* Decode parameters from extended ID */
3720 nand_decode_ext_id(mtd, chip, id_data, &busw);
3721 } else {
3722 nand_decode_id(mtd, chip, type, id_data, &busw);
3723 }
3724 /* Get chip options */
3725 chip->options |= type->options;
3726
3727 /*
3728 * Check if chip is not a Samsung device. Do not clear the
3729 * options for chips which do not have an extended id.
3730 */
3731 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3732 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3733 ident_done:
3734
3735 /* Try to identify manufacturer */
3736 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3737 if (nand_manuf_ids[maf_idx].id == *maf_id)
3738 break;
3739 }
3740
3741 if (chip->options & NAND_BUSWIDTH_AUTO) {
3742 WARN_ON(chip->options & NAND_BUSWIDTH_16);
3743 chip->options |= busw;
3744 nand_set_defaults(chip, busw);
3745 } else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3746 /*
3747 * Check, if buswidth is correct. Hardware drivers should set
3748 * chip correct!
3749 */
3750 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3751 *maf_id, *dev_id);
3752 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3753 pr_warn("bus width %d instead %d bit\n",
3754 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3755 busw ? 16 : 8);
3756 return ERR_PTR(-EINVAL);
3757 }
3758
3759 nand_decode_bbm_options(mtd, chip, id_data);
3760
3761 /* Calculate the address shift from the page size */
3762 chip->page_shift = ffs(mtd->writesize) - 1;
3763 /* Convert chipsize to number of pages per chip -1 */
3764 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3765
3766 chip->bbt_erase_shift = chip->phys_erase_shift =
3767 ffs(mtd->erasesize) - 1;
3768 if (chip->chipsize & 0xffffffff)
3769 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3770 else {
3771 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3772 chip->chip_shift += 32 - 1;
3773 }
3774
3775 chip->badblockbits = 8;
3776 chip->erase = single_erase;
3777
3778 /* Do not replace user supplied command function! */
3779 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3780 chip->cmdfunc = nand_command_lp;
3781
3782 pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3783 *maf_id, *dev_id);
3784
3785 if (chip->onfi_version)
3786 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3787 chip->onfi_params.model);
3788 else if (chip->jedec_version)
3789 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3790 chip->jedec_params.model);
3791 else
3792 pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3793 type->name);
3794
3795 pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3796 (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3797 mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
3798 return type;
3799 }
3800
3801 /**
3802 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3803 * @mtd: MTD device structure
3804 * @maxchips: number of chips to scan for
3805 * @table: alternative NAND ID table
3806 *
3807 * This is the first phase of the normal nand_scan() function. It reads the
3808 * flash ID and sets up MTD fields accordingly.
3809 *
3810 * The mtd->owner field must be set to the module of the caller.
3811 */
nand_scan_ident(struct mtd_info * mtd,int maxchips,struct nand_flash_dev * table)3812 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3813 struct nand_flash_dev *table)
3814 {
3815 int i, nand_maf_id, nand_dev_id;
3816 struct nand_chip *chip = mtd->priv;
3817 struct nand_flash_dev *type;
3818
3819 /* Set the default functions */
3820 nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
3821
3822 /* Read the flash type */
3823 type = nand_get_flash_type(mtd, chip, &nand_maf_id,
3824 &nand_dev_id, table);
3825
3826 if (IS_ERR(type)) {
3827 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3828 pr_warn("No NAND device found\n");
3829 chip->select_chip(mtd, -1);
3830 return PTR_ERR(type);
3831 }
3832
3833 chip->select_chip(mtd, -1);
3834
3835 /* Check for a chip array */
3836 for (i = 1; i < maxchips; i++) {
3837 chip->select_chip(mtd, i);
3838 /* See comment in nand_get_flash_type for reset */
3839 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3840 /* Send the command for reading device ID */
3841 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3842 /* Read manufacturer and device IDs */
3843 if (nand_maf_id != chip->read_byte(mtd) ||
3844 nand_dev_id != chip->read_byte(mtd)) {
3845 chip->select_chip(mtd, -1);
3846 break;
3847 }
3848 chip->select_chip(mtd, -1);
3849 }
3850 if (i > 1)
3851 pr_info("%d chips detected\n", i);
3852
3853 /* Store the number of chips and calc total size for mtd */
3854 chip->numchips = i;
3855 mtd->size = i * chip->chipsize;
3856
3857 return 0;
3858 }
3859 EXPORT_SYMBOL(nand_scan_ident);
3860
3861 /*
3862 * Check if the chip configuration meet the datasheet requirements.
3863
3864 * If our configuration corrects A bits per B bytes and the minimum
3865 * required correction level is X bits per Y bytes, then we must ensure
3866 * both of the following are true:
3867 *
3868 * (1) A / B >= X / Y
3869 * (2) A >= X
3870 *
3871 * Requirement (1) ensures we can correct for the required bitflip density.
3872 * Requirement (2) ensures we can correct even when all bitflips are clumped
3873 * in the same sector.
3874 */
nand_ecc_strength_good(struct mtd_info * mtd)3875 static bool nand_ecc_strength_good(struct mtd_info *mtd)
3876 {
3877 struct nand_chip *chip = mtd->priv;
3878 struct nand_ecc_ctrl *ecc = &chip->ecc;
3879 int corr, ds_corr;
3880
3881 if (ecc->size == 0 || chip->ecc_step_ds == 0)
3882 /* Not enough information */
3883 return true;
3884
3885 /*
3886 * We get the number of corrected bits per page to compare
3887 * the correction density.
3888 */
3889 corr = (mtd->writesize * ecc->strength) / ecc->size;
3890 ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
3891
3892 return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
3893 }
3894
3895 /**
3896 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3897 * @mtd: MTD device structure
3898 *
3899 * This is the second phase of the normal nand_scan() function. It fills out
3900 * all the uninitialized function pointers with the defaults and scans for a
3901 * bad block table if appropriate.
3902 */
nand_scan_tail(struct mtd_info * mtd)3903 int nand_scan_tail(struct mtd_info *mtd)
3904 {
3905 int i;
3906 struct nand_chip *chip = mtd->priv;
3907 struct nand_ecc_ctrl *ecc = &chip->ecc;
3908 struct nand_buffers *nbuf;
3909
3910 /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3911 BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3912 !(chip->bbt_options & NAND_BBT_USE_FLASH));
3913
3914 if (!(chip->options & NAND_OWN_BUFFERS)) {
3915 nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
3916 + mtd->oobsize * 3, GFP_KERNEL);
3917 if (!nbuf)
3918 return -ENOMEM;
3919 nbuf->ecccalc = (uint8_t *)(nbuf + 1);
3920 nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
3921 nbuf->databuf = nbuf->ecccode + mtd->oobsize;
3922
3923 chip->buffers = nbuf;
3924 } else {
3925 if (!chip->buffers)
3926 return -ENOMEM;
3927 }
3928
3929 /* Set the internal oob buffer location, just after the page data */
3930 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3931
3932 /*
3933 * If no default placement scheme is given, select an appropriate one.
3934 */
3935 if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
3936 switch (mtd->oobsize) {
3937 case 8:
3938 ecc->layout = &nand_oob_8;
3939 break;
3940 case 16:
3941 ecc->layout = &nand_oob_16;
3942 break;
3943 case 64:
3944 ecc->layout = &nand_oob_64;
3945 break;
3946 case 128:
3947 ecc->layout = &nand_oob_128;
3948 break;
3949 default:
3950 pr_warn("No oob scheme defined for oobsize %d\n",
3951 mtd->oobsize);
3952 BUG();
3953 }
3954 }
3955
3956 if (!chip->write_page)
3957 chip->write_page = nand_write_page;
3958
3959 /*
3960 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3961 * selected and we have 256 byte pagesize fallback to software ECC
3962 */
3963
3964 switch (ecc->mode) {
3965 case NAND_ECC_HW_OOB_FIRST:
3966 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3967 if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
3968 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
3969 BUG();
3970 }
3971 if (!ecc->read_page)
3972 ecc->read_page = nand_read_page_hwecc_oob_first;
3973
3974 case NAND_ECC_HW:
3975 /* Use standard hwecc read page function? */
3976 if (!ecc->read_page)
3977 ecc->read_page = nand_read_page_hwecc;
3978 if (!ecc->write_page)
3979 ecc->write_page = nand_write_page_hwecc;
3980 if (!ecc->read_page_raw)
3981 ecc->read_page_raw = nand_read_page_raw;
3982 if (!ecc->write_page_raw)
3983 ecc->write_page_raw = nand_write_page_raw;
3984 if (!ecc->read_oob)
3985 ecc->read_oob = nand_read_oob_std;
3986 if (!ecc->write_oob)
3987 ecc->write_oob = nand_write_oob_std;
3988 if (!ecc->read_subpage)
3989 ecc->read_subpage = nand_read_subpage;
3990 if (!ecc->write_subpage)
3991 ecc->write_subpage = nand_write_subpage_hwecc;
3992
3993 case NAND_ECC_HW_SYNDROME:
3994 if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
3995 (!ecc->read_page ||
3996 ecc->read_page == nand_read_page_hwecc ||
3997 !ecc->write_page ||
3998 ecc->write_page == nand_write_page_hwecc)) {
3999 pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4000 BUG();
4001 }
4002 /* Use standard syndrome read/write page function? */
4003 if (!ecc->read_page)
4004 ecc->read_page = nand_read_page_syndrome;
4005 if (!ecc->write_page)
4006 ecc->write_page = nand_write_page_syndrome;
4007 if (!ecc->read_page_raw)
4008 ecc->read_page_raw = nand_read_page_raw_syndrome;
4009 if (!ecc->write_page_raw)
4010 ecc->write_page_raw = nand_write_page_raw_syndrome;
4011 if (!ecc->read_oob)
4012 ecc->read_oob = nand_read_oob_syndrome;
4013 if (!ecc->write_oob)
4014 ecc->write_oob = nand_write_oob_syndrome;
4015
4016 if (mtd->writesize >= ecc->size) {
4017 if (!ecc->strength) {
4018 pr_warn("Driver must set ecc.strength when using hardware ECC\n");
4019 BUG();
4020 }
4021 break;
4022 }
4023 pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4024 ecc->size, mtd->writesize);
4025 ecc->mode = NAND_ECC_SOFT;
4026
4027 case NAND_ECC_SOFT:
4028 ecc->calculate = nand_calculate_ecc;
4029 ecc->correct = nand_correct_data;
4030 ecc->read_page = nand_read_page_swecc;
4031 ecc->read_subpage = nand_read_subpage;
4032 ecc->write_page = nand_write_page_swecc;
4033 ecc->read_page_raw = nand_read_page_raw;
4034 ecc->write_page_raw = nand_write_page_raw;
4035 ecc->read_oob = nand_read_oob_std;
4036 ecc->write_oob = nand_write_oob_std;
4037 if (!ecc->size)
4038 ecc->size = 256;
4039 ecc->bytes = 3;
4040 ecc->strength = 1;
4041 break;
4042
4043 case NAND_ECC_SOFT_BCH:
4044 if (!mtd_nand_has_bch()) {
4045 pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4046 BUG();
4047 }
4048 ecc->calculate = nand_bch_calculate_ecc;
4049 ecc->correct = nand_bch_correct_data;
4050 ecc->read_page = nand_read_page_swecc;
4051 ecc->read_subpage = nand_read_subpage;
4052 ecc->write_page = nand_write_page_swecc;
4053 ecc->read_page_raw = nand_read_page_raw;
4054 ecc->write_page_raw = nand_write_page_raw;
4055 ecc->read_oob = nand_read_oob_std;
4056 ecc->write_oob = nand_write_oob_std;
4057 /*
4058 * Board driver should supply ecc.size and ecc.strength values
4059 * to select how many bits are correctable. Otherwise, default
4060 * to 4 bits for large page devices.
4061 */
4062 if (!ecc->size && (mtd->oobsize >= 64)) {
4063 ecc->size = 512;
4064 ecc->strength = 4;
4065 }
4066
4067 /* See nand_bch_init() for details. */
4068 ecc->bytes = DIV_ROUND_UP(
4069 ecc->strength * fls(8 * ecc->size), 8);
4070 ecc->priv = nand_bch_init(mtd, ecc->size, ecc->bytes,
4071 &ecc->layout);
4072 if (!ecc->priv) {
4073 pr_warn("BCH ECC initialization failed!\n");
4074 BUG();
4075 }
4076 break;
4077
4078 case NAND_ECC_NONE:
4079 pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4080 ecc->read_page = nand_read_page_raw;
4081 ecc->write_page = nand_write_page_raw;
4082 ecc->read_oob = nand_read_oob_std;
4083 ecc->read_page_raw = nand_read_page_raw;
4084 ecc->write_page_raw = nand_write_page_raw;
4085 ecc->write_oob = nand_write_oob_std;
4086 ecc->size = mtd->writesize;
4087 ecc->bytes = 0;
4088 ecc->strength = 0;
4089 break;
4090
4091 default:
4092 pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
4093 BUG();
4094 }
4095
4096 /* For many systems, the standard OOB write also works for raw */
4097 if (!ecc->read_oob_raw)
4098 ecc->read_oob_raw = ecc->read_oob;
4099 if (!ecc->write_oob_raw)
4100 ecc->write_oob_raw = ecc->write_oob;
4101
4102 /*
4103 * The number of bytes available for a client to place data into
4104 * the out of band area.
4105 */
4106 ecc->layout->oobavail = 0;
4107 for (i = 0; ecc->layout->oobfree[i].length
4108 && i < ARRAY_SIZE(ecc->layout->oobfree); i++)
4109 ecc->layout->oobavail += ecc->layout->oobfree[i].length;
4110 mtd->oobavail = ecc->layout->oobavail;
4111
4112 /* ECC sanity check: warn if it's too weak */
4113 if (!nand_ecc_strength_good(mtd))
4114 pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4115 mtd->name);
4116
4117 /*
4118 * Set the number of read / write steps for one page depending on ECC
4119 * mode.
4120 */
4121 ecc->steps = mtd->writesize / ecc->size;
4122 if (ecc->steps * ecc->size != mtd->writesize) {
4123 pr_warn("Invalid ECC parameters\n");
4124 BUG();
4125 }
4126 ecc->total = ecc->steps * ecc->bytes;
4127
4128 /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4129 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4130 switch (ecc->steps) {
4131 case 2:
4132 mtd->subpage_sft = 1;
4133 break;
4134 case 4:
4135 case 8:
4136 case 16:
4137 mtd->subpage_sft = 2;
4138 break;
4139 }
4140 }
4141 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4142
4143 /* Initialize state */
4144 chip->state = FL_READY;
4145
4146 /* Invalidate the pagebuffer reference */
4147 chip->pagebuf = -1;
4148
4149 /* Large page NAND with SOFT_ECC should support subpage reads */
4150 switch (ecc->mode) {
4151 case NAND_ECC_SOFT:
4152 case NAND_ECC_SOFT_BCH:
4153 if (chip->page_shift > 9)
4154 chip->options |= NAND_SUBPAGE_READ;
4155 break;
4156
4157 default:
4158 break;
4159 }
4160
4161 /* Fill in remaining MTD driver data */
4162 mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4163 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4164 MTD_CAP_NANDFLASH;
4165 mtd->_erase = nand_erase;
4166 mtd->_point = NULL;
4167 mtd->_unpoint = NULL;
4168 mtd->_read = nand_read;
4169 mtd->_write = nand_write;
4170 mtd->_panic_write = panic_nand_write;
4171 mtd->_read_oob = nand_read_oob;
4172 mtd->_write_oob = nand_write_oob;
4173 mtd->_sync = nand_sync;
4174 mtd->_lock = NULL;
4175 mtd->_unlock = NULL;
4176 mtd->_suspend = nand_suspend;
4177 mtd->_resume = nand_resume;
4178 mtd->_reboot = nand_shutdown;
4179 mtd->_block_isreserved = nand_block_isreserved;
4180 mtd->_block_isbad = nand_block_isbad;
4181 mtd->_block_markbad = nand_block_markbad;
4182 mtd->writebufsize = mtd->writesize;
4183
4184 /* propagate ecc info to mtd_info */
4185 mtd->ecclayout = ecc->layout;
4186 mtd->ecc_strength = ecc->strength;
4187 mtd->ecc_step_size = ecc->size;
4188 /*
4189 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4190 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4191 * properly set.
4192 */
4193 if (!mtd->bitflip_threshold)
4194 mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
4195
4196 /* Check, if we should skip the bad block table scan */
4197 if (chip->options & NAND_SKIP_BBTSCAN)
4198 return 0;
4199
4200 /* Build bad block table */
4201 return chip->scan_bbt(mtd);
4202 }
4203 EXPORT_SYMBOL(nand_scan_tail);
4204
4205 /*
4206 * is_module_text_address() isn't exported, and it's mostly a pointless
4207 * test if this is a module _anyway_ -- they'd have to try _really_ hard
4208 * to call us from in-kernel code if the core NAND support is modular.
4209 */
4210 #ifdef MODULE
4211 #define caller_is_module() (1)
4212 #else
4213 #define caller_is_module() \
4214 is_module_text_address((unsigned long)__builtin_return_address(0))
4215 #endif
4216
4217 /**
4218 * nand_scan - [NAND Interface] Scan for the NAND device
4219 * @mtd: MTD device structure
4220 * @maxchips: number of chips to scan for
4221 *
4222 * This fills out all the uninitialized function pointers with the defaults.
4223 * The flash ID is read and the mtd/chip structures are filled with the
4224 * appropriate values. The mtd->owner field must be set to the module of the
4225 * caller.
4226 */
nand_scan(struct mtd_info * mtd,int maxchips)4227 int nand_scan(struct mtd_info *mtd, int maxchips)
4228 {
4229 int ret;
4230
4231 /* Many callers got this wrong, so check for it for a while... */
4232 if (!mtd->owner && caller_is_module()) {
4233 pr_crit("%s called with NULL mtd->owner!\n", __func__);
4234 BUG();
4235 }
4236
4237 ret = nand_scan_ident(mtd, maxchips, NULL);
4238 if (!ret)
4239 ret = nand_scan_tail(mtd);
4240 return ret;
4241 }
4242 EXPORT_SYMBOL(nand_scan);
4243
4244 /**
4245 * nand_release - [NAND Interface] Free resources held by the NAND device
4246 * @mtd: MTD device structure
4247 */
nand_release(struct mtd_info * mtd)4248 void nand_release(struct mtd_info *mtd)
4249 {
4250 struct nand_chip *chip = mtd->priv;
4251
4252 if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
4253 nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4254
4255 mtd_device_unregister(mtd);
4256
4257 /* Free bad block table memory */
4258 kfree(chip->bbt);
4259 if (!(chip->options & NAND_OWN_BUFFERS))
4260 kfree(chip->buffers);
4261
4262 /* Free bad block descriptor memory */
4263 if (chip->badblock_pattern && chip->badblock_pattern->options
4264 & NAND_BBT_DYNAMICSTRUCT)
4265 kfree(chip->badblock_pattern);
4266 }
4267 EXPORT_SYMBOL_GPL(nand_release);
4268
nand_base_init(void)4269 static int __init nand_base_init(void)
4270 {
4271 led_trigger_register_simple("nand-disk", &nand_led_trigger);
4272 return 0;
4273 }
4274
nand_base_exit(void)4275 static void __exit nand_base_exit(void)
4276 {
4277 led_trigger_unregister_simple(nand_led_trigger);
4278 }
4279
4280 module_init(nand_base_init);
4281 module_exit(nand_base_exit);
4282
4283 MODULE_LICENSE("GPL");
4284 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4285 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4286 MODULE_DESCRIPTION("Generic NAND flash driver code");
4287