1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 /* Common definitions for all Efx net driver code */
12
13 #ifndef EFX_NET_DRIVER_H
14 #define EFX_NET_DRIVER_H
15
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/ethtool.h>
19 #include <linux/if_vlan.h>
20 #include <linux/timer.h>
21 #include <linux/mdio.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/workqueue.h>
27 #include <linux/mutex.h>
28 #include <linux/vmalloc.h>
29 #include <linux/i2c.h>
30 #include <linux/mtd/mtd.h>
31 #include <net/busy_poll.h>
32
33 #include "enum.h"
34 #include "bitfield.h"
35 #include "filter.h"
36
37 /**************************************************************************
38 *
39 * Build definitions
40 *
41 **************************************************************************/
42
43 #define EFX_DRIVER_VERSION "4.0"
44
45 #ifdef DEBUG
46 #define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
47 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
48 #else
49 #define EFX_BUG_ON_PARANOID(x) do {} while (0)
50 #define EFX_WARN_ON_PARANOID(x) do {} while (0)
51 #endif
52
53 /**************************************************************************
54 *
55 * Efx data structures
56 *
57 **************************************************************************/
58
59 #define EFX_MAX_CHANNELS 32U
60 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
61 #define EFX_EXTRA_CHANNEL_IOV 0
62 #define EFX_EXTRA_CHANNEL_PTP 1
63 #define EFX_MAX_EXTRA_CHANNELS 2U
64
65 /* Checksum generation is a per-queue option in hardware, so each
66 * queue visible to the networking core is backed by two hardware TX
67 * queues. */
68 #define EFX_MAX_TX_TC 2
69 #define EFX_MAX_CORE_TX_QUEUES (EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
70 #define EFX_TXQ_TYPE_OFFLOAD 1 /* flag */
71 #define EFX_TXQ_TYPE_HIGHPRI 2 /* flag */
72 #define EFX_TXQ_TYPES 4
73 #define EFX_MAX_TX_QUEUES (EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
74
75 /* Maximum possible MTU the driver supports */
76 #define EFX_MAX_MTU (9 * 1024)
77
78 /* Size of an RX scatter buffer. Small enough to pack 2 into a 4K page,
79 * and should be a multiple of the cache line size.
80 */
81 #define EFX_RX_USR_BUF_SIZE (2048 - 256)
82
83 /* If possible, we should ensure cache line alignment at start and end
84 * of every buffer. Otherwise, we just need to ensure 4-byte
85 * alignment of the network header.
86 */
87 #if NET_IP_ALIGN == 0
88 #define EFX_RX_BUF_ALIGNMENT L1_CACHE_BYTES
89 #else
90 #define EFX_RX_BUF_ALIGNMENT 4
91 #endif
92
93 /* Forward declare Precision Time Protocol (PTP) support structure. */
94 struct efx_ptp_data;
95 struct hwtstamp_config;
96
97 struct efx_self_tests;
98
99 /**
100 * struct efx_buffer - A general-purpose DMA buffer
101 * @addr: host base address of the buffer
102 * @dma_addr: DMA base address of the buffer
103 * @len: Buffer length, in bytes
104 *
105 * The NIC uses these buffers for its interrupt status registers and
106 * MAC stats dumps.
107 */
108 struct efx_buffer {
109 void *addr;
110 dma_addr_t dma_addr;
111 unsigned int len;
112 };
113
114 /**
115 * struct efx_special_buffer - DMA buffer entered into buffer table
116 * @buf: Standard &struct efx_buffer
117 * @index: Buffer index within controller;s buffer table
118 * @entries: Number of buffer table entries
119 *
120 * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
121 * Event and descriptor rings are addressed via one or more buffer
122 * table entries (and so can be physically non-contiguous, although we
123 * currently do not take advantage of that). On Falcon and Siena we
124 * have to take care of allocating and initialising the entries
125 * ourselves. On later hardware this is managed by the firmware and
126 * @index and @entries are left as 0.
127 */
128 struct efx_special_buffer {
129 struct efx_buffer buf;
130 unsigned int index;
131 unsigned int entries;
132 };
133
134 /**
135 * struct efx_tx_buffer - buffer state for a TX descriptor
136 * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
137 * freed when descriptor completes
138 * @heap_buf: When @flags & %EFX_TX_BUF_HEAP, the associated heap buffer to be
139 * freed when descriptor completes.
140 * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor.
141 * @dma_addr: DMA address of the fragment.
142 * @flags: Flags for allocation and DMA mapping type
143 * @len: Length of this fragment.
144 * This field is zero when the queue slot is empty.
145 * @unmap_len: Length of this fragment to unmap
146 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
147 * Only valid if @unmap_len != 0.
148 */
149 struct efx_tx_buffer {
150 union {
151 const struct sk_buff *skb;
152 void *heap_buf;
153 };
154 union {
155 efx_qword_t option;
156 dma_addr_t dma_addr;
157 };
158 unsigned short flags;
159 unsigned short len;
160 unsigned short unmap_len;
161 unsigned short dma_offset;
162 };
163 #define EFX_TX_BUF_CONT 1 /* not last descriptor of packet */
164 #define EFX_TX_BUF_SKB 2 /* buffer is last part of skb */
165 #define EFX_TX_BUF_HEAP 4 /* buffer was allocated with kmalloc() */
166 #define EFX_TX_BUF_MAP_SINGLE 8 /* buffer was mapped with dma_map_single() */
167 #define EFX_TX_BUF_OPTION 0x10 /* empty buffer for option descriptor */
168
169 /**
170 * struct efx_tx_queue - An Efx TX queue
171 *
172 * This is a ring buffer of TX fragments.
173 * Since the TX completion path always executes on the same
174 * CPU and the xmit path can operate on different CPUs,
175 * performance is increased by ensuring that the completion
176 * path and the xmit path operate on different cache lines.
177 * This is particularly important if the xmit path is always
178 * executing on one CPU which is different from the completion
179 * path. There is also a cache line for members which are
180 * read but not written on the fast path.
181 *
182 * @efx: The associated Efx NIC
183 * @queue: DMA queue number
184 * @channel: The associated channel
185 * @core_txq: The networking core TX queue structure
186 * @buffer: The software buffer ring
187 * @tsoh_page: Array of pages of TSO header buffers
188 * @txd: The hardware descriptor ring
189 * @ptr_mask: The size of the ring minus 1.
190 * @piobuf: PIO buffer region for this TX queue (shared with its partner).
191 * Size of the region is efx_piobuf_size.
192 * @piobuf_offset: Buffer offset to be specified in PIO descriptors
193 * @initialised: Has hardware queue been initialised?
194 * @read_count: Current read pointer.
195 * This is the number of buffers that have been removed from both rings.
196 * @old_write_count: The value of @write_count when last checked.
197 * This is here for performance reasons. The xmit path will
198 * only get the up-to-date value of @write_count if this
199 * variable indicates that the queue is empty. This is to
200 * avoid cache-line ping-pong between the xmit path and the
201 * completion path.
202 * @merge_events: Number of TX merged completion events
203 * @insert_count: Current insert pointer
204 * This is the number of buffers that have been added to the
205 * software ring.
206 * @write_count: Current write pointer
207 * This is the number of buffers that have been added to the
208 * hardware ring.
209 * @old_read_count: The value of read_count when last checked.
210 * This is here for performance reasons. The xmit path will
211 * only get the up-to-date value of read_count if this
212 * variable indicates that the queue is full. This is to
213 * avoid cache-line ping-pong between the xmit path and the
214 * completion path.
215 * @tso_bursts: Number of times TSO xmit invoked by kernel
216 * @tso_long_headers: Number of packets with headers too long for standard
217 * blocks
218 * @tso_packets: Number of packets via the TSO xmit path
219 * @pushes: Number of times the TX push feature has been used
220 * @pio_packets: Number of times the TX PIO feature has been used
221 * @xmit_more_available: Are any packets waiting to be pushed to the NIC
222 * @empty_read_count: If the completion path has seen the queue as empty
223 * and the transmission path has not yet checked this, the value of
224 * @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
225 */
226 struct efx_tx_queue {
227 /* Members which don't change on the fast path */
228 struct efx_nic *efx ____cacheline_aligned_in_smp;
229 unsigned queue;
230 struct efx_channel *channel;
231 struct netdev_queue *core_txq;
232 struct efx_tx_buffer *buffer;
233 struct efx_buffer *tsoh_page;
234 struct efx_special_buffer txd;
235 unsigned int ptr_mask;
236 void __iomem *piobuf;
237 unsigned int piobuf_offset;
238 bool initialised;
239
240 /* Members used mainly on the completion path */
241 unsigned int read_count ____cacheline_aligned_in_smp;
242 unsigned int old_write_count;
243 unsigned int merge_events;
244
245 /* Members used only on the xmit path */
246 unsigned int insert_count ____cacheline_aligned_in_smp;
247 unsigned int write_count;
248 unsigned int old_read_count;
249 unsigned int tso_bursts;
250 unsigned int tso_long_headers;
251 unsigned int tso_packets;
252 unsigned int pushes;
253 unsigned int pio_packets;
254 bool xmit_more_available;
255 /* Statistics to supplement MAC stats */
256 unsigned long tx_packets;
257
258 /* Members shared between paths and sometimes updated */
259 unsigned int empty_read_count ____cacheline_aligned_in_smp;
260 #define EFX_EMPTY_COUNT_VALID 0x80000000
261 atomic_t flush_outstanding;
262 };
263
264 /**
265 * struct efx_rx_buffer - An Efx RX data buffer
266 * @dma_addr: DMA base address of the buffer
267 * @page: The associated page buffer.
268 * Will be %NULL if the buffer slot is currently free.
269 * @page_offset: If pending: offset in @page of DMA base address.
270 * If completed: offset in @page of Ethernet header.
271 * @len: If pending: length for DMA descriptor.
272 * If completed: received length, excluding hash prefix.
273 * @flags: Flags for buffer and packet state. These are only set on the
274 * first buffer of a scattered packet.
275 */
276 struct efx_rx_buffer {
277 dma_addr_t dma_addr;
278 struct page *page;
279 u16 page_offset;
280 u16 len;
281 u16 flags;
282 };
283 #define EFX_RX_BUF_LAST_IN_PAGE 0x0001
284 #define EFX_RX_PKT_CSUMMED 0x0002
285 #define EFX_RX_PKT_DISCARD 0x0004
286 #define EFX_RX_PKT_TCP 0x0040
287 #define EFX_RX_PKT_PREFIX_LEN 0x0080 /* length is in prefix only */
288
289 /**
290 * struct efx_rx_page_state - Page-based rx buffer state
291 *
292 * Inserted at the start of every page allocated for receive buffers.
293 * Used to facilitate sharing dma mappings between recycled rx buffers
294 * and those passed up to the kernel.
295 *
296 * @dma_addr: The dma address of this page.
297 */
298 struct efx_rx_page_state {
299 dma_addr_t dma_addr;
300
301 unsigned int __pad[0] ____cacheline_aligned;
302 };
303
304 /**
305 * struct efx_rx_queue - An Efx RX queue
306 * @efx: The associated Efx NIC
307 * @core_index: Index of network core RX queue. Will be >= 0 iff this
308 * is associated with a real RX queue.
309 * @buffer: The software buffer ring
310 * @rxd: The hardware descriptor ring
311 * @ptr_mask: The size of the ring minus 1.
312 * @refill_enabled: Enable refill whenever fill level is low
313 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
314 * @rxq_flush_pending.
315 * @added_count: Number of buffers added to the receive queue.
316 * @notified_count: Number of buffers given to NIC (<= @added_count).
317 * @removed_count: Number of buffers removed from the receive queue.
318 * @scatter_n: Used by NIC specific receive code.
319 * @scatter_len: Used by NIC specific receive code.
320 * @page_ring: The ring to store DMA mapped pages for reuse.
321 * @page_add: Counter to calculate the write pointer for the recycle ring.
322 * @page_remove: Counter to calculate the read pointer for the recycle ring.
323 * @page_recycle_count: The number of pages that have been recycled.
324 * @page_recycle_failed: The number of pages that couldn't be recycled because
325 * the kernel still held a reference to them.
326 * @page_recycle_full: The number of pages that were released because the
327 * recycle ring was full.
328 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
329 * @max_fill: RX descriptor maximum fill level (<= ring size)
330 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
331 * (<= @max_fill)
332 * @min_fill: RX descriptor minimum non-zero fill level.
333 * This records the minimum fill level observed when a ring
334 * refill was triggered.
335 * @recycle_count: RX buffer recycle counter.
336 * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
337 */
338 struct efx_rx_queue {
339 struct efx_nic *efx;
340 int core_index;
341 struct efx_rx_buffer *buffer;
342 struct efx_special_buffer rxd;
343 unsigned int ptr_mask;
344 bool refill_enabled;
345 bool flush_pending;
346
347 unsigned int added_count;
348 unsigned int notified_count;
349 unsigned int removed_count;
350 unsigned int scatter_n;
351 unsigned int scatter_len;
352 struct page **page_ring;
353 unsigned int page_add;
354 unsigned int page_remove;
355 unsigned int page_recycle_count;
356 unsigned int page_recycle_failed;
357 unsigned int page_recycle_full;
358 unsigned int page_ptr_mask;
359 unsigned int max_fill;
360 unsigned int fast_fill_trigger;
361 unsigned int min_fill;
362 unsigned int min_overfill;
363 unsigned int recycle_count;
364 struct timer_list slow_fill;
365 unsigned int slow_fill_count;
366 /* Statistics to supplement MAC stats */
367 unsigned long rx_packets;
368 };
369
370 enum efx_sync_events_state {
371 SYNC_EVENTS_DISABLED = 0,
372 SYNC_EVENTS_QUIESCENT,
373 SYNC_EVENTS_REQUESTED,
374 SYNC_EVENTS_VALID,
375 };
376
377 /**
378 * struct efx_channel - An Efx channel
379 *
380 * A channel comprises an event queue, at least one TX queue, at least
381 * one RX queue, and an associated tasklet for processing the event
382 * queue.
383 *
384 * @efx: Associated Efx NIC
385 * @channel: Channel instance number
386 * @type: Channel type definition
387 * @eventq_init: Event queue initialised flag
388 * @enabled: Channel enabled indicator
389 * @irq: IRQ number (MSI and MSI-X only)
390 * @irq_moderation: IRQ moderation value (in hardware ticks)
391 * @napi_dev: Net device used with NAPI
392 * @napi_str: NAPI control structure
393 * @state: state for NAPI vs busy polling
394 * @state_lock: lock protecting @state
395 * @eventq: Event queue buffer
396 * @eventq_mask: Event queue pointer mask
397 * @eventq_read_ptr: Event queue read pointer
398 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
399 * @irq_count: Number of IRQs since last adaptive moderation decision
400 * @irq_mod_score: IRQ moderation score
401 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
402 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
403 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
404 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
405 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
406 * @n_rx_overlength: Count of RX_OVERLENGTH errors
407 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
408 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
409 * lack of descriptors
410 * @n_rx_merge_events: Number of RX merged completion events
411 * @n_rx_merge_packets: Number of RX packets completed by merged events
412 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
413 * __efx_rx_packet(), or zero if there is none
414 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
415 * by __efx_rx_packet(), if @rx_pkt_n_frags != 0
416 * @rx_queue: RX queue for this channel
417 * @tx_queue: TX queues for this channel
418 * @sync_events_state: Current state of sync events on this channel
419 * @sync_timestamp_major: Major part of the last ptp sync event
420 * @sync_timestamp_minor: Minor part of the last ptp sync event
421 */
422 struct efx_channel {
423 struct efx_nic *efx;
424 int channel;
425 const struct efx_channel_type *type;
426 bool eventq_init;
427 bool enabled;
428 int irq;
429 unsigned int irq_moderation;
430 struct net_device *napi_dev;
431 struct napi_struct napi_str;
432 #ifdef CONFIG_NET_RX_BUSY_POLL
433 unsigned int state;
434 spinlock_t state_lock;
435 #define EFX_CHANNEL_STATE_IDLE 0
436 #define EFX_CHANNEL_STATE_NAPI (1 << 0) /* NAPI owns this channel */
437 #define EFX_CHANNEL_STATE_POLL (1 << 1) /* poll owns this channel */
438 #define EFX_CHANNEL_STATE_DISABLED (1 << 2) /* channel is disabled */
439 #define EFX_CHANNEL_STATE_NAPI_YIELD (1 << 3) /* NAPI yielded this channel */
440 #define EFX_CHANNEL_STATE_POLL_YIELD (1 << 4) /* poll yielded this channel */
441 #define EFX_CHANNEL_OWNED \
442 (EFX_CHANNEL_STATE_NAPI | EFX_CHANNEL_STATE_POLL)
443 #define EFX_CHANNEL_LOCKED \
444 (EFX_CHANNEL_OWNED | EFX_CHANNEL_STATE_DISABLED)
445 #define EFX_CHANNEL_USER_PEND \
446 (EFX_CHANNEL_STATE_POLL | EFX_CHANNEL_STATE_POLL_YIELD)
447 #endif /* CONFIG_NET_RX_BUSY_POLL */
448 struct efx_special_buffer eventq;
449 unsigned int eventq_mask;
450 unsigned int eventq_read_ptr;
451 int event_test_cpu;
452
453 unsigned int irq_count;
454 unsigned int irq_mod_score;
455 #ifdef CONFIG_RFS_ACCEL
456 unsigned int rfs_filters_added;
457 #endif
458
459 unsigned n_rx_tobe_disc;
460 unsigned n_rx_ip_hdr_chksum_err;
461 unsigned n_rx_tcp_udp_chksum_err;
462 unsigned n_rx_mcast_mismatch;
463 unsigned n_rx_frm_trunc;
464 unsigned n_rx_overlength;
465 unsigned n_skbuff_leaks;
466 unsigned int n_rx_nodesc_trunc;
467 unsigned int n_rx_merge_events;
468 unsigned int n_rx_merge_packets;
469
470 unsigned int rx_pkt_n_frags;
471 unsigned int rx_pkt_index;
472
473 struct efx_rx_queue rx_queue;
474 struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
475
476 enum efx_sync_events_state sync_events_state;
477 u32 sync_timestamp_major;
478 u32 sync_timestamp_minor;
479 };
480
481 #ifdef CONFIG_NET_RX_BUSY_POLL
efx_channel_init_lock(struct efx_channel * channel)482 static inline void efx_channel_init_lock(struct efx_channel *channel)
483 {
484 spin_lock_init(&channel->state_lock);
485 }
486
487 /* Called from the device poll routine to get ownership of a channel. */
efx_channel_lock_napi(struct efx_channel * channel)488 static inline bool efx_channel_lock_napi(struct efx_channel *channel)
489 {
490 bool rc = true;
491
492 spin_lock_bh(&channel->state_lock);
493 if (channel->state & EFX_CHANNEL_LOCKED) {
494 WARN_ON(channel->state & EFX_CHANNEL_STATE_NAPI);
495 channel->state |= EFX_CHANNEL_STATE_NAPI_YIELD;
496 rc = false;
497 } else {
498 /* we don't care if someone yielded */
499 channel->state = EFX_CHANNEL_STATE_NAPI;
500 }
501 spin_unlock_bh(&channel->state_lock);
502 return rc;
503 }
504
efx_channel_unlock_napi(struct efx_channel * channel)505 static inline void efx_channel_unlock_napi(struct efx_channel *channel)
506 {
507 spin_lock_bh(&channel->state_lock);
508 WARN_ON(channel->state &
509 (EFX_CHANNEL_STATE_POLL | EFX_CHANNEL_STATE_NAPI_YIELD));
510
511 channel->state &= EFX_CHANNEL_STATE_DISABLED;
512 spin_unlock_bh(&channel->state_lock);
513 }
514
515 /* Called from efx_busy_poll(). */
efx_channel_lock_poll(struct efx_channel * channel)516 static inline bool efx_channel_lock_poll(struct efx_channel *channel)
517 {
518 bool rc = true;
519
520 spin_lock_bh(&channel->state_lock);
521 if ((channel->state & EFX_CHANNEL_LOCKED)) {
522 channel->state |= EFX_CHANNEL_STATE_POLL_YIELD;
523 rc = false;
524 } else {
525 /* preserve yield marks */
526 channel->state |= EFX_CHANNEL_STATE_POLL;
527 }
528 spin_unlock_bh(&channel->state_lock);
529 return rc;
530 }
531
532 /* Returns true if NAPI tried to get the channel while it was locked. */
efx_channel_unlock_poll(struct efx_channel * channel)533 static inline void efx_channel_unlock_poll(struct efx_channel *channel)
534 {
535 spin_lock_bh(&channel->state_lock);
536 WARN_ON(channel->state & EFX_CHANNEL_STATE_NAPI);
537
538 /* will reset state to idle, unless channel is disabled */
539 channel->state &= EFX_CHANNEL_STATE_DISABLED;
540 spin_unlock_bh(&channel->state_lock);
541 }
542
543 /* True if a socket is polling, even if it did not get the lock. */
efx_channel_busy_polling(struct efx_channel * channel)544 static inline bool efx_channel_busy_polling(struct efx_channel *channel)
545 {
546 WARN_ON(!(channel->state & EFX_CHANNEL_OWNED));
547 return channel->state & EFX_CHANNEL_USER_PEND;
548 }
549
efx_channel_enable(struct efx_channel * channel)550 static inline void efx_channel_enable(struct efx_channel *channel)
551 {
552 spin_lock_bh(&channel->state_lock);
553 channel->state = EFX_CHANNEL_STATE_IDLE;
554 spin_unlock_bh(&channel->state_lock);
555 }
556
557 /* False if the channel is currently owned. */
efx_channel_disable(struct efx_channel * channel)558 static inline bool efx_channel_disable(struct efx_channel *channel)
559 {
560 bool rc = true;
561
562 spin_lock_bh(&channel->state_lock);
563 if (channel->state & EFX_CHANNEL_OWNED)
564 rc = false;
565 channel->state |= EFX_CHANNEL_STATE_DISABLED;
566 spin_unlock_bh(&channel->state_lock);
567
568 return rc;
569 }
570
571 #else /* CONFIG_NET_RX_BUSY_POLL */
572
efx_channel_init_lock(struct efx_channel * channel)573 static inline void efx_channel_init_lock(struct efx_channel *channel)
574 {
575 }
576
efx_channel_lock_napi(struct efx_channel * channel)577 static inline bool efx_channel_lock_napi(struct efx_channel *channel)
578 {
579 return true;
580 }
581
efx_channel_unlock_napi(struct efx_channel * channel)582 static inline void efx_channel_unlock_napi(struct efx_channel *channel)
583 {
584 }
585
efx_channel_lock_poll(struct efx_channel * channel)586 static inline bool efx_channel_lock_poll(struct efx_channel *channel)
587 {
588 return false;
589 }
590
efx_channel_unlock_poll(struct efx_channel * channel)591 static inline void efx_channel_unlock_poll(struct efx_channel *channel)
592 {
593 }
594
efx_channel_busy_polling(struct efx_channel * channel)595 static inline bool efx_channel_busy_polling(struct efx_channel *channel)
596 {
597 return false;
598 }
599
efx_channel_enable(struct efx_channel * channel)600 static inline void efx_channel_enable(struct efx_channel *channel)
601 {
602 }
603
efx_channel_disable(struct efx_channel * channel)604 static inline bool efx_channel_disable(struct efx_channel *channel)
605 {
606 return true;
607 }
608 #endif /* CONFIG_NET_RX_BUSY_POLL */
609
610 /**
611 * struct efx_msi_context - Context for each MSI
612 * @efx: The associated NIC
613 * @index: Index of the channel/IRQ
614 * @name: Name of the channel/IRQ
615 *
616 * Unlike &struct efx_channel, this is never reallocated and is always
617 * safe for the IRQ handler to access.
618 */
619 struct efx_msi_context {
620 struct efx_nic *efx;
621 unsigned int index;
622 char name[IFNAMSIZ + 6];
623 };
624
625 /**
626 * struct efx_channel_type - distinguishes traffic and extra channels
627 * @handle_no_channel: Handle failure to allocate an extra channel
628 * @pre_probe: Set up extra state prior to initialisation
629 * @post_remove: Tear down extra state after finalisation, if allocated.
630 * May be called on channels that have not been probed.
631 * @get_name: Generate the channel's name (used for its IRQ handler)
632 * @copy: Copy the channel state prior to reallocation. May be %NULL if
633 * reallocation is not supported.
634 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
635 * @keep_eventq: Flag for whether event queue should be kept initialised
636 * while the device is stopped
637 */
638 struct efx_channel_type {
639 void (*handle_no_channel)(struct efx_nic *);
640 int (*pre_probe)(struct efx_channel *);
641 void (*post_remove)(struct efx_channel *);
642 void (*get_name)(struct efx_channel *, char *buf, size_t len);
643 struct efx_channel *(*copy)(const struct efx_channel *);
644 bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
645 bool keep_eventq;
646 };
647
648 enum efx_led_mode {
649 EFX_LED_OFF = 0,
650 EFX_LED_ON = 1,
651 EFX_LED_DEFAULT = 2
652 };
653
654 #define STRING_TABLE_LOOKUP(val, member) \
655 ((val) < member ## _max) ? member ## _names[val] : "(invalid)"
656
657 extern const char *const efx_loopback_mode_names[];
658 extern const unsigned int efx_loopback_mode_max;
659 #define LOOPBACK_MODE(efx) \
660 STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
661
662 extern const char *const efx_reset_type_names[];
663 extern const unsigned int efx_reset_type_max;
664 #define RESET_TYPE(type) \
665 STRING_TABLE_LOOKUP(type, efx_reset_type)
666
667 enum efx_int_mode {
668 /* Be careful if altering to correct macro below */
669 EFX_INT_MODE_MSIX = 0,
670 EFX_INT_MODE_MSI = 1,
671 EFX_INT_MODE_LEGACY = 2,
672 EFX_INT_MODE_MAX /* Insert any new items before this */
673 };
674 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
675
676 enum nic_state {
677 STATE_UNINIT = 0, /* device being probed/removed or is frozen */
678 STATE_READY = 1, /* hardware ready and netdev registered */
679 STATE_DISABLED = 2, /* device disabled due to hardware errors */
680 STATE_RECOVERY = 3, /* device recovering from PCI error */
681 };
682
683 /* Forward declaration */
684 struct efx_nic;
685
686 /* Pseudo bit-mask flow control field */
687 #define EFX_FC_RX FLOW_CTRL_RX
688 #define EFX_FC_TX FLOW_CTRL_TX
689 #define EFX_FC_AUTO 4
690
691 /**
692 * struct efx_link_state - Current state of the link
693 * @up: Link is up
694 * @fd: Link is full-duplex
695 * @fc: Actual flow control flags
696 * @speed: Link speed (Mbps)
697 */
698 struct efx_link_state {
699 bool up;
700 bool fd;
701 u8 fc;
702 unsigned int speed;
703 };
704
efx_link_state_equal(const struct efx_link_state * left,const struct efx_link_state * right)705 static inline bool efx_link_state_equal(const struct efx_link_state *left,
706 const struct efx_link_state *right)
707 {
708 return left->up == right->up && left->fd == right->fd &&
709 left->fc == right->fc && left->speed == right->speed;
710 }
711
712 /**
713 * struct efx_phy_operations - Efx PHY operations table
714 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
715 * efx->loopback_modes.
716 * @init: Initialise PHY
717 * @fini: Shut down PHY
718 * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
719 * @poll: Update @link_state and report whether it changed.
720 * Serialised by the mac_lock.
721 * @get_settings: Get ethtool settings. Serialised by the mac_lock.
722 * @set_settings: Set ethtool settings. Serialised by the mac_lock.
723 * @set_npage_adv: Set abilities advertised in (Extended) Next Page
724 * (only needed where AN bit is set in mmds)
725 * @test_alive: Test that PHY is 'alive' (online)
726 * @test_name: Get the name of a PHY-specific test/result
727 * @run_tests: Run tests and record results as appropriate (offline).
728 * Flags are the ethtool tests flags.
729 */
730 struct efx_phy_operations {
731 int (*probe) (struct efx_nic *efx);
732 int (*init) (struct efx_nic *efx);
733 void (*fini) (struct efx_nic *efx);
734 void (*remove) (struct efx_nic *efx);
735 int (*reconfigure) (struct efx_nic *efx);
736 bool (*poll) (struct efx_nic *efx);
737 void (*get_settings) (struct efx_nic *efx,
738 struct ethtool_cmd *ecmd);
739 int (*set_settings) (struct efx_nic *efx,
740 struct ethtool_cmd *ecmd);
741 void (*set_npage_adv) (struct efx_nic *efx, u32);
742 int (*test_alive) (struct efx_nic *efx);
743 const char *(*test_name) (struct efx_nic *efx, unsigned int index);
744 int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
745 int (*get_module_eeprom) (struct efx_nic *efx,
746 struct ethtool_eeprom *ee,
747 u8 *data);
748 int (*get_module_info) (struct efx_nic *efx,
749 struct ethtool_modinfo *modinfo);
750 };
751
752 /**
753 * enum efx_phy_mode - PHY operating mode flags
754 * @PHY_MODE_NORMAL: on and should pass traffic
755 * @PHY_MODE_TX_DISABLED: on with TX disabled
756 * @PHY_MODE_LOW_POWER: set to low power through MDIO
757 * @PHY_MODE_OFF: switched off through external control
758 * @PHY_MODE_SPECIAL: on but will not pass traffic
759 */
760 enum efx_phy_mode {
761 PHY_MODE_NORMAL = 0,
762 PHY_MODE_TX_DISABLED = 1,
763 PHY_MODE_LOW_POWER = 2,
764 PHY_MODE_OFF = 4,
765 PHY_MODE_SPECIAL = 8,
766 };
767
efx_phy_mode_disabled(enum efx_phy_mode mode)768 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
769 {
770 return !!(mode & ~PHY_MODE_TX_DISABLED);
771 }
772
773 /**
774 * struct efx_hw_stat_desc - Description of a hardware statistic
775 * @name: Name of the statistic as visible through ethtool, or %NULL if
776 * it should not be exposed
777 * @dma_width: Width in bits (0 for non-DMA statistics)
778 * @offset: Offset within stats (ignored for non-DMA statistics)
779 */
780 struct efx_hw_stat_desc {
781 const char *name;
782 u16 dma_width;
783 u16 offset;
784 };
785
786 /* Number of bits used in a multicast filter hash address */
787 #define EFX_MCAST_HASH_BITS 8
788
789 /* Number of (single-bit) entries in a multicast filter hash */
790 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
791
792 /* An Efx multicast filter hash */
793 union efx_multicast_hash {
794 u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
795 efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
796 };
797
798 struct efx_vf;
799 struct vfdi_status;
800
801 /**
802 * struct efx_nic - an Efx NIC
803 * @name: Device name (net device name or bus id before net device registered)
804 * @pci_dev: The PCI device
805 * @node: List node for maintaning primary/secondary function lists
806 * @primary: &struct efx_nic instance for the primary function of this
807 * controller. May be the same structure, and may be %NULL if no
808 * primary function is bound. Serialised by rtnl_lock.
809 * @secondary_list: List of &struct efx_nic instances for the secondary PCI
810 * functions of the controller, if this is for the primary function.
811 * Serialised by rtnl_lock.
812 * @type: Controller type attributes
813 * @legacy_irq: IRQ number
814 * @workqueue: Workqueue for port reconfigures and the HW monitor.
815 * Work items do not hold and must not acquire RTNL.
816 * @workqueue_name: Name of workqueue
817 * @reset_work: Scheduled reset workitem
818 * @membase_phys: Memory BAR value as physical address
819 * @membase: Memory BAR value
820 * @interrupt_mode: Interrupt mode
821 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
822 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
823 * @irq_rx_moderation: IRQ moderation time for RX event queues
824 * @msg_enable: Log message enable flags
825 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
826 * @reset_pending: Bitmask for pending resets
827 * @tx_queue: TX DMA queues
828 * @rx_queue: RX DMA queues
829 * @channel: Channels
830 * @msi_context: Context for each MSI
831 * @extra_channel_types: Types of extra (non-traffic) channels that
832 * should be allocated for this NIC
833 * @rxq_entries: Size of receive queues requested by user.
834 * @txq_entries: Size of transmit queues requested by user.
835 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
836 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
837 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
838 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
839 * @sram_lim_qw: Qword address limit of SRAM
840 * @next_buffer_table: First available buffer table id
841 * @n_channels: Number of channels in use
842 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
843 * @n_tx_channels: Number of channels used for TX
844 * @rx_ip_align: RX DMA address offset to have IP header aligned in
845 * in accordance with NET_IP_ALIGN
846 * @rx_dma_len: Current maximum RX DMA length
847 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
848 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
849 * for use in sk_buff::truesize
850 * @rx_prefix_size: Size of RX prefix before packet data
851 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
852 * (valid only if @rx_prefix_size != 0; always negative)
853 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
854 * (valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
855 * @rx_packet_ts_offset: Offset of timestamp from start of packet data
856 * (valid only if channel->sync_timestamps_enabled; always negative)
857 * @rx_hash_key: Toeplitz hash key for RSS
858 * @rx_indir_table: Indirection table for RSS
859 * @rx_scatter: Scatter mode enabled for receives
860 * @int_error_count: Number of internal errors seen recently
861 * @int_error_expire: Time at which error count will be expired
862 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
863 * acknowledge but do nothing else.
864 * @irq_status: Interrupt status buffer
865 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
866 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
867 * @selftest_work: Work item for asynchronous self-test
868 * @mtd_list: List of MTDs attached to the NIC
869 * @nic_data: Hardware dependent state
870 * @mcdi: Management-Controller-to-Driver Interface state
871 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
872 * efx_monitor() and efx_reconfigure_port()
873 * @port_enabled: Port enabled indicator.
874 * Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
875 * efx_mac_work() with kernel interfaces. Safe to read under any
876 * one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
877 * be held to modify it.
878 * @port_initialized: Port initialized?
879 * @net_dev: Operating system network device. Consider holding the rtnl lock
880 * @stats_buffer: DMA buffer for statistics
881 * @phy_type: PHY type
882 * @phy_op: PHY interface
883 * @phy_data: PHY private data (including PHY-specific stats)
884 * @mdio: PHY MDIO interface
885 * @mdio_bus: PHY MDIO bus ID (only used by Siena)
886 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
887 * @link_advertising: Autonegotiation advertising flags
888 * @link_state: Current state of the link
889 * @n_link_state_changes: Number of times the link has changed state
890 * @unicast_filter: Flag for Falcon-arch simple unicast filter.
891 * Protected by @mac_lock.
892 * @multicast_hash: Multicast hash table for Falcon-arch.
893 * Protected by @mac_lock.
894 * @wanted_fc: Wanted flow control flags
895 * @fc_disable: When non-zero flow control is disabled. Typically used to
896 * ensure that network back pressure doesn't delay dma queue flushes.
897 * Serialised by the rtnl lock.
898 * @mac_work: Work item for changing MAC promiscuity and multicast hash
899 * @loopback_mode: Loopback status
900 * @loopback_modes: Supported loopback mode bitmask
901 * @loopback_selftest: Offline self-test private state
902 * @filter_lock: Filter table lock
903 * @filter_state: Architecture-dependent filter table state
904 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
905 * indexed by filter ID
906 * @rps_expire_index: Next index to check for expiry in @rps_flow_id
907 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
908 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
909 * Decremented when the efx_flush_rx_queue() is called.
910 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
911 * completed (either success or failure). Not used when MCDI is used to
912 * flush receive queues.
913 * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
914 * @vf: Array of &struct efx_vf objects.
915 * @vf_count: Number of VFs intended to be enabled.
916 * @vf_init_count: Number of VFs that have been fully initialised.
917 * @vi_scale: log2 number of vnics per VF.
918 * @ptp_data: PTP state data
919 * @vpd_sn: Serial number read from VPD
920 * @monitor_work: Hardware monitor workitem
921 * @biu_lock: BIU (bus interface unit) lock
922 * @last_irq_cpu: Last CPU to handle a possible test interrupt. This
923 * field is used by efx_test_interrupts() to verify that an
924 * interrupt has occurred.
925 * @stats_lock: Statistics update lock. Must be held when calling
926 * efx_nic_type::{update,start,stop}_stats.
927 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
928 *
929 * This is stored in the private area of the &struct net_device.
930 */
931 struct efx_nic {
932 /* The following fields should be written very rarely */
933
934 char name[IFNAMSIZ];
935 struct list_head node;
936 struct efx_nic *primary;
937 struct list_head secondary_list;
938 struct pci_dev *pci_dev;
939 unsigned int port_num;
940 const struct efx_nic_type *type;
941 int legacy_irq;
942 bool eeh_disabled_legacy_irq;
943 struct workqueue_struct *workqueue;
944 char workqueue_name[16];
945 struct work_struct reset_work;
946 resource_size_t membase_phys;
947 void __iomem *membase;
948
949 enum efx_int_mode interrupt_mode;
950 unsigned int timer_quantum_ns;
951 bool irq_rx_adaptive;
952 unsigned int irq_rx_moderation;
953 u32 msg_enable;
954
955 enum nic_state state;
956 unsigned long reset_pending;
957
958 struct efx_channel *channel[EFX_MAX_CHANNELS];
959 struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
960 const struct efx_channel_type *
961 extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
962
963 unsigned rxq_entries;
964 unsigned txq_entries;
965 unsigned int txq_stop_thresh;
966 unsigned int txq_wake_thresh;
967
968 unsigned tx_dc_base;
969 unsigned rx_dc_base;
970 unsigned sram_lim_qw;
971 unsigned next_buffer_table;
972
973 unsigned int max_channels;
974 unsigned n_channels;
975 unsigned n_rx_channels;
976 unsigned rss_spread;
977 unsigned tx_channel_offset;
978 unsigned n_tx_channels;
979 unsigned int rx_ip_align;
980 unsigned int rx_dma_len;
981 unsigned int rx_buffer_order;
982 unsigned int rx_buffer_truesize;
983 unsigned int rx_page_buf_step;
984 unsigned int rx_bufs_per_page;
985 unsigned int rx_pages_per_batch;
986 unsigned int rx_prefix_size;
987 int rx_packet_hash_offset;
988 int rx_packet_len_offset;
989 int rx_packet_ts_offset;
990 u8 rx_hash_key[40];
991 u32 rx_indir_table[128];
992 bool rx_scatter;
993
994 unsigned int_error_count;
995 unsigned long int_error_expire;
996
997 bool irq_soft_enabled;
998 struct efx_buffer irq_status;
999 unsigned irq_zero_count;
1000 unsigned irq_level;
1001 struct delayed_work selftest_work;
1002
1003 #ifdef CONFIG_SFC_MTD
1004 struct list_head mtd_list;
1005 #endif
1006
1007 void *nic_data;
1008 struct efx_mcdi_data *mcdi;
1009
1010 struct mutex mac_lock;
1011 struct work_struct mac_work;
1012 bool port_enabled;
1013
1014 bool mc_bist_for_other_fn;
1015 bool port_initialized;
1016 struct net_device *net_dev;
1017
1018 struct efx_buffer stats_buffer;
1019 u64 rx_nodesc_drops_total;
1020 u64 rx_nodesc_drops_while_down;
1021 bool rx_nodesc_drops_prev_state;
1022
1023 unsigned int phy_type;
1024 const struct efx_phy_operations *phy_op;
1025 void *phy_data;
1026 struct mdio_if_info mdio;
1027 unsigned int mdio_bus;
1028 enum efx_phy_mode phy_mode;
1029
1030 u32 link_advertising;
1031 struct efx_link_state link_state;
1032 unsigned int n_link_state_changes;
1033
1034 bool unicast_filter;
1035 union efx_multicast_hash multicast_hash;
1036 u8 wanted_fc;
1037 unsigned fc_disable;
1038
1039 atomic_t rx_reset;
1040 enum efx_loopback_mode loopback_mode;
1041 u64 loopback_modes;
1042
1043 void *loopback_selftest;
1044
1045 spinlock_t filter_lock;
1046 void *filter_state;
1047 #ifdef CONFIG_RFS_ACCEL
1048 u32 *rps_flow_id;
1049 unsigned int rps_expire_index;
1050 #endif
1051
1052 atomic_t active_queues;
1053 atomic_t rxq_flush_pending;
1054 atomic_t rxq_flush_outstanding;
1055 wait_queue_head_t flush_wq;
1056
1057 #ifdef CONFIG_SFC_SRIOV
1058 struct efx_vf *vf;
1059 unsigned vf_count;
1060 unsigned vf_init_count;
1061 unsigned vi_scale;
1062 #endif
1063
1064 struct efx_ptp_data *ptp_data;
1065
1066 char *vpd_sn;
1067
1068 /* The following fields may be written more often */
1069
1070 struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1071 spinlock_t biu_lock;
1072 int last_irq_cpu;
1073 spinlock_t stats_lock;
1074 atomic_t n_rx_noskb_drops;
1075 };
1076
efx_dev_registered(struct efx_nic * efx)1077 static inline int efx_dev_registered(struct efx_nic *efx)
1078 {
1079 return efx->net_dev->reg_state == NETREG_REGISTERED;
1080 }
1081
efx_port_num(struct efx_nic * efx)1082 static inline unsigned int efx_port_num(struct efx_nic *efx)
1083 {
1084 return efx->port_num;
1085 }
1086
1087 struct efx_mtd_partition {
1088 struct list_head node;
1089 struct mtd_info mtd;
1090 const char *dev_type_name;
1091 const char *type_name;
1092 char name[IFNAMSIZ + 20];
1093 };
1094
1095 /**
1096 * struct efx_nic_type - Efx device type definition
1097 * @mem_map_size: Get memory BAR mapped size
1098 * @probe: Probe the controller
1099 * @remove: Free resources allocated by probe()
1100 * @init: Initialise the controller
1101 * @dimension_resources: Dimension controller resources (buffer table,
1102 * and VIs once the available interrupt resources are clear)
1103 * @fini: Shut down the controller
1104 * @monitor: Periodic function for polling link state and hardware monitor
1105 * @map_reset_reason: Map ethtool reset reason to a reset method
1106 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1107 * @reset: Reset the controller hardware and possibly the PHY. This will
1108 * be called while the controller is uninitialised.
1109 * @probe_port: Probe the MAC and PHY
1110 * @remove_port: Free resources allocated by probe_port()
1111 * @handle_global_event: Handle a "global" event (may be %NULL)
1112 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1113 * @prepare_flush: Prepare the hardware for flushing the DMA queues
1114 * (for Falcon architecture)
1115 * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1116 * architecture)
1117 * @prepare_flr: Prepare for an FLR
1118 * @finish_flr: Clean up after an FLR
1119 * @describe_stats: Describe statistics for ethtool
1120 * @update_stats: Update statistics not provided by event handling.
1121 * Either argument may be %NULL.
1122 * @start_stats: Start the regular fetching of statistics
1123 * @pull_stats: Pull stats from the NIC and wait until they arrive.
1124 * @stop_stats: Stop the regular fetching of statistics
1125 * @set_id_led: Set state of identifying LED or revert to automatic function
1126 * @push_irq_moderation: Apply interrupt moderation value
1127 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1128 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1129 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1130 * to the hardware. Serialised by the mac_lock.
1131 * @check_mac_fault: Check MAC fault state. True if fault present.
1132 * @get_wol: Get WoL configuration from driver state
1133 * @set_wol: Push WoL configuration to the NIC
1134 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1135 * @test_chip: Test registers. May use efx_farch_test_registers(), and is
1136 * expected to reset the NIC.
1137 * @test_nvram: Test validity of NVRAM contents
1138 * @mcdi_request: Send an MCDI request with the given header and SDU.
1139 * The SDU length may be any value from 0 up to the protocol-
1140 * defined maximum, but its buffer will be padded to a multiple
1141 * of 4 bytes.
1142 * @mcdi_poll_response: Test whether an MCDI response is available.
1143 * @mcdi_read_response: Read the MCDI response PDU. The offset will
1144 * be a multiple of 4. The length may not be, but the buffer
1145 * will be padded so it is safe to round up.
1146 * @mcdi_poll_reboot: Test whether the MCDI has rebooted. If so,
1147 * return an appropriate error code for aborting any current
1148 * request; otherwise return 0.
1149 * @irq_enable_master: Enable IRQs on the NIC. Each event queue must
1150 * be separately enabled after this.
1151 * @irq_test_generate: Generate a test IRQ
1152 * @irq_disable_non_ev: Disable non-event IRQs on the NIC. Each event
1153 * queue must be separately disabled before this.
1154 * @irq_handle_msi: Handle MSI for a channel. The @dev_id argument is
1155 * a pointer to the &struct efx_msi_context for the channel.
1156 * @irq_handle_legacy: Handle legacy interrupt. The @dev_id argument
1157 * is a pointer to the &struct efx_nic.
1158 * @tx_probe: Allocate resources for TX queue
1159 * @tx_init: Initialise TX queue on the NIC
1160 * @tx_remove: Free resources for TX queue
1161 * @tx_write: Write TX descriptors and doorbell
1162 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1163 * @rx_probe: Allocate resources for RX queue
1164 * @rx_init: Initialise RX queue on the NIC
1165 * @rx_remove: Free resources for RX queue
1166 * @rx_write: Write RX descriptors and doorbell
1167 * @rx_defer_refill: Generate a refill reminder event
1168 * @ev_probe: Allocate resources for event queue
1169 * @ev_init: Initialise event queue on the NIC
1170 * @ev_fini: Deinitialise event queue on the NIC
1171 * @ev_remove: Free resources for event queue
1172 * @ev_process: Process events for a queue, up to the given NAPI quota
1173 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1174 * @ev_test_generate: Generate a test event
1175 * @filter_table_probe: Probe filter capabilities and set up filter software state
1176 * @filter_table_restore: Restore filters removed from hardware
1177 * @filter_table_remove: Remove filters from hardware and tear down software state
1178 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1179 * @filter_insert: add or replace a filter
1180 * @filter_remove_safe: remove a filter by ID, carefully
1181 * @filter_get_safe: retrieve a filter by ID, carefully
1182 * @filter_clear_rx: Remove all RX filters whose priority is less than or
1183 * equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1184 * @filter_count_rx_used: Get the number of filters in use at a given priority
1185 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1186 * @filter_get_rx_ids: Get list of RX filters at a given priority
1187 * @filter_rfs_insert: Add or replace a filter for RFS. This must be
1188 * atomic. The hardware change may be asynchronous but should
1189 * not be delayed for long. It may fail if this can't be done
1190 * atomically.
1191 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1192 * This must check whether the specified table entry is used by RFS
1193 * and that rps_may_expire_flow() returns true for it.
1194 * @mtd_probe: Probe and add MTD partitions associated with this net device,
1195 * using efx_mtd_add()
1196 * @mtd_rename: Set an MTD partition name using the net device name
1197 * @mtd_read: Read from an MTD partition
1198 * @mtd_erase: Erase part of an MTD partition
1199 * @mtd_write: Write to an MTD partition
1200 * @mtd_sync: Wait for write-back to complete on MTD partition. This
1201 * also notifies the driver that a writer has finished using this
1202 * partition.
1203 * @ptp_write_host_time: Send host time to MC as part of sync protocol
1204 * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1205 * timestamping, possibly only temporarily for the purposes of a reset.
1206 * @ptp_set_ts_config: Set hardware timestamp configuration. The flags
1207 * and tx_type will already have been validated but this operation
1208 * must validate and update rx_filter.
1209 * @revision: Hardware architecture revision
1210 * @txd_ptr_tbl_base: TX descriptor ring base address
1211 * @rxd_ptr_tbl_base: RX descriptor ring base address
1212 * @buf_tbl_base: Buffer table base address
1213 * @evq_ptr_tbl_base: Event queue pointer table base address
1214 * @evq_rptr_tbl_base: Event queue read-pointer table base address
1215 * @max_dma_mask: Maximum possible DMA mask
1216 * @rx_prefix_size: Size of RX prefix before packet data
1217 * @rx_hash_offset: Offset of RX flow hash within prefix
1218 * @rx_ts_offset: Offset of timestamp within prefix
1219 * @rx_buffer_padding: Size of padding at end of RX packet
1220 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1221 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1222 * @max_interrupt_mode: Highest capability interrupt mode supported
1223 * from &enum efx_init_mode.
1224 * @timer_period_max: Maximum period of interrupt timer (in ticks)
1225 * @offload_features: net_device feature flags for protocol offload
1226 * features implemented in hardware
1227 * @mcdi_max_ver: Maximum MCDI version supported
1228 * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1229 */
1230 struct efx_nic_type {
1231 unsigned int (*mem_map_size)(struct efx_nic *efx);
1232 int (*probe)(struct efx_nic *efx);
1233 void (*remove)(struct efx_nic *efx);
1234 int (*init)(struct efx_nic *efx);
1235 int (*dimension_resources)(struct efx_nic *efx);
1236 void (*fini)(struct efx_nic *efx);
1237 void (*monitor)(struct efx_nic *efx);
1238 enum reset_type (*map_reset_reason)(enum reset_type reason);
1239 int (*map_reset_flags)(u32 *flags);
1240 int (*reset)(struct efx_nic *efx, enum reset_type method);
1241 int (*probe_port)(struct efx_nic *efx);
1242 void (*remove_port)(struct efx_nic *efx);
1243 bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1244 int (*fini_dmaq)(struct efx_nic *efx);
1245 void (*prepare_flush)(struct efx_nic *efx);
1246 void (*finish_flush)(struct efx_nic *efx);
1247 void (*prepare_flr)(struct efx_nic *efx);
1248 void (*finish_flr)(struct efx_nic *efx);
1249 size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1250 size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1251 struct rtnl_link_stats64 *core_stats);
1252 void (*start_stats)(struct efx_nic *efx);
1253 void (*pull_stats)(struct efx_nic *efx);
1254 void (*stop_stats)(struct efx_nic *efx);
1255 void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
1256 void (*push_irq_moderation)(struct efx_channel *channel);
1257 int (*reconfigure_port)(struct efx_nic *efx);
1258 void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1259 int (*reconfigure_mac)(struct efx_nic *efx);
1260 bool (*check_mac_fault)(struct efx_nic *efx);
1261 void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1262 int (*set_wol)(struct efx_nic *efx, u32 type);
1263 void (*resume_wol)(struct efx_nic *efx);
1264 int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1265 int (*test_nvram)(struct efx_nic *efx);
1266 void (*mcdi_request)(struct efx_nic *efx,
1267 const efx_dword_t *hdr, size_t hdr_len,
1268 const efx_dword_t *sdu, size_t sdu_len);
1269 bool (*mcdi_poll_response)(struct efx_nic *efx);
1270 void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1271 size_t pdu_offset, size_t pdu_len);
1272 int (*mcdi_poll_reboot)(struct efx_nic *efx);
1273 void (*irq_enable_master)(struct efx_nic *efx);
1274 void (*irq_test_generate)(struct efx_nic *efx);
1275 void (*irq_disable_non_ev)(struct efx_nic *efx);
1276 irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1277 irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1278 int (*tx_probe)(struct efx_tx_queue *tx_queue);
1279 void (*tx_init)(struct efx_tx_queue *tx_queue);
1280 void (*tx_remove)(struct efx_tx_queue *tx_queue);
1281 void (*tx_write)(struct efx_tx_queue *tx_queue);
1282 void (*rx_push_rss_config)(struct efx_nic *efx);
1283 int (*rx_probe)(struct efx_rx_queue *rx_queue);
1284 void (*rx_init)(struct efx_rx_queue *rx_queue);
1285 void (*rx_remove)(struct efx_rx_queue *rx_queue);
1286 void (*rx_write)(struct efx_rx_queue *rx_queue);
1287 void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1288 int (*ev_probe)(struct efx_channel *channel);
1289 int (*ev_init)(struct efx_channel *channel);
1290 void (*ev_fini)(struct efx_channel *channel);
1291 void (*ev_remove)(struct efx_channel *channel);
1292 int (*ev_process)(struct efx_channel *channel, int quota);
1293 void (*ev_read_ack)(struct efx_channel *channel);
1294 void (*ev_test_generate)(struct efx_channel *channel);
1295 int (*filter_table_probe)(struct efx_nic *efx);
1296 void (*filter_table_restore)(struct efx_nic *efx);
1297 void (*filter_table_remove)(struct efx_nic *efx);
1298 void (*filter_update_rx_scatter)(struct efx_nic *efx);
1299 s32 (*filter_insert)(struct efx_nic *efx,
1300 struct efx_filter_spec *spec, bool replace);
1301 int (*filter_remove_safe)(struct efx_nic *efx,
1302 enum efx_filter_priority priority,
1303 u32 filter_id);
1304 int (*filter_get_safe)(struct efx_nic *efx,
1305 enum efx_filter_priority priority,
1306 u32 filter_id, struct efx_filter_spec *);
1307 int (*filter_clear_rx)(struct efx_nic *efx,
1308 enum efx_filter_priority priority);
1309 u32 (*filter_count_rx_used)(struct efx_nic *efx,
1310 enum efx_filter_priority priority);
1311 u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1312 s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1313 enum efx_filter_priority priority,
1314 u32 *buf, u32 size);
1315 #ifdef CONFIG_RFS_ACCEL
1316 s32 (*filter_rfs_insert)(struct efx_nic *efx,
1317 struct efx_filter_spec *spec);
1318 bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1319 unsigned int index);
1320 #endif
1321 #ifdef CONFIG_SFC_MTD
1322 int (*mtd_probe)(struct efx_nic *efx);
1323 void (*mtd_rename)(struct efx_mtd_partition *part);
1324 int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1325 size_t *retlen, u8 *buffer);
1326 int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1327 int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1328 size_t *retlen, const u8 *buffer);
1329 int (*mtd_sync)(struct mtd_info *mtd);
1330 #endif
1331 void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1332 int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1333 int (*ptp_set_ts_config)(struct efx_nic *efx,
1334 struct hwtstamp_config *init);
1335 int (*sriov_init)(struct efx_nic *efx);
1336 void (*sriov_fini)(struct efx_nic *efx);
1337 void (*sriov_mac_address_changed)(struct efx_nic *efx);
1338 bool (*sriov_wanted)(struct efx_nic *efx);
1339 void (*sriov_reset)(struct efx_nic *efx);
1340
1341 int revision;
1342 unsigned int txd_ptr_tbl_base;
1343 unsigned int rxd_ptr_tbl_base;
1344 unsigned int buf_tbl_base;
1345 unsigned int evq_ptr_tbl_base;
1346 unsigned int evq_rptr_tbl_base;
1347 u64 max_dma_mask;
1348 unsigned int rx_prefix_size;
1349 unsigned int rx_hash_offset;
1350 unsigned int rx_ts_offset;
1351 unsigned int rx_buffer_padding;
1352 bool can_rx_scatter;
1353 bool always_rx_scatter;
1354 unsigned int max_interrupt_mode;
1355 unsigned int timer_period_max;
1356 netdev_features_t offload_features;
1357 int mcdi_max_ver;
1358 unsigned int max_rx_ip_filters;
1359 u32 hwtstamp_filters;
1360 };
1361
1362 /**************************************************************************
1363 *
1364 * Prototypes and inline functions
1365 *
1366 *************************************************************************/
1367
1368 static inline struct efx_channel *
efx_get_channel(struct efx_nic * efx,unsigned index)1369 efx_get_channel(struct efx_nic *efx, unsigned index)
1370 {
1371 EFX_BUG_ON_PARANOID(index >= efx->n_channels);
1372 return efx->channel[index];
1373 }
1374
1375 /* Iterate over all used channels */
1376 #define efx_for_each_channel(_channel, _efx) \
1377 for (_channel = (_efx)->channel[0]; \
1378 _channel; \
1379 _channel = (_channel->channel + 1 < (_efx)->n_channels) ? \
1380 (_efx)->channel[_channel->channel + 1] : NULL)
1381
1382 /* Iterate over all used channels in reverse */
1383 #define efx_for_each_channel_rev(_channel, _efx) \
1384 for (_channel = (_efx)->channel[(_efx)->n_channels - 1]; \
1385 _channel; \
1386 _channel = _channel->channel ? \
1387 (_efx)->channel[_channel->channel - 1] : NULL)
1388
1389 static inline struct efx_tx_queue *
efx_get_tx_queue(struct efx_nic * efx,unsigned index,unsigned type)1390 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1391 {
1392 EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
1393 type >= EFX_TXQ_TYPES);
1394 return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1395 }
1396
efx_channel_has_tx_queues(struct efx_channel * channel)1397 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1398 {
1399 return channel->channel - channel->efx->tx_channel_offset <
1400 channel->efx->n_tx_channels;
1401 }
1402
1403 static inline struct efx_tx_queue *
efx_channel_get_tx_queue(struct efx_channel * channel,unsigned type)1404 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1405 {
1406 EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) ||
1407 type >= EFX_TXQ_TYPES);
1408 return &channel->tx_queue[type];
1409 }
1410
efx_tx_queue_used(struct efx_tx_queue * tx_queue)1411 static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
1412 {
1413 return !(tx_queue->efx->net_dev->num_tc < 2 &&
1414 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
1415 }
1416
1417 /* Iterate over all TX queues belonging to a channel */
1418 #define efx_for_each_channel_tx_queue(_tx_queue, _channel) \
1419 if (!efx_channel_has_tx_queues(_channel)) \
1420 ; \
1421 else \
1422 for (_tx_queue = (_channel)->tx_queue; \
1423 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1424 efx_tx_queue_used(_tx_queue); \
1425 _tx_queue++)
1426
1427 /* Iterate over all possible TX queues belonging to a channel */
1428 #define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel) \
1429 if (!efx_channel_has_tx_queues(_channel)) \
1430 ; \
1431 else \
1432 for (_tx_queue = (_channel)->tx_queue; \
1433 _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES; \
1434 _tx_queue++)
1435
efx_channel_has_rx_queue(struct efx_channel * channel)1436 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1437 {
1438 return channel->rx_queue.core_index >= 0;
1439 }
1440
1441 static inline struct efx_rx_queue *
efx_channel_get_rx_queue(struct efx_channel * channel)1442 efx_channel_get_rx_queue(struct efx_channel *channel)
1443 {
1444 EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel));
1445 return &channel->rx_queue;
1446 }
1447
1448 /* Iterate over all RX queues belonging to a channel */
1449 #define efx_for_each_channel_rx_queue(_rx_queue, _channel) \
1450 if (!efx_channel_has_rx_queue(_channel)) \
1451 ; \
1452 else \
1453 for (_rx_queue = &(_channel)->rx_queue; \
1454 _rx_queue; \
1455 _rx_queue = NULL)
1456
1457 static inline struct efx_channel *
efx_rx_queue_channel(struct efx_rx_queue * rx_queue)1458 efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1459 {
1460 return container_of(rx_queue, struct efx_channel, rx_queue);
1461 }
1462
efx_rx_queue_index(struct efx_rx_queue * rx_queue)1463 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1464 {
1465 return efx_rx_queue_channel(rx_queue)->channel;
1466 }
1467
1468 /* Returns a pointer to the specified receive buffer in the RX
1469 * descriptor queue.
1470 */
efx_rx_buffer(struct efx_rx_queue * rx_queue,unsigned int index)1471 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1472 unsigned int index)
1473 {
1474 return &rx_queue->buffer[index];
1475 }
1476
1477 /**
1478 * EFX_MAX_FRAME_LEN - calculate maximum frame length
1479 *
1480 * This calculates the maximum frame length that will be used for a
1481 * given MTU. The frame length will be equal to the MTU plus a
1482 * constant amount of header space and padding. This is the quantity
1483 * that the net driver will program into the MAC as the maximum frame
1484 * length.
1485 *
1486 * The 10G MAC requires 8-byte alignment on the frame
1487 * length, so we round up to the nearest 8.
1488 *
1489 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1490 * XGMII cycle). If the frame length reaches the maximum value in the
1491 * same cycle, the XMAC can miss the IPG altogether. We work around
1492 * this by adding a further 16 bytes.
1493 */
1494 #define EFX_MAX_FRAME_LEN(mtu) \
1495 ((((mtu) + ETH_HLEN + VLAN_HLEN + 4/* FCS */ + 7) & ~7) + 16)
1496
efx_xmit_with_hwtstamp(struct sk_buff * skb)1497 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1498 {
1499 return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1500 }
efx_xmit_hwtstamp_pending(struct sk_buff * skb)1501 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1502 {
1503 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1504 }
1505
1506 #endif /* EFX_NET_DRIVER_H */
1507