1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19 #include <linux/export.h>
20 #include <linux/moduleloader.h>
21 #include <linux/trace_events.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/sysfs.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/elf.h>
31 #include <linux/proc_fs.h>
32 #include <linux/security.h>
33 #include <linux/seq_file.h>
34 #include <linux/syscalls.h>
35 #include <linux/fcntl.h>
36 #include <linux/rcupdate.h>
37 #include <linux/capability.h>
38 #include <linux/cpu.h>
39 #include <linux/moduleparam.h>
40 #include <linux/errno.h>
41 #include <linux/err.h>
42 #include <linux/vermagic.h>
43 #include <linux/notifier.h>
44 #include <linux/sched.h>
45 #include <linux/device.h>
46 #include <linux/string.h>
47 #include <linux/mutex.h>
48 #include <linux/rculist.h>
49 #include <asm/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/mmu_context.h>
52 #include <linux/license.h>
53 #include <asm/sections.h>
54 #include <linux/tracepoint.h>
55 #include <linux/ftrace.h>
56 #include <linux/async.h>
57 #include <linux/percpu.h>
58 #include <linux/kmemleak.h>
59 #include <linux/jump_label.h>
60 #include <linux/pfn.h>
61 #include <linux/bsearch.h>
62 #include <uapi/linux/module.h>
63 #include "module-internal.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67
68 #ifndef ARCH_SHF_SMALL
69 #define ARCH_SHF_SMALL 0
70 #endif
71
72 /*
73 * Modules' sections will be aligned on page boundaries
74 * to ensure complete separation of code and data, but
75 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
76 */
77 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
78 # define debug_align(X) ALIGN(X, PAGE_SIZE)
79 #else
80 # define debug_align(X) (X)
81 #endif
82
83 /*
84 * Given BASE and SIZE this macro calculates the number of pages the
85 * memory regions occupies
86 */
87 #define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ? \
88 (PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) - \
89 PFN_DOWN((unsigned long)BASE) + 1) \
90 : (0UL))
91
92 /* If this is set, the section belongs in the init part of the module */
93 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
94
95 /*
96 * Mutex protects:
97 * 1) List of modules (also safely readable with preempt_disable),
98 * 2) module_use links,
99 * 3) module_addr_min/module_addr_max.
100 * (delete and add uses RCU list operations). */
101 DEFINE_MUTEX(module_mutex);
102 EXPORT_SYMBOL_GPL(module_mutex);
103 static LIST_HEAD(modules);
104
105 #ifdef CONFIG_MODULES_TREE_LOOKUP
106
107 /*
108 * Use a latched RB-tree for __module_address(); this allows us to use
109 * RCU-sched lookups of the address from any context.
110 *
111 * Because modules have two address ranges: init and core, we need two
112 * latch_tree_nodes entries. Therefore we need the back-pointer from
113 * mod_tree_node.
114 *
115 * Because init ranges are short lived we mark them unlikely and have placed
116 * them outside the critical cacheline in struct module.
117 *
118 * This is conditional on PERF_EVENTS || TRACING because those can really hit
119 * __module_address() hard by doing a lot of stack unwinding; potentially from
120 * NMI context.
121 */
122
__mod_tree_val(struct latch_tree_node * n)123 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
124 {
125 struct mod_tree_node *mtn = container_of(n, struct mod_tree_node, node);
126 struct module *mod = mtn->mod;
127
128 if (unlikely(mtn == &mod->mtn_init))
129 return (unsigned long)mod->module_init;
130
131 return (unsigned long)mod->module_core;
132 }
133
__mod_tree_size(struct latch_tree_node * n)134 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
135 {
136 struct mod_tree_node *mtn = container_of(n, struct mod_tree_node, node);
137 struct module *mod = mtn->mod;
138
139 if (unlikely(mtn == &mod->mtn_init))
140 return (unsigned long)mod->init_size;
141
142 return (unsigned long)mod->core_size;
143 }
144
145 static __always_inline bool
mod_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)146 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
147 {
148 return __mod_tree_val(a) < __mod_tree_val(b);
149 }
150
151 static __always_inline int
mod_tree_comp(void * key,struct latch_tree_node * n)152 mod_tree_comp(void *key, struct latch_tree_node *n)
153 {
154 unsigned long val = (unsigned long)key;
155 unsigned long start, end;
156
157 start = __mod_tree_val(n);
158 if (val < start)
159 return -1;
160
161 end = start + __mod_tree_size(n);
162 if (val >= end)
163 return 1;
164
165 return 0;
166 }
167
168 static const struct latch_tree_ops mod_tree_ops = {
169 .less = mod_tree_less,
170 .comp = mod_tree_comp,
171 };
172
173 static struct mod_tree_root {
174 struct latch_tree_root root;
175 unsigned long addr_min;
176 unsigned long addr_max;
177 } mod_tree __cacheline_aligned = {
178 .addr_min = -1UL,
179 };
180
181 #define module_addr_min mod_tree.addr_min
182 #define module_addr_max mod_tree.addr_max
183
__mod_tree_insert(struct mod_tree_node * node)184 static noinline void __mod_tree_insert(struct mod_tree_node *node)
185 {
186 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
187 }
188
__mod_tree_remove(struct mod_tree_node * node)189 static void __mod_tree_remove(struct mod_tree_node *node)
190 {
191 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
192 }
193
194 /*
195 * These modifications: insert, remove_init and remove; are serialized by the
196 * module_mutex.
197 */
mod_tree_insert(struct module * mod)198 static void mod_tree_insert(struct module *mod)
199 {
200 mod->mtn_core.mod = mod;
201 mod->mtn_init.mod = mod;
202
203 __mod_tree_insert(&mod->mtn_core);
204 if (mod->init_size)
205 __mod_tree_insert(&mod->mtn_init);
206 }
207
mod_tree_remove_init(struct module * mod)208 static void mod_tree_remove_init(struct module *mod)
209 {
210 if (mod->init_size)
211 __mod_tree_remove(&mod->mtn_init);
212 }
213
mod_tree_remove(struct module * mod)214 static void mod_tree_remove(struct module *mod)
215 {
216 __mod_tree_remove(&mod->mtn_core);
217 mod_tree_remove_init(mod);
218 }
219
mod_find(unsigned long addr)220 static struct module *mod_find(unsigned long addr)
221 {
222 struct latch_tree_node *ltn;
223
224 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
225 if (!ltn)
226 return NULL;
227
228 return container_of(ltn, struct mod_tree_node, node)->mod;
229 }
230
231 #else /* MODULES_TREE_LOOKUP */
232
233 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
234
mod_tree_insert(struct module * mod)235 static void mod_tree_insert(struct module *mod) { }
mod_tree_remove_init(struct module * mod)236 static void mod_tree_remove_init(struct module *mod) { }
mod_tree_remove(struct module * mod)237 static void mod_tree_remove(struct module *mod) { }
238
mod_find(unsigned long addr)239 static struct module *mod_find(unsigned long addr)
240 {
241 struct module *mod;
242
243 list_for_each_entry_rcu(mod, &modules, list) {
244 if (within_module(addr, mod))
245 return mod;
246 }
247
248 return NULL;
249 }
250
251 #endif /* MODULES_TREE_LOOKUP */
252
253 /*
254 * Bounds of module text, for speeding up __module_address.
255 * Protected by module_mutex.
256 */
__mod_update_bounds(void * base,unsigned int size)257 static void __mod_update_bounds(void *base, unsigned int size)
258 {
259 unsigned long min = (unsigned long)base;
260 unsigned long max = min + size;
261
262 if (min < module_addr_min)
263 module_addr_min = min;
264 if (max > module_addr_max)
265 module_addr_max = max;
266 }
267
mod_update_bounds(struct module * mod)268 static void mod_update_bounds(struct module *mod)
269 {
270 __mod_update_bounds(mod->module_core, mod->core_size);
271 if (mod->init_size)
272 __mod_update_bounds(mod->module_init, mod->init_size);
273 }
274
275 #ifdef CONFIG_KGDB_KDB
276 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
277 #endif /* CONFIG_KGDB_KDB */
278
module_assert_mutex(void)279 static void module_assert_mutex(void)
280 {
281 lockdep_assert_held(&module_mutex);
282 }
283
module_assert_mutex_or_preempt(void)284 static void module_assert_mutex_or_preempt(void)
285 {
286 #ifdef CONFIG_LOCKDEP
287 if (unlikely(!debug_locks))
288 return;
289
290 WARN_ON(!rcu_read_lock_sched_held() &&
291 !lockdep_is_held(&module_mutex));
292 #endif
293 }
294
295 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
296 #ifndef CONFIG_MODULE_SIG_FORCE
297 module_param(sig_enforce, bool_enable_only, 0644);
298 #endif /* !CONFIG_MODULE_SIG_FORCE */
299
300 /* Block module loading/unloading? */
301 int modules_disabled = 0;
302 core_param(nomodule, modules_disabled, bint, 0);
303
304 /* Waiting for a module to finish initializing? */
305 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
306
307 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
308
register_module_notifier(struct notifier_block * nb)309 int register_module_notifier(struct notifier_block *nb)
310 {
311 return blocking_notifier_chain_register(&module_notify_list, nb);
312 }
313 EXPORT_SYMBOL(register_module_notifier);
314
unregister_module_notifier(struct notifier_block * nb)315 int unregister_module_notifier(struct notifier_block *nb)
316 {
317 return blocking_notifier_chain_unregister(&module_notify_list, nb);
318 }
319 EXPORT_SYMBOL(unregister_module_notifier);
320
321 struct load_info {
322 Elf_Ehdr *hdr;
323 unsigned long len;
324 Elf_Shdr *sechdrs;
325 char *secstrings, *strtab;
326 unsigned long symoffs, stroffs;
327 struct _ddebug *debug;
328 unsigned int num_debug;
329 bool sig_ok;
330 #ifdef CONFIG_KALLSYMS
331 unsigned long mod_kallsyms_init_off;
332 #endif
333 struct {
334 unsigned int sym, str, mod, vers, info, pcpu;
335 } index;
336 };
337
338 /* We require a truly strong try_module_get(): 0 means failure due to
339 ongoing or failed initialization etc. */
strong_try_module_get(struct module * mod)340 static inline int strong_try_module_get(struct module *mod)
341 {
342 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
343 if (mod && mod->state == MODULE_STATE_COMING)
344 return -EBUSY;
345 if (try_module_get(mod))
346 return 0;
347 else
348 return -ENOENT;
349 }
350
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)351 static inline void add_taint_module(struct module *mod, unsigned flag,
352 enum lockdep_ok lockdep_ok)
353 {
354 add_taint(flag, lockdep_ok);
355 mod->taints |= (1U << flag);
356 }
357
358 /*
359 * A thread that wants to hold a reference to a module only while it
360 * is running can call this to safely exit. nfsd and lockd use this.
361 */
__module_put_and_exit(struct module * mod,long code)362 void __module_put_and_exit(struct module *mod, long code)
363 {
364 module_put(mod);
365 do_exit(code);
366 }
367 EXPORT_SYMBOL(__module_put_and_exit);
368
369 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)370 static unsigned int find_sec(const struct load_info *info, const char *name)
371 {
372 unsigned int i;
373
374 for (i = 1; i < info->hdr->e_shnum; i++) {
375 Elf_Shdr *shdr = &info->sechdrs[i];
376 /* Alloc bit cleared means "ignore it." */
377 if ((shdr->sh_flags & SHF_ALLOC)
378 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
379 return i;
380 }
381 return 0;
382 }
383
384 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)385 static void *section_addr(const struct load_info *info, const char *name)
386 {
387 /* Section 0 has sh_addr 0. */
388 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
389 }
390
391 /* Find a module section, or NULL. Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)392 static void *section_objs(const struct load_info *info,
393 const char *name,
394 size_t object_size,
395 unsigned int *num)
396 {
397 unsigned int sec = find_sec(info, name);
398
399 /* Section 0 has sh_addr 0 and sh_size 0. */
400 *num = info->sechdrs[sec].sh_size / object_size;
401 return (void *)info->sechdrs[sec].sh_addr;
402 }
403
404 /* Provided by the linker */
405 extern const struct kernel_symbol __start___ksymtab[];
406 extern const struct kernel_symbol __stop___ksymtab[];
407 extern const struct kernel_symbol __start___ksymtab_gpl[];
408 extern const struct kernel_symbol __stop___ksymtab_gpl[];
409 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
410 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
411 extern const unsigned long __start___kcrctab[];
412 extern const unsigned long __start___kcrctab_gpl[];
413 extern const unsigned long __start___kcrctab_gpl_future[];
414 #ifdef CONFIG_UNUSED_SYMBOLS
415 extern const struct kernel_symbol __start___ksymtab_unused[];
416 extern const struct kernel_symbol __stop___ksymtab_unused[];
417 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
418 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
419 extern const unsigned long __start___kcrctab_unused[];
420 extern const unsigned long __start___kcrctab_unused_gpl[];
421 #endif
422
423 #ifndef CONFIG_MODVERSIONS
424 #define symversion(base, idx) NULL
425 #else
426 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
427 #endif
428
each_symbol_in_section(const struct symsearch * arr,unsigned int arrsize,struct module * owner,bool (* fn)(const struct symsearch * syms,struct module * owner,void * data),void * data)429 static bool each_symbol_in_section(const struct symsearch *arr,
430 unsigned int arrsize,
431 struct module *owner,
432 bool (*fn)(const struct symsearch *syms,
433 struct module *owner,
434 void *data),
435 void *data)
436 {
437 unsigned int j;
438
439 for (j = 0; j < arrsize; j++) {
440 if (fn(&arr[j], owner, data))
441 return true;
442 }
443
444 return false;
445 }
446
447 /* Returns true as soon as fn returns true, otherwise false. */
each_symbol_section(bool (* fn)(const struct symsearch * arr,struct module * owner,void * data),void * data)448 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
449 struct module *owner,
450 void *data),
451 void *data)
452 {
453 struct module *mod;
454 static const struct symsearch arr[] = {
455 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
456 NOT_GPL_ONLY, false },
457 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
458 __start___kcrctab_gpl,
459 GPL_ONLY, false },
460 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
461 __start___kcrctab_gpl_future,
462 WILL_BE_GPL_ONLY, false },
463 #ifdef CONFIG_UNUSED_SYMBOLS
464 { __start___ksymtab_unused, __stop___ksymtab_unused,
465 __start___kcrctab_unused,
466 NOT_GPL_ONLY, true },
467 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
468 __start___kcrctab_unused_gpl,
469 GPL_ONLY, true },
470 #endif
471 };
472
473 module_assert_mutex_or_preempt();
474
475 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
476 return true;
477
478 list_for_each_entry_rcu(mod, &modules, list) {
479 struct symsearch arr[] = {
480 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
481 NOT_GPL_ONLY, false },
482 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
483 mod->gpl_crcs,
484 GPL_ONLY, false },
485 { mod->gpl_future_syms,
486 mod->gpl_future_syms + mod->num_gpl_future_syms,
487 mod->gpl_future_crcs,
488 WILL_BE_GPL_ONLY, false },
489 #ifdef CONFIG_UNUSED_SYMBOLS
490 { mod->unused_syms,
491 mod->unused_syms + mod->num_unused_syms,
492 mod->unused_crcs,
493 NOT_GPL_ONLY, true },
494 { mod->unused_gpl_syms,
495 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
496 mod->unused_gpl_crcs,
497 GPL_ONLY, true },
498 #endif
499 };
500
501 if (mod->state == MODULE_STATE_UNFORMED)
502 continue;
503
504 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
505 return true;
506 }
507 return false;
508 }
509 EXPORT_SYMBOL_GPL(each_symbol_section);
510
511 struct find_symbol_arg {
512 /* Input */
513 const char *name;
514 bool gplok;
515 bool warn;
516
517 /* Output */
518 struct module *owner;
519 const unsigned long *crc;
520 const struct kernel_symbol *sym;
521 };
522
check_symbol(const struct symsearch * syms,struct module * owner,unsigned int symnum,void * data)523 static bool check_symbol(const struct symsearch *syms,
524 struct module *owner,
525 unsigned int symnum, void *data)
526 {
527 struct find_symbol_arg *fsa = data;
528
529 if (!fsa->gplok) {
530 if (syms->licence == GPL_ONLY)
531 return false;
532 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
533 pr_warn("Symbol %s is being used by a non-GPL module, "
534 "which will not be allowed in the future\n",
535 fsa->name);
536 }
537 }
538
539 #ifdef CONFIG_UNUSED_SYMBOLS
540 if (syms->unused && fsa->warn) {
541 pr_warn("Symbol %s is marked as UNUSED, however this module is "
542 "using it.\n", fsa->name);
543 pr_warn("This symbol will go away in the future.\n");
544 pr_warn("Please evaluate if this is the right api to use and "
545 "if it really is, submit a report to the linux kernel "
546 "mailing list together with submitting your code for "
547 "inclusion.\n");
548 }
549 #endif
550
551 fsa->owner = owner;
552 fsa->crc = symversion(syms->crcs, symnum);
553 fsa->sym = &syms->start[symnum];
554 return true;
555 }
556
cmp_name(const void * va,const void * vb)557 static int cmp_name(const void *va, const void *vb)
558 {
559 const char *a;
560 const struct kernel_symbol *b;
561 a = va; b = vb;
562 return strcmp(a, b->name);
563 }
564
find_symbol_in_section(const struct symsearch * syms,struct module * owner,void * data)565 static bool find_symbol_in_section(const struct symsearch *syms,
566 struct module *owner,
567 void *data)
568 {
569 struct find_symbol_arg *fsa = data;
570 struct kernel_symbol *sym;
571
572 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
573 sizeof(struct kernel_symbol), cmp_name);
574
575 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
576 return true;
577
578 return false;
579 }
580
581 /* Find a symbol and return it, along with, (optional) crc and
582 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
find_symbol(const char * name,struct module ** owner,const unsigned long ** crc,bool gplok,bool warn)583 const struct kernel_symbol *find_symbol(const char *name,
584 struct module **owner,
585 const unsigned long **crc,
586 bool gplok,
587 bool warn)
588 {
589 struct find_symbol_arg fsa;
590
591 fsa.name = name;
592 fsa.gplok = gplok;
593 fsa.warn = warn;
594
595 if (each_symbol_section(find_symbol_in_section, &fsa)) {
596 if (owner)
597 *owner = fsa.owner;
598 if (crc)
599 *crc = fsa.crc;
600 return fsa.sym;
601 }
602
603 pr_debug("Failed to find symbol %s\n", name);
604 return NULL;
605 }
606 EXPORT_SYMBOL_GPL(find_symbol);
607
608 /*
609 * Search for module by name: must hold module_mutex (or preempt disabled
610 * for read-only access).
611 */
find_module_all(const char * name,size_t len,bool even_unformed)612 static struct module *find_module_all(const char *name, size_t len,
613 bool even_unformed)
614 {
615 struct module *mod;
616
617 module_assert_mutex_or_preempt();
618
619 list_for_each_entry(mod, &modules, list) {
620 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
621 continue;
622 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
623 return mod;
624 }
625 return NULL;
626 }
627
find_module(const char * name)628 struct module *find_module(const char *name)
629 {
630 module_assert_mutex();
631 return find_module_all(name, strlen(name), false);
632 }
633 EXPORT_SYMBOL_GPL(find_module);
634
635 #ifdef CONFIG_SMP
636
mod_percpu(struct module * mod)637 static inline void __percpu *mod_percpu(struct module *mod)
638 {
639 return mod->percpu;
640 }
641
percpu_modalloc(struct module * mod,struct load_info * info)642 static int percpu_modalloc(struct module *mod, struct load_info *info)
643 {
644 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
645 unsigned long align = pcpusec->sh_addralign;
646
647 if (!pcpusec->sh_size)
648 return 0;
649
650 if (align > PAGE_SIZE) {
651 pr_warn("%s: per-cpu alignment %li > %li\n",
652 mod->name, align, PAGE_SIZE);
653 align = PAGE_SIZE;
654 }
655
656 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
657 if (!mod->percpu) {
658 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
659 mod->name, (unsigned long)pcpusec->sh_size);
660 return -ENOMEM;
661 }
662 mod->percpu_size = pcpusec->sh_size;
663 return 0;
664 }
665
percpu_modfree(struct module * mod)666 static void percpu_modfree(struct module *mod)
667 {
668 free_percpu(mod->percpu);
669 }
670
find_pcpusec(struct load_info * info)671 static unsigned int find_pcpusec(struct load_info *info)
672 {
673 return find_sec(info, ".data..percpu");
674 }
675
percpu_modcopy(struct module * mod,const void * from,unsigned long size)676 static void percpu_modcopy(struct module *mod,
677 const void *from, unsigned long size)
678 {
679 int cpu;
680
681 for_each_possible_cpu(cpu)
682 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
683 }
684
685 /**
686 * is_module_percpu_address - test whether address is from module static percpu
687 * @addr: address to test
688 *
689 * Test whether @addr belongs to module static percpu area.
690 *
691 * RETURNS:
692 * %true if @addr is from module static percpu area
693 */
is_module_percpu_address(unsigned long addr)694 bool is_module_percpu_address(unsigned long addr)
695 {
696 struct module *mod;
697 unsigned int cpu;
698
699 preempt_disable();
700
701 list_for_each_entry_rcu(mod, &modules, list) {
702 if (mod->state == MODULE_STATE_UNFORMED)
703 continue;
704 if (!mod->percpu_size)
705 continue;
706 for_each_possible_cpu(cpu) {
707 void *start = per_cpu_ptr(mod->percpu, cpu);
708
709 if ((void *)addr >= start &&
710 (void *)addr < start + mod->percpu_size) {
711 preempt_enable();
712 return true;
713 }
714 }
715 }
716
717 preempt_enable();
718 return false;
719 }
720
721 #else /* ... !CONFIG_SMP */
722
mod_percpu(struct module * mod)723 static inline void __percpu *mod_percpu(struct module *mod)
724 {
725 return NULL;
726 }
percpu_modalloc(struct module * mod,struct load_info * info)727 static int percpu_modalloc(struct module *mod, struct load_info *info)
728 {
729 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
730 if (info->sechdrs[info->index.pcpu].sh_size != 0)
731 return -ENOMEM;
732 return 0;
733 }
percpu_modfree(struct module * mod)734 static inline void percpu_modfree(struct module *mod)
735 {
736 }
find_pcpusec(struct load_info * info)737 static unsigned int find_pcpusec(struct load_info *info)
738 {
739 return 0;
740 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)741 static inline void percpu_modcopy(struct module *mod,
742 const void *from, unsigned long size)
743 {
744 /* pcpusec should be 0, and size of that section should be 0. */
745 BUG_ON(size != 0);
746 }
is_module_percpu_address(unsigned long addr)747 bool is_module_percpu_address(unsigned long addr)
748 {
749 return false;
750 }
751
752 #endif /* CONFIG_SMP */
753
754 #define MODINFO_ATTR(field) \
755 static void setup_modinfo_##field(struct module *mod, const char *s) \
756 { \
757 mod->field = kstrdup(s, GFP_KERNEL); \
758 } \
759 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
760 struct module_kobject *mk, char *buffer) \
761 { \
762 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
763 } \
764 static int modinfo_##field##_exists(struct module *mod) \
765 { \
766 return mod->field != NULL; \
767 } \
768 static void free_modinfo_##field(struct module *mod) \
769 { \
770 kfree(mod->field); \
771 mod->field = NULL; \
772 } \
773 static struct module_attribute modinfo_##field = { \
774 .attr = { .name = __stringify(field), .mode = 0444 }, \
775 .show = show_modinfo_##field, \
776 .setup = setup_modinfo_##field, \
777 .test = modinfo_##field##_exists, \
778 .free = free_modinfo_##field, \
779 };
780
781 MODINFO_ATTR(version);
782 MODINFO_ATTR(srcversion);
783
784 static char last_unloaded_module[MODULE_NAME_LEN+1];
785
786 #ifdef CONFIG_MODULE_UNLOAD
787
788 EXPORT_TRACEPOINT_SYMBOL(module_get);
789
790 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
791 #define MODULE_REF_BASE 1
792
793 /* Init the unload section of the module. */
module_unload_init(struct module * mod)794 static int module_unload_init(struct module *mod)
795 {
796 /*
797 * Initialize reference counter to MODULE_REF_BASE.
798 * refcnt == 0 means module is going.
799 */
800 atomic_set(&mod->refcnt, MODULE_REF_BASE);
801
802 INIT_LIST_HEAD(&mod->source_list);
803 INIT_LIST_HEAD(&mod->target_list);
804
805 /* Hold reference count during initialization. */
806 atomic_inc(&mod->refcnt);
807
808 return 0;
809 }
810
811 /* Does a already use b? */
already_uses(struct module * a,struct module * b)812 static int already_uses(struct module *a, struct module *b)
813 {
814 struct module_use *use;
815
816 list_for_each_entry(use, &b->source_list, source_list) {
817 if (use->source == a) {
818 pr_debug("%s uses %s!\n", a->name, b->name);
819 return 1;
820 }
821 }
822 pr_debug("%s does not use %s!\n", a->name, b->name);
823 return 0;
824 }
825
826 /*
827 * Module a uses b
828 * - we add 'a' as a "source", 'b' as a "target" of module use
829 * - the module_use is added to the list of 'b' sources (so
830 * 'b' can walk the list to see who sourced them), and of 'a'
831 * targets (so 'a' can see what modules it targets).
832 */
add_module_usage(struct module * a,struct module * b)833 static int add_module_usage(struct module *a, struct module *b)
834 {
835 struct module_use *use;
836
837 pr_debug("Allocating new usage for %s.\n", a->name);
838 use = kmalloc(sizeof(*use), GFP_ATOMIC);
839 if (!use) {
840 pr_warn("%s: out of memory loading\n", a->name);
841 return -ENOMEM;
842 }
843
844 use->source = a;
845 use->target = b;
846 list_add(&use->source_list, &b->source_list);
847 list_add(&use->target_list, &a->target_list);
848 return 0;
849 }
850
851 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)852 int ref_module(struct module *a, struct module *b)
853 {
854 int err;
855
856 if (b == NULL || already_uses(a, b))
857 return 0;
858
859 /* If module isn't available, we fail. */
860 err = strong_try_module_get(b);
861 if (err)
862 return err;
863
864 err = add_module_usage(a, b);
865 if (err) {
866 module_put(b);
867 return err;
868 }
869 return 0;
870 }
871 EXPORT_SYMBOL_GPL(ref_module);
872
873 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)874 static void module_unload_free(struct module *mod)
875 {
876 struct module_use *use, *tmp;
877
878 mutex_lock(&module_mutex);
879 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
880 struct module *i = use->target;
881 pr_debug("%s unusing %s\n", mod->name, i->name);
882 module_put(i);
883 list_del(&use->source_list);
884 list_del(&use->target_list);
885 kfree(use);
886 }
887 mutex_unlock(&module_mutex);
888 }
889
890 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)891 static inline int try_force_unload(unsigned int flags)
892 {
893 int ret = (flags & O_TRUNC);
894 if (ret)
895 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
896 return ret;
897 }
898 #else
try_force_unload(unsigned int flags)899 static inline int try_force_unload(unsigned int flags)
900 {
901 return 0;
902 }
903 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
904
905 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)906 static int try_release_module_ref(struct module *mod)
907 {
908 int ret;
909
910 /* Try to decrement refcnt which we set at loading */
911 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
912 BUG_ON(ret < 0);
913 if (ret)
914 /* Someone can put this right now, recover with checking */
915 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
916
917 return ret;
918 }
919
try_stop_module(struct module * mod,int flags,int * forced)920 static int try_stop_module(struct module *mod, int flags, int *forced)
921 {
922 /* If it's not unused, quit unless we're forcing. */
923 if (try_release_module_ref(mod) != 0) {
924 *forced = try_force_unload(flags);
925 if (!(*forced))
926 return -EWOULDBLOCK;
927 }
928
929 /* Mark it as dying. */
930 mod->state = MODULE_STATE_GOING;
931
932 return 0;
933 }
934
935 /**
936 * module_refcount - return the refcount or -1 if unloading
937 *
938 * @mod: the module we're checking
939 *
940 * Returns:
941 * -1 if the module is in the process of unloading
942 * otherwise the number of references in the kernel to the module
943 */
module_refcount(struct module * mod)944 int module_refcount(struct module *mod)
945 {
946 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
947 }
948 EXPORT_SYMBOL(module_refcount);
949
950 /* This exists whether we can unload or not */
951 static void free_module(struct module *mod);
952
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)953 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
954 unsigned int, flags)
955 {
956 struct module *mod;
957 char name[MODULE_NAME_LEN];
958 int ret, forced = 0;
959
960 if (!capable(CAP_SYS_MODULE) || modules_disabled)
961 return -EPERM;
962
963 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
964 return -EFAULT;
965 name[MODULE_NAME_LEN-1] = '\0';
966
967 if (mutex_lock_interruptible(&module_mutex) != 0)
968 return -EINTR;
969
970 mod = find_module(name);
971 if (!mod) {
972 ret = -ENOENT;
973 goto out;
974 }
975
976 if (!list_empty(&mod->source_list)) {
977 /* Other modules depend on us: get rid of them first. */
978 ret = -EWOULDBLOCK;
979 goto out;
980 }
981
982 /* Doing init or already dying? */
983 if (mod->state != MODULE_STATE_LIVE) {
984 /* FIXME: if (force), slam module count damn the torpedoes */
985 pr_debug("%s already dying\n", mod->name);
986 ret = -EBUSY;
987 goto out;
988 }
989
990 /* If it has an init func, it must have an exit func to unload */
991 if (mod->init && !mod->exit) {
992 forced = try_force_unload(flags);
993 if (!forced) {
994 /* This module can't be removed */
995 ret = -EBUSY;
996 goto out;
997 }
998 }
999
1000 /* Stop the machine so refcounts can't move and disable module. */
1001 ret = try_stop_module(mod, flags, &forced);
1002 if (ret != 0)
1003 goto out;
1004
1005 mutex_unlock(&module_mutex);
1006 /* Final destruction now no one is using it. */
1007 if (mod->exit != NULL)
1008 mod->exit();
1009 blocking_notifier_call_chain(&module_notify_list,
1010 MODULE_STATE_GOING, mod);
1011 async_synchronize_full();
1012
1013 /* Store the name of the last unloaded module for diagnostic purposes */
1014 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1015
1016 free_module(mod);
1017 return 0;
1018 out:
1019 mutex_unlock(&module_mutex);
1020 return ret;
1021 }
1022
print_unload_info(struct seq_file * m,struct module * mod)1023 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1024 {
1025 struct module_use *use;
1026 int printed_something = 0;
1027
1028 seq_printf(m, " %i ", module_refcount(mod));
1029
1030 /*
1031 * Always include a trailing , so userspace can differentiate
1032 * between this and the old multi-field proc format.
1033 */
1034 list_for_each_entry(use, &mod->source_list, source_list) {
1035 printed_something = 1;
1036 seq_printf(m, "%s,", use->source->name);
1037 }
1038
1039 if (mod->init != NULL && mod->exit == NULL) {
1040 printed_something = 1;
1041 seq_puts(m, "[permanent],");
1042 }
1043
1044 if (!printed_something)
1045 seq_puts(m, "-");
1046 }
1047
__symbol_put(const char * symbol)1048 void __symbol_put(const char *symbol)
1049 {
1050 struct module *owner;
1051
1052 preempt_disable();
1053 if (!find_symbol(symbol, &owner, NULL, true, false))
1054 BUG();
1055 module_put(owner);
1056 preempt_enable();
1057 }
1058 EXPORT_SYMBOL(__symbol_put);
1059
1060 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)1061 void symbol_put_addr(void *addr)
1062 {
1063 struct module *modaddr;
1064 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1065
1066 if (core_kernel_text(a))
1067 return;
1068
1069 /*
1070 * Even though we hold a reference on the module; we still need to
1071 * disable preemption in order to safely traverse the data structure.
1072 */
1073 preempt_disable();
1074 modaddr = __module_text_address(a);
1075 BUG_ON(!modaddr);
1076 module_put(modaddr);
1077 preempt_enable();
1078 }
1079 EXPORT_SYMBOL_GPL(symbol_put_addr);
1080
show_refcnt(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1081 static ssize_t show_refcnt(struct module_attribute *mattr,
1082 struct module_kobject *mk, char *buffer)
1083 {
1084 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1085 }
1086
1087 static struct module_attribute modinfo_refcnt =
1088 __ATTR(refcnt, 0444, show_refcnt, NULL);
1089
__module_get(struct module * module)1090 void __module_get(struct module *module)
1091 {
1092 if (module) {
1093 preempt_disable();
1094 atomic_inc(&module->refcnt);
1095 trace_module_get(module, _RET_IP_);
1096 preempt_enable();
1097 }
1098 }
1099 EXPORT_SYMBOL(__module_get);
1100
try_module_get(struct module * module)1101 bool try_module_get(struct module *module)
1102 {
1103 bool ret = true;
1104
1105 if (module) {
1106 preempt_disable();
1107 /* Note: here, we can fail to get a reference */
1108 if (likely(module_is_live(module) &&
1109 atomic_inc_not_zero(&module->refcnt) != 0))
1110 trace_module_get(module, _RET_IP_);
1111 else
1112 ret = false;
1113
1114 preempt_enable();
1115 }
1116 return ret;
1117 }
1118 EXPORT_SYMBOL(try_module_get);
1119
module_put(struct module * module)1120 void module_put(struct module *module)
1121 {
1122 int ret;
1123
1124 if (module) {
1125 preempt_disable();
1126 ret = atomic_dec_if_positive(&module->refcnt);
1127 WARN_ON(ret < 0); /* Failed to put refcount */
1128 trace_module_put(module, _RET_IP_);
1129 preempt_enable();
1130 }
1131 }
1132 EXPORT_SYMBOL(module_put);
1133
1134 #else /* !CONFIG_MODULE_UNLOAD */
print_unload_info(struct seq_file * m,struct module * mod)1135 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1136 {
1137 /* We don't know the usage count, or what modules are using. */
1138 seq_puts(m, " - -");
1139 }
1140
module_unload_free(struct module * mod)1141 static inline void module_unload_free(struct module *mod)
1142 {
1143 }
1144
ref_module(struct module * a,struct module * b)1145 int ref_module(struct module *a, struct module *b)
1146 {
1147 return strong_try_module_get(b);
1148 }
1149 EXPORT_SYMBOL_GPL(ref_module);
1150
module_unload_init(struct module * mod)1151 static inline int module_unload_init(struct module *mod)
1152 {
1153 return 0;
1154 }
1155 #endif /* CONFIG_MODULE_UNLOAD */
1156
module_flags_taint(struct module * mod,char * buf)1157 static size_t module_flags_taint(struct module *mod, char *buf)
1158 {
1159 size_t l = 0;
1160
1161 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1162 buf[l++] = 'P';
1163 if (mod->taints & (1 << TAINT_OOT_MODULE))
1164 buf[l++] = 'O';
1165 if (mod->taints & (1 << TAINT_FORCED_MODULE))
1166 buf[l++] = 'F';
1167 if (mod->taints & (1 << TAINT_CRAP))
1168 buf[l++] = 'C';
1169 if (mod->taints & (1 << TAINT_UNSIGNED_MODULE))
1170 buf[l++] = 'E';
1171 /*
1172 * TAINT_FORCED_RMMOD: could be added.
1173 * TAINT_CPU_OUT_OF_SPEC, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1174 * apply to modules.
1175 */
1176 return l;
1177 }
1178
show_initstate(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1179 static ssize_t show_initstate(struct module_attribute *mattr,
1180 struct module_kobject *mk, char *buffer)
1181 {
1182 const char *state = "unknown";
1183
1184 switch (mk->mod->state) {
1185 case MODULE_STATE_LIVE:
1186 state = "live";
1187 break;
1188 case MODULE_STATE_COMING:
1189 state = "coming";
1190 break;
1191 case MODULE_STATE_GOING:
1192 state = "going";
1193 break;
1194 default:
1195 BUG();
1196 }
1197 return sprintf(buffer, "%s\n", state);
1198 }
1199
1200 static struct module_attribute modinfo_initstate =
1201 __ATTR(initstate, 0444, show_initstate, NULL);
1202
store_uevent(struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)1203 static ssize_t store_uevent(struct module_attribute *mattr,
1204 struct module_kobject *mk,
1205 const char *buffer, size_t count)
1206 {
1207 enum kobject_action action;
1208
1209 if (kobject_action_type(buffer, count, &action) == 0)
1210 kobject_uevent(&mk->kobj, action);
1211 return count;
1212 }
1213
1214 struct module_attribute module_uevent =
1215 __ATTR(uevent, 0200, NULL, store_uevent);
1216
show_coresize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1217 static ssize_t show_coresize(struct module_attribute *mattr,
1218 struct module_kobject *mk, char *buffer)
1219 {
1220 return sprintf(buffer, "%u\n", mk->mod->core_size);
1221 }
1222
1223 static struct module_attribute modinfo_coresize =
1224 __ATTR(coresize, 0444, show_coresize, NULL);
1225
show_initsize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1226 static ssize_t show_initsize(struct module_attribute *mattr,
1227 struct module_kobject *mk, char *buffer)
1228 {
1229 return sprintf(buffer, "%u\n", mk->mod->init_size);
1230 }
1231
1232 static struct module_attribute modinfo_initsize =
1233 __ATTR(initsize, 0444, show_initsize, NULL);
1234
show_taint(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1235 static ssize_t show_taint(struct module_attribute *mattr,
1236 struct module_kobject *mk, char *buffer)
1237 {
1238 size_t l;
1239
1240 l = module_flags_taint(mk->mod, buffer);
1241 buffer[l++] = '\n';
1242 return l;
1243 }
1244
1245 static struct module_attribute modinfo_taint =
1246 __ATTR(taint, 0444, show_taint, NULL);
1247
1248 static struct module_attribute *modinfo_attrs[] = {
1249 &module_uevent,
1250 &modinfo_version,
1251 &modinfo_srcversion,
1252 &modinfo_initstate,
1253 &modinfo_coresize,
1254 &modinfo_initsize,
1255 &modinfo_taint,
1256 #ifdef CONFIG_MODULE_UNLOAD
1257 &modinfo_refcnt,
1258 #endif
1259 NULL,
1260 };
1261
1262 static const char vermagic[] = VERMAGIC_STRING;
1263
try_to_force_load(struct module * mod,const char * reason)1264 static int try_to_force_load(struct module *mod, const char *reason)
1265 {
1266 #ifdef CONFIG_MODULE_FORCE_LOAD
1267 if (!test_taint(TAINT_FORCED_MODULE))
1268 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1269 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1270 return 0;
1271 #else
1272 return -ENOEXEC;
1273 #endif
1274 }
1275
1276 #ifdef CONFIG_MODVERSIONS
1277 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
maybe_relocated(unsigned long crc,const struct module * crc_owner)1278 static unsigned long maybe_relocated(unsigned long crc,
1279 const struct module *crc_owner)
1280 {
1281 #ifdef ARCH_RELOCATES_KCRCTAB
1282 if (crc_owner == NULL)
1283 return crc - (unsigned long)reloc_start;
1284 #endif
1285 return crc;
1286 }
1287
check_version(Elf_Shdr * sechdrs,unsigned int versindex,const char * symname,struct module * mod,const unsigned long * crc,const struct module * crc_owner)1288 static int check_version(Elf_Shdr *sechdrs,
1289 unsigned int versindex,
1290 const char *symname,
1291 struct module *mod,
1292 const unsigned long *crc,
1293 const struct module *crc_owner)
1294 {
1295 unsigned int i, num_versions;
1296 struct modversion_info *versions;
1297
1298 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1299 if (!crc)
1300 return 1;
1301
1302 /* No versions at all? modprobe --force does this. */
1303 if (versindex == 0)
1304 return try_to_force_load(mod, symname) == 0;
1305
1306 versions = (void *) sechdrs[versindex].sh_addr;
1307 num_versions = sechdrs[versindex].sh_size
1308 / sizeof(struct modversion_info);
1309
1310 for (i = 0; i < num_versions; i++) {
1311 if (strcmp(versions[i].name, symname) != 0)
1312 continue;
1313
1314 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1315 return 1;
1316 pr_debug("Found checksum %lX vs module %lX\n",
1317 maybe_relocated(*crc, crc_owner), versions[i].crc);
1318 goto bad_version;
1319 }
1320
1321 pr_warn("%s: no symbol version for %s\n", mod->name, symname);
1322 return 0;
1323
1324 bad_version:
1325 pr_warn("%s: disagrees about version of symbol %s\n",
1326 mod->name, symname);
1327 return 0;
1328 }
1329
check_modstruct_version(Elf_Shdr * sechdrs,unsigned int versindex,struct module * mod)1330 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1331 unsigned int versindex,
1332 struct module *mod)
1333 {
1334 const unsigned long *crc;
1335
1336 /*
1337 * Since this should be found in kernel (which can't be removed), no
1338 * locking is necessary -- use preempt_disable() to placate lockdep.
1339 */
1340 preempt_disable();
1341 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1342 &crc, true, false)) {
1343 preempt_enable();
1344 BUG();
1345 }
1346 preempt_enable();
1347 return check_version(sechdrs, versindex,
1348 VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1349 NULL);
1350 }
1351
1352 /* First part is kernel version, which we ignore if module has crcs. */
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1353 static inline int same_magic(const char *amagic, const char *bmagic,
1354 bool has_crcs)
1355 {
1356 if (has_crcs) {
1357 amagic += strcspn(amagic, " ");
1358 bmagic += strcspn(bmagic, " ");
1359 }
1360 return strcmp(amagic, bmagic) == 0;
1361 }
1362 #else
check_version(Elf_Shdr * sechdrs,unsigned int versindex,const char * symname,struct module * mod,const unsigned long * crc,const struct module * crc_owner)1363 static inline int check_version(Elf_Shdr *sechdrs,
1364 unsigned int versindex,
1365 const char *symname,
1366 struct module *mod,
1367 const unsigned long *crc,
1368 const struct module *crc_owner)
1369 {
1370 return 1;
1371 }
1372
check_modstruct_version(Elf_Shdr * sechdrs,unsigned int versindex,struct module * mod)1373 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1374 unsigned int versindex,
1375 struct module *mod)
1376 {
1377 return 1;
1378 }
1379
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1380 static inline int same_magic(const char *amagic, const char *bmagic,
1381 bool has_crcs)
1382 {
1383 return strcmp(amagic, bmagic) == 0;
1384 }
1385 #endif /* CONFIG_MODVERSIONS */
1386
1387 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1388 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1389 const struct load_info *info,
1390 const char *name,
1391 char ownername[])
1392 {
1393 struct module *owner;
1394 const struct kernel_symbol *sym;
1395 const unsigned long *crc;
1396 int err;
1397
1398 /*
1399 * The module_mutex should not be a heavily contended lock;
1400 * if we get the occasional sleep here, we'll go an extra iteration
1401 * in the wait_event_interruptible(), which is harmless.
1402 */
1403 sched_annotate_sleep();
1404 mutex_lock(&module_mutex);
1405 sym = find_symbol(name, &owner, &crc,
1406 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1407 if (!sym)
1408 goto unlock;
1409
1410 if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1411 owner)) {
1412 sym = ERR_PTR(-EINVAL);
1413 goto getname;
1414 }
1415
1416 err = ref_module(mod, owner);
1417 if (err) {
1418 sym = ERR_PTR(err);
1419 goto getname;
1420 }
1421
1422 getname:
1423 /* We must make copy under the lock if we failed to get ref. */
1424 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1425 unlock:
1426 mutex_unlock(&module_mutex);
1427 return sym;
1428 }
1429
1430 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1431 resolve_symbol_wait(struct module *mod,
1432 const struct load_info *info,
1433 const char *name)
1434 {
1435 const struct kernel_symbol *ksym;
1436 char owner[MODULE_NAME_LEN];
1437
1438 if (wait_event_interruptible_timeout(module_wq,
1439 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1440 || PTR_ERR(ksym) != -EBUSY,
1441 30 * HZ) <= 0) {
1442 pr_warn("%s: gave up waiting for init of module %s.\n",
1443 mod->name, owner);
1444 }
1445 return ksym;
1446 }
1447
1448 /*
1449 * /sys/module/foo/sections stuff
1450 * J. Corbet <corbet@lwn.net>
1451 */
1452 #ifdef CONFIG_SYSFS
1453
1454 #ifdef CONFIG_KALLSYMS
sect_empty(const Elf_Shdr * sect)1455 static inline bool sect_empty(const Elf_Shdr *sect)
1456 {
1457 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1458 }
1459
1460 struct module_sect_attr {
1461 struct module_attribute mattr;
1462 char *name;
1463 unsigned long address;
1464 };
1465
1466 struct module_sect_attrs {
1467 struct attribute_group grp;
1468 unsigned int nsections;
1469 struct module_sect_attr attrs[0];
1470 };
1471
module_sect_show(struct module_attribute * mattr,struct module_kobject * mk,char * buf)1472 static ssize_t module_sect_show(struct module_attribute *mattr,
1473 struct module_kobject *mk, char *buf)
1474 {
1475 struct module_sect_attr *sattr =
1476 container_of(mattr, struct module_sect_attr, mattr);
1477 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1478 }
1479
free_sect_attrs(struct module_sect_attrs * sect_attrs)1480 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1481 {
1482 unsigned int section;
1483
1484 for (section = 0; section < sect_attrs->nsections; section++)
1485 kfree(sect_attrs->attrs[section].name);
1486 kfree(sect_attrs);
1487 }
1488
add_sect_attrs(struct module * mod,const struct load_info * info)1489 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1490 {
1491 unsigned int nloaded = 0, i, size[2];
1492 struct module_sect_attrs *sect_attrs;
1493 struct module_sect_attr *sattr;
1494 struct attribute **gattr;
1495
1496 /* Count loaded sections and allocate structures */
1497 for (i = 0; i < info->hdr->e_shnum; i++)
1498 if (!sect_empty(&info->sechdrs[i]))
1499 nloaded++;
1500 size[0] = ALIGN(sizeof(*sect_attrs)
1501 + nloaded * sizeof(sect_attrs->attrs[0]),
1502 sizeof(sect_attrs->grp.attrs[0]));
1503 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1504 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1505 if (sect_attrs == NULL)
1506 return;
1507
1508 /* Setup section attributes. */
1509 sect_attrs->grp.name = "sections";
1510 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1511
1512 sect_attrs->nsections = 0;
1513 sattr = §_attrs->attrs[0];
1514 gattr = §_attrs->grp.attrs[0];
1515 for (i = 0; i < info->hdr->e_shnum; i++) {
1516 Elf_Shdr *sec = &info->sechdrs[i];
1517 if (sect_empty(sec))
1518 continue;
1519 sattr->address = sec->sh_addr;
1520 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1521 GFP_KERNEL);
1522 if (sattr->name == NULL)
1523 goto out;
1524 sect_attrs->nsections++;
1525 sysfs_attr_init(&sattr->mattr.attr);
1526 sattr->mattr.show = module_sect_show;
1527 sattr->mattr.store = NULL;
1528 sattr->mattr.attr.name = sattr->name;
1529 sattr->mattr.attr.mode = S_IRUGO;
1530 *(gattr++) = &(sattr++)->mattr.attr;
1531 }
1532 *gattr = NULL;
1533
1534 if (sysfs_create_group(&mod->mkobj.kobj, §_attrs->grp))
1535 goto out;
1536
1537 mod->sect_attrs = sect_attrs;
1538 return;
1539 out:
1540 free_sect_attrs(sect_attrs);
1541 }
1542
remove_sect_attrs(struct module * mod)1543 static void remove_sect_attrs(struct module *mod)
1544 {
1545 if (mod->sect_attrs) {
1546 sysfs_remove_group(&mod->mkobj.kobj,
1547 &mod->sect_attrs->grp);
1548 /* We are positive that no one is using any sect attrs
1549 * at this point. Deallocate immediately. */
1550 free_sect_attrs(mod->sect_attrs);
1551 mod->sect_attrs = NULL;
1552 }
1553 }
1554
1555 /*
1556 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1557 */
1558
1559 struct module_notes_attrs {
1560 struct kobject *dir;
1561 unsigned int notes;
1562 struct bin_attribute attrs[0];
1563 };
1564
module_notes_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t pos,size_t count)1565 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1566 struct bin_attribute *bin_attr,
1567 char *buf, loff_t pos, size_t count)
1568 {
1569 /*
1570 * The caller checked the pos and count against our size.
1571 */
1572 memcpy(buf, bin_attr->private + pos, count);
1573 return count;
1574 }
1575
free_notes_attrs(struct module_notes_attrs * notes_attrs,unsigned int i)1576 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1577 unsigned int i)
1578 {
1579 if (notes_attrs->dir) {
1580 while (i-- > 0)
1581 sysfs_remove_bin_file(notes_attrs->dir,
1582 ¬es_attrs->attrs[i]);
1583 kobject_put(notes_attrs->dir);
1584 }
1585 kfree(notes_attrs);
1586 }
1587
add_notes_attrs(struct module * mod,const struct load_info * info)1588 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1589 {
1590 unsigned int notes, loaded, i;
1591 struct module_notes_attrs *notes_attrs;
1592 struct bin_attribute *nattr;
1593
1594 /* failed to create section attributes, so can't create notes */
1595 if (!mod->sect_attrs)
1596 return;
1597
1598 /* Count notes sections and allocate structures. */
1599 notes = 0;
1600 for (i = 0; i < info->hdr->e_shnum; i++)
1601 if (!sect_empty(&info->sechdrs[i]) &&
1602 (info->sechdrs[i].sh_type == SHT_NOTE))
1603 ++notes;
1604
1605 if (notes == 0)
1606 return;
1607
1608 notes_attrs = kzalloc(sizeof(*notes_attrs)
1609 + notes * sizeof(notes_attrs->attrs[0]),
1610 GFP_KERNEL);
1611 if (notes_attrs == NULL)
1612 return;
1613
1614 notes_attrs->notes = notes;
1615 nattr = ¬es_attrs->attrs[0];
1616 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1617 if (sect_empty(&info->sechdrs[i]))
1618 continue;
1619 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1620 sysfs_bin_attr_init(nattr);
1621 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1622 nattr->attr.mode = S_IRUGO;
1623 nattr->size = info->sechdrs[i].sh_size;
1624 nattr->private = (void *) info->sechdrs[i].sh_addr;
1625 nattr->read = module_notes_read;
1626 ++nattr;
1627 }
1628 ++loaded;
1629 }
1630
1631 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1632 if (!notes_attrs->dir)
1633 goto out;
1634
1635 for (i = 0; i < notes; ++i)
1636 if (sysfs_create_bin_file(notes_attrs->dir,
1637 ¬es_attrs->attrs[i]))
1638 goto out;
1639
1640 mod->notes_attrs = notes_attrs;
1641 return;
1642
1643 out:
1644 free_notes_attrs(notes_attrs, i);
1645 }
1646
remove_notes_attrs(struct module * mod)1647 static void remove_notes_attrs(struct module *mod)
1648 {
1649 if (mod->notes_attrs)
1650 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1651 }
1652
1653 #else
1654
add_sect_attrs(struct module * mod,const struct load_info * info)1655 static inline void add_sect_attrs(struct module *mod,
1656 const struct load_info *info)
1657 {
1658 }
1659
remove_sect_attrs(struct module * mod)1660 static inline void remove_sect_attrs(struct module *mod)
1661 {
1662 }
1663
add_notes_attrs(struct module * mod,const struct load_info * info)1664 static inline void add_notes_attrs(struct module *mod,
1665 const struct load_info *info)
1666 {
1667 }
1668
remove_notes_attrs(struct module * mod)1669 static inline void remove_notes_attrs(struct module *mod)
1670 {
1671 }
1672 #endif /* CONFIG_KALLSYMS */
1673
add_usage_links(struct module * mod)1674 static void add_usage_links(struct module *mod)
1675 {
1676 #ifdef CONFIG_MODULE_UNLOAD
1677 struct module_use *use;
1678 int nowarn;
1679
1680 mutex_lock(&module_mutex);
1681 list_for_each_entry(use, &mod->target_list, target_list) {
1682 nowarn = sysfs_create_link(use->target->holders_dir,
1683 &mod->mkobj.kobj, mod->name);
1684 }
1685 mutex_unlock(&module_mutex);
1686 #endif
1687 }
1688
del_usage_links(struct module * mod)1689 static void del_usage_links(struct module *mod)
1690 {
1691 #ifdef CONFIG_MODULE_UNLOAD
1692 struct module_use *use;
1693
1694 mutex_lock(&module_mutex);
1695 list_for_each_entry(use, &mod->target_list, target_list)
1696 sysfs_remove_link(use->target->holders_dir, mod->name);
1697 mutex_unlock(&module_mutex);
1698 #endif
1699 }
1700
module_add_modinfo_attrs(struct module * mod)1701 static int module_add_modinfo_attrs(struct module *mod)
1702 {
1703 struct module_attribute *attr;
1704 struct module_attribute *temp_attr;
1705 int error = 0;
1706 int i;
1707
1708 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1709 (ARRAY_SIZE(modinfo_attrs) + 1)),
1710 GFP_KERNEL);
1711 if (!mod->modinfo_attrs)
1712 return -ENOMEM;
1713
1714 temp_attr = mod->modinfo_attrs;
1715 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1716 if (!attr->test ||
1717 (attr->test && attr->test(mod))) {
1718 memcpy(temp_attr, attr, sizeof(*temp_attr));
1719 sysfs_attr_init(&temp_attr->attr);
1720 error = sysfs_create_file(&mod->mkobj.kobj,
1721 &temp_attr->attr);
1722 ++temp_attr;
1723 }
1724 }
1725 return error;
1726 }
1727
module_remove_modinfo_attrs(struct module * mod)1728 static void module_remove_modinfo_attrs(struct module *mod)
1729 {
1730 struct module_attribute *attr;
1731 int i;
1732
1733 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1734 /* pick a field to test for end of list */
1735 if (!attr->attr.name)
1736 break;
1737 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1738 if (attr->free)
1739 attr->free(mod);
1740 }
1741 kfree(mod->modinfo_attrs);
1742 }
1743
mod_kobject_put(struct module * mod)1744 static void mod_kobject_put(struct module *mod)
1745 {
1746 DECLARE_COMPLETION_ONSTACK(c);
1747 mod->mkobj.kobj_completion = &c;
1748 kobject_put(&mod->mkobj.kobj);
1749 wait_for_completion(&c);
1750 }
1751
mod_sysfs_init(struct module * mod)1752 static int mod_sysfs_init(struct module *mod)
1753 {
1754 int err;
1755 struct kobject *kobj;
1756
1757 if (!module_sysfs_initialized) {
1758 pr_err("%s: module sysfs not initialized\n", mod->name);
1759 err = -EINVAL;
1760 goto out;
1761 }
1762
1763 kobj = kset_find_obj(module_kset, mod->name);
1764 if (kobj) {
1765 pr_err("%s: module is already loaded\n", mod->name);
1766 kobject_put(kobj);
1767 err = -EINVAL;
1768 goto out;
1769 }
1770
1771 mod->mkobj.mod = mod;
1772
1773 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1774 mod->mkobj.kobj.kset = module_kset;
1775 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1776 "%s", mod->name);
1777 if (err)
1778 mod_kobject_put(mod);
1779
1780 /* delay uevent until full sysfs population */
1781 out:
1782 return err;
1783 }
1784
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1785 static int mod_sysfs_setup(struct module *mod,
1786 const struct load_info *info,
1787 struct kernel_param *kparam,
1788 unsigned int num_params)
1789 {
1790 int err;
1791
1792 err = mod_sysfs_init(mod);
1793 if (err)
1794 goto out;
1795
1796 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1797 if (!mod->holders_dir) {
1798 err = -ENOMEM;
1799 goto out_unreg;
1800 }
1801
1802 err = module_param_sysfs_setup(mod, kparam, num_params);
1803 if (err)
1804 goto out_unreg_holders;
1805
1806 err = module_add_modinfo_attrs(mod);
1807 if (err)
1808 goto out_unreg_param;
1809
1810 add_usage_links(mod);
1811 add_sect_attrs(mod, info);
1812 add_notes_attrs(mod, info);
1813
1814 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1815 return 0;
1816
1817 out_unreg_param:
1818 module_param_sysfs_remove(mod);
1819 out_unreg_holders:
1820 kobject_put(mod->holders_dir);
1821 out_unreg:
1822 mod_kobject_put(mod);
1823 out:
1824 return err;
1825 }
1826
mod_sysfs_fini(struct module * mod)1827 static void mod_sysfs_fini(struct module *mod)
1828 {
1829 remove_notes_attrs(mod);
1830 remove_sect_attrs(mod);
1831 mod_kobject_put(mod);
1832 }
1833
init_param_lock(struct module * mod)1834 static void init_param_lock(struct module *mod)
1835 {
1836 mutex_init(&mod->param_lock);
1837 }
1838 #else /* !CONFIG_SYSFS */
1839
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1840 static int mod_sysfs_setup(struct module *mod,
1841 const struct load_info *info,
1842 struct kernel_param *kparam,
1843 unsigned int num_params)
1844 {
1845 return 0;
1846 }
1847
mod_sysfs_fini(struct module * mod)1848 static void mod_sysfs_fini(struct module *mod)
1849 {
1850 }
1851
module_remove_modinfo_attrs(struct module * mod)1852 static void module_remove_modinfo_attrs(struct module *mod)
1853 {
1854 }
1855
del_usage_links(struct module * mod)1856 static void del_usage_links(struct module *mod)
1857 {
1858 }
1859
init_param_lock(struct module * mod)1860 static void init_param_lock(struct module *mod)
1861 {
1862 }
1863 #endif /* CONFIG_SYSFS */
1864
mod_sysfs_teardown(struct module * mod)1865 static void mod_sysfs_teardown(struct module *mod)
1866 {
1867 del_usage_links(mod);
1868 module_remove_modinfo_attrs(mod);
1869 module_param_sysfs_remove(mod);
1870 kobject_put(mod->mkobj.drivers_dir);
1871 kobject_put(mod->holders_dir);
1872 mod_sysfs_fini(mod);
1873 }
1874
1875 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1876 /*
1877 * LKM RO/NX protection: protect module's text/ro-data
1878 * from modification and any data from execution.
1879 */
set_page_attributes(void * start,void * end,int (* set)(unsigned long start,int num_pages))1880 void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1881 {
1882 unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1883 unsigned long end_pfn = PFN_DOWN((unsigned long)end);
1884
1885 if (end_pfn > begin_pfn)
1886 set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1887 }
1888
set_section_ro_nx(void * base,unsigned long text_size,unsigned long ro_size,unsigned long total_size)1889 static void set_section_ro_nx(void *base,
1890 unsigned long text_size,
1891 unsigned long ro_size,
1892 unsigned long total_size)
1893 {
1894 /* begin and end PFNs of the current subsection */
1895 unsigned long begin_pfn;
1896 unsigned long end_pfn;
1897
1898 /*
1899 * Set RO for module text and RO-data:
1900 * - Always protect first page.
1901 * - Do not protect last partial page.
1902 */
1903 if (ro_size > 0)
1904 set_page_attributes(base, base + ro_size, set_memory_ro);
1905
1906 /*
1907 * Set NX permissions for module data:
1908 * - Do not protect first partial page.
1909 * - Always protect last page.
1910 */
1911 if (total_size > text_size) {
1912 begin_pfn = PFN_UP((unsigned long)base + text_size);
1913 end_pfn = PFN_UP((unsigned long)base + total_size);
1914 if (end_pfn > begin_pfn)
1915 set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1916 }
1917 }
1918
unset_module_core_ro_nx(struct module * mod)1919 static void unset_module_core_ro_nx(struct module *mod)
1920 {
1921 set_page_attributes(mod->module_core + mod->core_text_size,
1922 mod->module_core + mod->core_size,
1923 set_memory_x);
1924 set_page_attributes(mod->module_core,
1925 mod->module_core + mod->core_ro_size,
1926 set_memory_rw);
1927 }
1928
unset_module_init_ro_nx(struct module * mod)1929 static void unset_module_init_ro_nx(struct module *mod)
1930 {
1931 set_page_attributes(mod->module_init + mod->init_text_size,
1932 mod->module_init + mod->init_size,
1933 set_memory_x);
1934 set_page_attributes(mod->module_init,
1935 mod->module_init + mod->init_ro_size,
1936 set_memory_rw);
1937 }
1938
1939 /* Iterate through all modules and set each module's text as RW */
set_all_modules_text_rw(void)1940 void set_all_modules_text_rw(void)
1941 {
1942 struct module *mod;
1943
1944 mutex_lock(&module_mutex);
1945 list_for_each_entry_rcu(mod, &modules, list) {
1946 if (mod->state == MODULE_STATE_UNFORMED)
1947 continue;
1948 if ((mod->module_core) && (mod->core_text_size)) {
1949 set_page_attributes(mod->module_core,
1950 mod->module_core + mod->core_text_size,
1951 set_memory_rw);
1952 }
1953 if ((mod->module_init) && (mod->init_text_size)) {
1954 set_page_attributes(mod->module_init,
1955 mod->module_init + mod->init_text_size,
1956 set_memory_rw);
1957 }
1958 }
1959 mutex_unlock(&module_mutex);
1960 }
1961
1962 /* Iterate through all modules and set each module's text as RO */
set_all_modules_text_ro(void)1963 void set_all_modules_text_ro(void)
1964 {
1965 struct module *mod;
1966
1967 mutex_lock(&module_mutex);
1968 list_for_each_entry_rcu(mod, &modules, list) {
1969 if (mod->state == MODULE_STATE_UNFORMED)
1970 continue;
1971 if ((mod->module_core) && (mod->core_text_size)) {
1972 set_page_attributes(mod->module_core,
1973 mod->module_core + mod->core_text_size,
1974 set_memory_ro);
1975 }
1976 if ((mod->module_init) && (mod->init_text_size)) {
1977 set_page_attributes(mod->module_init,
1978 mod->module_init + mod->init_text_size,
1979 set_memory_ro);
1980 }
1981 }
1982 mutex_unlock(&module_mutex);
1983 }
1984 #else
set_section_ro_nx(void * base,unsigned long text_size,unsigned long ro_size,unsigned long total_size)1985 static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
unset_module_core_ro_nx(struct module * mod)1986 static void unset_module_core_ro_nx(struct module *mod) { }
unset_module_init_ro_nx(struct module * mod)1987 static void unset_module_init_ro_nx(struct module *mod) { }
1988 #endif
1989
module_memfree(void * module_region)1990 void __weak module_memfree(void *module_region)
1991 {
1992 vfree(module_region);
1993 }
1994
module_arch_cleanup(struct module * mod)1995 void __weak module_arch_cleanup(struct module *mod)
1996 {
1997 }
1998
module_arch_freeing_init(struct module * mod)1999 void __weak module_arch_freeing_init(struct module *mod)
2000 {
2001 }
2002
2003 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)2004 static void free_module(struct module *mod)
2005 {
2006 trace_module_free(mod);
2007
2008 mod_sysfs_teardown(mod);
2009
2010 /* We leave it in list to prevent duplicate loads, but make sure
2011 * that noone uses it while it's being deconstructed. */
2012 mutex_lock(&module_mutex);
2013 mod->state = MODULE_STATE_UNFORMED;
2014 mutex_unlock(&module_mutex);
2015
2016 /* Remove dynamic debug info */
2017 ddebug_remove_module(mod->name);
2018
2019 /* Arch-specific cleanup. */
2020 module_arch_cleanup(mod);
2021
2022 /* Module unload stuff */
2023 module_unload_free(mod);
2024
2025 /* Free any allocated parameters. */
2026 destroy_params(mod->kp, mod->num_kp);
2027
2028 /* Now we can delete it from the lists */
2029 mutex_lock(&module_mutex);
2030 /* Unlink carefully: kallsyms could be walking list. */
2031 list_del_rcu(&mod->list);
2032 mod_tree_remove(mod);
2033 /* Remove this module from bug list, this uses list_del_rcu */
2034 module_bug_cleanup(mod);
2035 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2036 synchronize_sched();
2037 mutex_unlock(&module_mutex);
2038
2039 /* This may be NULL, but that's OK */
2040 unset_module_init_ro_nx(mod);
2041 module_arch_freeing_init(mod);
2042 module_memfree(mod->module_init);
2043 kfree(mod->args);
2044 percpu_modfree(mod);
2045
2046 /* Free lock-classes; relies on the preceding sync_rcu(). */
2047 lockdep_free_key_range(mod->module_core, mod->core_size);
2048
2049 /* Finally, free the core (containing the module structure) */
2050 unset_module_core_ro_nx(mod);
2051 module_memfree(mod->module_core);
2052
2053 #ifdef CONFIG_MPU
2054 update_protections(current->mm);
2055 #endif
2056 }
2057
__symbol_get(const char * symbol)2058 void *__symbol_get(const char *symbol)
2059 {
2060 struct module *owner;
2061 const struct kernel_symbol *sym;
2062
2063 preempt_disable();
2064 sym = find_symbol(symbol, &owner, NULL, true, true);
2065 if (sym && strong_try_module_get(owner))
2066 sym = NULL;
2067 preempt_enable();
2068
2069 return sym ? (void *)sym->value : NULL;
2070 }
2071 EXPORT_SYMBOL_GPL(__symbol_get);
2072
2073 /*
2074 * Ensure that an exported symbol [global namespace] does not already exist
2075 * in the kernel or in some other module's exported symbol table.
2076 *
2077 * You must hold the module_mutex.
2078 */
verify_export_symbols(struct module * mod)2079 static int verify_export_symbols(struct module *mod)
2080 {
2081 unsigned int i;
2082 struct module *owner;
2083 const struct kernel_symbol *s;
2084 struct {
2085 const struct kernel_symbol *sym;
2086 unsigned int num;
2087 } arr[] = {
2088 { mod->syms, mod->num_syms },
2089 { mod->gpl_syms, mod->num_gpl_syms },
2090 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2091 #ifdef CONFIG_UNUSED_SYMBOLS
2092 { mod->unused_syms, mod->num_unused_syms },
2093 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2094 #endif
2095 };
2096
2097 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2098 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2099 if (find_symbol(s->name, &owner, NULL, true, false)) {
2100 pr_err("%s: exports duplicate symbol %s"
2101 " (owned by %s)\n",
2102 mod->name, s->name, module_name(owner));
2103 return -ENOEXEC;
2104 }
2105 }
2106 }
2107 return 0;
2108 }
2109
2110 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)2111 static int simplify_symbols(struct module *mod, const struct load_info *info)
2112 {
2113 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2114 Elf_Sym *sym = (void *)symsec->sh_addr;
2115 unsigned long secbase;
2116 unsigned int i;
2117 int ret = 0;
2118 const struct kernel_symbol *ksym;
2119
2120 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2121 const char *name = info->strtab + sym[i].st_name;
2122
2123 switch (sym[i].st_shndx) {
2124 case SHN_COMMON:
2125 /* Ignore common symbols */
2126 if (!strncmp(name, "__gnu_lto", 9))
2127 break;
2128
2129 /* We compiled with -fno-common. These are not
2130 supposed to happen. */
2131 pr_debug("Common symbol: %s\n", name);
2132 pr_warn("%s: please compile with -fno-common\n",
2133 mod->name);
2134 ret = -ENOEXEC;
2135 break;
2136
2137 case SHN_ABS:
2138 /* Don't need to do anything */
2139 pr_debug("Absolute symbol: 0x%08lx\n",
2140 (long)sym[i].st_value);
2141 break;
2142
2143 case SHN_UNDEF:
2144 ksym = resolve_symbol_wait(mod, info, name);
2145 /* Ok if resolved. */
2146 if (ksym && !IS_ERR(ksym)) {
2147 sym[i].st_value = ksym->value;
2148 break;
2149 }
2150
2151 /* Ok if weak. */
2152 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2153 break;
2154
2155 pr_warn("%s: Unknown symbol %s (err %li)\n",
2156 mod->name, name, PTR_ERR(ksym));
2157 ret = PTR_ERR(ksym) ?: -ENOENT;
2158 break;
2159
2160 default:
2161 /* Divert to percpu allocation if a percpu var. */
2162 if (sym[i].st_shndx == info->index.pcpu)
2163 secbase = (unsigned long)mod_percpu(mod);
2164 else
2165 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2166 sym[i].st_value += secbase;
2167 break;
2168 }
2169 }
2170
2171 return ret;
2172 }
2173
apply_relocations(struct module * mod,const struct load_info * info)2174 static int apply_relocations(struct module *mod, const struct load_info *info)
2175 {
2176 unsigned int i;
2177 int err = 0;
2178
2179 /* Now do relocations. */
2180 for (i = 1; i < info->hdr->e_shnum; i++) {
2181 unsigned int infosec = info->sechdrs[i].sh_info;
2182
2183 /* Not a valid relocation section? */
2184 if (infosec >= info->hdr->e_shnum)
2185 continue;
2186
2187 /* Don't bother with non-allocated sections */
2188 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2189 continue;
2190
2191 if (info->sechdrs[i].sh_type == SHT_REL)
2192 err = apply_relocate(info->sechdrs, info->strtab,
2193 info->index.sym, i, mod);
2194 else if (info->sechdrs[i].sh_type == SHT_RELA)
2195 err = apply_relocate_add(info->sechdrs, info->strtab,
2196 info->index.sym, i, mod);
2197 if (err < 0)
2198 break;
2199 }
2200 return err;
2201 }
2202
2203 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)2204 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2205 unsigned int section)
2206 {
2207 /* default implementation just returns zero */
2208 return 0;
2209 }
2210
2211 /* Update size with this section: return offset. */
get_offset(struct module * mod,unsigned int * size,Elf_Shdr * sechdr,unsigned int section)2212 static long get_offset(struct module *mod, unsigned int *size,
2213 Elf_Shdr *sechdr, unsigned int section)
2214 {
2215 long ret;
2216
2217 *size += arch_mod_section_prepend(mod, section);
2218 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2219 *size = ret + sechdr->sh_size;
2220 return ret;
2221 }
2222
2223 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2224 might -- code, read-only data, read-write data, small data. Tally
2225 sizes, and place the offsets into sh_entsize fields: high bit means it
2226 belongs in init. */
layout_sections(struct module * mod,struct load_info * info)2227 static void layout_sections(struct module *mod, struct load_info *info)
2228 {
2229 static unsigned long const masks[][2] = {
2230 /* NOTE: all executable code must be the first section
2231 * in this array; otherwise modify the text_size
2232 * finder in the two loops below */
2233 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2234 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2235 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2236 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2237 };
2238 unsigned int m, i;
2239
2240 for (i = 0; i < info->hdr->e_shnum; i++)
2241 info->sechdrs[i].sh_entsize = ~0UL;
2242
2243 pr_debug("Core section allocation order:\n");
2244 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2245 for (i = 0; i < info->hdr->e_shnum; ++i) {
2246 Elf_Shdr *s = &info->sechdrs[i];
2247 const char *sname = info->secstrings + s->sh_name;
2248
2249 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2250 || (s->sh_flags & masks[m][1])
2251 || s->sh_entsize != ~0UL
2252 || strstarts(sname, ".init"))
2253 continue;
2254 s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
2255 pr_debug("\t%s\n", sname);
2256 }
2257 switch (m) {
2258 case 0: /* executable */
2259 mod->core_size = debug_align(mod->core_size);
2260 mod->core_text_size = mod->core_size;
2261 break;
2262 case 1: /* RO: text and ro-data */
2263 mod->core_size = debug_align(mod->core_size);
2264 mod->core_ro_size = mod->core_size;
2265 break;
2266 case 3: /* whole core */
2267 mod->core_size = debug_align(mod->core_size);
2268 break;
2269 }
2270 }
2271
2272 pr_debug("Init section allocation order:\n");
2273 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2274 for (i = 0; i < info->hdr->e_shnum; ++i) {
2275 Elf_Shdr *s = &info->sechdrs[i];
2276 const char *sname = info->secstrings + s->sh_name;
2277
2278 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2279 || (s->sh_flags & masks[m][1])
2280 || s->sh_entsize != ~0UL
2281 || !strstarts(sname, ".init"))
2282 continue;
2283 s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
2284 | INIT_OFFSET_MASK);
2285 pr_debug("\t%s\n", sname);
2286 }
2287 switch (m) {
2288 case 0: /* executable */
2289 mod->init_size = debug_align(mod->init_size);
2290 mod->init_text_size = mod->init_size;
2291 break;
2292 case 1: /* RO: text and ro-data */
2293 mod->init_size = debug_align(mod->init_size);
2294 mod->init_ro_size = mod->init_size;
2295 break;
2296 case 3: /* whole init */
2297 mod->init_size = debug_align(mod->init_size);
2298 break;
2299 }
2300 }
2301 }
2302
set_license(struct module * mod,const char * license)2303 static void set_license(struct module *mod, const char *license)
2304 {
2305 if (!license)
2306 license = "unspecified";
2307
2308 if (!license_is_gpl_compatible(license)) {
2309 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2310 pr_warn("%s: module license '%s' taints kernel.\n",
2311 mod->name, license);
2312 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2313 LOCKDEP_NOW_UNRELIABLE);
2314 }
2315 }
2316
2317 /* Parse tag=value strings from .modinfo section */
next_string(char * string,unsigned long * secsize)2318 static char *next_string(char *string, unsigned long *secsize)
2319 {
2320 /* Skip non-zero chars */
2321 while (string[0]) {
2322 string++;
2323 if ((*secsize)-- <= 1)
2324 return NULL;
2325 }
2326
2327 /* Skip any zero padding. */
2328 while (!string[0]) {
2329 string++;
2330 if ((*secsize)-- <= 1)
2331 return NULL;
2332 }
2333 return string;
2334 }
2335
get_modinfo(struct load_info * info,const char * tag)2336 static char *get_modinfo(struct load_info *info, const char *tag)
2337 {
2338 char *p;
2339 unsigned int taglen = strlen(tag);
2340 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2341 unsigned long size = infosec->sh_size;
2342
2343 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2344 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2345 return p + taglen + 1;
2346 }
2347 return NULL;
2348 }
2349
setup_modinfo(struct module * mod,struct load_info * info)2350 static void setup_modinfo(struct module *mod, struct load_info *info)
2351 {
2352 struct module_attribute *attr;
2353 int i;
2354
2355 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2356 if (attr->setup)
2357 attr->setup(mod, get_modinfo(info, attr->attr.name));
2358 }
2359 }
2360
free_modinfo(struct module * mod)2361 static void free_modinfo(struct module *mod)
2362 {
2363 struct module_attribute *attr;
2364 int i;
2365
2366 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2367 if (attr->free)
2368 attr->free(mod);
2369 }
2370 }
2371
2372 #ifdef CONFIG_KALLSYMS
2373
2374 /* lookup symbol in given range of kernel_symbols */
lookup_symbol(const char * name,const struct kernel_symbol * start,const struct kernel_symbol * stop)2375 static const struct kernel_symbol *lookup_symbol(const char *name,
2376 const struct kernel_symbol *start,
2377 const struct kernel_symbol *stop)
2378 {
2379 return bsearch(name, start, stop - start,
2380 sizeof(struct kernel_symbol), cmp_name);
2381 }
2382
is_exported(const char * name,unsigned long value,const struct module * mod)2383 static int is_exported(const char *name, unsigned long value,
2384 const struct module *mod)
2385 {
2386 const struct kernel_symbol *ks;
2387 if (!mod)
2388 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2389 else
2390 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2391 return ks != NULL && ks->value == value;
2392 }
2393
2394 /* As per nm */
elf_type(const Elf_Sym * sym,const struct load_info * info)2395 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2396 {
2397 const Elf_Shdr *sechdrs = info->sechdrs;
2398
2399 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2400 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2401 return 'v';
2402 else
2403 return 'w';
2404 }
2405 if (sym->st_shndx == SHN_UNDEF)
2406 return 'U';
2407 if (sym->st_shndx == SHN_ABS)
2408 return 'a';
2409 if (sym->st_shndx >= SHN_LORESERVE)
2410 return '?';
2411 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2412 return 't';
2413 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2414 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2415 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2416 return 'r';
2417 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2418 return 'g';
2419 else
2420 return 'd';
2421 }
2422 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2423 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2424 return 's';
2425 else
2426 return 'b';
2427 }
2428 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2429 ".debug")) {
2430 return 'n';
2431 }
2432 return '?';
2433 }
2434
is_core_symbol(const Elf_Sym * src,const Elf_Shdr * sechdrs,unsigned int shnum)2435 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2436 unsigned int shnum)
2437 {
2438 const Elf_Shdr *sec;
2439
2440 if (src->st_shndx == SHN_UNDEF
2441 || src->st_shndx >= shnum
2442 || !src->st_name)
2443 return false;
2444
2445 sec = sechdrs + src->st_shndx;
2446 if (!(sec->sh_flags & SHF_ALLOC)
2447 #ifndef CONFIG_KALLSYMS_ALL
2448 || !(sec->sh_flags & SHF_EXECINSTR)
2449 #endif
2450 || (sec->sh_entsize & INIT_OFFSET_MASK))
2451 return false;
2452
2453 return true;
2454 }
2455
2456 /*
2457 * We only allocate and copy the strings needed by the parts of symtab
2458 * we keep. This is simple, but has the effect of making multiple
2459 * copies of duplicates. We could be more sophisticated, see
2460 * linux-kernel thread starting with
2461 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2462 */
layout_symtab(struct module * mod,struct load_info * info)2463 static void layout_symtab(struct module *mod, struct load_info *info)
2464 {
2465 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2466 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2467 const Elf_Sym *src;
2468 unsigned int i, nsrc, ndst, strtab_size = 0;
2469
2470 /* Put symbol section at end of init part of module. */
2471 symsect->sh_flags |= SHF_ALLOC;
2472 symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2473 info->index.sym) | INIT_OFFSET_MASK;
2474 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2475
2476 src = (void *)info->hdr + symsect->sh_offset;
2477 nsrc = symsect->sh_size / sizeof(*src);
2478
2479 /* Compute total space required for the core symbols' strtab. */
2480 for (ndst = i = 0; i < nsrc; i++) {
2481 if (i == 0 ||
2482 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2483 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2484 ndst++;
2485 }
2486 }
2487
2488 /* Append room for core symbols at end of core part. */
2489 info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2490 info->stroffs = mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
2491 mod->core_size += strtab_size;
2492 mod->core_size = debug_align(mod->core_size);
2493
2494 /* Put string table section at end of init part of module. */
2495 strsect->sh_flags |= SHF_ALLOC;
2496 strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2497 info->index.str) | INIT_OFFSET_MASK;
2498 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2499
2500 /* We'll tack temporary mod_kallsyms on the end. */
2501 mod->init_size = ALIGN(mod->init_size,
2502 __alignof__(struct mod_kallsyms));
2503 info->mod_kallsyms_init_off = mod->init_size;
2504 mod->init_size += sizeof(struct mod_kallsyms);
2505 mod->init_size = debug_align(mod->init_size);
2506 }
2507
2508 /*
2509 * We use the full symtab and strtab which layout_symtab arranged to
2510 * be appended to the init section. Later we switch to the cut-down
2511 * core-only ones.
2512 */
add_kallsyms(struct module * mod,const struct load_info * info)2513 static void add_kallsyms(struct module *mod, const struct load_info *info)
2514 {
2515 unsigned int i, ndst;
2516 const Elf_Sym *src;
2517 Elf_Sym *dst;
2518 char *s;
2519 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2520
2521 /* Set up to point into init section. */
2522 mod->kallsyms = mod->module_init + info->mod_kallsyms_init_off;
2523
2524 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2525 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2526 /* Make sure we get permanent strtab: don't use info->strtab. */
2527 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2528
2529 /* Set types up while we still have access to sections. */
2530 for (i = 0; i < mod->kallsyms->num_symtab; i++)
2531 mod->kallsyms->symtab[i].st_info
2532 = elf_type(&mod->kallsyms->symtab[i], info);
2533
2534 /* Now populate the cut down core kallsyms for after init. */
2535 mod->core_kallsyms.symtab = dst = mod->module_core + info->symoffs;
2536 mod->core_kallsyms.strtab = s = mod->module_core + info->stroffs;
2537 src = mod->kallsyms->symtab;
2538 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2539 if (i == 0 ||
2540 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum)) {
2541 dst[ndst] = src[i];
2542 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2543 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2544 KSYM_NAME_LEN) + 1;
2545 }
2546 }
2547 mod->core_kallsyms.num_symtab = ndst;
2548 }
2549 #else
layout_symtab(struct module * mod,struct load_info * info)2550 static inline void layout_symtab(struct module *mod, struct load_info *info)
2551 {
2552 }
2553
add_kallsyms(struct module * mod,const struct load_info * info)2554 static void add_kallsyms(struct module *mod, const struct load_info *info)
2555 {
2556 }
2557 #endif /* CONFIG_KALLSYMS */
2558
dynamic_debug_setup(struct _ddebug * debug,unsigned int num)2559 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2560 {
2561 if (!debug)
2562 return;
2563 #ifdef CONFIG_DYNAMIC_DEBUG
2564 if (ddebug_add_module(debug, num, debug->modname))
2565 pr_err("dynamic debug error adding module: %s\n",
2566 debug->modname);
2567 #endif
2568 }
2569
dynamic_debug_remove(struct _ddebug * debug)2570 static void dynamic_debug_remove(struct _ddebug *debug)
2571 {
2572 if (debug)
2573 ddebug_remove_module(debug->modname);
2574 }
2575
module_alloc(unsigned long size)2576 void * __weak module_alloc(unsigned long size)
2577 {
2578 return vmalloc_exec(size);
2579 }
2580
2581 #ifdef CONFIG_DEBUG_KMEMLEAK
kmemleak_load_module(const struct module * mod,const struct load_info * info)2582 static void kmemleak_load_module(const struct module *mod,
2583 const struct load_info *info)
2584 {
2585 unsigned int i;
2586
2587 /* only scan the sections containing data */
2588 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2589
2590 for (i = 1; i < info->hdr->e_shnum; i++) {
2591 /* Scan all writable sections that's not executable */
2592 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2593 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2594 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2595 continue;
2596
2597 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2598 info->sechdrs[i].sh_size, GFP_KERNEL);
2599 }
2600 }
2601 #else
kmemleak_load_module(const struct module * mod,const struct load_info * info)2602 static inline void kmemleak_load_module(const struct module *mod,
2603 const struct load_info *info)
2604 {
2605 }
2606 #endif
2607
2608 #ifdef CONFIG_MODULE_SIG
module_sig_check(struct load_info * info)2609 static int module_sig_check(struct load_info *info)
2610 {
2611 int err = -ENOKEY;
2612 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2613 const void *mod = info->hdr;
2614
2615 if (info->len > markerlen &&
2616 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2617 /* We truncate the module to discard the signature */
2618 info->len -= markerlen;
2619 err = mod_verify_sig(mod, &info->len);
2620 }
2621
2622 if (!err) {
2623 info->sig_ok = true;
2624 return 0;
2625 }
2626
2627 /* Not having a signature is only an error if we're strict. */
2628 if (err == -ENOKEY && !sig_enforce)
2629 err = 0;
2630
2631 return err;
2632 }
2633 #else /* !CONFIG_MODULE_SIG */
module_sig_check(struct load_info * info)2634 static int module_sig_check(struct load_info *info)
2635 {
2636 return 0;
2637 }
2638 #endif /* !CONFIG_MODULE_SIG */
2639
2640 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
elf_header_check(struct load_info * info)2641 static int elf_header_check(struct load_info *info)
2642 {
2643 if (info->len < sizeof(*(info->hdr)))
2644 return -ENOEXEC;
2645
2646 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2647 || info->hdr->e_type != ET_REL
2648 || !elf_check_arch(info->hdr)
2649 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2650 return -ENOEXEC;
2651
2652 if (info->hdr->e_shoff >= info->len
2653 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2654 info->len - info->hdr->e_shoff))
2655 return -ENOEXEC;
2656
2657 return 0;
2658 }
2659
2660 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2661
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)2662 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2663 {
2664 do {
2665 unsigned long n = min(len, COPY_CHUNK_SIZE);
2666
2667 if (copy_from_user(dst, usrc, n) != 0)
2668 return -EFAULT;
2669 cond_resched();
2670 dst += n;
2671 usrc += n;
2672 len -= n;
2673 } while (len);
2674 return 0;
2675 }
2676
2677 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)2678 static int copy_module_from_user(const void __user *umod, unsigned long len,
2679 struct load_info *info)
2680 {
2681 int err;
2682
2683 info->len = len;
2684 if (info->len < sizeof(*(info->hdr)))
2685 return -ENOEXEC;
2686
2687 err = security_kernel_module_from_file(NULL);
2688 if (err)
2689 return err;
2690
2691 /* Suck in entire file: we'll want most of it. */
2692 info->hdr = __vmalloc(info->len,
2693 GFP_KERNEL | __GFP_HIGHMEM | __GFP_NOWARN, PAGE_KERNEL);
2694 if (!info->hdr)
2695 return -ENOMEM;
2696
2697 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2698 vfree(info->hdr);
2699 return -EFAULT;
2700 }
2701
2702 return 0;
2703 }
2704
2705 /* Sets info->hdr and info->len. */
copy_module_from_fd(int fd,struct load_info * info)2706 static int copy_module_from_fd(int fd, struct load_info *info)
2707 {
2708 struct fd f = fdget(fd);
2709 int err;
2710 struct kstat stat;
2711 loff_t pos;
2712 ssize_t bytes = 0;
2713
2714 if (!f.file)
2715 return -ENOEXEC;
2716
2717 err = security_kernel_module_from_file(f.file);
2718 if (err)
2719 goto out;
2720
2721 err = vfs_getattr(&f.file->f_path, &stat);
2722 if (err)
2723 goto out;
2724
2725 if (stat.size > INT_MAX) {
2726 err = -EFBIG;
2727 goto out;
2728 }
2729
2730 /* Don't hand 0 to vmalloc, it whines. */
2731 if (stat.size == 0) {
2732 err = -EINVAL;
2733 goto out;
2734 }
2735
2736 info->hdr = vmalloc(stat.size);
2737 if (!info->hdr) {
2738 err = -ENOMEM;
2739 goto out;
2740 }
2741
2742 pos = 0;
2743 while (pos < stat.size) {
2744 bytes = kernel_read(f.file, pos, (char *)(info->hdr) + pos,
2745 stat.size - pos);
2746 if (bytes < 0) {
2747 vfree(info->hdr);
2748 err = bytes;
2749 goto out;
2750 }
2751 if (bytes == 0)
2752 break;
2753 pos += bytes;
2754 }
2755 info->len = pos;
2756
2757 out:
2758 fdput(f);
2759 return err;
2760 }
2761
free_copy(struct load_info * info)2762 static void free_copy(struct load_info *info)
2763 {
2764 vfree(info->hdr);
2765 }
2766
rewrite_section_headers(struct load_info * info,int flags)2767 static int rewrite_section_headers(struct load_info *info, int flags)
2768 {
2769 unsigned int i;
2770
2771 /* This should always be true, but let's be sure. */
2772 info->sechdrs[0].sh_addr = 0;
2773
2774 for (i = 1; i < info->hdr->e_shnum; i++) {
2775 Elf_Shdr *shdr = &info->sechdrs[i];
2776 if (shdr->sh_type != SHT_NOBITS
2777 && info->len < shdr->sh_offset + shdr->sh_size) {
2778 pr_err("Module len %lu truncated\n", info->len);
2779 return -ENOEXEC;
2780 }
2781
2782 /* Mark all sections sh_addr with their address in the
2783 temporary image. */
2784 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2785
2786 #ifndef CONFIG_MODULE_UNLOAD
2787 /* Don't load .exit sections */
2788 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2789 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2790 #endif
2791 }
2792
2793 /* Track but don't keep modinfo and version sections. */
2794 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2795 info->index.vers = 0; /* Pretend no __versions section! */
2796 else
2797 info->index.vers = find_sec(info, "__versions");
2798 info->index.info = find_sec(info, ".modinfo");
2799 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2800 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2801 return 0;
2802 }
2803
2804 /*
2805 * Set up our basic convenience variables (pointers to section headers,
2806 * search for module section index etc), and do some basic section
2807 * verification.
2808 *
2809 * Return the temporary module pointer (we'll replace it with the final
2810 * one when we move the module sections around).
2811 */
setup_load_info(struct load_info * info,int flags)2812 static struct module *setup_load_info(struct load_info *info, int flags)
2813 {
2814 unsigned int i;
2815 int err;
2816 struct module *mod;
2817
2818 /* Set up the convenience variables */
2819 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2820 info->secstrings = (void *)info->hdr
2821 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2822
2823 err = rewrite_section_headers(info, flags);
2824 if (err)
2825 return ERR_PTR(err);
2826
2827 /* Find internal symbols and strings. */
2828 for (i = 1; i < info->hdr->e_shnum; i++) {
2829 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2830 info->index.sym = i;
2831 info->index.str = info->sechdrs[i].sh_link;
2832 info->strtab = (char *)info->hdr
2833 + info->sechdrs[info->index.str].sh_offset;
2834 break;
2835 }
2836 }
2837
2838 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2839 if (!info->index.mod) {
2840 pr_warn("No module found in object\n");
2841 return ERR_PTR(-ENOEXEC);
2842 }
2843 /* This is temporary: point mod into copy of data. */
2844 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2845
2846 if (info->index.sym == 0) {
2847 pr_warn("%s: module has no symbols (stripped?)\n", mod->name);
2848 return ERR_PTR(-ENOEXEC);
2849 }
2850
2851 info->index.pcpu = find_pcpusec(info);
2852
2853 /* Check module struct version now, before we try to use module. */
2854 if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2855 return ERR_PTR(-ENOEXEC);
2856
2857 return mod;
2858 }
2859
check_modinfo(struct module * mod,struct load_info * info,int flags)2860 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2861 {
2862 const char *modmagic = get_modinfo(info, "vermagic");
2863 int err;
2864
2865 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2866 modmagic = NULL;
2867
2868 /* This is allowed: modprobe --force will invalidate it. */
2869 if (!modmagic) {
2870 err = try_to_force_load(mod, "bad vermagic");
2871 if (err)
2872 return err;
2873 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2874 pr_err("%s: version magic '%s' should be '%s'\n",
2875 mod->name, modmagic, vermagic);
2876 return -ENOEXEC;
2877 }
2878
2879 if (!get_modinfo(info, "intree"))
2880 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2881
2882 if (get_modinfo(info, "staging")) {
2883 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2884 pr_warn("%s: module is from the staging directory, the quality "
2885 "is unknown, you have been warned.\n", mod->name);
2886 }
2887
2888 /* Set up license info based on the info section */
2889 set_license(mod, get_modinfo(info, "license"));
2890
2891 return 0;
2892 }
2893
find_module_sections(struct module * mod,struct load_info * info)2894 static int find_module_sections(struct module *mod, struct load_info *info)
2895 {
2896 mod->kp = section_objs(info, "__param",
2897 sizeof(*mod->kp), &mod->num_kp);
2898 mod->syms = section_objs(info, "__ksymtab",
2899 sizeof(*mod->syms), &mod->num_syms);
2900 mod->crcs = section_addr(info, "__kcrctab");
2901 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2902 sizeof(*mod->gpl_syms),
2903 &mod->num_gpl_syms);
2904 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2905 mod->gpl_future_syms = section_objs(info,
2906 "__ksymtab_gpl_future",
2907 sizeof(*mod->gpl_future_syms),
2908 &mod->num_gpl_future_syms);
2909 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2910
2911 #ifdef CONFIG_UNUSED_SYMBOLS
2912 mod->unused_syms = section_objs(info, "__ksymtab_unused",
2913 sizeof(*mod->unused_syms),
2914 &mod->num_unused_syms);
2915 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2916 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2917 sizeof(*mod->unused_gpl_syms),
2918 &mod->num_unused_gpl_syms);
2919 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2920 #endif
2921 #ifdef CONFIG_CONSTRUCTORS
2922 mod->ctors = section_objs(info, ".ctors",
2923 sizeof(*mod->ctors), &mod->num_ctors);
2924 if (!mod->ctors)
2925 mod->ctors = section_objs(info, ".init_array",
2926 sizeof(*mod->ctors), &mod->num_ctors);
2927 else if (find_sec(info, ".init_array")) {
2928 /*
2929 * This shouldn't happen with same compiler and binutils
2930 * building all parts of the module.
2931 */
2932 pr_warn("%s: has both .ctors and .init_array.\n",
2933 mod->name);
2934 return -EINVAL;
2935 }
2936 #endif
2937
2938 #ifdef CONFIG_TRACEPOINTS
2939 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2940 sizeof(*mod->tracepoints_ptrs),
2941 &mod->num_tracepoints);
2942 #endif
2943 #ifdef HAVE_JUMP_LABEL
2944 mod->jump_entries = section_objs(info, "__jump_table",
2945 sizeof(*mod->jump_entries),
2946 &mod->num_jump_entries);
2947 #endif
2948 #ifdef CONFIG_EVENT_TRACING
2949 mod->trace_events = section_objs(info, "_ftrace_events",
2950 sizeof(*mod->trace_events),
2951 &mod->num_trace_events);
2952 mod->trace_enums = section_objs(info, "_ftrace_enum_map",
2953 sizeof(*mod->trace_enums),
2954 &mod->num_trace_enums);
2955 #endif
2956 #ifdef CONFIG_TRACING
2957 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2958 sizeof(*mod->trace_bprintk_fmt_start),
2959 &mod->num_trace_bprintk_fmt);
2960 #endif
2961 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2962 /* sechdrs[0].sh_size is always zero */
2963 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2964 sizeof(*mod->ftrace_callsites),
2965 &mod->num_ftrace_callsites);
2966 #endif
2967
2968 mod->extable = section_objs(info, "__ex_table",
2969 sizeof(*mod->extable), &mod->num_exentries);
2970
2971 if (section_addr(info, "__obsparm"))
2972 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2973
2974 info->debug = section_objs(info, "__verbose",
2975 sizeof(*info->debug), &info->num_debug);
2976
2977 return 0;
2978 }
2979
move_module(struct module * mod,struct load_info * info)2980 static int move_module(struct module *mod, struct load_info *info)
2981 {
2982 int i;
2983 void *ptr;
2984
2985 /* Do the allocs. */
2986 ptr = module_alloc(mod->core_size);
2987 /*
2988 * The pointer to this block is stored in the module structure
2989 * which is inside the block. Just mark it as not being a
2990 * leak.
2991 */
2992 kmemleak_not_leak(ptr);
2993 if (!ptr)
2994 return -ENOMEM;
2995
2996 memset(ptr, 0, mod->core_size);
2997 mod->module_core = ptr;
2998
2999 if (mod->init_size) {
3000 ptr = module_alloc(mod->init_size);
3001 /*
3002 * The pointer to this block is stored in the module structure
3003 * which is inside the block. This block doesn't need to be
3004 * scanned as it contains data and code that will be freed
3005 * after the module is initialized.
3006 */
3007 kmemleak_ignore(ptr);
3008 if (!ptr) {
3009 module_memfree(mod->module_core);
3010 return -ENOMEM;
3011 }
3012 memset(ptr, 0, mod->init_size);
3013 mod->module_init = ptr;
3014 } else
3015 mod->module_init = NULL;
3016
3017 /* Transfer each section which specifies SHF_ALLOC */
3018 pr_debug("final section addresses:\n");
3019 for (i = 0; i < info->hdr->e_shnum; i++) {
3020 void *dest;
3021 Elf_Shdr *shdr = &info->sechdrs[i];
3022
3023 if (!(shdr->sh_flags & SHF_ALLOC))
3024 continue;
3025
3026 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3027 dest = mod->module_init
3028 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3029 else
3030 dest = mod->module_core + shdr->sh_entsize;
3031
3032 if (shdr->sh_type != SHT_NOBITS)
3033 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3034 /* Update sh_addr to point to copy in image. */
3035 shdr->sh_addr = (unsigned long)dest;
3036 pr_debug("\t0x%lx %s\n",
3037 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3038 }
3039
3040 return 0;
3041 }
3042
check_module_license_and_versions(struct module * mod)3043 static int check_module_license_and_versions(struct module *mod)
3044 {
3045 /*
3046 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3047 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3048 * using GPL-only symbols it needs.
3049 */
3050 if (strcmp(mod->name, "ndiswrapper") == 0)
3051 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3052
3053 /* driverloader was caught wrongly pretending to be under GPL */
3054 if (strcmp(mod->name, "driverloader") == 0)
3055 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3056 LOCKDEP_NOW_UNRELIABLE);
3057
3058 /* lve claims to be GPL but upstream won't provide source */
3059 if (strcmp(mod->name, "lve") == 0)
3060 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3061 LOCKDEP_NOW_UNRELIABLE);
3062
3063 #ifdef CONFIG_MODVERSIONS
3064 if ((mod->num_syms && !mod->crcs)
3065 || (mod->num_gpl_syms && !mod->gpl_crcs)
3066 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3067 #ifdef CONFIG_UNUSED_SYMBOLS
3068 || (mod->num_unused_syms && !mod->unused_crcs)
3069 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3070 #endif
3071 ) {
3072 return try_to_force_load(mod,
3073 "no versions for exported symbols");
3074 }
3075 #endif
3076 return 0;
3077 }
3078
flush_module_icache(const struct module * mod)3079 static void flush_module_icache(const struct module *mod)
3080 {
3081 mm_segment_t old_fs;
3082
3083 /* flush the icache in correct context */
3084 old_fs = get_fs();
3085 set_fs(KERNEL_DS);
3086
3087 /*
3088 * Flush the instruction cache, since we've played with text.
3089 * Do it before processing of module parameters, so the module
3090 * can provide parameter accessor functions of its own.
3091 */
3092 if (mod->module_init)
3093 flush_icache_range((unsigned long)mod->module_init,
3094 (unsigned long)mod->module_init
3095 + mod->init_size);
3096 flush_icache_range((unsigned long)mod->module_core,
3097 (unsigned long)mod->module_core + mod->core_size);
3098
3099 set_fs(old_fs);
3100 }
3101
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)3102 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3103 Elf_Shdr *sechdrs,
3104 char *secstrings,
3105 struct module *mod)
3106 {
3107 return 0;
3108 }
3109
layout_and_allocate(struct load_info * info,int flags)3110 static struct module *layout_and_allocate(struct load_info *info, int flags)
3111 {
3112 /* Module within temporary copy. */
3113 struct module *mod;
3114 int err;
3115
3116 mod = setup_load_info(info, flags);
3117 if (IS_ERR(mod))
3118 return mod;
3119
3120 err = check_modinfo(mod, info, flags);
3121 if (err)
3122 return ERR_PTR(err);
3123
3124 /* Allow arches to frob section contents and sizes. */
3125 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3126 info->secstrings, mod);
3127 if (err < 0)
3128 return ERR_PTR(err);
3129
3130 /* We will do a special allocation for per-cpu sections later. */
3131 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3132
3133 /* Determine total sizes, and put offsets in sh_entsize. For now
3134 this is done generically; there doesn't appear to be any
3135 special cases for the architectures. */
3136 layout_sections(mod, info);
3137 layout_symtab(mod, info);
3138
3139 /* Allocate and move to the final place */
3140 err = move_module(mod, info);
3141 if (err)
3142 return ERR_PTR(err);
3143
3144 /* Module has been copied to its final place now: return it. */
3145 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3146 kmemleak_load_module(mod, info);
3147 return mod;
3148 }
3149
3150 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)3151 static void module_deallocate(struct module *mod, struct load_info *info)
3152 {
3153 percpu_modfree(mod);
3154 module_arch_freeing_init(mod);
3155 module_memfree(mod->module_init);
3156 module_memfree(mod->module_core);
3157 }
3158
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)3159 int __weak module_finalize(const Elf_Ehdr *hdr,
3160 const Elf_Shdr *sechdrs,
3161 struct module *me)
3162 {
3163 return 0;
3164 }
3165
post_relocation(struct module * mod,const struct load_info * info)3166 static int post_relocation(struct module *mod, const struct load_info *info)
3167 {
3168 /* Sort exception table now relocations are done. */
3169 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3170
3171 /* Copy relocated percpu area over. */
3172 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3173 info->sechdrs[info->index.pcpu].sh_size);
3174
3175 /* Setup kallsyms-specific fields. */
3176 add_kallsyms(mod, info);
3177
3178 /* Arch-specific module finalizing. */
3179 return module_finalize(info->hdr, info->sechdrs, mod);
3180 }
3181
3182 /* Is this module of this name done loading? No locks held. */
finished_loading(const char * name)3183 static bool finished_loading(const char *name)
3184 {
3185 struct module *mod;
3186 bool ret;
3187
3188 /*
3189 * The module_mutex should not be a heavily contended lock;
3190 * if we get the occasional sleep here, we'll go an extra iteration
3191 * in the wait_event_interruptible(), which is harmless.
3192 */
3193 sched_annotate_sleep();
3194 mutex_lock(&module_mutex);
3195 mod = find_module_all(name, strlen(name), true);
3196 ret = !mod || mod->state == MODULE_STATE_LIVE
3197 || mod->state == MODULE_STATE_GOING;
3198 mutex_unlock(&module_mutex);
3199
3200 return ret;
3201 }
3202
3203 /* Call module constructors. */
do_mod_ctors(struct module * mod)3204 static void do_mod_ctors(struct module *mod)
3205 {
3206 #ifdef CONFIG_CONSTRUCTORS
3207 unsigned long i;
3208
3209 for (i = 0; i < mod->num_ctors; i++)
3210 mod->ctors[i]();
3211 #endif
3212 }
3213
3214 /* For freeing module_init on success, in case kallsyms traversing */
3215 struct mod_initfree {
3216 struct rcu_head rcu;
3217 void *module_init;
3218 };
3219
do_free_init(struct rcu_head * head)3220 static void do_free_init(struct rcu_head *head)
3221 {
3222 struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3223 module_memfree(m->module_init);
3224 kfree(m);
3225 }
3226
3227 /*
3228 * This is where the real work happens.
3229 *
3230 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3231 * helper command 'lx-symbols'.
3232 */
do_init_module(struct module * mod)3233 static noinline int do_init_module(struct module *mod)
3234 {
3235 int ret = 0;
3236 struct mod_initfree *freeinit;
3237
3238 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3239 if (!freeinit) {
3240 ret = -ENOMEM;
3241 goto fail;
3242 }
3243 freeinit->module_init = mod->module_init;
3244
3245 /*
3246 * We want to find out whether @mod uses async during init. Clear
3247 * PF_USED_ASYNC. async_schedule*() will set it.
3248 */
3249 current->flags &= ~PF_USED_ASYNC;
3250
3251 do_mod_ctors(mod);
3252 /* Start the module */
3253 if (mod->init != NULL)
3254 ret = do_one_initcall(mod->init);
3255 if (ret < 0) {
3256 goto fail_free_freeinit;
3257 }
3258 if (ret > 0) {
3259 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3260 "follow 0/-E convention\n"
3261 "%s: loading module anyway...\n",
3262 __func__, mod->name, ret, __func__);
3263 dump_stack();
3264 }
3265
3266 /* Now it's a first class citizen! */
3267 mod->state = MODULE_STATE_LIVE;
3268 blocking_notifier_call_chain(&module_notify_list,
3269 MODULE_STATE_LIVE, mod);
3270
3271 /*
3272 * We need to finish all async code before the module init sequence
3273 * is done. This has potential to deadlock. For example, a newly
3274 * detected block device can trigger request_module() of the
3275 * default iosched from async probing task. Once userland helper
3276 * reaches here, async_synchronize_full() will wait on the async
3277 * task waiting on request_module() and deadlock.
3278 *
3279 * This deadlock is avoided by perfomring async_synchronize_full()
3280 * iff module init queued any async jobs. This isn't a full
3281 * solution as it will deadlock the same if module loading from
3282 * async jobs nests more than once; however, due to the various
3283 * constraints, this hack seems to be the best option for now.
3284 * Please refer to the following thread for details.
3285 *
3286 * http://thread.gmane.org/gmane.linux.kernel/1420814
3287 */
3288 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3289 async_synchronize_full();
3290
3291 mutex_lock(&module_mutex);
3292 /* Drop initial reference. */
3293 module_put(mod);
3294 trim_init_extable(mod);
3295 #ifdef CONFIG_KALLSYMS
3296 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3297 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3298 #endif
3299 mod_tree_remove_init(mod);
3300 unset_module_init_ro_nx(mod);
3301 module_arch_freeing_init(mod);
3302 mod->module_init = NULL;
3303 mod->init_size = 0;
3304 mod->init_ro_size = 0;
3305 mod->init_text_size = 0;
3306 /*
3307 * We want to free module_init, but be aware that kallsyms may be
3308 * walking this with preempt disabled. In all the failure paths, we
3309 * call synchronize_sched(), but we don't want to slow down the success
3310 * path, so use actual RCU here.
3311 */
3312 call_rcu_sched(&freeinit->rcu, do_free_init);
3313 mutex_unlock(&module_mutex);
3314 wake_up_all(&module_wq);
3315
3316 return 0;
3317
3318 fail_free_freeinit:
3319 kfree(freeinit);
3320 fail:
3321 /* Try to protect us from buggy refcounters. */
3322 mod->state = MODULE_STATE_GOING;
3323 synchronize_sched();
3324 module_put(mod);
3325 blocking_notifier_call_chain(&module_notify_list,
3326 MODULE_STATE_GOING, mod);
3327 free_module(mod);
3328 wake_up_all(&module_wq);
3329 return ret;
3330 }
3331
may_init_module(void)3332 static int may_init_module(void)
3333 {
3334 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3335 return -EPERM;
3336
3337 return 0;
3338 }
3339
3340 /*
3341 * We try to place it in the list now to make sure it's unique before
3342 * we dedicate too many resources. In particular, temporary percpu
3343 * memory exhaustion.
3344 */
add_unformed_module(struct module * mod)3345 static int add_unformed_module(struct module *mod)
3346 {
3347 int err;
3348 struct module *old;
3349
3350 mod->state = MODULE_STATE_UNFORMED;
3351
3352 again:
3353 mutex_lock(&module_mutex);
3354 old = find_module_all(mod->name, strlen(mod->name), true);
3355 if (old != NULL) {
3356 if (old->state == MODULE_STATE_COMING
3357 || old->state == MODULE_STATE_UNFORMED) {
3358 /* Wait in case it fails to load. */
3359 mutex_unlock(&module_mutex);
3360 err = wait_event_interruptible(module_wq,
3361 finished_loading(mod->name));
3362 if (err)
3363 goto out_unlocked;
3364 goto again;
3365 }
3366 err = -EEXIST;
3367 goto out;
3368 }
3369 mod_update_bounds(mod);
3370 list_add_rcu(&mod->list, &modules);
3371 mod_tree_insert(mod);
3372 err = 0;
3373
3374 out:
3375 mutex_unlock(&module_mutex);
3376 out_unlocked:
3377 return err;
3378 }
3379
complete_formation(struct module * mod,struct load_info * info)3380 static int complete_formation(struct module *mod, struct load_info *info)
3381 {
3382 int err;
3383
3384 mutex_lock(&module_mutex);
3385
3386 /* Find duplicate symbols (must be called under lock). */
3387 err = verify_export_symbols(mod);
3388 if (err < 0)
3389 goto out;
3390
3391 /* This relies on module_mutex for list integrity. */
3392 module_bug_finalize(info->hdr, info->sechdrs, mod);
3393
3394 /* Set RO and NX regions for core */
3395 set_section_ro_nx(mod->module_core,
3396 mod->core_text_size,
3397 mod->core_ro_size,
3398 mod->core_size);
3399
3400 /* Set RO and NX regions for init */
3401 set_section_ro_nx(mod->module_init,
3402 mod->init_text_size,
3403 mod->init_ro_size,
3404 mod->init_size);
3405
3406 /* Mark state as coming so strong_try_module_get() ignores us,
3407 * but kallsyms etc. can see us. */
3408 mod->state = MODULE_STATE_COMING;
3409 mutex_unlock(&module_mutex);
3410
3411 blocking_notifier_call_chain(&module_notify_list,
3412 MODULE_STATE_COMING, mod);
3413 return 0;
3414
3415 out:
3416 mutex_unlock(&module_mutex);
3417 return err;
3418 }
3419
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3420 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3421 void *arg)
3422 {
3423 struct module *mod = arg;
3424 int ret;
3425
3426 if (strcmp(param, "async_probe") == 0) {
3427 mod->async_probe_requested = true;
3428 return 0;
3429 }
3430
3431 /* Check for magic 'dyndbg' arg */
3432 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3433 if (ret != 0)
3434 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3435 return 0;
3436 }
3437
3438 /* Allocate and load the module: note that size of section 0 is always
3439 zero, and we rely on this for optional sections. */
load_module(struct load_info * info,const char __user * uargs,int flags)3440 static int load_module(struct load_info *info, const char __user *uargs,
3441 int flags)
3442 {
3443 struct module *mod;
3444 long err;
3445 char *after_dashes;
3446
3447 err = module_sig_check(info);
3448 if (err)
3449 goto free_copy;
3450
3451 err = elf_header_check(info);
3452 if (err)
3453 goto free_copy;
3454
3455 /* Figure out module layout, and allocate all the memory. */
3456 mod = layout_and_allocate(info, flags);
3457 if (IS_ERR(mod)) {
3458 err = PTR_ERR(mod);
3459 goto free_copy;
3460 }
3461
3462 /* Reserve our place in the list. */
3463 err = add_unformed_module(mod);
3464 if (err)
3465 goto free_module;
3466
3467 #ifdef CONFIG_MODULE_SIG
3468 mod->sig_ok = info->sig_ok;
3469 if (!mod->sig_ok) {
3470 pr_notice_once("%s: module verification failed: signature "
3471 "and/or required key missing - tainting "
3472 "kernel\n", mod->name);
3473 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3474 }
3475 #endif
3476
3477 /* To avoid stressing percpu allocator, do this once we're unique. */
3478 err = percpu_modalloc(mod, info);
3479 if (err)
3480 goto unlink_mod;
3481
3482 /* Now module is in final location, initialize linked lists, etc. */
3483 err = module_unload_init(mod);
3484 if (err)
3485 goto unlink_mod;
3486
3487 init_param_lock(mod);
3488
3489 /* Now we've got everything in the final locations, we can
3490 * find optional sections. */
3491 err = find_module_sections(mod, info);
3492 if (err)
3493 goto free_unload;
3494
3495 err = check_module_license_and_versions(mod);
3496 if (err)
3497 goto free_unload;
3498
3499 /* Set up MODINFO_ATTR fields */
3500 setup_modinfo(mod, info);
3501
3502 /* Fix up syms, so that st_value is a pointer to location. */
3503 err = simplify_symbols(mod, info);
3504 if (err < 0)
3505 goto free_modinfo;
3506
3507 err = apply_relocations(mod, info);
3508 if (err < 0)
3509 goto free_modinfo;
3510
3511 err = post_relocation(mod, info);
3512 if (err < 0)
3513 goto free_modinfo;
3514
3515 flush_module_icache(mod);
3516
3517 /* Now copy in args */
3518 mod->args = strndup_user(uargs, ~0UL >> 1);
3519 if (IS_ERR(mod->args)) {
3520 err = PTR_ERR(mod->args);
3521 goto free_arch_cleanup;
3522 }
3523
3524 dynamic_debug_setup(info->debug, info->num_debug);
3525
3526 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3527 ftrace_module_init(mod);
3528
3529 /* Finally it's fully formed, ready to start executing. */
3530 err = complete_formation(mod, info);
3531 if (err)
3532 goto ddebug_cleanup;
3533
3534 /* Module is ready to execute: parsing args may do that. */
3535 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3536 -32768, 32767, mod,
3537 unknown_module_param_cb);
3538 if (IS_ERR(after_dashes)) {
3539 err = PTR_ERR(after_dashes);
3540 goto bug_cleanup;
3541 } else if (after_dashes) {
3542 pr_warn("%s: parameters '%s' after `--' ignored\n",
3543 mod->name, after_dashes);
3544 }
3545
3546 /* Link in to syfs. */
3547 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3548 if (err < 0)
3549 goto bug_cleanup;
3550
3551 /* Get rid of temporary copy. */
3552 free_copy(info);
3553
3554 /* Done! */
3555 trace_module_load(mod);
3556
3557 return do_init_module(mod);
3558
3559 bug_cleanup:
3560 /* module_bug_cleanup needs module_mutex protection */
3561 mutex_lock(&module_mutex);
3562 module_bug_cleanup(mod);
3563 mutex_unlock(&module_mutex);
3564
3565 blocking_notifier_call_chain(&module_notify_list,
3566 MODULE_STATE_GOING, mod);
3567
3568 /* we can't deallocate the module until we clear memory protection */
3569 unset_module_init_ro_nx(mod);
3570 unset_module_core_ro_nx(mod);
3571
3572 ddebug_cleanup:
3573 dynamic_debug_remove(info->debug);
3574 synchronize_sched();
3575 kfree(mod->args);
3576 free_arch_cleanup:
3577 module_arch_cleanup(mod);
3578 free_modinfo:
3579 free_modinfo(mod);
3580 free_unload:
3581 module_unload_free(mod);
3582 unlink_mod:
3583 mutex_lock(&module_mutex);
3584 /* Unlink carefully: kallsyms could be walking list. */
3585 list_del_rcu(&mod->list);
3586 mod_tree_remove(mod);
3587 wake_up_all(&module_wq);
3588 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3589 synchronize_sched();
3590 mutex_unlock(&module_mutex);
3591 free_module:
3592 /*
3593 * Ftrace needs to clean up what it initialized.
3594 * This does nothing if ftrace_module_init() wasn't called,
3595 * but it must be called outside of module_mutex.
3596 */
3597 ftrace_release_mod(mod);
3598 /* Free lock-classes; relies on the preceding sync_rcu() */
3599 lockdep_free_key_range(mod->module_core, mod->core_size);
3600
3601 module_deallocate(mod, info);
3602 free_copy:
3603 free_copy(info);
3604 return err;
3605 }
3606
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3607 SYSCALL_DEFINE3(init_module, void __user *, umod,
3608 unsigned long, len, const char __user *, uargs)
3609 {
3610 int err;
3611 struct load_info info = { };
3612
3613 err = may_init_module();
3614 if (err)
3615 return err;
3616
3617 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3618 umod, len, uargs);
3619
3620 err = copy_module_from_user(umod, len, &info);
3621 if (err)
3622 return err;
3623
3624 return load_module(&info, uargs, 0);
3625 }
3626
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)3627 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3628 {
3629 int err;
3630 struct load_info info = { };
3631
3632 err = may_init_module();
3633 if (err)
3634 return err;
3635
3636 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3637
3638 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3639 |MODULE_INIT_IGNORE_VERMAGIC))
3640 return -EINVAL;
3641
3642 err = copy_module_from_fd(fd, &info);
3643 if (err)
3644 return err;
3645
3646 return load_module(&info, uargs, flags);
3647 }
3648
within(unsigned long addr,void * start,unsigned long size)3649 static inline int within(unsigned long addr, void *start, unsigned long size)
3650 {
3651 return ((void *)addr >= start && (void *)addr < start + size);
3652 }
3653
3654 #ifdef CONFIG_KALLSYMS
3655 /*
3656 * This ignores the intensely annoying "mapping symbols" found
3657 * in ARM ELF files: $a, $t and $d.
3658 */
is_arm_mapping_symbol(const char * str)3659 static inline int is_arm_mapping_symbol(const char *str)
3660 {
3661 if (str[0] == '.' && str[1] == 'L')
3662 return true;
3663 return str[0] == '$' && strchr("axtd", str[1])
3664 && (str[2] == '\0' || str[2] == '.');
3665 }
3666
symname(struct mod_kallsyms * kallsyms,unsigned int symnum)3667 static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3668 {
3669 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3670 }
3671
get_ksymbol(struct module * mod,unsigned long addr,unsigned long * size,unsigned long * offset)3672 static const char *get_ksymbol(struct module *mod,
3673 unsigned long addr,
3674 unsigned long *size,
3675 unsigned long *offset)
3676 {
3677 unsigned int i, best = 0;
3678 unsigned long nextval;
3679 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3680
3681 /* At worse, next value is at end of module */
3682 if (within_module_init(addr, mod))
3683 nextval = (unsigned long)mod->module_init+mod->init_text_size;
3684 else
3685 nextval = (unsigned long)mod->module_core+mod->core_text_size;
3686
3687 /* Scan for closest preceding symbol, and next symbol. (ELF
3688 starts real symbols at 1). */
3689 for (i = 1; i < kallsyms->num_symtab; i++) {
3690 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3691 continue;
3692
3693 /* We ignore unnamed symbols: they're uninformative
3694 * and inserted at a whim. */
3695 if (*symname(kallsyms, i) == '\0'
3696 || is_arm_mapping_symbol(symname(kallsyms, i)))
3697 continue;
3698
3699 if (kallsyms->symtab[i].st_value <= addr
3700 && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3701 best = i;
3702 if (kallsyms->symtab[i].st_value > addr
3703 && kallsyms->symtab[i].st_value < nextval)
3704 nextval = kallsyms->symtab[i].st_value;
3705 }
3706
3707 if (!best)
3708 return NULL;
3709
3710 if (size)
3711 *size = nextval - kallsyms->symtab[best].st_value;
3712 if (offset)
3713 *offset = addr - kallsyms->symtab[best].st_value;
3714 return symname(kallsyms, best);
3715 }
3716
3717 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3718 * not to lock to avoid deadlock on oopses, simply disable preemption. */
module_address_lookup(unsigned long addr,unsigned long * size,unsigned long * offset,char ** modname,char * namebuf)3719 const char *module_address_lookup(unsigned long addr,
3720 unsigned long *size,
3721 unsigned long *offset,
3722 char **modname,
3723 char *namebuf)
3724 {
3725 const char *ret = NULL;
3726 struct module *mod;
3727
3728 preempt_disable();
3729 mod = __module_address(addr);
3730 if (mod) {
3731 if (modname)
3732 *modname = mod->name;
3733 ret = get_ksymbol(mod, addr, size, offset);
3734 }
3735 /* Make a copy in here where it's safe */
3736 if (ret) {
3737 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3738 ret = namebuf;
3739 }
3740 preempt_enable();
3741
3742 return ret;
3743 }
3744
lookup_module_symbol_name(unsigned long addr,char * symname)3745 int lookup_module_symbol_name(unsigned long addr, char *symname)
3746 {
3747 struct module *mod;
3748
3749 preempt_disable();
3750 list_for_each_entry_rcu(mod, &modules, list) {
3751 if (mod->state == MODULE_STATE_UNFORMED)
3752 continue;
3753 if (within_module(addr, mod)) {
3754 const char *sym;
3755
3756 sym = get_ksymbol(mod, addr, NULL, NULL);
3757 if (!sym)
3758 goto out;
3759 strlcpy(symname, sym, KSYM_NAME_LEN);
3760 preempt_enable();
3761 return 0;
3762 }
3763 }
3764 out:
3765 preempt_enable();
3766 return -ERANGE;
3767 }
3768
lookup_module_symbol_attrs(unsigned long addr,unsigned long * size,unsigned long * offset,char * modname,char * name)3769 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3770 unsigned long *offset, char *modname, char *name)
3771 {
3772 struct module *mod;
3773
3774 preempt_disable();
3775 list_for_each_entry_rcu(mod, &modules, list) {
3776 if (mod->state == MODULE_STATE_UNFORMED)
3777 continue;
3778 if (within_module(addr, mod)) {
3779 const char *sym;
3780
3781 sym = get_ksymbol(mod, addr, size, offset);
3782 if (!sym)
3783 goto out;
3784 if (modname)
3785 strlcpy(modname, mod->name, MODULE_NAME_LEN);
3786 if (name)
3787 strlcpy(name, sym, KSYM_NAME_LEN);
3788 preempt_enable();
3789 return 0;
3790 }
3791 }
3792 out:
3793 preempt_enable();
3794 return -ERANGE;
3795 }
3796
module_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * name,char * module_name,int * exported)3797 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3798 char *name, char *module_name, int *exported)
3799 {
3800 struct module *mod;
3801
3802 preempt_disable();
3803 list_for_each_entry_rcu(mod, &modules, list) {
3804 struct mod_kallsyms *kallsyms;
3805
3806 if (mod->state == MODULE_STATE_UNFORMED)
3807 continue;
3808 kallsyms = rcu_dereference_sched(mod->kallsyms);
3809 if (symnum < kallsyms->num_symtab) {
3810 *value = kallsyms->symtab[symnum].st_value;
3811 *type = kallsyms->symtab[symnum].st_info;
3812 strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
3813 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3814 *exported = is_exported(name, *value, mod);
3815 preempt_enable();
3816 return 0;
3817 }
3818 symnum -= kallsyms->num_symtab;
3819 }
3820 preempt_enable();
3821 return -ERANGE;
3822 }
3823
mod_find_symname(struct module * mod,const char * name)3824 static unsigned long mod_find_symname(struct module *mod, const char *name)
3825 {
3826 unsigned int i;
3827 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3828
3829 for (i = 0; i < kallsyms->num_symtab; i++)
3830 if (strcmp(name, symname(kallsyms, i)) == 0 &&
3831 kallsyms->symtab[i].st_info != 'U')
3832 return kallsyms->symtab[i].st_value;
3833 return 0;
3834 }
3835
3836 /* Look for this name: can be of form module:name. */
module_kallsyms_lookup_name(const char * name)3837 unsigned long module_kallsyms_lookup_name(const char *name)
3838 {
3839 struct module *mod;
3840 char *colon;
3841 unsigned long ret = 0;
3842
3843 /* Don't lock: we're in enough trouble already. */
3844 preempt_disable();
3845 if ((colon = strchr(name, ':')) != NULL) {
3846 if ((mod = find_module_all(name, colon - name, false)) != NULL)
3847 ret = mod_find_symname(mod, colon+1);
3848 } else {
3849 list_for_each_entry_rcu(mod, &modules, list) {
3850 if (mod->state == MODULE_STATE_UNFORMED)
3851 continue;
3852 if ((ret = mod_find_symname(mod, name)) != 0)
3853 break;
3854 }
3855 }
3856 preempt_enable();
3857 return ret;
3858 }
3859
module_kallsyms_on_each_symbol(int (* fn)(void *,const char *,struct module *,unsigned long),void * data)3860 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3861 struct module *, unsigned long),
3862 void *data)
3863 {
3864 struct module *mod;
3865 unsigned int i;
3866 int ret;
3867
3868 module_assert_mutex();
3869
3870 list_for_each_entry(mod, &modules, list) {
3871 /* We hold module_mutex: no need for rcu_dereference_sched */
3872 struct mod_kallsyms *kallsyms = mod->kallsyms;
3873
3874 if (mod->state == MODULE_STATE_UNFORMED)
3875 continue;
3876 for (i = 0; i < kallsyms->num_symtab; i++) {
3877 ret = fn(data, symname(kallsyms, i),
3878 mod, kallsyms->symtab[i].st_value);
3879 if (ret != 0)
3880 return ret;
3881 }
3882 }
3883 return 0;
3884 }
3885 #endif /* CONFIG_KALLSYMS */
3886
module_flags(struct module * mod,char * buf)3887 static char *module_flags(struct module *mod, char *buf)
3888 {
3889 int bx = 0;
3890
3891 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3892 if (mod->taints ||
3893 mod->state == MODULE_STATE_GOING ||
3894 mod->state == MODULE_STATE_COMING) {
3895 buf[bx++] = '(';
3896 bx += module_flags_taint(mod, buf + bx);
3897 /* Show a - for module-is-being-unloaded */
3898 if (mod->state == MODULE_STATE_GOING)
3899 buf[bx++] = '-';
3900 /* Show a + for module-is-being-loaded */
3901 if (mod->state == MODULE_STATE_COMING)
3902 buf[bx++] = '+';
3903 buf[bx++] = ')';
3904 }
3905 buf[bx] = '\0';
3906
3907 return buf;
3908 }
3909
3910 #ifdef CONFIG_PROC_FS
3911 /* Called by the /proc file system to return a list of modules. */
m_start(struct seq_file * m,loff_t * pos)3912 static void *m_start(struct seq_file *m, loff_t *pos)
3913 {
3914 mutex_lock(&module_mutex);
3915 return seq_list_start(&modules, *pos);
3916 }
3917
m_next(struct seq_file * m,void * p,loff_t * pos)3918 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3919 {
3920 return seq_list_next(p, &modules, pos);
3921 }
3922
m_stop(struct seq_file * m,void * p)3923 static void m_stop(struct seq_file *m, void *p)
3924 {
3925 mutex_unlock(&module_mutex);
3926 }
3927
m_show(struct seq_file * m,void * p)3928 static int m_show(struct seq_file *m, void *p)
3929 {
3930 struct module *mod = list_entry(p, struct module, list);
3931 char buf[8];
3932
3933 /* We always ignore unformed modules. */
3934 if (mod->state == MODULE_STATE_UNFORMED)
3935 return 0;
3936
3937 seq_printf(m, "%s %u",
3938 mod->name, mod->init_size + mod->core_size);
3939 print_unload_info(m, mod);
3940
3941 /* Informative for users. */
3942 seq_printf(m, " %s",
3943 mod->state == MODULE_STATE_GOING ? "Unloading" :
3944 mod->state == MODULE_STATE_COMING ? "Loading" :
3945 "Live");
3946 /* Used by oprofile and other similar tools. */
3947 seq_printf(m, " 0x%pK", mod->module_core);
3948
3949 /* Taints info */
3950 if (mod->taints)
3951 seq_printf(m, " %s", module_flags(mod, buf));
3952
3953 seq_puts(m, "\n");
3954 return 0;
3955 }
3956
3957 /* Format: modulename size refcount deps address
3958
3959 Where refcount is a number or -, and deps is a comma-separated list
3960 of depends or -.
3961 */
3962 static const struct seq_operations modules_op = {
3963 .start = m_start,
3964 .next = m_next,
3965 .stop = m_stop,
3966 .show = m_show
3967 };
3968
modules_open(struct inode * inode,struct file * file)3969 static int modules_open(struct inode *inode, struct file *file)
3970 {
3971 return seq_open(file, &modules_op);
3972 }
3973
3974 static const struct file_operations proc_modules_operations = {
3975 .open = modules_open,
3976 .read = seq_read,
3977 .llseek = seq_lseek,
3978 .release = seq_release,
3979 };
3980
proc_modules_init(void)3981 static int __init proc_modules_init(void)
3982 {
3983 proc_create("modules", 0, NULL, &proc_modules_operations);
3984 return 0;
3985 }
3986 module_init(proc_modules_init);
3987 #endif
3988
3989 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)3990 const struct exception_table_entry *search_module_extables(unsigned long addr)
3991 {
3992 const struct exception_table_entry *e = NULL;
3993 struct module *mod;
3994
3995 preempt_disable();
3996 list_for_each_entry_rcu(mod, &modules, list) {
3997 if (mod->state == MODULE_STATE_UNFORMED)
3998 continue;
3999 if (mod->num_exentries == 0)
4000 continue;
4001
4002 e = search_extable(mod->extable,
4003 mod->extable + mod->num_exentries - 1,
4004 addr);
4005 if (e)
4006 break;
4007 }
4008 preempt_enable();
4009
4010 /* Now, if we found one, we are running inside it now, hence
4011 we cannot unload the module, hence no refcnt needed. */
4012 return e;
4013 }
4014
4015 /*
4016 * is_module_address - is this address inside a module?
4017 * @addr: the address to check.
4018 *
4019 * See is_module_text_address() if you simply want to see if the address
4020 * is code (not data).
4021 */
is_module_address(unsigned long addr)4022 bool is_module_address(unsigned long addr)
4023 {
4024 bool ret;
4025
4026 preempt_disable();
4027 ret = __module_address(addr) != NULL;
4028 preempt_enable();
4029
4030 return ret;
4031 }
4032
4033 /*
4034 * __module_address - get the module which contains an address.
4035 * @addr: the address.
4036 *
4037 * Must be called with preempt disabled or module mutex held so that
4038 * module doesn't get freed during this.
4039 */
__module_address(unsigned long addr)4040 struct module *__module_address(unsigned long addr)
4041 {
4042 struct module *mod;
4043
4044 if (addr < module_addr_min || addr > module_addr_max)
4045 return NULL;
4046
4047 module_assert_mutex_or_preempt();
4048
4049 mod = mod_find(addr);
4050 if (mod) {
4051 BUG_ON(!within_module(addr, mod));
4052 if (mod->state == MODULE_STATE_UNFORMED)
4053 mod = NULL;
4054 }
4055 return mod;
4056 }
4057 EXPORT_SYMBOL_GPL(__module_address);
4058
4059 /*
4060 * is_module_text_address - is this address inside module code?
4061 * @addr: the address to check.
4062 *
4063 * See is_module_address() if you simply want to see if the address is
4064 * anywhere in a module. See kernel_text_address() for testing if an
4065 * address corresponds to kernel or module code.
4066 */
is_module_text_address(unsigned long addr)4067 bool is_module_text_address(unsigned long addr)
4068 {
4069 bool ret;
4070
4071 preempt_disable();
4072 ret = __module_text_address(addr) != NULL;
4073 preempt_enable();
4074
4075 return ret;
4076 }
4077
4078 /*
4079 * __module_text_address - get the module whose code contains an address.
4080 * @addr: the address.
4081 *
4082 * Must be called with preempt disabled or module mutex held so that
4083 * module doesn't get freed during this.
4084 */
__module_text_address(unsigned long addr)4085 struct module *__module_text_address(unsigned long addr)
4086 {
4087 struct module *mod = __module_address(addr);
4088 if (mod) {
4089 /* Make sure it's within the text section. */
4090 if (!within(addr, mod->module_init, mod->init_text_size)
4091 && !within(addr, mod->module_core, mod->core_text_size))
4092 mod = NULL;
4093 }
4094 return mod;
4095 }
4096 EXPORT_SYMBOL_GPL(__module_text_address);
4097
4098 /* Don't grab lock, we're oopsing. */
print_modules(void)4099 void print_modules(void)
4100 {
4101 struct module *mod;
4102 char buf[8];
4103
4104 printk(KERN_DEFAULT "Modules linked in:");
4105 /* Most callers should already have preempt disabled, but make sure */
4106 preempt_disable();
4107 list_for_each_entry_rcu(mod, &modules, list) {
4108 if (mod->state == MODULE_STATE_UNFORMED)
4109 continue;
4110 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4111 }
4112 preempt_enable();
4113 if (last_unloaded_module[0])
4114 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4115 pr_cont("\n");
4116 }
4117
4118 #ifdef CONFIG_MODVERSIONS
4119 /* Generate the signature for all relevant module structures here.
4120 * If these change, we don't want to try to parse the module. */
module_layout(struct module * mod,struct modversion_info * ver,struct kernel_param * kp,struct kernel_symbol * ks,struct tracepoint * const * tp)4121 void module_layout(struct module *mod,
4122 struct modversion_info *ver,
4123 struct kernel_param *kp,
4124 struct kernel_symbol *ks,
4125 struct tracepoint * const *tp)
4126 {
4127 }
4128 EXPORT_SYMBOL(module_layout);
4129 #endif
4130