1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/include/lustre/lustre_idl.h
37  *
38  * Lustre wire protocol definitions.
39  */
40 
41 /** \defgroup lustreidl lustreidl
42  *
43  * Lustre wire protocol definitions.
44  *
45  * ALL structs passing over the wire should be declared here.  Structs
46  * that are used in interfaces with userspace should go in lustre_user.h.
47  *
48  * All structs being declared here should be built from simple fixed-size
49  * types (__u8, __u16, __u32, __u64) or be built from other types or
50  * structs also declared in this file.  Similarly, all flags and magic
51  * values in those structs should also be declared here.  This ensures
52  * that the Lustre wire protocol is not influenced by external dependencies.
53  *
54  * The only other acceptable items in this file are VERY SIMPLE accessor
55  * functions to avoid callers grubbing inside the structures, and the
56  * prototypes of the swabber functions for each struct.  Nothing that
57  * depends on external functions or definitions should be in here.
58  *
59  * Structs must be properly aligned to put 64-bit values on an 8-byte
60  * boundary.  Any structs being added here must also be added to
61  * utils/wirecheck.c and "make newwiretest" run to regenerate the
62  * utils/wiretest.c sources.  This allows us to verify that wire structs
63  * have the proper alignment/size on all architectures.
64  *
65  * DO NOT CHANGE any of the structs, flags, values declared here and used
66  * in released Lustre versions.  Some structs may have padding fields that
67  * can be used.  Some structs might allow addition at the end (verify this
68  * in the code to ensure that new/old clients that see this larger struct
69  * do not fail, otherwise you need to implement protocol compatibility).
70  *
71  * We assume all nodes are either little-endian or big-endian, and we
72  * always send messages in the sender's native format.  The receiver
73  * detects the message format by checking the 'magic' field of the message
74  * (see lustre_msg_swabbed() below).
75  *
76  * Each wire type has corresponding 'lustre_swab_xxxtypexxx()' routines,
77  * implemented either here, inline (trivial implementations) or in
78  * ptlrpc/pack_generic.c.  These 'swabbers' convert the type from "other"
79  * endian, in-place in the message buffer.
80  *
81  * A swabber takes a single pointer argument.  The caller must already have
82  * verified that the length of the message buffer >= sizeof (type).
83  *
84  * For variable length types, a second 'lustre_swab_v_xxxtypexxx()' routine
85  * may be defined that swabs just the variable part, after the caller has
86  * verified that the message buffer is large enough.
87  *
88  * @{
89  */
90 
91 #ifndef _LUSTRE_IDL_H_
92 #define _LUSTRE_IDL_H_
93 
94 #include "../../../include/linux/libcfs/libcfs.h"
95 
96 /* Defn's shared with user-space. */
97 #include "lustre_user.h"
98 #include "lustre_errno.h"
99 
100 /*
101  *  GENERAL STUFF
102  */
103 /* FOO_REQUEST_PORTAL is for incoming requests on the FOO
104  * FOO_REPLY_PORTAL   is for incoming replies on the FOO
105  * FOO_BULK_PORTAL    is for incoming bulk on the FOO
106  */
107 
108 /* Lustre service names are following the format
109  * service name + MDT + seq name
110  */
111 #define LUSTRE_MDT_MAXNAMELEN	80
112 
113 #define CONNMGR_REQUEST_PORTAL	  1
114 #define CONNMGR_REPLY_PORTAL	    2
115 //#define OSC_REQUEST_PORTAL	    3
116 #define OSC_REPLY_PORTAL		4
117 //#define OSC_BULK_PORTAL	       5
118 #define OST_IO_PORTAL		   6
119 #define OST_CREATE_PORTAL	       7
120 #define OST_BULK_PORTAL		 8
121 //#define MDC_REQUEST_PORTAL	    9
122 #define MDC_REPLY_PORTAL	       10
123 //#define MDC_BULK_PORTAL	      11
124 #define MDS_REQUEST_PORTAL	     12
125 //#define MDS_REPLY_PORTAL	     13
126 #define MDS_BULK_PORTAL		14
127 #define LDLM_CB_REQUEST_PORTAL	 15
128 #define LDLM_CB_REPLY_PORTAL	   16
129 #define LDLM_CANCEL_REQUEST_PORTAL     17
130 #define LDLM_CANCEL_REPLY_PORTAL       18
131 //#define PTLBD_REQUEST_PORTAL	   19
132 //#define PTLBD_REPLY_PORTAL	     20
133 //#define PTLBD_BULK_PORTAL	      21
134 #define MDS_SETATTR_PORTAL	     22
135 #define MDS_READPAGE_PORTAL	    23
136 #define OUT_PORTAL		    24
137 
138 #define MGC_REPLY_PORTAL	       25
139 #define MGS_REQUEST_PORTAL	     26
140 #define MGS_REPLY_PORTAL	       27
141 #define OST_REQUEST_PORTAL	     28
142 #define FLD_REQUEST_PORTAL	     29
143 #define SEQ_METADATA_PORTAL	    30
144 #define SEQ_DATA_PORTAL		31
145 #define SEQ_CONTROLLER_PORTAL	  32
146 #define MGS_BULK_PORTAL		33
147 
148 /* Portal 63 is reserved for the Cray Inc DVS - nic@cray.com, roe@cray.com, n8851@cray.com */
149 
150 /* packet types */
151 #define PTL_RPC_MSG_REQUEST 4711
152 #define PTL_RPC_MSG_ERR     4712
153 #define PTL_RPC_MSG_REPLY   4713
154 
155 /* DON'T use swabbed values of MAGIC as magic! */
156 #define LUSTRE_MSG_MAGIC_V1 0x0BD00BD0
157 #define LUSTRE_MSG_MAGIC_V2 0x0BD00BD3
158 
159 #define LUSTRE_MSG_MAGIC_V1_SWABBED 0xD00BD00B
160 #define LUSTRE_MSG_MAGIC_V2_SWABBED 0xD30BD00B
161 
162 #define LUSTRE_MSG_MAGIC LUSTRE_MSG_MAGIC_V2
163 
164 #define PTLRPC_MSG_VERSION  0x00000003
165 #define LUSTRE_VERSION_MASK 0xffff0000
166 #define LUSTRE_OBD_VERSION  0x00010000
167 #define LUSTRE_MDS_VERSION  0x00020000
168 #define LUSTRE_OST_VERSION  0x00030000
169 #define LUSTRE_DLM_VERSION  0x00040000
170 #define LUSTRE_LOG_VERSION  0x00050000
171 #define LUSTRE_MGS_VERSION  0x00060000
172 
173 /**
174  * Describes a range of sequence, lsr_start is included but lsr_end is
175  * not in the range.
176  * Same structure is used in fld module where lsr_index field holds mdt id
177  * of the home mdt.
178  */
179 struct lu_seq_range {
180 	__u64 lsr_start;
181 	__u64 lsr_end;
182 	__u32 lsr_index;
183 	__u32 lsr_flags;
184 };
185 
186 #define LU_SEQ_RANGE_MDT	0x0
187 #define LU_SEQ_RANGE_OST	0x1
188 #define LU_SEQ_RANGE_ANY	0x3
189 
190 #define LU_SEQ_RANGE_MASK	0x3
191 
fld_range_type(const struct lu_seq_range * range)192 static inline unsigned fld_range_type(const struct lu_seq_range *range)
193 {
194 	return range->lsr_flags & LU_SEQ_RANGE_MASK;
195 }
196 
fld_range_is_ost(const struct lu_seq_range * range)197 static inline int fld_range_is_ost(const struct lu_seq_range *range)
198 {
199 	return fld_range_type(range) == LU_SEQ_RANGE_OST;
200 }
201 
fld_range_is_mdt(const struct lu_seq_range * range)202 static inline int fld_range_is_mdt(const struct lu_seq_range *range)
203 {
204 	return fld_range_type(range) == LU_SEQ_RANGE_MDT;
205 }
206 
207 /**
208  * This all range is only being used when fld client sends fld query request,
209  * but it does not know whether the seq is MDT or OST, so it will send req
210  * with ALL type, which means either seq type gotten from lookup can be
211  * expected.
212  */
fld_range_is_any(const struct lu_seq_range * range)213 static inline unsigned fld_range_is_any(const struct lu_seq_range *range)
214 {
215 	return fld_range_type(range) == LU_SEQ_RANGE_ANY;
216 }
217 
fld_range_set_type(struct lu_seq_range * range,unsigned flags)218 static inline void fld_range_set_type(struct lu_seq_range *range,
219 				      unsigned flags)
220 {
221 	range->lsr_flags |= flags;
222 }
223 
fld_range_set_mdt(struct lu_seq_range * range)224 static inline void fld_range_set_mdt(struct lu_seq_range *range)
225 {
226 	fld_range_set_type(range, LU_SEQ_RANGE_MDT);
227 }
228 
fld_range_set_ost(struct lu_seq_range * range)229 static inline void fld_range_set_ost(struct lu_seq_range *range)
230 {
231 	fld_range_set_type(range, LU_SEQ_RANGE_OST);
232 }
233 
fld_range_set_any(struct lu_seq_range * range)234 static inline void fld_range_set_any(struct lu_seq_range *range)
235 {
236 	fld_range_set_type(range, LU_SEQ_RANGE_ANY);
237 }
238 
239 /**
240  * returns  width of given range \a r
241  */
242 
range_space(const struct lu_seq_range * range)243 static inline __u64 range_space(const struct lu_seq_range *range)
244 {
245 	return range->lsr_end - range->lsr_start;
246 }
247 
248 /**
249  * initialize range to zero
250  */
251 
range_init(struct lu_seq_range * range)252 static inline void range_init(struct lu_seq_range *range)
253 {
254 	memset(range, 0, sizeof(*range));
255 }
256 
257 /**
258  * check if given seq id \a s is within given range \a r
259  */
260 
range_within(const struct lu_seq_range * range,__u64 s)261 static inline int range_within(const struct lu_seq_range *range,
262 			       __u64 s)
263 {
264 	return s >= range->lsr_start && s < range->lsr_end;
265 }
266 
range_is_sane(const struct lu_seq_range * range)267 static inline int range_is_sane(const struct lu_seq_range *range)
268 {
269 	return (range->lsr_end >= range->lsr_start);
270 }
271 
range_is_zero(const struct lu_seq_range * range)272 static inline int range_is_zero(const struct lu_seq_range *range)
273 {
274 	return (range->lsr_start == 0 && range->lsr_end == 0);
275 }
276 
range_is_exhausted(const struct lu_seq_range * range)277 static inline int range_is_exhausted(const struct lu_seq_range *range)
278 
279 {
280 	return range_space(range) == 0;
281 }
282 
283 /* return 0 if two range have the same location */
range_compare_loc(const struct lu_seq_range * r1,const struct lu_seq_range * r2)284 static inline int range_compare_loc(const struct lu_seq_range *r1,
285 				    const struct lu_seq_range *r2)
286 {
287 	return r1->lsr_index != r2->lsr_index ||
288 	       r1->lsr_flags != r2->lsr_flags;
289 }
290 
291 #define DRANGE "[%#16.16Lx-%#16.16Lx):%x:%s"
292 
293 #define PRANGE(range)		\
294 	(range)->lsr_start,	\
295 	(range)->lsr_end,	\
296 	(range)->lsr_index,	\
297 	fld_range_is_mdt(range) ? "mdt" : "ost"
298 
299 
300 /** \defgroup lu_fid lu_fid
301  * @{ */
302 
303 /**
304  * Flags for lustre_mdt_attrs::lma_compat and lustre_mdt_attrs::lma_incompat.
305  * Deprecated since HSM and SOM attributes are now stored in separate on-disk
306  * xattr.
307  */
308 enum lma_compat {
309 	LMAC_HSM	= 0x00000001,
310 	LMAC_SOM	= 0x00000002,
311 	LMAC_NOT_IN_OI	= 0x00000004, /* the object does NOT need OI mapping */
312 	LMAC_FID_ON_OST = 0x00000008, /* For OST-object, its OI mapping is
313 				       * under /O/<seq>/d<x>. */
314 };
315 
316 /**
317  * Masks for all features that should be supported by a Lustre version to
318  * access a specific file.
319  * This information is stored in lustre_mdt_attrs::lma_incompat.
320  */
321 enum lma_incompat {
322 	LMAI_RELEASED		= 0x00000001, /* file is released */
323 	LMAI_AGENT		= 0x00000002, /* agent inode */
324 	LMAI_REMOTE_PARENT	= 0x00000004, /* the parent of the object
325 						 is on the remote MDT */
326 };
327 #define LMA_INCOMPAT_SUPP	(LMAI_AGENT | LMAI_REMOTE_PARENT)
328 
329 /**
330  * fid constants
331  */
332 enum {
333 	/** LASTID file has zero OID */
334 	LUSTRE_FID_LASTID_OID = 0UL,
335 	/** initial fid id value */
336 	LUSTRE_FID_INIT_OID  = 1UL
337 };
338 
339 /** returns fid object sequence */
fid_seq(const struct lu_fid * fid)340 static inline __u64 fid_seq(const struct lu_fid *fid)
341 {
342 	return fid->f_seq;
343 }
344 
345 /** returns fid object id */
fid_oid(const struct lu_fid * fid)346 static inline __u32 fid_oid(const struct lu_fid *fid)
347 {
348 	return fid->f_oid;
349 }
350 
351 /** returns fid object version */
fid_ver(const struct lu_fid * fid)352 static inline __u32 fid_ver(const struct lu_fid *fid)
353 {
354 	return fid->f_ver;
355 }
356 
fid_zero(struct lu_fid * fid)357 static inline void fid_zero(struct lu_fid *fid)
358 {
359 	memset(fid, 0, sizeof(*fid));
360 }
361 
fid_ver_oid(const struct lu_fid * fid)362 static inline __u64 fid_ver_oid(const struct lu_fid *fid)
363 {
364 	return ((__u64)fid_ver(fid) << 32 | fid_oid(fid));
365 }
366 
367 /**
368  * Note that reserved SEQ numbers below 12 will conflict with ldiskfs
369  * inodes in the IGIF namespace, so these reserved SEQ numbers can be
370  * used for other purposes and not risk collisions with existing inodes.
371  *
372  * Different FID Format
373  * http://arch.lustre.org/index.php?title=Interoperability_fids_zfs#NEW.0
374  */
375 enum fid_seq {
376 	FID_SEQ_OST_MDT0	= 0,
377 	FID_SEQ_LLOG		= 1, /* unnamed llogs */
378 	FID_SEQ_ECHO		= 2,
379 	FID_SEQ_OST_MDT1	= 3,
380 	FID_SEQ_OST_MAX		= 9, /* Max MDT count before OST_on_FID */
381 	FID_SEQ_LLOG_NAME	= 10, /* named llogs */
382 	FID_SEQ_RSVD		= 11,
383 	FID_SEQ_IGIF		= 12,
384 	FID_SEQ_IGIF_MAX	= 0x0ffffffffULL,
385 	FID_SEQ_IDIF		= 0x100000000ULL,
386 	FID_SEQ_IDIF_MAX	= 0x1ffffffffULL,
387 	/* Normal FID sequence starts from this value, i.e. 1<<33 */
388 	FID_SEQ_START		= 0x200000000ULL,
389 	/* sequence for local pre-defined FIDs listed in local_oid */
390 	FID_SEQ_LOCAL_FILE	= 0x200000001ULL,
391 	FID_SEQ_DOT_LUSTRE	= 0x200000002ULL,
392 	/* sequence is used for local named objects FIDs generated
393 	 * by local_object_storage library */
394 	FID_SEQ_LOCAL_NAME	= 0x200000003ULL,
395 	/* Because current FLD will only cache the fid sequence, instead
396 	 * of oid on the client side, if the FID needs to be exposed to
397 	 * clients sides, it needs to make sure all of fids under one
398 	 * sequence will be located in one MDT. */
399 	FID_SEQ_SPECIAL		= 0x200000004ULL,
400 	FID_SEQ_QUOTA		= 0x200000005ULL,
401 	FID_SEQ_QUOTA_GLB	= 0x200000006ULL,
402 	FID_SEQ_ROOT		= 0x200000007ULL,  /* Located on MDT0 */
403 	FID_SEQ_NORMAL		= 0x200000400ULL,
404 	FID_SEQ_LOV_DEFAULT	= 0xffffffffffffffffULL
405 };
406 
407 #define OBIF_OID_MAX_BITS	   32
408 #define OBIF_MAX_OID		(1ULL << OBIF_OID_MAX_BITS)
409 #define OBIF_OID_MASK	       ((1ULL << OBIF_OID_MAX_BITS) - 1)
410 #define IDIF_OID_MAX_BITS	   48
411 #define IDIF_MAX_OID		(1ULL << IDIF_OID_MAX_BITS)
412 #define IDIF_OID_MASK	       ((1ULL << IDIF_OID_MAX_BITS) - 1)
413 
414 /** OID for FID_SEQ_SPECIAL */
415 enum special_oid {
416 	/* Big Filesystem Lock to serialize rename operations */
417 	FID_OID_SPECIAL_BFL     = 1UL,
418 };
419 
420 /** OID for FID_SEQ_DOT_LUSTRE */
421 enum dot_lustre_oid {
422 	FID_OID_DOT_LUSTRE  = 1UL,
423 	FID_OID_DOT_LUSTRE_OBF = 2UL,
424 };
425 
fid_seq_is_mdt0(__u64 seq)426 static inline int fid_seq_is_mdt0(__u64 seq)
427 {
428 	return (seq == FID_SEQ_OST_MDT0);
429 }
430 
fid_seq_is_mdt(const __u64 seq)431 static inline int fid_seq_is_mdt(const __u64 seq)
432 {
433 	return seq == FID_SEQ_OST_MDT0 || seq >= FID_SEQ_NORMAL;
434 };
435 
fid_seq_is_echo(__u64 seq)436 static inline int fid_seq_is_echo(__u64 seq)
437 {
438 	return (seq == FID_SEQ_ECHO);
439 }
440 
fid_is_echo(const struct lu_fid * fid)441 static inline int fid_is_echo(const struct lu_fid *fid)
442 {
443 	return fid_seq_is_echo(fid_seq(fid));
444 }
445 
fid_seq_is_llog(__u64 seq)446 static inline int fid_seq_is_llog(__u64 seq)
447 {
448 	return (seq == FID_SEQ_LLOG);
449 }
450 
fid_is_llog(const struct lu_fid * fid)451 static inline int fid_is_llog(const struct lu_fid *fid)
452 {
453 	/* file with OID == 0 is not llog but contains last oid */
454 	return fid_seq_is_llog(fid_seq(fid)) && fid_oid(fid) > 0;
455 }
456 
fid_seq_is_rsvd(const __u64 seq)457 static inline int fid_seq_is_rsvd(const __u64 seq)
458 {
459 	return (seq > FID_SEQ_OST_MDT0 && seq <= FID_SEQ_RSVD);
460 };
461 
fid_seq_is_special(const __u64 seq)462 static inline int fid_seq_is_special(const __u64 seq)
463 {
464 	return seq == FID_SEQ_SPECIAL;
465 };
466 
fid_seq_is_local_file(const __u64 seq)467 static inline int fid_seq_is_local_file(const __u64 seq)
468 {
469 	return seq == FID_SEQ_LOCAL_FILE ||
470 	       seq == FID_SEQ_LOCAL_NAME;
471 };
472 
fid_seq_is_root(const __u64 seq)473 static inline int fid_seq_is_root(const __u64 seq)
474 {
475 	return seq == FID_SEQ_ROOT;
476 }
477 
fid_seq_is_dot(const __u64 seq)478 static inline int fid_seq_is_dot(const __u64 seq)
479 {
480 	return seq == FID_SEQ_DOT_LUSTRE;
481 }
482 
fid_seq_is_default(const __u64 seq)483 static inline int fid_seq_is_default(const __u64 seq)
484 {
485 	return seq == FID_SEQ_LOV_DEFAULT;
486 }
487 
fid_is_mdt0(const struct lu_fid * fid)488 static inline int fid_is_mdt0(const struct lu_fid *fid)
489 {
490 	return fid_seq_is_mdt0(fid_seq(fid));
491 }
492 
lu_root_fid(struct lu_fid * fid)493 static inline void lu_root_fid(struct lu_fid *fid)
494 {
495 	fid->f_seq = FID_SEQ_ROOT;
496 	fid->f_oid = 1;
497 	fid->f_ver = 0;
498 }
499 
500 /**
501  * Check if a fid is igif or not.
502  * \param fid the fid to be tested.
503  * \return true if the fid is a igif; otherwise false.
504  */
fid_seq_is_igif(const __u64 seq)505 static inline int fid_seq_is_igif(const __u64 seq)
506 {
507 	return seq >= FID_SEQ_IGIF && seq <= FID_SEQ_IGIF_MAX;
508 }
509 
fid_is_igif(const struct lu_fid * fid)510 static inline int fid_is_igif(const struct lu_fid *fid)
511 {
512 	return fid_seq_is_igif(fid_seq(fid));
513 }
514 
515 /**
516  * Check if a fid is idif or not.
517  * \param fid the fid to be tested.
518  * \return true if the fid is a idif; otherwise false.
519  */
fid_seq_is_idif(const __u64 seq)520 static inline int fid_seq_is_idif(const __u64 seq)
521 {
522 	return seq >= FID_SEQ_IDIF && seq <= FID_SEQ_IDIF_MAX;
523 }
524 
fid_is_idif(const struct lu_fid * fid)525 static inline int fid_is_idif(const struct lu_fid *fid)
526 {
527 	return fid_seq_is_idif(fid_seq(fid));
528 }
529 
fid_is_local_file(const struct lu_fid * fid)530 static inline int fid_is_local_file(const struct lu_fid *fid)
531 {
532 	return fid_seq_is_local_file(fid_seq(fid));
533 }
534 
fid_seq_is_norm(const __u64 seq)535 static inline int fid_seq_is_norm(const __u64 seq)
536 {
537 	return (seq >= FID_SEQ_NORMAL);
538 }
539 
fid_is_norm(const struct lu_fid * fid)540 static inline int fid_is_norm(const struct lu_fid *fid)
541 {
542 	return fid_seq_is_norm(fid_seq(fid));
543 }
544 
545 /* convert an OST objid into an IDIF FID SEQ number */
fid_idif_seq(__u64 id,__u32 ost_idx)546 static inline __u64 fid_idif_seq(__u64 id, __u32 ost_idx)
547 {
548 	return FID_SEQ_IDIF | (ost_idx << 16) | ((id >> 32) & 0xffff);
549 }
550 
551 /* convert a packed IDIF FID into an OST objid */
fid_idif_id(__u64 seq,__u32 oid,__u32 ver)552 static inline __u64 fid_idif_id(__u64 seq, __u32 oid, __u32 ver)
553 {
554 	return ((__u64)ver << 48) | ((seq & 0xffff) << 32) | oid;
555 }
556 
557 /* extract ost index from IDIF FID */
fid_idif_ost_idx(const struct lu_fid * fid)558 static inline __u32 fid_idif_ost_idx(const struct lu_fid *fid)
559 {
560 	return (fid_seq(fid) >> 16) & 0xffff;
561 }
562 
563 /* extract OST sequence (group) from a wire ost_id (id/seq) pair */
ostid_seq(const struct ost_id * ostid)564 static inline __u64 ostid_seq(const struct ost_id *ostid)
565 {
566 	if (fid_seq_is_mdt0(ostid->oi.oi_seq))
567 		return FID_SEQ_OST_MDT0;
568 
569 	if (fid_seq_is_default(ostid->oi.oi_seq))
570 		return FID_SEQ_LOV_DEFAULT;
571 
572 	if (fid_is_idif(&ostid->oi_fid))
573 		return FID_SEQ_OST_MDT0;
574 
575 	return fid_seq(&ostid->oi_fid);
576 }
577 
578 /* extract OST objid from a wire ost_id (id/seq) pair */
ostid_id(const struct ost_id * ostid)579 static inline __u64 ostid_id(const struct ost_id *ostid)
580 {
581 	if (fid_seq_is_mdt0(ostid_seq(ostid)))
582 		return ostid->oi.oi_id & IDIF_OID_MASK;
583 
584 	if (fid_is_idif(&ostid->oi_fid))
585 		return fid_idif_id(fid_seq(&ostid->oi_fid),
586 				   fid_oid(&ostid->oi_fid), 0);
587 
588 	return fid_oid(&ostid->oi_fid);
589 }
590 
ostid_set_seq(struct ost_id * oi,__u64 seq)591 static inline void ostid_set_seq(struct ost_id *oi, __u64 seq)
592 {
593 	if (fid_seq_is_mdt0(seq) || fid_seq_is_default(seq)) {
594 		oi->oi.oi_seq = seq;
595 	} else {
596 		oi->oi_fid.f_seq = seq;
597 		/* Note: if f_oid + f_ver is zero, we need init it
598 		 * to be 1, otherwise, ostid_seq will treat this
599 		 * as old ostid (oi_seq == 0) */
600 		if (oi->oi_fid.f_oid == 0 && oi->oi_fid.f_ver == 0)
601 			oi->oi_fid.f_oid = LUSTRE_FID_INIT_OID;
602 	}
603 }
604 
ostid_set_seq_mdt0(struct ost_id * oi)605 static inline void ostid_set_seq_mdt0(struct ost_id *oi)
606 {
607 	ostid_set_seq(oi, FID_SEQ_OST_MDT0);
608 }
609 
ostid_set_seq_echo(struct ost_id * oi)610 static inline void ostid_set_seq_echo(struct ost_id *oi)
611 {
612 	ostid_set_seq(oi, FID_SEQ_ECHO);
613 }
614 
ostid_set_seq_llog(struct ost_id * oi)615 static inline void ostid_set_seq_llog(struct ost_id *oi)
616 {
617 	ostid_set_seq(oi, FID_SEQ_LLOG);
618 }
619 
620 /**
621  * Note: we need check oi_seq to decide where to set oi_id,
622  * so oi_seq should always be set ahead of oi_id.
623  */
ostid_set_id(struct ost_id * oi,__u64 oid)624 static inline void ostid_set_id(struct ost_id *oi, __u64 oid)
625 {
626 	if (fid_seq_is_mdt0(ostid_seq(oi))) {
627 		if (oid >= IDIF_MAX_OID) {
628 			CERROR("Bad %llu to set "DOSTID"\n",
629 				oid, POSTID(oi));
630 			return;
631 		}
632 		oi->oi.oi_id = oid;
633 	} else {
634 		if (oid > OBIF_MAX_OID) {
635 			CERROR("Bad %llu to set "DOSTID"\n",
636 				oid, POSTID(oi));
637 			return;
638 		}
639 		oi->oi_fid.f_oid = oid;
640 	}
641 }
642 
ostid_inc_id(struct ost_id * oi)643 static inline void ostid_inc_id(struct ost_id *oi)
644 {
645 	if (fid_seq_is_mdt0(ostid_seq(oi))) {
646 		if (unlikely(ostid_id(oi) + 1 > IDIF_MAX_OID)) {
647 			CERROR("Bad inc "DOSTID"\n", POSTID(oi));
648 			return;
649 		}
650 		oi->oi.oi_id++;
651 	} else {
652 		oi->oi_fid.f_oid++;
653 	}
654 }
655 
ostid_dec_id(struct ost_id * oi)656 static inline void ostid_dec_id(struct ost_id *oi)
657 {
658 	if (fid_seq_is_mdt0(ostid_seq(oi)))
659 		oi->oi.oi_id--;
660 	else
661 		oi->oi_fid.f_oid--;
662 }
663 
664 /**
665  * Unpack an OST object id/seq (group) into a FID.  This is needed for
666  * converting all obdo, lmm, lsm, etc. 64-bit id/seq pairs into proper
667  * FIDs.  Note that if an id/seq is already in FID/IDIF format it will
668  * be passed through unchanged.  Only legacy OST objects in "group 0"
669  * will be mapped into the IDIF namespace so that they can fit into the
670  * struct lu_fid fields without loss.  For reference see:
671  * http://arch.lustre.org/index.php?title=Interoperability_fids_zfs
672  */
ostid_to_fid(struct lu_fid * fid,struct ost_id * ostid,__u32 ost_idx)673 static inline int ostid_to_fid(struct lu_fid *fid, struct ost_id *ostid,
674 			       __u32 ost_idx)
675 {
676 	if (ost_idx > 0xffff) {
677 		CERROR("bad ost_idx, "DOSTID" ost_idx:%u\n", POSTID(ostid),
678 		       ost_idx);
679 		return -EBADF;
680 	}
681 
682 	if (fid_seq_is_mdt0(ostid_seq(ostid))) {
683 		/* This is a "legacy" (old 1.x/2.early) OST object in "group 0"
684 		 * that we map into the IDIF namespace.  It allows up to 2^48
685 		 * objects per OST, as this is the object namespace that has
686 		 * been in production for years.  This can handle create rates
687 		 * of 1M objects/s/OST for 9 years, or combinations thereof. */
688 		if (ostid_id(ostid) >= IDIF_MAX_OID) {
689 			 CERROR("bad MDT0 id, "DOSTID" ost_idx:%u\n",
690 				POSTID(ostid), ost_idx);
691 			 return -EBADF;
692 		}
693 		fid->f_seq = fid_idif_seq(ostid_id(ostid), ost_idx);
694 		/* truncate to 32 bits by assignment */
695 		fid->f_oid = ostid_id(ostid);
696 		/* in theory, not currently used */
697 		fid->f_ver = ostid_id(ostid) >> 48;
698 	} else /* if (fid_seq_is_idif(seq) || fid_seq_is_norm(seq)) */ {
699 	       /* This is either an IDIF object, which identifies objects across
700 		* all OSTs, or a regular FID.  The IDIF namespace maps legacy
701 		* OST objects into the FID namespace.  In both cases, we just
702 		* pass the FID through, no conversion needed. */
703 		if (ostid->oi_fid.f_ver != 0) {
704 			CERROR("bad MDT0 id, "DOSTID" ost_idx:%u\n",
705 				POSTID(ostid), ost_idx);
706 			return -EBADF;
707 		}
708 		*fid = ostid->oi_fid;
709 	}
710 
711 	return 0;
712 }
713 
714 /* pack any OST FID into an ostid (id/seq) for the wire/disk */
fid_to_ostid(const struct lu_fid * fid,struct ost_id * ostid)715 static inline int fid_to_ostid(const struct lu_fid *fid, struct ost_id *ostid)
716 {
717 	if (unlikely(fid_seq_is_igif(fid->f_seq))) {
718 		CERROR("bad IGIF, "DFID"\n", PFID(fid));
719 		return -EBADF;
720 	}
721 
722 	if (fid_is_idif(fid)) {
723 		ostid_set_seq_mdt0(ostid);
724 		ostid_set_id(ostid, fid_idif_id(fid_seq(fid), fid_oid(fid),
725 						fid_ver(fid)));
726 	} else {
727 		ostid->oi_fid = *fid;
728 	}
729 
730 	return 0;
731 }
732 
733 /* Check whether the fid is for LAST_ID */
fid_is_last_id(const struct lu_fid * fid)734 static inline int fid_is_last_id(const struct lu_fid *fid)
735 {
736 	return (fid_oid(fid) == 0);
737 }
738 
739 /**
740  * Get inode number from a igif.
741  * \param fid a igif to get inode number from.
742  * \return inode number for the igif.
743  */
lu_igif_ino(const struct lu_fid * fid)744 static inline ino_t lu_igif_ino(const struct lu_fid *fid)
745 {
746 	return fid_seq(fid);
747 }
748 
749 extern void lustre_swab_ost_id(struct ost_id *oid);
750 
751 /**
752  * Get inode generation from a igif.
753  * \param fid a igif to get inode generation from.
754  * \return inode generation for the igif.
755  */
lu_igif_gen(const struct lu_fid * fid)756 static inline __u32 lu_igif_gen(const struct lu_fid *fid)
757 {
758 	return fid_oid(fid);
759 }
760 
761 /**
762  * Build igif from the inode number/generation.
763  */
lu_igif_build(struct lu_fid * fid,__u32 ino,__u32 gen)764 static inline void lu_igif_build(struct lu_fid *fid, __u32 ino, __u32 gen)
765 {
766 	fid->f_seq = ino;
767 	fid->f_oid = gen;
768 	fid->f_ver = 0;
769 }
770 
771 /*
772  * Fids are transmitted across network (in the sender byte-ordering),
773  * and stored on disk in big-endian order.
774  */
fid_cpu_to_le(struct lu_fid * dst,const struct lu_fid * src)775 static inline void fid_cpu_to_le(struct lu_fid *dst, const struct lu_fid *src)
776 {
777 	dst->f_seq = cpu_to_le64(fid_seq(src));
778 	dst->f_oid = cpu_to_le32(fid_oid(src));
779 	dst->f_ver = cpu_to_le32(fid_ver(src));
780 }
781 
fid_le_to_cpu(struct lu_fid * dst,const struct lu_fid * src)782 static inline void fid_le_to_cpu(struct lu_fid *dst, const struct lu_fid *src)
783 {
784 	dst->f_seq = le64_to_cpu(fid_seq(src));
785 	dst->f_oid = le32_to_cpu(fid_oid(src));
786 	dst->f_ver = le32_to_cpu(fid_ver(src));
787 }
788 
fid_cpu_to_be(struct lu_fid * dst,const struct lu_fid * src)789 static inline void fid_cpu_to_be(struct lu_fid *dst, const struct lu_fid *src)
790 {
791 	dst->f_seq = cpu_to_be64(fid_seq(src));
792 	dst->f_oid = cpu_to_be32(fid_oid(src));
793 	dst->f_ver = cpu_to_be32(fid_ver(src));
794 }
795 
fid_be_to_cpu(struct lu_fid * dst,const struct lu_fid * src)796 static inline void fid_be_to_cpu(struct lu_fid *dst, const struct lu_fid *src)
797 {
798 	dst->f_seq = be64_to_cpu(fid_seq(src));
799 	dst->f_oid = be32_to_cpu(fid_oid(src));
800 	dst->f_ver = be32_to_cpu(fid_ver(src));
801 }
802 
fid_is_sane(const struct lu_fid * fid)803 static inline int fid_is_sane(const struct lu_fid *fid)
804 {
805 	return fid != NULL &&
806 	       ((fid_seq(fid) >= FID_SEQ_START && fid_ver(fid) == 0) ||
807 		fid_is_igif(fid) || fid_is_idif(fid) ||
808 		fid_seq_is_rsvd(fid_seq(fid)));
809 }
810 
fid_is_zero(const struct lu_fid * fid)811 static inline int fid_is_zero(const struct lu_fid *fid)
812 {
813 	return fid_seq(fid) == 0 && fid_oid(fid) == 0;
814 }
815 
816 extern void lustre_swab_lu_fid(struct lu_fid *fid);
817 extern void lustre_swab_lu_seq_range(struct lu_seq_range *range);
818 
lu_fid_eq(const struct lu_fid * f0,const struct lu_fid * f1)819 static inline int lu_fid_eq(const struct lu_fid *f0, const struct lu_fid *f1)
820 {
821 	return memcmp(f0, f1, sizeof(*f0)) == 0;
822 }
823 
824 #define __diff_normalize(val0, val1)			    \
825 ({							      \
826 	typeof(val0) __val0 = (val0);			   \
827 	typeof(val1) __val1 = (val1);			   \
828 								\
829 	(__val0 == __val1 ? 0 : __val0 > __val1 ? +1 : -1);     \
830 })
831 
lu_fid_cmp(const struct lu_fid * f0,const struct lu_fid * f1)832 static inline int lu_fid_cmp(const struct lu_fid *f0,
833 			     const struct lu_fid *f1)
834 {
835 	return
836 		__diff_normalize(fid_seq(f0), fid_seq(f1)) ?:
837 		__diff_normalize(fid_oid(f0), fid_oid(f1)) ?:
838 		__diff_normalize(fid_ver(f0), fid_ver(f1));
839 }
840 
ostid_cpu_to_le(const struct ost_id * src_oi,struct ost_id * dst_oi)841 static inline void ostid_cpu_to_le(const struct ost_id *src_oi,
842 				   struct ost_id *dst_oi)
843 {
844 	if (fid_seq_is_mdt0(ostid_seq(src_oi))) {
845 		dst_oi->oi.oi_id = cpu_to_le64(src_oi->oi.oi_id);
846 		dst_oi->oi.oi_seq = cpu_to_le64(src_oi->oi.oi_seq);
847 	} else {
848 		fid_cpu_to_le(&dst_oi->oi_fid, &src_oi->oi_fid);
849 	}
850 }
851 
ostid_le_to_cpu(const struct ost_id * src_oi,struct ost_id * dst_oi)852 static inline void ostid_le_to_cpu(const struct ost_id *src_oi,
853 				   struct ost_id *dst_oi)
854 {
855 	if (fid_seq_is_mdt0(ostid_seq(src_oi))) {
856 		dst_oi->oi.oi_id = le64_to_cpu(src_oi->oi.oi_id);
857 		dst_oi->oi.oi_seq = le64_to_cpu(src_oi->oi.oi_seq);
858 	} else {
859 		fid_le_to_cpu(&dst_oi->oi_fid, &src_oi->oi_fid);
860 	}
861 }
862 
863 /** @} lu_fid */
864 
865 /** \defgroup lu_dir lu_dir
866  * @{ */
867 
868 /**
869  * Enumeration of possible directory entry attributes.
870  *
871  * Attributes follow directory entry header in the order they appear in this
872  * enumeration.
873  */
874 enum lu_dirent_attrs {
875 	LUDA_FID		= 0x0001,
876 	LUDA_TYPE		= 0x0002,
877 	LUDA_64BITHASH		= 0x0004,
878 
879 	/* The following attrs are used for MDT internal only,
880 	 * not visible to client */
881 
882 	/* Verify the dirent consistency */
883 	LUDA_VERIFY		= 0x8000,
884 	/* Only check but not repair the dirent inconsistency */
885 	LUDA_VERIFY_DRYRUN	= 0x4000,
886 	/* The dirent has been repaired, or to be repaired (dryrun). */
887 	LUDA_REPAIR		= 0x2000,
888 	/* The system is upgraded, has beed or to be repaired (dryrun). */
889 	LUDA_UPGRADE		= 0x1000,
890 	/* Ignore this record, go to next directly. */
891 	LUDA_IGNORE		= 0x0800,
892 };
893 
894 #define LU_DIRENT_ATTRS_MASK	0xf800
895 
896 /**
897  * Layout of readdir pages, as transmitted on wire.
898  */
899 struct lu_dirent {
900 	/** valid if LUDA_FID is set. */
901 	struct lu_fid lde_fid;
902 	/** a unique entry identifier: a hash or an offset. */
903 	__u64	 lde_hash;
904 	/** total record length, including all attributes. */
905 	__u16	 lde_reclen;
906 	/** name length */
907 	__u16	 lde_namelen;
908 	/** optional variable size attributes following this entry.
909 	 *  taken from enum lu_dirent_attrs.
910 	 */
911 	__u32	 lde_attrs;
912 	/** name is followed by the attributes indicated in ->ldp_attrs, in
913 	 *  their natural order. After the last attribute, padding bytes are
914 	 *  added to make ->lde_reclen a multiple of 8.
915 	 */
916 	char	  lde_name[0];
917 };
918 
919 /*
920  * Definitions of optional directory entry attributes formats.
921  *
922  * Individual attributes do not have their length encoded in a generic way. It
923  * is assumed that consumer of an attribute knows its format. This means that
924  * it is impossible to skip over an unknown attribute, except by skipping over all
925  * remaining attributes (by using ->lde_reclen), which is not too
926  * constraining, because new server versions will append new attributes at
927  * the end of an entry.
928  */
929 
930 /**
931  * Fid directory attribute: a fid of an object referenced by the entry. This
932  * will be almost always requested by the client and supplied by the server.
933  *
934  * Aligned to 8 bytes.
935  */
936 /* To have compatibility with 1.8, lets have fid in lu_dirent struct. */
937 
938 /**
939  * File type.
940  *
941  * Aligned to 2 bytes.
942  */
943 struct luda_type {
944 	__u16 lt_type;
945 };
946 
947 #ifndef IFSHIFT
948 #define IFSHIFT                 12
949 #endif
950 
951 #ifndef IFTODT
952 #define IFTODT(type)		(((type) & S_IFMT) >> IFSHIFT)
953 #endif
954 #ifndef DTTOIF
955 #define DTTOIF(dirtype)		((dirtype) << IFSHIFT)
956 #endif
957 
958 
959 struct lu_dirpage {
960 	__u64	    ldp_hash_start;
961 	__u64	    ldp_hash_end;
962 	__u32	    ldp_flags;
963 	__u32	    ldp_pad0;
964 	struct lu_dirent ldp_entries[0];
965 };
966 
967 enum lu_dirpage_flags {
968 	/**
969 	 * dirpage contains no entry.
970 	 */
971 	LDF_EMPTY   = 1 << 0,
972 	/**
973 	 * last entry's lde_hash equals ldp_hash_end.
974 	 */
975 	LDF_COLLIDE = 1 << 1
976 };
977 
lu_dirent_start(struct lu_dirpage * dp)978 static inline struct lu_dirent *lu_dirent_start(struct lu_dirpage *dp)
979 {
980 	if (le32_to_cpu(dp->ldp_flags) & LDF_EMPTY)
981 		return NULL;
982 	else
983 		return dp->ldp_entries;
984 }
985 
lu_dirent_next(struct lu_dirent * ent)986 static inline struct lu_dirent *lu_dirent_next(struct lu_dirent *ent)
987 {
988 	struct lu_dirent *next;
989 
990 	if (le16_to_cpu(ent->lde_reclen) != 0)
991 		next = ((void *)ent) + le16_to_cpu(ent->lde_reclen);
992 	else
993 		next = NULL;
994 
995 	return next;
996 }
997 
lu_dirent_calc_size(int namelen,__u16 attr)998 static inline int lu_dirent_calc_size(int namelen, __u16 attr)
999 {
1000 	int size;
1001 
1002 	if (attr & LUDA_TYPE) {
1003 		const unsigned align = sizeof(struct luda_type) - 1;
1004 		size = (sizeof(struct lu_dirent) + namelen + align) & ~align;
1005 		size += sizeof(struct luda_type);
1006 	} else
1007 		size = sizeof(struct lu_dirent) + namelen;
1008 
1009 	return (size + 7) & ~7;
1010 }
1011 
lu_dirent_size(struct lu_dirent * ent)1012 static inline int lu_dirent_size(struct lu_dirent *ent)
1013 {
1014 	if (le16_to_cpu(ent->lde_reclen) == 0) {
1015 		return lu_dirent_calc_size(le16_to_cpu(ent->lde_namelen),
1016 					   le32_to_cpu(ent->lde_attrs));
1017 	}
1018 	return le16_to_cpu(ent->lde_reclen);
1019 }
1020 
1021 #define MDS_DIR_END_OFF 0xfffffffffffffffeULL
1022 
1023 /**
1024  * MDS_READPAGE page size
1025  *
1026  * This is the directory page size packed in MDS_READPAGE RPC.
1027  * It's different than PAGE_CACHE_SIZE because the client needs to
1028  * access the struct lu_dirpage header packed at the beginning of
1029  * the "page" and without this there isn't any way to know find the
1030  * lu_dirpage header is if client and server PAGE_CACHE_SIZE differ.
1031  */
1032 #define LU_PAGE_SHIFT 12
1033 #define LU_PAGE_SIZE  (1UL << LU_PAGE_SHIFT)
1034 #define LU_PAGE_MASK  (~(LU_PAGE_SIZE - 1))
1035 
1036 #define LU_PAGE_COUNT (1 << (PAGE_CACHE_SHIFT - LU_PAGE_SHIFT))
1037 
1038 /** @} lu_dir */
1039 
1040 struct lustre_handle {
1041 	__u64 cookie;
1042 };
1043 #define DEAD_HANDLE_MAGIC 0xdeadbeefcafebabeULL
1044 
lustre_handle_is_used(struct lustre_handle * lh)1045 static inline int lustre_handle_is_used(struct lustre_handle *lh)
1046 {
1047 	return lh->cookie != 0ull;
1048 }
1049 
lustre_handle_equal(const struct lustre_handle * lh1,const struct lustre_handle * lh2)1050 static inline int lustre_handle_equal(const struct lustre_handle *lh1,
1051 				      const struct lustre_handle *lh2)
1052 {
1053 	return lh1->cookie == lh2->cookie;
1054 }
1055 
lustre_handle_copy(struct lustre_handle * tgt,struct lustre_handle * src)1056 static inline void lustre_handle_copy(struct lustre_handle *tgt,
1057 				      struct lustre_handle *src)
1058 {
1059 	tgt->cookie = src->cookie;
1060 }
1061 
1062 /* flags for lm_flags */
1063 #define MSGHDR_AT_SUPPORT	       0x1
1064 #define MSGHDR_CKSUM_INCOMPAT18	 0x2
1065 
1066 #define lustre_msg lustre_msg_v2
1067 /* we depend on this structure to be 8-byte aligned */
1068 /* this type is only endian-adjusted in lustre_unpack_msg() */
1069 struct lustre_msg_v2 {
1070 	__u32 lm_bufcount;
1071 	__u32 lm_secflvr;
1072 	__u32 lm_magic;
1073 	__u32 lm_repsize;
1074 	__u32 lm_cksum;
1075 	__u32 lm_flags;
1076 	__u32 lm_padding_2;
1077 	__u32 lm_padding_3;
1078 	__u32 lm_buflens[0];
1079 };
1080 
1081 /* without gss, ptlrpc_body is put at the first buffer. */
1082 #define PTLRPC_NUM_VERSIONS     4
1083 #define JOBSTATS_JOBID_SIZE     32  /* 32 bytes string */
1084 struct ptlrpc_body_v3 {
1085 	struct lustre_handle pb_handle;
1086 	__u32 pb_type;
1087 	__u32 pb_version;
1088 	__u32 pb_opc;
1089 	__u32 pb_status;
1090 	__u64 pb_last_xid;
1091 	__u64 pb_last_seen;
1092 	__u64 pb_last_committed;
1093 	__u64 pb_transno;
1094 	__u32 pb_flags;
1095 	__u32 pb_op_flags;
1096 	__u32 pb_conn_cnt;
1097 	__u32 pb_timeout;  /* for req, the deadline, for rep, the service est */
1098 	__u32 pb_service_time; /* for rep, actual service time */
1099 	__u32 pb_limit;
1100 	__u64 pb_slv;
1101 	/* VBR: pre-versions */
1102 	__u64 pb_pre_versions[PTLRPC_NUM_VERSIONS];
1103 	/* padding for future needs */
1104 	__u64 pb_padding[4];
1105 	char  pb_jobid[JOBSTATS_JOBID_SIZE];
1106 };
1107 #define ptlrpc_body     ptlrpc_body_v3
1108 
1109 struct ptlrpc_body_v2 {
1110 	struct lustre_handle pb_handle;
1111 	__u32 pb_type;
1112 	__u32 pb_version;
1113 	__u32 pb_opc;
1114 	__u32 pb_status;
1115 	__u64 pb_last_xid;
1116 	__u64 pb_last_seen;
1117 	__u64 pb_last_committed;
1118 	__u64 pb_transno;
1119 	__u32 pb_flags;
1120 	__u32 pb_op_flags;
1121 	__u32 pb_conn_cnt;
1122 	__u32 pb_timeout;  /* for req, the deadline, for rep, the service est */
1123 	__u32 pb_service_time; /* for rep, actual service time, also used for
1124 				  net_latency of req */
1125 	__u32 pb_limit;
1126 	__u64 pb_slv;
1127 	/* VBR: pre-versions */
1128 	__u64 pb_pre_versions[PTLRPC_NUM_VERSIONS];
1129 	/* padding for future needs */
1130 	__u64 pb_padding[4];
1131 };
1132 
1133 extern void lustre_swab_ptlrpc_body(struct ptlrpc_body *pb);
1134 
1135 /* message body offset for lustre_msg_v2 */
1136 /* ptlrpc body offset in all request/reply messages */
1137 #define MSG_PTLRPC_BODY_OFF	     0
1138 
1139 /* normal request/reply message record offset */
1140 #define REQ_REC_OFF		     1
1141 #define REPLY_REC_OFF		   1
1142 
1143 /* ldlm request message body offset */
1144 #define DLM_LOCKREQ_OFF		 1 /* lockreq offset */
1145 #define DLM_REQ_REC_OFF		 2 /* normal dlm request record offset */
1146 
1147 /* ldlm intent lock message body offset */
1148 #define DLM_INTENT_IT_OFF	       2 /* intent lock it offset */
1149 #define DLM_INTENT_REC_OFF	      3 /* intent lock record offset */
1150 
1151 /* ldlm reply message body offset */
1152 #define DLM_LOCKREPLY_OFF	       1 /* lockrep offset */
1153 #define DLM_REPLY_REC_OFF	       2 /* reply record offset */
1154 
1155 /** only use in req->rq_{req,rep}_swab_mask */
1156 #define MSG_PTLRPC_HEADER_OFF	   31
1157 
1158 /* Flags that are operation-specific go in the top 16 bits. */
1159 #define MSG_OP_FLAG_MASK   0xffff0000
1160 #define MSG_OP_FLAG_SHIFT  16
1161 
1162 /* Flags that apply to all requests are in the bottom 16 bits */
1163 #define MSG_GEN_FLAG_MASK     0x0000ffff
1164 #define MSG_LAST_REPLAY	   0x0001
1165 #define MSG_RESENT		0x0002
1166 #define MSG_REPLAY		0x0004
1167 /* #define MSG_AT_SUPPORT	 0x0008
1168  * This was used in early prototypes of adaptive timeouts, and while there
1169  * shouldn't be any users of that code there also isn't a need for using this
1170  * bits. Defer usage until at least 1.10 to avoid potential conflict. */
1171 #define MSG_DELAY_REPLAY	  0x0010
1172 #define MSG_VERSION_REPLAY	0x0020
1173 #define MSG_REQ_REPLAY_DONE       0x0040
1174 #define MSG_LOCK_REPLAY_DONE      0x0080
1175 
1176 /*
1177  * Flags for all connect opcodes (MDS_CONNECT, OST_CONNECT)
1178  */
1179 
1180 #define MSG_CONNECT_RECOVERING  0x00000001
1181 #define MSG_CONNECT_RECONNECT   0x00000002
1182 #define MSG_CONNECT_REPLAYABLE  0x00000004
1183 //#define MSG_CONNECT_PEER	0x8
1184 #define MSG_CONNECT_LIBCLIENT   0x00000010
1185 #define MSG_CONNECT_INITIAL     0x00000020
1186 #define MSG_CONNECT_ASYNC       0x00000040
1187 #define MSG_CONNECT_NEXT_VER    0x00000080 /* use next version of lustre_msg */
1188 #define MSG_CONNECT_TRANSNO     0x00000100 /* report transno */
1189 
1190 /* Connect flags */
1191 #define OBD_CONNECT_RDONLY		0x1ULL /*client has read-only access*/
1192 #define OBD_CONNECT_INDEX		 0x2ULL /*connect specific LOV idx */
1193 #define OBD_CONNECT_MDS		   0x4ULL /*connect from MDT to OST */
1194 #define OBD_CONNECT_GRANT		 0x8ULL /*OSC gets grant at connect */
1195 #define OBD_CONNECT_SRVLOCK	      0x10ULL /*server takes locks for cli */
1196 #define OBD_CONNECT_VERSION	      0x20ULL /*Lustre versions in ocd */
1197 #define OBD_CONNECT_REQPORTAL	    0x40ULL /*Separate non-IO req portal */
1198 #define OBD_CONNECT_ACL		  0x80ULL /*access control lists */
1199 #define OBD_CONNECT_XATTR	       0x100ULL /*client use extended attr */
1200 #define OBD_CONNECT_CROW		0x200ULL /*MDS+OST create obj on write*/
1201 #define OBD_CONNECT_TRUNCLOCK	   0x400ULL /*locks on server for punch */
1202 #define OBD_CONNECT_TRANSNO	     0x800ULL /*replay sends init transno */
1203 #define OBD_CONNECT_IBITS	      0x1000ULL /*support for inodebits locks*/
1204 #define OBD_CONNECT_JOIN	       0x2000ULL /*files can be concatenated.
1205 						  *We do not support JOIN FILE
1206 						  *anymore, reserve this flags
1207 						  *just for preventing such bit
1208 						  *to be reused.*/
1209 #define OBD_CONNECT_ATTRFID	    0x4000ULL /*Server can GetAttr By Fid*/
1210 #define OBD_CONNECT_NODEVOH	    0x8000ULL /*No open hndl on specl nodes*/
1211 #define OBD_CONNECT_RMT_CLIENT	0x10000ULL /*Remote client */
1212 #define OBD_CONNECT_RMT_CLIENT_FORCE  0x20000ULL /*Remote client by force */
1213 #define OBD_CONNECT_BRW_SIZE	  0x40000ULL /*Max bytes per rpc */
1214 #define OBD_CONNECT_QUOTA64	   0x80000ULL /*Not used since 2.4 */
1215 #define OBD_CONNECT_MDS_CAPA	 0x100000ULL /*MDS capability */
1216 #define OBD_CONNECT_OSS_CAPA	 0x200000ULL /*OSS capability */
1217 #define OBD_CONNECT_CANCELSET	0x400000ULL /*Early batched cancels. */
1218 #define OBD_CONNECT_SOM	      0x800000ULL /*Size on MDS */
1219 #define OBD_CONNECT_AT	      0x1000000ULL /*client uses AT */
1220 #define OBD_CONNECT_LRU_RESIZE      0x2000000ULL /*LRU resize feature. */
1221 #define OBD_CONNECT_MDS_MDS	 0x4000000ULL /*MDS-MDS connection */
1222 #define OBD_CONNECT_REAL	    0x8000000ULL /*real connection */
1223 #define OBD_CONNECT_CHANGE_QS      0x10000000ULL /*Not used since 2.4 */
1224 #define OBD_CONNECT_CKSUM	  0x20000000ULL /*support several cksum algos*/
1225 #define OBD_CONNECT_FID	    0x40000000ULL /*FID is supported by server */
1226 #define OBD_CONNECT_VBR	    0x80000000ULL /*version based recovery */
1227 #define OBD_CONNECT_LOV_V3	0x100000000ULL /*client supports LOV v3 EA */
1228 #define OBD_CONNECT_GRANT_SHRINK  0x200000000ULL /* support grant shrink */
1229 #define OBD_CONNECT_SKIP_ORPHAN   0x400000000ULL /* don't reuse orphan objids */
1230 #define OBD_CONNECT_MAX_EASIZE    0x800000000ULL /* preserved for large EA */
1231 #define OBD_CONNECT_FULL20       0x1000000000ULL /* it is 2.0 client */
1232 #define OBD_CONNECT_LAYOUTLOCK   0x2000000000ULL /* client uses layout lock */
1233 #define OBD_CONNECT_64BITHASH    0x4000000000ULL /* client supports 64-bits
1234 						  * directory hash */
1235 #define OBD_CONNECT_MAXBYTES     0x8000000000ULL /* max stripe size */
1236 #define OBD_CONNECT_IMP_RECOV   0x10000000000ULL /* imp recovery support */
1237 #define OBD_CONNECT_JOBSTATS    0x20000000000ULL /* jobid in ptlrpc_body */
1238 #define OBD_CONNECT_UMASK       0x40000000000ULL /* create uses client umask */
1239 #define OBD_CONNECT_EINPROGRESS 0x80000000000ULL /* client handles -EINPROGRESS
1240 						  * RPC error properly */
1241 #define OBD_CONNECT_GRANT_PARAM 0x100000000000ULL/* extra grant params used for
1242 						  * finer space reservation */
1243 #define OBD_CONNECT_FLOCK_OWNER 0x200000000000ULL /* for the fixed 1.8
1244 						   * policy and 2.x server */
1245 #define OBD_CONNECT_LVB_TYPE	0x400000000000ULL /* variable type of LVB */
1246 #define OBD_CONNECT_NANOSEC_TIME 0x800000000000ULL /* nanosecond timestamps */
1247 #define OBD_CONNECT_LIGHTWEIGHT 0x1000000000000ULL/* lightweight connection */
1248 #define OBD_CONNECT_SHORTIO     0x2000000000000ULL/* short io */
1249 #define OBD_CONNECT_PINGLESS	0x4000000000000ULL/* pings not required */
1250 #define OBD_CONNECT_FLOCK_DEAD	0x8000000000000ULL/* flock deadlock detection */
1251 #define OBD_CONNECT_DISP_STRIPE 0x10000000000000ULL/*create stripe disposition*/
1252 
1253 /* XXX README XXX:
1254  * Please DO NOT add flag values here before first ensuring that this same
1255  * flag value is not in use on some other branch.  Please clear any such
1256  * changes with senior engineers before starting to use a new flag.  Then,
1257  * submit a small patch against EVERY branch that ONLY adds the new flag,
1258  * updates obd_connect_names[] for lprocfs_rd_connect_flags(), adds the
1259  * flag to check_obd_connect_data(), and updates wiretests accordingly, so it
1260  * can be approved and landed easily to reserve the flag for future use. */
1261 
1262 /* The MNE_SWAB flag is overloading the MDS_MDS bit only for the MGS
1263  * connection.  It is a temporary bug fix for Imperative Recovery interop
1264  * between 2.2 and 2.3 x86/ppc nodes, and can be removed when interop for
1265  * 2.2 clients/servers is no longer needed.  LU-1252/LU-1644. */
1266 #define OBD_CONNECT_MNE_SWAB		 OBD_CONNECT_MDS_MDS
1267 
1268 #define OCD_HAS_FLAG(ocd, flg)  \
1269 	(!!((ocd)->ocd_connect_flags & OBD_CONNECT_##flg))
1270 
1271 
1272 #define LRU_RESIZE_CONNECT_FLAG OBD_CONNECT_LRU_RESIZE
1273 
1274 #define MDT_CONNECT_SUPPORTED  (OBD_CONNECT_RDONLY | OBD_CONNECT_VERSION | \
1275 				OBD_CONNECT_ACL | OBD_CONNECT_XATTR | \
1276 				OBD_CONNECT_IBITS | \
1277 				OBD_CONNECT_NODEVOH | OBD_CONNECT_ATTRFID | \
1278 				OBD_CONNECT_CANCELSET | OBD_CONNECT_AT | \
1279 				OBD_CONNECT_RMT_CLIENT | \
1280 				OBD_CONNECT_RMT_CLIENT_FORCE | \
1281 				OBD_CONNECT_BRW_SIZE | OBD_CONNECT_MDS_CAPA | \
1282 				OBD_CONNECT_OSS_CAPA | OBD_CONNECT_MDS_MDS | \
1283 				OBD_CONNECT_FID | LRU_RESIZE_CONNECT_FLAG | \
1284 				OBD_CONNECT_VBR | OBD_CONNECT_LOV_V3 | \
1285 				OBD_CONNECT_SOM | OBD_CONNECT_FULL20 | \
1286 				OBD_CONNECT_64BITHASH | OBD_CONNECT_JOBSTATS | \
1287 				OBD_CONNECT_EINPROGRESS | \
1288 				OBD_CONNECT_LIGHTWEIGHT | OBD_CONNECT_UMASK | \
1289 				OBD_CONNECT_LVB_TYPE | OBD_CONNECT_LAYOUTLOCK |\
1290 				OBD_CONNECT_PINGLESS | OBD_CONNECT_MAX_EASIZE |\
1291 				OBD_CONNECT_FLOCK_DEAD | \
1292 				OBD_CONNECT_DISP_STRIPE)
1293 
1294 #define OST_CONNECT_SUPPORTED  (OBD_CONNECT_SRVLOCK | OBD_CONNECT_GRANT | \
1295 				OBD_CONNECT_REQPORTAL | OBD_CONNECT_VERSION | \
1296 				OBD_CONNECT_TRUNCLOCK | OBD_CONNECT_INDEX | \
1297 				OBD_CONNECT_BRW_SIZE | OBD_CONNECT_OSS_CAPA | \
1298 				OBD_CONNECT_CANCELSET | OBD_CONNECT_AT | \
1299 				LRU_RESIZE_CONNECT_FLAG | OBD_CONNECT_CKSUM | \
1300 				OBD_CONNECT_RMT_CLIENT | \
1301 				OBD_CONNECT_RMT_CLIENT_FORCE | OBD_CONNECT_VBR | \
1302 				OBD_CONNECT_MDS | OBD_CONNECT_SKIP_ORPHAN | \
1303 				OBD_CONNECT_GRANT_SHRINK | OBD_CONNECT_FULL20 | \
1304 				OBD_CONNECT_64BITHASH | OBD_CONNECT_MAXBYTES | \
1305 				OBD_CONNECT_MAX_EASIZE | \
1306 				OBD_CONNECT_EINPROGRESS | \
1307 				OBD_CONNECT_JOBSTATS | \
1308 				OBD_CONNECT_LIGHTWEIGHT | OBD_CONNECT_LVB_TYPE|\
1309 				OBD_CONNECT_LAYOUTLOCK | OBD_CONNECT_FID | \
1310 				OBD_CONNECT_PINGLESS)
1311 #define ECHO_CONNECT_SUPPORTED (0)
1312 #define MGS_CONNECT_SUPPORTED  (OBD_CONNECT_VERSION | OBD_CONNECT_AT | \
1313 				OBD_CONNECT_FULL20 | OBD_CONNECT_IMP_RECOV | \
1314 				OBD_CONNECT_MNE_SWAB | OBD_CONNECT_PINGLESS)
1315 
1316 /* Features required for this version of the client to work with server */
1317 #define CLIENT_CONNECT_MDT_REQD (OBD_CONNECT_IBITS | OBD_CONNECT_FID | \
1318 				 OBD_CONNECT_FULL20)
1319 
1320 #define OBD_OCD_VERSION(major, minor, patch, fix) (((major)<<24) + \
1321 						  ((minor)<<16) + \
1322 						  ((patch)<<8) + (fix))
1323 #define OBD_OCD_VERSION_MAJOR(version) ((int)((version)>>24)&255)
1324 #define OBD_OCD_VERSION_MINOR(version) ((int)((version)>>16)&255)
1325 #define OBD_OCD_VERSION_PATCH(version) ((int)((version)>>8)&255)
1326 #define OBD_OCD_VERSION_FIX(version)   ((int)(version)&255)
1327 
1328 /* This structure is used for both request and reply.
1329  *
1330  * If we eventually have separate connect data for different types, which we
1331  * almost certainly will, then perhaps we stick a union in here. */
1332 struct obd_connect_data_v1 {
1333 	__u64 ocd_connect_flags; /* OBD_CONNECT_* per above */
1334 	__u32 ocd_version;	 /* lustre release version number */
1335 	__u32 ocd_grant;	 /* initial cache grant amount (bytes) */
1336 	__u32 ocd_index;	 /* LOV index to connect to */
1337 	__u32 ocd_brw_size;	 /* Maximum BRW size in bytes, must be 2^n */
1338 	__u64 ocd_ibits_known;   /* inode bits this client understands */
1339 	__u8  ocd_blocksize;     /* log2 of the backend filesystem blocksize */
1340 	__u8  ocd_inodespace;    /* log2 of the per-inode space consumption */
1341 	__u16 ocd_grant_extent;  /* per-extent grant overhead, in 1K blocks */
1342 	__u32 ocd_unused;	/* also fix lustre_swab_connect */
1343 	__u64 ocd_transno;       /* first transno from client to be replayed */
1344 	__u32 ocd_group;	 /* MDS group on OST */
1345 	__u32 ocd_cksum_types;   /* supported checksum algorithms */
1346 	__u32 ocd_max_easize;    /* How big LOV EA can be on MDS */
1347 	__u32 ocd_instance;      /* also fix lustre_swab_connect */
1348 	__u64 ocd_maxbytes;      /* Maximum stripe size in bytes */
1349 };
1350 
1351 struct obd_connect_data {
1352 	__u64 ocd_connect_flags; /* OBD_CONNECT_* per above */
1353 	__u32 ocd_version;	 /* lustre release version number */
1354 	__u32 ocd_grant;	 /* initial cache grant amount (bytes) */
1355 	__u32 ocd_index;	 /* LOV index to connect to */
1356 	__u32 ocd_brw_size;	 /* Maximum BRW size in bytes */
1357 	__u64 ocd_ibits_known;   /* inode bits this client understands */
1358 	__u8  ocd_blocksize;     /* log2 of the backend filesystem blocksize */
1359 	__u8  ocd_inodespace;    /* log2 of the per-inode space consumption */
1360 	__u16 ocd_grant_extent;  /* per-extent grant overhead, in 1K blocks */
1361 	__u32 ocd_unused;	/* also fix lustre_swab_connect */
1362 	__u64 ocd_transno;       /* first transno from client to be replayed */
1363 	__u32 ocd_group;	 /* MDS group on OST */
1364 	__u32 ocd_cksum_types;   /* supported checksum algorithms */
1365 	__u32 ocd_max_easize;    /* How big LOV EA can be on MDS */
1366 	__u32 ocd_instance;      /* instance # of this target */
1367 	__u64 ocd_maxbytes;      /* Maximum stripe size in bytes */
1368 	/* Fields after ocd_maxbytes are only accessible by the receiver
1369 	 * if the corresponding flag in ocd_connect_flags is set. Accessing
1370 	 * any field after ocd_maxbytes on the receiver without a valid flag
1371 	 * may result in out-of-bound memory access and kernel oops. */
1372 	__u64 padding1;	  /* added 2.1.0. also fix lustre_swab_connect */
1373 	__u64 padding2;	  /* added 2.1.0. also fix lustre_swab_connect */
1374 	__u64 padding3;	  /* added 2.1.0. also fix lustre_swab_connect */
1375 	__u64 padding4;	  /* added 2.1.0. also fix lustre_swab_connect */
1376 	__u64 padding5;	  /* added 2.1.0. also fix lustre_swab_connect */
1377 	__u64 padding6;	  /* added 2.1.0. also fix lustre_swab_connect */
1378 	__u64 padding7;	  /* added 2.1.0. also fix lustre_swab_connect */
1379 	__u64 padding8;	  /* added 2.1.0. also fix lustre_swab_connect */
1380 	__u64 padding9;	  /* added 2.1.0. also fix lustre_swab_connect */
1381 	__u64 paddingA;	  /* added 2.1.0. also fix lustre_swab_connect */
1382 	__u64 paddingB;	  /* added 2.1.0. also fix lustre_swab_connect */
1383 	__u64 paddingC;	  /* added 2.1.0. also fix lustre_swab_connect */
1384 	__u64 paddingD;	  /* added 2.1.0. also fix lustre_swab_connect */
1385 	__u64 paddingE;	  /* added 2.1.0. also fix lustre_swab_connect */
1386 	__u64 paddingF;	  /* added 2.1.0. also fix lustre_swab_connect */
1387 };
1388 /* XXX README XXX:
1389  * Please DO NOT use any fields here before first ensuring that this same
1390  * field is not in use on some other branch.  Please clear any such changes
1391  * with senior engineers before starting to use a new field.  Then, submit
1392  * a small patch against EVERY branch that ONLY adds the new field along with
1393  * the matching OBD_CONNECT flag, so that can be approved and landed easily to
1394  * reserve the flag for future use. */
1395 
1396 
1397 extern void lustre_swab_connect(struct obd_connect_data *ocd);
1398 
1399 /*
1400  * Supported checksum algorithms. Up to 32 checksum types are supported.
1401  * (32-bit mask stored in obd_connect_data::ocd_cksum_types)
1402  * Please update DECLARE_CKSUM_NAME/OBD_CKSUM_ALL in obd.h when adding a new
1403  * algorithm and also the OBD_FL_CKSUM* flags.
1404  */
1405 typedef enum {
1406 	OBD_CKSUM_CRC32 = 0x00000001,
1407 	OBD_CKSUM_ADLER = 0x00000002,
1408 	OBD_CKSUM_CRC32C= 0x00000004,
1409 } cksum_type_t;
1410 
1411 /*
1412  *   OST requests: OBDO & OBD request records
1413  */
1414 
1415 /* opcodes */
1416 typedef enum {
1417 	OST_REPLY      =  0,       /* reply ? */
1418 	OST_GETATTR    =  1,
1419 	OST_SETATTR    =  2,
1420 	OST_READ       =  3,
1421 	OST_WRITE      =  4,
1422 	OST_CREATE     =  5,
1423 	OST_DESTROY    =  6,
1424 	OST_GET_INFO   =  7,
1425 	OST_CONNECT    =  8,
1426 	OST_DISCONNECT =  9,
1427 	OST_PUNCH      = 10,
1428 	OST_OPEN       = 11,
1429 	OST_CLOSE      = 12,
1430 	OST_STATFS     = 13,
1431 	OST_SYNC       = 16,
1432 	OST_SET_INFO   = 17,
1433 	OST_QUOTACHECK = 18,
1434 	OST_QUOTACTL   = 19,
1435 	OST_QUOTA_ADJUST_QUNIT = 20, /* not used since 2.4 */
1436 	OST_LAST_OPC
1437 } ost_cmd_t;
1438 #define OST_FIRST_OPC  OST_REPLY
1439 
1440 enum obdo_flags {
1441 	OBD_FL_INLINEDATA   = 0x00000001,
1442 	OBD_FL_OBDMDEXISTS  = 0x00000002,
1443 	OBD_FL_DELORPHAN    = 0x00000004, /* if set in o_flags delete orphans */
1444 	OBD_FL_NORPC	= 0x00000008, /* set in o_flags do in OSC not OST */
1445 	OBD_FL_IDONLY       = 0x00000010, /* set in o_flags only adjust obj id*/
1446 	OBD_FL_RECREATE_OBJS= 0x00000020, /* recreate missing obj */
1447 	OBD_FL_DEBUG_CHECK  = 0x00000040, /* echo client/server debug check */
1448 	OBD_FL_NO_USRQUOTA  = 0x00000100, /* the object's owner is over quota */
1449 	OBD_FL_NO_GRPQUOTA  = 0x00000200, /* the object's group is over quota */
1450 	OBD_FL_CREATE_CROW  = 0x00000400, /* object should be create on write */
1451 	OBD_FL_SRVLOCK      = 0x00000800, /* delegate DLM locking to server */
1452 	OBD_FL_CKSUM_CRC32  = 0x00001000, /* CRC32 checksum type */
1453 	OBD_FL_CKSUM_ADLER  = 0x00002000, /* ADLER checksum type */
1454 	OBD_FL_CKSUM_CRC32C = 0x00004000, /* CRC32C checksum type */
1455 	OBD_FL_CKSUM_RSVD2  = 0x00008000, /* for future cksum types */
1456 	OBD_FL_CKSUM_RSVD3  = 0x00010000, /* for future cksum types */
1457 	OBD_FL_SHRINK_GRANT = 0x00020000, /* object shrink the grant */
1458 	OBD_FL_MMAP	 = 0x00040000, /* object is mmapped on the client.
1459 					   * XXX: obsoleted - reserved for old
1460 					   * clients prior than 2.2 */
1461 	OBD_FL_RECOV_RESEND = 0x00080000, /* recoverable resent */
1462 	OBD_FL_NOSPC_BLK    = 0x00100000, /* no more block space on OST */
1463 
1464 	/* Note that while these checksum values are currently separate bits,
1465 	 * in 2.x we can actually allow all values from 1-31 if we wanted. */
1466 	OBD_FL_CKSUM_ALL    = OBD_FL_CKSUM_CRC32 | OBD_FL_CKSUM_ADLER |
1467 			      OBD_FL_CKSUM_CRC32C,
1468 
1469 	/* mask for local-only flag, which won't be sent over network */
1470 	OBD_FL_LOCAL_MASK   = 0xF0000000,
1471 };
1472 
1473 #define LOV_MAGIC_V1      0x0BD10BD0
1474 #define LOV_MAGIC	 LOV_MAGIC_V1
1475 #define LOV_MAGIC_JOIN_V1 0x0BD20BD0
1476 #define LOV_MAGIC_V3      0x0BD30BD0
1477 
1478 /*
1479  * magic for fully defined striping
1480  * the idea is that we should have different magics for striping "hints"
1481  * (struct lov_user_md_v[13]) and defined ready-to-use striping (struct
1482  * lov_mds_md_v[13]). at the moment the magics are used in wire protocol,
1483  * we can't just change it w/o long way preparation, but we still need a
1484  * mechanism to allow LOD to differentiate hint versus ready striping.
1485  * so, at the moment we do a trick: MDT knows what to expect from request
1486  * depending on the case (replay uses ready striping, non-replay req uses
1487  * hints), so MDT replaces magic with appropriate one and now LOD can
1488  * easily understand what's inside -bzzz
1489  */
1490 #define LOV_MAGIC_V1_DEF  0x0CD10BD0
1491 #define LOV_MAGIC_V3_DEF  0x0CD30BD0
1492 
1493 #define LOV_PATTERN_RAID0	0x001   /* stripes are used round-robin */
1494 #define LOV_PATTERN_RAID1	0x002   /* stripes are mirrors of each other */
1495 #define LOV_PATTERN_FIRST	0x100   /* first stripe is not in round-robin */
1496 #define LOV_PATTERN_CMOBD	0x200
1497 
1498 #define LOV_PATTERN_F_MASK	0xffff0000
1499 #define LOV_PATTERN_F_RELEASED	0x80000000 /* HSM released file */
1500 
1501 #define lov_pattern(pattern)		(pattern & ~LOV_PATTERN_F_MASK)
1502 #define lov_pattern_flags(pattern)	(pattern & LOV_PATTERN_F_MASK)
1503 
1504 #define lov_ost_data lov_ost_data_v1
1505 struct lov_ost_data_v1 {	  /* per-stripe data structure (little-endian)*/
1506 	struct ost_id l_ost_oi;	  /* OST object ID */
1507 	__u32 l_ost_gen;	  /* generation of this l_ost_idx */
1508 	__u32 l_ost_idx;	  /* OST index in LOV (lov_tgt_desc->tgts) */
1509 };
1510 
1511 #define lov_mds_md lov_mds_md_v1
1512 struct lov_mds_md_v1 {	    /* LOV EA mds/wire data (little-endian) */
1513 	__u32 lmm_magic;	  /* magic number = LOV_MAGIC_V1 */
1514 	__u32 lmm_pattern;	/* LOV_PATTERN_RAID0, LOV_PATTERN_RAID1 */
1515 	struct ost_id	lmm_oi;	  /* LOV object ID */
1516 	__u32 lmm_stripe_size;    /* size of stripe in bytes */
1517 	/* lmm_stripe_count used to be __u32 */
1518 	__u16 lmm_stripe_count;   /* num stripes in use for this object */
1519 	__u16 lmm_layout_gen;     /* layout generation number */
1520 	struct lov_ost_data_v1 lmm_objects[0]; /* per-stripe data */
1521 };
1522 
1523 /**
1524  * Sigh, because pre-2.4 uses
1525  * struct lov_mds_md_v1 {
1526  *	........
1527  *	__u64 lmm_object_id;
1528  *	__u64 lmm_object_seq;
1529  *      ......
1530  *      }
1531  * to identify the LOV(MDT) object, and lmm_object_seq will
1532  * be normal_fid, which make it hard to combine these conversion
1533  * to ostid_to FID. so we will do lmm_oi/fid conversion separately
1534  *
1535  * We can tell the lmm_oi by this way,
1536  * 1.8: lmm_object_id = {inode}, lmm_object_gr = 0
1537  * 2.1: lmm_object_id = {oid < 128k}, lmm_object_seq = FID_SEQ_NORMAL
1538  * 2.4: lmm_oi.f_seq = FID_SEQ_NORMAL, lmm_oi.f_oid = {oid < 128k},
1539  *      lmm_oi.f_ver = 0
1540  *
1541  * But currently lmm_oi/lsm_oi does not have any "real" usages,
1542  * except for printing some information, and the user can always
1543  * get the real FID from LMA, besides this multiple case check might
1544  * make swab more complicate. So we will keep using id/seq for lmm_oi.
1545  */
1546 
fid_to_lmm_oi(const struct lu_fid * fid,struct ost_id * oi)1547 static inline void fid_to_lmm_oi(const struct lu_fid *fid,
1548 				 struct ost_id *oi)
1549 {
1550 	oi->oi.oi_id = fid_oid(fid);
1551 	oi->oi.oi_seq = fid_seq(fid);
1552 }
1553 
lmm_oi_set_seq(struct ost_id * oi,__u64 seq)1554 static inline void lmm_oi_set_seq(struct ost_id *oi, __u64 seq)
1555 {
1556 	oi->oi.oi_seq = seq;
1557 }
1558 
lmm_oi_id(struct ost_id * oi)1559 static inline __u64 lmm_oi_id(struct ost_id *oi)
1560 {
1561 	return oi->oi.oi_id;
1562 }
1563 
lmm_oi_seq(struct ost_id * oi)1564 static inline __u64 lmm_oi_seq(struct ost_id *oi)
1565 {
1566 	return oi->oi.oi_seq;
1567 }
1568 
lmm_oi_le_to_cpu(struct ost_id * dst_oi,struct ost_id * src_oi)1569 static inline void lmm_oi_le_to_cpu(struct ost_id *dst_oi,
1570 				    struct ost_id *src_oi)
1571 {
1572 	dst_oi->oi.oi_id = le64_to_cpu(src_oi->oi.oi_id);
1573 	dst_oi->oi.oi_seq = le64_to_cpu(src_oi->oi.oi_seq);
1574 }
1575 
lmm_oi_cpu_to_le(struct ost_id * dst_oi,struct ost_id * src_oi)1576 static inline void lmm_oi_cpu_to_le(struct ost_id *dst_oi,
1577 				    struct ost_id *src_oi)
1578 {
1579 	dst_oi->oi.oi_id = cpu_to_le64(src_oi->oi.oi_id);
1580 	dst_oi->oi.oi_seq = cpu_to_le64(src_oi->oi.oi_seq);
1581 }
1582 
1583 /* extern void lustre_swab_lov_mds_md(struct lov_mds_md *llm); */
1584 
1585 #define MAX_MD_SIZE							\
1586 	(sizeof(struct lov_mds_md) + 4 * sizeof(struct lov_ost_data))
1587 #define MIN_MD_SIZE							\
1588 	(sizeof(struct lov_mds_md) + 1 * sizeof(struct lov_ost_data))
1589 
1590 #define XATTR_NAME_ACL_ACCESS   "system.posix_acl_access"
1591 #define XATTR_NAME_ACL_DEFAULT  "system.posix_acl_default"
1592 #define XATTR_USER_PREFIX       "user."
1593 #define XATTR_TRUSTED_PREFIX    "trusted."
1594 #define XATTR_SECURITY_PREFIX   "security."
1595 #define XATTR_LUSTRE_PREFIX     "lustre."
1596 
1597 #define XATTR_NAME_LOV	  "trusted.lov"
1598 #define XATTR_NAME_LMA	  "trusted.lma"
1599 #define XATTR_NAME_LMV	  "trusted.lmv"
1600 #define XATTR_NAME_LINK	 "trusted.link"
1601 #define XATTR_NAME_FID	  "trusted.fid"
1602 #define XATTR_NAME_VERSION      "trusted.version"
1603 #define XATTR_NAME_SOM		"trusted.som"
1604 #define XATTR_NAME_HSM		"trusted.hsm"
1605 #define XATTR_NAME_LFSCK_NAMESPACE "trusted.lfsck_namespace"
1606 
1607 struct lov_mds_md_v3 {	    /* LOV EA mds/wire data (little-endian) */
1608 	__u32 lmm_magic;	  /* magic number = LOV_MAGIC_V3 */
1609 	__u32 lmm_pattern;	/* LOV_PATTERN_RAID0, LOV_PATTERN_RAID1 */
1610 	struct ost_id	lmm_oi;	  /* LOV object ID */
1611 	__u32 lmm_stripe_size;    /* size of stripe in bytes */
1612 	/* lmm_stripe_count used to be __u32 */
1613 	__u16 lmm_stripe_count;   /* num stripes in use for this object */
1614 	__u16 lmm_layout_gen;     /* layout generation number */
1615 	char  lmm_pool_name[LOV_MAXPOOLNAME]; /* must be 32bit aligned */
1616 	struct lov_ost_data_v1 lmm_objects[0]; /* per-stripe data */
1617 };
1618 
lov_mds_md_size(__u16 stripes,__u32 lmm_magic)1619 static inline __u32 lov_mds_md_size(__u16 stripes, __u32 lmm_magic)
1620 {
1621 	if (lmm_magic == LOV_MAGIC_V3)
1622 		return sizeof(struct lov_mds_md_v3) +
1623 				stripes * sizeof(struct lov_ost_data_v1);
1624 	else
1625 		return sizeof(struct lov_mds_md_v1) +
1626 				stripes * sizeof(struct lov_ost_data_v1);
1627 }
1628 
1629 static inline __u32
lov_mds_md_max_stripe_count(size_t buf_size,__u32 lmm_magic)1630 lov_mds_md_max_stripe_count(size_t buf_size, __u32 lmm_magic)
1631 {
1632 	switch (lmm_magic) {
1633 	case LOV_MAGIC_V1: {
1634 		struct lov_mds_md_v1 lmm;
1635 
1636 		if (buf_size < sizeof(lmm))
1637 			return 0;
1638 
1639 		return (buf_size - sizeof(lmm)) / sizeof(lmm.lmm_objects[0]);
1640 	}
1641 	case LOV_MAGIC_V3: {
1642 		struct lov_mds_md_v3 lmm;
1643 
1644 		if (buf_size < sizeof(lmm))
1645 			return 0;
1646 
1647 		return (buf_size - sizeof(lmm)) / sizeof(lmm.lmm_objects[0]);
1648 	}
1649 	default:
1650 		return 0;
1651 	}
1652 }
1653 
1654 #define OBD_MD_FLID	(0x00000001ULL) /* object ID */
1655 #define OBD_MD_FLATIME     (0x00000002ULL) /* access time */
1656 #define OBD_MD_FLMTIME     (0x00000004ULL) /* data modification time */
1657 #define OBD_MD_FLCTIME     (0x00000008ULL) /* change time */
1658 #define OBD_MD_FLSIZE      (0x00000010ULL) /* size */
1659 #define OBD_MD_FLBLOCKS    (0x00000020ULL) /* allocated blocks count */
1660 #define OBD_MD_FLBLKSZ     (0x00000040ULL) /* block size */
1661 #define OBD_MD_FLMODE      (0x00000080ULL) /* access bits (mode & ~S_IFMT) */
1662 #define OBD_MD_FLTYPE      (0x00000100ULL) /* object type (mode & S_IFMT) */
1663 #define OBD_MD_FLUID       (0x00000200ULL) /* user ID */
1664 #define OBD_MD_FLGID       (0x00000400ULL) /* group ID */
1665 #define OBD_MD_FLFLAGS     (0x00000800ULL) /* flags word */
1666 #define OBD_MD_FLNLINK     (0x00002000ULL) /* link count */
1667 #define OBD_MD_FLGENER     (0x00004000ULL) /* generation number */
1668 /*#define OBD_MD_FLINLINE    (0x00008000ULL)  inline data. used until 1.6.5 */
1669 #define OBD_MD_FLRDEV      (0x00010000ULL) /* device number */
1670 #define OBD_MD_FLEASIZE    (0x00020000ULL) /* extended attribute data */
1671 #define OBD_MD_LINKNAME    (0x00040000ULL) /* symbolic link target */
1672 #define OBD_MD_FLHANDLE    (0x00080000ULL) /* file/lock handle */
1673 #define OBD_MD_FLCKSUM     (0x00100000ULL) /* bulk data checksum */
1674 #define OBD_MD_FLQOS       (0x00200000ULL) /* quality of service stats */
1675 /*#define OBD_MD_FLOSCOPQ    (0x00400000ULL) osc opaque data, never used */
1676 #define OBD_MD_FLCOOKIE    (0x00800000ULL) /* log cancellation cookie */
1677 #define OBD_MD_FLGROUP     (0x01000000ULL) /* group */
1678 #define OBD_MD_FLFID       (0x02000000ULL) /* ->ost write inline fid */
1679 #define OBD_MD_FLEPOCH     (0x04000000ULL) /* ->ost write with ioepoch */
1680 					   /* ->mds if epoch opens or closes */
1681 #define OBD_MD_FLGRANT     (0x08000000ULL) /* ost preallocation space grant */
1682 #define OBD_MD_FLDIREA     (0x10000000ULL) /* dir's extended attribute data */
1683 #define OBD_MD_FLUSRQUOTA  (0x20000000ULL) /* over quota flags sent from ost */
1684 #define OBD_MD_FLGRPQUOTA  (0x40000000ULL) /* over quota flags sent from ost */
1685 #define OBD_MD_FLMODEASIZE (0x80000000ULL) /* EA size will be changed */
1686 
1687 #define OBD_MD_MDS	 (0x0000000100000000ULL) /* where an inode lives on */
1688 #define OBD_MD_REINT       (0x0000000200000000ULL) /* reintegrate oa */
1689 #define OBD_MD_MEA	 (0x0000000400000000ULL) /* CMD split EA  */
1690 #define OBD_MD_TSTATE      (0x0000000800000000ULL) /* transient state field */
1691 
1692 #define OBD_MD_FLXATTR       (0x0000001000000000ULL) /* xattr */
1693 #define OBD_MD_FLXATTRLS     (0x0000002000000000ULL) /* xattr list */
1694 #define OBD_MD_FLXATTRRM     (0x0000004000000000ULL) /* xattr remove */
1695 #define OBD_MD_FLACL	 (0x0000008000000000ULL) /* ACL */
1696 #define OBD_MD_FLRMTPERM     (0x0000010000000000ULL) /* remote permission */
1697 #define OBD_MD_FLMDSCAPA     (0x0000020000000000ULL) /* MDS capability */
1698 #define OBD_MD_FLOSSCAPA     (0x0000040000000000ULL) /* OSS capability */
1699 #define OBD_MD_FLCKSPLIT     (0x0000080000000000ULL) /* Check split on server */
1700 #define OBD_MD_FLCROSSREF    (0x0000100000000000ULL) /* Cross-ref case */
1701 #define OBD_MD_FLGETATTRLOCK (0x0000200000000000ULL) /* Get IOEpoch attributes
1702 						      * under lock; for xattr
1703 						      * requests means the
1704 						      * client holds the lock */
1705 #define OBD_MD_FLOBJCOUNT    (0x0000400000000000ULL) /* for multiple destroy */
1706 
1707 #define OBD_MD_FLRMTLSETFACL (0x0001000000000000ULL) /* lfs lsetfacl case */
1708 #define OBD_MD_FLRMTLGETFACL (0x0002000000000000ULL) /* lfs lgetfacl case */
1709 #define OBD_MD_FLRMTRSETFACL (0x0004000000000000ULL) /* lfs rsetfacl case */
1710 #define OBD_MD_FLRMTRGETFACL (0x0008000000000000ULL) /* lfs rgetfacl case */
1711 
1712 #define OBD_MD_FLDATAVERSION (0x0010000000000000ULL) /* iversion sum */
1713 #define OBD_MD_FLRELEASED    (0x0020000000000000ULL) /* file released */
1714 
1715 #define OBD_MD_FLGETATTR (OBD_MD_FLID    | OBD_MD_FLATIME | OBD_MD_FLMTIME | \
1716 			  OBD_MD_FLCTIME | OBD_MD_FLSIZE  | OBD_MD_FLBLKSZ | \
1717 			  OBD_MD_FLMODE  | OBD_MD_FLTYPE  | OBD_MD_FLUID   | \
1718 			  OBD_MD_FLGID   | OBD_MD_FLFLAGS | OBD_MD_FLNLINK | \
1719 			  OBD_MD_FLGENER | OBD_MD_FLRDEV  | OBD_MD_FLGROUP)
1720 
1721 #define OBD_MD_FLXATTRALL (OBD_MD_FLXATTR | OBD_MD_FLXATTRLS)
1722 
1723 /* don't forget obdo_fid which is way down at the bottom so it can
1724  * come after the definition of llog_cookie */
1725 
1726 enum hss_valid {
1727 	HSS_SETMASK	= 0x01,
1728 	HSS_CLEARMASK	= 0x02,
1729 	HSS_ARCHIVE_ID	= 0x04,
1730 };
1731 
1732 struct hsm_state_set {
1733 	__u32	hss_valid;
1734 	__u32	hss_archive_id;
1735 	__u64	hss_setmask;
1736 	__u64	hss_clearmask;
1737 };
1738 
1739 extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
1740 extern void lustre_swab_hsm_state_set(struct hsm_state_set *hss);
1741 
1742 extern void lustre_swab_obd_statfs (struct obd_statfs *os);
1743 
1744 /* ost_body.data values for OST_BRW */
1745 
1746 #define OBD_BRW_READ	    0x01
1747 #define OBD_BRW_WRITE	   0x02
1748 #define OBD_BRW_RWMASK	  (OBD_BRW_READ | OBD_BRW_WRITE)
1749 #define OBD_BRW_SYNC	    0x08 /* this page is a part of synchronous
1750 				      * transfer and is not accounted in
1751 				      * the grant. */
1752 #define OBD_BRW_CHECK	   0x10
1753 #define OBD_BRW_FROM_GRANT      0x20 /* the osc manages this under llite */
1754 #define OBD_BRW_GRANTED	 0x40 /* the ost manages this */
1755 #define OBD_BRW_NOCACHE	 0x80 /* this page is a part of non-cached IO */
1756 #define OBD_BRW_NOQUOTA	0x100
1757 #define OBD_BRW_SRVLOCK	0x200 /* Client holds no lock over this page */
1758 #define OBD_BRW_ASYNC	  0x400 /* Server may delay commit to disk */
1759 #define OBD_BRW_MEMALLOC       0x800 /* Client runs in the "kswapd" context */
1760 #define OBD_BRW_OVER_USRQUOTA 0x1000 /* Running out of user quota */
1761 #define OBD_BRW_OVER_GRPQUOTA 0x2000 /* Running out of group quota */
1762 
1763 #define OBD_OBJECT_EOF 0xffffffffffffffffULL
1764 
1765 #define OST_MIN_PRECREATE 32
1766 #define OST_MAX_PRECREATE 20000
1767 
1768 struct obd_ioobj {
1769 	struct ost_id	ioo_oid;	/* object ID, if multi-obj BRW */
1770 	__u32		ioo_max_brw;	/* low 16 bits were o_mode before 2.4,
1771 					 * now (PTLRPC_BULK_OPS_COUNT - 1) in
1772 					 * high 16 bits in 2.4 and later */
1773 	__u32		ioo_bufcnt;	/* number of niobufs for this object */
1774 };
1775 
1776 #define IOOBJ_MAX_BRW_BITS	16
1777 #define IOOBJ_TYPE_MASK		((1U << IOOBJ_MAX_BRW_BITS) - 1)
1778 #define ioobj_max_brw_get(ioo)	(((ioo)->ioo_max_brw >> IOOBJ_MAX_BRW_BITS) + 1)
1779 #define ioobj_max_brw_set(ioo, num)					\
1780 do { (ioo)->ioo_max_brw = ((num) - 1) << IOOBJ_MAX_BRW_BITS; } while (0)
1781 
1782 extern void lustre_swab_obd_ioobj (struct obd_ioobj *ioo);
1783 
1784 /* multiple of 8 bytes => can array */
1785 struct niobuf_remote {
1786 	__u64 offset;
1787 	__u32 len;
1788 	__u32 flags;
1789 };
1790 
1791 extern void lustre_swab_niobuf_remote (struct niobuf_remote *nbr);
1792 
1793 /* lock value block communicated between the filter and llite */
1794 
1795 /* OST_LVB_ERR_INIT is needed because the return code in rc is
1796  * negative, i.e. because ((MASK + rc) & MASK) != MASK. */
1797 #define OST_LVB_ERR_INIT 0xffbadbad80000000ULL
1798 #define OST_LVB_ERR_MASK 0xffbadbad00000000ULL
1799 #define OST_LVB_IS_ERR(blocks)					  \
1800 	((blocks & OST_LVB_ERR_MASK) == OST_LVB_ERR_MASK)
1801 #define OST_LVB_SET_ERR(blocks, rc)				     \
1802 	do { blocks = OST_LVB_ERR_INIT + rc; } while (0)
1803 #define OST_LVB_GET_ERR(blocks)    (int)(blocks - OST_LVB_ERR_INIT)
1804 
1805 struct ost_lvb_v1 {
1806 	__u64		lvb_size;
1807 	__s64		lvb_mtime;
1808 	__s64		lvb_atime;
1809 	__s64		lvb_ctime;
1810 	__u64		lvb_blocks;
1811 };
1812 
1813 extern void lustre_swab_ost_lvb_v1(struct ost_lvb_v1 *lvb);
1814 
1815 struct ost_lvb {
1816 	__u64		lvb_size;
1817 	__s64		lvb_mtime;
1818 	__s64		lvb_atime;
1819 	__s64		lvb_ctime;
1820 	__u64		lvb_blocks;
1821 	__u32		lvb_mtime_ns;
1822 	__u32		lvb_atime_ns;
1823 	__u32		lvb_ctime_ns;
1824 	__u32		lvb_padding;
1825 };
1826 
1827 extern void lustre_swab_ost_lvb(struct ost_lvb *lvb);
1828 
1829 /*
1830  *   lquota data structures
1831  */
1832 
1833 #ifndef QUOTABLOCK_BITS
1834 #define QUOTABLOCK_BITS 10
1835 #endif
1836 
1837 #ifndef QUOTABLOCK_SIZE
1838 #define QUOTABLOCK_SIZE (1 << QUOTABLOCK_BITS)
1839 #endif
1840 
1841 #ifndef toqb
1842 #define toqb(x) (((x) + QUOTABLOCK_SIZE - 1) >> QUOTABLOCK_BITS)
1843 #endif
1844 
1845 /* The lquota_id structure is an union of all the possible identifier types that
1846  * can be used with quota, this includes:
1847  * - 64-bit user ID
1848  * - 64-bit group ID
1849  * - a FID which can be used for per-directory quota in the future */
1850 union lquota_id {
1851 	struct lu_fid	qid_fid; /* FID for per-directory quota */
1852 	__u64		qid_uid; /* user identifier */
1853 	__u64		qid_gid; /* group identifier */
1854 };
1855 
1856 /* quotactl management */
1857 struct obd_quotactl {
1858 	__u32			qc_cmd;
1859 	__u32			qc_type; /* see Q_* flag below */
1860 	__u32			qc_id;
1861 	__u32			qc_stat;
1862 	struct obd_dqinfo	qc_dqinfo;
1863 	struct obd_dqblk	qc_dqblk;
1864 };
1865 
1866 extern void lustre_swab_obd_quotactl(struct obd_quotactl *q);
1867 
1868 #define Q_QUOTACHECK	0x800100 /* deprecated as of 2.4 */
1869 #define Q_INITQUOTA	0x800101 /* deprecated as of 2.4  */
1870 #define Q_GETOINFO	0x800102 /* get obd quota info */
1871 #define Q_GETOQUOTA	0x800103 /* get obd quotas */
1872 #define Q_FINVALIDATE	0x800104 /* deprecated as of 2.4 */
1873 
1874 #define Q_COPY(out, in, member) (out)->member = (in)->member
1875 
1876 #define QCTL_COPY(out, in)		\
1877 do {					\
1878 	Q_COPY(out, in, qc_cmd);	\
1879 	Q_COPY(out, in, qc_type);	\
1880 	Q_COPY(out, in, qc_id);		\
1881 	Q_COPY(out, in, qc_stat);	\
1882 	Q_COPY(out, in, qc_dqinfo);	\
1883 	Q_COPY(out, in, qc_dqblk);	\
1884 } while (0)
1885 
1886 /* Body of quota request used for quota acquire/release RPCs between quota
1887  * master (aka QMT) and slaves (ak QSD). */
1888 struct quota_body {
1889 	struct lu_fid	qb_fid;     /* FID of global index packing the pool ID
1890 				      * and type (data or metadata) as well as
1891 				      * the quota type (user or group). */
1892 	union lquota_id	qb_id;      /* uid or gid or directory FID */
1893 	__u32		qb_flags;   /* see below */
1894 	__u32		qb_padding;
1895 	__u64		qb_count;   /* acquire/release count (kbytes/inodes) */
1896 	__u64		qb_usage;   /* current slave usage (kbytes/inodes) */
1897 	__u64		qb_slv_ver; /* slave index file version */
1898 	struct lustre_handle	qb_lockh;     /* per-ID lock handle */
1899 	struct lustre_handle	qb_glb_lockh; /* global lock handle */
1900 	__u64		qb_padding1[4];
1901 };
1902 
1903 /* When the quota_body is used in the reply of quota global intent
1904  * lock (IT_QUOTA_CONN) reply, qb_fid contains slave index file FID. */
1905 #define qb_slv_fid	qb_fid
1906 /* qb_usage is the current qunit (in kbytes/inodes) when quota_body is used in
1907  * quota reply */
1908 #define qb_qunit	qb_usage
1909 
1910 #define QUOTA_DQACQ_FL_ACQ	0x1  /* acquire quota */
1911 #define QUOTA_DQACQ_FL_PREACQ	0x2  /* pre-acquire */
1912 #define QUOTA_DQACQ_FL_REL	0x4  /* release quota */
1913 #define QUOTA_DQACQ_FL_REPORT	0x8  /* report usage */
1914 
1915 extern void lustre_swab_quota_body(struct quota_body *b);
1916 
1917 /* Quota types currently supported */
1918 enum {
1919 	LQUOTA_TYPE_USR	= 0x00, /* maps to USRQUOTA */
1920 	LQUOTA_TYPE_GRP	= 0x01, /* maps to GRPQUOTA */
1921 	LQUOTA_TYPE_MAX
1922 };
1923 
1924 /* There are 2 different resource types on which a quota limit can be enforced:
1925  * - inodes on the MDTs
1926  * - blocks on the OSTs */
1927 enum {
1928 	LQUOTA_RES_MD		= 0x01, /* skip 0 to avoid null oid in FID */
1929 	LQUOTA_RES_DT		= 0x02,
1930 	LQUOTA_LAST_RES,
1931 	LQUOTA_FIRST_RES	= LQUOTA_RES_MD
1932 };
1933 #define LQUOTA_NR_RES (LQUOTA_LAST_RES - LQUOTA_FIRST_RES + 1)
1934 
1935 /*
1936  * Space accounting support
1937  * Format of an accounting record, providing disk usage information for a given
1938  * user or group
1939  */
1940 struct lquota_acct_rec { /* 16 bytes */
1941 	__u64 bspace;  /* current space in use */
1942 	__u64 ispace;  /* current # inodes in use */
1943 };
1944 
1945 /*
1946  * Global quota index support
1947  * Format of a global record, providing global quota settings for a given quota
1948  * identifier
1949  */
1950 struct lquota_glb_rec { /* 32 bytes */
1951 	__u64 qbr_hardlimit; /* quota hard limit, in #inodes or kbytes */
1952 	__u64 qbr_softlimit; /* quota soft limit, in #inodes or kbytes */
1953 	__u64 qbr_time;      /* grace time, in seconds */
1954 	__u64 qbr_granted;   /* how much is granted to slaves, in #inodes or
1955 			      * kbytes */
1956 };
1957 
1958 /*
1959  * Slave index support
1960  * Format of a slave record, recording how much space is granted to a given
1961  * slave
1962  */
1963 struct lquota_slv_rec { /* 8 bytes */
1964 	__u64 qsr_granted; /* space granted to the slave for the key=ID,
1965 			    * in #inodes or kbytes */
1966 };
1967 
1968 /* Data structures associated with the quota locks */
1969 
1970 /* Glimpse descriptor used for the index & per-ID quota locks */
1971 struct ldlm_gl_lquota_desc {
1972 	union lquota_id	gl_id;    /* quota ID subject to the glimpse */
1973 	__u64		gl_flags; /* see LQUOTA_FL* below */
1974 	__u64		gl_ver;   /* new index version */
1975 	__u64		gl_hardlimit; /* new hardlimit or qunit value */
1976 	__u64		gl_softlimit; /* new softlimit */
1977 	__u64		gl_time;
1978 	__u64		gl_pad2;
1979 };
1980 #define gl_qunit	gl_hardlimit /* current qunit value used when
1981 				      * glimpsing per-ID quota locks */
1982 
1983 /* quota glimpse flags */
1984 #define LQUOTA_FL_EDQUOT 0x1 /* user/group out of quota space on QMT */
1985 
1986 /* LVB used with quota (global and per-ID) locks */
1987 struct lquota_lvb {
1988 	__u64	lvb_flags;	/* see LQUOTA_FL* above */
1989 	__u64	lvb_id_may_rel; /* space that might be released later */
1990 	__u64	lvb_id_rel;     /* space released by the slave for this ID */
1991 	__u64	lvb_id_qunit;   /* current qunit value */
1992 	__u64	lvb_pad1;
1993 };
1994 
1995 extern void lustre_swab_lquota_lvb(struct lquota_lvb *lvb);
1996 
1997 /* LVB used with global quota lock */
1998 #define lvb_glb_ver  lvb_id_may_rel /* current version of the global index */
1999 
2000 /* op codes */
2001 typedef enum {
2002 	QUOTA_DQACQ	= 601,
2003 	QUOTA_DQREL	= 602,
2004 	QUOTA_LAST_OPC
2005 } quota_cmd_t;
2006 #define QUOTA_FIRST_OPC	QUOTA_DQACQ
2007 
2008 /*
2009  *   MDS REQ RECORDS
2010  */
2011 
2012 /* opcodes */
2013 typedef enum {
2014 	MDS_GETATTR		= 33,
2015 	MDS_GETATTR_NAME	= 34,
2016 	MDS_CLOSE		= 35,
2017 	MDS_REINT		= 36,
2018 	MDS_READPAGE		= 37,
2019 	MDS_CONNECT		= 38,
2020 	MDS_DISCONNECT		= 39,
2021 	MDS_GETSTATUS		= 40,
2022 	MDS_STATFS		= 41,
2023 	MDS_PIN			= 42,
2024 	MDS_UNPIN		= 43,
2025 	MDS_SYNC		= 44,
2026 	MDS_DONE_WRITING	= 45,
2027 	MDS_SET_INFO		= 46,
2028 	MDS_QUOTACHECK		= 47,
2029 	MDS_QUOTACTL		= 48,
2030 	MDS_GETXATTR		= 49,
2031 	MDS_SETXATTR		= 50, /* obsolete, now it's MDS_REINT op */
2032 	MDS_WRITEPAGE		= 51,
2033 	MDS_IS_SUBDIR		= 52,
2034 	MDS_GET_INFO		= 53,
2035 	MDS_HSM_STATE_GET	= 54,
2036 	MDS_HSM_STATE_SET	= 55,
2037 	MDS_HSM_ACTION		= 56,
2038 	MDS_HSM_PROGRESS	= 57,
2039 	MDS_HSM_REQUEST		= 58,
2040 	MDS_HSM_CT_REGISTER	= 59,
2041 	MDS_HSM_CT_UNREGISTER	= 60,
2042 	MDS_SWAP_LAYOUTS	= 61,
2043 	MDS_LAST_OPC
2044 } mds_cmd_t;
2045 
2046 #define MDS_FIRST_OPC    MDS_GETATTR
2047 
2048 
2049 /* opcodes for object update */
2050 typedef enum {
2051 	UPDATE_OBJ	= 1000,
2052 	UPDATE_LAST_OPC
2053 } update_cmd_t;
2054 
2055 #define UPDATE_FIRST_OPC    UPDATE_OBJ
2056 
2057 /*
2058  * Do not exceed 63
2059  */
2060 
2061 typedef enum {
2062 	REINT_SETATTR  = 1,
2063 	REINT_CREATE   = 2,
2064 	REINT_LINK     = 3,
2065 	REINT_UNLINK   = 4,
2066 	REINT_RENAME   = 5,
2067 	REINT_OPEN     = 6,
2068 	REINT_SETXATTR = 7,
2069 	REINT_RMENTRY  = 8,
2070 //      REINT_WRITE    = 9,
2071 	REINT_MAX
2072 } mds_reint_t, mdt_reint_t;
2073 
2074 extern void lustre_swab_generic_32s (__u32 *val);
2075 
2076 /* the disposition of the intent outlines what was executed */
2077 #define DISP_IT_EXECD	0x00000001
2078 #define DISP_LOOKUP_EXECD    0x00000002
2079 #define DISP_LOOKUP_NEG      0x00000004
2080 #define DISP_LOOKUP_POS      0x00000008
2081 #define DISP_OPEN_CREATE     0x00000010
2082 #define DISP_OPEN_OPEN       0x00000020
2083 #define DISP_ENQ_COMPLETE    0x00400000		/* obsolete and unused */
2084 #define DISP_ENQ_OPEN_REF    0x00800000
2085 #define DISP_ENQ_CREATE_REF  0x01000000
2086 #define DISP_OPEN_LOCK       0x02000000
2087 #define DISP_OPEN_LEASE      0x04000000
2088 #define DISP_OPEN_STRIPE     0x08000000
2089 
2090 /* INODE LOCK PARTS */
2091 #define MDS_INODELOCK_LOOKUP 0x000001	/* For namespace, dentry etc, and also
2092 					 * was used to protect permission (mode,
2093 					 * owner, group etc) before 2.4. */
2094 #define MDS_INODELOCK_UPDATE 0x000002	/* size, links, timestamps */
2095 #define MDS_INODELOCK_OPEN   0x000004	/* For opened files */
2096 #define MDS_INODELOCK_LAYOUT 0x000008	/* for layout */
2097 
2098 /* The PERM bit is added int 2.4, and it is used to protect permission(mode,
2099  * owner, group, acl etc), so to separate the permission from LOOKUP lock.
2100  * Because for remote directories(in DNE), these locks will be granted by
2101  * different MDTs(different ldlm namespace).
2102  *
2103  * For local directory, MDT will always grant UPDATE_LOCK|PERM_LOCK together.
2104  * For Remote directory, the master MDT, where the remote directory is, will
2105  * grant UPDATE_LOCK|PERM_LOCK, and the remote MDT, where the name entry is,
2106  * will grant LOOKUP_LOCK. */
2107 #define MDS_INODELOCK_PERM   0x000010
2108 #define MDS_INODELOCK_XATTR  0x000020	/* extended attributes */
2109 
2110 #define MDS_INODELOCK_MAXSHIFT 5
2111 /* This FULL lock is useful to take on unlink sort of operations */
2112 #define MDS_INODELOCK_FULL ((1<<(MDS_INODELOCK_MAXSHIFT+1))-1)
2113 
2114 extern void lustre_swab_ll_fid (struct ll_fid *fid);
2115 
2116 /* NOTE: until Lustre 1.8.7/2.1.1 the fid_ver() was packed into name[2],
2117  * but was moved into name[1] along with the OID to avoid consuming the
2118  * name[2,3] fields that need to be used for the quota id (also a FID). */
2119 enum {
2120 	LUSTRE_RES_ID_SEQ_OFF = 0,
2121 	LUSTRE_RES_ID_VER_OID_OFF = 1,
2122 	LUSTRE_RES_ID_WAS_VER_OFF = 2, /* see note above */
2123 	LUSTRE_RES_ID_QUOTA_SEQ_OFF = 2,
2124 	LUSTRE_RES_ID_QUOTA_VER_OID_OFF = 3,
2125 	LUSTRE_RES_ID_HSH_OFF = 3
2126 };
2127 
2128 #define MDS_STATUS_CONN 1
2129 #define MDS_STATUS_LOV 2
2130 
2131 /* mdt_thread_info.mti_flags. */
2132 enum md_op_flags {
2133 	/* The flag indicates Size-on-MDS attributes are changed. */
2134 	MF_SOM_CHANGE	   = (1 << 0),
2135 	/* Flags indicates an epoch opens or closes. */
2136 	MF_EPOCH_OPEN	   = (1 << 1),
2137 	MF_EPOCH_CLOSE	  = (1 << 2),
2138 	MF_MDC_CANCEL_FID1      = (1 << 3),
2139 	MF_MDC_CANCEL_FID2      = (1 << 4),
2140 	MF_MDC_CANCEL_FID3      = (1 << 5),
2141 	MF_MDC_CANCEL_FID4      = (1 << 6),
2142 	/* There is a pending attribute update. */
2143 	MF_SOM_AU	       = (1 << 7),
2144 	/* Cancel OST locks while getattr OST attributes. */
2145 	MF_GETATTR_LOCK	 = (1 << 8),
2146 	MF_GET_MDT_IDX	  = (1 << 9),
2147 };
2148 
2149 #define MF_SOM_LOCAL_FLAGS (MF_SOM_CHANGE | MF_EPOCH_OPEN | MF_EPOCH_CLOSE)
2150 
2151 #define LUSTRE_BFLAG_UNCOMMITTED_WRITES   0x1
2152 
2153 /* these should be identical to their EXT4_*_FL counterparts, they are
2154  * redefined here only to avoid dragging in fs/ext4/ext4.h */
2155 #define LUSTRE_SYNC_FL	 0x00000008 /* Synchronous updates */
2156 #define LUSTRE_IMMUTABLE_FL    0x00000010 /* Immutable file */
2157 #define LUSTRE_APPEND_FL       0x00000020 /* writes to file may only append */
2158 #define LUSTRE_NOATIME_FL      0x00000080 /* do not update atime */
2159 #define LUSTRE_DIRSYNC_FL      0x00010000 /* dirsync behaviour (dir only) */
2160 
2161 /* Convert wire LUSTRE_*_FL to corresponding client local VFS S_* values
2162  * for the client inode i_flags.  The LUSTRE_*_FL are the Lustre wire
2163  * protocol equivalents of LDISKFS_*_FL values stored on disk, while
2164  * the S_* flags are kernel-internal values that change between kernel
2165  * versions.  These flags are set/cleared via FSFILT_IOC_{GET,SET}_FLAGS.
2166  * See b=16526 for a full history. */
ll_ext_to_inode_flags(int flags)2167 static inline int ll_ext_to_inode_flags(int flags)
2168 {
2169 	return (((flags & LUSTRE_SYNC_FL)      ? S_SYNC      : 0) |
2170 		((flags & LUSTRE_NOATIME_FL)   ? S_NOATIME   : 0) |
2171 		((flags & LUSTRE_APPEND_FL)    ? S_APPEND    : 0) |
2172 #if defined(S_DIRSYNC)
2173 		((flags & LUSTRE_DIRSYNC_FL)   ? S_DIRSYNC   : 0) |
2174 #endif
2175 		((flags & LUSTRE_IMMUTABLE_FL) ? S_IMMUTABLE : 0));
2176 }
2177 
ll_inode_to_ext_flags(int iflags)2178 static inline int ll_inode_to_ext_flags(int iflags)
2179 {
2180 	return (((iflags & S_SYNC)      ? LUSTRE_SYNC_FL      : 0) |
2181 		((iflags & S_NOATIME)   ? LUSTRE_NOATIME_FL   : 0) |
2182 		((iflags & S_APPEND)    ? LUSTRE_APPEND_FL    : 0) |
2183 #if defined(S_DIRSYNC)
2184 		((iflags & S_DIRSYNC)   ? LUSTRE_DIRSYNC_FL   : 0) |
2185 #endif
2186 		((iflags & S_IMMUTABLE) ? LUSTRE_IMMUTABLE_FL : 0));
2187 }
2188 
2189 /* 64 possible states */
2190 enum md_transient_state {
2191 	MS_RESTORE	= (1 << 0),	/* restore is running */
2192 };
2193 
2194 struct mdt_body {
2195 	struct lu_fid  fid1;
2196 	struct lu_fid  fid2;
2197 	struct lustre_handle handle;
2198 	__u64	  valid;
2199 	__u64	  size;   /* Offset, in the case of MDS_READPAGE */
2200 	__s64	  mtime;
2201 	__s64	  atime;
2202 	__s64	  ctime;
2203 	__u64	  blocks; /* XID, in the case of MDS_READPAGE */
2204 	__u64	  ioepoch;
2205 	__u64	       t_state; /* transient file state defined in
2206 				 * enum md_transient_state
2207 				 * was "ino" until 2.4.0 */
2208 	__u32	  fsuid;
2209 	__u32	  fsgid;
2210 	__u32	  capability;
2211 	__u32	  mode;
2212 	__u32	  uid;
2213 	__u32	  gid;
2214 	__u32	  flags; /* from vfs for pin/unpin, LUSTRE_BFLAG close */
2215 	__u32	  rdev;
2216 	__u32	  nlink; /* #bytes to read in the case of MDS_READPAGE */
2217 	__u32	       unused2; /* was "generation" until 2.4.0 */
2218 	__u32	  suppgid;
2219 	__u32	  eadatasize;
2220 	__u32	  aclsize;
2221 	__u32	  max_mdsize;
2222 	__u32	  max_cookiesize;
2223 	__u32	  uid_h; /* high 32-bits of uid, for FUID */
2224 	__u32	  gid_h; /* high 32-bits of gid, for FUID */
2225 	__u32	  padding_5; /* also fix lustre_swab_mdt_body */
2226 	__u64	  padding_6;
2227 	__u64	  padding_7;
2228 	__u64	  padding_8;
2229 	__u64	  padding_9;
2230 	__u64	  padding_10;
2231 }; /* 216 */
2232 
2233 extern void lustre_swab_mdt_body (struct mdt_body *b);
2234 
2235 struct mdt_ioepoch {
2236 	struct lustre_handle handle;
2237 	__u64  ioepoch;
2238 	__u32  flags;
2239 	__u32  padding;
2240 };
2241 
2242 extern void lustre_swab_mdt_ioepoch (struct mdt_ioepoch *b);
2243 
2244 /* permissions for md_perm.mp_perm */
2245 enum {
2246 	CFS_SETUID_PERM = 0x01,
2247 	CFS_SETGID_PERM = 0x02,
2248 	CFS_SETGRP_PERM = 0x04,
2249 	CFS_RMTACL_PERM = 0x08,
2250 	CFS_RMTOWN_PERM = 0x10
2251 };
2252 
2253 /* inode access permission for remote user, the inode info are omitted,
2254  * for client knows them. */
2255 struct mdt_remote_perm {
2256 	__u32	   rp_uid;
2257 	__u32	   rp_gid;
2258 	__u32	   rp_fsuid;
2259 	__u32	   rp_fsuid_h;
2260 	__u32	   rp_fsgid;
2261 	__u32	   rp_fsgid_h;
2262 	__u32	   rp_access_perm; /* MAY_READ/WRITE/EXEC */
2263 	__u32	   rp_padding;
2264 };
2265 
2266 extern void lustre_swab_mdt_remote_perm(struct mdt_remote_perm *p);
2267 
2268 struct mdt_rec_setattr {
2269 	__u32	   sa_opcode;
2270 	__u32	   sa_cap;
2271 	__u32	   sa_fsuid;
2272 	__u32	   sa_fsuid_h;
2273 	__u32	   sa_fsgid;
2274 	__u32	   sa_fsgid_h;
2275 	__u32	   sa_suppgid;
2276 	__u32	   sa_suppgid_h;
2277 	__u32	   sa_padding_1;
2278 	__u32	   sa_padding_1_h;
2279 	struct lu_fid   sa_fid;
2280 	__u64	   sa_valid;
2281 	__u32	   sa_uid;
2282 	__u32	   sa_gid;
2283 	__u64	   sa_size;
2284 	__u64	   sa_blocks;
2285 	__s64	   sa_mtime;
2286 	__s64	   sa_atime;
2287 	__s64	   sa_ctime;
2288 	__u32	   sa_attr_flags;
2289 	__u32	   sa_mode;
2290 	__u32	   sa_bias;      /* some operation flags */
2291 	__u32	   sa_padding_3;
2292 	__u32	   sa_padding_4;
2293 	__u32	   sa_padding_5;
2294 };
2295 
2296 extern void lustre_swab_mdt_rec_setattr (struct mdt_rec_setattr *sa);
2297 
2298 /*
2299  * Attribute flags used in mdt_rec_setattr::sa_valid.
2300  * The kernel's #defines for ATTR_* should not be used over the network
2301  * since the client and MDS may run different kernels (see bug 13828)
2302  * Therefore, we should only use MDS_ATTR_* attributes for sa_valid.
2303  */
2304 #define MDS_ATTR_MODE	  0x1ULL /* = 1 */
2305 #define MDS_ATTR_UID	   0x2ULL /* = 2 */
2306 #define MDS_ATTR_GID	   0x4ULL /* = 4 */
2307 #define MDS_ATTR_SIZE	  0x8ULL /* = 8 */
2308 #define MDS_ATTR_ATIME	0x10ULL /* = 16 */
2309 #define MDS_ATTR_MTIME	0x20ULL /* = 32 */
2310 #define MDS_ATTR_CTIME	0x40ULL /* = 64 */
2311 #define MDS_ATTR_ATIME_SET    0x80ULL /* = 128 */
2312 #define MDS_ATTR_MTIME_SET   0x100ULL /* = 256 */
2313 #define MDS_ATTR_FORCE       0x200ULL /* = 512, Not a change, but a change it */
2314 #define MDS_ATTR_ATTR_FLAG   0x400ULL /* = 1024 */
2315 #define MDS_ATTR_KILL_SUID   0x800ULL /* = 2048 */
2316 #define MDS_ATTR_KILL_SGID  0x1000ULL /* = 4096 */
2317 #define MDS_ATTR_CTIME_SET  0x2000ULL /* = 8192 */
2318 #define MDS_ATTR_FROM_OPEN  0x4000ULL /* = 16384, called from open path, ie O_TRUNC */
2319 #define MDS_ATTR_BLOCKS     0x8000ULL /* = 32768 */
2320 
2321 #ifndef FMODE_READ
2322 #define FMODE_READ	       00000001
2323 #define FMODE_WRITE	      00000002
2324 #endif
2325 
2326 #define MDS_FMODE_CLOSED	 00000000
2327 #define MDS_FMODE_EXEC	   00000004
2328 /* IO Epoch is opened on a closed file. */
2329 #define MDS_FMODE_EPOCH	  01000000
2330 /* IO Epoch is opened on a file truncate. */
2331 #define MDS_FMODE_TRUNC	  02000000
2332 /* Size-on-MDS Attribute Update is pending. */
2333 #define MDS_FMODE_SOM	    04000000
2334 
2335 #define MDS_OPEN_CREATED	 00000010
2336 #define MDS_OPEN_CROSS	   00000020
2337 
2338 #define MDS_OPEN_CREAT	   00000100
2339 #define MDS_OPEN_EXCL	    00000200
2340 #define MDS_OPEN_TRUNC	   00001000
2341 #define MDS_OPEN_APPEND	  00002000
2342 #define MDS_OPEN_SYNC	    00010000
2343 #define MDS_OPEN_DIRECTORY       00200000
2344 
2345 #define MDS_OPEN_BY_FID		040000000 /* open_by_fid for known object */
2346 #define MDS_OPEN_DELAY_CREATE  0100000000 /* delay initial object create */
2347 #define MDS_OPEN_OWNEROVERRIDE 0200000000 /* NFSD rw-reopen ro file for owner */
2348 #define MDS_OPEN_JOIN_FILE     0400000000 /* open for join file.
2349 					   * We do not support JOIN FILE
2350 					   * anymore, reserve this flags
2351 					   * just for preventing such bit
2352 					   * to be reused. */
2353 
2354 #define MDS_OPEN_LOCK	 04000000000 /* This open requires open lock */
2355 #define MDS_OPEN_HAS_EA      010000000000 /* specify object create pattern */
2356 #define MDS_OPEN_HAS_OBJS    020000000000 /* Just set the EA the obj exist */
2357 #define MDS_OPEN_NORESTORE  0100000000000ULL /* Do not restore file at open */
2358 #define MDS_OPEN_NEWSTRIPE  0200000000000ULL /* New stripe needed (restripe or
2359 					      * hsm restore) */
2360 #define MDS_OPEN_VOLATILE   0400000000000ULL /* File is volatile = created
2361 						unlinked */
2362 #define MDS_OPEN_LEASE	   01000000000000ULL /* Open the file and grant lease
2363 					      * delegation, succeed if it's not
2364 					      * being opened with conflict mode.
2365 					      */
2366 #define MDS_OPEN_RELEASE   02000000000000ULL /* Open the file for HSM release */
2367 
2368 /* permission for create non-directory file */
2369 #define MAY_CREATE      (1 << 7)
2370 /* permission for create directory file */
2371 #define MAY_LINK	(1 << 8)
2372 /* permission for delete from the directory */
2373 #define MAY_UNLINK      (1 << 9)
2374 /* source's permission for rename */
2375 #define MAY_RENAME_SRC  (1 << 10)
2376 /* target's permission for rename */
2377 #define MAY_RENAME_TAR  (1 << 11)
2378 /* part (parent's) VTX permission check */
2379 #define MAY_VTX_PART    (1 << 12)
2380 /* full VTX permission check */
2381 #define MAY_VTX_FULL    (1 << 13)
2382 /* lfs rgetfacl permission check */
2383 #define MAY_RGETFACL    (1 << 14)
2384 
2385 enum mds_op_bias {
2386 	MDS_CHECK_SPLIT		= 1 << 0,
2387 	MDS_CROSS_REF		= 1 << 1,
2388 	MDS_VTX_BYPASS		= 1 << 2,
2389 	MDS_PERM_BYPASS		= 1 << 3,
2390 	MDS_SOM			= 1 << 4,
2391 	MDS_QUOTA_IGNORE	= 1 << 5,
2392 	MDS_CLOSE_CLEANUP	= 1 << 6,
2393 	MDS_KEEP_ORPHAN		= 1 << 7,
2394 	MDS_RECOV_OPEN		= 1 << 8,
2395 	MDS_DATA_MODIFIED	= 1 << 9,
2396 	MDS_CREATE_VOLATILE	= 1 << 10,
2397 	MDS_OWNEROVERRIDE	= 1 << 11,
2398 	MDS_HSM_RELEASE		= 1 << 12,
2399 };
2400 
2401 /* instance of mdt_reint_rec */
2402 struct mdt_rec_create {
2403 	__u32	   cr_opcode;
2404 	__u32	   cr_cap;
2405 	__u32	   cr_fsuid;
2406 	__u32	   cr_fsuid_h;
2407 	__u32	   cr_fsgid;
2408 	__u32	   cr_fsgid_h;
2409 	__u32	   cr_suppgid1;
2410 	__u32	   cr_suppgid1_h;
2411 	__u32	   cr_suppgid2;
2412 	__u32	   cr_suppgid2_h;
2413 	struct lu_fid   cr_fid1;
2414 	struct lu_fid   cr_fid2;
2415 	struct lustre_handle cr_old_handle; /* handle in case of open replay */
2416 	__s64	   cr_time;
2417 	__u64	   cr_rdev;
2418 	__u64	   cr_ioepoch;
2419 	__u64	   cr_padding_1;   /* rr_blocks */
2420 	__u32	   cr_mode;
2421 	__u32	   cr_bias;
2422 	/* use of helpers set/get_mrc_cr_flags() is needed to access
2423 	 * 64 bits cr_flags [cr_flags_l, cr_flags_h], this is done to
2424 	 * extend cr_flags size without breaking 1.8 compat */
2425 	__u32	   cr_flags_l;     /* for use with open, low  32 bits  */
2426 	__u32	   cr_flags_h;     /* for use with open, high 32 bits */
2427 	__u32	   cr_umask;       /* umask for create */
2428 	__u32	   cr_padding_4;   /* rr_padding_4 */
2429 };
2430 
set_mrc_cr_flags(struct mdt_rec_create * mrc,__u64 flags)2431 static inline void set_mrc_cr_flags(struct mdt_rec_create *mrc, __u64 flags)
2432 {
2433 	mrc->cr_flags_l = (__u32)(flags & 0xFFFFFFFFUll);
2434 	mrc->cr_flags_h = (__u32)(flags >> 32);
2435 }
2436 
get_mrc_cr_flags(struct mdt_rec_create * mrc)2437 static inline __u64 get_mrc_cr_flags(struct mdt_rec_create *mrc)
2438 {
2439 	return ((__u64)(mrc->cr_flags_l) | ((__u64)mrc->cr_flags_h << 32));
2440 }
2441 
2442 /* instance of mdt_reint_rec */
2443 struct mdt_rec_link {
2444 	__u32	   lk_opcode;
2445 	__u32	   lk_cap;
2446 	__u32	   lk_fsuid;
2447 	__u32	   lk_fsuid_h;
2448 	__u32	   lk_fsgid;
2449 	__u32	   lk_fsgid_h;
2450 	__u32	   lk_suppgid1;
2451 	__u32	   lk_suppgid1_h;
2452 	__u32	   lk_suppgid2;
2453 	__u32	   lk_suppgid2_h;
2454 	struct lu_fid   lk_fid1;
2455 	struct lu_fid   lk_fid2;
2456 	__s64	   lk_time;
2457 	__u64	   lk_padding_1;   /* rr_atime */
2458 	__u64	   lk_padding_2;   /* rr_ctime */
2459 	__u64	   lk_padding_3;   /* rr_size */
2460 	__u64	   lk_padding_4;   /* rr_blocks */
2461 	__u32	   lk_bias;
2462 	__u32	   lk_padding_5;   /* rr_mode */
2463 	__u32	   lk_padding_6;   /* rr_flags */
2464 	__u32	   lk_padding_7;   /* rr_padding_2 */
2465 	__u32	   lk_padding_8;   /* rr_padding_3 */
2466 	__u32	   lk_padding_9;   /* rr_padding_4 */
2467 };
2468 
2469 /* instance of mdt_reint_rec */
2470 struct mdt_rec_unlink {
2471 	__u32	   ul_opcode;
2472 	__u32	   ul_cap;
2473 	__u32	   ul_fsuid;
2474 	__u32	   ul_fsuid_h;
2475 	__u32	   ul_fsgid;
2476 	__u32	   ul_fsgid_h;
2477 	__u32	   ul_suppgid1;
2478 	__u32	   ul_suppgid1_h;
2479 	__u32	   ul_suppgid2;
2480 	__u32	   ul_suppgid2_h;
2481 	struct lu_fid   ul_fid1;
2482 	struct lu_fid   ul_fid2;
2483 	__s64	   ul_time;
2484 	__u64	   ul_padding_2;   /* rr_atime */
2485 	__u64	   ul_padding_3;   /* rr_ctime */
2486 	__u64	   ul_padding_4;   /* rr_size */
2487 	__u64	   ul_padding_5;   /* rr_blocks */
2488 	__u32	   ul_bias;
2489 	__u32	   ul_mode;
2490 	__u32	   ul_padding_6;   /* rr_flags */
2491 	__u32	   ul_padding_7;   /* rr_padding_2 */
2492 	__u32	   ul_padding_8;   /* rr_padding_3 */
2493 	__u32	   ul_padding_9;   /* rr_padding_4 */
2494 };
2495 
2496 /* instance of mdt_reint_rec */
2497 struct mdt_rec_rename {
2498 	__u32	   rn_opcode;
2499 	__u32	   rn_cap;
2500 	__u32	   rn_fsuid;
2501 	__u32	   rn_fsuid_h;
2502 	__u32	   rn_fsgid;
2503 	__u32	   rn_fsgid_h;
2504 	__u32	   rn_suppgid1;
2505 	__u32	   rn_suppgid1_h;
2506 	__u32	   rn_suppgid2;
2507 	__u32	   rn_suppgid2_h;
2508 	struct lu_fid   rn_fid1;
2509 	struct lu_fid   rn_fid2;
2510 	__s64	   rn_time;
2511 	__u64	   rn_padding_1;   /* rr_atime */
2512 	__u64	   rn_padding_2;   /* rr_ctime */
2513 	__u64	   rn_padding_3;   /* rr_size */
2514 	__u64	   rn_padding_4;   /* rr_blocks */
2515 	__u32	   rn_bias;	/* some operation flags */
2516 	__u32	   rn_mode;	/* cross-ref rename has mode */
2517 	__u32	   rn_padding_5;   /* rr_flags */
2518 	__u32	   rn_padding_6;   /* rr_padding_2 */
2519 	__u32	   rn_padding_7;   /* rr_padding_3 */
2520 	__u32	   rn_padding_8;   /* rr_padding_4 */
2521 };
2522 
2523 /* instance of mdt_reint_rec */
2524 struct mdt_rec_setxattr {
2525 	__u32	   sx_opcode;
2526 	__u32	   sx_cap;
2527 	__u32	   sx_fsuid;
2528 	__u32	   sx_fsuid_h;
2529 	__u32	   sx_fsgid;
2530 	__u32	   sx_fsgid_h;
2531 	__u32	   sx_suppgid1;
2532 	__u32	   sx_suppgid1_h;
2533 	__u32	   sx_suppgid2;
2534 	__u32	   sx_suppgid2_h;
2535 	struct lu_fid   sx_fid;
2536 	__u64	   sx_padding_1;   /* These three are rr_fid2 */
2537 	__u32	   sx_padding_2;
2538 	__u32	   sx_padding_3;
2539 	__u64	   sx_valid;
2540 	__s64	   sx_time;
2541 	__u64	   sx_padding_5;   /* rr_ctime */
2542 	__u64	   sx_padding_6;   /* rr_size */
2543 	__u64	   sx_padding_7;   /* rr_blocks */
2544 	__u32	   sx_size;
2545 	__u32	   sx_flags;
2546 	__u32	   sx_padding_8;   /* rr_flags */
2547 	__u32	   sx_padding_9;   /* rr_padding_2 */
2548 	__u32	   sx_padding_10;  /* rr_padding_3 */
2549 	__u32	   sx_padding_11;  /* rr_padding_4 */
2550 };
2551 
2552 /*
2553  * mdt_rec_reint is the template for all mdt_reint_xxx structures.
2554  * Do NOT change the size of various members, otherwise the value
2555  * will be broken in lustre_swab_mdt_rec_reint().
2556  *
2557  * If you add new members in other mdt_reint_xxx structures and need to use the
2558  * rr_padding_x fields, then update lustre_swab_mdt_rec_reint() also.
2559  */
2560 struct mdt_rec_reint {
2561 	__u32	   rr_opcode;
2562 	__u32	   rr_cap;
2563 	__u32	   rr_fsuid;
2564 	__u32	   rr_fsuid_h;
2565 	__u32	   rr_fsgid;
2566 	__u32	   rr_fsgid_h;
2567 	__u32	   rr_suppgid1;
2568 	__u32	   rr_suppgid1_h;
2569 	__u32	   rr_suppgid2;
2570 	__u32	   rr_suppgid2_h;
2571 	struct lu_fid   rr_fid1;
2572 	struct lu_fid   rr_fid2;
2573 	__s64	   rr_mtime;
2574 	__s64	   rr_atime;
2575 	__s64	   rr_ctime;
2576 	__u64	   rr_size;
2577 	__u64	   rr_blocks;
2578 	__u32	   rr_bias;
2579 	__u32	   rr_mode;
2580 	__u32	   rr_flags;
2581 	__u32	   rr_flags_h;
2582 	__u32	   rr_umask;
2583 	__u32	   rr_padding_4; /* also fix lustre_swab_mdt_rec_reint */
2584 };
2585 
2586 extern void lustre_swab_mdt_rec_reint(struct mdt_rec_reint *rr);
2587 
2588 struct lmv_desc {
2589 	__u32 ld_tgt_count;		/* how many MDS's */
2590 	__u32 ld_active_tgt_count;	 /* how many active */
2591 	__u32 ld_default_stripe_count;     /* how many objects are used */
2592 	__u32 ld_pattern;		  /* default MEA_MAGIC_* */
2593 	__u64 ld_default_hash_size;
2594 	__u64 ld_padding_1;		/* also fix lustre_swab_lmv_desc */
2595 	__u32 ld_padding_2;		/* also fix lustre_swab_lmv_desc */
2596 	__u32 ld_qos_maxage;	       /* in second */
2597 	__u32 ld_padding_3;		/* also fix lustre_swab_lmv_desc */
2598 	__u32 ld_padding_4;		/* also fix lustre_swab_lmv_desc */
2599 	struct obd_uuid ld_uuid;
2600 };
2601 
2602 extern void lustre_swab_lmv_desc (struct lmv_desc *ld);
2603 
2604 /* TODO: lmv_stripe_md should contain mds capabilities for all slave fids */
2605 struct lmv_stripe_md {
2606 	__u32	 mea_magic;
2607 	__u32	 mea_count;
2608 	__u32	 mea_master;
2609 	__u32	 mea_padding;
2610 	char	  mea_pool_name[LOV_MAXPOOLNAME];
2611 	struct lu_fid mea_ids[0];
2612 };
2613 
2614 extern void lustre_swab_lmv_stripe_md(struct lmv_stripe_md *mea);
2615 
2616 /* lmv structures */
2617 #define MEA_MAGIC_LAST_CHAR      0xb2221ca1
2618 #define MEA_MAGIC_ALL_CHARS      0xb222a11c
2619 #define MEA_MAGIC_HASH_SEGMENT   0xb222a11b
2620 
2621 #define MAX_HASH_SIZE_32	 0x7fffffffUL
2622 #define MAX_HASH_SIZE	    0x7fffffffffffffffULL
2623 #define MAX_HASH_HIGHEST_BIT     0x1000000000000000ULL
2624 
2625 enum fld_rpc_opc {
2626 	FLD_QUERY		       = 900,
2627 	FLD_LAST_OPC,
2628 	FLD_FIRST_OPC		   = FLD_QUERY
2629 };
2630 
2631 enum seq_rpc_opc {
2632 	SEQ_QUERY		       = 700,
2633 	SEQ_LAST_OPC,
2634 	SEQ_FIRST_OPC		   = SEQ_QUERY
2635 };
2636 
2637 enum seq_op {
2638 	SEQ_ALLOC_SUPER = 0,
2639 	SEQ_ALLOC_META = 1
2640 };
2641 
2642 /*
2643  *  LOV data structures
2644  */
2645 
2646 #define LOV_MAX_UUID_BUFFER_SIZE  8192
2647 /* The size of the buffer the lov/mdc reserves for the
2648  * array of UUIDs returned by the MDS.  With the current
2649  * protocol, this will limit the max number of OSTs per LOV */
2650 
2651 #define LOV_DESC_MAGIC 0xB0CCDE5C
2652 #define LOV_DESC_QOS_MAXAGE_DEFAULT 5  /* Seconds */
2653 #define LOV_DESC_STRIPE_SIZE_DEFAULT (1 << LNET_MTU_BITS)
2654 
2655 /* LOV settings descriptor (should only contain static info) */
2656 struct lov_desc {
2657 	__u32 ld_tgt_count;		/* how many OBD's */
2658 	__u32 ld_active_tgt_count;	 /* how many active */
2659 	__u32 ld_default_stripe_count;     /* how many objects are used */
2660 	__u32 ld_pattern;		  /* default PATTERN_RAID0 */
2661 	__u64 ld_default_stripe_size;      /* in bytes */
2662 	__u64 ld_default_stripe_offset;    /* in bytes */
2663 	__u32 ld_padding_0;		/* unused */
2664 	__u32 ld_qos_maxage;	       /* in second */
2665 	__u32 ld_padding_1;		/* also fix lustre_swab_lov_desc */
2666 	__u32 ld_padding_2;		/* also fix lustre_swab_lov_desc */
2667 	struct obd_uuid ld_uuid;
2668 };
2669 
2670 #define ld_magic ld_active_tgt_count       /* for swabbing from llogs */
2671 
2672 extern void lustre_swab_lov_desc (struct lov_desc *ld);
2673 
2674 /*
2675  *   LDLM requests:
2676  */
2677 /* opcodes -- MUST be distinct from OST/MDS opcodes */
2678 typedef enum {
2679 	LDLM_ENQUEUE     = 101,
2680 	LDLM_CONVERT     = 102,
2681 	LDLM_CANCEL      = 103,
2682 	LDLM_BL_CALLBACK = 104,
2683 	LDLM_CP_CALLBACK = 105,
2684 	LDLM_GL_CALLBACK = 106,
2685 	LDLM_SET_INFO    = 107,
2686 	LDLM_LAST_OPC
2687 } ldlm_cmd_t;
2688 #define LDLM_FIRST_OPC LDLM_ENQUEUE
2689 
2690 #define RES_NAME_SIZE 4
2691 struct ldlm_res_id {
2692 	__u64 name[RES_NAME_SIZE];
2693 };
2694 
2695 #define DLDLMRES	"[%#llx:%#llx:%#llx].%llx"
2696 #define PLDLMRES(res)	(res)->lr_name.name[0], (res)->lr_name.name[1], \
2697 			(res)->lr_name.name[2], (res)->lr_name.name[3]
2698 
2699 extern void lustre_swab_ldlm_res_id (struct ldlm_res_id *id);
2700 
ldlm_res_eq(const struct ldlm_res_id * res0,const struct ldlm_res_id * res1)2701 static inline int ldlm_res_eq(const struct ldlm_res_id *res0,
2702 			      const struct ldlm_res_id *res1)
2703 {
2704 	return !memcmp(res0, res1, sizeof(*res0));
2705 }
2706 
2707 /* lock types */
2708 typedef enum {
2709 	LCK_MINMODE = 0,
2710 	LCK_EX      = 1,
2711 	LCK_PW      = 2,
2712 	LCK_PR      = 4,
2713 	LCK_CW      = 8,
2714 	LCK_CR      = 16,
2715 	LCK_NL      = 32,
2716 	LCK_GROUP   = 64,
2717 	LCK_COS     = 128,
2718 	LCK_MAXMODE
2719 } ldlm_mode_t;
2720 
2721 #define LCK_MODE_NUM    8
2722 
2723 typedef enum {
2724 	LDLM_PLAIN     = 10,
2725 	LDLM_EXTENT    = 11,
2726 	LDLM_FLOCK     = 12,
2727 	LDLM_IBITS     = 13,
2728 	LDLM_MAX_TYPE
2729 } ldlm_type_t;
2730 
2731 #define LDLM_MIN_TYPE LDLM_PLAIN
2732 
2733 struct ldlm_extent {
2734 	__u64 start;
2735 	__u64 end;
2736 	__u64 gid;
2737 };
2738 
ldlm_extent_overlap(struct ldlm_extent * ex1,struct ldlm_extent * ex2)2739 static inline int ldlm_extent_overlap(struct ldlm_extent *ex1,
2740 				      struct ldlm_extent *ex2)
2741 {
2742 	return (ex1->start <= ex2->end) && (ex2->start <= ex1->end);
2743 }
2744 
2745 /* check if @ex1 contains @ex2 */
ldlm_extent_contain(struct ldlm_extent * ex1,struct ldlm_extent * ex2)2746 static inline int ldlm_extent_contain(struct ldlm_extent *ex1,
2747 				      struct ldlm_extent *ex2)
2748 {
2749 	return (ex1->start <= ex2->start) && (ex1->end >= ex2->end);
2750 }
2751 
2752 struct ldlm_inodebits {
2753 	__u64 bits;
2754 };
2755 
2756 struct ldlm_flock_wire {
2757 	__u64 lfw_start;
2758 	__u64 lfw_end;
2759 	__u64 lfw_owner;
2760 	__u32 lfw_padding;
2761 	__u32 lfw_pid;
2762 };
2763 
2764 /* it's important that the fields of the ldlm_extent structure match
2765  * the first fields of the ldlm_flock structure because there is only
2766  * one ldlm_swab routine to process the ldlm_policy_data_t union. if
2767  * this ever changes we will need to swab the union differently based
2768  * on the resource type. */
2769 
2770 typedef union {
2771 	struct ldlm_extent l_extent;
2772 	struct ldlm_flock_wire l_flock;
2773 	struct ldlm_inodebits l_inodebits;
2774 } ldlm_wire_policy_data_t;
2775 
2776 extern void lustre_swab_ldlm_policy_data (ldlm_wire_policy_data_t *d);
2777 
2778 union ldlm_gl_desc {
2779 	struct ldlm_gl_lquota_desc	lquota_desc;
2780 };
2781 
2782 extern void lustre_swab_gl_desc(union ldlm_gl_desc *);
2783 
2784 struct ldlm_intent {
2785 	__u64 opc;
2786 };
2787 
2788 extern void lustre_swab_ldlm_intent (struct ldlm_intent *i);
2789 
2790 struct ldlm_resource_desc {
2791 	ldlm_type_t lr_type;
2792 	__u32 lr_padding;       /* also fix lustre_swab_ldlm_resource_desc */
2793 	struct ldlm_res_id lr_name;
2794 };
2795 
2796 extern void lustre_swab_ldlm_resource_desc (struct ldlm_resource_desc *r);
2797 
2798 struct ldlm_lock_desc {
2799 	struct ldlm_resource_desc l_resource;
2800 	ldlm_mode_t l_req_mode;
2801 	ldlm_mode_t l_granted_mode;
2802 	ldlm_wire_policy_data_t l_policy_data;
2803 };
2804 
2805 extern void lustre_swab_ldlm_lock_desc (struct ldlm_lock_desc *l);
2806 
2807 #define LDLM_LOCKREQ_HANDLES 2
2808 #define LDLM_ENQUEUE_CANCEL_OFF 1
2809 
2810 struct ldlm_request {
2811 	__u32 lock_flags;
2812 	__u32 lock_count;
2813 	struct ldlm_lock_desc lock_desc;
2814 	struct lustre_handle lock_handle[LDLM_LOCKREQ_HANDLES];
2815 };
2816 
2817 extern void lustre_swab_ldlm_request (struct ldlm_request *rq);
2818 
2819 /* If LDLM_ENQUEUE, 1 slot is already occupied, 1 is available.
2820  * Otherwise, 2 are available. */
2821 #define ldlm_request_bufsize(count, type)				\
2822 ({								      \
2823 	int _avail = LDLM_LOCKREQ_HANDLES;			      \
2824 	_avail -= (type == LDLM_ENQUEUE ? LDLM_ENQUEUE_CANCEL_OFF : 0); \
2825 	sizeof(struct ldlm_request) +				   \
2826 	(count > _avail ? count - _avail : 0) *			 \
2827 	sizeof(struct lustre_handle);				   \
2828 })
2829 
2830 struct ldlm_reply {
2831 	__u32 lock_flags;
2832 	__u32 lock_padding;     /* also fix lustre_swab_ldlm_reply */
2833 	struct ldlm_lock_desc lock_desc;
2834 	struct lustre_handle lock_handle;
2835 	__u64  lock_policy_res1;
2836 	__u64  lock_policy_res2;
2837 };
2838 
2839 extern void lustre_swab_ldlm_reply (struct ldlm_reply *r);
2840 
2841 #define ldlm_flags_to_wire(flags)    ((__u32)(flags))
2842 #define ldlm_flags_from_wire(flags)  ((__u64)(flags))
2843 
2844 /*
2845  * Opcodes for mountconf (mgs and mgc)
2846  */
2847 typedef enum {
2848 	MGS_CONNECT = 250,
2849 	MGS_DISCONNECT,
2850 	MGS_EXCEPTION,	 /* node died, etc. */
2851 	MGS_TARGET_REG,	/* whenever target starts up */
2852 	MGS_TARGET_DEL,
2853 	MGS_SET_INFO,
2854 	MGS_CONFIG_READ,
2855 	MGS_LAST_OPC
2856 } mgs_cmd_t;
2857 #define MGS_FIRST_OPC MGS_CONNECT
2858 
2859 #define MGS_PARAM_MAXLEN 1024
2860 #define KEY_SET_INFO "set_info"
2861 
2862 struct mgs_send_param {
2863 	char	     mgs_param[MGS_PARAM_MAXLEN];
2864 };
2865 
2866 /* We pass this info to the MGS so it can write config logs */
2867 #define MTI_NAME_MAXLEN  64
2868 #define MTI_PARAM_MAXLEN 4096
2869 #define MTI_NIDS_MAX     32
2870 struct mgs_target_info {
2871 	__u32	    mti_lustre_ver;
2872 	__u32	    mti_stripe_index;
2873 	__u32	    mti_config_ver;
2874 	__u32	    mti_flags;
2875 	__u32	    mti_nid_count;
2876 	__u32	    mti_instance; /* Running instance of target */
2877 	char	     mti_fsname[MTI_NAME_MAXLEN];
2878 	char	     mti_svname[MTI_NAME_MAXLEN];
2879 	char	     mti_uuid[sizeof(struct obd_uuid)];
2880 	__u64	    mti_nids[MTI_NIDS_MAX];     /* host nids (lnet_nid_t)*/
2881 	char	     mti_params[MTI_PARAM_MAXLEN];
2882 };
2883 extern void lustre_swab_mgs_target_info(struct mgs_target_info *oinfo);
2884 
2885 struct mgs_nidtbl_entry {
2886 	__u64	   mne_version;    /* table version of this entry */
2887 	__u32	   mne_instance;   /* target instance # */
2888 	__u32	   mne_index;      /* target index */
2889 	__u32	   mne_length;     /* length of this entry - by bytes */
2890 	__u8	    mne_type;       /* target type LDD_F_SV_TYPE_OST/MDT */
2891 	__u8	    mne_nid_type;   /* type of nid(mbz). for ipv6. */
2892 	__u8	    mne_nid_size;   /* size of each NID, by bytes */
2893 	__u8	    mne_nid_count;  /* # of NIDs in buffer */
2894 	union {
2895 		lnet_nid_t nids[0];     /* variable size buffer for NIDs. */
2896 	} u;
2897 };
2898 extern void lustre_swab_mgs_nidtbl_entry(struct mgs_nidtbl_entry *oinfo);
2899 
2900 struct mgs_config_body {
2901 	char     mcb_name[MTI_NAME_MAXLEN]; /* logname */
2902 	__u64    mcb_offset;    /* next index of config log to request */
2903 	__u16    mcb_type;      /* type of log: CONFIG_T_[CONFIG|RECOVER] */
2904 	__u8     mcb_reserved;
2905 	__u8     mcb_bits;      /* bits unit size of config log */
2906 	__u32    mcb_units;     /* # of units for bulk transfer */
2907 };
2908 extern void lustre_swab_mgs_config_body(struct mgs_config_body *body);
2909 
2910 struct mgs_config_res {
2911 	__u64    mcr_offset;    /* index of last config log */
2912 	__u64    mcr_size;      /* size of the log */
2913 };
2914 extern void lustre_swab_mgs_config_res(struct mgs_config_res *body);
2915 
2916 /* Config marker flags (in config log) */
2917 #define CM_START       0x01
2918 #define CM_END	 0x02
2919 #define CM_SKIP	0x04
2920 #define CM_UPGRADE146  0x08
2921 #define CM_EXCLUDE     0x10
2922 #define CM_START_SKIP (CM_START | CM_SKIP)
2923 
2924 struct cfg_marker {
2925 	__u32	     cm_step;       /* aka config version */
2926 	__u32	     cm_flags;
2927 	__u32	     cm_vers;       /* lustre release version number */
2928 	__u32	     cm_padding;    /* 64 bit align */
2929 	__s64	     cm_createtime; /*when this record was first created */
2930 	__s64	     cm_canceltime; /*when this record is no longer valid*/
2931 	char	      cm_tgtname[MTI_NAME_MAXLEN];
2932 	char	      cm_comment[MTI_NAME_MAXLEN];
2933 };
2934 
2935 extern void lustre_swab_cfg_marker(struct cfg_marker *marker,
2936 				   int swab, int size);
2937 
2938 /*
2939  * Opcodes for multiple servers.
2940  */
2941 
2942 typedef enum {
2943 	OBD_PING = 400,
2944 	OBD_LOG_CANCEL,
2945 	OBD_QC_CALLBACK,
2946 	OBD_IDX_READ,
2947 	OBD_LAST_OPC
2948 } obd_cmd_t;
2949 #define OBD_FIRST_OPC OBD_PING
2950 
2951 /* catalog of log objects */
2952 
2953 /** Identifier for a single log object */
2954 struct llog_logid {
2955 	struct ost_id		lgl_oi;
2956 	__u32		   lgl_ogen;
2957 } __attribute__((packed));
2958 
2959 /** Records written to the CATALOGS list */
2960 #define CATLIST "CATALOGS"
2961 struct llog_catid {
2962 	struct llog_logid       lci_logid;
2963 	__u32		   lci_padding1;
2964 	__u32		   lci_padding2;
2965 	__u32		   lci_padding3;
2966 } __attribute__((packed));
2967 
2968 /* Log data record types - there is no specific reason that these need to
2969  * be related to the RPC opcodes, but no reason not to (may be handy later?)
2970  */
2971 #define LLOG_OP_MAGIC 0x10600000
2972 #define LLOG_OP_MASK  0xfff00000
2973 
2974 typedef enum {
2975 	LLOG_PAD_MAGIC		= LLOG_OP_MAGIC | 0x00000,
2976 	OST_SZ_REC		= LLOG_OP_MAGIC | 0x00f00,
2977 	/* OST_RAID1_REC	= LLOG_OP_MAGIC | 0x01000, never used */
2978 	MDS_UNLINK_REC		= LLOG_OP_MAGIC | 0x10000 | (MDS_REINT << 8) |
2979 				  REINT_UNLINK, /* obsolete after 2.5.0 */
2980 	MDS_UNLINK64_REC	= LLOG_OP_MAGIC | 0x90000 | (MDS_REINT << 8) |
2981 				  REINT_UNLINK,
2982 	/* MDS_SETATTR_REC	= LLOG_OP_MAGIC | 0x12401, obsolete 1.8.0 */
2983 	MDS_SETATTR64_REC	= LLOG_OP_MAGIC | 0x90000 | (MDS_REINT << 8) |
2984 				  REINT_SETATTR,
2985 	OBD_CFG_REC		= LLOG_OP_MAGIC | 0x20000,
2986 	/* PTL_CFG_REC		= LLOG_OP_MAGIC | 0x30000, obsolete 1.4.0 */
2987 	LLOG_GEN_REC		= LLOG_OP_MAGIC | 0x40000,
2988 	/* LLOG_JOIN_REC	= LLOG_OP_MAGIC | 0x50000, obsolete  1.8.0 */
2989 	CHANGELOG_REC		= LLOG_OP_MAGIC | 0x60000,
2990 	CHANGELOG_USER_REC	= LLOG_OP_MAGIC | 0x70000,
2991 	HSM_AGENT_REC		= LLOG_OP_MAGIC | 0x80000,
2992 	LLOG_HDR_MAGIC		= LLOG_OP_MAGIC | 0x45539,
2993 	LLOG_LOGID_MAGIC	= LLOG_OP_MAGIC | 0x4553b,
2994 } llog_op_type;
2995 
2996 #define LLOG_REC_HDR_NEEDS_SWABBING(r) \
2997 	(((r)->lrh_type & __swab32(LLOG_OP_MASK)) == __swab32(LLOG_OP_MAGIC))
2998 
2999 /** Log record header - stored in little endian order.
3000  * Each record must start with this struct, end with a llog_rec_tail,
3001  * and be a multiple of 256 bits in size.
3002  */
3003 struct llog_rec_hdr {
3004 	__u32	lrh_len;
3005 	__u32	lrh_index;
3006 	__u32	lrh_type;
3007 	__u32	lrh_id;
3008 };
3009 
3010 struct llog_rec_tail {
3011 	__u32	lrt_len;
3012 	__u32	lrt_index;
3013 };
3014 
3015 /* Where data follow just after header */
3016 #define REC_DATA(ptr)						\
3017 	((void *)((char *)ptr + sizeof(struct llog_rec_hdr)))
3018 
3019 #define REC_DATA_LEN(rec)					\
3020 	(rec->lrh_len - sizeof(struct llog_rec_hdr) -		\
3021 	 sizeof(struct llog_rec_tail))
3022 
3023 struct llog_logid_rec {
3024 	struct llog_rec_hdr	lid_hdr;
3025 	struct llog_logid	lid_id;
3026 	__u32			lid_padding1;
3027 	__u64			lid_padding2;
3028 	__u64			lid_padding3;
3029 	struct llog_rec_tail	lid_tail;
3030 } __attribute__((packed));
3031 
3032 struct llog_unlink_rec {
3033 	struct llog_rec_hdr	lur_hdr;
3034 	__u64			lur_oid;
3035 	__u32			lur_oseq;
3036 	__u32			lur_count;
3037 	struct llog_rec_tail	lur_tail;
3038 } __attribute__((packed));
3039 
3040 struct llog_unlink64_rec {
3041 	struct llog_rec_hdr	lur_hdr;
3042 	struct lu_fid		lur_fid;
3043 	__u32			lur_count; /* to destroy the lost precreated */
3044 	__u32			lur_padding1;
3045 	__u64			lur_padding2;
3046 	__u64			lur_padding3;
3047 	struct llog_rec_tail    lur_tail;
3048 } __attribute__((packed));
3049 
3050 struct llog_setattr64_rec {
3051 	struct llog_rec_hdr	lsr_hdr;
3052 	struct ost_id		lsr_oi;
3053 	__u32			lsr_uid;
3054 	__u32			lsr_uid_h;
3055 	__u32			lsr_gid;
3056 	__u32			lsr_gid_h;
3057 	__u64			lsr_padding;
3058 	struct llog_rec_tail    lsr_tail;
3059 } __attribute__((packed));
3060 
3061 struct llog_size_change_rec {
3062 	struct llog_rec_hdr	lsc_hdr;
3063 	struct ll_fid		lsc_fid;
3064 	__u32			lsc_ioepoch;
3065 	__u32			lsc_padding1;
3066 	__u64			lsc_padding2;
3067 	__u64			lsc_padding3;
3068 	struct llog_rec_tail	lsc_tail;
3069 } __attribute__((packed));
3070 
3071 #define CHANGELOG_MAGIC 0xca103000
3072 
3073 /** \a changelog_rec_type's that can't be masked */
3074 #define CHANGELOG_MINMASK (1 << CL_MARK)
3075 /** bits covering all \a changelog_rec_type's */
3076 #define CHANGELOG_ALLMASK 0XFFFFFFFF
3077 /** default \a changelog_rec_type mask */
3078 #define CHANGELOG_DEFMASK CHANGELOG_ALLMASK & ~(1 << CL_ATIME | 1 << CL_CLOSE)
3079 
3080 /* changelog llog name, needed by client replicators */
3081 #define CHANGELOG_CATALOG "changelog_catalog"
3082 
3083 struct changelog_setinfo {
3084 	__u64 cs_recno;
3085 	__u32 cs_id;
3086 } __attribute__((packed));
3087 
3088 /** changelog record */
3089 struct llog_changelog_rec {
3090 	struct llog_rec_hdr  cr_hdr;
3091 	struct changelog_rec cr;
3092 	struct llog_rec_tail cr_tail; /**< for_sizezof_only */
3093 } __attribute__((packed));
3094 
3095 struct llog_changelog_ext_rec {
3096 	struct llog_rec_hdr      cr_hdr;
3097 	struct changelog_ext_rec cr;
3098 	struct llog_rec_tail     cr_tail; /**< for_sizezof_only */
3099 } __attribute__((packed));
3100 
3101 #define CHANGELOG_USER_PREFIX "cl"
3102 
3103 struct llog_changelog_user_rec {
3104 	struct llog_rec_hdr   cur_hdr;
3105 	__u32		 cur_id;
3106 	__u32		 cur_padding;
3107 	__u64		 cur_endrec;
3108 	struct llog_rec_tail  cur_tail;
3109 } __attribute__((packed));
3110 
3111 enum agent_req_status {
3112 	ARS_WAITING,
3113 	ARS_STARTED,
3114 	ARS_FAILED,
3115 	ARS_CANCELED,
3116 	ARS_SUCCEED,
3117 };
3118 
agent_req_status2name(enum agent_req_status ars)3119 static inline char *agent_req_status2name(enum agent_req_status ars)
3120 {
3121 	switch (ars) {
3122 	case ARS_WAITING:
3123 		return "WAITING";
3124 	case ARS_STARTED:
3125 		return "STARTED";
3126 	case ARS_FAILED:
3127 		return "FAILED";
3128 	case ARS_CANCELED:
3129 		return "CANCELED";
3130 	case ARS_SUCCEED:
3131 		return "SUCCEED";
3132 	default:
3133 		return "UNKNOWN";
3134 	}
3135 }
3136 
agent_req_in_final_state(enum agent_req_status ars)3137 static inline bool agent_req_in_final_state(enum agent_req_status ars)
3138 {
3139 	return ((ars == ARS_SUCCEED) || (ars == ARS_FAILED) ||
3140 		(ars == ARS_CANCELED));
3141 }
3142 
3143 struct llog_agent_req_rec {
3144 	struct llog_rec_hdr	arr_hdr;	/**< record header */
3145 	__u32			arr_status;	/**< status of the request */
3146 						/* must match enum
3147 						 * agent_req_status */
3148 	__u32			arr_archive_id;	/**< backend archive number */
3149 	__u64			arr_flags;	/**< req flags */
3150 	__u64			arr_compound_id;	/**< compound cookie */
3151 	__u64			arr_req_create;	/**< req. creation time */
3152 	__u64			arr_req_change;	/**< req. status change time */
3153 	struct hsm_action_item	arr_hai;	/**< req. to the agent */
3154 	struct llog_rec_tail	arr_tail; /**< record tail for_sizezof_only */
3155 } __attribute__((packed));
3156 
3157 /* Old llog gen for compatibility */
3158 struct llog_gen {
3159 	__u64 mnt_cnt;
3160 	__u64 conn_cnt;
3161 } __attribute__((packed));
3162 
3163 struct llog_gen_rec {
3164 	struct llog_rec_hdr	lgr_hdr;
3165 	struct llog_gen		lgr_gen;
3166 	__u64			padding1;
3167 	__u64			padding2;
3168 	__u64			padding3;
3169 	struct llog_rec_tail	lgr_tail;
3170 };
3171 
3172 /* On-disk header structure of each log object, stored in little endian order */
3173 #define LLOG_CHUNK_SIZE	 8192
3174 #define LLOG_HEADER_SIZE	(96)
3175 #define LLOG_BITMAP_BYTES       (LLOG_CHUNK_SIZE - LLOG_HEADER_SIZE)
3176 
3177 #define LLOG_MIN_REC_SIZE       (24) /* round(llog_rec_hdr + llog_rec_tail) */
3178 
3179 /* flags for the logs */
3180 enum llog_flag {
3181 	LLOG_F_ZAP_WHEN_EMPTY	= 0x1,
3182 	LLOG_F_IS_CAT		= 0x2,
3183 	LLOG_F_IS_PLAIN		= 0x4,
3184 };
3185 
3186 struct llog_log_hdr {
3187 	struct llog_rec_hdr     llh_hdr;
3188 	__s64		   llh_timestamp;
3189 	__u32		   llh_count;
3190 	__u32		   llh_bitmap_offset;
3191 	__u32		   llh_size;
3192 	__u32		   llh_flags;
3193 	__u32		   llh_cat_idx;
3194 	/* for a catalog the first plain slot is next to it */
3195 	struct obd_uuid	 llh_tgtuuid;
3196 	__u32		   llh_reserved[LLOG_HEADER_SIZE/sizeof(__u32) - 23];
3197 	__u32		   llh_bitmap[LLOG_BITMAP_BYTES/sizeof(__u32)];
3198 	struct llog_rec_tail    llh_tail;
3199 } __attribute__((packed));
3200 
3201 #define LLOG_BITMAP_SIZE(llh)  (__u32)((llh->llh_hdr.lrh_len -		\
3202 					llh->llh_bitmap_offset -	\
3203 					sizeof(llh->llh_tail)) * 8)
3204 
3205 /** log cookies are used to reference a specific log file and a record therein */
3206 struct llog_cookie {
3207 	struct llog_logid       lgc_lgl;
3208 	__u32		   lgc_subsys;
3209 	__u32		   lgc_index;
3210 	__u32		   lgc_padding;
3211 } __attribute__((packed));
3212 
3213 /** llog protocol */
3214 enum llogd_rpc_ops {
3215 	LLOG_ORIGIN_HANDLE_CREATE       = 501,
3216 	LLOG_ORIGIN_HANDLE_NEXT_BLOCK   = 502,
3217 	LLOG_ORIGIN_HANDLE_READ_HEADER  = 503,
3218 	LLOG_ORIGIN_HANDLE_WRITE_REC    = 504,
3219 	LLOG_ORIGIN_HANDLE_CLOSE	= 505,
3220 	LLOG_ORIGIN_CONNECT	     = 506,
3221 	LLOG_CATINFO			= 507,  /* deprecated */
3222 	LLOG_ORIGIN_HANDLE_PREV_BLOCK   = 508,
3223 	LLOG_ORIGIN_HANDLE_DESTROY      = 509,  /* for destroy llog object*/
3224 	LLOG_LAST_OPC,
3225 	LLOG_FIRST_OPC		  = LLOG_ORIGIN_HANDLE_CREATE
3226 };
3227 
3228 struct llogd_body {
3229 	struct llog_logid  lgd_logid;
3230 	__u32 lgd_ctxt_idx;
3231 	__u32 lgd_llh_flags;
3232 	__u32 lgd_index;
3233 	__u32 lgd_saved_index;
3234 	__u32 lgd_len;
3235 	__u64 lgd_cur_offset;
3236 } __attribute__((packed));
3237 
3238 struct llogd_conn_body {
3239 	struct llog_gen	 lgdc_gen;
3240 	struct llog_logid       lgdc_logid;
3241 	__u32		   lgdc_ctxt_idx;
3242 } __attribute__((packed));
3243 
3244 /* Note: 64-bit types are 64-bit aligned in structure */
3245 struct obdo {
3246 	__u64		o_valid;	/* hot fields in this obdo */
3247 	struct ost_id	o_oi;
3248 	__u64		o_parent_seq;
3249 	__u64		o_size;	 /* o_size-o_blocks == ost_lvb */
3250 	__s64		o_mtime;
3251 	__s64		o_atime;
3252 	__s64		o_ctime;
3253 	__u64		o_blocks;       /* brw: cli sent cached bytes */
3254 	__u64		o_grant;
3255 
3256 	/* 32-bit fields start here: keep an even number of them via padding */
3257 	__u32		o_blksize;      /* optimal IO blocksize */
3258 	__u32		o_mode;	 /* brw: cli sent cache remain */
3259 	__u32		o_uid;
3260 	__u32		o_gid;
3261 	__u32		o_flags;
3262 	__u32		o_nlink;	/* brw: checksum */
3263 	__u32		o_parent_oid;
3264 	__u32		o_misc;		/* brw: o_dropped */
3265 
3266 	__u64		   o_ioepoch;      /* epoch in ost writes */
3267 	__u32		   o_stripe_idx;   /* holds stripe idx */
3268 	__u32		   o_parent_ver;
3269 	struct lustre_handle    o_handle;       /* brw: lock handle to prolong
3270 						 * locks */
3271 	struct llog_cookie      o_lcookie;      /* destroy: unlink cookie from
3272 						 * MDS */
3273 	__u32			o_uid_h;
3274 	__u32			o_gid_h;
3275 
3276 	__u64			o_data_version; /* getattr: sum of iversion for
3277 						 * each stripe.
3278 						 * brw: grant space consumed on
3279 						 * the client for the write */
3280 	__u64			o_padding_4;
3281 	__u64			o_padding_5;
3282 	__u64			o_padding_6;
3283 };
3284 
3285 #define o_dirty   o_blocks
3286 #define o_undirty o_mode
3287 #define o_dropped o_misc
3288 #define o_cksum   o_nlink
3289 #define o_grant_used o_data_version
3290 
lustre_set_wire_obdo(struct obd_connect_data * ocd,struct obdo * wobdo,const struct obdo * lobdo)3291 static inline void lustre_set_wire_obdo(struct obd_connect_data *ocd,
3292 					struct obdo *wobdo,
3293 					const struct obdo *lobdo)
3294 {
3295 	*wobdo = *lobdo;
3296 	wobdo->o_flags &= ~OBD_FL_LOCAL_MASK;
3297 	if (ocd == NULL)
3298 		return;
3299 
3300 	if (unlikely(!(ocd->ocd_connect_flags & OBD_CONNECT_FID)) &&
3301 	    fid_seq_is_echo(ostid_seq(&lobdo->o_oi))) {
3302 		/* Currently OBD_FL_OSTID will only be used when 2.4 echo
3303 		 * client communicate with pre-2.4 server */
3304 		wobdo->o_oi.oi.oi_id = fid_oid(&lobdo->o_oi.oi_fid);
3305 		wobdo->o_oi.oi.oi_seq = fid_seq(&lobdo->o_oi.oi_fid);
3306 	}
3307 }
3308 
lustre_get_wire_obdo(struct obd_connect_data * ocd,struct obdo * lobdo,const struct obdo * wobdo)3309 static inline void lustre_get_wire_obdo(struct obd_connect_data *ocd,
3310 					struct obdo *lobdo,
3311 					const struct obdo *wobdo)
3312 {
3313 	__u32 local_flags = 0;
3314 
3315 	if (lobdo->o_valid & OBD_MD_FLFLAGS)
3316 		 local_flags = lobdo->o_flags & OBD_FL_LOCAL_MASK;
3317 
3318 	*lobdo = *wobdo;
3319 	if (local_flags != 0) {
3320 		lobdo->o_valid |= OBD_MD_FLFLAGS;
3321 		lobdo->o_flags &= ~OBD_FL_LOCAL_MASK;
3322 		lobdo->o_flags |= local_flags;
3323 	}
3324 	if (ocd == NULL)
3325 		return;
3326 
3327 	if (unlikely(!(ocd->ocd_connect_flags & OBD_CONNECT_FID)) &&
3328 	    fid_seq_is_echo(wobdo->o_oi.oi.oi_seq)) {
3329 		/* see above */
3330 		lobdo->o_oi.oi_fid.f_seq = wobdo->o_oi.oi.oi_seq;
3331 		lobdo->o_oi.oi_fid.f_oid = wobdo->o_oi.oi.oi_id;
3332 		lobdo->o_oi.oi_fid.f_ver = 0;
3333 	}
3334 }
3335 
3336 extern void lustre_swab_obdo (struct obdo *o);
3337 
3338 /* request structure for OST's */
3339 struct ost_body {
3340 	struct  obdo oa;
3341 };
3342 
3343 /* Key for FIEMAP to be used in get_info calls */
3344 struct ll_fiemap_info_key {
3345 	char    name[8];
3346 	struct  obdo oa;
3347 	struct  ll_user_fiemap fiemap;
3348 };
3349 
3350 extern void lustre_swab_ost_body (struct ost_body *b);
3351 extern void lustre_swab_ost_last_id(__u64 *id);
3352 extern void lustre_swab_fiemap(struct ll_user_fiemap *fiemap);
3353 
3354 extern void lustre_swab_lov_user_md_v1(struct lov_user_md_v1 *lum);
3355 extern void lustre_swab_lov_user_md_v3(struct lov_user_md_v3 *lum);
3356 extern void lustre_swab_lov_user_md_objects(struct lov_user_ost_data *lod,
3357 					    int stripe_count);
3358 extern void lustre_swab_lov_mds_md(struct lov_mds_md *lmm);
3359 
3360 /* llog_swab.c */
3361 extern void lustre_swab_llogd_body (struct llogd_body *d);
3362 extern void lustre_swab_llog_hdr (struct llog_log_hdr *h);
3363 extern void lustre_swab_llogd_conn_body (struct llogd_conn_body *d);
3364 extern void lustre_swab_llog_rec(struct llog_rec_hdr *rec);
3365 extern void lustre_swab_llog_id(struct llog_logid *lid);
3366 
3367 struct lustre_cfg;
3368 extern void lustre_swab_lustre_cfg(struct lustre_cfg *lcfg);
3369 
3370 /* Functions for dumping PTLRPC fields */
3371 void dump_rniobuf(struct niobuf_remote *rnb);
3372 void dump_ioo(struct obd_ioobj *nb);
3373 void dump_obdo(struct obdo *oa);
3374 void dump_ost_body(struct ost_body *ob);
3375 void dump_rcs(__u32 *rc);
3376 
3377 #define IDX_INFO_MAGIC 0x3D37CC37
3378 
3379 /* Index file transfer through the network. The server serializes the index into
3380  * a byte stream which is sent to the client via a bulk transfer */
3381 struct idx_info {
3382 	__u32		ii_magic;
3383 
3384 	/* reply: see idx_info_flags below */
3385 	__u32		ii_flags;
3386 
3387 	/* request & reply: number of lu_idxpage (to be) transferred */
3388 	__u16		ii_count;
3389 	__u16		ii_pad0;
3390 
3391 	/* request: requested attributes passed down to the iterator API */
3392 	__u32		ii_attrs;
3393 
3394 	/* request & reply: index file identifier (FID) */
3395 	struct lu_fid	ii_fid;
3396 
3397 	/* reply: version of the index file before starting to walk the index.
3398 	 * Please note that the version can be modified at any time during the
3399 	 * transfer */
3400 	__u64		ii_version;
3401 
3402 	/* request: hash to start with:
3403 	 * reply: hash of the first entry of the first lu_idxpage and hash
3404 	 *	of the entry to read next if any */
3405 	__u64		ii_hash_start;
3406 	__u64		ii_hash_end;
3407 
3408 	/* reply: size of keys in lu_idxpages, minimal one if II_FL_VARKEY is
3409 	 * set */
3410 	__u16		ii_keysize;
3411 
3412 	/* reply: size of records in lu_idxpages, minimal one if II_FL_VARREC
3413 	 * is set */
3414 	__u16		ii_recsize;
3415 
3416 	__u32		ii_pad1;
3417 	__u64		ii_pad2;
3418 	__u64		ii_pad3;
3419 };
3420 extern void lustre_swab_idx_info(struct idx_info *ii);
3421 
3422 #define II_END_OFF	MDS_DIR_END_OFF /* all entries have been read */
3423 
3424 /* List of flags used in idx_info::ii_flags */
3425 enum idx_info_flags {
3426 	II_FL_NOHASH	= 1 << 0, /* client doesn't care about hash value */
3427 	II_FL_VARKEY	= 1 << 1, /* keys can be of variable size */
3428 	II_FL_VARREC	= 1 << 2, /* records can be of variable size */
3429 	II_FL_NONUNQ	= 1 << 3, /* index supports non-unique keys */
3430 };
3431 
3432 #define LIP_MAGIC 0x8A6D6B6C
3433 
3434 /* 4KB (= LU_PAGE_SIZE) container gathering key/record pairs */
3435 struct lu_idxpage {
3436 	/* 16-byte header */
3437 	__u32	lip_magic;
3438 	__u16	lip_flags;
3439 	__u16	lip_nr;   /* number of entries in the container */
3440 	__u64	lip_pad0; /* additional padding for future use */
3441 
3442 	/* key/record pairs are stored in the remaining 4080 bytes.
3443 	 * depending upon the flags in idx_info::ii_flags, each key/record
3444 	 * pair might be preceded by:
3445 	 * - a hash value
3446 	 * - the key size (II_FL_VARKEY is set)
3447 	 * - the record size (II_FL_VARREC is set)
3448 	 *
3449 	 * For the time being, we only support fixed-size key & record. */
3450 	char	lip_entries[0];
3451 };
3452 extern void lustre_swab_lip_header(struct lu_idxpage *lip);
3453 
3454 #define LIP_HDR_SIZE (offsetof(struct lu_idxpage, lip_entries))
3455 
3456 /* Gather all possible type associated with a 4KB container */
3457 union lu_page {
3458 	struct lu_dirpage	lp_dir; /* for MDS_READPAGE */
3459 	struct lu_idxpage	lp_idx; /* for OBD_IDX_READ */
3460 	char			lp_array[LU_PAGE_SIZE];
3461 };
3462 
3463 /* security opcodes */
3464 typedef enum {
3465 	SEC_CTX_INIT	    = 801,
3466 	SEC_CTX_INIT_CONT       = 802,
3467 	SEC_CTX_FINI	    = 803,
3468 	SEC_LAST_OPC,
3469 	SEC_FIRST_OPC	   = SEC_CTX_INIT
3470 } sec_cmd_t;
3471 
3472 /*
3473  * capa related definitions
3474  */
3475 #define CAPA_HMAC_MAX_LEN       64
3476 #define CAPA_HMAC_KEY_MAX_LEN   56
3477 
3478 /* NB take care when changing the sequence of elements this struct,
3479  * because the offset info is used in find_capa() */
3480 struct lustre_capa {
3481 	struct lu_fid   lc_fid;	 /** fid */
3482 	__u64	   lc_opc;	 /** operations allowed */
3483 	__u64	   lc_uid;	 /** file owner */
3484 	__u64	   lc_gid;	 /** file group */
3485 	__u32	   lc_flags;       /** HMAC algorithm & flags */
3486 	__u32	   lc_keyid;       /** key# used for the capability */
3487 	__u32	   lc_timeout;     /** capa timeout value (sec) */
3488 	__u32	   lc_expiry;      /** expiry time (sec) */
3489 	__u8	    lc_hmac[CAPA_HMAC_MAX_LEN];   /** HMAC */
3490 } __attribute__((packed));
3491 
3492 extern void lustre_swab_lustre_capa(struct lustre_capa *c);
3493 
3494 /** lustre_capa::lc_opc */
3495 enum {
3496 	CAPA_OPC_BODY_WRITE   = 1<<0,  /**< write object data */
3497 	CAPA_OPC_BODY_READ    = 1<<1,  /**< read object data */
3498 	CAPA_OPC_INDEX_LOOKUP = 1<<2,  /**< lookup object fid */
3499 	CAPA_OPC_INDEX_INSERT = 1<<3,  /**< insert object fid */
3500 	CAPA_OPC_INDEX_DELETE = 1<<4,  /**< delete object fid */
3501 	CAPA_OPC_OSS_WRITE    = 1<<5,  /**< write oss object data */
3502 	CAPA_OPC_OSS_READ     = 1<<6,  /**< read oss object data */
3503 	CAPA_OPC_OSS_TRUNC    = 1<<7,  /**< truncate oss object */
3504 	CAPA_OPC_OSS_DESTROY  = 1<<8,  /**< destroy oss object */
3505 	CAPA_OPC_META_WRITE   = 1<<9,  /**< write object meta data */
3506 	CAPA_OPC_META_READ    = 1<<10, /**< read object meta data */
3507 };
3508 
3509 #define CAPA_OPC_OSS_RW (CAPA_OPC_OSS_READ | CAPA_OPC_OSS_WRITE)
3510 #define CAPA_OPC_MDS_ONLY						   \
3511 	(CAPA_OPC_BODY_WRITE | CAPA_OPC_BODY_READ | CAPA_OPC_INDEX_LOOKUP | \
3512 	 CAPA_OPC_INDEX_INSERT | CAPA_OPC_INDEX_DELETE)
3513 #define CAPA_OPC_OSS_ONLY						   \
3514 	(CAPA_OPC_OSS_WRITE | CAPA_OPC_OSS_READ | CAPA_OPC_OSS_TRUNC |      \
3515 	 CAPA_OPC_OSS_DESTROY)
3516 #define CAPA_OPC_MDS_DEFAULT ~CAPA_OPC_OSS_ONLY
3517 #define CAPA_OPC_OSS_DEFAULT ~(CAPA_OPC_MDS_ONLY | CAPA_OPC_OSS_ONLY)
3518 
3519 /* MDS capability covers object capability for operations of body r/w
3520  * (dir readpage/sendpage), index lookup/insert/delete and meta data r/w,
3521  * while OSS capability only covers object capability for operations of
3522  * oss data(file content) r/w/truncate.
3523  */
capa_for_mds(struct lustre_capa * c)3524 static inline int capa_for_mds(struct lustre_capa *c)
3525 {
3526 	return (c->lc_opc & CAPA_OPC_INDEX_LOOKUP) != 0;
3527 }
3528 
capa_for_oss(struct lustre_capa * c)3529 static inline int capa_for_oss(struct lustre_capa *c)
3530 {
3531 	return (c->lc_opc & CAPA_OPC_INDEX_LOOKUP) == 0;
3532 }
3533 
3534 /* lustre_capa::lc_hmac_alg */
3535 enum {
3536 	CAPA_HMAC_ALG_SHA1 = 1, /**< sha1 algorithm */
3537 	CAPA_HMAC_ALG_MAX,
3538 };
3539 
3540 #define CAPA_FL_MASK	    0x00ffffff
3541 #define CAPA_HMAC_ALG_MASK      0xff000000
3542 
3543 struct lustre_capa_key {
3544 	__u64   lk_seq;       /**< mds# */
3545 	__u32   lk_keyid;     /**< key# */
3546 	__u32   lk_padding;
3547 	__u8    lk_key[CAPA_HMAC_KEY_MAX_LEN];    /**< key */
3548 } __attribute__((packed));
3549 
3550 extern void lustre_swab_lustre_capa_key(struct lustre_capa_key *k);
3551 
3552 /** The link ea holds 1 \a link_ea_entry for each hardlink */
3553 #define LINK_EA_MAGIC 0x11EAF1DFUL
3554 struct link_ea_header {
3555 	__u32 leh_magic;
3556 	__u32 leh_reccount;
3557 	__u64 leh_len;      /* total size */
3558 	/* future use */
3559 	__u32 padding1;
3560 	__u32 padding2;
3561 };
3562 
3563 /** Hardlink data is name and parent fid.
3564  * Stored in this crazy struct for maximum packing and endian-neutrality
3565  */
3566 struct link_ea_entry {
3567 	/** __u16 stored big-endian, unaligned */
3568 	unsigned char      lee_reclen[2];
3569 	unsigned char      lee_parent_fid[sizeof(struct lu_fid)];
3570 	char	       lee_name[0];
3571 }__attribute__((packed));
3572 
3573 /** fid2path request/reply structure */
3574 struct getinfo_fid2path {
3575 	struct lu_fid   gf_fid;
3576 	__u64	   gf_recno;
3577 	__u32	   gf_linkno;
3578 	__u32	   gf_pathlen;
3579 	char	    gf_path[0];
3580 } __attribute__((packed));
3581 
3582 void lustre_swab_fid2path (struct getinfo_fid2path *gf);
3583 
3584 enum {
3585 	LAYOUT_INTENT_ACCESS    = 0,
3586 	LAYOUT_INTENT_READ      = 1,
3587 	LAYOUT_INTENT_WRITE     = 2,
3588 	LAYOUT_INTENT_GLIMPSE   = 3,
3589 	LAYOUT_INTENT_TRUNC     = 4,
3590 	LAYOUT_INTENT_RELEASE   = 5,
3591 	LAYOUT_INTENT_RESTORE   = 6
3592 };
3593 
3594 /* enqueue layout lock with intent */
3595 struct layout_intent {
3596 	__u32 li_opc; /* intent operation for enqueue, read, write etc */
3597 	__u32 li_flags;
3598 	__u64 li_start;
3599 	__u64 li_end;
3600 };
3601 
3602 void lustre_swab_layout_intent(struct layout_intent *li);
3603 
3604 /**
3605  * On the wire version of hsm_progress structure.
3606  *
3607  * Contains the userspace hsm_progress and some internal fields.
3608  */
3609 struct hsm_progress_kernel {
3610 	/* Field taken from struct hsm_progress */
3611 	lustre_fid		hpk_fid;
3612 	__u64			hpk_cookie;
3613 	struct hsm_extent	hpk_extent;
3614 	__u16			hpk_flags;
3615 	__u16			hpk_errval; /* positive val */
3616 	__u32			hpk_padding1;
3617 	/* Additional fields */
3618 	__u64			hpk_data_version;
3619 	__u64			hpk_padding2;
3620 } __attribute__((packed));
3621 
3622 extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
3623 extern void lustre_swab_hsm_current_action(struct hsm_current_action *action);
3624 extern void lustre_swab_hsm_progress_kernel(struct hsm_progress_kernel *hpk);
3625 extern void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
3626 extern void lustre_swab_hsm_user_item(struct hsm_user_item *hui);
3627 extern void lustre_swab_hsm_request(struct hsm_request *hr);
3628 
3629 /**
3630  * These are object update opcode under UPDATE_OBJ, which is currently
3631  * being used by cross-ref operations between MDT.
3632  *
3633  * During the cross-ref operation, the Master MDT, which the client send the
3634  * request to, will disassembly the operation into object updates, then OSP
3635  * will send these updates to the remote MDT to be executed.
3636  *
3637  *   Update request format
3638  *   magic:  UPDATE_BUFFER_MAGIC_V1
3639  *   Count:  How many updates in the req.
3640  *   bufs[0] : following are packets of object.
3641  *   update[0]:
3642  *		type: object_update_op, the op code of update
3643  *		fid: The object fid of the update.
3644  *		lens/bufs: other parameters of the update.
3645  *   update[1]:
3646  *		type: object_update_op, the op code of update
3647  *		fid: The object fid of the update.
3648  *		lens/bufs: other parameters of the update.
3649  *   ..........
3650  *   update[7]:	type: object_update_op, the op code of update
3651  *		fid: The object fid of the update.
3652  *		lens/bufs: other parameters of the update.
3653  *   Current 8 maxim updates per object update request.
3654  *
3655  *******************************************************************
3656  *   update reply format:
3657  *
3658  *   ur_version: UPDATE_REPLY_V1
3659  *   ur_count:   The count of the reply, which is usually equal
3660  *		 to the number of updates in the request.
3661  *   ur_lens:    The reply lengths of each object update.
3662  *
3663  *   replies:    1st update reply  [4bytes_ret: other body]
3664  *		 2nd update reply  [4bytes_ret: other body]
3665  *		 .....
3666  *		 nth update reply  [4bytes_ret: other body]
3667  *
3668  *   For each reply of the update, the format would be
3669  *	 result(4 bytes):Other stuff
3670  */
3671 
3672 #define UPDATE_MAX_OPS		10
3673 #define UPDATE_BUFFER_MAGIC_V1	0xBDDE0001
3674 #define UPDATE_BUFFER_MAGIC	UPDATE_BUFFER_MAGIC_V1
3675 #define UPDATE_BUF_COUNT	8
3676 enum object_update_op {
3677 	OBJ_CREATE		= 1,
3678 	OBJ_DESTROY		= 2,
3679 	OBJ_REF_ADD		= 3,
3680 	OBJ_REF_DEL		= 4,
3681 	OBJ_ATTR_SET		= 5,
3682 	OBJ_ATTR_GET		= 6,
3683 	OBJ_XATTR_SET		= 7,
3684 	OBJ_XATTR_GET		= 8,
3685 	OBJ_INDEX_LOOKUP	= 9,
3686 	OBJ_INDEX_INSERT	= 10,
3687 	OBJ_INDEX_DELETE	= 11,
3688 	OBJ_LAST
3689 };
3690 
3691 struct update {
3692 	__u32		u_type;
3693 	__u32		u_batchid;
3694 	struct lu_fid	u_fid;
3695 	__u32		u_lens[UPDATE_BUF_COUNT];
3696 	__u32		u_bufs[0];
3697 };
3698 
3699 struct update_buf {
3700 	__u32	ub_magic;
3701 	__u32	ub_count;
3702 	__u32	ub_bufs[0];
3703 };
3704 
3705 #define UPDATE_REPLY_V1		0x00BD0001
3706 struct update_reply {
3707 	__u32	ur_version;
3708 	__u32	ur_count;
3709 	__u32	ur_lens[0];
3710 };
3711 
3712 void lustre_swab_update_buf(struct update_buf *ub);
3713 void lustre_swab_update_reply_buf(struct update_reply *ur);
3714 
3715 /** layout swap request structure
3716  * fid1 and fid2 are in mdt_body
3717  */
3718 struct mdc_swap_layouts {
3719 	__u64	   msl_flags;
3720 } __packed;
3721 
3722 void lustre_swab_swap_layouts(struct mdc_swap_layouts *msl);
3723 
3724 struct close_data {
3725 	struct lustre_handle	cd_handle;
3726 	struct lu_fid		cd_fid;
3727 	__u64			cd_data_version;
3728 	__u64			cd_reserved[8];
3729 };
3730 
3731 void lustre_swab_close_data(struct close_data *data);
3732 
3733 #endif
3734 /** @} lustreidl */
3735