1 /*
2  *  Overview:
3  *   This is the generic MTD driver for NAND flash devices. It should be
4  *   capable of working with almost all NAND chips currently available.
5  *
6  *	Additional technical information is available on
7  *	http://www.linux-mtd.infradead.org/doc/nand.html
8  *
9  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10  *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
11  *
12  *  Credits:
13  *	David Woodhouse for adding multichip support
14  *
15  *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16  *	rework for 2K page size chips
17  *
18  *  TODO:
19  *	Enable cached programming for 2k page size chips
20  *	Check, if mtd->ecctype should be set to MTD_ECC_HW
21  *	if we have HW ECC support.
22  *	BBT table is not serialized, has to be fixed
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License version 2 as
26  * published by the Free Software Foundation.
27  *
28  */
29 
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/sched.h>
37 #include <linux/slab.h>
38 #include <linux/mm.h>
39 #include <linux/types.h>
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/nand.h>
42 #include <linux/mtd/nand_ecc.h>
43 #include <linux/mtd/nand_bch.h>
44 #include <linux/interrupt.h>
45 #include <linux/bitops.h>
46 #include <linux/leds.h>
47 #include <linux/io.h>
48 #include <linux/mtd/partitions.h>
49 #include <linux/of_mtd.h>
50 
51 /* Define default oob placement schemes for large and small page devices */
52 static struct nand_ecclayout nand_oob_8 = {
53 	.eccbytes = 3,
54 	.eccpos = {0, 1, 2},
55 	.oobfree = {
56 		{.offset = 3,
57 		 .length = 2},
58 		{.offset = 6,
59 		 .length = 2} }
60 };
61 
62 static struct nand_ecclayout nand_oob_16 = {
63 	.eccbytes = 6,
64 	.eccpos = {0, 1, 2, 3, 6, 7},
65 	.oobfree = {
66 		{.offset = 8,
67 		 . length = 8} }
68 };
69 
70 static struct nand_ecclayout nand_oob_64 = {
71 	.eccbytes = 24,
72 	.eccpos = {
73 		   40, 41, 42, 43, 44, 45, 46, 47,
74 		   48, 49, 50, 51, 52, 53, 54, 55,
75 		   56, 57, 58, 59, 60, 61, 62, 63},
76 	.oobfree = {
77 		{.offset = 2,
78 		 .length = 38} }
79 };
80 
81 static struct nand_ecclayout nand_oob_128 = {
82 	.eccbytes = 48,
83 	.eccpos = {
84 		   80, 81, 82, 83, 84, 85, 86, 87,
85 		   88, 89, 90, 91, 92, 93, 94, 95,
86 		   96, 97, 98, 99, 100, 101, 102, 103,
87 		   104, 105, 106, 107, 108, 109, 110, 111,
88 		   112, 113, 114, 115, 116, 117, 118, 119,
89 		   120, 121, 122, 123, 124, 125, 126, 127},
90 	.oobfree = {
91 		{.offset = 2,
92 		 .length = 78} }
93 };
94 
95 static int nand_get_device(struct mtd_info *mtd, int new_state);
96 
97 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
98 			     struct mtd_oob_ops *ops);
99 
100 /*
101  * For devices which display every fart in the system on a separate LED. Is
102  * compiled away when LED support is disabled.
103  */
104 DEFINE_LED_TRIGGER(nand_led_trigger);
105 
check_offs_len(struct mtd_info * mtd,loff_t ofs,uint64_t len)106 static int check_offs_len(struct mtd_info *mtd,
107 					loff_t ofs, uint64_t len)
108 {
109 	struct nand_chip *chip = mtd->priv;
110 	int ret = 0;
111 
112 	/* Start address must align on block boundary */
113 	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
114 		pr_debug("%s: unaligned address\n", __func__);
115 		ret = -EINVAL;
116 	}
117 
118 	/* Length must align on block boundary */
119 	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
120 		pr_debug("%s: length not block aligned\n", __func__);
121 		ret = -EINVAL;
122 	}
123 
124 	return ret;
125 }
126 
127 /**
128  * nand_release_device - [GENERIC] release chip
129  * @mtd: MTD device structure
130  *
131  * Release chip lock and wake up anyone waiting on the device.
132  */
nand_release_device(struct mtd_info * mtd)133 static void nand_release_device(struct mtd_info *mtd)
134 {
135 	struct nand_chip *chip = mtd->priv;
136 
137 	/* Release the controller and the chip */
138 	spin_lock(&chip->controller->lock);
139 	chip->controller->active = NULL;
140 	chip->state = FL_READY;
141 	wake_up(&chip->controller->wq);
142 	spin_unlock(&chip->controller->lock);
143 }
144 
145 /**
146  * nand_read_byte - [DEFAULT] read one byte from the chip
147  * @mtd: MTD device structure
148  *
149  * Default read function for 8bit buswidth
150  */
nand_read_byte(struct mtd_info * mtd)151 static uint8_t nand_read_byte(struct mtd_info *mtd)
152 {
153 	struct nand_chip *chip = mtd->priv;
154 	return readb(chip->IO_ADDR_R);
155 }
156 
157 /**
158  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
159  * @mtd: MTD device structure
160  *
161  * Default read function for 16bit buswidth with endianness conversion.
162  *
163  */
nand_read_byte16(struct mtd_info * mtd)164 static uint8_t nand_read_byte16(struct mtd_info *mtd)
165 {
166 	struct nand_chip *chip = mtd->priv;
167 	return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
168 }
169 
170 /**
171  * nand_read_word - [DEFAULT] read one word from the chip
172  * @mtd: MTD device structure
173  *
174  * Default read function for 16bit buswidth without endianness conversion.
175  */
nand_read_word(struct mtd_info * mtd)176 static u16 nand_read_word(struct mtd_info *mtd)
177 {
178 	struct nand_chip *chip = mtd->priv;
179 	return readw(chip->IO_ADDR_R);
180 }
181 
182 /**
183  * nand_select_chip - [DEFAULT] control CE line
184  * @mtd: MTD device structure
185  * @chipnr: chipnumber to select, -1 for deselect
186  *
187  * Default select function for 1 chip devices.
188  */
nand_select_chip(struct mtd_info * mtd,int chipnr)189 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
190 {
191 	struct nand_chip *chip = mtd->priv;
192 
193 	switch (chipnr) {
194 	case -1:
195 		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
196 		break;
197 	case 0:
198 		break;
199 
200 	default:
201 		BUG();
202 	}
203 }
204 
205 /**
206  * nand_write_byte - [DEFAULT] write single byte to chip
207  * @mtd: MTD device structure
208  * @byte: value to write
209  *
210  * Default function to write a byte to I/O[7:0]
211  */
nand_write_byte(struct mtd_info * mtd,uint8_t byte)212 static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
213 {
214 	struct nand_chip *chip = mtd->priv;
215 
216 	chip->write_buf(mtd, &byte, 1);
217 }
218 
219 /**
220  * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
221  * @mtd: MTD device structure
222  * @byte: value to write
223  *
224  * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
225  */
nand_write_byte16(struct mtd_info * mtd,uint8_t byte)226 static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
227 {
228 	struct nand_chip *chip = mtd->priv;
229 	uint16_t word = byte;
230 
231 	/*
232 	 * It's not entirely clear what should happen to I/O[15:8] when writing
233 	 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
234 	 *
235 	 *    When the host supports a 16-bit bus width, only data is
236 	 *    transferred at the 16-bit width. All address and command line
237 	 *    transfers shall use only the lower 8-bits of the data bus. During
238 	 *    command transfers, the host may place any value on the upper
239 	 *    8-bits of the data bus. During address transfers, the host shall
240 	 *    set the upper 8-bits of the data bus to 00h.
241 	 *
242 	 * One user of the write_byte callback is nand_onfi_set_features. The
243 	 * four parameters are specified to be written to I/O[7:0], but this is
244 	 * neither an address nor a command transfer. Let's assume a 0 on the
245 	 * upper I/O lines is OK.
246 	 */
247 	chip->write_buf(mtd, (uint8_t *)&word, 2);
248 }
249 
250 /**
251  * nand_write_buf - [DEFAULT] write buffer to chip
252  * @mtd: MTD device structure
253  * @buf: data buffer
254  * @len: number of bytes to write
255  *
256  * Default write function for 8bit buswidth.
257  */
nand_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)258 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
259 {
260 	struct nand_chip *chip = mtd->priv;
261 
262 	iowrite8_rep(chip->IO_ADDR_W, buf, len);
263 }
264 
265 /**
266  * nand_read_buf - [DEFAULT] read chip data into buffer
267  * @mtd: MTD device structure
268  * @buf: buffer to store date
269  * @len: number of bytes to read
270  *
271  * Default read function for 8bit buswidth.
272  */
nand_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)273 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
274 {
275 	struct nand_chip *chip = mtd->priv;
276 
277 	ioread8_rep(chip->IO_ADDR_R, buf, len);
278 }
279 
280 /**
281  * nand_write_buf16 - [DEFAULT] write buffer to chip
282  * @mtd: MTD device structure
283  * @buf: data buffer
284  * @len: number of bytes to write
285  *
286  * Default write function for 16bit buswidth.
287  */
nand_write_buf16(struct mtd_info * mtd,const uint8_t * buf,int len)288 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
289 {
290 	struct nand_chip *chip = mtd->priv;
291 	u16 *p = (u16 *) buf;
292 
293 	iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
294 }
295 
296 /**
297  * nand_read_buf16 - [DEFAULT] read chip data into buffer
298  * @mtd: MTD device structure
299  * @buf: buffer to store date
300  * @len: number of bytes to read
301  *
302  * Default read function for 16bit buswidth.
303  */
nand_read_buf16(struct mtd_info * mtd,uint8_t * buf,int len)304 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
305 {
306 	struct nand_chip *chip = mtd->priv;
307 	u16 *p = (u16 *) buf;
308 
309 	ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
310 }
311 
312 /**
313  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
314  * @mtd: MTD device structure
315  * @ofs: offset from device start
316  * @getchip: 0, if the chip is already selected
317  *
318  * Check, if the block is bad.
319  */
nand_block_bad(struct mtd_info * mtd,loff_t ofs,int getchip)320 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
321 {
322 	int page, chipnr, res = 0, i = 0;
323 	struct nand_chip *chip = mtd->priv;
324 	u16 bad;
325 
326 	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
327 		ofs += mtd->erasesize - mtd->writesize;
328 
329 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
330 
331 	if (getchip) {
332 		chipnr = (int)(ofs >> chip->chip_shift);
333 
334 		nand_get_device(mtd, FL_READING);
335 
336 		/* Select the NAND device */
337 		chip->select_chip(mtd, chipnr);
338 	}
339 
340 	do {
341 		if (chip->options & NAND_BUSWIDTH_16) {
342 			chip->cmdfunc(mtd, NAND_CMD_READOOB,
343 					chip->badblockpos & 0xFE, page);
344 			bad = cpu_to_le16(chip->read_word(mtd));
345 			if (chip->badblockpos & 0x1)
346 				bad >>= 8;
347 			else
348 				bad &= 0xFF;
349 		} else {
350 			chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
351 					page);
352 			bad = chip->read_byte(mtd);
353 		}
354 
355 		if (likely(chip->badblockbits == 8))
356 			res = bad != 0xFF;
357 		else
358 			res = hweight8(bad) < chip->badblockbits;
359 		ofs += mtd->writesize;
360 		page = (int)(ofs >> chip->page_shift) & chip->pagemask;
361 		i++;
362 	} while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
363 
364 	if (getchip) {
365 		chip->select_chip(mtd, -1);
366 		nand_release_device(mtd);
367 	}
368 
369 	return res;
370 }
371 
372 /**
373  * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
374  * @mtd: MTD device structure
375  * @ofs: offset from device start
376  *
377  * This is the default implementation, which can be overridden by a hardware
378  * specific driver. It provides the details for writing a bad block marker to a
379  * block.
380  */
nand_default_block_markbad(struct mtd_info * mtd,loff_t ofs)381 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
382 {
383 	struct nand_chip *chip = mtd->priv;
384 	struct mtd_oob_ops ops;
385 	uint8_t buf[2] = { 0, 0 };
386 	int ret = 0, res, i = 0;
387 
388 	memset(&ops, 0, sizeof(ops));
389 	ops.oobbuf = buf;
390 	ops.ooboffs = chip->badblockpos;
391 	if (chip->options & NAND_BUSWIDTH_16) {
392 		ops.ooboffs &= ~0x01;
393 		ops.len = ops.ooblen = 2;
394 	} else {
395 		ops.len = ops.ooblen = 1;
396 	}
397 	ops.mode = MTD_OPS_PLACE_OOB;
398 
399 	/* Write to first/last page(s) if necessary */
400 	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
401 		ofs += mtd->erasesize - mtd->writesize;
402 	do {
403 		res = nand_do_write_oob(mtd, ofs, &ops);
404 		if (!ret)
405 			ret = res;
406 
407 		i++;
408 		ofs += mtd->writesize;
409 	} while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
410 
411 	return ret;
412 }
413 
414 /**
415  * nand_block_markbad_lowlevel - mark a block bad
416  * @mtd: MTD device structure
417  * @ofs: offset from device start
418  *
419  * This function performs the generic NAND bad block marking steps (i.e., bad
420  * block table(s) and/or marker(s)). We only allow the hardware driver to
421  * specify how to write bad block markers to OOB (chip->block_markbad).
422  *
423  * We try operations in the following order:
424  *  (1) erase the affected block, to allow OOB marker to be written cleanly
425  *  (2) write bad block marker to OOB area of affected block (unless flag
426  *      NAND_BBT_NO_OOB_BBM is present)
427  *  (3) update the BBT
428  * Note that we retain the first error encountered in (2) or (3), finish the
429  * procedures, and dump the error in the end.
430 */
nand_block_markbad_lowlevel(struct mtd_info * mtd,loff_t ofs)431 static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
432 {
433 	struct nand_chip *chip = mtd->priv;
434 	int res, ret = 0;
435 
436 	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
437 		struct erase_info einfo;
438 
439 		/* Attempt erase before marking OOB */
440 		memset(&einfo, 0, sizeof(einfo));
441 		einfo.mtd = mtd;
442 		einfo.addr = ofs;
443 		einfo.len = 1ULL << chip->phys_erase_shift;
444 		nand_erase_nand(mtd, &einfo, 0);
445 
446 		/* Write bad block marker to OOB */
447 		nand_get_device(mtd, FL_WRITING);
448 		ret = chip->block_markbad(mtd, ofs);
449 		nand_release_device(mtd);
450 	}
451 
452 	/* Mark block bad in BBT */
453 	if (chip->bbt) {
454 		res = nand_markbad_bbt(mtd, ofs);
455 		if (!ret)
456 			ret = res;
457 	}
458 
459 	if (!ret)
460 		mtd->ecc_stats.badblocks++;
461 
462 	return ret;
463 }
464 
465 /**
466  * nand_check_wp - [GENERIC] check if the chip is write protected
467  * @mtd: MTD device structure
468  *
469  * Check, if the device is write protected. The function expects, that the
470  * device is already selected.
471  */
nand_check_wp(struct mtd_info * mtd)472 static int nand_check_wp(struct mtd_info *mtd)
473 {
474 	struct nand_chip *chip = mtd->priv;
475 
476 	/* Broken xD cards report WP despite being writable */
477 	if (chip->options & NAND_BROKEN_XD)
478 		return 0;
479 
480 	/* Check the WP bit */
481 	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
482 	return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
483 }
484 
485 /**
486  * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
487  * @mtd: MTD device structure
488  * @ofs: offset from device start
489  *
490  * Check if the block is marked as reserved.
491  */
nand_block_isreserved(struct mtd_info * mtd,loff_t ofs)492 static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
493 {
494 	struct nand_chip *chip = mtd->priv;
495 
496 	if (!chip->bbt)
497 		return 0;
498 	/* Return info from the table */
499 	return nand_isreserved_bbt(mtd, ofs);
500 }
501 
502 /**
503  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
504  * @mtd: MTD device structure
505  * @ofs: offset from device start
506  * @getchip: 0, if the chip is already selected
507  * @allowbbt: 1, if its allowed to access the bbt area
508  *
509  * Check, if the block is bad. Either by reading the bad block table or
510  * calling of the scan function.
511  */
nand_block_checkbad(struct mtd_info * mtd,loff_t ofs,int getchip,int allowbbt)512 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
513 			       int allowbbt)
514 {
515 	struct nand_chip *chip = mtd->priv;
516 
517 	if (!chip->bbt)
518 		return chip->block_bad(mtd, ofs, getchip);
519 
520 	/* Return info from the table */
521 	return nand_isbad_bbt(mtd, ofs, allowbbt);
522 }
523 
524 /**
525  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
526  * @mtd: MTD device structure
527  * @timeo: Timeout
528  *
529  * Helper function for nand_wait_ready used when needing to wait in interrupt
530  * context.
531  */
panic_nand_wait_ready(struct mtd_info * mtd,unsigned long timeo)532 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
533 {
534 	struct nand_chip *chip = mtd->priv;
535 	int i;
536 
537 	/* Wait for the device to get ready */
538 	for (i = 0; i < timeo; i++) {
539 		if (chip->dev_ready(mtd))
540 			break;
541 		touch_softlockup_watchdog();
542 		mdelay(1);
543 	}
544 }
545 
546 /**
547  * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
548  * @mtd: MTD device structure
549  *
550  * Wait for the ready pin after a command, and warn if a timeout occurs.
551  */
nand_wait_ready(struct mtd_info * mtd)552 void nand_wait_ready(struct mtd_info *mtd)
553 {
554 	struct nand_chip *chip = mtd->priv;
555 	unsigned long timeo = 400;
556 
557 	if (in_interrupt() || oops_in_progress)
558 		return panic_nand_wait_ready(mtd, timeo);
559 
560 	led_trigger_event(nand_led_trigger, LED_FULL);
561 	/* Wait until command is processed or timeout occurs */
562 	timeo = jiffies + msecs_to_jiffies(timeo);
563 	do {
564 		if (chip->dev_ready(mtd))
565 			goto out;
566 		cond_resched();
567 	} while (time_before(jiffies, timeo));
568 
569 	pr_warn_ratelimited(
570 		"timeout while waiting for chip to become ready\n");
571 out:
572 	led_trigger_event(nand_led_trigger, LED_OFF);
573 }
574 EXPORT_SYMBOL_GPL(nand_wait_ready);
575 
576 /**
577  * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
578  * @mtd: MTD device structure
579  * @timeo: Timeout in ms
580  *
581  * Wait for status ready (i.e. command done) or timeout.
582  */
nand_wait_status_ready(struct mtd_info * mtd,unsigned long timeo)583 static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
584 {
585 	register struct nand_chip *chip = mtd->priv;
586 
587 	timeo = jiffies + msecs_to_jiffies(timeo);
588 	do {
589 		if ((chip->read_byte(mtd) & NAND_STATUS_READY))
590 			break;
591 		touch_softlockup_watchdog();
592 	} while (time_before(jiffies, timeo));
593 };
594 
595 /**
596  * nand_command - [DEFAULT] Send command to NAND device
597  * @mtd: MTD device structure
598  * @command: the command to be sent
599  * @column: the column address for this command, -1 if none
600  * @page_addr: the page address for this command, -1 if none
601  *
602  * Send command to NAND device. This function is used for small page devices
603  * (512 Bytes per page).
604  */
nand_command(struct mtd_info * mtd,unsigned int command,int column,int page_addr)605 static void nand_command(struct mtd_info *mtd, unsigned int command,
606 			 int column, int page_addr)
607 {
608 	register struct nand_chip *chip = mtd->priv;
609 	int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
610 
611 	/* Write out the command to the device */
612 	if (command == NAND_CMD_SEQIN) {
613 		int readcmd;
614 
615 		if (column >= mtd->writesize) {
616 			/* OOB area */
617 			column -= mtd->writesize;
618 			readcmd = NAND_CMD_READOOB;
619 		} else if (column < 256) {
620 			/* First 256 bytes --> READ0 */
621 			readcmd = NAND_CMD_READ0;
622 		} else {
623 			column -= 256;
624 			readcmd = NAND_CMD_READ1;
625 		}
626 		chip->cmd_ctrl(mtd, readcmd, ctrl);
627 		ctrl &= ~NAND_CTRL_CHANGE;
628 	}
629 	chip->cmd_ctrl(mtd, command, ctrl);
630 
631 	/* Address cycle, when necessary */
632 	ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
633 	/* Serially input address */
634 	if (column != -1) {
635 		/* Adjust columns for 16 bit buswidth */
636 		if (chip->options & NAND_BUSWIDTH_16 &&
637 				!nand_opcode_8bits(command))
638 			column >>= 1;
639 		chip->cmd_ctrl(mtd, column, ctrl);
640 		ctrl &= ~NAND_CTRL_CHANGE;
641 	}
642 	if (page_addr != -1) {
643 		chip->cmd_ctrl(mtd, page_addr, ctrl);
644 		ctrl &= ~NAND_CTRL_CHANGE;
645 		chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
646 		/* One more address cycle for devices > 32MiB */
647 		if (chip->chipsize > (32 << 20))
648 			chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
649 	}
650 	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
651 
652 	/*
653 	 * Program and erase have their own busy handlers status and sequential
654 	 * in needs no delay
655 	 */
656 	switch (command) {
657 
658 	case NAND_CMD_PAGEPROG:
659 	case NAND_CMD_ERASE1:
660 	case NAND_CMD_ERASE2:
661 	case NAND_CMD_SEQIN:
662 	case NAND_CMD_STATUS:
663 		return;
664 
665 	case NAND_CMD_RESET:
666 		if (chip->dev_ready)
667 			break;
668 		udelay(chip->chip_delay);
669 		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
670 			       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
671 		chip->cmd_ctrl(mtd,
672 			       NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
673 		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
674 		nand_wait_status_ready(mtd, 250);
675 		return;
676 
677 		/* This applies to read commands */
678 	default:
679 		/*
680 		 * If we don't have access to the busy pin, we apply the given
681 		 * command delay
682 		 */
683 		if (!chip->dev_ready) {
684 			udelay(chip->chip_delay);
685 			return;
686 		}
687 	}
688 	/*
689 	 * Apply this short delay always to ensure that we do wait tWB in
690 	 * any case on any machine.
691 	 */
692 	ndelay(100);
693 
694 	nand_wait_ready(mtd);
695 }
696 
697 /**
698  * nand_command_lp - [DEFAULT] Send command to NAND large page device
699  * @mtd: MTD device structure
700  * @command: the command to be sent
701  * @column: the column address for this command, -1 if none
702  * @page_addr: the page address for this command, -1 if none
703  *
704  * Send command to NAND device. This is the version for the new large page
705  * devices. We don't have the separate regions as we have in the small page
706  * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
707  */
nand_command_lp(struct mtd_info * mtd,unsigned int command,int column,int page_addr)708 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
709 			    int column, int page_addr)
710 {
711 	register struct nand_chip *chip = mtd->priv;
712 
713 	/* Emulate NAND_CMD_READOOB */
714 	if (command == NAND_CMD_READOOB) {
715 		column += mtd->writesize;
716 		command = NAND_CMD_READ0;
717 	}
718 
719 	/* Command latch cycle */
720 	chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
721 
722 	if (column != -1 || page_addr != -1) {
723 		int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
724 
725 		/* Serially input address */
726 		if (column != -1) {
727 			/* Adjust columns for 16 bit buswidth */
728 			if (chip->options & NAND_BUSWIDTH_16 &&
729 					!nand_opcode_8bits(command))
730 				column >>= 1;
731 			chip->cmd_ctrl(mtd, column, ctrl);
732 			ctrl &= ~NAND_CTRL_CHANGE;
733 			chip->cmd_ctrl(mtd, column >> 8, ctrl);
734 		}
735 		if (page_addr != -1) {
736 			chip->cmd_ctrl(mtd, page_addr, ctrl);
737 			chip->cmd_ctrl(mtd, page_addr >> 8,
738 				       NAND_NCE | NAND_ALE);
739 			/* One more address cycle for devices > 128MiB */
740 			if (chip->chipsize > (128 << 20))
741 				chip->cmd_ctrl(mtd, page_addr >> 16,
742 					       NAND_NCE | NAND_ALE);
743 		}
744 	}
745 	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
746 
747 	/*
748 	 * Program and erase have their own busy handlers status, sequential
749 	 * in and status need no delay.
750 	 */
751 	switch (command) {
752 
753 	case NAND_CMD_CACHEDPROG:
754 	case NAND_CMD_PAGEPROG:
755 	case NAND_CMD_ERASE1:
756 	case NAND_CMD_ERASE2:
757 	case NAND_CMD_SEQIN:
758 	case NAND_CMD_RNDIN:
759 	case NAND_CMD_STATUS:
760 		return;
761 
762 	case NAND_CMD_RESET:
763 		if (chip->dev_ready)
764 			break;
765 		udelay(chip->chip_delay);
766 		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
767 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
768 		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
769 			       NAND_NCE | NAND_CTRL_CHANGE);
770 		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
771 		nand_wait_status_ready(mtd, 250);
772 		return;
773 
774 	case NAND_CMD_RNDOUT:
775 		/* No ready / busy check necessary */
776 		chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
777 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
778 		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
779 			       NAND_NCE | NAND_CTRL_CHANGE);
780 		return;
781 
782 	case NAND_CMD_READ0:
783 		chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
784 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
785 		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
786 			       NAND_NCE | NAND_CTRL_CHANGE);
787 
788 		/* This applies to read commands */
789 	default:
790 		/*
791 		 * If we don't have access to the busy pin, we apply the given
792 		 * command delay.
793 		 */
794 		if (!chip->dev_ready) {
795 			udelay(chip->chip_delay);
796 			return;
797 		}
798 	}
799 
800 	/*
801 	 * Apply this short delay always to ensure that we do wait tWB in
802 	 * any case on any machine.
803 	 */
804 	ndelay(100);
805 
806 	nand_wait_ready(mtd);
807 }
808 
809 /**
810  * panic_nand_get_device - [GENERIC] Get chip for selected access
811  * @chip: the nand chip descriptor
812  * @mtd: MTD device structure
813  * @new_state: the state which is requested
814  *
815  * Used when in panic, no locks are taken.
816  */
panic_nand_get_device(struct nand_chip * chip,struct mtd_info * mtd,int new_state)817 static void panic_nand_get_device(struct nand_chip *chip,
818 		      struct mtd_info *mtd, int new_state)
819 {
820 	/* Hardware controller shared among independent devices */
821 	chip->controller->active = chip;
822 	chip->state = new_state;
823 }
824 
825 /**
826  * nand_get_device - [GENERIC] Get chip for selected access
827  * @mtd: MTD device structure
828  * @new_state: the state which is requested
829  *
830  * Get the device and lock it for exclusive access
831  */
832 static int
nand_get_device(struct mtd_info * mtd,int new_state)833 nand_get_device(struct mtd_info *mtd, int new_state)
834 {
835 	struct nand_chip *chip = mtd->priv;
836 	spinlock_t *lock = &chip->controller->lock;
837 	wait_queue_head_t *wq = &chip->controller->wq;
838 	DECLARE_WAITQUEUE(wait, current);
839 retry:
840 	spin_lock(lock);
841 
842 	/* Hardware controller shared among independent devices */
843 	if (!chip->controller->active)
844 		chip->controller->active = chip;
845 
846 	if (chip->controller->active == chip && chip->state == FL_READY) {
847 		chip->state = new_state;
848 		spin_unlock(lock);
849 		return 0;
850 	}
851 	if (new_state == FL_PM_SUSPENDED) {
852 		if (chip->controller->active->state == FL_PM_SUSPENDED) {
853 			chip->state = FL_PM_SUSPENDED;
854 			spin_unlock(lock);
855 			return 0;
856 		}
857 	}
858 	set_current_state(TASK_UNINTERRUPTIBLE);
859 	add_wait_queue(wq, &wait);
860 	spin_unlock(lock);
861 	schedule();
862 	remove_wait_queue(wq, &wait);
863 	goto retry;
864 }
865 
866 /**
867  * panic_nand_wait - [GENERIC] wait until the command is done
868  * @mtd: MTD device structure
869  * @chip: NAND chip structure
870  * @timeo: timeout
871  *
872  * Wait for command done. This is a helper function for nand_wait used when
873  * we are in interrupt context. May happen when in panic and trying to write
874  * an oops through mtdoops.
875  */
panic_nand_wait(struct mtd_info * mtd,struct nand_chip * chip,unsigned long timeo)876 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
877 			    unsigned long timeo)
878 {
879 	int i;
880 	for (i = 0; i < timeo; i++) {
881 		if (chip->dev_ready) {
882 			if (chip->dev_ready(mtd))
883 				break;
884 		} else {
885 			if (chip->read_byte(mtd) & NAND_STATUS_READY)
886 				break;
887 		}
888 		mdelay(1);
889 	}
890 }
891 
892 /**
893  * nand_wait - [DEFAULT] wait until the command is done
894  * @mtd: MTD device structure
895  * @chip: NAND chip structure
896  *
897  * Wait for command done. This applies to erase and program only.
898  */
nand_wait(struct mtd_info * mtd,struct nand_chip * chip)899 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
900 {
901 
902 	int status;
903 	unsigned long timeo = 400;
904 
905 	led_trigger_event(nand_led_trigger, LED_FULL);
906 
907 	/*
908 	 * Apply this short delay always to ensure that we do wait tWB in any
909 	 * case on any machine.
910 	 */
911 	ndelay(100);
912 
913 	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
914 
915 	if (in_interrupt() || oops_in_progress)
916 		panic_nand_wait(mtd, chip, timeo);
917 	else {
918 		timeo = jiffies + msecs_to_jiffies(timeo);
919 		do {
920 			if (chip->dev_ready) {
921 				if (chip->dev_ready(mtd))
922 					break;
923 			} else {
924 				if (chip->read_byte(mtd) & NAND_STATUS_READY)
925 					break;
926 			}
927 			cond_resched();
928 		} while (time_before(jiffies, timeo));
929 	}
930 	led_trigger_event(nand_led_trigger, LED_OFF);
931 
932 	status = (int)chip->read_byte(mtd);
933 	/* This can happen if in case of timeout or buggy dev_ready */
934 	WARN_ON(!(status & NAND_STATUS_READY));
935 	return status;
936 }
937 
938 /**
939  * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
940  * @mtd: mtd info
941  * @ofs: offset to start unlock from
942  * @len: length to unlock
943  * @invert: when = 0, unlock the range of blocks within the lower and
944  *                    upper boundary address
945  *          when = 1, unlock the range of blocks outside the boundaries
946  *                    of the lower and upper boundary address
947  *
948  * Returs unlock status.
949  */
__nand_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len,int invert)950 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
951 					uint64_t len, int invert)
952 {
953 	int ret = 0;
954 	int status, page;
955 	struct nand_chip *chip = mtd->priv;
956 
957 	/* Submit address of first page to unlock */
958 	page = ofs >> chip->page_shift;
959 	chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
960 
961 	/* Submit address of last page to unlock */
962 	page = (ofs + len) >> chip->page_shift;
963 	chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
964 				(page | invert) & chip->pagemask);
965 
966 	/* Call wait ready function */
967 	status = chip->waitfunc(mtd, chip);
968 	/* See if device thinks it succeeded */
969 	if (status & NAND_STATUS_FAIL) {
970 		pr_debug("%s: error status = 0x%08x\n",
971 					__func__, status);
972 		ret = -EIO;
973 	}
974 
975 	return ret;
976 }
977 
978 /**
979  * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
980  * @mtd: mtd info
981  * @ofs: offset to start unlock from
982  * @len: length to unlock
983  *
984  * Returns unlock status.
985  */
nand_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)986 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
987 {
988 	int ret = 0;
989 	int chipnr;
990 	struct nand_chip *chip = mtd->priv;
991 
992 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
993 			__func__, (unsigned long long)ofs, len);
994 
995 	if (check_offs_len(mtd, ofs, len))
996 		return -EINVAL;
997 
998 	/* Align to last block address if size addresses end of the device */
999 	if (ofs + len == mtd->size)
1000 		len -= mtd->erasesize;
1001 
1002 	nand_get_device(mtd, FL_UNLOCKING);
1003 
1004 	/* Shift to get chip number */
1005 	chipnr = ofs >> chip->chip_shift;
1006 
1007 	chip->select_chip(mtd, chipnr);
1008 
1009 	/*
1010 	 * Reset the chip.
1011 	 * If we want to check the WP through READ STATUS and check the bit 7
1012 	 * we must reset the chip
1013 	 * some operation can also clear the bit 7 of status register
1014 	 * eg. erase/program a locked block
1015 	 */
1016 	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1017 
1018 	/* Check, if it is write protected */
1019 	if (nand_check_wp(mtd)) {
1020 		pr_debug("%s: device is write protected!\n",
1021 					__func__);
1022 		ret = -EIO;
1023 		goto out;
1024 	}
1025 
1026 	ret = __nand_unlock(mtd, ofs, len, 0);
1027 
1028 out:
1029 	chip->select_chip(mtd, -1);
1030 	nand_release_device(mtd);
1031 
1032 	return ret;
1033 }
1034 EXPORT_SYMBOL(nand_unlock);
1035 
1036 /**
1037  * nand_lock - [REPLACEABLE] locks all blocks present in the device
1038  * @mtd: mtd info
1039  * @ofs: offset to start unlock from
1040  * @len: length to unlock
1041  *
1042  * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1043  * have this feature, but it allows only to lock all blocks, not for specified
1044  * range for block. Implementing 'lock' feature by making use of 'unlock', for
1045  * now.
1046  *
1047  * Returns lock status.
1048  */
nand_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1049 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1050 {
1051 	int ret = 0;
1052 	int chipnr, status, page;
1053 	struct nand_chip *chip = mtd->priv;
1054 
1055 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
1056 			__func__, (unsigned long long)ofs, len);
1057 
1058 	if (check_offs_len(mtd, ofs, len))
1059 		return -EINVAL;
1060 
1061 	nand_get_device(mtd, FL_LOCKING);
1062 
1063 	/* Shift to get chip number */
1064 	chipnr = ofs >> chip->chip_shift;
1065 
1066 	chip->select_chip(mtd, chipnr);
1067 
1068 	/*
1069 	 * Reset the chip.
1070 	 * If we want to check the WP through READ STATUS and check the bit 7
1071 	 * we must reset the chip
1072 	 * some operation can also clear the bit 7 of status register
1073 	 * eg. erase/program a locked block
1074 	 */
1075 	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1076 
1077 	/* Check, if it is write protected */
1078 	if (nand_check_wp(mtd)) {
1079 		pr_debug("%s: device is write protected!\n",
1080 					__func__);
1081 		status = MTD_ERASE_FAILED;
1082 		ret = -EIO;
1083 		goto out;
1084 	}
1085 
1086 	/* Submit address of first page to lock */
1087 	page = ofs >> chip->page_shift;
1088 	chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1089 
1090 	/* Call wait ready function */
1091 	status = chip->waitfunc(mtd, chip);
1092 	/* See if device thinks it succeeded */
1093 	if (status & NAND_STATUS_FAIL) {
1094 		pr_debug("%s: error status = 0x%08x\n",
1095 					__func__, status);
1096 		ret = -EIO;
1097 		goto out;
1098 	}
1099 
1100 	ret = __nand_unlock(mtd, ofs, len, 0x1);
1101 
1102 out:
1103 	chip->select_chip(mtd, -1);
1104 	nand_release_device(mtd);
1105 
1106 	return ret;
1107 }
1108 EXPORT_SYMBOL(nand_lock);
1109 
1110 /**
1111  * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1112  * @buf: buffer to test
1113  * @len: buffer length
1114  * @bitflips_threshold: maximum number of bitflips
1115  *
1116  * Check if a buffer contains only 0xff, which means the underlying region
1117  * has been erased and is ready to be programmed.
1118  * The bitflips_threshold specify the maximum number of bitflips before
1119  * considering the region is not erased.
1120  * Note: The logic of this function has been extracted from the memweight
1121  * implementation, except that nand_check_erased_buf function exit before
1122  * testing the whole buffer if the number of bitflips exceed the
1123  * bitflips_threshold value.
1124  *
1125  * Returns a positive number of bitflips less than or equal to
1126  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1127  * threshold.
1128  */
nand_check_erased_buf(void * buf,int len,int bitflips_threshold)1129 static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
1130 {
1131 	const unsigned char *bitmap = buf;
1132 	int bitflips = 0;
1133 	int weight;
1134 
1135 	for (; len && ((uintptr_t)bitmap) % sizeof(long);
1136 	     len--, bitmap++) {
1137 		weight = hweight8(*bitmap);
1138 		bitflips += BITS_PER_BYTE - weight;
1139 		if (unlikely(bitflips > bitflips_threshold))
1140 			return -EBADMSG;
1141 	}
1142 
1143 	for (; len >= sizeof(long);
1144 	     len -= sizeof(long), bitmap += sizeof(long)) {
1145 		weight = hweight_long(*((unsigned long *)bitmap));
1146 		bitflips += BITS_PER_LONG - weight;
1147 		if (unlikely(bitflips > bitflips_threshold))
1148 			return -EBADMSG;
1149 	}
1150 
1151 	for (; len > 0; len--, bitmap++) {
1152 		weight = hweight8(*bitmap);
1153 		bitflips += BITS_PER_BYTE - weight;
1154 		if (unlikely(bitflips > bitflips_threshold))
1155 			return -EBADMSG;
1156 	}
1157 
1158 	return bitflips;
1159 }
1160 
1161 /**
1162  * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1163  *				 0xff data
1164  * @data: data buffer to test
1165  * @datalen: data length
1166  * @ecc: ECC buffer
1167  * @ecclen: ECC length
1168  * @extraoob: extra OOB buffer
1169  * @extraooblen: extra OOB length
1170  * @bitflips_threshold: maximum number of bitflips
1171  *
1172  * Check if a data buffer and its associated ECC and OOB data contains only
1173  * 0xff pattern, which means the underlying region has been erased and is
1174  * ready to be programmed.
1175  * The bitflips_threshold specify the maximum number of bitflips before
1176  * considering the region as not erased.
1177  *
1178  * Note:
1179  * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1180  *    different from the NAND page size. When fixing bitflips, ECC engines will
1181  *    report the number of errors per chunk, and the NAND core infrastructure
1182  *    expect you to return the maximum number of bitflips for the whole page.
1183  *    This is why you should always use this function on a single chunk and
1184  *    not on the whole page. After checking each chunk you should update your
1185  *    max_bitflips value accordingly.
1186  * 2/ When checking for bitflips in erased pages you should not only check
1187  *    the payload data but also their associated ECC data, because a user might
1188  *    have programmed almost all bits to 1 but a few. In this case, we
1189  *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
1190  *    this case.
1191  * 3/ The extraoob argument is optional, and should be used if some of your OOB
1192  *    data are protected by the ECC engine.
1193  *    It could also be used if you support subpages and want to attach some
1194  *    extra OOB data to an ECC chunk.
1195  *
1196  * Returns a positive number of bitflips less than or equal to
1197  * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1198  * threshold. In case of success, the passed buffers are filled with 0xff.
1199  */
nand_check_erased_ecc_chunk(void * data,int datalen,void * ecc,int ecclen,void * extraoob,int extraooblen,int bitflips_threshold)1200 int nand_check_erased_ecc_chunk(void *data, int datalen,
1201 				void *ecc, int ecclen,
1202 				void *extraoob, int extraooblen,
1203 				int bitflips_threshold)
1204 {
1205 	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
1206 
1207 	data_bitflips = nand_check_erased_buf(data, datalen,
1208 					      bitflips_threshold);
1209 	if (data_bitflips < 0)
1210 		return data_bitflips;
1211 
1212 	bitflips_threshold -= data_bitflips;
1213 
1214 	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
1215 	if (ecc_bitflips < 0)
1216 		return ecc_bitflips;
1217 
1218 	bitflips_threshold -= ecc_bitflips;
1219 
1220 	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
1221 						  bitflips_threshold);
1222 	if (extraoob_bitflips < 0)
1223 		return extraoob_bitflips;
1224 
1225 	if (data_bitflips)
1226 		memset(data, 0xff, datalen);
1227 
1228 	if (ecc_bitflips)
1229 		memset(ecc, 0xff, ecclen);
1230 
1231 	if (extraoob_bitflips)
1232 		memset(extraoob, 0xff, extraooblen);
1233 
1234 	return data_bitflips + ecc_bitflips + extraoob_bitflips;
1235 }
1236 EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
1237 
1238 /**
1239  * nand_read_page_raw - [INTERN] read raw page data without ecc
1240  * @mtd: mtd info structure
1241  * @chip: nand chip info structure
1242  * @buf: buffer to store read data
1243  * @oob_required: caller requires OOB data read to chip->oob_poi
1244  * @page: page number to read
1245  *
1246  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1247  */
nand_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1248 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1249 			      uint8_t *buf, int oob_required, int page)
1250 {
1251 	chip->read_buf(mtd, buf, mtd->writesize);
1252 	if (oob_required)
1253 		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1254 	return 0;
1255 }
1256 
1257 /**
1258  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1259  * @mtd: mtd info structure
1260  * @chip: nand chip info structure
1261  * @buf: buffer to store read data
1262  * @oob_required: caller requires OOB data read to chip->oob_poi
1263  * @page: page number to read
1264  *
1265  * We need a special oob layout and handling even when OOB isn't used.
1266  */
nand_read_page_raw_syndrome(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1267 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1268 				       struct nand_chip *chip, uint8_t *buf,
1269 				       int oob_required, int page)
1270 {
1271 	int eccsize = chip->ecc.size;
1272 	int eccbytes = chip->ecc.bytes;
1273 	uint8_t *oob = chip->oob_poi;
1274 	int steps, size;
1275 
1276 	for (steps = chip->ecc.steps; steps > 0; steps--) {
1277 		chip->read_buf(mtd, buf, eccsize);
1278 		buf += eccsize;
1279 
1280 		if (chip->ecc.prepad) {
1281 			chip->read_buf(mtd, oob, chip->ecc.prepad);
1282 			oob += chip->ecc.prepad;
1283 		}
1284 
1285 		chip->read_buf(mtd, oob, eccbytes);
1286 		oob += eccbytes;
1287 
1288 		if (chip->ecc.postpad) {
1289 			chip->read_buf(mtd, oob, chip->ecc.postpad);
1290 			oob += chip->ecc.postpad;
1291 		}
1292 	}
1293 
1294 	size = mtd->oobsize - (oob - chip->oob_poi);
1295 	if (size)
1296 		chip->read_buf(mtd, oob, size);
1297 
1298 	return 0;
1299 }
1300 
1301 /**
1302  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1303  * @mtd: mtd info structure
1304  * @chip: nand chip info structure
1305  * @buf: buffer to store read data
1306  * @oob_required: caller requires OOB data read to chip->oob_poi
1307  * @page: page number to read
1308  */
nand_read_page_swecc(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1309 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1310 				uint8_t *buf, int oob_required, int page)
1311 {
1312 	int i, eccsize = chip->ecc.size;
1313 	int eccbytes = chip->ecc.bytes;
1314 	int eccsteps = chip->ecc.steps;
1315 	uint8_t *p = buf;
1316 	uint8_t *ecc_calc = chip->buffers->ecccalc;
1317 	uint8_t *ecc_code = chip->buffers->ecccode;
1318 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1319 	unsigned int max_bitflips = 0;
1320 
1321 	chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1322 
1323 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1324 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1325 
1326 	for (i = 0; i < chip->ecc.total; i++)
1327 		ecc_code[i] = chip->oob_poi[eccpos[i]];
1328 
1329 	eccsteps = chip->ecc.steps;
1330 	p = buf;
1331 
1332 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1333 		int stat;
1334 
1335 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1336 		if (stat < 0) {
1337 			mtd->ecc_stats.failed++;
1338 		} else {
1339 			mtd->ecc_stats.corrected += stat;
1340 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1341 		}
1342 	}
1343 	return max_bitflips;
1344 }
1345 
1346 /**
1347  * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1348  * @mtd: mtd info structure
1349  * @chip: nand chip info structure
1350  * @data_offs: offset of requested data within the page
1351  * @readlen: data length
1352  * @bufpoi: buffer to store read data
1353  * @page: page number to read
1354  */
nand_read_subpage(struct mtd_info * mtd,struct nand_chip * chip,uint32_t data_offs,uint32_t readlen,uint8_t * bufpoi,int page)1355 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1356 			uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1357 			int page)
1358 {
1359 	int start_step, end_step, num_steps;
1360 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1361 	uint8_t *p;
1362 	int data_col_addr, i, gaps = 0;
1363 	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1364 	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1365 	int index;
1366 	unsigned int max_bitflips = 0;
1367 
1368 	/* Column address within the page aligned to ECC size (256bytes) */
1369 	start_step = data_offs / chip->ecc.size;
1370 	end_step = (data_offs + readlen - 1) / chip->ecc.size;
1371 	num_steps = end_step - start_step + 1;
1372 	index = start_step * chip->ecc.bytes;
1373 
1374 	/* Data size aligned to ECC ecc.size */
1375 	datafrag_len = num_steps * chip->ecc.size;
1376 	eccfrag_len = num_steps * chip->ecc.bytes;
1377 
1378 	data_col_addr = start_step * chip->ecc.size;
1379 	/* If we read not a page aligned data */
1380 	if (data_col_addr != 0)
1381 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1382 
1383 	p = bufpoi + data_col_addr;
1384 	chip->read_buf(mtd, p, datafrag_len);
1385 
1386 	/* Calculate ECC */
1387 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1388 		chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1389 
1390 	/*
1391 	 * The performance is faster if we position offsets according to
1392 	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1393 	 */
1394 	for (i = 0; i < eccfrag_len - 1; i++) {
1395 		if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1396 			gaps = 1;
1397 			break;
1398 		}
1399 	}
1400 	if (gaps) {
1401 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1402 		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1403 	} else {
1404 		/*
1405 		 * Send the command to read the particular ECC bytes take care
1406 		 * about buswidth alignment in read_buf.
1407 		 */
1408 		aligned_pos = eccpos[index] & ~(busw - 1);
1409 		aligned_len = eccfrag_len;
1410 		if (eccpos[index] & (busw - 1))
1411 			aligned_len++;
1412 		if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1413 			aligned_len++;
1414 
1415 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1416 					mtd->writesize + aligned_pos, -1);
1417 		chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1418 	}
1419 
1420 	for (i = 0; i < eccfrag_len; i++)
1421 		chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1422 
1423 	p = bufpoi + data_col_addr;
1424 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1425 		int stat;
1426 
1427 		stat = chip->ecc.correct(mtd, p,
1428 			&chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1429 		if (stat < 0) {
1430 			mtd->ecc_stats.failed++;
1431 		} else {
1432 			mtd->ecc_stats.corrected += stat;
1433 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1434 		}
1435 	}
1436 	return max_bitflips;
1437 }
1438 
1439 /**
1440  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1441  * @mtd: mtd info structure
1442  * @chip: nand chip info structure
1443  * @buf: buffer to store read data
1444  * @oob_required: caller requires OOB data read to chip->oob_poi
1445  * @page: page number to read
1446  *
1447  * Not for syndrome calculating ECC controllers which need a special oob layout.
1448  */
nand_read_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1449 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1450 				uint8_t *buf, int oob_required, int page)
1451 {
1452 	int i, eccsize = chip->ecc.size;
1453 	int eccbytes = chip->ecc.bytes;
1454 	int eccsteps = chip->ecc.steps;
1455 	uint8_t *p = buf;
1456 	uint8_t *ecc_calc = chip->buffers->ecccalc;
1457 	uint8_t *ecc_code = chip->buffers->ecccode;
1458 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1459 	unsigned int max_bitflips = 0;
1460 
1461 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1462 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
1463 		chip->read_buf(mtd, p, eccsize);
1464 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1465 	}
1466 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1467 
1468 	for (i = 0; i < chip->ecc.total; i++)
1469 		ecc_code[i] = chip->oob_poi[eccpos[i]];
1470 
1471 	eccsteps = chip->ecc.steps;
1472 	p = buf;
1473 
1474 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1475 		int stat;
1476 
1477 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1478 		if (stat < 0) {
1479 			mtd->ecc_stats.failed++;
1480 		} else {
1481 			mtd->ecc_stats.corrected += stat;
1482 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1483 		}
1484 	}
1485 	return max_bitflips;
1486 }
1487 
1488 /**
1489  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1490  * @mtd: mtd info structure
1491  * @chip: nand chip info structure
1492  * @buf: buffer to store read data
1493  * @oob_required: caller requires OOB data read to chip->oob_poi
1494  * @page: page number to read
1495  *
1496  * Hardware ECC for large page chips, require OOB to be read first. For this
1497  * ECC mode, the write_page method is re-used from ECC_HW. These methods
1498  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1499  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1500  * the data area, by overwriting the NAND manufacturer bad block markings.
1501  */
nand_read_page_hwecc_oob_first(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1502 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1503 	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1504 {
1505 	int i, eccsize = chip->ecc.size;
1506 	int eccbytes = chip->ecc.bytes;
1507 	int eccsteps = chip->ecc.steps;
1508 	uint8_t *p = buf;
1509 	uint8_t *ecc_code = chip->buffers->ecccode;
1510 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1511 	uint8_t *ecc_calc = chip->buffers->ecccalc;
1512 	unsigned int max_bitflips = 0;
1513 
1514 	/* Read the OOB area first */
1515 	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1516 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1517 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1518 
1519 	for (i = 0; i < chip->ecc.total; i++)
1520 		ecc_code[i] = chip->oob_poi[eccpos[i]];
1521 
1522 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1523 		int stat;
1524 
1525 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
1526 		chip->read_buf(mtd, p, eccsize);
1527 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1528 
1529 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1530 		if (stat < 0) {
1531 			mtd->ecc_stats.failed++;
1532 		} else {
1533 			mtd->ecc_stats.corrected += stat;
1534 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1535 		}
1536 	}
1537 	return max_bitflips;
1538 }
1539 
1540 /**
1541  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1542  * @mtd: mtd info structure
1543  * @chip: nand chip info structure
1544  * @buf: buffer to store read data
1545  * @oob_required: caller requires OOB data read to chip->oob_poi
1546  * @page: page number to read
1547  *
1548  * The hw generator calculates the error syndrome automatically. Therefore we
1549  * need a special oob layout and handling.
1550  */
nand_read_page_syndrome(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1551 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1552 				   uint8_t *buf, int oob_required, int page)
1553 {
1554 	int i, eccsize = chip->ecc.size;
1555 	int eccbytes = chip->ecc.bytes;
1556 	int eccsteps = chip->ecc.steps;
1557 	uint8_t *p = buf;
1558 	uint8_t *oob = chip->oob_poi;
1559 	unsigned int max_bitflips = 0;
1560 
1561 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1562 		int stat;
1563 
1564 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
1565 		chip->read_buf(mtd, p, eccsize);
1566 
1567 		if (chip->ecc.prepad) {
1568 			chip->read_buf(mtd, oob, chip->ecc.prepad);
1569 			oob += chip->ecc.prepad;
1570 		}
1571 
1572 		chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1573 		chip->read_buf(mtd, oob, eccbytes);
1574 		stat = chip->ecc.correct(mtd, p, oob, NULL);
1575 
1576 		if (stat < 0) {
1577 			mtd->ecc_stats.failed++;
1578 		} else {
1579 			mtd->ecc_stats.corrected += stat;
1580 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1581 		}
1582 
1583 		oob += eccbytes;
1584 
1585 		if (chip->ecc.postpad) {
1586 			chip->read_buf(mtd, oob, chip->ecc.postpad);
1587 			oob += chip->ecc.postpad;
1588 		}
1589 	}
1590 
1591 	/* Calculate remaining oob bytes */
1592 	i = mtd->oobsize - (oob - chip->oob_poi);
1593 	if (i)
1594 		chip->read_buf(mtd, oob, i);
1595 
1596 	return max_bitflips;
1597 }
1598 
1599 /**
1600  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1601  * @chip: nand chip structure
1602  * @oob: oob destination address
1603  * @ops: oob ops structure
1604  * @len: size of oob to transfer
1605  */
nand_transfer_oob(struct nand_chip * chip,uint8_t * oob,struct mtd_oob_ops * ops,size_t len)1606 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1607 				  struct mtd_oob_ops *ops, size_t len)
1608 {
1609 	switch (ops->mode) {
1610 
1611 	case MTD_OPS_PLACE_OOB:
1612 	case MTD_OPS_RAW:
1613 		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1614 		return oob + len;
1615 
1616 	case MTD_OPS_AUTO_OOB: {
1617 		struct nand_oobfree *free = chip->ecc.layout->oobfree;
1618 		uint32_t boffs = 0, roffs = ops->ooboffs;
1619 		size_t bytes = 0;
1620 
1621 		for (; free->length && len; free++, len -= bytes) {
1622 			/* Read request not from offset 0? */
1623 			if (unlikely(roffs)) {
1624 				if (roffs >= free->length) {
1625 					roffs -= free->length;
1626 					continue;
1627 				}
1628 				boffs = free->offset + roffs;
1629 				bytes = min_t(size_t, len,
1630 					      (free->length - roffs));
1631 				roffs = 0;
1632 			} else {
1633 				bytes = min_t(size_t, len, free->length);
1634 				boffs = free->offset;
1635 			}
1636 			memcpy(oob, chip->oob_poi + boffs, bytes);
1637 			oob += bytes;
1638 		}
1639 		return oob;
1640 	}
1641 	default:
1642 		BUG();
1643 	}
1644 	return NULL;
1645 }
1646 
1647 /**
1648  * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1649  * @mtd: MTD device structure
1650  * @retry_mode: the retry mode to use
1651  *
1652  * Some vendors supply a special command to shift the Vt threshold, to be used
1653  * when there are too many bitflips in a page (i.e., ECC error). After setting
1654  * a new threshold, the host should retry reading the page.
1655  */
nand_setup_read_retry(struct mtd_info * mtd,int retry_mode)1656 static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1657 {
1658 	struct nand_chip *chip = mtd->priv;
1659 
1660 	pr_debug("setting READ RETRY mode %d\n", retry_mode);
1661 
1662 	if (retry_mode >= chip->read_retries)
1663 		return -EINVAL;
1664 
1665 	if (!chip->setup_read_retry)
1666 		return -EOPNOTSUPP;
1667 
1668 	return chip->setup_read_retry(mtd, retry_mode);
1669 }
1670 
1671 /**
1672  * nand_do_read_ops - [INTERN] Read data with ECC
1673  * @mtd: MTD device structure
1674  * @from: offset to read from
1675  * @ops: oob ops structure
1676  *
1677  * Internal function. Called with chip held.
1678  */
nand_do_read_ops(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1679 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1680 			    struct mtd_oob_ops *ops)
1681 {
1682 	int chipnr, page, realpage, col, bytes, aligned, oob_required;
1683 	struct nand_chip *chip = mtd->priv;
1684 	int ret = 0;
1685 	uint32_t readlen = ops->len;
1686 	uint32_t oobreadlen = ops->ooblen;
1687 	uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1688 		mtd->oobavail : mtd->oobsize;
1689 
1690 	uint8_t *bufpoi, *oob, *buf;
1691 	int use_bufpoi;
1692 	unsigned int max_bitflips = 0;
1693 	int retry_mode = 0;
1694 	bool ecc_fail = false;
1695 
1696 	chipnr = (int)(from >> chip->chip_shift);
1697 	chip->select_chip(mtd, chipnr);
1698 
1699 	realpage = (int)(from >> chip->page_shift);
1700 	page = realpage & chip->pagemask;
1701 
1702 	col = (int)(from & (mtd->writesize - 1));
1703 
1704 	buf = ops->datbuf;
1705 	oob = ops->oobbuf;
1706 	oob_required = oob ? 1 : 0;
1707 
1708 	while (1) {
1709 		unsigned int ecc_failures = mtd->ecc_stats.failed;
1710 
1711 		bytes = min(mtd->writesize - col, readlen);
1712 		aligned = (bytes == mtd->writesize);
1713 
1714 		if (!aligned)
1715 			use_bufpoi = 1;
1716 		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1717 			use_bufpoi = !virt_addr_valid(buf);
1718 		else
1719 			use_bufpoi = 0;
1720 
1721 		/* Is the current page in the buffer? */
1722 		if (realpage != chip->pagebuf || oob) {
1723 			bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1724 
1725 			if (use_bufpoi && aligned)
1726 				pr_debug("%s: using read bounce buffer for buf@%p\n",
1727 						 __func__, buf);
1728 
1729 read_retry:
1730 			chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1731 
1732 			/*
1733 			 * Now read the page into the buffer.  Absent an error,
1734 			 * the read methods return max bitflips per ecc step.
1735 			 */
1736 			if (unlikely(ops->mode == MTD_OPS_RAW))
1737 				ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1738 							      oob_required,
1739 							      page);
1740 			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1741 				 !oob)
1742 				ret = chip->ecc.read_subpage(mtd, chip,
1743 							col, bytes, bufpoi,
1744 							page);
1745 			else
1746 				ret = chip->ecc.read_page(mtd, chip, bufpoi,
1747 							  oob_required, page);
1748 			if (ret < 0) {
1749 				if (use_bufpoi)
1750 					/* Invalidate page cache */
1751 					chip->pagebuf = -1;
1752 				break;
1753 			}
1754 
1755 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
1756 
1757 			/* Transfer not aligned data */
1758 			if (use_bufpoi) {
1759 				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1760 				    !(mtd->ecc_stats.failed - ecc_failures) &&
1761 				    (ops->mode != MTD_OPS_RAW)) {
1762 					chip->pagebuf = realpage;
1763 					chip->pagebuf_bitflips = ret;
1764 				} else {
1765 					/* Invalidate page cache */
1766 					chip->pagebuf = -1;
1767 				}
1768 				memcpy(buf, chip->buffers->databuf + col, bytes);
1769 			}
1770 
1771 			if (unlikely(oob)) {
1772 				int toread = min(oobreadlen, max_oobsize);
1773 
1774 				if (toread) {
1775 					oob = nand_transfer_oob(chip,
1776 						oob, ops, toread);
1777 					oobreadlen -= toread;
1778 				}
1779 			}
1780 
1781 			if (chip->options & NAND_NEED_READRDY) {
1782 				/* Apply delay or wait for ready/busy pin */
1783 				if (!chip->dev_ready)
1784 					udelay(chip->chip_delay);
1785 				else
1786 					nand_wait_ready(mtd);
1787 			}
1788 
1789 			if (mtd->ecc_stats.failed - ecc_failures) {
1790 				if (retry_mode + 1 < chip->read_retries) {
1791 					retry_mode++;
1792 					ret = nand_setup_read_retry(mtd,
1793 							retry_mode);
1794 					if (ret < 0)
1795 						break;
1796 
1797 					/* Reset failures; retry */
1798 					mtd->ecc_stats.failed = ecc_failures;
1799 					goto read_retry;
1800 				} else {
1801 					/* No more retry modes; real failure */
1802 					ecc_fail = true;
1803 				}
1804 			}
1805 
1806 			buf += bytes;
1807 		} else {
1808 			memcpy(buf, chip->buffers->databuf + col, bytes);
1809 			buf += bytes;
1810 			max_bitflips = max_t(unsigned int, max_bitflips,
1811 					     chip->pagebuf_bitflips);
1812 		}
1813 
1814 		readlen -= bytes;
1815 
1816 		/* Reset to retry mode 0 */
1817 		if (retry_mode) {
1818 			ret = nand_setup_read_retry(mtd, 0);
1819 			if (ret < 0)
1820 				break;
1821 			retry_mode = 0;
1822 		}
1823 
1824 		if (!readlen)
1825 			break;
1826 
1827 		/* For subsequent reads align to page boundary */
1828 		col = 0;
1829 		/* Increment page address */
1830 		realpage++;
1831 
1832 		page = realpage & chip->pagemask;
1833 		/* Check, if we cross a chip boundary */
1834 		if (!page) {
1835 			chipnr++;
1836 			chip->select_chip(mtd, -1);
1837 			chip->select_chip(mtd, chipnr);
1838 		}
1839 	}
1840 	chip->select_chip(mtd, -1);
1841 
1842 	ops->retlen = ops->len - (size_t) readlen;
1843 	if (oob)
1844 		ops->oobretlen = ops->ooblen - oobreadlen;
1845 
1846 	if (ret < 0)
1847 		return ret;
1848 
1849 	if (ecc_fail)
1850 		return -EBADMSG;
1851 
1852 	return max_bitflips;
1853 }
1854 
1855 /**
1856  * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1857  * @mtd: MTD device structure
1858  * @from: offset to read from
1859  * @len: number of bytes to read
1860  * @retlen: pointer to variable to store the number of read bytes
1861  * @buf: the databuffer to put data
1862  *
1863  * Get hold of the chip and call nand_do_read.
1864  */
nand_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,uint8_t * buf)1865 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1866 		     size_t *retlen, uint8_t *buf)
1867 {
1868 	struct mtd_oob_ops ops;
1869 	int ret;
1870 
1871 	nand_get_device(mtd, FL_READING);
1872 	memset(&ops, 0, sizeof(ops));
1873 	ops.len = len;
1874 	ops.datbuf = buf;
1875 	ops.mode = MTD_OPS_PLACE_OOB;
1876 	ret = nand_do_read_ops(mtd, from, &ops);
1877 	*retlen = ops.retlen;
1878 	nand_release_device(mtd);
1879 	return ret;
1880 }
1881 
1882 /**
1883  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1884  * @mtd: mtd info structure
1885  * @chip: nand chip info structure
1886  * @page: page number to read
1887  */
nand_read_oob_std(struct mtd_info * mtd,struct nand_chip * chip,int page)1888 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1889 			     int page)
1890 {
1891 	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1892 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1893 	return 0;
1894 }
1895 
1896 /**
1897  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1898  *			    with syndromes
1899  * @mtd: mtd info structure
1900  * @chip: nand chip info structure
1901  * @page: page number to read
1902  */
nand_read_oob_syndrome(struct mtd_info * mtd,struct nand_chip * chip,int page)1903 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1904 				  int page)
1905 {
1906 	int length = mtd->oobsize;
1907 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1908 	int eccsize = chip->ecc.size;
1909 	uint8_t *bufpoi = chip->oob_poi;
1910 	int i, toread, sndrnd = 0, pos;
1911 
1912 	chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1913 	for (i = 0; i < chip->ecc.steps; i++) {
1914 		if (sndrnd) {
1915 			pos = eccsize + i * (eccsize + chunk);
1916 			if (mtd->writesize > 512)
1917 				chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1918 			else
1919 				chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1920 		} else
1921 			sndrnd = 1;
1922 		toread = min_t(int, length, chunk);
1923 		chip->read_buf(mtd, bufpoi, toread);
1924 		bufpoi += toread;
1925 		length -= toread;
1926 	}
1927 	if (length > 0)
1928 		chip->read_buf(mtd, bufpoi, length);
1929 
1930 	return 0;
1931 }
1932 
1933 /**
1934  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1935  * @mtd: mtd info structure
1936  * @chip: nand chip info structure
1937  * @page: page number to write
1938  */
nand_write_oob_std(struct mtd_info * mtd,struct nand_chip * chip,int page)1939 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1940 			      int page)
1941 {
1942 	int status = 0;
1943 	const uint8_t *buf = chip->oob_poi;
1944 	int length = mtd->oobsize;
1945 
1946 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1947 	chip->write_buf(mtd, buf, length);
1948 	/* Send command to program the OOB data */
1949 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1950 
1951 	status = chip->waitfunc(mtd, chip);
1952 
1953 	return status & NAND_STATUS_FAIL ? -EIO : 0;
1954 }
1955 
1956 /**
1957  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1958  *			     with syndrome - only for large page flash
1959  * @mtd: mtd info structure
1960  * @chip: nand chip info structure
1961  * @page: page number to write
1962  */
nand_write_oob_syndrome(struct mtd_info * mtd,struct nand_chip * chip,int page)1963 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1964 				   struct nand_chip *chip, int page)
1965 {
1966 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1967 	int eccsize = chip->ecc.size, length = mtd->oobsize;
1968 	int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1969 	const uint8_t *bufpoi = chip->oob_poi;
1970 
1971 	/*
1972 	 * data-ecc-data-ecc ... ecc-oob
1973 	 * or
1974 	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1975 	 */
1976 	if (!chip->ecc.prepad && !chip->ecc.postpad) {
1977 		pos = steps * (eccsize + chunk);
1978 		steps = 0;
1979 	} else
1980 		pos = eccsize;
1981 
1982 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1983 	for (i = 0; i < steps; i++) {
1984 		if (sndcmd) {
1985 			if (mtd->writesize <= 512) {
1986 				uint32_t fill = 0xFFFFFFFF;
1987 
1988 				len = eccsize;
1989 				while (len > 0) {
1990 					int num = min_t(int, len, 4);
1991 					chip->write_buf(mtd, (uint8_t *)&fill,
1992 							num);
1993 					len -= num;
1994 				}
1995 			} else {
1996 				pos = eccsize + i * (eccsize + chunk);
1997 				chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1998 			}
1999 		} else
2000 			sndcmd = 1;
2001 		len = min_t(int, length, chunk);
2002 		chip->write_buf(mtd, bufpoi, len);
2003 		bufpoi += len;
2004 		length -= len;
2005 	}
2006 	if (length > 0)
2007 		chip->write_buf(mtd, bufpoi, length);
2008 
2009 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2010 	status = chip->waitfunc(mtd, chip);
2011 
2012 	return status & NAND_STATUS_FAIL ? -EIO : 0;
2013 }
2014 
2015 /**
2016  * nand_do_read_oob - [INTERN] NAND read out-of-band
2017  * @mtd: MTD device structure
2018  * @from: offset to read from
2019  * @ops: oob operations description structure
2020  *
2021  * NAND read out-of-band data from the spare area.
2022  */
nand_do_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)2023 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
2024 			    struct mtd_oob_ops *ops)
2025 {
2026 	int page, realpage, chipnr;
2027 	struct nand_chip *chip = mtd->priv;
2028 	struct mtd_ecc_stats stats;
2029 	int readlen = ops->ooblen;
2030 	int len;
2031 	uint8_t *buf = ops->oobbuf;
2032 	int ret = 0;
2033 
2034 	pr_debug("%s: from = 0x%08Lx, len = %i\n",
2035 			__func__, (unsigned long long)from, readlen);
2036 
2037 	stats = mtd->ecc_stats;
2038 
2039 	if (ops->mode == MTD_OPS_AUTO_OOB)
2040 		len = chip->ecc.layout->oobavail;
2041 	else
2042 		len = mtd->oobsize;
2043 
2044 	if (unlikely(ops->ooboffs >= len)) {
2045 		pr_debug("%s: attempt to start read outside oob\n",
2046 				__func__);
2047 		return -EINVAL;
2048 	}
2049 
2050 	/* Do not allow reads past end of device */
2051 	if (unlikely(from >= mtd->size ||
2052 		     ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
2053 					(from >> chip->page_shift)) * len)) {
2054 		pr_debug("%s: attempt to read beyond end of device\n",
2055 				__func__);
2056 		return -EINVAL;
2057 	}
2058 
2059 	chipnr = (int)(from >> chip->chip_shift);
2060 	chip->select_chip(mtd, chipnr);
2061 
2062 	/* Shift to get page */
2063 	realpage = (int)(from >> chip->page_shift);
2064 	page = realpage & chip->pagemask;
2065 
2066 	while (1) {
2067 		if (ops->mode == MTD_OPS_RAW)
2068 			ret = chip->ecc.read_oob_raw(mtd, chip, page);
2069 		else
2070 			ret = chip->ecc.read_oob(mtd, chip, page);
2071 
2072 		if (ret < 0)
2073 			break;
2074 
2075 		len = min(len, readlen);
2076 		buf = nand_transfer_oob(chip, buf, ops, len);
2077 
2078 		if (chip->options & NAND_NEED_READRDY) {
2079 			/* Apply delay or wait for ready/busy pin */
2080 			if (!chip->dev_ready)
2081 				udelay(chip->chip_delay);
2082 			else
2083 				nand_wait_ready(mtd);
2084 		}
2085 
2086 		readlen -= len;
2087 		if (!readlen)
2088 			break;
2089 
2090 		/* Increment page address */
2091 		realpage++;
2092 
2093 		page = realpage & chip->pagemask;
2094 		/* Check, if we cross a chip boundary */
2095 		if (!page) {
2096 			chipnr++;
2097 			chip->select_chip(mtd, -1);
2098 			chip->select_chip(mtd, chipnr);
2099 		}
2100 	}
2101 	chip->select_chip(mtd, -1);
2102 
2103 	ops->oobretlen = ops->ooblen - readlen;
2104 
2105 	if (ret < 0)
2106 		return ret;
2107 
2108 	if (mtd->ecc_stats.failed - stats.failed)
2109 		return -EBADMSG;
2110 
2111 	return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
2112 }
2113 
2114 /**
2115  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
2116  * @mtd: MTD device structure
2117  * @from: offset to read from
2118  * @ops: oob operation description structure
2119  *
2120  * NAND read data and/or out-of-band data.
2121  */
nand_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)2122 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
2123 			 struct mtd_oob_ops *ops)
2124 {
2125 	int ret = -ENOTSUPP;
2126 
2127 	ops->retlen = 0;
2128 
2129 	/* Do not allow reads past end of device */
2130 	if (ops->datbuf && (from + ops->len) > mtd->size) {
2131 		pr_debug("%s: attempt to read beyond end of device\n",
2132 				__func__);
2133 		return -EINVAL;
2134 	}
2135 
2136 	nand_get_device(mtd, FL_READING);
2137 
2138 	switch (ops->mode) {
2139 	case MTD_OPS_PLACE_OOB:
2140 	case MTD_OPS_AUTO_OOB:
2141 	case MTD_OPS_RAW:
2142 		break;
2143 
2144 	default:
2145 		goto out;
2146 	}
2147 
2148 	if (!ops->datbuf)
2149 		ret = nand_do_read_oob(mtd, from, ops);
2150 	else
2151 		ret = nand_do_read_ops(mtd, from, ops);
2152 
2153 out:
2154 	nand_release_device(mtd);
2155 	return ret;
2156 }
2157 
2158 
2159 /**
2160  * nand_write_page_raw - [INTERN] raw page write function
2161  * @mtd: mtd info structure
2162  * @chip: nand chip info structure
2163  * @buf: data buffer
2164  * @oob_required: must write chip->oob_poi to OOB
2165  * @page: page number to write
2166  *
2167  * Not for syndrome calculating ECC controllers, which use a special oob layout.
2168  */
nand_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2169 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2170 			       const uint8_t *buf, int oob_required, int page)
2171 {
2172 	chip->write_buf(mtd, buf, mtd->writesize);
2173 	if (oob_required)
2174 		chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2175 
2176 	return 0;
2177 }
2178 
2179 /**
2180  * nand_write_page_raw_syndrome - [INTERN] raw page write function
2181  * @mtd: mtd info structure
2182  * @chip: nand chip info structure
2183  * @buf: data buffer
2184  * @oob_required: must write chip->oob_poi to OOB
2185  * @page: page number to write
2186  *
2187  * We need a special oob layout and handling even when ECC isn't checked.
2188  */
nand_write_page_raw_syndrome(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2189 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2190 					struct nand_chip *chip,
2191 					const uint8_t *buf, int oob_required,
2192 					int page)
2193 {
2194 	int eccsize = chip->ecc.size;
2195 	int eccbytes = chip->ecc.bytes;
2196 	uint8_t *oob = chip->oob_poi;
2197 	int steps, size;
2198 
2199 	for (steps = chip->ecc.steps; steps > 0; steps--) {
2200 		chip->write_buf(mtd, buf, eccsize);
2201 		buf += eccsize;
2202 
2203 		if (chip->ecc.prepad) {
2204 			chip->write_buf(mtd, oob, chip->ecc.prepad);
2205 			oob += chip->ecc.prepad;
2206 		}
2207 
2208 		chip->write_buf(mtd, oob, eccbytes);
2209 		oob += eccbytes;
2210 
2211 		if (chip->ecc.postpad) {
2212 			chip->write_buf(mtd, oob, chip->ecc.postpad);
2213 			oob += chip->ecc.postpad;
2214 		}
2215 	}
2216 
2217 	size = mtd->oobsize - (oob - chip->oob_poi);
2218 	if (size)
2219 		chip->write_buf(mtd, oob, size);
2220 
2221 	return 0;
2222 }
2223 /**
2224  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2225  * @mtd: mtd info structure
2226  * @chip: nand chip info structure
2227  * @buf: data buffer
2228  * @oob_required: must write chip->oob_poi to OOB
2229  * @page: page number to write
2230  */
nand_write_page_swecc(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2231 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2232 				 const uint8_t *buf, int oob_required,
2233 				 int page)
2234 {
2235 	int i, eccsize = chip->ecc.size;
2236 	int eccbytes = chip->ecc.bytes;
2237 	int eccsteps = chip->ecc.steps;
2238 	uint8_t *ecc_calc = chip->buffers->ecccalc;
2239 	const uint8_t *p = buf;
2240 	uint32_t *eccpos = chip->ecc.layout->eccpos;
2241 
2242 	/* Software ECC calculation */
2243 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2244 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2245 
2246 	for (i = 0; i < chip->ecc.total; i++)
2247 		chip->oob_poi[eccpos[i]] = ecc_calc[i];
2248 
2249 	return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
2250 }
2251 
2252 /**
2253  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2254  * @mtd: mtd info structure
2255  * @chip: nand chip info structure
2256  * @buf: data buffer
2257  * @oob_required: must write chip->oob_poi to OOB
2258  * @page: page number to write
2259  */
nand_write_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2260 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2261 				  const uint8_t *buf, int oob_required,
2262 				  int page)
2263 {
2264 	int i, eccsize = chip->ecc.size;
2265 	int eccbytes = chip->ecc.bytes;
2266 	int eccsteps = chip->ecc.steps;
2267 	uint8_t *ecc_calc = chip->buffers->ecccalc;
2268 	const uint8_t *p = buf;
2269 	uint32_t *eccpos = chip->ecc.layout->eccpos;
2270 
2271 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2272 		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2273 		chip->write_buf(mtd, p, eccsize);
2274 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2275 	}
2276 
2277 	for (i = 0; i < chip->ecc.total; i++)
2278 		chip->oob_poi[eccpos[i]] = ecc_calc[i];
2279 
2280 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2281 
2282 	return 0;
2283 }
2284 
2285 
2286 /**
2287  * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2288  * @mtd:	mtd info structure
2289  * @chip:	nand chip info structure
2290  * @offset:	column address of subpage within the page
2291  * @data_len:	data length
2292  * @buf:	data buffer
2293  * @oob_required: must write chip->oob_poi to OOB
2294  * @page: page number to write
2295  */
nand_write_subpage_hwecc(struct mtd_info * mtd,struct nand_chip * chip,uint32_t offset,uint32_t data_len,const uint8_t * buf,int oob_required,int page)2296 static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2297 				struct nand_chip *chip, uint32_t offset,
2298 				uint32_t data_len, const uint8_t *buf,
2299 				int oob_required, int page)
2300 {
2301 	uint8_t *oob_buf  = chip->oob_poi;
2302 	uint8_t *ecc_calc = chip->buffers->ecccalc;
2303 	int ecc_size      = chip->ecc.size;
2304 	int ecc_bytes     = chip->ecc.bytes;
2305 	int ecc_steps     = chip->ecc.steps;
2306 	uint32_t *eccpos  = chip->ecc.layout->eccpos;
2307 	uint32_t start_step = offset / ecc_size;
2308 	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
2309 	int oob_bytes       = mtd->oobsize / ecc_steps;
2310 	int step, i;
2311 
2312 	for (step = 0; step < ecc_steps; step++) {
2313 		/* configure controller for WRITE access */
2314 		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2315 
2316 		/* write data (untouched subpages already masked by 0xFF) */
2317 		chip->write_buf(mtd, buf, ecc_size);
2318 
2319 		/* mask ECC of un-touched subpages by padding 0xFF */
2320 		if ((step < start_step) || (step > end_step))
2321 			memset(ecc_calc, 0xff, ecc_bytes);
2322 		else
2323 			chip->ecc.calculate(mtd, buf, ecc_calc);
2324 
2325 		/* mask OOB of un-touched subpages by padding 0xFF */
2326 		/* if oob_required, preserve OOB metadata of written subpage */
2327 		if (!oob_required || (step < start_step) || (step > end_step))
2328 			memset(oob_buf, 0xff, oob_bytes);
2329 
2330 		buf += ecc_size;
2331 		ecc_calc += ecc_bytes;
2332 		oob_buf  += oob_bytes;
2333 	}
2334 
2335 	/* copy calculated ECC for whole page to chip->buffer->oob */
2336 	/* this include masked-value(0xFF) for unwritten subpages */
2337 	ecc_calc = chip->buffers->ecccalc;
2338 	for (i = 0; i < chip->ecc.total; i++)
2339 		chip->oob_poi[eccpos[i]] = ecc_calc[i];
2340 
2341 	/* write OOB buffer to NAND device */
2342 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2343 
2344 	return 0;
2345 }
2346 
2347 
2348 /**
2349  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2350  * @mtd: mtd info structure
2351  * @chip: nand chip info structure
2352  * @buf: data buffer
2353  * @oob_required: must write chip->oob_poi to OOB
2354  * @page: page number to write
2355  *
2356  * The hw generator calculates the error syndrome automatically. Therefore we
2357  * need a special oob layout and handling.
2358  */
nand_write_page_syndrome(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2359 static int nand_write_page_syndrome(struct mtd_info *mtd,
2360 				    struct nand_chip *chip,
2361 				    const uint8_t *buf, int oob_required,
2362 				    int page)
2363 {
2364 	int i, eccsize = chip->ecc.size;
2365 	int eccbytes = chip->ecc.bytes;
2366 	int eccsteps = chip->ecc.steps;
2367 	const uint8_t *p = buf;
2368 	uint8_t *oob = chip->oob_poi;
2369 
2370 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2371 
2372 		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2373 		chip->write_buf(mtd, p, eccsize);
2374 
2375 		if (chip->ecc.prepad) {
2376 			chip->write_buf(mtd, oob, chip->ecc.prepad);
2377 			oob += chip->ecc.prepad;
2378 		}
2379 
2380 		chip->ecc.calculate(mtd, p, oob);
2381 		chip->write_buf(mtd, oob, eccbytes);
2382 		oob += eccbytes;
2383 
2384 		if (chip->ecc.postpad) {
2385 			chip->write_buf(mtd, oob, chip->ecc.postpad);
2386 			oob += chip->ecc.postpad;
2387 		}
2388 	}
2389 
2390 	/* Calculate remaining oob bytes */
2391 	i = mtd->oobsize - (oob - chip->oob_poi);
2392 	if (i)
2393 		chip->write_buf(mtd, oob, i);
2394 
2395 	return 0;
2396 }
2397 
2398 /**
2399  * nand_write_page - [REPLACEABLE] write one page
2400  * @mtd: MTD device structure
2401  * @chip: NAND chip descriptor
2402  * @offset: address offset within the page
2403  * @data_len: length of actual data to be written
2404  * @buf: the data to write
2405  * @oob_required: must write chip->oob_poi to OOB
2406  * @page: page number to write
2407  * @cached: cached programming
2408  * @raw: use _raw version of write_page
2409  */
nand_write_page(struct mtd_info * mtd,struct nand_chip * chip,uint32_t offset,int data_len,const uint8_t * buf,int oob_required,int page,int cached,int raw)2410 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2411 		uint32_t offset, int data_len, const uint8_t *buf,
2412 		int oob_required, int page, int cached, int raw)
2413 {
2414 	int status, subpage;
2415 
2416 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2417 		chip->ecc.write_subpage)
2418 		subpage = offset || (data_len < mtd->writesize);
2419 	else
2420 		subpage = 0;
2421 
2422 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2423 
2424 	if (unlikely(raw))
2425 		status = chip->ecc.write_page_raw(mtd, chip, buf,
2426 						  oob_required, page);
2427 	else if (subpage)
2428 		status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2429 						 buf, oob_required, page);
2430 	else
2431 		status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2432 					      page);
2433 
2434 	if (status < 0)
2435 		return status;
2436 
2437 	/*
2438 	 * Cached progamming disabled for now. Not sure if it's worth the
2439 	 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2440 	 */
2441 	cached = 0;
2442 
2443 	if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2444 
2445 		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2446 		status = chip->waitfunc(mtd, chip);
2447 		/*
2448 		 * See if operation failed and additional status checks are
2449 		 * available.
2450 		 */
2451 		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2452 			status = chip->errstat(mtd, chip, FL_WRITING, status,
2453 					       page);
2454 
2455 		if (status & NAND_STATUS_FAIL)
2456 			return -EIO;
2457 	} else {
2458 		chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2459 		status = chip->waitfunc(mtd, chip);
2460 	}
2461 
2462 	return 0;
2463 }
2464 
2465 /**
2466  * nand_fill_oob - [INTERN] Transfer client buffer to oob
2467  * @mtd: MTD device structure
2468  * @oob: oob data buffer
2469  * @len: oob data write length
2470  * @ops: oob ops structure
2471  */
nand_fill_oob(struct mtd_info * mtd,uint8_t * oob,size_t len,struct mtd_oob_ops * ops)2472 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2473 			      struct mtd_oob_ops *ops)
2474 {
2475 	struct nand_chip *chip = mtd->priv;
2476 
2477 	/*
2478 	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2479 	 * data from a previous OOB read.
2480 	 */
2481 	memset(chip->oob_poi, 0xff, mtd->oobsize);
2482 
2483 	switch (ops->mode) {
2484 
2485 	case MTD_OPS_PLACE_OOB:
2486 	case MTD_OPS_RAW:
2487 		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2488 		return oob + len;
2489 
2490 	case MTD_OPS_AUTO_OOB: {
2491 		struct nand_oobfree *free = chip->ecc.layout->oobfree;
2492 		uint32_t boffs = 0, woffs = ops->ooboffs;
2493 		size_t bytes = 0;
2494 
2495 		for (; free->length && len; free++, len -= bytes) {
2496 			/* Write request not from offset 0? */
2497 			if (unlikely(woffs)) {
2498 				if (woffs >= free->length) {
2499 					woffs -= free->length;
2500 					continue;
2501 				}
2502 				boffs = free->offset + woffs;
2503 				bytes = min_t(size_t, len,
2504 					      (free->length - woffs));
2505 				woffs = 0;
2506 			} else {
2507 				bytes = min_t(size_t, len, free->length);
2508 				boffs = free->offset;
2509 			}
2510 			memcpy(chip->oob_poi + boffs, oob, bytes);
2511 			oob += bytes;
2512 		}
2513 		return oob;
2514 	}
2515 	default:
2516 		BUG();
2517 	}
2518 	return NULL;
2519 }
2520 
2521 #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
2522 
2523 /**
2524  * nand_do_write_ops - [INTERN] NAND write with ECC
2525  * @mtd: MTD device structure
2526  * @to: offset to write to
2527  * @ops: oob operations description structure
2528  *
2529  * NAND write with ECC.
2530  */
nand_do_write_ops(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2531 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2532 			     struct mtd_oob_ops *ops)
2533 {
2534 	int chipnr, realpage, page, blockmask, column;
2535 	struct nand_chip *chip = mtd->priv;
2536 	uint32_t writelen = ops->len;
2537 
2538 	uint32_t oobwritelen = ops->ooblen;
2539 	uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2540 				mtd->oobavail : mtd->oobsize;
2541 
2542 	uint8_t *oob = ops->oobbuf;
2543 	uint8_t *buf = ops->datbuf;
2544 	int ret;
2545 	int oob_required = oob ? 1 : 0;
2546 
2547 	ops->retlen = 0;
2548 	if (!writelen)
2549 		return 0;
2550 
2551 	/* Reject writes, which are not page aligned */
2552 	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2553 		pr_notice("%s: attempt to write non page aligned data\n",
2554 			   __func__);
2555 		return -EINVAL;
2556 	}
2557 
2558 	column = to & (mtd->writesize - 1);
2559 
2560 	chipnr = (int)(to >> chip->chip_shift);
2561 	chip->select_chip(mtd, chipnr);
2562 
2563 	/* Check, if it is write protected */
2564 	if (nand_check_wp(mtd)) {
2565 		ret = -EIO;
2566 		goto err_out;
2567 	}
2568 
2569 	realpage = (int)(to >> chip->page_shift);
2570 	page = realpage & chip->pagemask;
2571 	blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2572 
2573 	/* Invalidate the page cache, when we write to the cached page */
2574 	if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2575 	    ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2576 		chip->pagebuf = -1;
2577 
2578 	/* Don't allow multipage oob writes with offset */
2579 	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2580 		ret = -EINVAL;
2581 		goto err_out;
2582 	}
2583 
2584 	while (1) {
2585 		int bytes = mtd->writesize;
2586 		int cached = writelen > bytes && page != blockmask;
2587 		uint8_t *wbuf = buf;
2588 		int use_bufpoi;
2589 		int part_pagewr = (column || writelen < (mtd->writesize - 1));
2590 
2591 		if (part_pagewr)
2592 			use_bufpoi = 1;
2593 		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2594 			use_bufpoi = !virt_addr_valid(buf);
2595 		else
2596 			use_bufpoi = 0;
2597 
2598 		/* Partial page write?, or need to use bounce buffer */
2599 		if (use_bufpoi) {
2600 			pr_debug("%s: using write bounce buffer for buf@%p\n",
2601 					 __func__, buf);
2602 			cached = 0;
2603 			if (part_pagewr)
2604 				bytes = min_t(int, bytes - column, writelen);
2605 			chip->pagebuf = -1;
2606 			memset(chip->buffers->databuf, 0xff, mtd->writesize);
2607 			memcpy(&chip->buffers->databuf[column], buf, bytes);
2608 			wbuf = chip->buffers->databuf;
2609 		}
2610 
2611 		if (unlikely(oob)) {
2612 			size_t len = min(oobwritelen, oobmaxlen);
2613 			oob = nand_fill_oob(mtd, oob, len, ops);
2614 			oobwritelen -= len;
2615 		} else {
2616 			/* We still need to erase leftover OOB data */
2617 			memset(chip->oob_poi, 0xff, mtd->oobsize);
2618 		}
2619 		ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2620 					oob_required, page, cached,
2621 					(ops->mode == MTD_OPS_RAW));
2622 		if (ret)
2623 			break;
2624 
2625 		writelen -= bytes;
2626 		if (!writelen)
2627 			break;
2628 
2629 		column = 0;
2630 		buf += bytes;
2631 		realpage++;
2632 
2633 		page = realpage & chip->pagemask;
2634 		/* Check, if we cross a chip boundary */
2635 		if (!page) {
2636 			chipnr++;
2637 			chip->select_chip(mtd, -1);
2638 			chip->select_chip(mtd, chipnr);
2639 		}
2640 	}
2641 
2642 	ops->retlen = ops->len - writelen;
2643 	if (unlikely(oob))
2644 		ops->oobretlen = ops->ooblen;
2645 
2646 err_out:
2647 	chip->select_chip(mtd, -1);
2648 	return ret;
2649 }
2650 
2651 /**
2652  * panic_nand_write - [MTD Interface] NAND write with ECC
2653  * @mtd: MTD device structure
2654  * @to: offset to write to
2655  * @len: number of bytes to write
2656  * @retlen: pointer to variable to store the number of written bytes
2657  * @buf: the data to write
2658  *
2659  * NAND write with ECC. Used when performing writes in interrupt context, this
2660  * may for example be called by mtdoops when writing an oops while in panic.
2661  */
panic_nand_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const uint8_t * buf)2662 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2663 			    size_t *retlen, const uint8_t *buf)
2664 {
2665 	struct nand_chip *chip = mtd->priv;
2666 	struct mtd_oob_ops ops;
2667 	int ret;
2668 
2669 	/* Wait for the device to get ready */
2670 	panic_nand_wait(mtd, chip, 400);
2671 
2672 	/* Grab the device */
2673 	panic_nand_get_device(chip, mtd, FL_WRITING);
2674 
2675 	memset(&ops, 0, sizeof(ops));
2676 	ops.len = len;
2677 	ops.datbuf = (uint8_t *)buf;
2678 	ops.mode = MTD_OPS_PLACE_OOB;
2679 
2680 	ret = nand_do_write_ops(mtd, to, &ops);
2681 
2682 	*retlen = ops.retlen;
2683 	return ret;
2684 }
2685 
2686 /**
2687  * nand_write - [MTD Interface] NAND write with ECC
2688  * @mtd: MTD device structure
2689  * @to: offset to write to
2690  * @len: number of bytes to write
2691  * @retlen: pointer to variable to store the number of written bytes
2692  * @buf: the data to write
2693  *
2694  * NAND write with ECC.
2695  */
nand_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const uint8_t * buf)2696 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2697 			  size_t *retlen, const uint8_t *buf)
2698 {
2699 	struct mtd_oob_ops ops;
2700 	int ret;
2701 
2702 	nand_get_device(mtd, FL_WRITING);
2703 	memset(&ops, 0, sizeof(ops));
2704 	ops.len = len;
2705 	ops.datbuf = (uint8_t *)buf;
2706 	ops.mode = MTD_OPS_PLACE_OOB;
2707 	ret = nand_do_write_ops(mtd, to, &ops);
2708 	*retlen = ops.retlen;
2709 	nand_release_device(mtd);
2710 	return ret;
2711 }
2712 
2713 /**
2714  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2715  * @mtd: MTD device structure
2716  * @to: offset to write to
2717  * @ops: oob operation description structure
2718  *
2719  * NAND write out-of-band.
2720  */
nand_do_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2721 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2722 			     struct mtd_oob_ops *ops)
2723 {
2724 	int chipnr, page, status, len;
2725 	struct nand_chip *chip = mtd->priv;
2726 
2727 	pr_debug("%s: to = 0x%08x, len = %i\n",
2728 			 __func__, (unsigned int)to, (int)ops->ooblen);
2729 
2730 	if (ops->mode == MTD_OPS_AUTO_OOB)
2731 		len = chip->ecc.layout->oobavail;
2732 	else
2733 		len = mtd->oobsize;
2734 
2735 	/* Do not allow write past end of page */
2736 	if ((ops->ooboffs + ops->ooblen) > len) {
2737 		pr_debug("%s: attempt to write past end of page\n",
2738 				__func__);
2739 		return -EINVAL;
2740 	}
2741 
2742 	if (unlikely(ops->ooboffs >= len)) {
2743 		pr_debug("%s: attempt to start write outside oob\n",
2744 				__func__);
2745 		return -EINVAL;
2746 	}
2747 
2748 	/* Do not allow write past end of device */
2749 	if (unlikely(to >= mtd->size ||
2750 		     ops->ooboffs + ops->ooblen >
2751 			((mtd->size >> chip->page_shift) -
2752 			 (to >> chip->page_shift)) * len)) {
2753 		pr_debug("%s: attempt to write beyond end of device\n",
2754 				__func__);
2755 		return -EINVAL;
2756 	}
2757 
2758 	chipnr = (int)(to >> chip->chip_shift);
2759 	chip->select_chip(mtd, chipnr);
2760 
2761 	/* Shift to get page */
2762 	page = (int)(to >> chip->page_shift);
2763 
2764 	/*
2765 	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2766 	 * of my DiskOnChip 2000 test units) will clear the whole data page too
2767 	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2768 	 * it in the doc2000 driver in August 1999.  dwmw2.
2769 	 */
2770 	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2771 
2772 	/* Check, if it is write protected */
2773 	if (nand_check_wp(mtd)) {
2774 		chip->select_chip(mtd, -1);
2775 		return -EROFS;
2776 	}
2777 
2778 	/* Invalidate the page cache, if we write to the cached page */
2779 	if (page == chip->pagebuf)
2780 		chip->pagebuf = -1;
2781 
2782 	nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2783 
2784 	if (ops->mode == MTD_OPS_RAW)
2785 		status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2786 	else
2787 		status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2788 
2789 	chip->select_chip(mtd, -1);
2790 
2791 	if (status)
2792 		return status;
2793 
2794 	ops->oobretlen = ops->ooblen;
2795 
2796 	return 0;
2797 }
2798 
2799 /**
2800  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2801  * @mtd: MTD device structure
2802  * @to: offset to write to
2803  * @ops: oob operation description structure
2804  */
nand_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2805 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2806 			  struct mtd_oob_ops *ops)
2807 {
2808 	int ret = -ENOTSUPP;
2809 
2810 	ops->retlen = 0;
2811 
2812 	/* Do not allow writes past end of device */
2813 	if (ops->datbuf && (to + ops->len) > mtd->size) {
2814 		pr_debug("%s: attempt to write beyond end of device\n",
2815 				__func__);
2816 		return -EINVAL;
2817 	}
2818 
2819 	nand_get_device(mtd, FL_WRITING);
2820 
2821 	switch (ops->mode) {
2822 	case MTD_OPS_PLACE_OOB:
2823 	case MTD_OPS_AUTO_OOB:
2824 	case MTD_OPS_RAW:
2825 		break;
2826 
2827 	default:
2828 		goto out;
2829 	}
2830 
2831 	if (!ops->datbuf)
2832 		ret = nand_do_write_oob(mtd, to, ops);
2833 	else
2834 		ret = nand_do_write_ops(mtd, to, ops);
2835 
2836 out:
2837 	nand_release_device(mtd);
2838 	return ret;
2839 }
2840 
2841 /**
2842  * single_erase - [GENERIC] NAND standard block erase command function
2843  * @mtd: MTD device structure
2844  * @page: the page address of the block which will be erased
2845  *
2846  * Standard erase command for NAND chips. Returns NAND status.
2847  */
single_erase(struct mtd_info * mtd,int page)2848 static int single_erase(struct mtd_info *mtd, int page)
2849 {
2850 	struct nand_chip *chip = mtd->priv;
2851 	/* Send commands to erase a block */
2852 	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2853 	chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2854 
2855 	return chip->waitfunc(mtd, chip);
2856 }
2857 
2858 /**
2859  * nand_erase - [MTD Interface] erase block(s)
2860  * @mtd: MTD device structure
2861  * @instr: erase instruction
2862  *
2863  * Erase one ore more blocks.
2864  */
nand_erase(struct mtd_info * mtd,struct erase_info * instr)2865 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2866 {
2867 	return nand_erase_nand(mtd, instr, 0);
2868 }
2869 
2870 /**
2871  * nand_erase_nand - [INTERN] erase block(s)
2872  * @mtd: MTD device structure
2873  * @instr: erase instruction
2874  * @allowbbt: allow erasing the bbt area
2875  *
2876  * Erase one ore more blocks.
2877  */
nand_erase_nand(struct mtd_info * mtd,struct erase_info * instr,int allowbbt)2878 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2879 		    int allowbbt)
2880 {
2881 	int page, status, pages_per_block, ret, chipnr;
2882 	struct nand_chip *chip = mtd->priv;
2883 	loff_t len;
2884 
2885 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
2886 			__func__, (unsigned long long)instr->addr,
2887 			(unsigned long long)instr->len);
2888 
2889 	if (check_offs_len(mtd, instr->addr, instr->len))
2890 		return -EINVAL;
2891 
2892 	/* Grab the lock and see if the device is available */
2893 	nand_get_device(mtd, FL_ERASING);
2894 
2895 	/* Shift to get first page */
2896 	page = (int)(instr->addr >> chip->page_shift);
2897 	chipnr = (int)(instr->addr >> chip->chip_shift);
2898 
2899 	/* Calculate pages in each block */
2900 	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2901 
2902 	/* Select the NAND device */
2903 	chip->select_chip(mtd, chipnr);
2904 
2905 	/* Check, if it is write protected */
2906 	if (nand_check_wp(mtd)) {
2907 		pr_debug("%s: device is write protected!\n",
2908 				__func__);
2909 		instr->state = MTD_ERASE_FAILED;
2910 		goto erase_exit;
2911 	}
2912 
2913 	/* Loop through the pages */
2914 	len = instr->len;
2915 
2916 	instr->state = MTD_ERASING;
2917 
2918 	while (len) {
2919 		/* Check if we have a bad block, we do not erase bad blocks! */
2920 		if (nand_block_checkbad(mtd, ((loff_t) page) <<
2921 					chip->page_shift, 0, allowbbt)) {
2922 			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2923 				    __func__, page);
2924 			instr->state = MTD_ERASE_FAILED;
2925 			goto erase_exit;
2926 		}
2927 
2928 		/*
2929 		 * Invalidate the page cache, if we erase the block which
2930 		 * contains the current cached page.
2931 		 */
2932 		if (page <= chip->pagebuf && chip->pagebuf <
2933 		    (page + pages_per_block))
2934 			chip->pagebuf = -1;
2935 
2936 		status = chip->erase(mtd, page & chip->pagemask);
2937 
2938 		/*
2939 		 * See if operation failed and additional status checks are
2940 		 * available
2941 		 */
2942 		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2943 			status = chip->errstat(mtd, chip, FL_ERASING,
2944 					       status, page);
2945 
2946 		/* See if block erase succeeded */
2947 		if (status & NAND_STATUS_FAIL) {
2948 			pr_debug("%s: failed erase, page 0x%08x\n",
2949 					__func__, page);
2950 			instr->state = MTD_ERASE_FAILED;
2951 			instr->fail_addr =
2952 				((loff_t)page << chip->page_shift);
2953 			goto erase_exit;
2954 		}
2955 
2956 		/* Increment page address and decrement length */
2957 		len -= (1ULL << chip->phys_erase_shift);
2958 		page += pages_per_block;
2959 
2960 		/* Check, if we cross a chip boundary */
2961 		if (len && !(page & chip->pagemask)) {
2962 			chipnr++;
2963 			chip->select_chip(mtd, -1);
2964 			chip->select_chip(mtd, chipnr);
2965 		}
2966 	}
2967 	instr->state = MTD_ERASE_DONE;
2968 
2969 erase_exit:
2970 
2971 	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2972 
2973 	/* Deselect and wake up anyone waiting on the device */
2974 	chip->select_chip(mtd, -1);
2975 	nand_release_device(mtd);
2976 
2977 	/* Do call back function */
2978 	if (!ret)
2979 		mtd_erase_callback(instr);
2980 
2981 	/* Return more or less happy */
2982 	return ret;
2983 }
2984 
2985 /**
2986  * nand_sync - [MTD Interface] sync
2987  * @mtd: MTD device structure
2988  *
2989  * Sync is actually a wait for chip ready function.
2990  */
nand_sync(struct mtd_info * mtd)2991 static void nand_sync(struct mtd_info *mtd)
2992 {
2993 	pr_debug("%s: called\n", __func__);
2994 
2995 	/* Grab the lock and see if the device is available */
2996 	nand_get_device(mtd, FL_SYNCING);
2997 	/* Release it and go back */
2998 	nand_release_device(mtd);
2999 }
3000 
3001 /**
3002  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
3003  * @mtd: MTD device structure
3004  * @offs: offset relative to mtd start
3005  */
nand_block_isbad(struct mtd_info * mtd,loff_t offs)3006 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
3007 {
3008 	return nand_block_checkbad(mtd, offs, 1, 0);
3009 }
3010 
3011 /**
3012  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
3013  * @mtd: MTD device structure
3014  * @ofs: offset relative to mtd start
3015  */
nand_block_markbad(struct mtd_info * mtd,loff_t ofs)3016 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
3017 {
3018 	int ret;
3019 
3020 	ret = nand_block_isbad(mtd, ofs);
3021 	if (ret) {
3022 		/* If it was bad already, return success and do nothing */
3023 		if (ret > 0)
3024 			return 0;
3025 		return ret;
3026 	}
3027 
3028 	return nand_block_markbad_lowlevel(mtd, ofs);
3029 }
3030 
3031 /**
3032  * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
3033  * @mtd: MTD device structure
3034  * @chip: nand chip info structure
3035  * @addr: feature address.
3036  * @subfeature_param: the subfeature parameters, a four bytes array.
3037  */
nand_onfi_set_features(struct mtd_info * mtd,struct nand_chip * chip,int addr,uint8_t * subfeature_param)3038 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
3039 			int addr, uint8_t *subfeature_param)
3040 {
3041 	int status;
3042 	int i;
3043 
3044 	if (!chip->onfi_version ||
3045 	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
3046 	      & ONFI_OPT_CMD_SET_GET_FEATURES))
3047 		return -EINVAL;
3048 
3049 	chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
3050 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3051 		chip->write_byte(mtd, subfeature_param[i]);
3052 
3053 	status = chip->waitfunc(mtd, chip);
3054 	if (status & NAND_STATUS_FAIL)
3055 		return -EIO;
3056 	return 0;
3057 }
3058 
3059 /**
3060  * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3061  * @mtd: MTD device structure
3062  * @chip: nand chip info structure
3063  * @addr: feature address.
3064  * @subfeature_param: the subfeature parameters, a four bytes array.
3065  */
nand_onfi_get_features(struct mtd_info * mtd,struct nand_chip * chip,int addr,uint8_t * subfeature_param)3066 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
3067 			int addr, uint8_t *subfeature_param)
3068 {
3069 	int i;
3070 
3071 	if (!chip->onfi_version ||
3072 	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
3073 	      & ONFI_OPT_CMD_SET_GET_FEATURES))
3074 		return -EINVAL;
3075 
3076 	chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
3077 	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3078 		*subfeature_param++ = chip->read_byte(mtd);
3079 	return 0;
3080 }
3081 
3082 /**
3083  * nand_suspend - [MTD Interface] Suspend the NAND flash
3084  * @mtd: MTD device structure
3085  */
nand_suspend(struct mtd_info * mtd)3086 static int nand_suspend(struct mtd_info *mtd)
3087 {
3088 	return nand_get_device(mtd, FL_PM_SUSPENDED);
3089 }
3090 
3091 /**
3092  * nand_resume - [MTD Interface] Resume the NAND flash
3093  * @mtd: MTD device structure
3094  */
nand_resume(struct mtd_info * mtd)3095 static void nand_resume(struct mtd_info *mtd)
3096 {
3097 	struct nand_chip *chip = mtd->priv;
3098 
3099 	if (chip->state == FL_PM_SUSPENDED)
3100 		nand_release_device(mtd);
3101 	else
3102 		pr_err("%s called for a chip which is not in suspended state\n",
3103 			__func__);
3104 }
3105 
3106 /**
3107  * nand_shutdown - [MTD Interface] Finish the current NAND operation and
3108  *                 prevent further operations
3109  * @mtd: MTD device structure
3110  */
nand_shutdown(struct mtd_info * mtd)3111 static void nand_shutdown(struct mtd_info *mtd)
3112 {
3113 	nand_get_device(mtd, FL_PM_SUSPENDED);
3114 }
3115 
3116 /* Set default functions */
nand_set_defaults(struct nand_chip * chip,int busw)3117 static void nand_set_defaults(struct nand_chip *chip, int busw)
3118 {
3119 	/* check for proper chip_delay setup, set 20us if not */
3120 	if (!chip->chip_delay)
3121 		chip->chip_delay = 20;
3122 
3123 	/* check, if a user supplied command function given */
3124 	if (chip->cmdfunc == NULL)
3125 		chip->cmdfunc = nand_command;
3126 
3127 	/* check, if a user supplied wait function given */
3128 	if (chip->waitfunc == NULL)
3129 		chip->waitfunc = nand_wait;
3130 
3131 	if (!chip->select_chip)
3132 		chip->select_chip = nand_select_chip;
3133 
3134 	/* set for ONFI nand */
3135 	if (!chip->onfi_set_features)
3136 		chip->onfi_set_features = nand_onfi_set_features;
3137 	if (!chip->onfi_get_features)
3138 		chip->onfi_get_features = nand_onfi_get_features;
3139 
3140 	/* If called twice, pointers that depend on busw may need to be reset */
3141 	if (!chip->read_byte || chip->read_byte == nand_read_byte)
3142 		chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
3143 	if (!chip->read_word)
3144 		chip->read_word = nand_read_word;
3145 	if (!chip->block_bad)
3146 		chip->block_bad = nand_block_bad;
3147 	if (!chip->block_markbad)
3148 		chip->block_markbad = nand_default_block_markbad;
3149 	if (!chip->write_buf || chip->write_buf == nand_write_buf)
3150 		chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
3151 	if (!chip->write_byte || chip->write_byte == nand_write_byte)
3152 		chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
3153 	if (!chip->read_buf || chip->read_buf == nand_read_buf)
3154 		chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
3155 	if (!chip->scan_bbt)
3156 		chip->scan_bbt = nand_default_bbt;
3157 
3158 	if (!chip->controller) {
3159 		chip->controller = &chip->hwcontrol;
3160 		spin_lock_init(&chip->controller->lock);
3161 		init_waitqueue_head(&chip->controller->wq);
3162 	}
3163 
3164 }
3165 
3166 /* Sanitize ONFI strings so we can safely print them */
sanitize_string(uint8_t * s,size_t len)3167 static void sanitize_string(uint8_t *s, size_t len)
3168 {
3169 	ssize_t i;
3170 
3171 	/* Null terminate */
3172 	s[len - 1] = 0;
3173 
3174 	/* Remove non printable chars */
3175 	for (i = 0; i < len - 1; i++) {
3176 		if (s[i] < ' ' || s[i] > 127)
3177 			s[i] = '?';
3178 	}
3179 
3180 	/* Remove trailing spaces */
3181 	strim(s);
3182 }
3183 
onfi_crc16(u16 crc,u8 const * p,size_t len)3184 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3185 {
3186 	int i;
3187 	while (len--) {
3188 		crc ^= *p++ << 8;
3189 		for (i = 0; i < 8; i++)
3190 			crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3191 	}
3192 
3193 	return crc;
3194 }
3195 
3196 /* Parse the Extended Parameter Page. */
nand_flash_detect_ext_param_page(struct mtd_info * mtd,struct nand_chip * chip,struct nand_onfi_params * p)3197 static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3198 		struct nand_chip *chip, struct nand_onfi_params *p)
3199 {
3200 	struct onfi_ext_param_page *ep;
3201 	struct onfi_ext_section *s;
3202 	struct onfi_ext_ecc_info *ecc;
3203 	uint8_t *cursor;
3204 	int ret = -EINVAL;
3205 	int len;
3206 	int i;
3207 
3208 	len = le16_to_cpu(p->ext_param_page_length) * 16;
3209 	ep = kmalloc(len, GFP_KERNEL);
3210 	if (!ep)
3211 		return -ENOMEM;
3212 
3213 	/* Send our own NAND_CMD_PARAM. */
3214 	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3215 
3216 	/* Use the Change Read Column command to skip the ONFI param pages. */
3217 	chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3218 			sizeof(*p) * p->num_of_param_pages , -1);
3219 
3220 	/* Read out the Extended Parameter Page. */
3221 	chip->read_buf(mtd, (uint8_t *)ep, len);
3222 	if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3223 		!= le16_to_cpu(ep->crc))) {
3224 		pr_debug("fail in the CRC.\n");
3225 		goto ext_out;
3226 	}
3227 
3228 	/*
3229 	 * Check the signature.
3230 	 * Do not strictly follow the ONFI spec, maybe changed in future.
3231 	 */
3232 	if (strncmp(ep->sig, "EPPS", 4)) {
3233 		pr_debug("The signature is invalid.\n");
3234 		goto ext_out;
3235 	}
3236 
3237 	/* find the ECC section. */
3238 	cursor = (uint8_t *)(ep + 1);
3239 	for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3240 		s = ep->sections + i;
3241 		if (s->type == ONFI_SECTION_TYPE_2)
3242 			break;
3243 		cursor += s->length * 16;
3244 	}
3245 	if (i == ONFI_EXT_SECTION_MAX) {
3246 		pr_debug("We can not find the ECC section.\n");
3247 		goto ext_out;
3248 	}
3249 
3250 	/* get the info we want. */
3251 	ecc = (struct onfi_ext_ecc_info *)cursor;
3252 
3253 	if (!ecc->codeword_size) {
3254 		pr_debug("Invalid codeword size\n");
3255 		goto ext_out;
3256 	}
3257 
3258 	chip->ecc_strength_ds = ecc->ecc_bits;
3259 	chip->ecc_step_ds = 1 << ecc->codeword_size;
3260 	ret = 0;
3261 
3262 ext_out:
3263 	kfree(ep);
3264 	return ret;
3265 }
3266 
nand_setup_read_retry_micron(struct mtd_info * mtd,int retry_mode)3267 static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3268 {
3269 	struct nand_chip *chip = mtd->priv;
3270 	uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3271 
3272 	return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3273 			feature);
3274 }
3275 
3276 /*
3277  * Configure chip properties from Micron vendor-specific ONFI table
3278  */
nand_onfi_detect_micron(struct nand_chip * chip,struct nand_onfi_params * p)3279 static void nand_onfi_detect_micron(struct nand_chip *chip,
3280 		struct nand_onfi_params *p)
3281 {
3282 	struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3283 
3284 	if (le16_to_cpu(p->vendor_revision) < 1)
3285 		return;
3286 
3287 	chip->read_retries = micron->read_retry_options;
3288 	chip->setup_read_retry = nand_setup_read_retry_micron;
3289 }
3290 
3291 /*
3292  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3293  */
nand_flash_detect_onfi(struct mtd_info * mtd,struct nand_chip * chip,int * busw)3294 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3295 					int *busw)
3296 {
3297 	struct nand_onfi_params *p = &chip->onfi_params;
3298 	int i, j;
3299 	int val;
3300 
3301 	/* Try ONFI for unknown chip or LP */
3302 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3303 	if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3304 		chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3305 		return 0;
3306 
3307 	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3308 	for (i = 0; i < 3; i++) {
3309 		for (j = 0; j < sizeof(*p); j++)
3310 			((uint8_t *)p)[j] = chip->read_byte(mtd);
3311 		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3312 				le16_to_cpu(p->crc)) {
3313 			break;
3314 		}
3315 	}
3316 
3317 	if (i == 3) {
3318 		pr_err("Could not find valid ONFI parameter page; aborting\n");
3319 		return 0;
3320 	}
3321 
3322 	/* Check version */
3323 	val = le16_to_cpu(p->revision);
3324 	if (val & (1 << 5))
3325 		chip->onfi_version = 23;
3326 	else if (val & (1 << 4))
3327 		chip->onfi_version = 22;
3328 	else if (val & (1 << 3))
3329 		chip->onfi_version = 21;
3330 	else if (val & (1 << 2))
3331 		chip->onfi_version = 20;
3332 	else if (val & (1 << 1))
3333 		chip->onfi_version = 10;
3334 
3335 	if (!chip->onfi_version) {
3336 		pr_info("unsupported ONFI version: %d\n", val);
3337 		return 0;
3338 	}
3339 
3340 	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3341 	sanitize_string(p->model, sizeof(p->model));
3342 	if (!mtd->name)
3343 		mtd->name = p->model;
3344 
3345 	mtd->writesize = le32_to_cpu(p->byte_per_page);
3346 
3347 	/*
3348 	 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3349 	 * (don't ask me who thought of this...). MTD assumes that these
3350 	 * dimensions will be power-of-2, so just truncate the remaining area.
3351 	 */
3352 	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3353 	mtd->erasesize *= mtd->writesize;
3354 
3355 	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3356 
3357 	/* See erasesize comment */
3358 	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3359 	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3360 	chip->bits_per_cell = p->bits_per_cell;
3361 
3362 	if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3363 		*busw = NAND_BUSWIDTH_16;
3364 	else
3365 		*busw = 0;
3366 
3367 	if (p->ecc_bits != 0xff) {
3368 		chip->ecc_strength_ds = p->ecc_bits;
3369 		chip->ecc_step_ds = 512;
3370 	} else if (chip->onfi_version >= 21 &&
3371 		(onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3372 
3373 		/*
3374 		 * The nand_flash_detect_ext_param_page() uses the
3375 		 * Change Read Column command which maybe not supported
3376 		 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3377 		 * now. We do not replace user supplied command function.
3378 		 */
3379 		if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3380 			chip->cmdfunc = nand_command_lp;
3381 
3382 		/* The Extended Parameter Page is supported since ONFI 2.1. */
3383 		if (nand_flash_detect_ext_param_page(mtd, chip, p))
3384 			pr_warn("Failed to detect ONFI extended param page\n");
3385 	} else {
3386 		pr_warn("Could not retrieve ONFI ECC requirements\n");
3387 	}
3388 
3389 	if (p->jedec_id == NAND_MFR_MICRON)
3390 		nand_onfi_detect_micron(chip, p);
3391 
3392 	return 1;
3393 }
3394 
3395 /*
3396  * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3397  */
nand_flash_detect_jedec(struct mtd_info * mtd,struct nand_chip * chip,int * busw)3398 static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3399 					int *busw)
3400 {
3401 	struct nand_jedec_params *p = &chip->jedec_params;
3402 	struct jedec_ecc_info *ecc;
3403 	int val;
3404 	int i, j;
3405 
3406 	/* Try JEDEC for unknown chip or LP */
3407 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3408 	if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3409 		chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3410 		chip->read_byte(mtd) != 'C')
3411 		return 0;
3412 
3413 	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3414 	for (i = 0; i < 3; i++) {
3415 		for (j = 0; j < sizeof(*p); j++)
3416 			((uint8_t *)p)[j] = chip->read_byte(mtd);
3417 
3418 		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3419 				le16_to_cpu(p->crc))
3420 			break;
3421 	}
3422 
3423 	if (i == 3) {
3424 		pr_err("Could not find valid JEDEC parameter page; aborting\n");
3425 		return 0;
3426 	}
3427 
3428 	/* Check version */
3429 	val = le16_to_cpu(p->revision);
3430 	if (val & (1 << 2))
3431 		chip->jedec_version = 10;
3432 	else if (val & (1 << 1))
3433 		chip->jedec_version = 1; /* vendor specific version */
3434 
3435 	if (!chip->jedec_version) {
3436 		pr_info("unsupported JEDEC version: %d\n", val);
3437 		return 0;
3438 	}
3439 
3440 	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3441 	sanitize_string(p->model, sizeof(p->model));
3442 	if (!mtd->name)
3443 		mtd->name = p->model;
3444 
3445 	mtd->writesize = le32_to_cpu(p->byte_per_page);
3446 
3447 	/* Please reference to the comment for nand_flash_detect_onfi. */
3448 	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3449 	mtd->erasesize *= mtd->writesize;
3450 
3451 	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3452 
3453 	/* Please reference to the comment for nand_flash_detect_onfi. */
3454 	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3455 	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3456 	chip->bits_per_cell = p->bits_per_cell;
3457 
3458 	if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3459 		*busw = NAND_BUSWIDTH_16;
3460 	else
3461 		*busw = 0;
3462 
3463 	/* ECC info */
3464 	ecc = &p->ecc_info[0];
3465 
3466 	if (ecc->codeword_size >= 9) {
3467 		chip->ecc_strength_ds = ecc->ecc_bits;
3468 		chip->ecc_step_ds = 1 << ecc->codeword_size;
3469 	} else {
3470 		pr_warn("Invalid codeword size\n");
3471 	}
3472 
3473 	return 1;
3474 }
3475 
3476 /*
3477  * nand_id_has_period - Check if an ID string has a given wraparound period
3478  * @id_data: the ID string
3479  * @arrlen: the length of the @id_data array
3480  * @period: the period of repitition
3481  *
3482  * Check if an ID string is repeated within a given sequence of bytes at
3483  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3484  * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3485  * if the repetition has a period of @period; otherwise, returns zero.
3486  */
nand_id_has_period(u8 * id_data,int arrlen,int period)3487 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3488 {
3489 	int i, j;
3490 	for (i = 0; i < period; i++)
3491 		for (j = i + period; j < arrlen; j += period)
3492 			if (id_data[i] != id_data[j])
3493 				return 0;
3494 	return 1;
3495 }
3496 
3497 /*
3498  * nand_id_len - Get the length of an ID string returned by CMD_READID
3499  * @id_data: the ID string
3500  * @arrlen: the length of the @id_data array
3501 
3502  * Returns the length of the ID string, according to known wraparound/trailing
3503  * zero patterns. If no pattern exists, returns the length of the array.
3504  */
nand_id_len(u8 * id_data,int arrlen)3505 static int nand_id_len(u8 *id_data, int arrlen)
3506 {
3507 	int last_nonzero, period;
3508 
3509 	/* Find last non-zero byte */
3510 	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3511 		if (id_data[last_nonzero])
3512 			break;
3513 
3514 	/* All zeros */
3515 	if (last_nonzero < 0)
3516 		return 0;
3517 
3518 	/* Calculate wraparound period */
3519 	for (period = 1; period < arrlen; period++)
3520 		if (nand_id_has_period(id_data, arrlen, period))
3521 			break;
3522 
3523 	/* There's a repeated pattern */
3524 	if (period < arrlen)
3525 		return period;
3526 
3527 	/* There are trailing zeros */
3528 	if (last_nonzero < arrlen - 1)
3529 		return last_nonzero + 1;
3530 
3531 	/* No pattern detected */
3532 	return arrlen;
3533 }
3534 
3535 /* Extract the bits of per cell from the 3rd byte of the extended ID */
nand_get_bits_per_cell(u8 cellinfo)3536 static int nand_get_bits_per_cell(u8 cellinfo)
3537 {
3538 	int bits;
3539 
3540 	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3541 	bits >>= NAND_CI_CELLTYPE_SHIFT;
3542 	return bits + 1;
3543 }
3544 
3545 /*
3546  * Many new NAND share similar device ID codes, which represent the size of the
3547  * chip. The rest of the parameters must be decoded according to generic or
3548  * manufacturer-specific "extended ID" decoding patterns.
3549  */
nand_decode_ext_id(struct mtd_info * mtd,struct nand_chip * chip,u8 id_data[8],int * busw)3550 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3551 				u8 id_data[8], int *busw)
3552 {
3553 	int extid, id_len;
3554 	/* The 3rd id byte holds MLC / multichip data */
3555 	chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3556 	/* The 4th id byte is the important one */
3557 	extid = id_data[3];
3558 
3559 	id_len = nand_id_len(id_data, 8);
3560 
3561 	/*
3562 	 * Field definitions are in the following datasheets:
3563 	 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3564 	 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3565 	 * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
3566 	 *
3567 	 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3568 	 * ID to decide what to do.
3569 	 */
3570 	if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3571 			!nand_is_slc(chip) && id_data[5] != 0x00) {
3572 		/* Calc pagesize */
3573 		mtd->writesize = 2048 << (extid & 0x03);
3574 		extid >>= 2;
3575 		/* Calc oobsize */
3576 		switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3577 		case 1:
3578 			mtd->oobsize = 128;
3579 			break;
3580 		case 2:
3581 			mtd->oobsize = 218;
3582 			break;
3583 		case 3:
3584 			mtd->oobsize = 400;
3585 			break;
3586 		case 4:
3587 			mtd->oobsize = 436;
3588 			break;
3589 		case 5:
3590 			mtd->oobsize = 512;
3591 			break;
3592 		case 6:
3593 			mtd->oobsize = 640;
3594 			break;
3595 		case 7:
3596 		default: /* Other cases are "reserved" (unknown) */
3597 			mtd->oobsize = 1024;
3598 			break;
3599 		}
3600 		extid >>= 2;
3601 		/* Calc blocksize */
3602 		mtd->erasesize = (128 * 1024) <<
3603 			(((extid >> 1) & 0x04) | (extid & 0x03));
3604 		*busw = 0;
3605 	} else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3606 			!nand_is_slc(chip)) {
3607 		unsigned int tmp;
3608 
3609 		/* Calc pagesize */
3610 		mtd->writesize = 2048 << (extid & 0x03);
3611 		extid >>= 2;
3612 		/* Calc oobsize */
3613 		switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3614 		case 0:
3615 			mtd->oobsize = 128;
3616 			break;
3617 		case 1:
3618 			mtd->oobsize = 224;
3619 			break;
3620 		case 2:
3621 			mtd->oobsize = 448;
3622 			break;
3623 		case 3:
3624 			mtd->oobsize = 64;
3625 			break;
3626 		case 4:
3627 			mtd->oobsize = 32;
3628 			break;
3629 		case 5:
3630 			mtd->oobsize = 16;
3631 			break;
3632 		default:
3633 			mtd->oobsize = 640;
3634 			break;
3635 		}
3636 		extid >>= 2;
3637 		/* Calc blocksize */
3638 		tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3639 		if (tmp < 0x03)
3640 			mtd->erasesize = (128 * 1024) << tmp;
3641 		else if (tmp == 0x03)
3642 			mtd->erasesize = 768 * 1024;
3643 		else
3644 			mtd->erasesize = (64 * 1024) << tmp;
3645 		*busw = 0;
3646 	} else {
3647 		/* Calc pagesize */
3648 		mtd->writesize = 1024 << (extid & 0x03);
3649 		extid >>= 2;
3650 		/* Calc oobsize */
3651 		mtd->oobsize = (8 << (extid & 0x01)) *
3652 			(mtd->writesize >> 9);
3653 		extid >>= 2;
3654 		/* Calc blocksize. Blocksize is multiples of 64KiB */
3655 		mtd->erasesize = (64 * 1024) << (extid & 0x03);
3656 		extid >>= 2;
3657 		/* Get buswidth information */
3658 		*busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3659 
3660 		/*
3661 		 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3662 		 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3663 		 * follows:
3664 		 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3665 		 *                         110b -> 24nm
3666 		 * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC
3667 		 */
3668 		if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3669 				nand_is_slc(chip) &&
3670 				(id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3671 				!(id_data[4] & 0x80) /* !BENAND */) {
3672 			mtd->oobsize = 32 * mtd->writesize >> 9;
3673 		}
3674 
3675 	}
3676 }
3677 
3678 /*
3679  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3680  * decodes a matching ID table entry and assigns the MTD size parameters for
3681  * the chip.
3682  */
nand_decode_id(struct mtd_info * mtd,struct nand_chip * chip,struct nand_flash_dev * type,u8 id_data[8],int * busw)3683 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3684 				struct nand_flash_dev *type, u8 id_data[8],
3685 				int *busw)
3686 {
3687 	int maf_id = id_data[0];
3688 
3689 	mtd->erasesize = type->erasesize;
3690 	mtd->writesize = type->pagesize;
3691 	mtd->oobsize = mtd->writesize / 32;
3692 	*busw = type->options & NAND_BUSWIDTH_16;
3693 
3694 	/* All legacy ID NAND are small-page, SLC */
3695 	chip->bits_per_cell = 1;
3696 
3697 	/*
3698 	 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3699 	 * some Spansion chips have erasesize that conflicts with size
3700 	 * listed in nand_ids table.
3701 	 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3702 	 */
3703 	if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3704 			&& id_data[6] == 0x00 && id_data[7] == 0x00
3705 			&& mtd->writesize == 512) {
3706 		mtd->erasesize = 128 * 1024;
3707 		mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3708 	}
3709 }
3710 
3711 /*
3712  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3713  * heuristic patterns using various detected parameters (e.g., manufacturer,
3714  * page size, cell-type information).
3715  */
nand_decode_bbm_options(struct mtd_info * mtd,struct nand_chip * chip,u8 id_data[8])3716 static void nand_decode_bbm_options(struct mtd_info *mtd,
3717 				    struct nand_chip *chip, u8 id_data[8])
3718 {
3719 	int maf_id = id_data[0];
3720 
3721 	/* Set the bad block position */
3722 	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3723 		chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3724 	else
3725 		chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3726 
3727 	/*
3728 	 * Bad block marker is stored in the last page of each block on Samsung
3729 	 * and Hynix MLC devices; stored in first two pages of each block on
3730 	 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3731 	 * AMD/Spansion, and Macronix.  All others scan only the first page.
3732 	 */
3733 	if (!nand_is_slc(chip) &&
3734 			(maf_id == NAND_MFR_SAMSUNG ||
3735 			 maf_id == NAND_MFR_HYNIX))
3736 		chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3737 	else if ((nand_is_slc(chip) &&
3738 				(maf_id == NAND_MFR_SAMSUNG ||
3739 				 maf_id == NAND_MFR_HYNIX ||
3740 				 maf_id == NAND_MFR_TOSHIBA ||
3741 				 maf_id == NAND_MFR_AMD ||
3742 				 maf_id == NAND_MFR_MACRONIX)) ||
3743 			(mtd->writesize == 2048 &&
3744 			 maf_id == NAND_MFR_MICRON))
3745 		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3746 }
3747 
is_full_id_nand(struct nand_flash_dev * type)3748 static inline bool is_full_id_nand(struct nand_flash_dev *type)
3749 {
3750 	return type->id_len;
3751 }
3752 
find_full_id_nand(struct mtd_info * mtd,struct nand_chip * chip,struct nand_flash_dev * type,u8 * id_data,int * busw)3753 static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3754 		   struct nand_flash_dev *type, u8 *id_data, int *busw)
3755 {
3756 	if (!strncmp(type->id, id_data, type->id_len)) {
3757 		mtd->writesize = type->pagesize;
3758 		mtd->erasesize = type->erasesize;
3759 		mtd->oobsize = type->oobsize;
3760 
3761 		chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3762 		chip->chipsize = (uint64_t)type->chipsize << 20;
3763 		chip->options |= type->options;
3764 		chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3765 		chip->ecc_step_ds = NAND_ECC_STEP(type);
3766 		chip->onfi_timing_mode_default =
3767 					type->onfi_timing_mode_default;
3768 
3769 		*busw = type->options & NAND_BUSWIDTH_16;
3770 
3771 		if (!mtd->name)
3772 			mtd->name = type->name;
3773 
3774 		return true;
3775 	}
3776 	return false;
3777 }
3778 
3779 /*
3780  * Get the flash and manufacturer id and lookup if the type is supported.
3781  */
nand_get_flash_type(struct mtd_info * mtd,struct nand_chip * chip,int * maf_id,int * dev_id,struct nand_flash_dev * type)3782 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3783 						  struct nand_chip *chip,
3784 						  int *maf_id, int *dev_id,
3785 						  struct nand_flash_dev *type)
3786 {
3787 	int busw;
3788 	int i, maf_idx;
3789 	u8 id_data[8];
3790 
3791 	/* Select the device */
3792 	chip->select_chip(mtd, 0);
3793 
3794 	/*
3795 	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3796 	 * after power-up.
3797 	 */
3798 	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3799 
3800 	/* Send the command for reading device ID */
3801 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3802 
3803 	/* Read manufacturer and device IDs */
3804 	*maf_id = chip->read_byte(mtd);
3805 	*dev_id = chip->read_byte(mtd);
3806 
3807 	/*
3808 	 * Try again to make sure, as some systems the bus-hold or other
3809 	 * interface concerns can cause random data which looks like a
3810 	 * possibly credible NAND flash to appear. If the two results do
3811 	 * not match, ignore the device completely.
3812 	 */
3813 
3814 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3815 
3816 	/* Read entire ID string */
3817 	for (i = 0; i < 8; i++)
3818 		id_data[i] = chip->read_byte(mtd);
3819 
3820 	if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3821 		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3822 			*maf_id, *dev_id, id_data[0], id_data[1]);
3823 		return ERR_PTR(-ENODEV);
3824 	}
3825 
3826 	if (!type)
3827 		type = nand_flash_ids;
3828 
3829 	for (; type->name != NULL; type++) {
3830 		if (is_full_id_nand(type)) {
3831 			if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3832 				goto ident_done;
3833 		} else if (*dev_id == type->dev_id) {
3834 			break;
3835 		}
3836 	}
3837 
3838 	chip->onfi_version = 0;
3839 	if (!type->name || !type->pagesize) {
3840 		/* Check if the chip is ONFI compliant */
3841 		if (nand_flash_detect_onfi(mtd, chip, &busw))
3842 			goto ident_done;
3843 
3844 		/* Check if the chip is JEDEC compliant */
3845 		if (nand_flash_detect_jedec(mtd, chip, &busw))
3846 			goto ident_done;
3847 	}
3848 
3849 	if (!type->name)
3850 		return ERR_PTR(-ENODEV);
3851 
3852 	if (!mtd->name)
3853 		mtd->name = type->name;
3854 
3855 	chip->chipsize = (uint64_t)type->chipsize << 20;
3856 
3857 	if (!type->pagesize) {
3858 		/* Decode parameters from extended ID */
3859 		nand_decode_ext_id(mtd, chip, id_data, &busw);
3860 	} else {
3861 		nand_decode_id(mtd, chip, type, id_data, &busw);
3862 	}
3863 	/* Get chip options */
3864 	chip->options |= type->options;
3865 
3866 	/*
3867 	 * Check if chip is not a Samsung device. Do not clear the
3868 	 * options for chips which do not have an extended id.
3869 	 */
3870 	if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3871 		chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3872 ident_done:
3873 
3874 	/* Try to identify manufacturer */
3875 	for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3876 		if (nand_manuf_ids[maf_idx].id == *maf_id)
3877 			break;
3878 	}
3879 
3880 	if (chip->options & NAND_BUSWIDTH_AUTO) {
3881 		WARN_ON(chip->options & NAND_BUSWIDTH_16);
3882 		chip->options |= busw;
3883 		nand_set_defaults(chip, busw);
3884 	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3885 		/*
3886 		 * Check, if buswidth is correct. Hardware drivers should set
3887 		 * chip correct!
3888 		 */
3889 		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3890 			*maf_id, *dev_id);
3891 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3892 		pr_warn("bus width %d instead %d bit\n",
3893 			   (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3894 			   busw ? 16 : 8);
3895 		return ERR_PTR(-EINVAL);
3896 	}
3897 
3898 	nand_decode_bbm_options(mtd, chip, id_data);
3899 
3900 	/* Calculate the address shift from the page size */
3901 	chip->page_shift = ffs(mtd->writesize) - 1;
3902 	/* Convert chipsize to number of pages per chip -1 */
3903 	chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3904 
3905 	chip->bbt_erase_shift = chip->phys_erase_shift =
3906 		ffs(mtd->erasesize) - 1;
3907 	if (chip->chipsize & 0xffffffff)
3908 		chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3909 	else {
3910 		chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3911 		chip->chip_shift += 32 - 1;
3912 	}
3913 
3914 	chip->badblockbits = 8;
3915 	chip->erase = single_erase;
3916 
3917 	/* Do not replace user supplied command function! */
3918 	if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3919 		chip->cmdfunc = nand_command_lp;
3920 
3921 	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3922 		*maf_id, *dev_id);
3923 
3924 	if (chip->onfi_version)
3925 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3926 				chip->onfi_params.model);
3927 	else if (chip->jedec_version)
3928 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3929 				chip->jedec_params.model);
3930 	else
3931 		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3932 				type->name);
3933 
3934 	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3935 		(int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3936 		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
3937 	return type;
3938 }
3939 
nand_dt_init(struct mtd_info * mtd,struct nand_chip * chip,struct device_node * dn)3940 static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip,
3941 			struct device_node *dn)
3942 {
3943 	int ecc_mode, ecc_strength, ecc_step;
3944 
3945 	if (of_get_nand_bus_width(dn) == 16)
3946 		chip->options |= NAND_BUSWIDTH_16;
3947 
3948 	if (of_get_nand_on_flash_bbt(dn))
3949 		chip->bbt_options |= NAND_BBT_USE_FLASH;
3950 
3951 	ecc_mode = of_get_nand_ecc_mode(dn);
3952 	ecc_strength = of_get_nand_ecc_strength(dn);
3953 	ecc_step = of_get_nand_ecc_step_size(dn);
3954 
3955 	if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
3956 	    (!(ecc_step >= 0) && ecc_strength >= 0)) {
3957 		pr_err("must set both strength and step size in DT\n");
3958 		return -EINVAL;
3959 	}
3960 
3961 	if (ecc_mode >= 0)
3962 		chip->ecc.mode = ecc_mode;
3963 
3964 	if (ecc_strength >= 0)
3965 		chip->ecc.strength = ecc_strength;
3966 
3967 	if (ecc_step > 0)
3968 		chip->ecc.size = ecc_step;
3969 
3970 	return 0;
3971 }
3972 
3973 /**
3974  * nand_scan_ident - [NAND Interface] Scan for the NAND device
3975  * @mtd: MTD device structure
3976  * @maxchips: number of chips to scan for
3977  * @table: alternative NAND ID table
3978  *
3979  * This is the first phase of the normal nand_scan() function. It reads the
3980  * flash ID and sets up MTD fields accordingly.
3981  *
3982  */
nand_scan_ident(struct mtd_info * mtd,int maxchips,struct nand_flash_dev * table)3983 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3984 		    struct nand_flash_dev *table)
3985 {
3986 	int i, nand_maf_id, nand_dev_id;
3987 	struct nand_chip *chip = mtd->priv;
3988 	struct nand_flash_dev *type;
3989 	int ret;
3990 
3991 	if (chip->flash_node) {
3992 		ret = nand_dt_init(mtd, chip, chip->flash_node);
3993 		if (ret)
3994 			return ret;
3995 	}
3996 
3997 	if (!mtd->name && mtd->dev.parent)
3998 		mtd->name = dev_name(mtd->dev.parent);
3999 
4000 	/* Set the default functions */
4001 	nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
4002 
4003 	/* Read the flash type */
4004 	type = nand_get_flash_type(mtd, chip, &nand_maf_id,
4005 				   &nand_dev_id, table);
4006 
4007 	if (IS_ERR(type)) {
4008 		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
4009 			pr_warn("No NAND device found\n");
4010 		chip->select_chip(mtd, -1);
4011 		return PTR_ERR(type);
4012 	}
4013 
4014 	chip->select_chip(mtd, -1);
4015 
4016 	/* Check for a chip array */
4017 	for (i = 1; i < maxchips; i++) {
4018 		chip->select_chip(mtd, i);
4019 		/* See comment in nand_get_flash_type for reset */
4020 		chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
4021 		/* Send the command for reading device ID */
4022 		chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
4023 		/* Read manufacturer and device IDs */
4024 		if (nand_maf_id != chip->read_byte(mtd) ||
4025 		    nand_dev_id != chip->read_byte(mtd)) {
4026 			chip->select_chip(mtd, -1);
4027 			break;
4028 		}
4029 		chip->select_chip(mtd, -1);
4030 	}
4031 	if (i > 1)
4032 		pr_info("%d chips detected\n", i);
4033 
4034 	/* Store the number of chips and calc total size for mtd */
4035 	chip->numchips = i;
4036 	mtd->size = i * chip->chipsize;
4037 
4038 	return 0;
4039 }
4040 EXPORT_SYMBOL(nand_scan_ident);
4041 
4042 /*
4043  * Check if the chip configuration meet the datasheet requirements.
4044 
4045  * If our configuration corrects A bits per B bytes and the minimum
4046  * required correction level is X bits per Y bytes, then we must ensure
4047  * both of the following are true:
4048  *
4049  * (1) A / B >= X / Y
4050  * (2) A >= X
4051  *
4052  * Requirement (1) ensures we can correct for the required bitflip density.
4053  * Requirement (2) ensures we can correct even when all bitflips are clumped
4054  * in the same sector.
4055  */
nand_ecc_strength_good(struct mtd_info * mtd)4056 static bool nand_ecc_strength_good(struct mtd_info *mtd)
4057 {
4058 	struct nand_chip *chip = mtd->priv;
4059 	struct nand_ecc_ctrl *ecc = &chip->ecc;
4060 	int corr, ds_corr;
4061 
4062 	if (ecc->size == 0 || chip->ecc_step_ds == 0)
4063 		/* Not enough information */
4064 		return true;
4065 
4066 	/*
4067 	 * We get the number of corrected bits per page to compare
4068 	 * the correction density.
4069 	 */
4070 	corr = (mtd->writesize * ecc->strength) / ecc->size;
4071 	ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
4072 
4073 	return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
4074 }
4075 
4076 /**
4077  * nand_scan_tail - [NAND Interface] Scan for the NAND device
4078  * @mtd: MTD device structure
4079  *
4080  * This is the second phase of the normal nand_scan() function. It fills out
4081  * all the uninitialized function pointers with the defaults and scans for a
4082  * bad block table if appropriate.
4083  */
nand_scan_tail(struct mtd_info * mtd)4084 int nand_scan_tail(struct mtd_info *mtd)
4085 {
4086 	int i;
4087 	struct nand_chip *chip = mtd->priv;
4088 	struct nand_ecc_ctrl *ecc = &chip->ecc;
4089 	struct nand_buffers *nbuf;
4090 
4091 	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
4092 	BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
4093 			!(chip->bbt_options & NAND_BBT_USE_FLASH));
4094 
4095 	if (!(chip->options & NAND_OWN_BUFFERS)) {
4096 		nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
4097 				+ mtd->oobsize * 3, GFP_KERNEL);
4098 		if (!nbuf)
4099 			return -ENOMEM;
4100 		nbuf->ecccalc = (uint8_t *)(nbuf + 1);
4101 		nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
4102 		nbuf->databuf = nbuf->ecccode + mtd->oobsize;
4103 
4104 		chip->buffers = nbuf;
4105 	} else {
4106 		if (!chip->buffers)
4107 			return -ENOMEM;
4108 	}
4109 
4110 	/* Set the internal oob buffer location, just after the page data */
4111 	chip->oob_poi = chip->buffers->databuf + mtd->writesize;
4112 
4113 	/*
4114 	 * If no default placement scheme is given, select an appropriate one.
4115 	 */
4116 	if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
4117 		switch (mtd->oobsize) {
4118 		case 8:
4119 			ecc->layout = &nand_oob_8;
4120 			break;
4121 		case 16:
4122 			ecc->layout = &nand_oob_16;
4123 			break;
4124 		case 64:
4125 			ecc->layout = &nand_oob_64;
4126 			break;
4127 		case 128:
4128 			ecc->layout = &nand_oob_128;
4129 			break;
4130 		default:
4131 			pr_warn("No oob scheme defined for oobsize %d\n",
4132 				   mtd->oobsize);
4133 			BUG();
4134 		}
4135 	}
4136 
4137 	if (!chip->write_page)
4138 		chip->write_page = nand_write_page;
4139 
4140 	/*
4141 	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
4142 	 * selected and we have 256 byte pagesize fallback to software ECC
4143 	 */
4144 
4145 	switch (ecc->mode) {
4146 	case NAND_ECC_HW_OOB_FIRST:
4147 		/* Similar to NAND_ECC_HW, but a separate read_page handle */
4148 		if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
4149 			pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4150 			BUG();
4151 		}
4152 		if (!ecc->read_page)
4153 			ecc->read_page = nand_read_page_hwecc_oob_first;
4154 
4155 	case NAND_ECC_HW:
4156 		/* Use standard hwecc read page function? */
4157 		if (!ecc->read_page)
4158 			ecc->read_page = nand_read_page_hwecc;
4159 		if (!ecc->write_page)
4160 			ecc->write_page = nand_write_page_hwecc;
4161 		if (!ecc->read_page_raw)
4162 			ecc->read_page_raw = nand_read_page_raw;
4163 		if (!ecc->write_page_raw)
4164 			ecc->write_page_raw = nand_write_page_raw;
4165 		if (!ecc->read_oob)
4166 			ecc->read_oob = nand_read_oob_std;
4167 		if (!ecc->write_oob)
4168 			ecc->write_oob = nand_write_oob_std;
4169 		if (!ecc->read_subpage)
4170 			ecc->read_subpage = nand_read_subpage;
4171 		if (!ecc->write_subpage)
4172 			ecc->write_subpage = nand_write_subpage_hwecc;
4173 
4174 	case NAND_ECC_HW_SYNDROME:
4175 		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
4176 		    (!ecc->read_page ||
4177 		     ecc->read_page == nand_read_page_hwecc ||
4178 		     !ecc->write_page ||
4179 		     ecc->write_page == nand_write_page_hwecc)) {
4180 			pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4181 			BUG();
4182 		}
4183 		/* Use standard syndrome read/write page function? */
4184 		if (!ecc->read_page)
4185 			ecc->read_page = nand_read_page_syndrome;
4186 		if (!ecc->write_page)
4187 			ecc->write_page = nand_write_page_syndrome;
4188 		if (!ecc->read_page_raw)
4189 			ecc->read_page_raw = nand_read_page_raw_syndrome;
4190 		if (!ecc->write_page_raw)
4191 			ecc->write_page_raw = nand_write_page_raw_syndrome;
4192 		if (!ecc->read_oob)
4193 			ecc->read_oob = nand_read_oob_syndrome;
4194 		if (!ecc->write_oob)
4195 			ecc->write_oob = nand_write_oob_syndrome;
4196 
4197 		if (mtd->writesize >= ecc->size) {
4198 			if (!ecc->strength) {
4199 				pr_warn("Driver must set ecc.strength when using hardware ECC\n");
4200 				BUG();
4201 			}
4202 			break;
4203 		}
4204 		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4205 			ecc->size, mtd->writesize);
4206 		ecc->mode = NAND_ECC_SOFT;
4207 
4208 	case NAND_ECC_SOFT:
4209 		ecc->calculate = nand_calculate_ecc;
4210 		ecc->correct = nand_correct_data;
4211 		ecc->read_page = nand_read_page_swecc;
4212 		ecc->read_subpage = nand_read_subpage;
4213 		ecc->write_page = nand_write_page_swecc;
4214 		ecc->read_page_raw = nand_read_page_raw;
4215 		ecc->write_page_raw = nand_write_page_raw;
4216 		ecc->read_oob = nand_read_oob_std;
4217 		ecc->write_oob = nand_write_oob_std;
4218 		if (!ecc->size)
4219 			ecc->size = 256;
4220 		ecc->bytes = 3;
4221 		ecc->strength = 1;
4222 		break;
4223 
4224 	case NAND_ECC_SOFT_BCH:
4225 		if (!mtd_nand_has_bch()) {
4226 			pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4227 			BUG();
4228 		}
4229 		ecc->calculate = nand_bch_calculate_ecc;
4230 		ecc->correct = nand_bch_correct_data;
4231 		ecc->read_page = nand_read_page_swecc;
4232 		ecc->read_subpage = nand_read_subpage;
4233 		ecc->write_page = nand_write_page_swecc;
4234 		ecc->read_page_raw = nand_read_page_raw;
4235 		ecc->write_page_raw = nand_write_page_raw;
4236 		ecc->read_oob = nand_read_oob_std;
4237 		ecc->write_oob = nand_write_oob_std;
4238 		/*
4239 		 * Board driver should supply ecc.size and ecc.strength values
4240 		 * to select how many bits are correctable. Otherwise, default
4241 		 * to 4 bits for large page devices.
4242 		 */
4243 		if (!ecc->size && (mtd->oobsize >= 64)) {
4244 			ecc->size = 512;
4245 			ecc->strength = 4;
4246 		}
4247 
4248 		/* See nand_bch_init() for details. */
4249 		ecc->bytes = DIV_ROUND_UP(
4250 				ecc->strength * fls(8 * ecc->size), 8);
4251 		ecc->priv = nand_bch_init(mtd, ecc->size, ecc->bytes,
4252 					       &ecc->layout);
4253 		if (!ecc->priv) {
4254 			pr_warn("BCH ECC initialization failed!\n");
4255 			BUG();
4256 		}
4257 		break;
4258 
4259 	case NAND_ECC_NONE:
4260 		pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4261 		ecc->read_page = nand_read_page_raw;
4262 		ecc->write_page = nand_write_page_raw;
4263 		ecc->read_oob = nand_read_oob_std;
4264 		ecc->read_page_raw = nand_read_page_raw;
4265 		ecc->write_page_raw = nand_write_page_raw;
4266 		ecc->write_oob = nand_write_oob_std;
4267 		ecc->size = mtd->writesize;
4268 		ecc->bytes = 0;
4269 		ecc->strength = 0;
4270 		break;
4271 
4272 	default:
4273 		pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
4274 		BUG();
4275 	}
4276 
4277 	/* For many systems, the standard OOB write also works for raw */
4278 	if (!ecc->read_oob_raw)
4279 		ecc->read_oob_raw = ecc->read_oob;
4280 	if (!ecc->write_oob_raw)
4281 		ecc->write_oob_raw = ecc->write_oob;
4282 
4283 	/*
4284 	 * The number of bytes available for a client to place data into
4285 	 * the out of band area.
4286 	 */
4287 	ecc->layout->oobavail = 0;
4288 	for (i = 0; ecc->layout->oobfree[i].length
4289 			&& i < ARRAY_SIZE(ecc->layout->oobfree); i++)
4290 		ecc->layout->oobavail += ecc->layout->oobfree[i].length;
4291 	mtd->oobavail = ecc->layout->oobavail;
4292 
4293 	/* ECC sanity check: warn if it's too weak */
4294 	if (!nand_ecc_strength_good(mtd))
4295 		pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4296 			mtd->name);
4297 
4298 	/*
4299 	 * Set the number of read / write steps for one page depending on ECC
4300 	 * mode.
4301 	 */
4302 	ecc->steps = mtd->writesize / ecc->size;
4303 	if (ecc->steps * ecc->size != mtd->writesize) {
4304 		pr_warn("Invalid ECC parameters\n");
4305 		BUG();
4306 	}
4307 	ecc->total = ecc->steps * ecc->bytes;
4308 
4309 	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4310 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4311 		switch (ecc->steps) {
4312 		case 2:
4313 			mtd->subpage_sft = 1;
4314 			break;
4315 		case 4:
4316 		case 8:
4317 		case 16:
4318 			mtd->subpage_sft = 2;
4319 			break;
4320 		}
4321 	}
4322 	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4323 
4324 	/* Initialize state */
4325 	chip->state = FL_READY;
4326 
4327 	/* Invalidate the pagebuffer reference */
4328 	chip->pagebuf = -1;
4329 
4330 	/* Large page NAND with SOFT_ECC should support subpage reads */
4331 	switch (ecc->mode) {
4332 	case NAND_ECC_SOFT:
4333 	case NAND_ECC_SOFT_BCH:
4334 		if (chip->page_shift > 9)
4335 			chip->options |= NAND_SUBPAGE_READ;
4336 		break;
4337 
4338 	default:
4339 		break;
4340 	}
4341 
4342 	/* Fill in remaining MTD driver data */
4343 	mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4344 	mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4345 						MTD_CAP_NANDFLASH;
4346 	mtd->_erase = nand_erase;
4347 	mtd->_point = NULL;
4348 	mtd->_unpoint = NULL;
4349 	mtd->_read = nand_read;
4350 	mtd->_write = nand_write;
4351 	mtd->_panic_write = panic_nand_write;
4352 	mtd->_read_oob = nand_read_oob;
4353 	mtd->_write_oob = nand_write_oob;
4354 	mtd->_sync = nand_sync;
4355 	mtd->_lock = NULL;
4356 	mtd->_unlock = NULL;
4357 	mtd->_suspend = nand_suspend;
4358 	mtd->_resume = nand_resume;
4359 	mtd->_reboot = nand_shutdown;
4360 	mtd->_block_isreserved = nand_block_isreserved;
4361 	mtd->_block_isbad = nand_block_isbad;
4362 	mtd->_block_markbad = nand_block_markbad;
4363 	mtd->writebufsize = mtd->writesize;
4364 
4365 	/* propagate ecc info to mtd_info */
4366 	mtd->ecclayout = ecc->layout;
4367 	mtd->ecc_strength = ecc->strength;
4368 	mtd->ecc_step_size = ecc->size;
4369 	/*
4370 	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4371 	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4372 	 * properly set.
4373 	 */
4374 	if (!mtd->bitflip_threshold)
4375 		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
4376 
4377 	/* Check, if we should skip the bad block table scan */
4378 	if (chip->options & NAND_SKIP_BBTSCAN)
4379 		return 0;
4380 
4381 	/* Build bad block table */
4382 	return chip->scan_bbt(mtd);
4383 }
4384 EXPORT_SYMBOL(nand_scan_tail);
4385 
4386 /*
4387  * is_module_text_address() isn't exported, and it's mostly a pointless
4388  * test if this is a module _anyway_ -- they'd have to try _really_ hard
4389  * to call us from in-kernel code if the core NAND support is modular.
4390  */
4391 #ifdef MODULE
4392 #define caller_is_module() (1)
4393 #else
4394 #define caller_is_module() \
4395 	is_module_text_address((unsigned long)__builtin_return_address(0))
4396 #endif
4397 
4398 /**
4399  * nand_scan - [NAND Interface] Scan for the NAND device
4400  * @mtd: MTD device structure
4401  * @maxchips: number of chips to scan for
4402  *
4403  * This fills out all the uninitialized function pointers with the defaults.
4404  * The flash ID is read and the mtd/chip structures are filled with the
4405  * appropriate values.
4406  */
nand_scan(struct mtd_info * mtd,int maxchips)4407 int nand_scan(struct mtd_info *mtd, int maxchips)
4408 {
4409 	int ret;
4410 
4411 	ret = nand_scan_ident(mtd, maxchips, NULL);
4412 	if (!ret)
4413 		ret = nand_scan_tail(mtd);
4414 	return ret;
4415 }
4416 EXPORT_SYMBOL(nand_scan);
4417 
4418 /**
4419  * nand_release - [NAND Interface] Free resources held by the NAND device
4420  * @mtd: MTD device structure
4421  */
nand_release(struct mtd_info * mtd)4422 void nand_release(struct mtd_info *mtd)
4423 {
4424 	struct nand_chip *chip = mtd->priv;
4425 
4426 	if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
4427 		nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
4428 
4429 	mtd_device_unregister(mtd);
4430 
4431 	/* Free bad block table memory */
4432 	kfree(chip->bbt);
4433 	if (!(chip->options & NAND_OWN_BUFFERS))
4434 		kfree(chip->buffers);
4435 
4436 	/* Free bad block descriptor memory */
4437 	if (chip->badblock_pattern && chip->badblock_pattern->options
4438 			& NAND_BBT_DYNAMICSTRUCT)
4439 		kfree(chip->badblock_pattern);
4440 }
4441 EXPORT_SYMBOL_GPL(nand_release);
4442 
nand_base_init(void)4443 static int __init nand_base_init(void)
4444 {
4445 	led_trigger_register_simple("nand-disk", &nand_led_trigger);
4446 	return 0;
4447 }
4448 
nand_base_exit(void)4449 static void __exit nand_base_exit(void)
4450 {
4451 	led_trigger_unregister_simple(nand_led_trigger);
4452 }
4453 
4454 module_init(nand_base_init);
4455 module_exit(nand_base_exit);
4456 
4457 MODULE_LICENSE("GPL");
4458 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4459 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4460 MODULE_DESCRIPTION("Generic NAND flash driver code");
4461