1 /*
2  * Copyright (c) 2014-2015 The Linux Foundation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 and
6  * only version 2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 
14 #include "mdp5_kms.h"
15 #include "mdp5_ctl.h"
16 
17 /*
18  * CTL - MDP Control Pool Manager
19  *
20  * Controls are shared between all CRTCs.
21  *
22  * They are intended to be used for data path configuration.
23  * The top level register programming describes the complete data path for
24  * a specific data path ID - REG_MDP5_CTL_*(<id>, ...)
25  *
26  * Hardware capabilities determine the number of concurrent data paths
27  *
28  * In certain use cases (high-resolution dual pipe), one single CTL can be
29  * shared across multiple CRTCs.
30  *
31  * Because the number of CTLs can be less than the number of CRTCs,
32  * CTLs are dynamically allocated from a pool of CTLs, only once a CRTC is
33  * requested by the client (in mdp5_crtc_mode_set()).
34  */
35 
36 struct op_mode {
37 	struct mdp5_interface intf;
38 
39 	bool encoder_enabled;
40 	uint32_t start_mask;
41 };
42 
43 struct mdp5_ctl {
44 	struct mdp5_ctl_manager *ctlm;
45 
46 	u32 id;
47 	int lm;
48 
49 	/* whether this CTL has been allocated or not: */
50 	bool busy;
51 
52 	/* Operation Mode Configuration for the Pipeline */
53 	struct op_mode pipeline;
54 
55 	/* REG_MDP5_CTL_*(<id>) registers access info + lock: */
56 	spinlock_t hw_lock;
57 	u32 reg_offset;
58 
59 	/* when do CTL registers need to be flushed? (mask of trigger bits) */
60 	u32 pending_ctl_trigger;
61 
62 	bool cursor_on;
63 
64 	struct drm_crtc *crtc;
65 };
66 
67 struct mdp5_ctl_manager {
68 	struct drm_device *dev;
69 
70 	/* number of CTL / Layer Mixers in this hw config: */
71 	u32 nlm;
72 	u32 nctl;
73 
74 	/* to filter out non-present bits in the current hardware config */
75 	u32 flush_hw_mask;
76 
77 	/* pool of CTLs + lock to protect resource allocation (ctls[i].busy) */
78 	spinlock_t pool_lock;
79 	struct mdp5_ctl ctls[MAX_CTL];
80 };
81 
82 static inline
get_kms(struct mdp5_ctl_manager * ctl_mgr)83 struct mdp5_kms *get_kms(struct mdp5_ctl_manager *ctl_mgr)
84 {
85 	struct msm_drm_private *priv = ctl_mgr->dev->dev_private;
86 
87 	return to_mdp5_kms(to_mdp_kms(priv->kms));
88 }
89 
90 static inline
ctl_write(struct mdp5_ctl * ctl,u32 reg,u32 data)91 void ctl_write(struct mdp5_ctl *ctl, u32 reg, u32 data)
92 {
93 	struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
94 
95 	(void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
96 	mdp5_write(mdp5_kms, reg, data);
97 }
98 
99 static inline
ctl_read(struct mdp5_ctl * ctl,u32 reg)100 u32 ctl_read(struct mdp5_ctl *ctl, u32 reg)
101 {
102 	struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
103 
104 	(void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
105 	return mdp5_read(mdp5_kms, reg);
106 }
107 
set_display_intf(struct mdp5_kms * mdp5_kms,struct mdp5_interface * intf)108 static void set_display_intf(struct mdp5_kms *mdp5_kms,
109 		struct mdp5_interface *intf)
110 {
111 	unsigned long flags;
112 	u32 intf_sel;
113 
114 	spin_lock_irqsave(&mdp5_kms->resource_lock, flags);
115 	intf_sel = mdp5_read(mdp5_kms, REG_MDP5_MDP_DISP_INTF_SEL(0));
116 
117 	switch (intf->num) {
118 	case 0:
119 		intf_sel &= ~MDP5_MDP_DISP_INTF_SEL_INTF0__MASK;
120 		intf_sel |= MDP5_MDP_DISP_INTF_SEL_INTF0(intf->type);
121 		break;
122 	case 1:
123 		intf_sel &= ~MDP5_MDP_DISP_INTF_SEL_INTF1__MASK;
124 		intf_sel |= MDP5_MDP_DISP_INTF_SEL_INTF1(intf->type);
125 		break;
126 	case 2:
127 		intf_sel &= ~MDP5_MDP_DISP_INTF_SEL_INTF2__MASK;
128 		intf_sel |= MDP5_MDP_DISP_INTF_SEL_INTF2(intf->type);
129 		break;
130 	case 3:
131 		intf_sel &= ~MDP5_MDP_DISP_INTF_SEL_INTF3__MASK;
132 		intf_sel |= MDP5_MDP_DISP_INTF_SEL_INTF3(intf->type);
133 		break;
134 	default:
135 		BUG();
136 		break;
137 	}
138 
139 	mdp5_write(mdp5_kms, REG_MDP5_MDP_DISP_INTF_SEL(0), intf_sel);
140 	spin_unlock_irqrestore(&mdp5_kms->resource_lock, flags);
141 }
142 
set_ctl_op(struct mdp5_ctl * ctl,struct mdp5_interface * intf)143 static void set_ctl_op(struct mdp5_ctl *ctl, struct mdp5_interface *intf)
144 {
145 	unsigned long flags;
146 	u32 ctl_op = 0;
147 
148 	if (!mdp5_cfg_intf_is_virtual(intf->type))
149 		ctl_op |= MDP5_CTL_OP_INTF_NUM(INTF0 + intf->num);
150 
151 	switch (intf->type) {
152 	case INTF_DSI:
153 		if (intf->mode == MDP5_INTF_DSI_MODE_COMMAND)
154 			ctl_op |= MDP5_CTL_OP_CMD_MODE;
155 		break;
156 
157 	case INTF_WB:
158 		if (intf->mode == MDP5_INTF_WB_MODE_LINE)
159 			ctl_op |= MDP5_CTL_OP_MODE(MODE_WB_2_LINE);
160 		break;
161 
162 	default:
163 		break;
164 	}
165 
166 	spin_lock_irqsave(&ctl->hw_lock, flags);
167 	ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), ctl_op);
168 	spin_unlock_irqrestore(&ctl->hw_lock, flags);
169 }
170 
mdp5_ctl_set_intf(struct mdp5_ctl * ctl,struct mdp5_interface * intf)171 int mdp5_ctl_set_intf(struct mdp5_ctl *ctl, struct mdp5_interface *intf)
172 {
173 	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
174 	struct mdp5_kms *mdp5_kms = get_kms(ctl_mgr);
175 
176 	memcpy(&ctl->pipeline.intf, intf, sizeof(*intf));
177 
178 	ctl->pipeline.start_mask = mdp_ctl_flush_mask_lm(ctl->lm) |
179 				   mdp_ctl_flush_mask_encoder(intf);
180 
181 	/* Virtual interfaces need not set a display intf (e.g.: Writeback) */
182 	if (!mdp5_cfg_intf_is_virtual(intf->type))
183 		set_display_intf(mdp5_kms, intf);
184 
185 	set_ctl_op(ctl, intf);
186 
187 	return 0;
188 }
189 
start_signal_needed(struct mdp5_ctl * ctl)190 static bool start_signal_needed(struct mdp5_ctl *ctl)
191 {
192 	struct op_mode *pipeline = &ctl->pipeline;
193 
194 	if (!pipeline->encoder_enabled || pipeline->start_mask != 0)
195 		return false;
196 
197 	switch (pipeline->intf.type) {
198 	case INTF_WB:
199 		return true;
200 	case INTF_DSI:
201 		return pipeline->intf.mode == MDP5_INTF_DSI_MODE_COMMAND;
202 	default:
203 		return false;
204 	}
205 }
206 
207 /*
208  * send_start_signal() - Overlay Processor Start Signal
209  *
210  * For a given control operation (display pipeline), a START signal needs to be
211  * executed in order to kick off operation and activate all layers.
212  * e.g.: DSI command mode, Writeback
213  */
send_start_signal(struct mdp5_ctl * ctl)214 static void send_start_signal(struct mdp5_ctl *ctl)
215 {
216 	unsigned long flags;
217 
218 	spin_lock_irqsave(&ctl->hw_lock, flags);
219 	ctl_write(ctl, REG_MDP5_CTL_START(ctl->id), 1);
220 	spin_unlock_irqrestore(&ctl->hw_lock, flags);
221 }
222 
refill_start_mask(struct mdp5_ctl * ctl)223 static void refill_start_mask(struct mdp5_ctl *ctl)
224 {
225 	struct op_mode *pipeline = &ctl->pipeline;
226 	struct mdp5_interface *intf = &ctl->pipeline.intf;
227 
228 	pipeline->start_mask = mdp_ctl_flush_mask_lm(ctl->lm);
229 
230 	/*
231 	 * Writeback encoder needs to program & flush
232 	 * address registers for each page flip..
233 	 */
234 	if (intf->type == INTF_WB)
235 		pipeline->start_mask |= mdp_ctl_flush_mask_encoder(intf);
236 }
237 
238 /**
239  * mdp5_ctl_set_encoder_state() - set the encoder state
240  *
241  * @enable: true, when encoder is ready for data streaming; false, otherwise.
242  *
243  * Note:
244  * This encoder state is needed to trigger START signal (data path kickoff).
245  */
mdp5_ctl_set_encoder_state(struct mdp5_ctl * ctl,bool enabled)246 int mdp5_ctl_set_encoder_state(struct mdp5_ctl *ctl, bool enabled)
247 {
248 	if (WARN_ON(!ctl))
249 		return -EINVAL;
250 
251 	ctl->pipeline.encoder_enabled = enabled;
252 	DBG("intf_%d: %s", ctl->pipeline.intf.num, enabled ? "on" : "off");
253 
254 	if (start_signal_needed(ctl)) {
255 		send_start_signal(ctl);
256 		refill_start_mask(ctl);
257 	}
258 
259 	return 0;
260 }
261 
262 /*
263  * Note:
264  * CTL registers need to be flushed after calling this function
265  * (call mdp5_ctl_commit() with mdp_ctl_flush_mask_ctl() mask)
266  */
mdp5_ctl_set_cursor(struct mdp5_ctl * ctl,int cursor_id,bool enable)267 int mdp5_ctl_set_cursor(struct mdp5_ctl *ctl, int cursor_id, bool enable)
268 {
269 	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
270 	unsigned long flags;
271 	u32 blend_cfg;
272 	int lm = ctl->lm;
273 
274 	if (unlikely(WARN_ON(lm < 0))) {
275 		dev_err(ctl_mgr->dev->dev, "CTL %d cannot find LM: %d",
276 				ctl->id, lm);
277 		return -EINVAL;
278 	}
279 
280 	spin_lock_irqsave(&ctl->hw_lock, flags);
281 
282 	blend_cfg = ctl_read(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, lm));
283 
284 	if (enable)
285 		blend_cfg |=  MDP5_CTL_LAYER_REG_CURSOR_OUT;
286 	else
287 		blend_cfg &= ~MDP5_CTL_LAYER_REG_CURSOR_OUT;
288 
289 	ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, lm), blend_cfg);
290 
291 	spin_unlock_irqrestore(&ctl->hw_lock, flags);
292 
293 	ctl->pending_ctl_trigger = mdp_ctl_flush_mask_cursor(cursor_id);
294 	ctl->cursor_on = enable;
295 
296 	return 0;
297 }
298 
mdp5_ctl_blend(struct mdp5_ctl * ctl,u32 lm,u32 blend_cfg)299 int mdp5_ctl_blend(struct mdp5_ctl *ctl, u32 lm, u32 blend_cfg)
300 {
301 	unsigned long flags;
302 
303 	if (ctl->cursor_on)
304 		blend_cfg |=  MDP5_CTL_LAYER_REG_CURSOR_OUT;
305 	else
306 		blend_cfg &= ~MDP5_CTL_LAYER_REG_CURSOR_OUT;
307 
308 	spin_lock_irqsave(&ctl->hw_lock, flags);
309 	ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, lm), blend_cfg);
310 	spin_unlock_irqrestore(&ctl->hw_lock, flags);
311 
312 	ctl->pending_ctl_trigger = mdp_ctl_flush_mask_lm(lm);
313 
314 	return 0;
315 }
316 
mdp_ctl_flush_mask_encoder(struct mdp5_interface * intf)317 u32 mdp_ctl_flush_mask_encoder(struct mdp5_interface *intf)
318 {
319 	if (intf->type == INTF_WB)
320 		return MDP5_CTL_FLUSH_WB;
321 
322 	switch (intf->num) {
323 	case 0: return MDP5_CTL_FLUSH_TIMING_0;
324 	case 1: return MDP5_CTL_FLUSH_TIMING_1;
325 	case 2: return MDP5_CTL_FLUSH_TIMING_2;
326 	case 3: return MDP5_CTL_FLUSH_TIMING_3;
327 	default: return 0;
328 	}
329 }
330 
mdp_ctl_flush_mask_cursor(int cursor_id)331 u32 mdp_ctl_flush_mask_cursor(int cursor_id)
332 {
333 	switch (cursor_id) {
334 	case 0: return MDP5_CTL_FLUSH_CURSOR_0;
335 	case 1: return MDP5_CTL_FLUSH_CURSOR_1;
336 	default: return 0;
337 	}
338 }
339 
mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe)340 u32 mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe)
341 {
342 	switch (pipe) {
343 	case SSPP_VIG0: return MDP5_CTL_FLUSH_VIG0;
344 	case SSPP_VIG1: return MDP5_CTL_FLUSH_VIG1;
345 	case SSPP_VIG2: return MDP5_CTL_FLUSH_VIG2;
346 	case SSPP_RGB0: return MDP5_CTL_FLUSH_RGB0;
347 	case SSPP_RGB1: return MDP5_CTL_FLUSH_RGB1;
348 	case SSPP_RGB2: return MDP5_CTL_FLUSH_RGB2;
349 	case SSPP_DMA0: return MDP5_CTL_FLUSH_DMA0;
350 	case SSPP_DMA1: return MDP5_CTL_FLUSH_DMA1;
351 	case SSPP_VIG3: return MDP5_CTL_FLUSH_VIG3;
352 	case SSPP_RGB3: return MDP5_CTL_FLUSH_RGB3;
353 	default:        return 0;
354 	}
355 }
356 
mdp_ctl_flush_mask_lm(int lm)357 u32 mdp_ctl_flush_mask_lm(int lm)
358 {
359 	switch (lm) {
360 	case 0:  return MDP5_CTL_FLUSH_LM0;
361 	case 1:  return MDP5_CTL_FLUSH_LM1;
362 	case 2:  return MDP5_CTL_FLUSH_LM2;
363 	case 5:  return MDP5_CTL_FLUSH_LM5;
364 	default: return 0;
365 	}
366 }
367 
fix_sw_flush(struct mdp5_ctl * ctl,u32 flush_mask)368 static u32 fix_sw_flush(struct mdp5_ctl *ctl, u32 flush_mask)
369 {
370 	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
371 	u32 sw_mask = 0;
372 #define BIT_NEEDS_SW_FIX(bit) \
373 	(!(ctl_mgr->flush_hw_mask & bit) && (flush_mask & bit))
374 
375 	/* for some targets, cursor bit is the same as LM bit */
376 	if (BIT_NEEDS_SW_FIX(MDP5_CTL_FLUSH_CURSOR_0))
377 		sw_mask |= mdp_ctl_flush_mask_lm(ctl->lm);
378 
379 	return sw_mask;
380 }
381 
382 /**
383  * mdp5_ctl_commit() - Register Flush
384  *
385  * The flush register is used to indicate several registers are all
386  * programmed, and are safe to update to the back copy of the double
387  * buffered registers.
388  *
389  * Some registers FLUSH bits are shared when the hardware does not have
390  * dedicated bits for them; handling these is the job of fix_sw_flush().
391  *
392  * CTL registers need to be flushed in some circumstances; if that is the
393  * case, some trigger bits will be present in both flush mask and
394  * ctl->pending_ctl_trigger.
395  */
mdp5_ctl_commit(struct mdp5_ctl * ctl,u32 flush_mask)396 int mdp5_ctl_commit(struct mdp5_ctl *ctl, u32 flush_mask)
397 {
398 	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
399 	struct op_mode *pipeline = &ctl->pipeline;
400 	unsigned long flags;
401 
402 	pipeline->start_mask &= ~flush_mask;
403 
404 	VERB("flush_mask=%x, start_mask=%x, trigger=%x", flush_mask,
405 			pipeline->start_mask, ctl->pending_ctl_trigger);
406 
407 	if (ctl->pending_ctl_trigger & flush_mask) {
408 		flush_mask |= MDP5_CTL_FLUSH_CTL;
409 		ctl->pending_ctl_trigger = 0;
410 	}
411 
412 	flush_mask |= fix_sw_flush(ctl, flush_mask);
413 
414 	flush_mask &= ctl_mgr->flush_hw_mask;
415 
416 	if (flush_mask) {
417 		spin_lock_irqsave(&ctl->hw_lock, flags);
418 		ctl_write(ctl, REG_MDP5_CTL_FLUSH(ctl->id), flush_mask);
419 		spin_unlock_irqrestore(&ctl->hw_lock, flags);
420 	}
421 
422 	if (start_signal_needed(ctl)) {
423 		send_start_signal(ctl);
424 		refill_start_mask(ctl);
425 	}
426 
427 	return 0;
428 }
429 
mdp5_ctl_release(struct mdp5_ctl * ctl)430 void mdp5_ctl_release(struct mdp5_ctl *ctl)
431 {
432 	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
433 	unsigned long flags;
434 
435 	if (unlikely(WARN_ON(ctl->id >= MAX_CTL) || !ctl->busy)) {
436 		dev_err(ctl_mgr->dev->dev, "CTL %d in bad state (%d)",
437 				ctl->id, ctl->busy);
438 		return;
439 	}
440 
441 	spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
442 	ctl->busy = false;
443 	spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
444 
445 	DBG("CTL %d released", ctl->id);
446 }
447 
mdp5_ctl_get_ctl_id(struct mdp5_ctl * ctl)448 int mdp5_ctl_get_ctl_id(struct mdp5_ctl *ctl)
449 {
450 	return WARN_ON(!ctl) ? -EINVAL : ctl->id;
451 }
452 
453 /*
454  * mdp5_ctl_request() - CTL dynamic allocation
455  *
456  * Note: Current implementation considers that we can only have one CRTC per CTL
457  *
458  * @return first free CTL
459  */
mdp5_ctlm_request(struct mdp5_ctl_manager * ctl_mgr,struct drm_crtc * crtc)460 struct mdp5_ctl *mdp5_ctlm_request(struct mdp5_ctl_manager *ctl_mgr,
461 		struct drm_crtc *crtc)
462 {
463 	struct mdp5_ctl *ctl = NULL;
464 	unsigned long flags;
465 	int c;
466 
467 	spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
468 
469 	for (c = 0; c < ctl_mgr->nctl; c++)
470 		if (!ctl_mgr->ctls[c].busy)
471 			break;
472 
473 	if (unlikely(c >= ctl_mgr->nctl)) {
474 		dev_err(ctl_mgr->dev->dev, "No more CTL available!");
475 		goto unlock;
476 	}
477 
478 	ctl = &ctl_mgr->ctls[c];
479 
480 	ctl->lm = mdp5_crtc_get_lm(crtc);
481 	ctl->crtc = crtc;
482 	ctl->busy = true;
483 	ctl->pending_ctl_trigger = 0;
484 	DBG("CTL %d allocated", ctl->id);
485 
486 unlock:
487 	spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
488 	return ctl;
489 }
490 
mdp5_ctlm_hw_reset(struct mdp5_ctl_manager * ctl_mgr)491 void mdp5_ctlm_hw_reset(struct mdp5_ctl_manager *ctl_mgr)
492 {
493 	unsigned long flags;
494 	int c;
495 
496 	for (c = 0; c < ctl_mgr->nctl; c++) {
497 		struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];
498 
499 		spin_lock_irqsave(&ctl->hw_lock, flags);
500 		ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), 0);
501 		spin_unlock_irqrestore(&ctl->hw_lock, flags);
502 	}
503 }
504 
mdp5_ctlm_destroy(struct mdp5_ctl_manager * ctl_mgr)505 void mdp5_ctlm_destroy(struct mdp5_ctl_manager *ctl_mgr)
506 {
507 	kfree(ctl_mgr);
508 }
509 
mdp5_ctlm_init(struct drm_device * dev,void __iomem * mmio_base,const struct mdp5_cfg_hw * hw_cfg)510 struct mdp5_ctl_manager *mdp5_ctlm_init(struct drm_device *dev,
511 		void __iomem *mmio_base, const struct mdp5_cfg_hw *hw_cfg)
512 {
513 	struct mdp5_ctl_manager *ctl_mgr;
514 	const struct mdp5_ctl_block *ctl_cfg = &hw_cfg->ctl;
515 	unsigned long flags;
516 	int c, ret;
517 
518 	ctl_mgr = kzalloc(sizeof(*ctl_mgr), GFP_KERNEL);
519 	if (!ctl_mgr) {
520 		dev_err(dev->dev, "failed to allocate CTL manager\n");
521 		ret = -ENOMEM;
522 		goto fail;
523 	}
524 
525 	if (unlikely(WARN_ON(ctl_cfg->count > MAX_CTL))) {
526 		dev_err(dev->dev, "Increase static pool size to at least %d\n",
527 				ctl_cfg->count);
528 		ret = -ENOSPC;
529 		goto fail;
530 	}
531 
532 	/* initialize the CTL manager: */
533 	ctl_mgr->dev = dev;
534 	ctl_mgr->nlm = hw_cfg->lm.count;
535 	ctl_mgr->nctl = ctl_cfg->count;
536 	ctl_mgr->flush_hw_mask = ctl_cfg->flush_hw_mask;
537 	spin_lock_init(&ctl_mgr->pool_lock);
538 
539 	/* initialize each CTL of the pool: */
540 	spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
541 	for (c = 0; c < ctl_mgr->nctl; c++) {
542 		struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];
543 
544 		if (WARN_ON(!ctl_cfg->base[c])) {
545 			dev_err(dev->dev, "CTL_%d: base is null!\n", c);
546 			ret = -EINVAL;
547 			goto fail;
548 		}
549 		ctl->ctlm = ctl_mgr;
550 		ctl->id = c;
551 		ctl->reg_offset = ctl_cfg->base[c];
552 		ctl->busy = false;
553 		spin_lock_init(&ctl->hw_lock);
554 	}
555 	spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
556 	DBG("Pool of %d CTLs created.", ctl_mgr->nctl);
557 
558 	return ctl_mgr;
559 
560 fail:
561 	if (ctl_mgr)
562 		mdp5_ctlm_destroy(ctl_mgr);
563 
564 	return ERR_PTR(ret);
565 }
566