1 /*
2  * Copyright 2012 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14 
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/moduleparam.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>      /* printk() */
20 #include <linux/slab.h>        /* kmalloc() */
21 #include <linux/errno.h>       /* error codes */
22 #include <linux/types.h>       /* size_t */
23 #include <linux/interrupt.h>
24 #include <linux/in.h>
25 #include <linux/irq.h>
26 #include <linux/netdevice.h>   /* struct device, and other headers */
27 #include <linux/etherdevice.h> /* eth_type_trans */
28 #include <linux/skbuff.h>
29 #include <linux/ioctl.h>
30 #include <linux/cdev.h>
31 #include <linux/hugetlb.h>
32 #include <linux/in6.h>
33 #include <linux/timer.h>
34 #include <linux/hrtimer.h>
35 #include <linux/ktime.h>
36 #include <linux/io.h>
37 #include <linux/ctype.h>
38 #include <linux/ip.h>
39 #include <linux/ipv6.h>
40 #include <linux/tcp.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/ptp_clock_kernel.h>
43 #include <linux/tick.h>
44 
45 #include <asm/checksum.h>
46 #include <asm/homecache.h>
47 #include <gxio/mpipe.h>
48 #include <arch/sim.h>
49 
50 /* Default transmit lockup timeout period, in jiffies. */
51 #define TILE_NET_TIMEOUT (5 * HZ)
52 
53 /* The maximum number of distinct channels (idesc.channel is 5 bits). */
54 #define TILE_NET_CHANNELS 32
55 
56 /* Maximum number of idescs to handle per "poll". */
57 #define TILE_NET_BATCH 128
58 
59 /* Maximum number of packets to handle per "poll". */
60 #define TILE_NET_WEIGHT 64
61 
62 /* Number of entries in each iqueue. */
63 #define IQUEUE_ENTRIES 512
64 
65 /* Number of entries in each equeue. */
66 #define EQUEUE_ENTRIES 2048
67 
68 /* Total header bytes per equeue slot.  Must be big enough for 2 bytes
69  * of NET_IP_ALIGN alignment, plus 14 bytes (?) of L2 header, plus up to
70  * 60 bytes of actual TCP header.  We round up to align to cache lines.
71  */
72 #define HEADER_BYTES 128
73 
74 /* Maximum completions per cpu per device (must be a power of two).
75  * ISSUE: What is the right number here?  If this is too small, then
76  * egress might block waiting for free space in a completions array.
77  * ISSUE: At the least, allocate these only for initialized echannels.
78  */
79 #define TILE_NET_MAX_COMPS 64
80 
81 #define MAX_FRAGS (MAX_SKB_FRAGS + 1)
82 
83 /* The "kinds" of buffer stacks (small/large/jumbo). */
84 #define MAX_KINDS 3
85 
86 /* Size of completions data to allocate.
87  * ISSUE: Probably more than needed since we don't use all the channels.
88  */
89 #define COMPS_SIZE (TILE_NET_CHANNELS * sizeof(struct tile_net_comps))
90 
91 /* Size of NotifRing data to allocate. */
92 #define NOTIF_RING_SIZE (IQUEUE_ENTRIES * sizeof(gxio_mpipe_idesc_t))
93 
94 /* Timeout to wake the per-device TX timer after we stop the queue.
95  * We don't want the timeout too short (adds overhead, and might end
96  * up causing stop/wake/stop/wake cycles) or too long (affects performance).
97  * For the 10 Gb NIC, 30 usec means roughly 30+ 1500-byte packets.
98  */
99 #define TX_TIMER_DELAY_USEC 30
100 
101 /* Timeout to wake the per-cpu egress timer to free completions. */
102 #define EGRESS_TIMER_DELAY_USEC 1000
103 
104 MODULE_AUTHOR("Tilera Corporation");
105 MODULE_LICENSE("GPL");
106 
107 /* A "packet fragment" (a chunk of memory). */
108 struct frag {
109 	void *buf;
110 	size_t length;
111 };
112 
113 /* A single completion. */
114 struct tile_net_comp {
115 	/* The "complete_count" when the completion will be complete. */
116 	s64 when;
117 	/* The buffer to be freed when the completion is complete. */
118 	struct sk_buff *skb;
119 };
120 
121 /* The completions for a given cpu and echannel. */
122 struct tile_net_comps {
123 	/* The completions. */
124 	struct tile_net_comp comp_queue[TILE_NET_MAX_COMPS];
125 	/* The number of completions used. */
126 	unsigned long comp_next;
127 	/* The number of completions freed. */
128 	unsigned long comp_last;
129 };
130 
131 /* The transmit wake timer for a given cpu and echannel. */
132 struct tile_net_tx_wake {
133 	int tx_queue_idx;
134 	struct hrtimer timer;
135 	struct net_device *dev;
136 };
137 
138 /* Info for a specific cpu. */
139 struct tile_net_info {
140 	/* Our cpu. */
141 	int my_cpu;
142 	/* A timer for handling egress completions. */
143 	struct hrtimer egress_timer;
144 	/* True if "egress_timer" is scheduled. */
145 	bool egress_timer_scheduled;
146 	struct info_mpipe {
147 		/* Packet queue. */
148 		gxio_mpipe_iqueue_t iqueue;
149 		/* The NAPI struct. */
150 		struct napi_struct napi;
151 		/* Number of buffers (by kind) which must still be provided. */
152 		unsigned int num_needed_buffers[MAX_KINDS];
153 		/* instance id. */
154 		int instance;
155 		/* True if iqueue is valid. */
156 		bool has_iqueue;
157 		/* NAPI flags. */
158 		bool napi_added;
159 		bool napi_enabled;
160 		/* Comps for each egress channel. */
161 		struct tile_net_comps *comps_for_echannel[TILE_NET_CHANNELS];
162 		/* Transmit wake timer for each egress channel. */
163 		struct tile_net_tx_wake tx_wake[TILE_NET_CHANNELS];
164 	} mpipe[NR_MPIPE_MAX];
165 };
166 
167 /* Info for egress on a particular egress channel. */
168 struct tile_net_egress {
169 	/* The "equeue". */
170 	gxio_mpipe_equeue_t *equeue;
171 	/* The headers for TSO. */
172 	unsigned char *headers;
173 };
174 
175 /* Info for a specific device. */
176 struct tile_net_priv {
177 	/* Our network device. */
178 	struct net_device *dev;
179 	/* The primary link. */
180 	gxio_mpipe_link_t link;
181 	/* The primary channel, if open, else -1. */
182 	int channel;
183 	/* The "loopify" egress link, if needed. */
184 	gxio_mpipe_link_t loopify_link;
185 	/* The "loopify" egress channel, if open, else -1. */
186 	int loopify_channel;
187 	/* The egress channel (channel or loopify_channel). */
188 	int echannel;
189 	/* mPIPE instance, 0 or 1. */
190 	int instance;
191 	/* The timestamp config. */
192 	struct hwtstamp_config stamp_cfg;
193 };
194 
195 static struct mpipe_data {
196 	/* The ingress irq. */
197 	int ingress_irq;
198 
199 	/* The "context" for all devices. */
200 	gxio_mpipe_context_t context;
201 
202 	/* Egress info, indexed by "priv->echannel"
203 	 * (lazily created as needed).
204 	 */
205 	struct tile_net_egress
206 	egress_for_echannel[TILE_NET_CHANNELS];
207 
208 	/* Devices currently associated with each channel.
209 	 * NOTE: The array entry can become NULL after ifconfig down, but
210 	 * we do not free the underlying net_device structures, so it is
211 	 * safe to use a pointer after reading it from this array.
212 	 */
213 	struct net_device
214 	*tile_net_devs_for_channel[TILE_NET_CHANNELS];
215 
216 	/* The actual memory allocated for the buffer stacks. */
217 	void *buffer_stack_vas[MAX_KINDS];
218 
219 	/* The amount of memory allocated for each buffer stack. */
220 	size_t buffer_stack_bytes[MAX_KINDS];
221 
222 	/* The first buffer stack index
223 	 * (small = +0, large = +1, jumbo = +2).
224 	 */
225 	int first_buffer_stack;
226 
227 	/* The buckets. */
228 	int first_bucket;
229 	int num_buckets;
230 
231 	/* PTP-specific data. */
232 	struct ptp_clock *ptp_clock;
233 	struct ptp_clock_info caps;
234 
235 	/* Lock for ptp accessors. */
236 	struct mutex ptp_lock;
237 
238 } mpipe_data[NR_MPIPE_MAX] = {
239 	[0 ... (NR_MPIPE_MAX - 1)] {
240 		.ingress_irq = -1,
241 		.first_buffer_stack = -1,
242 		.first_bucket = -1,
243 		.num_buckets = 1
244 	}
245 };
246 
247 /* A mutex for "tile_net_devs_for_channel". */
248 static DEFINE_MUTEX(tile_net_devs_for_channel_mutex);
249 
250 /* The per-cpu info. */
251 static DEFINE_PER_CPU(struct tile_net_info, per_cpu_info);
252 
253 
254 /* The buffer size enums for each buffer stack.
255  * See arch/tile/include/gxio/mpipe.h for the set of possible values.
256  * We avoid the "10384" size because it can induce "false chaining"
257  * on "cut-through" jumbo packets.
258  */
259 static gxio_mpipe_buffer_size_enum_t buffer_size_enums[MAX_KINDS] = {
260 	GXIO_MPIPE_BUFFER_SIZE_128,
261 	GXIO_MPIPE_BUFFER_SIZE_1664,
262 	GXIO_MPIPE_BUFFER_SIZE_16384
263 };
264 
265 /* Text value of tile_net.cpus if passed as a module parameter. */
266 static char *network_cpus_string;
267 
268 /* The actual cpus in "network_cpus". */
269 static struct cpumask network_cpus_map;
270 
271 /* If "tile_net.loopify=LINK" was specified, this is "LINK". */
272 static char *loopify_link_name;
273 
274 /* If "tile_net.custom" was specified, this is true. */
275 static bool custom_flag;
276 
277 /* If "tile_net.jumbo=NUM" was specified, this is "NUM". */
278 static uint jumbo_num;
279 
280 /* Obtain mpipe instance from struct tile_net_priv given struct net_device. */
mpipe_instance(struct net_device * dev)281 static inline int mpipe_instance(struct net_device *dev)
282 {
283 	struct tile_net_priv *priv = netdev_priv(dev);
284 	return priv->instance;
285 }
286 
287 /* The "tile_net.cpus" argument specifies the cpus that are dedicated
288  * to handle ingress packets.
289  *
290  * The parameter should be in the form "tile_net.cpus=m-n[,x-y]", where
291  * m, n, x, y are integer numbers that represent the cpus that can be
292  * neither a dedicated cpu nor a dataplane cpu.
293  */
network_cpus_init(void)294 static bool network_cpus_init(void)
295 {
296 	int rc;
297 
298 	if (network_cpus_string == NULL)
299 		return false;
300 
301 	rc = cpulist_parse_crop(network_cpus_string, &network_cpus_map);
302 	if (rc != 0) {
303 		pr_warn("tile_net.cpus=%s: malformed cpu list\n",
304 			network_cpus_string);
305 		return false;
306 	}
307 
308 	/* Remove dedicated cpus. */
309 	cpumask_and(&network_cpus_map, &network_cpus_map, cpu_possible_mask);
310 
311 	if (cpumask_empty(&network_cpus_map)) {
312 		pr_warn("Ignoring empty tile_net.cpus='%s'.\n",
313 			network_cpus_string);
314 		return false;
315 	}
316 
317 	pr_info("Linux network CPUs: %*pbl\n",
318 		cpumask_pr_args(&network_cpus_map));
319 	return true;
320 }
321 
322 module_param_named(cpus, network_cpus_string, charp, 0444);
323 MODULE_PARM_DESC(cpus, "cpulist of cores that handle network interrupts");
324 
325 /* The "tile_net.loopify=LINK" argument causes the named device to
326  * actually use "loop0" for ingress, and "loop1" for egress.  This
327  * allows an app to sit between the actual link and linux, passing
328  * (some) packets along to linux, and forwarding (some) packets sent
329  * out by linux.
330  */
331 module_param_named(loopify, loopify_link_name, charp, 0444);
332 MODULE_PARM_DESC(loopify, "name the device to use loop0/1 for ingress/egress");
333 
334 /* The "tile_net.custom" argument causes us to ignore the "conventional"
335  * classifier metadata, in particular, the "l2_offset".
336  */
337 module_param_named(custom, custom_flag, bool, 0444);
338 MODULE_PARM_DESC(custom, "indicates a (heavily) customized classifier");
339 
340 /* The "tile_net.jumbo" argument causes us to support "jumbo" packets,
341  * and to allocate the given number of "jumbo" buffers.
342  */
343 module_param_named(jumbo, jumbo_num, uint, 0444);
344 MODULE_PARM_DESC(jumbo, "the number of buffers to support jumbo packets");
345 
346 /* Atomically update a statistics field.
347  * Note that on TILE-Gx, this operation is fire-and-forget on the
348  * issuing core (single-cycle dispatch) and takes only a few cycles
349  * longer than a regular store when the request reaches the home cache.
350  * No expensive bus management overhead is required.
351  */
tile_net_stats_add(unsigned long value,unsigned long * field)352 static void tile_net_stats_add(unsigned long value, unsigned long *field)
353 {
354 	BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(unsigned long));
355 	atomic_long_add(value, (atomic_long_t *)field);
356 }
357 
358 /* Allocate and push a buffer. */
tile_net_provide_buffer(int instance,int kind)359 static bool tile_net_provide_buffer(int instance, int kind)
360 {
361 	struct mpipe_data *md = &mpipe_data[instance];
362 	gxio_mpipe_buffer_size_enum_t bse = buffer_size_enums[kind];
363 	size_t bs = gxio_mpipe_buffer_size_enum_to_buffer_size(bse);
364 	const unsigned long buffer_alignment = 128;
365 	struct sk_buff *skb;
366 	int len;
367 
368 	len = sizeof(struct sk_buff **) + buffer_alignment + bs;
369 	skb = dev_alloc_skb(len);
370 	if (skb == NULL)
371 		return false;
372 
373 	/* Make room for a back-pointer to 'skb' and guarantee alignment. */
374 	skb_reserve(skb, sizeof(struct sk_buff **));
375 	skb_reserve(skb, -(long)skb->data & (buffer_alignment - 1));
376 
377 	/* Save a back-pointer to 'skb'. */
378 	*(struct sk_buff **)(skb->data - sizeof(struct sk_buff **)) = skb;
379 
380 	/* Make sure "skb" and the back-pointer have been flushed. */
381 	wmb();
382 
383 	gxio_mpipe_push_buffer(&md->context, md->first_buffer_stack + kind,
384 			       (void *)va_to_tile_io_addr(skb->data));
385 
386 	return true;
387 }
388 
389 /* Convert a raw mpipe buffer to its matching skb pointer. */
mpipe_buf_to_skb(void * va)390 static struct sk_buff *mpipe_buf_to_skb(void *va)
391 {
392 	/* Acquire the associated "skb". */
393 	struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
394 	struct sk_buff *skb = *skb_ptr;
395 
396 	/* Paranoia. */
397 	if (skb->data != va) {
398 		/* Panic here since there's a reasonable chance
399 		 * that corrupt buffers means generic memory
400 		 * corruption, with unpredictable system effects.
401 		 */
402 		panic("Corrupt linux buffer! va=%p, skb=%p, skb->data=%p",
403 		      va, skb, skb->data);
404 	}
405 
406 	return skb;
407 }
408 
tile_net_pop_all_buffers(int instance,int stack)409 static void tile_net_pop_all_buffers(int instance, int stack)
410 {
411 	struct mpipe_data *md = &mpipe_data[instance];
412 
413 	for (;;) {
414 		tile_io_addr_t addr =
415 			(tile_io_addr_t)gxio_mpipe_pop_buffer(&md->context,
416 							      stack);
417 		if (addr == 0)
418 			break;
419 		dev_kfree_skb_irq(mpipe_buf_to_skb(tile_io_addr_to_va(addr)));
420 	}
421 }
422 
423 /* Provide linux buffers to mPIPE. */
tile_net_provide_needed_buffers(void)424 static void tile_net_provide_needed_buffers(void)
425 {
426 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
427 	int instance, kind;
428 	for (instance = 0; instance < NR_MPIPE_MAX &&
429 		     info->mpipe[instance].has_iqueue; instance++)	{
430 		for (kind = 0; kind < MAX_KINDS; kind++) {
431 			while (info->mpipe[instance].num_needed_buffers[kind]
432 			       != 0) {
433 				if (!tile_net_provide_buffer(instance, kind)) {
434 					pr_notice("Tile %d still needs"
435 						  " some buffers\n",
436 						  info->my_cpu);
437 					return;
438 				}
439 				info->mpipe[instance].
440 					num_needed_buffers[kind]--;
441 			}
442 		}
443 	}
444 }
445 
446 /* Get RX timestamp, and store it in the skb. */
tile_rx_timestamp(struct tile_net_priv * priv,struct sk_buff * skb,gxio_mpipe_idesc_t * idesc)447 static void tile_rx_timestamp(struct tile_net_priv *priv, struct sk_buff *skb,
448 			      gxio_mpipe_idesc_t *idesc)
449 {
450 	if (unlikely(priv->stamp_cfg.rx_filter != HWTSTAMP_FILTER_NONE)) {
451 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
452 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
453 		shhwtstamps->hwtstamp = ktime_set(idesc->time_stamp_sec,
454 						  idesc->time_stamp_ns);
455 	}
456 }
457 
458 /* Get TX timestamp, and store it in the skb. */
tile_tx_timestamp(struct sk_buff * skb,int instance)459 static void tile_tx_timestamp(struct sk_buff *skb, int instance)
460 {
461 	struct skb_shared_info *shtx = skb_shinfo(skb);
462 	if (unlikely((shtx->tx_flags & SKBTX_HW_TSTAMP) != 0)) {
463 		struct mpipe_data *md = &mpipe_data[instance];
464 		struct skb_shared_hwtstamps shhwtstamps;
465 		struct timespec ts;
466 
467 		shtx->tx_flags |= SKBTX_IN_PROGRESS;
468 		gxio_mpipe_get_timestamp(&md->context, &ts);
469 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
470 		shhwtstamps.hwtstamp = ktime_set(ts.tv_sec, ts.tv_nsec);
471 		skb_tstamp_tx(skb, &shhwtstamps);
472 	}
473 }
474 
475 /* Use ioctl() to enable or disable TX or RX timestamping. */
tile_hwtstamp_set(struct net_device * dev,struct ifreq * rq)476 static int tile_hwtstamp_set(struct net_device *dev, struct ifreq *rq)
477 {
478 	struct hwtstamp_config config;
479 	struct tile_net_priv *priv = netdev_priv(dev);
480 
481 	if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
482 		return -EFAULT;
483 
484 	if (config.flags)  /* reserved for future extensions */
485 		return -EINVAL;
486 
487 	switch (config.tx_type) {
488 	case HWTSTAMP_TX_OFF:
489 	case HWTSTAMP_TX_ON:
490 		break;
491 	default:
492 		return -ERANGE;
493 	}
494 
495 	switch (config.rx_filter) {
496 	case HWTSTAMP_FILTER_NONE:
497 		break;
498 	case HWTSTAMP_FILTER_ALL:
499 	case HWTSTAMP_FILTER_SOME:
500 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
501 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
502 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
503 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
504 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
505 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
506 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
507 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
508 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
509 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
510 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
511 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
512 		config.rx_filter = HWTSTAMP_FILTER_ALL;
513 		break;
514 	default:
515 		return -ERANGE;
516 	}
517 
518 	if (copy_to_user(rq->ifr_data, &config, sizeof(config)))
519 		return -EFAULT;
520 
521 	priv->stamp_cfg = config;
522 	return 0;
523 }
524 
tile_hwtstamp_get(struct net_device * dev,struct ifreq * rq)525 static int tile_hwtstamp_get(struct net_device *dev, struct ifreq *rq)
526 {
527 	struct tile_net_priv *priv = netdev_priv(dev);
528 
529 	if (copy_to_user(rq->ifr_data, &priv->stamp_cfg,
530 			 sizeof(priv->stamp_cfg)))
531 		return -EFAULT;
532 
533 	return 0;
534 }
535 
filter_packet(struct net_device * dev,void * buf)536 static inline bool filter_packet(struct net_device *dev, void *buf)
537 {
538 	/* Filter packets received before we're up. */
539 	if (dev == NULL || !(dev->flags & IFF_UP))
540 		return true;
541 
542 	/* Filter out packets that aren't for us. */
543 	if (!(dev->flags & IFF_PROMISC) &&
544 	    !is_multicast_ether_addr(buf) &&
545 	    !ether_addr_equal(dev->dev_addr, buf))
546 		return true;
547 
548 	return false;
549 }
550 
tile_net_receive_skb(struct net_device * dev,struct sk_buff * skb,gxio_mpipe_idesc_t * idesc,unsigned long len)551 static void tile_net_receive_skb(struct net_device *dev, struct sk_buff *skb,
552 				 gxio_mpipe_idesc_t *idesc, unsigned long len)
553 {
554 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
555 	struct tile_net_priv *priv = netdev_priv(dev);
556 	int instance = priv->instance;
557 
558 	/* Encode the actual packet length. */
559 	skb_put(skb, len);
560 
561 	skb->protocol = eth_type_trans(skb, dev);
562 
563 	/* Acknowledge "good" hardware checksums. */
564 	if (idesc->cs && idesc->csum_seed_val == 0xFFFF)
565 		skb->ip_summed = CHECKSUM_UNNECESSARY;
566 
567 	/* Get RX timestamp from idesc. */
568 	tile_rx_timestamp(priv, skb, idesc);
569 
570 	napi_gro_receive(&info->mpipe[instance].napi, skb);
571 
572 	/* Update stats. */
573 	tile_net_stats_add(1, &dev->stats.rx_packets);
574 	tile_net_stats_add(len, &dev->stats.rx_bytes);
575 
576 	/* Need a new buffer. */
577 	if (idesc->size == buffer_size_enums[0])
578 		info->mpipe[instance].num_needed_buffers[0]++;
579 	else if (idesc->size == buffer_size_enums[1])
580 		info->mpipe[instance].num_needed_buffers[1]++;
581 	else
582 		info->mpipe[instance].num_needed_buffers[2]++;
583 }
584 
585 /* Handle a packet.  Return true if "processed", false if "filtered". */
tile_net_handle_packet(int instance,gxio_mpipe_idesc_t * idesc)586 static bool tile_net_handle_packet(int instance, gxio_mpipe_idesc_t *idesc)
587 {
588 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
589 	struct mpipe_data *md = &mpipe_data[instance];
590 	struct net_device *dev = md->tile_net_devs_for_channel[idesc->channel];
591 	uint8_t l2_offset;
592 	void *va;
593 	void *buf;
594 	unsigned long len;
595 	bool filter;
596 
597 	/* Drop packets for which no buffer was available (which can
598 	 * happen under heavy load), or for which the me/tr/ce flags
599 	 * are set (which can happen for jumbo cut-through packets,
600 	 * or with a customized classifier).
601 	 */
602 	if (idesc->be || idesc->me || idesc->tr || idesc->ce) {
603 		if (dev)
604 			tile_net_stats_add(1, &dev->stats.rx_errors);
605 		goto drop;
606 	}
607 
608 	/* Get the "l2_offset", if allowed. */
609 	l2_offset = custom_flag ? 0 : gxio_mpipe_idesc_get_l2_offset(idesc);
610 
611 	/* Get the VA (including NET_IP_ALIGN bytes of "headroom"). */
612 	va = tile_io_addr_to_va((unsigned long)idesc->va);
613 
614 	/* Get the actual packet start/length. */
615 	buf = va + l2_offset;
616 	len = idesc->l2_size - l2_offset;
617 
618 	/* Point "va" at the raw buffer. */
619 	va -= NET_IP_ALIGN;
620 
621 	filter = filter_packet(dev, buf);
622 	if (filter) {
623 		if (dev)
624 			tile_net_stats_add(1, &dev->stats.rx_dropped);
625 drop:
626 		gxio_mpipe_iqueue_drop(&info->mpipe[instance].iqueue, idesc);
627 	} else {
628 		struct sk_buff *skb = mpipe_buf_to_skb(va);
629 
630 		/* Skip headroom, and any custom header. */
631 		skb_reserve(skb, NET_IP_ALIGN + l2_offset);
632 
633 		tile_net_receive_skb(dev, skb, idesc, len);
634 	}
635 
636 	gxio_mpipe_iqueue_consume(&info->mpipe[instance].iqueue, idesc);
637 	return !filter;
638 }
639 
640 /* Handle some packets for the current CPU.
641  *
642  * This function handles up to TILE_NET_BATCH idescs per call.
643  *
644  * ISSUE: Since we do not provide new buffers until this function is
645  * complete, we must initially provide enough buffers for each network
646  * cpu to fill its iqueue and also its batched idescs.
647  *
648  * ISSUE: The "rotting packet" race condition occurs if a packet
649  * arrives after the queue appears to be empty, and before the
650  * hypervisor interrupt is re-enabled.
651  */
tile_net_poll(struct napi_struct * napi,int budget)652 static int tile_net_poll(struct napi_struct *napi, int budget)
653 {
654 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
655 	unsigned int work = 0;
656 	gxio_mpipe_idesc_t *idesc;
657 	int instance, i, n;
658 	struct mpipe_data *md;
659 	struct info_mpipe *info_mpipe =
660 		container_of(napi, struct info_mpipe, napi);
661 
662 	if (budget <= 0)
663 		goto done;
664 
665 	instance = info_mpipe->instance;
666 	while ((n = gxio_mpipe_iqueue_try_peek(
667 			&info_mpipe->iqueue,
668 			&idesc)) > 0) {
669 		for (i = 0; i < n; i++) {
670 			if (i == TILE_NET_BATCH)
671 				goto done;
672 			if (tile_net_handle_packet(instance,
673 						   idesc + i)) {
674 				if (++work >= budget)
675 					goto done;
676 			}
677 		}
678 	}
679 
680 	/* There are no packets left. */
681 	napi_complete(&info_mpipe->napi);
682 
683 	md = &mpipe_data[instance];
684 	/* Re-enable hypervisor interrupts. */
685 	gxio_mpipe_enable_notif_ring_interrupt(
686 		&md->context, info->mpipe[instance].iqueue.ring);
687 
688 	/* HACK: Avoid the "rotting packet" problem. */
689 	if (gxio_mpipe_iqueue_try_peek(&info_mpipe->iqueue, &idesc) > 0)
690 		napi_schedule(&info_mpipe->napi);
691 
692 	/* ISSUE: Handle completions? */
693 
694 done:
695 	tile_net_provide_needed_buffers();
696 
697 	return work;
698 }
699 
700 /* Handle an ingress interrupt from an instance on the current cpu. */
tile_net_handle_ingress_irq(int irq,void * id)701 static irqreturn_t tile_net_handle_ingress_irq(int irq, void *id)
702 {
703 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
704 	napi_schedule(&info->mpipe[(uint64_t)id].napi);
705 	return IRQ_HANDLED;
706 }
707 
708 /* Free some completions.  This must be called with interrupts blocked. */
tile_net_free_comps(gxio_mpipe_equeue_t * equeue,struct tile_net_comps * comps,int limit,bool force_update)709 static int tile_net_free_comps(gxio_mpipe_equeue_t *equeue,
710 				struct tile_net_comps *comps,
711 				int limit, bool force_update)
712 {
713 	int n = 0;
714 	while (comps->comp_last < comps->comp_next) {
715 		unsigned int cid = comps->comp_last % TILE_NET_MAX_COMPS;
716 		struct tile_net_comp *comp = &comps->comp_queue[cid];
717 		if (!gxio_mpipe_equeue_is_complete(equeue, comp->when,
718 						   force_update || n == 0))
719 			break;
720 		dev_kfree_skb_irq(comp->skb);
721 		comps->comp_last++;
722 		if (++n == limit)
723 			break;
724 	}
725 	return n;
726 }
727 
728 /* Add a completion.  This must be called with interrupts blocked.
729  * tile_net_equeue_try_reserve() will have ensured a free completion entry.
730  */
add_comp(gxio_mpipe_equeue_t * equeue,struct tile_net_comps * comps,uint64_t when,struct sk_buff * skb)731 static void add_comp(gxio_mpipe_equeue_t *equeue,
732 		     struct tile_net_comps *comps,
733 		     uint64_t when, struct sk_buff *skb)
734 {
735 	int cid = comps->comp_next % TILE_NET_MAX_COMPS;
736 	comps->comp_queue[cid].when = when;
737 	comps->comp_queue[cid].skb = skb;
738 	comps->comp_next++;
739 }
740 
tile_net_schedule_tx_wake_timer(struct net_device * dev,int tx_queue_idx)741 static void tile_net_schedule_tx_wake_timer(struct net_device *dev,
742                                             int tx_queue_idx)
743 {
744 	struct tile_net_info *info = &per_cpu(per_cpu_info, tx_queue_idx);
745 	struct tile_net_priv *priv = netdev_priv(dev);
746 	int instance = priv->instance;
747 	struct tile_net_tx_wake *tx_wake =
748 		&info->mpipe[instance].tx_wake[priv->echannel];
749 
750 	hrtimer_start(&tx_wake->timer,
751 		      ktime_set(0, TX_TIMER_DELAY_USEC * 1000UL),
752 		      HRTIMER_MODE_REL_PINNED);
753 }
754 
tile_net_handle_tx_wake_timer(struct hrtimer * t)755 static enum hrtimer_restart tile_net_handle_tx_wake_timer(struct hrtimer *t)
756 {
757 	struct tile_net_tx_wake *tx_wake =
758 		container_of(t, struct tile_net_tx_wake, timer);
759 	netif_wake_subqueue(tx_wake->dev, tx_wake->tx_queue_idx);
760 	return HRTIMER_NORESTART;
761 }
762 
763 /* Make sure the egress timer is scheduled. */
tile_net_schedule_egress_timer(void)764 static void tile_net_schedule_egress_timer(void)
765 {
766 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
767 
768 	if (!info->egress_timer_scheduled) {
769 		hrtimer_start(&info->egress_timer,
770 			      ktime_set(0, EGRESS_TIMER_DELAY_USEC * 1000UL),
771 			      HRTIMER_MODE_REL_PINNED);
772 		info->egress_timer_scheduled = true;
773 	}
774 }
775 
776 /* The "function" for "info->egress_timer".
777  *
778  * This timer will reschedule itself as long as there are any pending
779  * completions expected for this tile.
780  */
tile_net_handle_egress_timer(struct hrtimer * t)781 static enum hrtimer_restart tile_net_handle_egress_timer(struct hrtimer *t)
782 {
783 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
784 	unsigned long irqflags;
785 	bool pending = false;
786 	int i, instance;
787 
788 	local_irq_save(irqflags);
789 
790 	/* The timer is no longer scheduled. */
791 	info->egress_timer_scheduled = false;
792 
793 	/* Free all possible comps for this tile. */
794 	for (instance = 0; instance < NR_MPIPE_MAX &&
795 		     info->mpipe[instance].has_iqueue; instance++) {
796 		for (i = 0; i < TILE_NET_CHANNELS; i++) {
797 			struct tile_net_egress *egress =
798 				&mpipe_data[instance].egress_for_echannel[i];
799 			struct tile_net_comps *comps =
800 				info->mpipe[instance].comps_for_echannel[i];
801 			if (!egress || comps->comp_last >= comps->comp_next)
802 				continue;
803 			tile_net_free_comps(egress->equeue, comps, -1, true);
804 			pending = pending ||
805 				(comps->comp_last < comps->comp_next);
806 		}
807 	}
808 
809 	/* Reschedule timer if needed. */
810 	if (pending)
811 		tile_net_schedule_egress_timer();
812 
813 	local_irq_restore(irqflags);
814 
815 	return HRTIMER_NORESTART;
816 }
817 
818 /* PTP clock operations. */
819 
ptp_mpipe_adjfreq(struct ptp_clock_info * ptp,s32 ppb)820 static int ptp_mpipe_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
821 {
822 	int ret = 0;
823 	struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
824 	mutex_lock(&md->ptp_lock);
825 	if (gxio_mpipe_adjust_timestamp_freq(&md->context, ppb))
826 		ret = -EINVAL;
827 	mutex_unlock(&md->ptp_lock);
828 	return ret;
829 }
830 
ptp_mpipe_adjtime(struct ptp_clock_info * ptp,s64 delta)831 static int ptp_mpipe_adjtime(struct ptp_clock_info *ptp, s64 delta)
832 {
833 	int ret = 0;
834 	struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
835 	mutex_lock(&md->ptp_lock);
836 	if (gxio_mpipe_adjust_timestamp(&md->context, delta))
837 		ret = -EBUSY;
838 	mutex_unlock(&md->ptp_lock);
839 	return ret;
840 }
841 
ptp_mpipe_gettime(struct ptp_clock_info * ptp,struct timespec64 * ts)842 static int ptp_mpipe_gettime(struct ptp_clock_info *ptp,
843 			     struct timespec64 *ts)
844 {
845 	int ret = 0;
846 	struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
847 	mutex_lock(&md->ptp_lock);
848 	if (gxio_mpipe_get_timestamp(&md->context, ts))
849 		ret = -EBUSY;
850 	mutex_unlock(&md->ptp_lock);
851 	return ret;
852 }
853 
ptp_mpipe_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)854 static int ptp_mpipe_settime(struct ptp_clock_info *ptp,
855 			     const struct timespec64 *ts)
856 {
857 	int ret = 0;
858 	struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
859 	mutex_lock(&md->ptp_lock);
860 	if (gxio_mpipe_set_timestamp(&md->context, ts))
861 		ret = -EBUSY;
862 	mutex_unlock(&md->ptp_lock);
863 	return ret;
864 }
865 
ptp_mpipe_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * request,int on)866 static int ptp_mpipe_enable(struct ptp_clock_info *ptp,
867 			    struct ptp_clock_request *request, int on)
868 {
869 	return -EOPNOTSUPP;
870 }
871 
872 static struct ptp_clock_info ptp_mpipe_caps = {
873 	.owner		= THIS_MODULE,
874 	.name		= "mPIPE clock",
875 	.max_adj	= 999999999,
876 	.n_ext_ts	= 0,
877 	.n_pins		= 0,
878 	.pps		= 0,
879 	.adjfreq	= ptp_mpipe_adjfreq,
880 	.adjtime	= ptp_mpipe_adjtime,
881 	.gettime64	= ptp_mpipe_gettime,
882 	.settime64	= ptp_mpipe_settime,
883 	.enable		= ptp_mpipe_enable,
884 };
885 
886 /* Sync mPIPE's timestamp up with Linux system time and register PTP clock. */
register_ptp_clock(struct net_device * dev,struct mpipe_data * md)887 static void register_ptp_clock(struct net_device *dev, struct mpipe_data *md)
888 {
889 	struct timespec ts;
890 
891 	getnstimeofday(&ts);
892 	gxio_mpipe_set_timestamp(&md->context, &ts);
893 
894 	mutex_init(&md->ptp_lock);
895 	md->caps = ptp_mpipe_caps;
896 	md->ptp_clock = ptp_clock_register(&md->caps, NULL);
897 	if (IS_ERR(md->ptp_clock))
898 		netdev_err(dev, "ptp_clock_register failed %ld\n",
899 			   PTR_ERR(md->ptp_clock));
900 }
901 
902 /* Initialize PTP fields in a new device. */
init_ptp_dev(struct tile_net_priv * priv)903 static void init_ptp_dev(struct tile_net_priv *priv)
904 {
905 	priv->stamp_cfg.rx_filter = HWTSTAMP_FILTER_NONE;
906 	priv->stamp_cfg.tx_type = HWTSTAMP_TX_OFF;
907 }
908 
909 /* Helper functions for "tile_net_update()". */
enable_ingress_irq(void * irq)910 static void enable_ingress_irq(void *irq)
911 {
912 	enable_percpu_irq((long)irq, 0);
913 }
914 
disable_ingress_irq(void * irq)915 static void disable_ingress_irq(void *irq)
916 {
917 	disable_percpu_irq((long)irq);
918 }
919 
920 /* Helper function for tile_net_open() and tile_net_stop().
921  * Always called under tile_net_devs_for_channel_mutex.
922  */
tile_net_update(struct net_device * dev)923 static int tile_net_update(struct net_device *dev)
924 {
925 	static gxio_mpipe_rules_t rules;  /* too big to fit on the stack */
926 	bool saw_channel = false;
927 	int instance = mpipe_instance(dev);
928 	struct mpipe_data *md = &mpipe_data[instance];
929 	int channel;
930 	int rc;
931 	int cpu;
932 
933 	saw_channel = false;
934 	gxio_mpipe_rules_init(&rules, &md->context);
935 
936 	for (channel = 0; channel < TILE_NET_CHANNELS; channel++) {
937 		if (md->tile_net_devs_for_channel[channel] == NULL)
938 			continue;
939 		if (!saw_channel) {
940 			saw_channel = true;
941 			gxio_mpipe_rules_begin(&rules, md->first_bucket,
942 					       md->num_buckets, NULL);
943 			gxio_mpipe_rules_set_headroom(&rules, NET_IP_ALIGN);
944 		}
945 		gxio_mpipe_rules_add_channel(&rules, channel);
946 	}
947 
948 	/* NOTE: This can fail if there is no classifier.
949 	 * ISSUE: Can anything else cause it to fail?
950 	 */
951 	rc = gxio_mpipe_rules_commit(&rules);
952 	if (rc != 0) {
953 		netdev_warn(dev, "gxio_mpipe_rules_commit: mpipe[%d] %d\n",
954 			    instance, rc);
955 		return -EIO;
956 	}
957 
958 	/* Update all cpus, sequentially (to protect "netif_napi_add()").
959 	 * We use on_each_cpu to handle the IPI mask or unmask.
960 	 */
961 	if (!saw_channel)
962 		on_each_cpu(disable_ingress_irq,
963 			    (void *)(long)(md->ingress_irq), 1);
964 	for_each_online_cpu(cpu) {
965 		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
966 
967 		if (!info->mpipe[instance].has_iqueue)
968 			continue;
969 		if (saw_channel) {
970 			if (!info->mpipe[instance].napi_added) {
971 				netif_napi_add(dev, &info->mpipe[instance].napi,
972 					       tile_net_poll, TILE_NET_WEIGHT);
973 				info->mpipe[instance].napi_added = true;
974 			}
975 			if (!info->mpipe[instance].napi_enabled) {
976 				napi_enable(&info->mpipe[instance].napi);
977 				info->mpipe[instance].napi_enabled = true;
978 			}
979 		} else {
980 			if (info->mpipe[instance].napi_enabled) {
981 				napi_disable(&info->mpipe[instance].napi);
982 				info->mpipe[instance].napi_enabled = false;
983 			}
984 			/* FIXME: Drain the iqueue. */
985 		}
986 	}
987 	if (saw_channel)
988 		on_each_cpu(enable_ingress_irq,
989 			    (void *)(long)(md->ingress_irq), 1);
990 
991 	/* HACK: Allow packets to flow in the simulator. */
992 	if (saw_channel)
993 		sim_enable_mpipe_links(instance, -1);
994 
995 	return 0;
996 }
997 
998 /* Initialize a buffer stack. */
create_buffer_stack(struct net_device * dev,int kind,size_t num_buffers)999 static int create_buffer_stack(struct net_device *dev,
1000 			       int kind, size_t num_buffers)
1001 {
1002 	pte_t hash_pte = pte_set_home((pte_t) { 0 }, PAGE_HOME_HASH);
1003 	int instance = mpipe_instance(dev);
1004 	struct mpipe_data *md = &mpipe_data[instance];
1005 	size_t needed = gxio_mpipe_calc_buffer_stack_bytes(num_buffers);
1006 	int stack_idx = md->first_buffer_stack + kind;
1007 	void *va;
1008 	int i, rc;
1009 
1010 	/* Round up to 64KB and then use alloc_pages() so we get the
1011 	 * required 64KB alignment.
1012 	 */
1013 	md->buffer_stack_bytes[kind] =
1014 		ALIGN(needed, 64 * 1024);
1015 
1016 	va = alloc_pages_exact(md->buffer_stack_bytes[kind], GFP_KERNEL);
1017 	if (va == NULL) {
1018 		netdev_err(dev,
1019 			   "Could not alloc %zd bytes for buffer stack %d\n",
1020 			   md->buffer_stack_bytes[kind], kind);
1021 		return -ENOMEM;
1022 	}
1023 
1024 	/* Initialize the buffer stack. */
1025 	rc = gxio_mpipe_init_buffer_stack(&md->context, stack_idx,
1026 					  buffer_size_enums[kind],  va,
1027 					  md->buffer_stack_bytes[kind], 0);
1028 	if (rc != 0) {
1029 		netdev_err(dev, "gxio_mpipe_init_buffer_stack: mpipe[%d] %d\n",
1030 			   instance, rc);
1031 		free_pages_exact(va, md->buffer_stack_bytes[kind]);
1032 		return rc;
1033 	}
1034 
1035 	md->buffer_stack_vas[kind] = va;
1036 
1037 	rc = gxio_mpipe_register_client_memory(&md->context, stack_idx,
1038 					       hash_pte, 0);
1039 	if (rc != 0) {
1040 		netdev_err(dev,
1041 			   "gxio_mpipe_register_client_memory: mpipe[%d] %d\n",
1042 			   instance, rc);
1043 		return rc;
1044 	}
1045 
1046 	/* Provide initial buffers. */
1047 	for (i = 0; i < num_buffers; i++) {
1048 		if (!tile_net_provide_buffer(instance, kind)) {
1049 			netdev_err(dev, "Cannot allocate initial sk_bufs!\n");
1050 			return -ENOMEM;
1051 		}
1052 	}
1053 
1054 	return 0;
1055 }
1056 
1057 /* Allocate and initialize mpipe buffer stacks, and register them in
1058  * the mPIPE TLBs, for small, large, and (possibly) jumbo packet sizes.
1059  * This routine supports tile_net_init_mpipe(), below.
1060  */
init_buffer_stacks(struct net_device * dev,int network_cpus_count)1061 static int init_buffer_stacks(struct net_device *dev,
1062 			      int network_cpus_count)
1063 {
1064 	int num_kinds = MAX_KINDS - (jumbo_num == 0);
1065 	size_t num_buffers;
1066 	int rc;
1067 	int instance = mpipe_instance(dev);
1068 	struct mpipe_data *md = &mpipe_data[instance];
1069 
1070 	/* Allocate the buffer stacks. */
1071 	rc = gxio_mpipe_alloc_buffer_stacks(&md->context, num_kinds, 0, 0);
1072 	if (rc < 0) {
1073 		netdev_err(dev,
1074 			   "gxio_mpipe_alloc_buffer_stacks: mpipe[%d] %d\n",
1075 			   instance, rc);
1076 		return rc;
1077 	}
1078 	md->first_buffer_stack = rc;
1079 
1080 	/* Enough small/large buffers to (normally) avoid buffer errors. */
1081 	num_buffers =
1082 		network_cpus_count * (IQUEUE_ENTRIES + TILE_NET_BATCH);
1083 
1084 	/* Allocate the small memory stack. */
1085 	if (rc >= 0)
1086 		rc = create_buffer_stack(dev, 0, num_buffers);
1087 
1088 	/* Allocate the large buffer stack. */
1089 	if (rc >= 0)
1090 		rc = create_buffer_stack(dev, 1, num_buffers);
1091 
1092 	/* Allocate the jumbo buffer stack if needed. */
1093 	if (rc >= 0 && jumbo_num != 0)
1094 		rc = create_buffer_stack(dev, 2, jumbo_num);
1095 
1096 	return rc;
1097 }
1098 
1099 /* Allocate per-cpu resources (memory for completions and idescs).
1100  * This routine supports tile_net_init_mpipe(), below.
1101  */
alloc_percpu_mpipe_resources(struct net_device * dev,int cpu,int ring)1102 static int alloc_percpu_mpipe_resources(struct net_device *dev,
1103 					int cpu, int ring)
1104 {
1105 	struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1106 	int order, i, rc;
1107 	int instance = mpipe_instance(dev);
1108 	struct mpipe_data *md = &mpipe_data[instance];
1109 	struct page *page;
1110 	void *addr;
1111 
1112 	/* Allocate the "comps". */
1113 	order = get_order(COMPS_SIZE);
1114 	page = homecache_alloc_pages(GFP_KERNEL, order, cpu);
1115 	if (page == NULL) {
1116 		netdev_err(dev, "Failed to alloc %zd bytes comps memory\n",
1117 			   COMPS_SIZE);
1118 		return -ENOMEM;
1119 	}
1120 	addr = pfn_to_kaddr(page_to_pfn(page));
1121 	memset(addr, 0, COMPS_SIZE);
1122 	for (i = 0; i < TILE_NET_CHANNELS; i++)
1123 		info->mpipe[instance].comps_for_echannel[i] =
1124 			addr + i * sizeof(struct tile_net_comps);
1125 
1126 	/* If this is a network cpu, create an iqueue. */
1127 	if (cpumask_test_cpu(cpu, &network_cpus_map)) {
1128 		order = get_order(NOTIF_RING_SIZE);
1129 		page = homecache_alloc_pages(GFP_KERNEL, order, cpu);
1130 		if (page == NULL) {
1131 			netdev_err(dev,
1132 				   "Failed to alloc %zd bytes iqueue memory\n",
1133 				   NOTIF_RING_SIZE);
1134 			return -ENOMEM;
1135 		}
1136 		addr = pfn_to_kaddr(page_to_pfn(page));
1137 		rc = gxio_mpipe_iqueue_init(&info->mpipe[instance].iqueue,
1138 					    &md->context, ring++, addr,
1139 					    NOTIF_RING_SIZE, 0);
1140 		if (rc < 0) {
1141 			netdev_err(dev,
1142 				   "gxio_mpipe_iqueue_init failed: %d\n", rc);
1143 			return rc;
1144 		}
1145 		info->mpipe[instance].has_iqueue = true;
1146 	}
1147 
1148 	return ring;
1149 }
1150 
1151 /* Initialize NotifGroup and buckets.
1152  * This routine supports tile_net_init_mpipe(), below.
1153  */
init_notif_group_and_buckets(struct net_device * dev,int ring,int network_cpus_count)1154 static int init_notif_group_and_buckets(struct net_device *dev,
1155 					int ring, int network_cpus_count)
1156 {
1157 	int group, rc;
1158 	int instance = mpipe_instance(dev);
1159 	struct mpipe_data *md = &mpipe_data[instance];
1160 
1161 	/* Allocate one NotifGroup. */
1162 	rc = gxio_mpipe_alloc_notif_groups(&md->context, 1, 0, 0);
1163 	if (rc < 0) {
1164 		netdev_err(dev, "gxio_mpipe_alloc_notif_groups: mpipe[%d] %d\n",
1165 			   instance, rc);
1166 		return rc;
1167 	}
1168 	group = rc;
1169 
1170 	/* Initialize global num_buckets value. */
1171 	if (network_cpus_count > 4)
1172 		md->num_buckets = 256;
1173 	else if (network_cpus_count > 1)
1174 		md->num_buckets = 16;
1175 
1176 	/* Allocate some buckets, and set global first_bucket value. */
1177 	rc = gxio_mpipe_alloc_buckets(&md->context, md->num_buckets, 0, 0);
1178 	if (rc < 0) {
1179 		netdev_err(dev, "gxio_mpipe_alloc_buckets: mpipe[%d] %d\n",
1180 			   instance, rc);
1181 		return rc;
1182 	}
1183 	md->first_bucket = rc;
1184 
1185 	/* Init group and buckets. */
1186 	rc = gxio_mpipe_init_notif_group_and_buckets(
1187 		&md->context, group, ring, network_cpus_count,
1188 		md->first_bucket, md->num_buckets,
1189 		GXIO_MPIPE_BUCKET_STICKY_FLOW_LOCALITY);
1190 	if (rc != 0) {
1191 		netdev_err(dev,	"gxio_mpipe_init_notif_group_and_buckets: "
1192 			   "mpipe[%d] %d\n", instance, rc);
1193 		return rc;
1194 	}
1195 
1196 	return 0;
1197 }
1198 
1199 /* Create an irq and register it, then activate the irq and request
1200  * interrupts on all cores.  Note that "ingress_irq" being initialized
1201  * is how we know not to call tile_net_init_mpipe() again.
1202  * This routine supports tile_net_init_mpipe(), below.
1203  */
tile_net_setup_interrupts(struct net_device * dev)1204 static int tile_net_setup_interrupts(struct net_device *dev)
1205 {
1206 	int cpu, rc, irq;
1207 	int instance = mpipe_instance(dev);
1208 	struct mpipe_data *md = &mpipe_data[instance];
1209 
1210 	irq = md->ingress_irq;
1211 	if (irq < 0) {
1212 		irq = irq_alloc_hwirq(-1);
1213 		if (!irq) {
1214 			netdev_err(dev,
1215 				   "create_irq failed: mpipe[%d] %d\n",
1216 				   instance, irq);
1217 			return irq;
1218 		}
1219 		tile_irq_activate(irq, TILE_IRQ_PERCPU);
1220 
1221 		rc = request_irq(irq, tile_net_handle_ingress_irq,
1222 				 0, "tile_net", (void *)((uint64_t)instance));
1223 
1224 		if (rc != 0) {
1225 			netdev_err(dev, "request_irq failed: mpipe[%d] %d\n",
1226 				   instance, rc);
1227 			irq_free_hwirq(irq);
1228 			return rc;
1229 		}
1230 		md->ingress_irq = irq;
1231 	}
1232 
1233 	for_each_online_cpu(cpu) {
1234 		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1235 		if (info->mpipe[instance].has_iqueue) {
1236 			gxio_mpipe_request_notif_ring_interrupt(&md->context,
1237 				cpu_x(cpu), cpu_y(cpu), KERNEL_PL, irq,
1238 				info->mpipe[instance].iqueue.ring);
1239 		}
1240 	}
1241 
1242 	return 0;
1243 }
1244 
1245 /* Undo any state set up partially by a failed call to tile_net_init_mpipe. */
tile_net_init_mpipe_fail(int instance)1246 static void tile_net_init_mpipe_fail(int instance)
1247 {
1248 	int kind, cpu;
1249 	struct mpipe_data *md = &mpipe_data[instance];
1250 
1251 	/* Do cleanups that require the mpipe context first. */
1252 	for (kind = 0; kind < MAX_KINDS; kind++) {
1253 		if (md->buffer_stack_vas[kind] != NULL) {
1254 			tile_net_pop_all_buffers(instance,
1255 						 md->first_buffer_stack +
1256 						 kind);
1257 		}
1258 	}
1259 
1260 	/* Destroy mpipe context so the hardware no longer owns any memory. */
1261 	gxio_mpipe_destroy(&md->context);
1262 
1263 	for_each_online_cpu(cpu) {
1264 		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1265 		free_pages(
1266 			(unsigned long)(
1267 				info->mpipe[instance].comps_for_echannel[0]),
1268 			get_order(COMPS_SIZE));
1269 		info->mpipe[instance].comps_for_echannel[0] = NULL;
1270 		free_pages((unsigned long)(info->mpipe[instance].iqueue.idescs),
1271 			   get_order(NOTIF_RING_SIZE));
1272 		info->mpipe[instance].iqueue.idescs = NULL;
1273 	}
1274 
1275 	for (kind = 0; kind < MAX_KINDS; kind++) {
1276 		if (md->buffer_stack_vas[kind] != NULL) {
1277 			free_pages_exact(md->buffer_stack_vas[kind],
1278 					 md->buffer_stack_bytes[kind]);
1279 			md->buffer_stack_vas[kind] = NULL;
1280 		}
1281 	}
1282 
1283 	md->first_buffer_stack = -1;
1284 	md->first_bucket = -1;
1285 }
1286 
1287 /* The first time any tilegx network device is opened, we initialize
1288  * the global mpipe state.  If this step fails, we fail to open the
1289  * device, but if it succeeds, we never need to do it again, and since
1290  * tile_net can't be unloaded, we never undo it.
1291  *
1292  * Note that some resources in this path (buffer stack indices,
1293  * bindings from init_buffer_stack, etc.) are hypervisor resources
1294  * that are freed implicitly by gxio_mpipe_destroy().
1295  */
tile_net_init_mpipe(struct net_device * dev)1296 static int tile_net_init_mpipe(struct net_device *dev)
1297 {
1298 	int rc;
1299 	int cpu;
1300 	int first_ring, ring;
1301 	int instance = mpipe_instance(dev);
1302 	struct mpipe_data *md = &mpipe_data[instance];
1303 	int network_cpus_count = cpumask_weight(&network_cpus_map);
1304 
1305 	if (!hash_default) {
1306 		netdev_err(dev, "Networking requires hash_default!\n");
1307 		return -EIO;
1308 	}
1309 
1310 	rc = gxio_mpipe_init(&md->context, instance);
1311 	if (rc != 0) {
1312 		netdev_err(dev, "gxio_mpipe_init: mpipe[%d] %d\n",
1313 			   instance, rc);
1314 		return -EIO;
1315 	}
1316 
1317 	/* Set up the buffer stacks. */
1318 	rc = init_buffer_stacks(dev, network_cpus_count);
1319 	if (rc != 0)
1320 		goto fail;
1321 
1322 	/* Allocate one NotifRing for each network cpu. */
1323 	rc = gxio_mpipe_alloc_notif_rings(&md->context,
1324 					  network_cpus_count, 0, 0);
1325 	if (rc < 0) {
1326 		netdev_err(dev, "gxio_mpipe_alloc_notif_rings failed %d\n",
1327 			   rc);
1328 		goto fail;
1329 	}
1330 
1331 	/* Init NotifRings per-cpu. */
1332 	first_ring = rc;
1333 	ring = first_ring;
1334 	for_each_online_cpu(cpu) {
1335 		rc = alloc_percpu_mpipe_resources(dev, cpu, ring);
1336 		if (rc < 0)
1337 			goto fail;
1338 		ring = rc;
1339 	}
1340 
1341 	/* Initialize NotifGroup and buckets. */
1342 	rc = init_notif_group_and_buckets(dev, first_ring, network_cpus_count);
1343 	if (rc != 0)
1344 		goto fail;
1345 
1346 	/* Create and enable interrupts. */
1347 	rc = tile_net_setup_interrupts(dev);
1348 	if (rc != 0)
1349 		goto fail;
1350 
1351 	/* Register PTP clock and set mPIPE timestamp, if configured. */
1352 	register_ptp_clock(dev, md);
1353 
1354 	return 0;
1355 
1356 fail:
1357 	tile_net_init_mpipe_fail(instance);
1358 	return rc;
1359 }
1360 
1361 /* Create persistent egress info for a given egress channel.
1362  * Note that this may be shared between, say, "gbe0" and "xgbe0".
1363  * ISSUE: Defer header allocation until TSO is actually needed?
1364  */
tile_net_init_egress(struct net_device * dev,int echannel)1365 static int tile_net_init_egress(struct net_device *dev, int echannel)
1366 {
1367 	static int ering = -1;
1368 	struct page *headers_page, *edescs_page, *equeue_page;
1369 	gxio_mpipe_edesc_t *edescs;
1370 	gxio_mpipe_equeue_t *equeue;
1371 	unsigned char *headers;
1372 	int headers_order, edescs_order, equeue_order;
1373 	size_t edescs_size;
1374 	int rc = -ENOMEM;
1375 	int instance = mpipe_instance(dev);
1376 	struct mpipe_data *md = &mpipe_data[instance];
1377 
1378 	/* Only initialize once. */
1379 	if (md->egress_for_echannel[echannel].equeue != NULL)
1380 		return 0;
1381 
1382 	/* Allocate memory for the "headers". */
1383 	headers_order = get_order(EQUEUE_ENTRIES * HEADER_BYTES);
1384 	headers_page = alloc_pages(GFP_KERNEL, headers_order);
1385 	if (headers_page == NULL) {
1386 		netdev_warn(dev,
1387 			    "Could not alloc %zd bytes for TSO headers.\n",
1388 			    PAGE_SIZE << headers_order);
1389 		goto fail;
1390 	}
1391 	headers = pfn_to_kaddr(page_to_pfn(headers_page));
1392 
1393 	/* Allocate memory for the "edescs". */
1394 	edescs_size = EQUEUE_ENTRIES * sizeof(*edescs);
1395 	edescs_order = get_order(edescs_size);
1396 	edescs_page = alloc_pages(GFP_KERNEL, edescs_order);
1397 	if (edescs_page == NULL) {
1398 		netdev_warn(dev,
1399 			    "Could not alloc %zd bytes for eDMA ring.\n",
1400 			    edescs_size);
1401 		goto fail_headers;
1402 	}
1403 	edescs = pfn_to_kaddr(page_to_pfn(edescs_page));
1404 
1405 	/* Allocate memory for the "equeue". */
1406 	equeue_order = get_order(sizeof(*equeue));
1407 	equeue_page = alloc_pages(GFP_KERNEL, equeue_order);
1408 	if (equeue_page == NULL) {
1409 		netdev_warn(dev,
1410 			    "Could not alloc %zd bytes for equeue info.\n",
1411 			    PAGE_SIZE << equeue_order);
1412 		goto fail_edescs;
1413 	}
1414 	equeue = pfn_to_kaddr(page_to_pfn(equeue_page));
1415 
1416 	/* Allocate an edma ring (using a one entry "free list"). */
1417 	if (ering < 0) {
1418 		rc = gxio_mpipe_alloc_edma_rings(&md->context, 1, 0, 0);
1419 		if (rc < 0) {
1420 			netdev_warn(dev, "gxio_mpipe_alloc_edma_rings: "
1421 				    "mpipe[%d] %d\n", instance, rc);
1422 			goto fail_equeue;
1423 		}
1424 		ering = rc;
1425 	}
1426 
1427 	/* Initialize the equeue. */
1428 	rc = gxio_mpipe_equeue_init(equeue, &md->context, ering, echannel,
1429 				    edescs, edescs_size, 0);
1430 	if (rc != 0) {
1431 		netdev_err(dev, "gxio_mpipe_equeue_init: mpipe[%d] %d\n",
1432 			   instance, rc);
1433 		goto fail_equeue;
1434 	}
1435 
1436 	/* Don't reuse the ering later. */
1437 	ering = -1;
1438 
1439 	if (jumbo_num != 0) {
1440 		/* Make sure "jumbo" packets can be egressed safely. */
1441 		if (gxio_mpipe_equeue_set_snf_size(equeue, 10368) < 0) {
1442 			/* ISSUE: There is no "gxio_mpipe_equeue_destroy()". */
1443 			netdev_warn(dev, "Jumbo packets may not be egressed"
1444 				    " properly on channel %d\n", echannel);
1445 		}
1446 	}
1447 
1448 	/* Done. */
1449 	md->egress_for_echannel[echannel].equeue = equeue;
1450 	md->egress_for_echannel[echannel].headers = headers;
1451 	return 0;
1452 
1453 fail_equeue:
1454 	__free_pages(equeue_page, equeue_order);
1455 
1456 fail_edescs:
1457 	__free_pages(edescs_page, edescs_order);
1458 
1459 fail_headers:
1460 	__free_pages(headers_page, headers_order);
1461 
1462 fail:
1463 	return rc;
1464 }
1465 
1466 /* Return channel number for a newly-opened link. */
tile_net_link_open(struct net_device * dev,gxio_mpipe_link_t * link,const char * link_name)1467 static int tile_net_link_open(struct net_device *dev, gxio_mpipe_link_t *link,
1468 			      const char *link_name)
1469 {
1470 	int instance = mpipe_instance(dev);
1471 	struct mpipe_data *md = &mpipe_data[instance];
1472 	int rc = gxio_mpipe_link_open(link, &md->context, link_name, 0);
1473 	if (rc < 0) {
1474 		netdev_err(dev, "Failed to open '%s', mpipe[%d], %d\n",
1475 			   link_name, instance, rc);
1476 		return rc;
1477 	}
1478 	if (jumbo_num != 0) {
1479 		u32 attr = GXIO_MPIPE_LINK_RECEIVE_JUMBO;
1480 		rc = gxio_mpipe_link_set_attr(link, attr, 1);
1481 		if (rc != 0) {
1482 			netdev_err(dev,
1483 				   "Cannot receive jumbo packets on '%s'\n",
1484 				   link_name);
1485 			gxio_mpipe_link_close(link);
1486 			return rc;
1487 		}
1488 	}
1489 	rc = gxio_mpipe_link_channel(link);
1490 	if (rc < 0 || rc >= TILE_NET_CHANNELS) {
1491 		netdev_err(dev, "gxio_mpipe_link_channel bad value: %d\n", rc);
1492 		gxio_mpipe_link_close(link);
1493 		return -EINVAL;
1494 	}
1495 	return rc;
1496 }
1497 
1498 /* Help the kernel activate the given network interface. */
tile_net_open(struct net_device * dev)1499 static int tile_net_open(struct net_device *dev)
1500 {
1501 	struct tile_net_priv *priv = netdev_priv(dev);
1502 	int cpu, rc, instance;
1503 
1504 	mutex_lock(&tile_net_devs_for_channel_mutex);
1505 
1506 	/* Get the instance info. */
1507 	rc = gxio_mpipe_link_instance(dev->name);
1508 	if (rc < 0 || rc >= NR_MPIPE_MAX) {
1509 		mutex_unlock(&tile_net_devs_for_channel_mutex);
1510 		return -EIO;
1511 	}
1512 
1513 	priv->instance = rc;
1514 	instance = rc;
1515 	if (!mpipe_data[rc].context.mmio_fast_base) {
1516 		/* Do one-time initialization per instance the first time
1517 		 * any device is opened.
1518 		 */
1519 		rc = tile_net_init_mpipe(dev);
1520 		if (rc != 0)
1521 			goto fail;
1522 	}
1523 
1524 	/* Determine if this is the "loopify" device. */
1525 	if (unlikely((loopify_link_name != NULL) &&
1526 		     !strcmp(dev->name, loopify_link_name))) {
1527 		rc = tile_net_link_open(dev, &priv->link, "loop0");
1528 		if (rc < 0)
1529 			goto fail;
1530 		priv->channel = rc;
1531 		rc = tile_net_link_open(dev, &priv->loopify_link, "loop1");
1532 		if (rc < 0)
1533 			goto fail;
1534 		priv->loopify_channel = rc;
1535 		priv->echannel = rc;
1536 	} else {
1537 		rc = tile_net_link_open(dev, &priv->link, dev->name);
1538 		if (rc < 0)
1539 			goto fail;
1540 		priv->channel = rc;
1541 		priv->echannel = rc;
1542 	}
1543 
1544 	/* Initialize egress info (if needed).  Once ever, per echannel. */
1545 	rc = tile_net_init_egress(dev, priv->echannel);
1546 	if (rc != 0)
1547 		goto fail;
1548 
1549 	mpipe_data[instance].tile_net_devs_for_channel[priv->channel] = dev;
1550 
1551 	rc = tile_net_update(dev);
1552 	if (rc != 0)
1553 		goto fail;
1554 
1555 	mutex_unlock(&tile_net_devs_for_channel_mutex);
1556 
1557 	/* Initialize the transmit wake timer for this device for each cpu. */
1558 	for_each_online_cpu(cpu) {
1559 		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1560 		struct tile_net_tx_wake *tx_wake =
1561 			&info->mpipe[instance].tx_wake[priv->echannel];
1562 
1563 		hrtimer_init(&tx_wake->timer, CLOCK_MONOTONIC,
1564 			     HRTIMER_MODE_REL);
1565 		tx_wake->tx_queue_idx = cpu;
1566 		tx_wake->timer.function = tile_net_handle_tx_wake_timer;
1567 		tx_wake->dev = dev;
1568 	}
1569 
1570 	for_each_online_cpu(cpu)
1571 		netif_start_subqueue(dev, cpu);
1572 	netif_carrier_on(dev);
1573 	return 0;
1574 
1575 fail:
1576 	if (priv->loopify_channel >= 0) {
1577 		if (gxio_mpipe_link_close(&priv->loopify_link) != 0)
1578 			netdev_warn(dev, "Failed to close loopify link!\n");
1579 		priv->loopify_channel = -1;
1580 	}
1581 	if (priv->channel >= 0) {
1582 		if (gxio_mpipe_link_close(&priv->link) != 0)
1583 			netdev_warn(dev, "Failed to close link!\n");
1584 		priv->channel = -1;
1585 	}
1586 	priv->echannel = -1;
1587 	mpipe_data[instance].tile_net_devs_for_channel[priv->channel] =	NULL;
1588 	mutex_unlock(&tile_net_devs_for_channel_mutex);
1589 
1590 	/* Don't return raw gxio error codes to generic Linux. */
1591 	return (rc > -512) ? rc : -EIO;
1592 }
1593 
1594 /* Help the kernel deactivate the given network interface. */
tile_net_stop(struct net_device * dev)1595 static int tile_net_stop(struct net_device *dev)
1596 {
1597 	struct tile_net_priv *priv = netdev_priv(dev);
1598 	int cpu;
1599 	int instance = priv->instance;
1600 	struct mpipe_data *md = &mpipe_data[instance];
1601 
1602 	for_each_online_cpu(cpu) {
1603 		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1604 		struct tile_net_tx_wake *tx_wake =
1605 			&info->mpipe[instance].tx_wake[priv->echannel];
1606 
1607 		hrtimer_cancel(&tx_wake->timer);
1608 		netif_stop_subqueue(dev, cpu);
1609 	}
1610 
1611 	mutex_lock(&tile_net_devs_for_channel_mutex);
1612 	md->tile_net_devs_for_channel[priv->channel] = NULL;
1613 	(void)tile_net_update(dev);
1614 	if (priv->loopify_channel >= 0) {
1615 		if (gxio_mpipe_link_close(&priv->loopify_link) != 0)
1616 			netdev_warn(dev, "Failed to close loopify link!\n");
1617 		priv->loopify_channel = -1;
1618 	}
1619 	if (priv->channel >= 0) {
1620 		if (gxio_mpipe_link_close(&priv->link) != 0)
1621 			netdev_warn(dev, "Failed to close link!\n");
1622 		priv->channel = -1;
1623 	}
1624 	priv->echannel = -1;
1625 	mutex_unlock(&tile_net_devs_for_channel_mutex);
1626 
1627 	return 0;
1628 }
1629 
1630 /* Determine the VA for a fragment. */
tile_net_frag_buf(skb_frag_t * f)1631 static inline void *tile_net_frag_buf(skb_frag_t *f)
1632 {
1633 	unsigned long pfn = page_to_pfn(skb_frag_page(f));
1634 	return pfn_to_kaddr(pfn) + f->page_offset;
1635 }
1636 
1637 /* Acquire a completion entry and an egress slot, or if we can't,
1638  * stop the queue and schedule the tx_wake timer.
1639  */
tile_net_equeue_try_reserve(struct net_device * dev,int tx_queue_idx,struct tile_net_comps * comps,gxio_mpipe_equeue_t * equeue,int num_edescs)1640 static s64 tile_net_equeue_try_reserve(struct net_device *dev,
1641 				       int tx_queue_idx,
1642 				       struct tile_net_comps *comps,
1643 				       gxio_mpipe_equeue_t *equeue,
1644 				       int num_edescs)
1645 {
1646 	/* Try to acquire a completion entry. */
1647 	if (comps->comp_next - comps->comp_last < TILE_NET_MAX_COMPS - 1 ||
1648 	    tile_net_free_comps(equeue, comps, 32, false) != 0) {
1649 
1650 		/* Try to acquire an egress slot. */
1651 		s64 slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs);
1652 		if (slot >= 0)
1653 			return slot;
1654 
1655 		/* Freeing some completions gives the equeue time to drain. */
1656 		tile_net_free_comps(equeue, comps, TILE_NET_MAX_COMPS, false);
1657 
1658 		slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs);
1659 		if (slot >= 0)
1660 			return slot;
1661 	}
1662 
1663 	/* Still nothing; give up and stop the queue for a short while. */
1664 	netif_stop_subqueue(dev, tx_queue_idx);
1665 	tile_net_schedule_tx_wake_timer(dev, tx_queue_idx);
1666 	return -1;
1667 }
1668 
1669 /* Determine how many edesc's are needed for TSO.
1670  *
1671  * Sometimes, if "sendfile()" requires copying, we will be called with
1672  * "data" containing the header and payload, with "frags" being empty.
1673  * Sometimes, for example when using NFS over TCP, a single segment can
1674  * span 3 fragments.  This requires special care.
1675  */
tso_count_edescs(struct sk_buff * skb)1676 static int tso_count_edescs(struct sk_buff *skb)
1677 {
1678 	struct skb_shared_info *sh = skb_shinfo(skb);
1679 	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1680 	unsigned int data_len = skb->len - sh_len;
1681 	unsigned int p_len = sh->gso_size;
1682 	long f_id = -1;    /* id of the current fragment */
1683 	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1684 	long f_used = 0;  /* bytes used from the current fragment */
1685 	long n;            /* size of the current piece of payload */
1686 	int num_edescs = 0;
1687 	int segment;
1688 
1689 	for (segment = 0; segment < sh->gso_segs; segment++) {
1690 
1691 		unsigned int p_used = 0;
1692 
1693 		/* One edesc for header and for each piece of the payload. */
1694 		for (num_edescs++; p_used < p_len; num_edescs++) {
1695 
1696 			/* Advance as needed. */
1697 			while (f_used >= f_size) {
1698 				f_id++;
1699 				f_size = skb_frag_size(&sh->frags[f_id]);
1700 				f_used = 0;
1701 			}
1702 
1703 			/* Use bytes from the current fragment. */
1704 			n = p_len - p_used;
1705 			if (n > f_size - f_used)
1706 				n = f_size - f_used;
1707 			f_used += n;
1708 			p_used += n;
1709 		}
1710 
1711 		/* The last segment may be less than gso_size. */
1712 		data_len -= p_len;
1713 		if (data_len < p_len)
1714 			p_len = data_len;
1715 	}
1716 
1717 	return num_edescs;
1718 }
1719 
1720 /* Prepare modified copies of the skbuff headers. */
tso_headers_prepare(struct sk_buff * skb,unsigned char * headers,s64 slot)1721 static void tso_headers_prepare(struct sk_buff *skb, unsigned char *headers,
1722 				s64 slot)
1723 {
1724 	struct skb_shared_info *sh = skb_shinfo(skb);
1725 	struct iphdr *ih;
1726 	struct ipv6hdr *ih6;
1727 	struct tcphdr *th;
1728 	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1729 	unsigned int data_len = skb->len - sh_len;
1730 	unsigned char *data = skb->data;
1731 	unsigned int ih_off, th_off, p_len;
1732 	unsigned int isum_seed, tsum_seed, seq;
1733 	unsigned int uninitialized_var(id);
1734 	int is_ipv6;
1735 	long f_id = -1;    /* id of the current fragment */
1736 	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1737 	long f_used = 0;  /* bytes used from the current fragment */
1738 	long n;            /* size of the current piece of payload */
1739 	int segment;
1740 
1741 	/* Locate original headers and compute various lengths. */
1742 	is_ipv6 = skb_is_gso_v6(skb);
1743 	if (is_ipv6) {
1744 		ih6 = ipv6_hdr(skb);
1745 		ih_off = skb_network_offset(skb);
1746 	} else {
1747 		ih = ip_hdr(skb);
1748 		ih_off = skb_network_offset(skb);
1749 		isum_seed = ((0xFFFF - ih->check) +
1750 			     (0xFFFF - ih->tot_len) +
1751 			     (0xFFFF - ih->id));
1752 		id = ntohs(ih->id);
1753 	}
1754 
1755 	th = tcp_hdr(skb);
1756 	th_off = skb_transport_offset(skb);
1757 	p_len = sh->gso_size;
1758 
1759 	tsum_seed = th->check + (0xFFFF ^ htons(skb->len));
1760 	seq = ntohl(th->seq);
1761 
1762 	/* Prepare all the headers. */
1763 	for (segment = 0; segment < sh->gso_segs; segment++) {
1764 		unsigned char *buf;
1765 		unsigned int p_used = 0;
1766 
1767 		/* Copy to the header memory for this segment. */
1768 		buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES +
1769 			NET_IP_ALIGN;
1770 		memcpy(buf, data, sh_len);
1771 
1772 		/* Update copied ip header. */
1773 		if (is_ipv6) {
1774 			ih6 = (struct ipv6hdr *)(buf + ih_off);
1775 			ih6->payload_len = htons(sh_len + p_len - ih_off -
1776 						 sizeof(*ih6));
1777 		} else {
1778 			ih = (struct iphdr *)(buf + ih_off);
1779 			ih->tot_len = htons(sh_len + p_len - ih_off);
1780 			ih->id = htons(id++);
1781 			ih->check = csum_long(isum_seed + ih->tot_len +
1782 					      ih->id) ^ 0xffff;
1783 		}
1784 
1785 		/* Update copied tcp header. */
1786 		th = (struct tcphdr *)(buf + th_off);
1787 		th->seq = htonl(seq);
1788 		th->check = csum_long(tsum_seed + htons(sh_len + p_len));
1789 		if (segment != sh->gso_segs - 1) {
1790 			th->fin = 0;
1791 			th->psh = 0;
1792 		}
1793 
1794 		/* Skip past the header. */
1795 		slot++;
1796 
1797 		/* Skip past the payload. */
1798 		while (p_used < p_len) {
1799 
1800 			/* Advance as needed. */
1801 			while (f_used >= f_size) {
1802 				f_id++;
1803 				f_size = skb_frag_size(&sh->frags[f_id]);
1804 				f_used = 0;
1805 			}
1806 
1807 			/* Use bytes from the current fragment. */
1808 			n = p_len - p_used;
1809 			if (n > f_size - f_used)
1810 				n = f_size - f_used;
1811 			f_used += n;
1812 			p_used += n;
1813 
1814 			slot++;
1815 		}
1816 
1817 		seq += p_len;
1818 
1819 		/* The last segment may be less than gso_size. */
1820 		data_len -= p_len;
1821 		if (data_len < p_len)
1822 			p_len = data_len;
1823 	}
1824 
1825 	/* Flush the headers so they are ready for hardware DMA. */
1826 	wmb();
1827 }
1828 
1829 /* Pass all the data to mpipe for egress. */
tso_egress(struct net_device * dev,gxio_mpipe_equeue_t * equeue,struct sk_buff * skb,unsigned char * headers,s64 slot)1830 static void tso_egress(struct net_device *dev, gxio_mpipe_equeue_t *equeue,
1831 		       struct sk_buff *skb, unsigned char *headers, s64 slot)
1832 {
1833 	struct skb_shared_info *sh = skb_shinfo(skb);
1834 	int instance = mpipe_instance(dev);
1835 	struct mpipe_data *md = &mpipe_data[instance];
1836 	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1837 	unsigned int data_len = skb->len - sh_len;
1838 	unsigned int p_len = sh->gso_size;
1839 	gxio_mpipe_edesc_t edesc_head = { { 0 } };
1840 	gxio_mpipe_edesc_t edesc_body = { { 0 } };
1841 	long f_id = -1;    /* id of the current fragment */
1842 	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1843 	long f_used = 0;  /* bytes used from the current fragment */
1844 	void *f_data = skb->data + sh_len;
1845 	long n;            /* size of the current piece of payload */
1846 	unsigned long tx_packets = 0, tx_bytes = 0;
1847 	unsigned int csum_start;
1848 	int segment;
1849 
1850 	/* Prepare to egress the headers: set up header edesc. */
1851 	csum_start = skb_checksum_start_offset(skb);
1852 	edesc_head.csum = 1;
1853 	edesc_head.csum_start = csum_start;
1854 	edesc_head.csum_dest = csum_start + skb->csum_offset;
1855 	edesc_head.xfer_size = sh_len;
1856 
1857 	/* This is only used to specify the TLB. */
1858 	edesc_head.stack_idx = md->first_buffer_stack;
1859 	edesc_body.stack_idx = md->first_buffer_stack;
1860 
1861 	/* Egress all the edescs. */
1862 	for (segment = 0; segment < sh->gso_segs; segment++) {
1863 		unsigned char *buf;
1864 		unsigned int p_used = 0;
1865 
1866 		/* Egress the header. */
1867 		buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES +
1868 			NET_IP_ALIGN;
1869 		edesc_head.va = va_to_tile_io_addr(buf);
1870 		gxio_mpipe_equeue_put_at(equeue, edesc_head, slot);
1871 		slot++;
1872 
1873 		/* Egress the payload. */
1874 		while (p_used < p_len) {
1875 			void *va;
1876 
1877 			/* Advance as needed. */
1878 			while (f_used >= f_size) {
1879 				f_id++;
1880 				f_size = skb_frag_size(&sh->frags[f_id]);
1881 				f_data = tile_net_frag_buf(&sh->frags[f_id]);
1882 				f_used = 0;
1883 			}
1884 
1885 			va = f_data + f_used;
1886 
1887 			/* Use bytes from the current fragment. */
1888 			n = p_len - p_used;
1889 			if (n > f_size - f_used)
1890 				n = f_size - f_used;
1891 			f_used += n;
1892 			p_used += n;
1893 
1894 			/* Egress a piece of the payload. */
1895 			edesc_body.va = va_to_tile_io_addr(va);
1896 			edesc_body.xfer_size = n;
1897 			edesc_body.bound = !(p_used < p_len);
1898 			gxio_mpipe_equeue_put_at(equeue, edesc_body, slot);
1899 			slot++;
1900 		}
1901 
1902 		tx_packets++;
1903 		tx_bytes += sh_len + p_len;
1904 
1905 		/* The last segment may be less than gso_size. */
1906 		data_len -= p_len;
1907 		if (data_len < p_len)
1908 			p_len = data_len;
1909 	}
1910 
1911 	/* Update stats. */
1912 	tile_net_stats_add(tx_packets, &dev->stats.tx_packets);
1913 	tile_net_stats_add(tx_bytes, &dev->stats.tx_bytes);
1914 }
1915 
1916 /* Do "TSO" handling for egress.
1917  *
1918  * Normally drivers set NETIF_F_TSO only to support hardware TSO;
1919  * otherwise the stack uses scatter-gather to implement GSO in software.
1920  * On our testing, enabling GSO support (via NETIF_F_SG) drops network
1921  * performance down to around 7.5 Gbps on the 10G interfaces, although
1922  * also dropping cpu utilization way down, to under 8%.  But
1923  * implementing "TSO" in the driver brings performance back up to line
1924  * rate, while dropping cpu usage even further, to less than 4%.  In
1925  * practice, profiling of GSO shows that skb_segment() is what causes
1926  * the performance overheads; we benefit in the driver from using
1927  * preallocated memory to duplicate the TCP/IP headers.
1928  */
tile_net_tx_tso(struct sk_buff * skb,struct net_device * dev)1929 static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev)
1930 {
1931 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
1932 	struct tile_net_priv *priv = netdev_priv(dev);
1933 	int channel = priv->echannel;
1934 	int instance = priv->instance;
1935 	struct mpipe_data *md = &mpipe_data[instance];
1936 	struct tile_net_egress *egress = &md->egress_for_echannel[channel];
1937 	struct tile_net_comps *comps =
1938 		info->mpipe[instance].comps_for_echannel[channel];
1939 	gxio_mpipe_equeue_t *equeue = egress->equeue;
1940 	unsigned long irqflags;
1941 	int num_edescs;
1942 	s64 slot;
1943 
1944 	/* Determine how many mpipe edesc's are needed. */
1945 	num_edescs = tso_count_edescs(skb);
1946 
1947 	local_irq_save(irqflags);
1948 
1949 	/* Try to acquire a completion entry and an egress slot. */
1950 	slot = tile_net_equeue_try_reserve(dev, skb->queue_mapping, comps,
1951 					   equeue, num_edescs);
1952 	if (slot < 0) {
1953 		local_irq_restore(irqflags);
1954 		return NETDEV_TX_BUSY;
1955 	}
1956 
1957 	/* Set up copies of header data properly. */
1958 	tso_headers_prepare(skb, egress->headers, slot);
1959 
1960 	/* Actually pass the data to the network hardware. */
1961 	tso_egress(dev, equeue, skb, egress->headers, slot);
1962 
1963 	/* Add a completion record. */
1964 	add_comp(equeue, comps, slot + num_edescs - 1, skb);
1965 
1966 	local_irq_restore(irqflags);
1967 
1968 	/* Make sure the egress timer is scheduled. */
1969 	tile_net_schedule_egress_timer();
1970 
1971 	return NETDEV_TX_OK;
1972 }
1973 
1974 /* Analyze the body and frags for a transmit request. */
tile_net_tx_frags(struct frag * frags,struct sk_buff * skb,void * b_data,unsigned int b_len)1975 static unsigned int tile_net_tx_frags(struct frag *frags,
1976 				       struct sk_buff *skb,
1977 				       void *b_data, unsigned int b_len)
1978 {
1979 	unsigned int i, n = 0;
1980 
1981 	struct skb_shared_info *sh = skb_shinfo(skb);
1982 
1983 	if (b_len != 0) {
1984 		frags[n].buf = b_data;
1985 		frags[n++].length = b_len;
1986 	}
1987 
1988 	for (i = 0; i < sh->nr_frags; i++) {
1989 		skb_frag_t *f = &sh->frags[i];
1990 		frags[n].buf = tile_net_frag_buf(f);
1991 		frags[n++].length = skb_frag_size(f);
1992 	}
1993 
1994 	return n;
1995 }
1996 
1997 /* Help the kernel transmit a packet. */
tile_net_tx(struct sk_buff * skb,struct net_device * dev)1998 static int tile_net_tx(struct sk_buff *skb, struct net_device *dev)
1999 {
2000 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
2001 	struct tile_net_priv *priv = netdev_priv(dev);
2002 	int instance = priv->instance;
2003 	struct mpipe_data *md = &mpipe_data[instance];
2004 	struct tile_net_egress *egress =
2005 		&md->egress_for_echannel[priv->echannel];
2006 	gxio_mpipe_equeue_t *equeue = egress->equeue;
2007 	struct tile_net_comps *comps =
2008 		info->mpipe[instance].comps_for_echannel[priv->echannel];
2009 	unsigned int len = skb->len;
2010 	unsigned char *data = skb->data;
2011 	unsigned int num_edescs;
2012 	struct frag frags[MAX_FRAGS];
2013 	gxio_mpipe_edesc_t edescs[MAX_FRAGS];
2014 	unsigned long irqflags;
2015 	gxio_mpipe_edesc_t edesc = { { 0 } };
2016 	unsigned int i;
2017 	s64 slot;
2018 
2019 	if (skb_is_gso(skb))
2020 		return tile_net_tx_tso(skb, dev);
2021 
2022 	num_edescs = tile_net_tx_frags(frags, skb, data, skb_headlen(skb));
2023 
2024 	/* This is only used to specify the TLB. */
2025 	edesc.stack_idx = md->first_buffer_stack;
2026 
2027 	/* Prepare the edescs. */
2028 	for (i = 0; i < num_edescs; i++) {
2029 		edesc.xfer_size = frags[i].length;
2030 		edesc.va = va_to_tile_io_addr(frags[i].buf);
2031 		edescs[i] = edesc;
2032 	}
2033 
2034 	/* Mark the final edesc. */
2035 	edescs[num_edescs - 1].bound = 1;
2036 
2037 	/* Add checksum info to the initial edesc, if needed. */
2038 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2039 		unsigned int csum_start = skb_checksum_start_offset(skb);
2040 		edescs[0].csum = 1;
2041 		edescs[0].csum_start = csum_start;
2042 		edescs[0].csum_dest = csum_start + skb->csum_offset;
2043 	}
2044 
2045 	local_irq_save(irqflags);
2046 
2047 	/* Try to acquire a completion entry and an egress slot. */
2048 	slot = tile_net_equeue_try_reserve(dev, skb->queue_mapping, comps,
2049 					   equeue, num_edescs);
2050 	if (slot < 0) {
2051 		local_irq_restore(irqflags);
2052 		return NETDEV_TX_BUSY;
2053 	}
2054 
2055 	for (i = 0; i < num_edescs; i++)
2056 		gxio_mpipe_equeue_put_at(equeue, edescs[i], slot++);
2057 
2058 	/* Store TX timestamp if needed. */
2059 	tile_tx_timestamp(skb, instance);
2060 
2061 	/* Add a completion record. */
2062 	add_comp(equeue, comps, slot - 1, skb);
2063 
2064 	/* NOTE: Use ETH_ZLEN for short packets (e.g. 42 < 60). */
2065 	tile_net_stats_add(1, &dev->stats.tx_packets);
2066 	tile_net_stats_add(max_t(unsigned int, len, ETH_ZLEN),
2067 			   &dev->stats.tx_bytes);
2068 
2069 	local_irq_restore(irqflags);
2070 
2071 	/* Make sure the egress timer is scheduled. */
2072 	tile_net_schedule_egress_timer();
2073 
2074 	return NETDEV_TX_OK;
2075 }
2076 
2077 /* Return subqueue id on this core (one per core). */
tile_net_select_queue(struct net_device * dev,struct sk_buff * skb,void * accel_priv,select_queue_fallback_t fallback)2078 static u16 tile_net_select_queue(struct net_device *dev, struct sk_buff *skb,
2079 				 void *accel_priv, select_queue_fallback_t fallback)
2080 {
2081 	return smp_processor_id();
2082 }
2083 
2084 /* Deal with a transmit timeout. */
tile_net_tx_timeout(struct net_device * dev)2085 static void tile_net_tx_timeout(struct net_device *dev)
2086 {
2087 	int cpu;
2088 
2089 	for_each_online_cpu(cpu)
2090 		netif_wake_subqueue(dev, cpu);
2091 }
2092 
2093 /* Ioctl commands. */
tile_net_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2094 static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2095 {
2096 	if (cmd == SIOCSHWTSTAMP)
2097 		return tile_hwtstamp_set(dev, rq);
2098 	if (cmd == SIOCGHWTSTAMP)
2099 		return tile_hwtstamp_get(dev, rq);
2100 
2101 	return -EOPNOTSUPP;
2102 }
2103 
2104 /* Change the MTU. */
tile_net_change_mtu(struct net_device * dev,int new_mtu)2105 static int tile_net_change_mtu(struct net_device *dev, int new_mtu)
2106 {
2107 	if (new_mtu < 68)
2108 		return -EINVAL;
2109 	if (new_mtu > ((jumbo_num != 0) ? 9000 : 1500))
2110 		return -EINVAL;
2111 	dev->mtu = new_mtu;
2112 	return 0;
2113 }
2114 
2115 /* Change the Ethernet address of the NIC.
2116  *
2117  * The hypervisor driver does not support changing MAC address.  However,
2118  * the hardware does not do anything with the MAC address, so the address
2119  * which gets used on outgoing packets, and which is accepted on incoming
2120  * packets, is completely up to us.
2121  *
2122  * Returns 0 on success, negative on failure.
2123  */
tile_net_set_mac_address(struct net_device * dev,void * p)2124 static int tile_net_set_mac_address(struct net_device *dev, void *p)
2125 {
2126 	struct sockaddr *addr = p;
2127 
2128 	if (!is_valid_ether_addr(addr->sa_data))
2129 		return -EINVAL;
2130 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2131 	return 0;
2132 }
2133 
2134 #ifdef CONFIG_NET_POLL_CONTROLLER
2135 /* Polling 'interrupt' - used by things like netconsole to send skbs
2136  * without having to re-enable interrupts. It's not called while
2137  * the interrupt routine is executing.
2138  */
tile_net_netpoll(struct net_device * dev)2139 static void tile_net_netpoll(struct net_device *dev)
2140 {
2141 	int instance = mpipe_instance(dev);
2142 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
2143 	struct mpipe_data *md = &mpipe_data[instance];
2144 
2145 	disable_percpu_irq(md->ingress_irq);
2146 	napi_schedule(&info->mpipe[instance].napi);
2147 	enable_percpu_irq(md->ingress_irq, 0);
2148 }
2149 #endif
2150 
2151 static const struct net_device_ops tile_net_ops = {
2152 	.ndo_open = tile_net_open,
2153 	.ndo_stop = tile_net_stop,
2154 	.ndo_start_xmit = tile_net_tx,
2155 	.ndo_select_queue = tile_net_select_queue,
2156 	.ndo_do_ioctl = tile_net_ioctl,
2157 	.ndo_change_mtu = tile_net_change_mtu,
2158 	.ndo_tx_timeout = tile_net_tx_timeout,
2159 	.ndo_set_mac_address = tile_net_set_mac_address,
2160 #ifdef CONFIG_NET_POLL_CONTROLLER
2161 	.ndo_poll_controller = tile_net_netpoll,
2162 #endif
2163 };
2164 
2165 /* The setup function.
2166  *
2167  * This uses ether_setup() to assign various fields in dev, including
2168  * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
2169  */
tile_net_setup(struct net_device * dev)2170 static void tile_net_setup(struct net_device *dev)
2171 {
2172 	netdev_features_t features = 0;
2173 
2174 	ether_setup(dev);
2175 	dev->netdev_ops = &tile_net_ops;
2176 	dev->watchdog_timeo = TILE_NET_TIMEOUT;
2177 	dev->mtu = 1500;
2178 
2179 	features |= NETIF_F_HW_CSUM;
2180 	features |= NETIF_F_SG;
2181 	features |= NETIF_F_TSO;
2182 	features |= NETIF_F_TSO6;
2183 
2184 	dev->hw_features   |= features;
2185 	dev->vlan_features |= features;
2186 	dev->features      |= features;
2187 }
2188 
2189 /* Allocate the device structure, register the device, and obtain the
2190  * MAC address from the hypervisor.
2191  */
tile_net_dev_init(const char * name,const uint8_t * mac)2192 static void tile_net_dev_init(const char *name, const uint8_t *mac)
2193 {
2194 	int ret;
2195 	struct net_device *dev;
2196 	struct tile_net_priv *priv;
2197 
2198 	/* HACK: Ignore "loop" links. */
2199 	if (strncmp(name, "loop", 4) == 0)
2200 		return;
2201 
2202 	/* Allocate the device structure.  Normally, "name" is a
2203 	 * template, instantiated by register_netdev(), but not for us.
2204 	 */
2205 	dev = alloc_netdev_mqs(sizeof(*priv), name, NET_NAME_UNKNOWN,
2206 			       tile_net_setup, NR_CPUS, 1);
2207 	if (!dev) {
2208 		pr_err("alloc_netdev_mqs(%s) failed\n", name);
2209 		return;
2210 	}
2211 
2212 	/* Initialize "priv". */
2213 	priv = netdev_priv(dev);
2214 	priv->dev = dev;
2215 	priv->channel = -1;
2216 	priv->loopify_channel = -1;
2217 	priv->echannel = -1;
2218 	init_ptp_dev(priv);
2219 
2220 	/* Get the MAC address and set it in the device struct; this must
2221 	 * be done before the device is opened.  If the MAC is all zeroes,
2222 	 * we use a random address, since we're probably on the simulator.
2223 	 */
2224 	if (!is_zero_ether_addr(mac))
2225 		ether_addr_copy(dev->dev_addr, mac);
2226 	else
2227 		eth_hw_addr_random(dev);
2228 
2229 	/* Register the network device. */
2230 	ret = register_netdev(dev);
2231 	if (ret) {
2232 		netdev_err(dev, "register_netdev failed %d\n", ret);
2233 		free_netdev(dev);
2234 		return;
2235 	}
2236 }
2237 
2238 /* Per-cpu module initialization. */
tile_net_init_module_percpu(void * unused)2239 static void tile_net_init_module_percpu(void *unused)
2240 {
2241 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
2242 	int my_cpu = smp_processor_id();
2243 	int instance;
2244 
2245 	for (instance = 0; instance < NR_MPIPE_MAX; instance++) {
2246 		info->mpipe[instance].has_iqueue = false;
2247 		info->mpipe[instance].instance = instance;
2248 	}
2249 	info->my_cpu = my_cpu;
2250 
2251 	/* Initialize the egress timer. */
2252 	hrtimer_init(&info->egress_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2253 	info->egress_timer.function = tile_net_handle_egress_timer;
2254 }
2255 
2256 /* Module initialization. */
tile_net_init_module(void)2257 static int __init tile_net_init_module(void)
2258 {
2259 	int i;
2260 	char name[GXIO_MPIPE_LINK_NAME_LEN];
2261 	uint8_t mac[6];
2262 
2263 	pr_info("Tilera Network Driver\n");
2264 
2265 	BUILD_BUG_ON(NR_MPIPE_MAX != 2);
2266 
2267 	mutex_init(&tile_net_devs_for_channel_mutex);
2268 
2269 	/* Initialize each CPU. */
2270 	on_each_cpu(tile_net_init_module_percpu, NULL, 1);
2271 
2272 	/* Find out what devices we have, and initialize them. */
2273 	for (i = 0; gxio_mpipe_link_enumerate_mac(i, name, mac) >= 0; i++)
2274 		tile_net_dev_init(name, mac);
2275 
2276 	if (!network_cpus_init())
2277 		cpumask_and(&network_cpus_map, housekeeping_cpumask(),
2278 			    cpu_online_mask);
2279 
2280 	return 0;
2281 }
2282 
2283 module_init(tile_net_init_module);
2284