1 /*
2  * Copyright (C) 2005 David Brownell
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #ifndef __LINUX_SPI_H
16 #define __LINUX_SPI_H
17 
18 #include <linux/device.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/slab.h>
21 #include <linux/kthread.h>
22 #include <linux/completion.h>
23 #include <linux/scatterlist.h>
24 
25 struct dma_chan;
26 struct spi_master;
27 struct spi_transfer;
28 
29 /*
30  * INTERFACES between SPI master-side drivers and SPI infrastructure.
31  * (There's no SPI slave support for Linux yet...)
32  */
33 extern struct bus_type spi_bus_type;
34 
35 /**
36  * struct spi_statistics - statistics for spi transfers
37  * @lock:          lock protecting this structure
38  *
39  * @messages:      number of spi-messages handled
40  * @transfers:     number of spi_transfers handled
41  * @errors:        number of errors during spi_transfer
42  * @timedout:      number of timeouts during spi_transfer
43  *
44  * @spi_sync:      number of times spi_sync is used
45  * @spi_sync_immediate:
46  *                 number of times spi_sync is executed immediately
47  *                 in calling context without queuing and scheduling
48  * @spi_async:     number of times spi_async is used
49  *
50  * @bytes:         number of bytes transferred to/from device
51  * @bytes_tx:      number of bytes sent to device
52  * @bytes_rx:      number of bytes received from device
53  *
54  * @transfer_bytes_histo:
55  *                 transfer bytes histogramm
56  */
57 struct spi_statistics {
58 	spinlock_t		lock; /* lock for the whole structure */
59 
60 	unsigned long		messages;
61 	unsigned long		transfers;
62 	unsigned long		errors;
63 	unsigned long		timedout;
64 
65 	unsigned long		spi_sync;
66 	unsigned long		spi_sync_immediate;
67 	unsigned long		spi_async;
68 
69 	unsigned long long	bytes;
70 	unsigned long long	bytes_rx;
71 	unsigned long long	bytes_tx;
72 
73 #define SPI_STATISTICS_HISTO_SIZE 17
74 	unsigned long transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
75 };
76 
77 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
78 				       struct spi_transfer *xfer,
79 				       struct spi_master *master);
80 
81 #define SPI_STATISTICS_ADD_TO_FIELD(stats, field, count)	\
82 	do {							\
83 		unsigned long flags;				\
84 		spin_lock_irqsave(&(stats)->lock, flags);	\
85 		(stats)->field += count;			\
86 		spin_unlock_irqrestore(&(stats)->lock, flags);	\
87 	} while (0)
88 
89 #define SPI_STATISTICS_INCREMENT_FIELD(stats, field)	\
90 	SPI_STATISTICS_ADD_TO_FIELD(stats, field, 1)
91 
92 /**
93  * struct spi_device - Master side proxy for an SPI slave device
94  * @dev: Driver model representation of the device.
95  * @master: SPI controller used with the device.
96  * @max_speed_hz: Maximum clock rate to be used with this chip
97  *	(on this board); may be changed by the device's driver.
98  *	The spi_transfer.speed_hz can override this for each transfer.
99  * @chip_select: Chipselect, distinguishing chips handled by @master.
100  * @mode: The spi mode defines how data is clocked out and in.
101  *	This may be changed by the device's driver.
102  *	The "active low" default for chipselect mode can be overridden
103  *	(by specifying SPI_CS_HIGH) as can the "MSB first" default for
104  *	each word in a transfer (by specifying SPI_LSB_FIRST).
105  * @bits_per_word: Data transfers involve one or more words; word sizes
106  *	like eight or 12 bits are common.  In-memory wordsizes are
107  *	powers of two bytes (e.g. 20 bit samples use 32 bits).
108  *	This may be changed by the device's driver, or left at the
109  *	default (0) indicating protocol words are eight bit bytes.
110  *	The spi_transfer.bits_per_word can override this for each transfer.
111  * @irq: Negative, or the number passed to request_irq() to receive
112  *	interrupts from this device.
113  * @controller_state: Controller's runtime state
114  * @controller_data: Board-specific definitions for controller, such as
115  *	FIFO initialization parameters; from board_info.controller_data
116  * @modalias: Name of the driver to use with this device, or an alias
117  *	for that name.  This appears in the sysfs "modalias" attribute
118  *	for driver coldplugging, and in uevents used for hotplugging
119  * @cs_gpio: gpio number of the chipselect line (optional, -ENOENT when
120  *	when not using a GPIO line)
121  *
122  * @statistics: statistics for the spi_device
123  *
124  * A @spi_device is used to interchange data between an SPI slave
125  * (usually a discrete chip) and CPU memory.
126  *
127  * In @dev, the platform_data is used to hold information about this
128  * device that's meaningful to the device's protocol driver, but not
129  * to its controller.  One example might be an identifier for a chip
130  * variant with slightly different functionality; another might be
131  * information about how this particular board wires the chip's pins.
132  */
133 struct spi_device {
134 	struct device		dev;
135 	struct spi_master	*master;
136 	u32			max_speed_hz;
137 	u8			chip_select;
138 	u8			bits_per_word;
139 	u16			mode;
140 #define	SPI_CPHA	0x01			/* clock phase */
141 #define	SPI_CPOL	0x02			/* clock polarity */
142 #define	SPI_MODE_0	(0|0)			/* (original MicroWire) */
143 #define	SPI_MODE_1	(0|SPI_CPHA)
144 #define	SPI_MODE_2	(SPI_CPOL|0)
145 #define	SPI_MODE_3	(SPI_CPOL|SPI_CPHA)
146 #define	SPI_CS_HIGH	0x04			/* chipselect active high? */
147 #define	SPI_LSB_FIRST	0x08			/* per-word bits-on-wire */
148 #define	SPI_3WIRE	0x10			/* SI/SO signals shared */
149 #define	SPI_LOOP	0x20			/* loopback mode */
150 #define	SPI_NO_CS	0x40			/* 1 dev/bus, no chipselect */
151 #define	SPI_READY	0x80			/* slave pulls low to pause */
152 #define	SPI_TX_DUAL	0x100			/* transmit with 2 wires */
153 #define	SPI_TX_QUAD	0x200			/* transmit with 4 wires */
154 #define	SPI_RX_DUAL	0x400			/* receive with 2 wires */
155 #define	SPI_RX_QUAD	0x800			/* receive with 4 wires */
156 	int			irq;
157 	void			*controller_state;
158 	void			*controller_data;
159 	char			modalias[SPI_NAME_SIZE];
160 	int			cs_gpio;	/* chip select gpio */
161 
162 	/* the statistics */
163 	struct spi_statistics	statistics;
164 
165 	/*
166 	 * likely need more hooks for more protocol options affecting how
167 	 * the controller talks to each chip, like:
168 	 *  - memory packing (12 bit samples into low bits, others zeroed)
169 	 *  - priority
170 	 *  - drop chipselect after each word
171 	 *  - chipselect delays
172 	 *  - ...
173 	 */
174 };
175 
to_spi_device(struct device * dev)176 static inline struct spi_device *to_spi_device(struct device *dev)
177 {
178 	return dev ? container_of(dev, struct spi_device, dev) : NULL;
179 }
180 
181 /* most drivers won't need to care about device refcounting */
spi_dev_get(struct spi_device * spi)182 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
183 {
184 	return (spi && get_device(&spi->dev)) ? spi : NULL;
185 }
186 
spi_dev_put(struct spi_device * spi)187 static inline void spi_dev_put(struct spi_device *spi)
188 {
189 	if (spi)
190 		put_device(&spi->dev);
191 }
192 
193 /* ctldata is for the bus_master driver's runtime state */
spi_get_ctldata(struct spi_device * spi)194 static inline void *spi_get_ctldata(struct spi_device *spi)
195 {
196 	return spi->controller_state;
197 }
198 
spi_set_ctldata(struct spi_device * spi,void * state)199 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
200 {
201 	spi->controller_state = state;
202 }
203 
204 /* device driver data */
205 
spi_set_drvdata(struct spi_device * spi,void * data)206 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
207 {
208 	dev_set_drvdata(&spi->dev, data);
209 }
210 
spi_get_drvdata(struct spi_device * spi)211 static inline void *spi_get_drvdata(struct spi_device *spi)
212 {
213 	return dev_get_drvdata(&spi->dev);
214 }
215 
216 struct spi_message;
217 struct spi_transfer;
218 
219 /**
220  * struct spi_driver - Host side "protocol" driver
221  * @id_table: List of SPI devices supported by this driver
222  * @probe: Binds this driver to the spi device.  Drivers can verify
223  *	that the device is actually present, and may need to configure
224  *	characteristics (such as bits_per_word) which weren't needed for
225  *	the initial configuration done during system setup.
226  * @remove: Unbinds this driver from the spi device
227  * @shutdown: Standard shutdown callback used during system state
228  *	transitions such as powerdown/halt and kexec
229  * @driver: SPI device drivers should initialize the name and owner
230  *	field of this structure.
231  *
232  * This represents the kind of device driver that uses SPI messages to
233  * interact with the hardware at the other end of a SPI link.  It's called
234  * a "protocol" driver because it works through messages rather than talking
235  * directly to SPI hardware (which is what the underlying SPI controller
236  * driver does to pass those messages).  These protocols are defined in the
237  * specification for the device(s) supported by the driver.
238  *
239  * As a rule, those device protocols represent the lowest level interface
240  * supported by a driver, and it will support upper level interfaces too.
241  * Examples of such upper levels include frameworks like MTD, networking,
242  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
243  */
244 struct spi_driver {
245 	const struct spi_device_id *id_table;
246 	int			(*probe)(struct spi_device *spi);
247 	int			(*remove)(struct spi_device *spi);
248 	void			(*shutdown)(struct spi_device *spi);
249 	struct device_driver	driver;
250 };
251 
to_spi_driver(struct device_driver * drv)252 static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
253 {
254 	return drv ? container_of(drv, struct spi_driver, driver) : NULL;
255 }
256 
257 extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
258 
259 /**
260  * spi_unregister_driver - reverse effect of spi_register_driver
261  * @sdrv: the driver to unregister
262  * Context: can sleep
263  */
spi_unregister_driver(struct spi_driver * sdrv)264 static inline void spi_unregister_driver(struct spi_driver *sdrv)
265 {
266 	if (sdrv)
267 		driver_unregister(&sdrv->driver);
268 }
269 
270 /* use a define to avoid include chaining to get THIS_MODULE */
271 #define spi_register_driver(driver) \
272 	__spi_register_driver(THIS_MODULE, driver)
273 
274 /**
275  * module_spi_driver() - Helper macro for registering a SPI driver
276  * @__spi_driver: spi_driver struct
277  *
278  * Helper macro for SPI drivers which do not do anything special in module
279  * init/exit. This eliminates a lot of boilerplate. Each module may only
280  * use this macro once, and calling it replaces module_init() and module_exit()
281  */
282 #define module_spi_driver(__spi_driver) \
283 	module_driver(__spi_driver, spi_register_driver, \
284 			spi_unregister_driver)
285 
286 /**
287  * struct spi_master - interface to SPI master controller
288  * @dev: device interface to this driver
289  * @list: link with the global spi_master list
290  * @bus_num: board-specific (and often SOC-specific) identifier for a
291  *	given SPI controller.
292  * @num_chipselect: chipselects are used to distinguish individual
293  *	SPI slaves, and are numbered from zero to num_chipselects.
294  *	each slave has a chipselect signal, but it's common that not
295  *	every chipselect is connected to a slave.
296  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
297  * @mode_bits: flags understood by this controller driver
298  * @bits_per_word_mask: A mask indicating which values of bits_per_word are
299  *	supported by the driver. Bit n indicates that a bits_per_word n+1 is
300  *	supported. If set, the SPI core will reject any transfer with an
301  *	unsupported bits_per_word. If not set, this value is simply ignored,
302  *	and it's up to the individual driver to perform any validation.
303  * @min_speed_hz: Lowest supported transfer speed
304  * @max_speed_hz: Highest supported transfer speed
305  * @flags: other constraints relevant to this driver
306  * @bus_lock_spinlock: spinlock for SPI bus locking
307  * @bus_lock_mutex: mutex for SPI bus locking
308  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
309  * @setup: updates the device mode and clocking records used by a
310  *	device's SPI controller; protocol code may call this.  This
311  *	must fail if an unrecognized or unsupported mode is requested.
312  *	It's always safe to call this unless transfers are pending on
313  *	the device whose settings are being modified.
314  * @transfer: adds a message to the controller's transfer queue.
315  * @cleanup: frees controller-specific state
316  * @can_dma: determine whether this master supports DMA
317  * @queued: whether this master is providing an internal message queue
318  * @kworker: thread struct for message pump
319  * @kworker_task: pointer to task for message pump kworker thread
320  * @pump_messages: work struct for scheduling work to the message pump
321  * @queue_lock: spinlock to syncronise access to message queue
322  * @queue: message queue
323  * @idling: the device is entering idle state
324  * @cur_msg: the currently in-flight message
325  * @cur_msg_prepared: spi_prepare_message was called for the currently
326  *                    in-flight message
327  * @cur_msg_mapped: message has been mapped for DMA
328  * @xfer_completion: used by core transfer_one_message()
329  * @busy: message pump is busy
330  * @running: message pump is running
331  * @rt: whether this queue is set to run as a realtime task
332  * @auto_runtime_pm: the core should ensure a runtime PM reference is held
333  *                   while the hardware is prepared, using the parent
334  *                   device for the spidev
335  * @max_dma_len: Maximum length of a DMA transfer for the device.
336  * @prepare_transfer_hardware: a message will soon arrive from the queue
337  *	so the subsystem requests the driver to prepare the transfer hardware
338  *	by issuing this call
339  * @transfer_one_message: the subsystem calls the driver to transfer a single
340  *	message while queuing transfers that arrive in the meantime. When the
341  *	driver is finished with this message, it must call
342  *	spi_finalize_current_message() so the subsystem can issue the next
343  *	message
344  * @unprepare_transfer_hardware: there are currently no more messages on the
345  *	queue so the subsystem notifies the driver that it may relax the
346  *	hardware by issuing this call
347  * @set_cs: set the logic level of the chip select line.  May be called
348  *          from interrupt context.
349  * @prepare_message: set up the controller to transfer a single message,
350  *                   for example doing DMA mapping.  Called from threaded
351  *                   context.
352  * @transfer_one: transfer a single spi_transfer.
353  *                  - return 0 if the transfer is finished,
354  *                  - return 1 if the transfer is still in progress. When
355  *                    the driver is finished with this transfer it must
356  *                    call spi_finalize_current_transfer() so the subsystem
357  *                    can issue the next transfer. Note: transfer_one and
358  *                    transfer_one_message are mutually exclusive; when both
359  *                    are set, the generic subsystem does not call your
360  *                    transfer_one callback.
361  * @handle_err: the subsystem calls the driver to handle an error that occurs
362  *		in the generic implementation of transfer_one_message().
363  * @unprepare_message: undo any work done by prepare_message().
364  * @cs_gpios: Array of GPIOs to use as chip select lines; one per CS
365  *	number. Any individual value may be -ENOENT for CS lines that
366  *	are not GPIOs (driven by the SPI controller itself).
367  * @statistics: statistics for the spi_master
368  * @dma_tx: DMA transmit channel
369  * @dma_rx: DMA receive channel
370  * @dummy_rx: dummy receive buffer for full-duplex devices
371  * @dummy_tx: dummy transmit buffer for full-duplex devices
372  *
373  * Each SPI master controller can communicate with one or more @spi_device
374  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
375  * but not chip select signals.  Each device may be configured to use a
376  * different clock rate, since those shared signals are ignored unless
377  * the chip is selected.
378  *
379  * The driver for an SPI controller manages access to those devices through
380  * a queue of spi_message transactions, copying data between CPU memory and
381  * an SPI slave device.  For each such message it queues, it calls the
382  * message's completion function when the transaction completes.
383  */
384 struct spi_master {
385 	struct device	dev;
386 
387 	struct list_head list;
388 
389 	/* other than negative (== assign one dynamically), bus_num is fully
390 	 * board-specific.  usually that simplifies to being SOC-specific.
391 	 * example:  one SOC has three SPI controllers, numbered 0..2,
392 	 * and one board's schematics might show it using SPI-2.  software
393 	 * would normally use bus_num=2 for that controller.
394 	 */
395 	s16			bus_num;
396 
397 	/* chipselects will be integral to many controllers; some others
398 	 * might use board-specific GPIOs.
399 	 */
400 	u16			num_chipselect;
401 
402 	/* some SPI controllers pose alignment requirements on DMAable
403 	 * buffers; let protocol drivers know about these requirements.
404 	 */
405 	u16			dma_alignment;
406 
407 	/* spi_device.mode flags understood by this controller driver */
408 	u16			mode_bits;
409 
410 	/* bitmask of supported bits_per_word for transfers */
411 	u32			bits_per_word_mask;
412 #define SPI_BPW_MASK(bits) BIT((bits) - 1)
413 #define SPI_BIT_MASK(bits) (((bits) == 32) ? ~0U : (BIT(bits) - 1))
414 #define SPI_BPW_RANGE_MASK(min, max) (SPI_BIT_MASK(max) - SPI_BIT_MASK(min - 1))
415 
416 	/* limits on transfer speed */
417 	u32			min_speed_hz;
418 	u32			max_speed_hz;
419 
420 	/* other constraints relevant to this driver */
421 	u16			flags;
422 #define SPI_MASTER_HALF_DUPLEX	BIT(0)		/* can't do full duplex */
423 #define SPI_MASTER_NO_RX	BIT(1)		/* can't do buffer read */
424 #define SPI_MASTER_NO_TX	BIT(2)		/* can't do buffer write */
425 #define SPI_MASTER_MUST_RX      BIT(3)		/* requires rx */
426 #define SPI_MASTER_MUST_TX      BIT(4)		/* requires tx */
427 
428 	/* lock and mutex for SPI bus locking */
429 	spinlock_t		bus_lock_spinlock;
430 	struct mutex		bus_lock_mutex;
431 
432 	/* flag indicating that the SPI bus is locked for exclusive use */
433 	bool			bus_lock_flag;
434 
435 	/* Setup mode and clock, etc (spi driver may call many times).
436 	 *
437 	 * IMPORTANT:  this may be called when transfers to another
438 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
439 	 * which could break those transfers.
440 	 */
441 	int			(*setup)(struct spi_device *spi);
442 
443 	/* bidirectional bulk transfers
444 	 *
445 	 * + The transfer() method may not sleep; its main role is
446 	 *   just to add the message to the queue.
447 	 * + For now there's no remove-from-queue operation, or
448 	 *   any other request management
449 	 * + To a given spi_device, message queueing is pure fifo
450 	 *
451 	 * + The master's main job is to process its message queue,
452 	 *   selecting a chip then transferring data
453 	 * + If there are multiple spi_device children, the i/o queue
454 	 *   arbitration algorithm is unspecified (round robin, fifo,
455 	 *   priority, reservations, preemption, etc)
456 	 *
457 	 * + Chipselect stays active during the entire message
458 	 *   (unless modified by spi_transfer.cs_change != 0).
459 	 * + The message transfers use clock and SPI mode parameters
460 	 *   previously established by setup() for this device
461 	 */
462 	int			(*transfer)(struct spi_device *spi,
463 						struct spi_message *mesg);
464 
465 	/* called on release() to free memory provided by spi_master */
466 	void			(*cleanup)(struct spi_device *spi);
467 
468 	/*
469 	 * Used to enable core support for DMA handling, if can_dma()
470 	 * exists and returns true then the transfer will be mapped
471 	 * prior to transfer_one() being called.  The driver should
472 	 * not modify or store xfer and dma_tx and dma_rx must be set
473 	 * while the device is prepared.
474 	 */
475 	bool			(*can_dma)(struct spi_master *master,
476 					   struct spi_device *spi,
477 					   struct spi_transfer *xfer);
478 
479 	/*
480 	 * These hooks are for drivers that want to use the generic
481 	 * master transfer queueing mechanism. If these are used, the
482 	 * transfer() function above must NOT be specified by the driver.
483 	 * Over time we expect SPI drivers to be phased over to this API.
484 	 */
485 	bool				queued;
486 	struct kthread_worker		kworker;
487 	struct task_struct		*kworker_task;
488 	struct kthread_work		pump_messages;
489 	spinlock_t			queue_lock;
490 	struct list_head		queue;
491 	struct spi_message		*cur_msg;
492 	bool				idling;
493 	bool				busy;
494 	bool				running;
495 	bool				rt;
496 	bool				auto_runtime_pm;
497 	bool                            cur_msg_prepared;
498 	bool				cur_msg_mapped;
499 	struct completion               xfer_completion;
500 	size_t				max_dma_len;
501 
502 	int (*prepare_transfer_hardware)(struct spi_master *master);
503 	int (*transfer_one_message)(struct spi_master *master,
504 				    struct spi_message *mesg);
505 	int (*unprepare_transfer_hardware)(struct spi_master *master);
506 	int (*prepare_message)(struct spi_master *master,
507 			       struct spi_message *message);
508 	int (*unprepare_message)(struct spi_master *master,
509 				 struct spi_message *message);
510 
511 	/*
512 	 * These hooks are for drivers that use a generic implementation
513 	 * of transfer_one_message() provied by the core.
514 	 */
515 	void (*set_cs)(struct spi_device *spi, bool enable);
516 	int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
517 			    struct spi_transfer *transfer);
518 	void (*handle_err)(struct spi_master *master,
519 			   struct spi_message *message);
520 
521 	/* gpio chip select */
522 	int			*cs_gpios;
523 
524 	/* statistics */
525 	struct spi_statistics	statistics;
526 
527 	/* DMA channels for use with core dmaengine helpers */
528 	struct dma_chan		*dma_tx;
529 	struct dma_chan		*dma_rx;
530 
531 	/* dummy data for full duplex devices */
532 	void			*dummy_rx;
533 	void			*dummy_tx;
534 };
535 
spi_master_get_devdata(struct spi_master * master)536 static inline void *spi_master_get_devdata(struct spi_master *master)
537 {
538 	return dev_get_drvdata(&master->dev);
539 }
540 
spi_master_set_devdata(struct spi_master * master,void * data)541 static inline void spi_master_set_devdata(struct spi_master *master, void *data)
542 {
543 	dev_set_drvdata(&master->dev, data);
544 }
545 
spi_master_get(struct spi_master * master)546 static inline struct spi_master *spi_master_get(struct spi_master *master)
547 {
548 	if (!master || !get_device(&master->dev))
549 		return NULL;
550 	return master;
551 }
552 
spi_master_put(struct spi_master * master)553 static inline void spi_master_put(struct spi_master *master)
554 {
555 	if (master)
556 		put_device(&master->dev);
557 }
558 
559 /* PM calls that need to be issued by the driver */
560 extern int spi_master_suspend(struct spi_master *master);
561 extern int spi_master_resume(struct spi_master *master);
562 
563 /* Calls the driver make to interact with the message queue */
564 extern struct spi_message *spi_get_next_queued_message(struct spi_master *master);
565 extern void spi_finalize_current_message(struct spi_master *master);
566 extern void spi_finalize_current_transfer(struct spi_master *master);
567 
568 /* the spi driver core manages memory for the spi_master classdev */
569 extern struct spi_master *
570 spi_alloc_master(struct device *host, unsigned size);
571 
572 extern int spi_register_master(struct spi_master *master);
573 extern int devm_spi_register_master(struct device *dev,
574 				    struct spi_master *master);
575 extern void spi_unregister_master(struct spi_master *master);
576 
577 extern struct spi_master *spi_busnum_to_master(u16 busnum);
578 
579 /*---------------------------------------------------------------------------*/
580 
581 /*
582  * I/O INTERFACE between SPI controller and protocol drivers
583  *
584  * Protocol drivers use a queue of spi_messages, each transferring data
585  * between the controller and memory buffers.
586  *
587  * The spi_messages themselves consist of a series of read+write transfer
588  * segments.  Those segments always read the same number of bits as they
589  * write; but one or the other is easily ignored by passing a null buffer
590  * pointer.  (This is unlike most types of I/O API, because SPI hardware
591  * is full duplex.)
592  *
593  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
594  * up to the protocol driver, which guarantees the integrity of both (as
595  * well as the data buffers) for as long as the message is queued.
596  */
597 
598 /**
599  * struct spi_transfer - a read/write buffer pair
600  * @tx_buf: data to be written (dma-safe memory), or NULL
601  * @rx_buf: data to be read (dma-safe memory), or NULL
602  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
603  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
604  * @tx_nbits: number of bits used for writing. If 0 the default
605  *      (SPI_NBITS_SINGLE) is used.
606  * @rx_nbits: number of bits used for reading. If 0 the default
607  *      (SPI_NBITS_SINGLE) is used.
608  * @len: size of rx and tx buffers (in bytes)
609  * @speed_hz: Select a speed other than the device default for this
610  *      transfer. If 0 the default (from @spi_device) is used.
611  * @bits_per_word: select a bits_per_word other than the device default
612  *      for this transfer. If 0 the default (from @spi_device) is used.
613  * @cs_change: affects chipselect after this transfer completes
614  * @delay_usecs: microseconds to delay after this transfer before
615  *	(optionally) changing the chipselect status, then starting
616  *	the next transfer or completing this @spi_message.
617  * @transfer_list: transfers are sequenced through @spi_message.transfers
618  * @tx_sg: Scatterlist for transmit, currently not for client use
619  * @rx_sg: Scatterlist for receive, currently not for client use
620  *
621  * SPI transfers always write the same number of bytes as they read.
622  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
623  * In some cases, they may also want to provide DMA addresses for
624  * the data being transferred; that may reduce overhead, when the
625  * underlying driver uses dma.
626  *
627  * If the transmit buffer is null, zeroes will be shifted out
628  * while filling @rx_buf.  If the receive buffer is null, the data
629  * shifted in will be discarded.  Only "len" bytes shift out (or in).
630  * It's an error to try to shift out a partial word.  (For example, by
631  * shifting out three bytes with word size of sixteen or twenty bits;
632  * the former uses two bytes per word, the latter uses four bytes.)
633  *
634  * In-memory data values are always in native CPU byte order, translated
635  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
636  * for example when bits_per_word is sixteen, buffers are 2N bytes long
637  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
638  *
639  * When the word size of the SPI transfer is not a power-of-two multiple
640  * of eight bits, those in-memory words include extra bits.  In-memory
641  * words are always seen by protocol drivers as right-justified, so the
642  * undefined (rx) or unused (tx) bits are always the most significant bits.
643  *
644  * All SPI transfers start with the relevant chipselect active.  Normally
645  * it stays selected until after the last transfer in a message.  Drivers
646  * can affect the chipselect signal using cs_change.
647  *
648  * (i) If the transfer isn't the last one in the message, this flag is
649  * used to make the chipselect briefly go inactive in the middle of the
650  * message.  Toggling chipselect in this way may be needed to terminate
651  * a chip command, letting a single spi_message perform all of group of
652  * chip transactions together.
653  *
654  * (ii) When the transfer is the last one in the message, the chip may
655  * stay selected until the next transfer.  On multi-device SPI busses
656  * with nothing blocking messages going to other devices, this is just
657  * a performance hint; starting a message to another device deselects
658  * this one.  But in other cases, this can be used to ensure correctness.
659  * Some devices need protocol transactions to be built from a series of
660  * spi_message submissions, where the content of one message is determined
661  * by the results of previous messages and where the whole transaction
662  * ends when the chipselect goes intactive.
663  *
664  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
665  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
666  * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
667  * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
668  *
669  * The code that submits an spi_message (and its spi_transfers)
670  * to the lower layers is responsible for managing its memory.
671  * Zero-initialize every field you don't set up explicitly, to
672  * insulate against future API updates.  After you submit a message
673  * and its transfers, ignore them until its completion callback.
674  */
675 struct spi_transfer {
676 	/* it's ok if tx_buf == rx_buf (right?)
677 	 * for MicroWire, one buffer must be null
678 	 * buffers must work with dma_*map_single() calls, unless
679 	 *   spi_message.is_dma_mapped reports a pre-existing mapping
680 	 */
681 	const void	*tx_buf;
682 	void		*rx_buf;
683 	unsigned	len;
684 
685 	dma_addr_t	tx_dma;
686 	dma_addr_t	rx_dma;
687 	struct sg_table tx_sg;
688 	struct sg_table rx_sg;
689 
690 	unsigned	cs_change:1;
691 	unsigned	tx_nbits:3;
692 	unsigned	rx_nbits:3;
693 #define	SPI_NBITS_SINGLE	0x01 /* 1bit transfer */
694 #define	SPI_NBITS_DUAL		0x02 /* 2bits transfer */
695 #define	SPI_NBITS_QUAD		0x04 /* 4bits transfer */
696 	u8		bits_per_word;
697 	u16		delay_usecs;
698 	u32		speed_hz;
699 
700 	struct list_head transfer_list;
701 };
702 
703 /**
704  * struct spi_message - one multi-segment SPI transaction
705  * @transfers: list of transfer segments in this transaction
706  * @spi: SPI device to which the transaction is queued
707  * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
708  *	addresses for each transfer buffer
709  * @complete: called to report transaction completions
710  * @context: the argument to complete() when it's called
711  * @frame_length: the total number of bytes in the message
712  * @actual_length: the total number of bytes that were transferred in all
713  *	successful segments
714  * @status: zero for success, else negative errno
715  * @queue: for use by whichever driver currently owns the message
716  * @state: for use by whichever driver currently owns the message
717  *
718  * A @spi_message is used to execute an atomic sequence of data transfers,
719  * each represented by a struct spi_transfer.  The sequence is "atomic"
720  * in the sense that no other spi_message may use that SPI bus until that
721  * sequence completes.  On some systems, many such sequences can execute as
722  * as single programmed DMA transfer.  On all systems, these messages are
723  * queued, and might complete after transactions to other devices.  Messages
724  * sent to a given spi_device are always executed in FIFO order.
725  *
726  * The code that submits an spi_message (and its spi_transfers)
727  * to the lower layers is responsible for managing its memory.
728  * Zero-initialize every field you don't set up explicitly, to
729  * insulate against future API updates.  After you submit a message
730  * and its transfers, ignore them until its completion callback.
731  */
732 struct spi_message {
733 	struct list_head	transfers;
734 
735 	struct spi_device	*spi;
736 
737 	unsigned		is_dma_mapped:1;
738 
739 	/* REVISIT:  we might want a flag affecting the behavior of the
740 	 * last transfer ... allowing things like "read 16 bit length L"
741 	 * immediately followed by "read L bytes".  Basically imposing
742 	 * a specific message scheduling algorithm.
743 	 *
744 	 * Some controller drivers (message-at-a-time queue processing)
745 	 * could provide that as their default scheduling algorithm.  But
746 	 * others (with multi-message pipelines) could need a flag to
747 	 * tell them about such special cases.
748 	 */
749 
750 	/* completion is reported through a callback */
751 	void			(*complete)(void *context);
752 	void			*context;
753 	unsigned		frame_length;
754 	unsigned		actual_length;
755 	int			status;
756 
757 	/* for optional use by whatever driver currently owns the
758 	 * spi_message ...  between calls to spi_async and then later
759 	 * complete(), that's the spi_master controller driver.
760 	 */
761 	struct list_head	queue;
762 	void			*state;
763 };
764 
spi_message_init(struct spi_message * m)765 static inline void spi_message_init(struct spi_message *m)
766 {
767 	memset(m, 0, sizeof *m);
768 	INIT_LIST_HEAD(&m->transfers);
769 }
770 
771 static inline void
spi_message_add_tail(struct spi_transfer * t,struct spi_message * m)772 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
773 {
774 	list_add_tail(&t->transfer_list, &m->transfers);
775 }
776 
777 static inline void
spi_transfer_del(struct spi_transfer * t)778 spi_transfer_del(struct spi_transfer *t)
779 {
780 	list_del(&t->transfer_list);
781 }
782 
783 /**
784  * spi_message_init_with_transfers - Initialize spi_message and append transfers
785  * @m: spi_message to be initialized
786  * @xfers: An array of spi transfers
787  * @num_xfers: Number of items in the xfer array
788  *
789  * This function initializes the given spi_message and adds each spi_transfer in
790  * the given array to the message.
791  */
792 static inline void
spi_message_init_with_transfers(struct spi_message * m,struct spi_transfer * xfers,unsigned int num_xfers)793 spi_message_init_with_transfers(struct spi_message *m,
794 struct spi_transfer *xfers, unsigned int num_xfers)
795 {
796 	unsigned int i;
797 
798 	spi_message_init(m);
799 	for (i = 0; i < num_xfers; ++i)
800 		spi_message_add_tail(&xfers[i], m);
801 }
802 
803 /* It's fine to embed message and transaction structures in other data
804  * structures so long as you don't free them while they're in use.
805  */
806 
spi_message_alloc(unsigned ntrans,gfp_t flags)807 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
808 {
809 	struct spi_message *m;
810 
811 	m = kzalloc(sizeof(struct spi_message)
812 			+ ntrans * sizeof(struct spi_transfer),
813 			flags);
814 	if (m) {
815 		unsigned i;
816 		struct spi_transfer *t = (struct spi_transfer *)(m + 1);
817 
818 		INIT_LIST_HEAD(&m->transfers);
819 		for (i = 0; i < ntrans; i++, t++)
820 			spi_message_add_tail(t, m);
821 	}
822 	return m;
823 }
824 
spi_message_free(struct spi_message * m)825 static inline void spi_message_free(struct spi_message *m)
826 {
827 	kfree(m);
828 }
829 
830 extern int spi_setup(struct spi_device *spi);
831 extern int spi_async(struct spi_device *spi, struct spi_message *message);
832 extern int spi_async_locked(struct spi_device *spi,
833 			    struct spi_message *message);
834 
835 /*---------------------------------------------------------------------------*/
836 
837 /* All these synchronous SPI transfer routines are utilities layered
838  * over the core async transfer primitive.  Here, "synchronous" means
839  * they will sleep uninterruptibly until the async transfer completes.
840  */
841 
842 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
843 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
844 extern int spi_bus_lock(struct spi_master *master);
845 extern int spi_bus_unlock(struct spi_master *master);
846 
847 /**
848  * spi_write - SPI synchronous write
849  * @spi: device to which data will be written
850  * @buf: data buffer
851  * @len: data buffer size
852  * Context: can sleep
853  *
854  * This function writes the buffer @buf.
855  * Callable only from contexts that can sleep.
856  *
857  * Return: zero on success, else a negative error code.
858  */
859 static inline int
spi_write(struct spi_device * spi,const void * buf,size_t len)860 spi_write(struct spi_device *spi, const void *buf, size_t len)
861 {
862 	struct spi_transfer	t = {
863 			.tx_buf		= buf,
864 			.len		= len,
865 		};
866 	struct spi_message	m;
867 
868 	spi_message_init(&m);
869 	spi_message_add_tail(&t, &m);
870 	return spi_sync(spi, &m);
871 }
872 
873 /**
874  * spi_read - SPI synchronous read
875  * @spi: device from which data will be read
876  * @buf: data buffer
877  * @len: data buffer size
878  * Context: can sleep
879  *
880  * This function reads the buffer @buf.
881  * Callable only from contexts that can sleep.
882  *
883  * Return: zero on success, else a negative error code.
884  */
885 static inline int
spi_read(struct spi_device * spi,void * buf,size_t len)886 spi_read(struct spi_device *spi, void *buf, size_t len)
887 {
888 	struct spi_transfer	t = {
889 			.rx_buf		= buf,
890 			.len		= len,
891 		};
892 	struct spi_message	m;
893 
894 	spi_message_init(&m);
895 	spi_message_add_tail(&t, &m);
896 	return spi_sync(spi, &m);
897 }
898 
899 /**
900  * spi_sync_transfer - synchronous SPI data transfer
901  * @spi: device with which data will be exchanged
902  * @xfers: An array of spi_transfers
903  * @num_xfers: Number of items in the xfer array
904  * Context: can sleep
905  *
906  * Does a synchronous SPI data transfer of the given spi_transfer array.
907  *
908  * For more specific semantics see spi_sync().
909  *
910  * Return: Return: zero on success, else a negative error code.
911  */
912 static inline int
spi_sync_transfer(struct spi_device * spi,struct spi_transfer * xfers,unsigned int num_xfers)913 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
914 	unsigned int num_xfers)
915 {
916 	struct spi_message msg;
917 
918 	spi_message_init_with_transfers(&msg, xfers, num_xfers);
919 
920 	return spi_sync(spi, &msg);
921 }
922 
923 /* this copies txbuf and rxbuf data; for small transfers only! */
924 extern int spi_write_then_read(struct spi_device *spi,
925 		const void *txbuf, unsigned n_tx,
926 		void *rxbuf, unsigned n_rx);
927 
928 /**
929  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
930  * @spi: device with which data will be exchanged
931  * @cmd: command to be written before data is read back
932  * Context: can sleep
933  *
934  * Callable only from contexts that can sleep.
935  *
936  * Return: the (unsigned) eight bit number returned by the
937  * device, or else a negative error code.
938  */
spi_w8r8(struct spi_device * spi,u8 cmd)939 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
940 {
941 	ssize_t			status;
942 	u8			result;
943 
944 	status = spi_write_then_read(spi, &cmd, 1, &result, 1);
945 
946 	/* return negative errno or unsigned value */
947 	return (status < 0) ? status : result;
948 }
949 
950 /**
951  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
952  * @spi: device with which data will be exchanged
953  * @cmd: command to be written before data is read back
954  * Context: can sleep
955  *
956  * The number is returned in wire-order, which is at least sometimes
957  * big-endian.
958  *
959  * Callable only from contexts that can sleep.
960  *
961  * Return: the (unsigned) sixteen bit number returned by the
962  * device, or else a negative error code.
963  */
spi_w8r16(struct spi_device * spi,u8 cmd)964 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
965 {
966 	ssize_t			status;
967 	u16			result;
968 
969 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
970 
971 	/* return negative errno or unsigned value */
972 	return (status < 0) ? status : result;
973 }
974 
975 /**
976  * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
977  * @spi: device with which data will be exchanged
978  * @cmd: command to be written before data is read back
979  * Context: can sleep
980  *
981  * This function is similar to spi_w8r16, with the exception that it will
982  * convert the read 16 bit data word from big-endian to native endianness.
983  *
984  * Callable only from contexts that can sleep.
985  *
986  * Return: the (unsigned) sixteen bit number returned by the device in cpu
987  * endianness, or else a negative error code.
988  */
spi_w8r16be(struct spi_device * spi,u8 cmd)989 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
990 
991 {
992 	ssize_t status;
993 	__be16 result;
994 
995 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
996 	if (status < 0)
997 		return status;
998 
999 	return be16_to_cpu(result);
1000 }
1001 
1002 /*---------------------------------------------------------------------------*/
1003 
1004 /*
1005  * INTERFACE between board init code and SPI infrastructure.
1006  *
1007  * No SPI driver ever sees these SPI device table segments, but
1008  * it's how the SPI core (or adapters that get hotplugged) grows
1009  * the driver model tree.
1010  *
1011  * As a rule, SPI devices can't be probed.  Instead, board init code
1012  * provides a table listing the devices which are present, with enough
1013  * information to bind and set up the device's driver.  There's basic
1014  * support for nonstatic configurations too; enough to handle adding
1015  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1016  */
1017 
1018 /**
1019  * struct spi_board_info - board-specific template for a SPI device
1020  * @modalias: Initializes spi_device.modalias; identifies the driver.
1021  * @platform_data: Initializes spi_device.platform_data; the particular
1022  *	data stored there is driver-specific.
1023  * @controller_data: Initializes spi_device.controller_data; some
1024  *	controllers need hints about hardware setup, e.g. for DMA.
1025  * @irq: Initializes spi_device.irq; depends on how the board is wired.
1026  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1027  *	from the chip datasheet and board-specific signal quality issues.
1028  * @bus_num: Identifies which spi_master parents the spi_device; unused
1029  *	by spi_new_device(), and otherwise depends on board wiring.
1030  * @chip_select: Initializes spi_device.chip_select; depends on how
1031  *	the board is wired.
1032  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1033  *	wiring (some devices support both 3WIRE and standard modes), and
1034  *	possibly presence of an inverter in the chipselect path.
1035  *
1036  * When adding new SPI devices to the device tree, these structures serve
1037  * as a partial device template.  They hold information which can't always
1038  * be determined by drivers.  Information that probe() can establish (such
1039  * as the default transfer wordsize) is not included here.
1040  *
1041  * These structures are used in two places.  Their primary role is to
1042  * be stored in tables of board-specific device descriptors, which are
1043  * declared early in board initialization and then used (much later) to
1044  * populate a controller's device tree after the that controller's driver
1045  * initializes.  A secondary (and atypical) role is as a parameter to
1046  * spi_new_device() call, which happens after those controller drivers
1047  * are active in some dynamic board configuration models.
1048  */
1049 struct spi_board_info {
1050 	/* the device name and module name are coupled, like platform_bus;
1051 	 * "modalias" is normally the driver name.
1052 	 *
1053 	 * platform_data goes to spi_device.dev.platform_data,
1054 	 * controller_data goes to spi_device.controller_data,
1055 	 * irq is copied too
1056 	 */
1057 	char		modalias[SPI_NAME_SIZE];
1058 	const void	*platform_data;
1059 	void		*controller_data;
1060 	int		irq;
1061 
1062 	/* slower signaling on noisy or low voltage boards */
1063 	u32		max_speed_hz;
1064 
1065 
1066 	/* bus_num is board specific and matches the bus_num of some
1067 	 * spi_master that will probably be registered later.
1068 	 *
1069 	 * chip_select reflects how this chip is wired to that master;
1070 	 * it's less than num_chipselect.
1071 	 */
1072 	u16		bus_num;
1073 	u16		chip_select;
1074 
1075 	/* mode becomes spi_device.mode, and is essential for chips
1076 	 * where the default of SPI_CS_HIGH = 0 is wrong.
1077 	 */
1078 	u16		mode;
1079 
1080 	/* ... may need additional spi_device chip config data here.
1081 	 * avoid stuff protocol drivers can set; but include stuff
1082 	 * needed to behave without being bound to a driver:
1083 	 *  - quirks like clock rate mattering when not selected
1084 	 */
1085 };
1086 
1087 #ifdef	CONFIG_SPI
1088 extern int
1089 spi_register_board_info(struct spi_board_info const *info, unsigned n);
1090 #else
1091 /* board init code may ignore whether SPI is configured or not */
1092 static inline int
spi_register_board_info(struct spi_board_info const * info,unsigned n)1093 spi_register_board_info(struct spi_board_info const *info, unsigned n)
1094 	{ return 0; }
1095 #endif
1096 
1097 
1098 /* If you're hotplugging an adapter with devices (parport, usb, etc)
1099  * use spi_new_device() to describe each device.  You can also call
1100  * spi_unregister_device() to start making that device vanish, but
1101  * normally that would be handled by spi_unregister_master().
1102  *
1103  * You can also use spi_alloc_device() and spi_add_device() to use a two
1104  * stage registration sequence for each spi_device.  This gives the caller
1105  * some more control over the spi_device structure before it is registered,
1106  * but requires that caller to initialize fields that would otherwise
1107  * be defined using the board info.
1108  */
1109 extern struct spi_device *
1110 spi_alloc_device(struct spi_master *master);
1111 
1112 extern int
1113 spi_add_device(struct spi_device *spi);
1114 
1115 extern struct spi_device *
1116 spi_new_device(struct spi_master *, struct spi_board_info *);
1117 
1118 static inline void
spi_unregister_device(struct spi_device * spi)1119 spi_unregister_device(struct spi_device *spi)
1120 {
1121 	if (spi)
1122 		device_unregister(&spi->dev);
1123 }
1124 
1125 extern const struct spi_device_id *
1126 spi_get_device_id(const struct spi_device *sdev);
1127 
1128 static inline bool
spi_transfer_is_last(struct spi_master * master,struct spi_transfer * xfer)1129 spi_transfer_is_last(struct spi_master *master, struct spi_transfer *xfer)
1130 {
1131 	return list_is_last(&xfer->transfer_list, &master->cur_msg->transfers);
1132 }
1133 
1134 #endif /* __LINUX_SPI_H */
1135