1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
7  * Copyright (C) 2000, 2001, 06	 Ralf Baechle <ralf@linux-mips.org>
8  * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
9  */
10 
11 #include <linux/types.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/scatterlist.h>
16 #include <linux/string.h>
17 #include <linux/gfp.h>
18 #include <linux/highmem.h>
19 #include <linux/dma-contiguous.h>
20 
21 #include <asm/cache.h>
22 #include <asm/cpu-type.h>
23 #include <asm/io.h>
24 
25 #include <dma-coherence.h>
26 
27 #ifdef CONFIG_DMA_MAYBE_COHERENT
28 int coherentio = 0;	/* User defined DMA coherency from command line. */
29 EXPORT_SYMBOL_GPL(coherentio);
30 int hw_coherentio = 0;	/* Actual hardware supported DMA coherency setting. */
31 
setcoherentio(char * str)32 static int __init setcoherentio(char *str)
33 {
34 	coherentio = 1;
35 	pr_info("Hardware DMA cache coherency (command line)\n");
36 	return 0;
37 }
38 early_param("coherentio", setcoherentio);
39 
setnocoherentio(char * str)40 static int __init setnocoherentio(char *str)
41 {
42 	coherentio = 0;
43 	pr_info("Software DMA cache coherency (command line)\n");
44 	return 0;
45 }
46 early_param("nocoherentio", setnocoherentio);
47 #endif
48 
dma_addr_to_page(struct device * dev,dma_addr_t dma_addr)49 static inline struct page *dma_addr_to_page(struct device *dev,
50 	dma_addr_t dma_addr)
51 {
52 	return pfn_to_page(
53 		plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
54 }
55 
56 /*
57  * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
58  * speculatively fill random cachelines with stale data at any time,
59  * requiring an extra flush post-DMA.
60  *
61  * Warning on the terminology - Linux calls an uncached area coherent;
62  * MIPS terminology calls memory areas with hardware maintained coherency
63  * coherent.
64  *
65  * Note that the R14000 and R16000 should also be checked for in this
66  * condition.  However this function is only called on non-I/O-coherent
67  * systems and only the R10000 and R12000 are used in such systems, the
68  * SGI IP28 Indigo² rsp. SGI IP32 aka O2.
69  */
cpu_needs_post_dma_flush(struct device * dev)70 static inline int cpu_needs_post_dma_flush(struct device *dev)
71 {
72 	return !plat_device_is_coherent(dev) &&
73 	       (boot_cpu_type() == CPU_R10000 ||
74 		boot_cpu_type() == CPU_R12000 ||
75 		boot_cpu_type() == CPU_BMIPS5000);
76 }
77 
massage_gfp_flags(const struct device * dev,gfp_t gfp)78 static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
79 {
80 	gfp_t dma_flag;
81 
82 	/* ignore region specifiers */
83 	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
84 
85 #ifdef CONFIG_ISA
86 	if (dev == NULL)
87 		dma_flag = __GFP_DMA;
88 	else
89 #endif
90 #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
91 	     if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
92 			dma_flag = __GFP_DMA;
93 	else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
94 			dma_flag = __GFP_DMA32;
95 	else
96 #endif
97 #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
98 	     if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
99 		dma_flag = __GFP_DMA32;
100 	else
101 #endif
102 #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
103 	     if (dev->coherent_dma_mask < DMA_BIT_MASK(sizeof(phys_addr_t) * 8))
104 		dma_flag = __GFP_DMA;
105 	else
106 #endif
107 		dma_flag = 0;
108 
109 	/* Don't invoke OOM killer */
110 	gfp |= __GFP_NORETRY;
111 
112 	return gfp | dma_flag;
113 }
114 
mips_dma_alloc_noncoherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)115 static void *mips_dma_alloc_noncoherent(struct device *dev, size_t size,
116 	dma_addr_t * dma_handle, gfp_t gfp)
117 {
118 	void *ret;
119 
120 	gfp = massage_gfp_flags(dev, gfp);
121 
122 	ret = (void *) __get_free_pages(gfp, get_order(size));
123 
124 	if (ret != NULL) {
125 		memset(ret, 0, size);
126 		*dma_handle = plat_map_dma_mem(dev, ret, size);
127 	}
128 
129 	return ret;
130 }
131 
mips_dma_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,struct dma_attrs * attrs)132 static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
133 	dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs)
134 {
135 	void *ret;
136 	struct page *page = NULL;
137 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
138 
139 	/*
140 	 * XXX: seems like the coherent and non-coherent implementations could
141 	 * be consolidated.
142 	 */
143 	if (dma_get_attr(DMA_ATTR_NON_CONSISTENT, attrs))
144 		return mips_dma_alloc_noncoherent(dev, size, dma_handle, gfp);
145 
146 	gfp = massage_gfp_flags(dev, gfp);
147 
148 	if (IS_ENABLED(CONFIG_DMA_CMA) && gfpflags_allow_blocking(gfp))
149 		page = dma_alloc_from_contiguous(dev,
150 					count, get_order(size));
151 	if (!page)
152 		page = alloc_pages(gfp, get_order(size));
153 
154 	if (!page)
155 		return NULL;
156 
157 	ret = page_address(page);
158 	memset(ret, 0, size);
159 	*dma_handle = plat_map_dma_mem(dev, ret, size);
160 	if (!plat_device_is_coherent(dev)) {
161 		dma_cache_wback_inv((unsigned long) ret, size);
162 		if (!hw_coherentio)
163 			ret = UNCAC_ADDR(ret);
164 	}
165 
166 	return ret;
167 }
168 
169 
mips_dma_free_noncoherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle)170 static void mips_dma_free_noncoherent(struct device *dev, size_t size,
171 		void *vaddr, dma_addr_t dma_handle)
172 {
173 	plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
174 	free_pages((unsigned long) vaddr, get_order(size));
175 }
176 
mips_dma_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle,struct dma_attrs * attrs)177 static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
178 	dma_addr_t dma_handle, struct dma_attrs *attrs)
179 {
180 	unsigned long addr = (unsigned long) vaddr;
181 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
182 	struct page *page = NULL;
183 
184 	if (dma_get_attr(DMA_ATTR_NON_CONSISTENT, attrs)) {
185 		mips_dma_free_noncoherent(dev, size, vaddr, dma_handle);
186 		return;
187 	}
188 
189 	plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
190 
191 	if (!plat_device_is_coherent(dev) && !hw_coherentio)
192 		addr = CAC_ADDR(addr);
193 
194 	page = virt_to_page((void *) addr);
195 
196 	if (!dma_release_from_contiguous(dev, page, count))
197 		__free_pages(page, get_order(size));
198 }
199 
mips_dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,struct dma_attrs * attrs)200 static int mips_dma_mmap(struct device *dev, struct vm_area_struct *vma,
201 	void *cpu_addr, dma_addr_t dma_addr, size_t size,
202 	struct dma_attrs *attrs)
203 {
204 	unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
205 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
206 	unsigned long addr = (unsigned long)cpu_addr;
207 	unsigned long off = vma->vm_pgoff;
208 	unsigned long pfn;
209 	int ret = -ENXIO;
210 
211 	if (!plat_device_is_coherent(dev) && !hw_coherentio)
212 		addr = CAC_ADDR(addr);
213 
214 	pfn = page_to_pfn(virt_to_page((void *)addr));
215 
216 	if (dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs))
217 		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
218 	else
219 		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
220 
221 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
222 		return ret;
223 
224 	if (off < count && user_count <= (count - off)) {
225 		ret = remap_pfn_range(vma, vma->vm_start,
226 				      pfn + off,
227 				      user_count << PAGE_SHIFT,
228 				      vma->vm_page_prot);
229 	}
230 
231 	return ret;
232 }
233 
__dma_sync_virtual(void * addr,size_t size,enum dma_data_direction direction)234 static inline void __dma_sync_virtual(void *addr, size_t size,
235 	enum dma_data_direction direction)
236 {
237 	switch (direction) {
238 	case DMA_TO_DEVICE:
239 		dma_cache_wback((unsigned long)addr, size);
240 		break;
241 
242 	case DMA_FROM_DEVICE:
243 		dma_cache_inv((unsigned long)addr, size);
244 		break;
245 
246 	case DMA_BIDIRECTIONAL:
247 		dma_cache_wback_inv((unsigned long)addr, size);
248 		break;
249 
250 	default:
251 		BUG();
252 	}
253 }
254 
255 /*
256  * A single sg entry may refer to multiple physically contiguous
257  * pages. But we still need to process highmem pages individually.
258  * If highmem is not configured then the bulk of this loop gets
259  * optimized out.
260  */
__dma_sync(struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction)261 static inline void __dma_sync(struct page *page,
262 	unsigned long offset, size_t size, enum dma_data_direction direction)
263 {
264 	size_t left = size;
265 
266 	do {
267 		size_t len = left;
268 
269 		if (PageHighMem(page)) {
270 			void *addr;
271 
272 			if (offset + len > PAGE_SIZE) {
273 				if (offset >= PAGE_SIZE) {
274 					page += offset >> PAGE_SHIFT;
275 					offset &= ~PAGE_MASK;
276 				}
277 				len = PAGE_SIZE - offset;
278 			}
279 
280 			addr = kmap_atomic(page);
281 			__dma_sync_virtual(addr + offset, len, direction);
282 			kunmap_atomic(addr);
283 		} else
284 			__dma_sync_virtual(page_address(page) + offset,
285 					   size, direction);
286 		offset = 0;
287 		page++;
288 		left -= len;
289 	} while (left);
290 }
291 
mips_dma_unmap_page(struct device * dev,dma_addr_t dma_addr,size_t size,enum dma_data_direction direction,struct dma_attrs * attrs)292 static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
293 	size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
294 {
295 	if (cpu_needs_post_dma_flush(dev))
296 		__dma_sync(dma_addr_to_page(dev, dma_addr),
297 			   dma_addr & ~PAGE_MASK, size, direction);
298 	plat_post_dma_flush(dev);
299 	plat_unmap_dma_mem(dev, dma_addr, size, direction);
300 }
301 
mips_dma_map_sg(struct device * dev,struct scatterlist * sglist,int nents,enum dma_data_direction direction,struct dma_attrs * attrs)302 static int mips_dma_map_sg(struct device *dev, struct scatterlist *sglist,
303 	int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
304 {
305 	int i;
306 	struct scatterlist *sg;
307 
308 	for_each_sg(sglist, sg, nents, i) {
309 		if (!plat_device_is_coherent(dev))
310 			__dma_sync(sg_page(sg), sg->offset, sg->length,
311 				   direction);
312 #ifdef CONFIG_NEED_SG_DMA_LENGTH
313 		sg->dma_length = sg->length;
314 #endif
315 		sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
316 				  sg->offset;
317 	}
318 
319 	return nents;
320 }
321 
mips_dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction,struct dma_attrs * attrs)322 static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
323 	unsigned long offset, size_t size, enum dma_data_direction direction,
324 	struct dma_attrs *attrs)
325 {
326 	if (!plat_device_is_coherent(dev))
327 		__dma_sync(page, offset, size, direction);
328 
329 	return plat_map_dma_mem_page(dev, page) + offset;
330 }
331 
mips_dma_unmap_sg(struct device * dev,struct scatterlist * sglist,int nhwentries,enum dma_data_direction direction,struct dma_attrs * attrs)332 static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
333 	int nhwentries, enum dma_data_direction direction,
334 	struct dma_attrs *attrs)
335 {
336 	int i;
337 	struct scatterlist *sg;
338 
339 	for_each_sg(sglist, sg, nhwentries, i) {
340 		if (!plat_device_is_coherent(dev) &&
341 		    direction != DMA_TO_DEVICE)
342 			__dma_sync(sg_page(sg), sg->offset, sg->length,
343 				   direction);
344 		plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
345 	}
346 }
347 
mips_dma_sync_single_for_cpu(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction direction)348 static void mips_dma_sync_single_for_cpu(struct device *dev,
349 	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
350 {
351 	if (cpu_needs_post_dma_flush(dev))
352 		__dma_sync(dma_addr_to_page(dev, dma_handle),
353 			   dma_handle & ~PAGE_MASK, size, direction);
354 	plat_post_dma_flush(dev);
355 }
356 
mips_dma_sync_single_for_device(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction direction)357 static void mips_dma_sync_single_for_device(struct device *dev,
358 	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
359 {
360 	if (!plat_device_is_coherent(dev))
361 		__dma_sync(dma_addr_to_page(dev, dma_handle),
362 			   dma_handle & ~PAGE_MASK, size, direction);
363 }
364 
mips_dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction direction)365 static void mips_dma_sync_sg_for_cpu(struct device *dev,
366 	struct scatterlist *sglist, int nelems,
367 	enum dma_data_direction direction)
368 {
369 	int i;
370 	struct scatterlist *sg;
371 
372 	if (cpu_needs_post_dma_flush(dev)) {
373 		for_each_sg(sglist, sg, nelems, i) {
374 			__dma_sync(sg_page(sg), sg->offset, sg->length,
375 				   direction);
376 		}
377 	}
378 	plat_post_dma_flush(dev);
379 }
380 
mips_dma_sync_sg_for_device(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction direction)381 static void mips_dma_sync_sg_for_device(struct device *dev,
382 	struct scatterlist *sglist, int nelems,
383 	enum dma_data_direction direction)
384 {
385 	int i;
386 	struct scatterlist *sg;
387 
388 	if (!plat_device_is_coherent(dev)) {
389 		for_each_sg(sglist, sg, nelems, i) {
390 			__dma_sync(sg_page(sg), sg->offset, sg->length,
391 				   direction);
392 		}
393 	}
394 }
395 
mips_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)396 int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
397 {
398 	return 0;
399 }
400 
mips_dma_supported(struct device * dev,u64 mask)401 int mips_dma_supported(struct device *dev, u64 mask)
402 {
403 	return plat_dma_supported(dev, mask);
404 }
405 
dma_cache_sync(struct device * dev,void * vaddr,size_t size,enum dma_data_direction direction)406 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
407 			 enum dma_data_direction direction)
408 {
409 	BUG_ON(direction == DMA_NONE);
410 
411 	if (!plat_device_is_coherent(dev))
412 		__dma_sync_virtual(vaddr, size, direction);
413 }
414 
415 EXPORT_SYMBOL(dma_cache_sync);
416 
417 static struct dma_map_ops mips_default_dma_map_ops = {
418 	.alloc = mips_dma_alloc_coherent,
419 	.free = mips_dma_free_coherent,
420 	.mmap = mips_dma_mmap,
421 	.map_page = mips_dma_map_page,
422 	.unmap_page = mips_dma_unmap_page,
423 	.map_sg = mips_dma_map_sg,
424 	.unmap_sg = mips_dma_unmap_sg,
425 	.sync_single_for_cpu = mips_dma_sync_single_for_cpu,
426 	.sync_single_for_device = mips_dma_sync_single_for_device,
427 	.sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
428 	.sync_sg_for_device = mips_dma_sync_sg_for_device,
429 	.mapping_error = mips_dma_mapping_error,
430 	.dma_supported = mips_dma_supported
431 };
432 
433 struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
434 EXPORT_SYMBOL(mips_dma_map_ops);
435 
436 #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
437 
mips_dma_init(void)438 static int __init mips_dma_init(void)
439 {
440 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
441 
442 	return 0;
443 }
444 fs_initcall(mips_dma_init);
445