1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57 
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61 
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69 
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74 
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78 
79 static int remove_and_add_spares(struct mddev *mddev,
80 				 struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82 
83 /*
84  * Default number of read corrections we'll attempt on an rdev
85  * before ejecting it from the array. We divide the read error
86  * count by 2 for every hour elapsed between read errors.
87  */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91  * is 1000 KB/sec, so the extra system load does not show up that much.
92  * Increase it if you want to have more _guaranteed_ speed. Note that
93  * the RAID driver will use the maximum available bandwidth if the IO
94  * subsystem is idle. There is also an 'absolute maximum' reconstruction
95  * speed limit - in case reconstruction slows down your system despite
96  * idle IO detection.
97  *
98  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99  * or /sys/block/mdX/md/sync_speed_{min,max}
100  */
101 
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
speed_min(struct mddev * mddev)104 static inline int speed_min(struct mddev *mddev)
105 {
106 	return mddev->sync_speed_min ?
107 		mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109 
speed_max(struct mddev * mddev)110 static inline int speed_max(struct mddev *mddev)
111 {
112 	return mddev->sync_speed_max ?
113 		mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115 
116 static struct ctl_table_header *raid_table_header;
117 
118 static struct ctl_table raid_table[] = {
119 	{
120 		.procname	= "speed_limit_min",
121 		.data		= &sysctl_speed_limit_min,
122 		.maxlen		= sizeof(int),
123 		.mode		= S_IRUGO|S_IWUSR,
124 		.proc_handler	= proc_dointvec,
125 	},
126 	{
127 		.procname	= "speed_limit_max",
128 		.data		= &sysctl_speed_limit_max,
129 		.maxlen		= sizeof(int),
130 		.mode		= S_IRUGO|S_IWUSR,
131 		.proc_handler	= proc_dointvec,
132 	},
133 	{ }
134 };
135 
136 static struct ctl_table raid_dir_table[] = {
137 	{
138 		.procname	= "raid",
139 		.maxlen		= 0,
140 		.mode		= S_IRUGO|S_IXUGO,
141 		.child		= raid_table,
142 	},
143 	{ }
144 };
145 
146 static struct ctl_table raid_root_table[] = {
147 	{
148 		.procname	= "dev",
149 		.maxlen		= 0,
150 		.mode		= 0555,
151 		.child		= raid_dir_table,
152 	},
153 	{  }
154 };
155 
156 static const struct block_device_operations md_fops;
157 
158 static int start_readonly;
159 
160 /* bio_clone_mddev
161  * like bio_clone, but with a local bio set
162  */
163 
bio_alloc_mddev(gfp_t gfp_mask,int nr_iovecs,struct mddev * mddev)164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165 			    struct mddev *mddev)
166 {
167 	struct bio *b;
168 
169 	if (!mddev || !mddev->bio_set)
170 		return bio_alloc(gfp_mask, nr_iovecs);
171 
172 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173 	if (!b)
174 		return NULL;
175 	return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178 
bio_clone_mddev(struct bio * bio,gfp_t gfp_mask,struct mddev * mddev)179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180 			    struct mddev *mddev)
181 {
182 	if (!mddev || !mddev->bio_set)
183 		return bio_clone(bio, gfp_mask);
184 
185 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188 
189 /*
190  * We have a system wide 'event count' that is incremented
191  * on any 'interesting' event, and readers of /proc/mdstat
192  * can use 'poll' or 'select' to find out when the event
193  * count increases.
194  *
195  * Events are:
196  *  start array, stop array, error, add device, remove device,
197  *  start build, activate spare
198  */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
md_new_event(struct mddev * mddev)201 void md_new_event(struct mddev *mddev)
202 {
203 	atomic_inc(&md_event_count);
204 	wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207 
208 /* Alternate version that can be called from interrupts
209  * when calling sysfs_notify isn't needed.
210  */
md_new_event_inintr(struct mddev * mddev)211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213 	atomic_inc(&md_event_count);
214 	wake_up(&md_event_waiters);
215 }
216 
217 /*
218  * Enables to iterate over all existing md arrays
219  * all_mddevs_lock protects this list.
220  */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223 
224 /*
225  * iterates through all used mddevs in the system.
226  * We take care to grab the all_mddevs_lock whenever navigating
227  * the list, and to always hold a refcount when unlocked.
228  * Any code which breaks out of this loop while own
229  * a reference to the current mddev and must mddev_put it.
230  */
231 #define for_each_mddev(_mddev,_tmp)					\
232 									\
233 	for (({ spin_lock(&all_mddevs_lock);				\
234 		_tmp = all_mddevs.next;					\
235 		_mddev = NULL;});					\
236 	     ({ if (_tmp != &all_mddevs)				\
237 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238 		spin_unlock(&all_mddevs_lock);				\
239 		if (_mddev) mddev_put(_mddev);				\
240 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
241 		_tmp != &all_mddevs;});					\
242 	     ({ spin_lock(&all_mddevs_lock);				\
243 		_tmp = _tmp->next;})					\
244 		)
245 
246 /* Rather than calling directly into the personality make_request function,
247  * IO requests come here first so that we can check if the device is
248  * being suspended pending a reconfiguration.
249  * We hold a refcount over the call to ->make_request.  By the time that
250  * call has finished, the bio has been linked into some internal structure
251  * and so is visible to ->quiesce(), so we don't need the refcount any more.
252  */
md_make_request(struct request_queue * q,struct bio * bio)253 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
254 {
255 	const int rw = bio_data_dir(bio);
256 	struct mddev *mddev = q->queuedata;
257 	unsigned int sectors;
258 	int cpu;
259 
260 	blk_queue_split(q, &bio, q->bio_split);
261 
262 	if (mddev == NULL || mddev->pers == NULL
263 	    || !mddev->ready) {
264 		bio_io_error(bio);
265 		return BLK_QC_T_NONE;
266 	}
267 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
268 		if (bio_sectors(bio) != 0)
269 			bio->bi_error = -EROFS;
270 		bio_endio(bio);
271 		return BLK_QC_T_NONE;
272 	}
273 	smp_rmb(); /* Ensure implications of  'active' are visible */
274 	rcu_read_lock();
275 	if (mddev->suspended) {
276 		DEFINE_WAIT(__wait);
277 		for (;;) {
278 			prepare_to_wait(&mddev->sb_wait, &__wait,
279 					TASK_UNINTERRUPTIBLE);
280 			if (!mddev->suspended)
281 				break;
282 			rcu_read_unlock();
283 			schedule();
284 			rcu_read_lock();
285 		}
286 		finish_wait(&mddev->sb_wait, &__wait);
287 	}
288 	atomic_inc(&mddev->active_io);
289 	rcu_read_unlock();
290 
291 	/*
292 	 * save the sectors now since our bio can
293 	 * go away inside make_request
294 	 */
295 	sectors = bio_sectors(bio);
296 	/* bio could be mergeable after passing to underlayer */
297 	bio->bi_rw &= ~REQ_NOMERGE;
298 	mddev->pers->make_request(mddev, bio);
299 
300 	cpu = part_stat_lock();
301 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
302 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
303 	part_stat_unlock();
304 
305 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
306 		wake_up(&mddev->sb_wait);
307 
308 	return BLK_QC_T_NONE;
309 }
310 
311 /* mddev_suspend makes sure no new requests are submitted
312  * to the device, and that any requests that have been submitted
313  * are completely handled.
314  * Once mddev_detach() is called and completes, the module will be
315  * completely unused.
316  */
mddev_suspend(struct mddev * mddev)317 void mddev_suspend(struct mddev *mddev)
318 {
319 	if (mddev->suspended++)
320 		return;
321 	synchronize_rcu();
322 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
323 	mddev->pers->quiesce(mddev, 1);
324 
325 	del_timer_sync(&mddev->safemode_timer);
326 }
327 EXPORT_SYMBOL_GPL(mddev_suspend);
328 
mddev_resume(struct mddev * mddev)329 void mddev_resume(struct mddev *mddev)
330 {
331 	if (--mddev->suspended)
332 		return;
333 	wake_up(&mddev->sb_wait);
334 	mddev->pers->quiesce(mddev, 0);
335 
336 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
337 	md_wakeup_thread(mddev->thread);
338 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
339 }
340 EXPORT_SYMBOL_GPL(mddev_resume);
341 
mddev_congested(struct mddev * mddev,int bits)342 int mddev_congested(struct mddev *mddev, int bits)
343 {
344 	struct md_personality *pers = mddev->pers;
345 	int ret = 0;
346 
347 	rcu_read_lock();
348 	if (mddev->suspended)
349 		ret = 1;
350 	else if (pers && pers->congested)
351 		ret = pers->congested(mddev, bits);
352 	rcu_read_unlock();
353 	return ret;
354 }
355 EXPORT_SYMBOL_GPL(mddev_congested);
md_congested(void * data,int bits)356 static int md_congested(void *data, int bits)
357 {
358 	struct mddev *mddev = data;
359 	return mddev_congested(mddev, bits);
360 }
361 
362 /*
363  * Generic flush handling for md
364  */
365 
md_end_flush(struct bio * bio)366 static void md_end_flush(struct bio *bio)
367 {
368 	struct md_rdev *rdev = bio->bi_private;
369 	struct mddev *mddev = rdev->mddev;
370 
371 	rdev_dec_pending(rdev, mddev);
372 
373 	if (atomic_dec_and_test(&mddev->flush_pending)) {
374 		/* The pre-request flush has finished */
375 		queue_work(md_wq, &mddev->flush_work);
376 	}
377 	bio_put(bio);
378 }
379 
380 static void md_submit_flush_data(struct work_struct *ws);
381 
submit_flushes(struct work_struct * ws)382 static void submit_flushes(struct work_struct *ws)
383 {
384 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
385 	struct md_rdev *rdev;
386 
387 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
388 	atomic_set(&mddev->flush_pending, 1);
389 	rcu_read_lock();
390 	rdev_for_each_rcu(rdev, mddev)
391 		if (rdev->raid_disk >= 0 &&
392 		    !test_bit(Faulty, &rdev->flags)) {
393 			/* Take two references, one is dropped
394 			 * when request finishes, one after
395 			 * we reclaim rcu_read_lock
396 			 */
397 			struct bio *bi;
398 			atomic_inc(&rdev->nr_pending);
399 			atomic_inc(&rdev->nr_pending);
400 			rcu_read_unlock();
401 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
402 			bi->bi_end_io = md_end_flush;
403 			bi->bi_private = rdev;
404 			bi->bi_bdev = rdev->bdev;
405 			atomic_inc(&mddev->flush_pending);
406 			submit_bio(WRITE_FLUSH, bi);
407 			rcu_read_lock();
408 			rdev_dec_pending(rdev, mddev);
409 		}
410 	rcu_read_unlock();
411 	if (atomic_dec_and_test(&mddev->flush_pending))
412 		queue_work(md_wq, &mddev->flush_work);
413 }
414 
md_submit_flush_data(struct work_struct * ws)415 static void md_submit_flush_data(struct work_struct *ws)
416 {
417 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
418 	struct bio *bio = mddev->flush_bio;
419 
420 	if (bio->bi_iter.bi_size == 0)
421 		/* an empty barrier - all done */
422 		bio_endio(bio);
423 	else {
424 		bio->bi_rw &= ~REQ_FLUSH;
425 		mddev->pers->make_request(mddev, bio);
426 	}
427 
428 	mddev->flush_bio = NULL;
429 	wake_up(&mddev->sb_wait);
430 }
431 
md_flush_request(struct mddev * mddev,struct bio * bio)432 void md_flush_request(struct mddev *mddev, struct bio *bio)
433 {
434 	spin_lock_irq(&mddev->lock);
435 	wait_event_lock_irq(mddev->sb_wait,
436 			    !mddev->flush_bio,
437 			    mddev->lock);
438 	mddev->flush_bio = bio;
439 	spin_unlock_irq(&mddev->lock);
440 
441 	INIT_WORK(&mddev->flush_work, submit_flushes);
442 	queue_work(md_wq, &mddev->flush_work);
443 }
444 EXPORT_SYMBOL(md_flush_request);
445 
md_unplug(struct blk_plug_cb * cb,bool from_schedule)446 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
447 {
448 	struct mddev *mddev = cb->data;
449 	md_wakeup_thread(mddev->thread);
450 	kfree(cb);
451 }
452 EXPORT_SYMBOL(md_unplug);
453 
mddev_get(struct mddev * mddev)454 static inline struct mddev *mddev_get(struct mddev *mddev)
455 {
456 	atomic_inc(&mddev->active);
457 	return mddev;
458 }
459 
460 static void mddev_delayed_delete(struct work_struct *ws);
461 
mddev_put(struct mddev * mddev)462 static void mddev_put(struct mddev *mddev)
463 {
464 	struct bio_set *bs = NULL;
465 
466 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
467 		return;
468 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
469 	    mddev->ctime == 0 && !mddev->hold_active) {
470 		/* Array is not configured at all, and not held active,
471 		 * so destroy it */
472 		list_del_init(&mddev->all_mddevs);
473 		bs = mddev->bio_set;
474 		mddev->bio_set = NULL;
475 		if (mddev->gendisk) {
476 			/* We did a probe so need to clean up.  Call
477 			 * queue_work inside the spinlock so that
478 			 * flush_workqueue() after mddev_find will
479 			 * succeed in waiting for the work to be done.
480 			 */
481 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
482 			queue_work(md_misc_wq, &mddev->del_work);
483 		} else
484 			kfree(mddev);
485 	}
486 	spin_unlock(&all_mddevs_lock);
487 	if (bs)
488 		bioset_free(bs);
489 }
490 
491 static void md_safemode_timeout(unsigned long data);
492 
mddev_init(struct mddev * mddev)493 void mddev_init(struct mddev *mddev)
494 {
495 	mutex_init(&mddev->open_mutex);
496 	mutex_init(&mddev->reconfig_mutex);
497 	mutex_init(&mddev->bitmap_info.mutex);
498 	INIT_LIST_HEAD(&mddev->disks);
499 	INIT_LIST_HEAD(&mddev->all_mddevs);
500 	setup_timer(&mddev->safemode_timer, md_safemode_timeout,
501 		    (unsigned long) mddev);
502 	atomic_set(&mddev->active, 1);
503 	atomic_set(&mddev->openers, 0);
504 	atomic_set(&mddev->active_io, 0);
505 	spin_lock_init(&mddev->lock);
506 	atomic_set(&mddev->flush_pending, 0);
507 	init_waitqueue_head(&mddev->sb_wait);
508 	init_waitqueue_head(&mddev->recovery_wait);
509 	mddev->reshape_position = MaxSector;
510 	mddev->reshape_backwards = 0;
511 	mddev->last_sync_action = "none";
512 	mddev->resync_min = 0;
513 	mddev->resync_max = MaxSector;
514 	mddev->level = LEVEL_NONE;
515 }
516 EXPORT_SYMBOL_GPL(mddev_init);
517 
mddev_find(dev_t unit)518 static struct mddev *mddev_find(dev_t unit)
519 {
520 	struct mddev *mddev, *new = NULL;
521 
522 	if (unit && MAJOR(unit) != MD_MAJOR)
523 		unit &= ~((1<<MdpMinorShift)-1);
524 
525  retry:
526 	spin_lock(&all_mddevs_lock);
527 
528 	if (unit) {
529 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
530 			if (mddev->unit == unit) {
531 				mddev_get(mddev);
532 				spin_unlock(&all_mddevs_lock);
533 				kfree(new);
534 				return mddev;
535 			}
536 
537 		if (new) {
538 			list_add(&new->all_mddevs, &all_mddevs);
539 			spin_unlock(&all_mddevs_lock);
540 			new->hold_active = UNTIL_IOCTL;
541 			return new;
542 		}
543 	} else if (new) {
544 		/* find an unused unit number */
545 		static int next_minor = 512;
546 		int start = next_minor;
547 		int is_free = 0;
548 		int dev = 0;
549 		while (!is_free) {
550 			dev = MKDEV(MD_MAJOR, next_minor);
551 			next_minor++;
552 			if (next_minor > MINORMASK)
553 				next_minor = 0;
554 			if (next_minor == start) {
555 				/* Oh dear, all in use. */
556 				spin_unlock(&all_mddevs_lock);
557 				kfree(new);
558 				return NULL;
559 			}
560 
561 			is_free = 1;
562 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
563 				if (mddev->unit == dev) {
564 					is_free = 0;
565 					break;
566 				}
567 		}
568 		new->unit = dev;
569 		new->md_minor = MINOR(dev);
570 		new->hold_active = UNTIL_STOP;
571 		list_add(&new->all_mddevs, &all_mddevs);
572 		spin_unlock(&all_mddevs_lock);
573 		return new;
574 	}
575 	spin_unlock(&all_mddevs_lock);
576 
577 	new = kzalloc(sizeof(*new), GFP_KERNEL);
578 	if (!new)
579 		return NULL;
580 
581 	new->unit = unit;
582 	if (MAJOR(unit) == MD_MAJOR)
583 		new->md_minor = MINOR(unit);
584 	else
585 		new->md_minor = MINOR(unit) >> MdpMinorShift;
586 
587 	mddev_init(new);
588 
589 	goto retry;
590 }
591 
592 static struct attribute_group md_redundancy_group;
593 
mddev_unlock(struct mddev * mddev)594 void mddev_unlock(struct mddev *mddev)
595 {
596 	if (mddev->to_remove) {
597 		/* These cannot be removed under reconfig_mutex as
598 		 * an access to the files will try to take reconfig_mutex
599 		 * while holding the file unremovable, which leads to
600 		 * a deadlock.
601 		 * So hold set sysfs_active while the remove in happeing,
602 		 * and anything else which might set ->to_remove or my
603 		 * otherwise change the sysfs namespace will fail with
604 		 * -EBUSY if sysfs_active is still set.
605 		 * We set sysfs_active under reconfig_mutex and elsewhere
606 		 * test it under the same mutex to ensure its correct value
607 		 * is seen.
608 		 */
609 		struct attribute_group *to_remove = mddev->to_remove;
610 		mddev->to_remove = NULL;
611 		mddev->sysfs_active = 1;
612 		mutex_unlock(&mddev->reconfig_mutex);
613 
614 		if (mddev->kobj.sd) {
615 			if (to_remove != &md_redundancy_group)
616 				sysfs_remove_group(&mddev->kobj, to_remove);
617 			if (mddev->pers == NULL ||
618 			    mddev->pers->sync_request == NULL) {
619 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
620 				if (mddev->sysfs_action)
621 					sysfs_put(mddev->sysfs_action);
622 				mddev->sysfs_action = NULL;
623 			}
624 		}
625 		mddev->sysfs_active = 0;
626 	} else
627 		mutex_unlock(&mddev->reconfig_mutex);
628 
629 	/* As we've dropped the mutex we need a spinlock to
630 	 * make sure the thread doesn't disappear
631 	 */
632 	spin_lock(&pers_lock);
633 	md_wakeup_thread(mddev->thread);
634 	spin_unlock(&pers_lock);
635 }
636 EXPORT_SYMBOL_GPL(mddev_unlock);
637 
md_find_rdev_nr_rcu(struct mddev * mddev,int nr)638 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
639 {
640 	struct md_rdev *rdev;
641 
642 	rdev_for_each_rcu(rdev, mddev)
643 		if (rdev->desc_nr == nr)
644 			return rdev;
645 
646 	return NULL;
647 }
648 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
649 
find_rdev(struct mddev * mddev,dev_t dev)650 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
651 {
652 	struct md_rdev *rdev;
653 
654 	rdev_for_each(rdev, mddev)
655 		if (rdev->bdev->bd_dev == dev)
656 			return rdev;
657 
658 	return NULL;
659 }
660 
find_rdev_rcu(struct mddev * mddev,dev_t dev)661 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
662 {
663 	struct md_rdev *rdev;
664 
665 	rdev_for_each_rcu(rdev, mddev)
666 		if (rdev->bdev->bd_dev == dev)
667 			return rdev;
668 
669 	return NULL;
670 }
671 
find_pers(int level,char * clevel)672 static struct md_personality *find_pers(int level, char *clevel)
673 {
674 	struct md_personality *pers;
675 	list_for_each_entry(pers, &pers_list, list) {
676 		if (level != LEVEL_NONE && pers->level == level)
677 			return pers;
678 		if (strcmp(pers->name, clevel)==0)
679 			return pers;
680 	}
681 	return NULL;
682 }
683 
684 /* return the offset of the super block in 512byte sectors */
calc_dev_sboffset(struct md_rdev * rdev)685 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
686 {
687 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
688 	return MD_NEW_SIZE_SECTORS(num_sectors);
689 }
690 
alloc_disk_sb(struct md_rdev * rdev)691 static int alloc_disk_sb(struct md_rdev *rdev)
692 {
693 	rdev->sb_page = alloc_page(GFP_KERNEL);
694 	if (!rdev->sb_page) {
695 		printk(KERN_ALERT "md: out of memory.\n");
696 		return -ENOMEM;
697 	}
698 
699 	return 0;
700 }
701 
md_rdev_clear(struct md_rdev * rdev)702 void md_rdev_clear(struct md_rdev *rdev)
703 {
704 	if (rdev->sb_page) {
705 		put_page(rdev->sb_page);
706 		rdev->sb_loaded = 0;
707 		rdev->sb_page = NULL;
708 		rdev->sb_start = 0;
709 		rdev->sectors = 0;
710 	}
711 	if (rdev->bb_page) {
712 		put_page(rdev->bb_page);
713 		rdev->bb_page = NULL;
714 	}
715 	kfree(rdev->badblocks.page);
716 	rdev->badblocks.page = NULL;
717 }
718 EXPORT_SYMBOL_GPL(md_rdev_clear);
719 
super_written(struct bio * bio)720 static void super_written(struct bio *bio)
721 {
722 	struct md_rdev *rdev = bio->bi_private;
723 	struct mddev *mddev = rdev->mddev;
724 
725 	if (bio->bi_error) {
726 		printk("md: super_written gets error=%d\n", bio->bi_error);
727 		md_error(mddev, rdev);
728 	}
729 
730 	if (atomic_dec_and_test(&mddev->pending_writes))
731 		wake_up(&mddev->sb_wait);
732 	bio_put(bio);
733 }
734 
md_super_write(struct mddev * mddev,struct md_rdev * rdev,sector_t sector,int size,struct page * page)735 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
736 		   sector_t sector, int size, struct page *page)
737 {
738 	/* write first size bytes of page to sector of rdev
739 	 * Increment mddev->pending_writes before returning
740 	 * and decrement it on completion, waking up sb_wait
741 	 * if zero is reached.
742 	 * If an error occurred, call md_error
743 	 */
744 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
745 
746 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
747 	bio->bi_iter.bi_sector = sector;
748 	bio_add_page(bio, page, size, 0);
749 	bio->bi_private = rdev;
750 	bio->bi_end_io = super_written;
751 
752 	atomic_inc(&mddev->pending_writes);
753 	submit_bio(WRITE_FLUSH_FUA, bio);
754 }
755 
md_super_wait(struct mddev * mddev)756 void md_super_wait(struct mddev *mddev)
757 {
758 	/* wait for all superblock writes that were scheduled to complete */
759 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
760 }
761 
sync_page_io(struct md_rdev * rdev,sector_t sector,int size,struct page * page,int rw,bool metadata_op)762 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
763 		 struct page *page, int rw, bool metadata_op)
764 {
765 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
766 	int ret;
767 
768 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
769 		rdev->meta_bdev : rdev->bdev;
770 	if (metadata_op)
771 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
772 	else if (rdev->mddev->reshape_position != MaxSector &&
773 		 (rdev->mddev->reshape_backwards ==
774 		  (sector >= rdev->mddev->reshape_position)))
775 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
776 	else
777 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
778 	bio_add_page(bio, page, size, 0);
779 	submit_bio_wait(rw, bio);
780 
781 	ret = !bio->bi_error;
782 	bio_put(bio);
783 	return ret;
784 }
785 EXPORT_SYMBOL_GPL(sync_page_io);
786 
read_disk_sb(struct md_rdev * rdev,int size)787 static int read_disk_sb(struct md_rdev *rdev, int size)
788 {
789 	char b[BDEVNAME_SIZE];
790 
791 	if (rdev->sb_loaded)
792 		return 0;
793 
794 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
795 		goto fail;
796 	rdev->sb_loaded = 1;
797 	return 0;
798 
799 fail:
800 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
801 		bdevname(rdev->bdev,b));
802 	return -EINVAL;
803 }
804 
uuid_equal(mdp_super_t * sb1,mdp_super_t * sb2)805 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
806 {
807 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
808 		sb1->set_uuid1 == sb2->set_uuid1 &&
809 		sb1->set_uuid2 == sb2->set_uuid2 &&
810 		sb1->set_uuid3 == sb2->set_uuid3;
811 }
812 
sb_equal(mdp_super_t * sb1,mdp_super_t * sb2)813 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
814 {
815 	int ret;
816 	mdp_super_t *tmp1, *tmp2;
817 
818 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
819 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
820 
821 	if (!tmp1 || !tmp2) {
822 		ret = 0;
823 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
824 		goto abort;
825 	}
826 
827 	*tmp1 = *sb1;
828 	*tmp2 = *sb2;
829 
830 	/*
831 	 * nr_disks is not constant
832 	 */
833 	tmp1->nr_disks = 0;
834 	tmp2->nr_disks = 0;
835 
836 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
837 abort:
838 	kfree(tmp1);
839 	kfree(tmp2);
840 	return ret;
841 }
842 
md_csum_fold(u32 csum)843 static u32 md_csum_fold(u32 csum)
844 {
845 	csum = (csum & 0xffff) + (csum >> 16);
846 	return (csum & 0xffff) + (csum >> 16);
847 }
848 
calc_sb_csum(mdp_super_t * sb)849 static unsigned int calc_sb_csum(mdp_super_t *sb)
850 {
851 	u64 newcsum = 0;
852 	u32 *sb32 = (u32*)sb;
853 	int i;
854 	unsigned int disk_csum, csum;
855 
856 	disk_csum = sb->sb_csum;
857 	sb->sb_csum = 0;
858 
859 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
860 		newcsum += sb32[i];
861 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
862 
863 #ifdef CONFIG_ALPHA
864 	/* This used to use csum_partial, which was wrong for several
865 	 * reasons including that different results are returned on
866 	 * different architectures.  It isn't critical that we get exactly
867 	 * the same return value as before (we always csum_fold before
868 	 * testing, and that removes any differences).  However as we
869 	 * know that csum_partial always returned a 16bit value on
870 	 * alphas, do a fold to maximise conformity to previous behaviour.
871 	 */
872 	sb->sb_csum = md_csum_fold(disk_csum);
873 #else
874 	sb->sb_csum = disk_csum;
875 #endif
876 	return csum;
877 }
878 
879 /*
880  * Handle superblock details.
881  * We want to be able to handle multiple superblock formats
882  * so we have a common interface to them all, and an array of
883  * different handlers.
884  * We rely on user-space to write the initial superblock, and support
885  * reading and updating of superblocks.
886  * Interface methods are:
887  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
888  *      loads and validates a superblock on dev.
889  *      if refdev != NULL, compare superblocks on both devices
890  *    Return:
891  *      0 - dev has a superblock that is compatible with refdev
892  *      1 - dev has a superblock that is compatible and newer than refdev
893  *          so dev should be used as the refdev in future
894  *     -EINVAL superblock incompatible or invalid
895  *     -othererror e.g. -EIO
896  *
897  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
898  *      Verify that dev is acceptable into mddev.
899  *       The first time, mddev->raid_disks will be 0, and data from
900  *       dev should be merged in.  Subsequent calls check that dev
901  *       is new enough.  Return 0 or -EINVAL
902  *
903  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
904  *     Update the superblock for rdev with data in mddev
905  *     This does not write to disc.
906  *
907  */
908 
909 struct super_type  {
910 	char		    *name;
911 	struct module	    *owner;
912 	int		    (*load_super)(struct md_rdev *rdev,
913 					  struct md_rdev *refdev,
914 					  int minor_version);
915 	int		    (*validate_super)(struct mddev *mddev,
916 					      struct md_rdev *rdev);
917 	void		    (*sync_super)(struct mddev *mddev,
918 					  struct md_rdev *rdev);
919 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
920 						sector_t num_sectors);
921 	int		    (*allow_new_offset)(struct md_rdev *rdev,
922 						unsigned long long new_offset);
923 };
924 
925 /*
926  * Check that the given mddev has no bitmap.
927  *
928  * This function is called from the run method of all personalities that do not
929  * support bitmaps. It prints an error message and returns non-zero if mddev
930  * has a bitmap. Otherwise, it returns 0.
931  *
932  */
md_check_no_bitmap(struct mddev * mddev)933 int md_check_no_bitmap(struct mddev *mddev)
934 {
935 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
936 		return 0;
937 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
938 		mdname(mddev), mddev->pers->name);
939 	return 1;
940 }
941 EXPORT_SYMBOL(md_check_no_bitmap);
942 
943 /*
944  * load_super for 0.90.0
945  */
super_90_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)946 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
947 {
948 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
949 	mdp_super_t *sb;
950 	int ret;
951 
952 	/*
953 	 * Calculate the position of the superblock (512byte sectors),
954 	 * it's at the end of the disk.
955 	 *
956 	 * It also happens to be a multiple of 4Kb.
957 	 */
958 	rdev->sb_start = calc_dev_sboffset(rdev);
959 
960 	ret = read_disk_sb(rdev, MD_SB_BYTES);
961 	if (ret) return ret;
962 
963 	ret = -EINVAL;
964 
965 	bdevname(rdev->bdev, b);
966 	sb = page_address(rdev->sb_page);
967 
968 	if (sb->md_magic != MD_SB_MAGIC) {
969 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
970 		       b);
971 		goto abort;
972 	}
973 
974 	if (sb->major_version != 0 ||
975 	    sb->minor_version < 90 ||
976 	    sb->minor_version > 91) {
977 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
978 			sb->major_version, sb->minor_version,
979 			b);
980 		goto abort;
981 	}
982 
983 	if (sb->raid_disks <= 0)
984 		goto abort;
985 
986 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
987 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
988 			b);
989 		goto abort;
990 	}
991 
992 	rdev->preferred_minor = sb->md_minor;
993 	rdev->data_offset = 0;
994 	rdev->new_data_offset = 0;
995 	rdev->sb_size = MD_SB_BYTES;
996 	rdev->badblocks.shift = -1;
997 
998 	if (sb->level == LEVEL_MULTIPATH)
999 		rdev->desc_nr = -1;
1000 	else
1001 		rdev->desc_nr = sb->this_disk.number;
1002 
1003 	if (!refdev) {
1004 		ret = 1;
1005 	} else {
1006 		__u64 ev1, ev2;
1007 		mdp_super_t *refsb = page_address(refdev->sb_page);
1008 		if (!uuid_equal(refsb, sb)) {
1009 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1010 				b, bdevname(refdev->bdev,b2));
1011 			goto abort;
1012 		}
1013 		if (!sb_equal(refsb, sb)) {
1014 			printk(KERN_WARNING "md: %s has same UUID"
1015 			       " but different superblock to %s\n",
1016 			       b, bdevname(refdev->bdev, b2));
1017 			goto abort;
1018 		}
1019 		ev1 = md_event(sb);
1020 		ev2 = md_event(refsb);
1021 		if (ev1 > ev2)
1022 			ret = 1;
1023 		else
1024 			ret = 0;
1025 	}
1026 	rdev->sectors = rdev->sb_start;
1027 	/* Limit to 4TB as metadata cannot record more than that.
1028 	 * (not needed for Linear and RAID0 as metadata doesn't
1029 	 * record this size)
1030 	 */
1031 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1032 		rdev->sectors = (2ULL << 32) - 2;
1033 
1034 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1035 		/* "this cannot possibly happen" ... */
1036 		ret = -EINVAL;
1037 
1038  abort:
1039 	return ret;
1040 }
1041 
1042 /*
1043  * validate_super for 0.90.0
1044  */
super_90_validate(struct mddev * mddev,struct md_rdev * rdev)1045 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1046 {
1047 	mdp_disk_t *desc;
1048 	mdp_super_t *sb = page_address(rdev->sb_page);
1049 	__u64 ev1 = md_event(sb);
1050 
1051 	rdev->raid_disk = -1;
1052 	clear_bit(Faulty, &rdev->flags);
1053 	clear_bit(In_sync, &rdev->flags);
1054 	clear_bit(Bitmap_sync, &rdev->flags);
1055 	clear_bit(WriteMostly, &rdev->flags);
1056 
1057 	if (mddev->raid_disks == 0) {
1058 		mddev->major_version = 0;
1059 		mddev->minor_version = sb->minor_version;
1060 		mddev->patch_version = sb->patch_version;
1061 		mddev->external = 0;
1062 		mddev->chunk_sectors = sb->chunk_size >> 9;
1063 		mddev->ctime = sb->ctime;
1064 		mddev->utime = sb->utime;
1065 		mddev->level = sb->level;
1066 		mddev->clevel[0] = 0;
1067 		mddev->layout = sb->layout;
1068 		mddev->raid_disks = sb->raid_disks;
1069 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1070 		mddev->events = ev1;
1071 		mddev->bitmap_info.offset = 0;
1072 		mddev->bitmap_info.space = 0;
1073 		/* bitmap can use 60 K after the 4K superblocks */
1074 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1075 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1076 		mddev->reshape_backwards = 0;
1077 
1078 		if (mddev->minor_version >= 91) {
1079 			mddev->reshape_position = sb->reshape_position;
1080 			mddev->delta_disks = sb->delta_disks;
1081 			mddev->new_level = sb->new_level;
1082 			mddev->new_layout = sb->new_layout;
1083 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1084 			if (mddev->delta_disks < 0)
1085 				mddev->reshape_backwards = 1;
1086 		} else {
1087 			mddev->reshape_position = MaxSector;
1088 			mddev->delta_disks = 0;
1089 			mddev->new_level = mddev->level;
1090 			mddev->new_layout = mddev->layout;
1091 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1092 		}
1093 
1094 		if (sb->state & (1<<MD_SB_CLEAN))
1095 			mddev->recovery_cp = MaxSector;
1096 		else {
1097 			if (sb->events_hi == sb->cp_events_hi &&
1098 				sb->events_lo == sb->cp_events_lo) {
1099 				mddev->recovery_cp = sb->recovery_cp;
1100 			} else
1101 				mddev->recovery_cp = 0;
1102 		}
1103 
1104 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1105 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1106 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1107 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1108 
1109 		mddev->max_disks = MD_SB_DISKS;
1110 
1111 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1112 		    mddev->bitmap_info.file == NULL) {
1113 			mddev->bitmap_info.offset =
1114 				mddev->bitmap_info.default_offset;
1115 			mddev->bitmap_info.space =
1116 				mddev->bitmap_info.default_space;
1117 		}
1118 
1119 	} else if (mddev->pers == NULL) {
1120 		/* Insist on good event counter while assembling, except
1121 		 * for spares (which don't need an event count) */
1122 		++ev1;
1123 		if (sb->disks[rdev->desc_nr].state & (
1124 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1125 			if (ev1 < mddev->events)
1126 				return -EINVAL;
1127 	} else if (mddev->bitmap) {
1128 		/* if adding to array with a bitmap, then we can accept an
1129 		 * older device ... but not too old.
1130 		 */
1131 		if (ev1 < mddev->bitmap->events_cleared)
1132 			return 0;
1133 		if (ev1 < mddev->events)
1134 			set_bit(Bitmap_sync, &rdev->flags);
1135 	} else {
1136 		if (ev1 < mddev->events)
1137 			/* just a hot-add of a new device, leave raid_disk at -1 */
1138 			return 0;
1139 	}
1140 
1141 	if (mddev->level != LEVEL_MULTIPATH) {
1142 		desc = sb->disks + rdev->desc_nr;
1143 
1144 		if (desc->state & (1<<MD_DISK_FAULTY))
1145 			set_bit(Faulty, &rdev->flags);
1146 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1147 			    desc->raid_disk < mddev->raid_disks */) {
1148 			set_bit(In_sync, &rdev->flags);
1149 			rdev->raid_disk = desc->raid_disk;
1150 			rdev->saved_raid_disk = desc->raid_disk;
1151 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1152 			/* active but not in sync implies recovery up to
1153 			 * reshape position.  We don't know exactly where
1154 			 * that is, so set to zero for now */
1155 			if (mddev->minor_version >= 91) {
1156 				rdev->recovery_offset = 0;
1157 				rdev->raid_disk = desc->raid_disk;
1158 			}
1159 		}
1160 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1161 			set_bit(WriteMostly, &rdev->flags);
1162 	} else /* MULTIPATH are always insync */
1163 		set_bit(In_sync, &rdev->flags);
1164 	return 0;
1165 }
1166 
1167 /*
1168  * sync_super for 0.90.0
1169  */
super_90_sync(struct mddev * mddev,struct md_rdev * rdev)1170 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1171 {
1172 	mdp_super_t *sb;
1173 	struct md_rdev *rdev2;
1174 	int next_spare = mddev->raid_disks;
1175 
1176 	/* make rdev->sb match mddev data..
1177 	 *
1178 	 * 1/ zero out disks
1179 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1180 	 * 3/ any empty disks < next_spare become removed
1181 	 *
1182 	 * disks[0] gets initialised to REMOVED because
1183 	 * we cannot be sure from other fields if it has
1184 	 * been initialised or not.
1185 	 */
1186 	int i;
1187 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1188 
1189 	rdev->sb_size = MD_SB_BYTES;
1190 
1191 	sb = page_address(rdev->sb_page);
1192 
1193 	memset(sb, 0, sizeof(*sb));
1194 
1195 	sb->md_magic = MD_SB_MAGIC;
1196 	sb->major_version = mddev->major_version;
1197 	sb->patch_version = mddev->patch_version;
1198 	sb->gvalid_words  = 0; /* ignored */
1199 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1200 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1201 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1202 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1203 
1204 	sb->ctime = mddev->ctime;
1205 	sb->level = mddev->level;
1206 	sb->size = mddev->dev_sectors / 2;
1207 	sb->raid_disks = mddev->raid_disks;
1208 	sb->md_minor = mddev->md_minor;
1209 	sb->not_persistent = 0;
1210 	sb->utime = mddev->utime;
1211 	sb->state = 0;
1212 	sb->events_hi = (mddev->events>>32);
1213 	sb->events_lo = (u32)mddev->events;
1214 
1215 	if (mddev->reshape_position == MaxSector)
1216 		sb->minor_version = 90;
1217 	else {
1218 		sb->minor_version = 91;
1219 		sb->reshape_position = mddev->reshape_position;
1220 		sb->new_level = mddev->new_level;
1221 		sb->delta_disks = mddev->delta_disks;
1222 		sb->new_layout = mddev->new_layout;
1223 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1224 	}
1225 	mddev->minor_version = sb->minor_version;
1226 	if (mddev->in_sync)
1227 	{
1228 		sb->recovery_cp = mddev->recovery_cp;
1229 		sb->cp_events_hi = (mddev->events>>32);
1230 		sb->cp_events_lo = (u32)mddev->events;
1231 		if (mddev->recovery_cp == MaxSector)
1232 			sb->state = (1<< MD_SB_CLEAN);
1233 	} else
1234 		sb->recovery_cp = 0;
1235 
1236 	sb->layout = mddev->layout;
1237 	sb->chunk_size = mddev->chunk_sectors << 9;
1238 
1239 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1240 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1241 
1242 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1243 	rdev_for_each(rdev2, mddev) {
1244 		mdp_disk_t *d;
1245 		int desc_nr;
1246 		int is_active = test_bit(In_sync, &rdev2->flags);
1247 
1248 		if (rdev2->raid_disk >= 0 &&
1249 		    sb->minor_version >= 91)
1250 			/* we have nowhere to store the recovery_offset,
1251 			 * but if it is not below the reshape_position,
1252 			 * we can piggy-back on that.
1253 			 */
1254 			is_active = 1;
1255 		if (rdev2->raid_disk < 0 ||
1256 		    test_bit(Faulty, &rdev2->flags))
1257 			is_active = 0;
1258 		if (is_active)
1259 			desc_nr = rdev2->raid_disk;
1260 		else
1261 			desc_nr = next_spare++;
1262 		rdev2->desc_nr = desc_nr;
1263 		d = &sb->disks[rdev2->desc_nr];
1264 		nr_disks++;
1265 		d->number = rdev2->desc_nr;
1266 		d->major = MAJOR(rdev2->bdev->bd_dev);
1267 		d->minor = MINOR(rdev2->bdev->bd_dev);
1268 		if (is_active)
1269 			d->raid_disk = rdev2->raid_disk;
1270 		else
1271 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1272 		if (test_bit(Faulty, &rdev2->flags))
1273 			d->state = (1<<MD_DISK_FAULTY);
1274 		else if (is_active) {
1275 			d->state = (1<<MD_DISK_ACTIVE);
1276 			if (test_bit(In_sync, &rdev2->flags))
1277 				d->state |= (1<<MD_DISK_SYNC);
1278 			active++;
1279 			working++;
1280 		} else {
1281 			d->state = 0;
1282 			spare++;
1283 			working++;
1284 		}
1285 		if (test_bit(WriteMostly, &rdev2->flags))
1286 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1287 	}
1288 	/* now set the "removed" and "faulty" bits on any missing devices */
1289 	for (i=0 ; i < mddev->raid_disks ; i++) {
1290 		mdp_disk_t *d = &sb->disks[i];
1291 		if (d->state == 0 && d->number == 0) {
1292 			d->number = i;
1293 			d->raid_disk = i;
1294 			d->state = (1<<MD_DISK_REMOVED);
1295 			d->state |= (1<<MD_DISK_FAULTY);
1296 			failed++;
1297 		}
1298 	}
1299 	sb->nr_disks = nr_disks;
1300 	sb->active_disks = active;
1301 	sb->working_disks = working;
1302 	sb->failed_disks = failed;
1303 	sb->spare_disks = spare;
1304 
1305 	sb->this_disk = sb->disks[rdev->desc_nr];
1306 	sb->sb_csum = calc_sb_csum(sb);
1307 }
1308 
1309 /*
1310  * rdev_size_change for 0.90.0
1311  */
1312 static unsigned long long
super_90_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1313 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1314 {
1315 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1316 		return 0; /* component must fit device */
1317 	if (rdev->mddev->bitmap_info.offset)
1318 		return 0; /* can't move bitmap */
1319 	rdev->sb_start = calc_dev_sboffset(rdev);
1320 	if (!num_sectors || num_sectors > rdev->sb_start)
1321 		num_sectors = rdev->sb_start;
1322 	/* Limit to 4TB as metadata cannot record more than that.
1323 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1324 	 */
1325 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1326 		num_sectors = (2ULL << 32) - 2;
1327 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1328 		       rdev->sb_page);
1329 	md_super_wait(rdev->mddev);
1330 	return num_sectors;
1331 }
1332 
1333 static int
super_90_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1334 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1335 {
1336 	/* non-zero offset changes not possible with v0.90 */
1337 	return new_offset == 0;
1338 }
1339 
1340 /*
1341  * version 1 superblock
1342  */
1343 
calc_sb_1_csum(struct mdp_superblock_1 * sb)1344 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1345 {
1346 	__le32 disk_csum;
1347 	u32 csum;
1348 	unsigned long long newcsum;
1349 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1350 	__le32 *isuper = (__le32*)sb;
1351 
1352 	disk_csum = sb->sb_csum;
1353 	sb->sb_csum = 0;
1354 	newcsum = 0;
1355 	for (; size >= 4; size -= 4)
1356 		newcsum += le32_to_cpu(*isuper++);
1357 
1358 	if (size == 2)
1359 		newcsum += le16_to_cpu(*(__le16*) isuper);
1360 
1361 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1362 	sb->sb_csum = disk_csum;
1363 	return cpu_to_le32(csum);
1364 }
1365 
1366 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1367 			    int acknowledged);
super_1_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1368 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1369 {
1370 	struct mdp_superblock_1 *sb;
1371 	int ret;
1372 	sector_t sb_start;
1373 	sector_t sectors;
1374 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1375 	int bmask;
1376 
1377 	/*
1378 	 * Calculate the position of the superblock in 512byte sectors.
1379 	 * It is always aligned to a 4K boundary and
1380 	 * depeding on minor_version, it can be:
1381 	 * 0: At least 8K, but less than 12K, from end of device
1382 	 * 1: At start of device
1383 	 * 2: 4K from start of device.
1384 	 */
1385 	switch(minor_version) {
1386 	case 0:
1387 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1388 		sb_start -= 8*2;
1389 		sb_start &= ~(sector_t)(4*2-1);
1390 		break;
1391 	case 1:
1392 		sb_start = 0;
1393 		break;
1394 	case 2:
1395 		sb_start = 8;
1396 		break;
1397 	default:
1398 		return -EINVAL;
1399 	}
1400 	rdev->sb_start = sb_start;
1401 
1402 	/* superblock is rarely larger than 1K, but it can be larger,
1403 	 * and it is safe to read 4k, so we do that
1404 	 */
1405 	ret = read_disk_sb(rdev, 4096);
1406 	if (ret) return ret;
1407 
1408 	sb = page_address(rdev->sb_page);
1409 
1410 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1411 	    sb->major_version != cpu_to_le32(1) ||
1412 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1413 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1414 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1415 		return -EINVAL;
1416 
1417 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1418 		printk("md: invalid superblock checksum on %s\n",
1419 			bdevname(rdev->bdev,b));
1420 		return -EINVAL;
1421 	}
1422 	if (le64_to_cpu(sb->data_size) < 10) {
1423 		printk("md: data_size too small on %s\n",
1424 		       bdevname(rdev->bdev,b));
1425 		return -EINVAL;
1426 	}
1427 	if (sb->pad0 ||
1428 	    sb->pad3[0] ||
1429 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1430 		/* Some padding is non-zero, might be a new feature */
1431 		return -EINVAL;
1432 
1433 	rdev->preferred_minor = 0xffff;
1434 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1435 	rdev->new_data_offset = rdev->data_offset;
1436 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1437 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1438 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1439 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1440 
1441 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1442 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1443 	if (rdev->sb_size & bmask)
1444 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1445 
1446 	if (minor_version
1447 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1448 		return -EINVAL;
1449 	if (minor_version
1450 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1451 		return -EINVAL;
1452 
1453 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1454 		rdev->desc_nr = -1;
1455 	else
1456 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1457 
1458 	if (!rdev->bb_page) {
1459 		rdev->bb_page = alloc_page(GFP_KERNEL);
1460 		if (!rdev->bb_page)
1461 			return -ENOMEM;
1462 	}
1463 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1464 	    rdev->badblocks.count == 0) {
1465 		/* need to load the bad block list.
1466 		 * Currently we limit it to one page.
1467 		 */
1468 		s32 offset;
1469 		sector_t bb_sector;
1470 		u64 *bbp;
1471 		int i;
1472 		int sectors = le16_to_cpu(sb->bblog_size);
1473 		if (sectors > (PAGE_SIZE / 512))
1474 			return -EINVAL;
1475 		offset = le32_to_cpu(sb->bblog_offset);
1476 		if (offset == 0)
1477 			return -EINVAL;
1478 		bb_sector = (long long)offset;
1479 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1480 				  rdev->bb_page, READ, true))
1481 			return -EIO;
1482 		bbp = (u64 *)page_address(rdev->bb_page);
1483 		rdev->badblocks.shift = sb->bblog_shift;
1484 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1485 			u64 bb = le64_to_cpu(*bbp);
1486 			int count = bb & (0x3ff);
1487 			u64 sector = bb >> 10;
1488 			sector <<= sb->bblog_shift;
1489 			count <<= sb->bblog_shift;
1490 			if (bb + 1 == 0)
1491 				break;
1492 			if (md_set_badblocks(&rdev->badblocks,
1493 					     sector, count, 1) == 0)
1494 				return -EINVAL;
1495 		}
1496 	} else if (sb->bblog_offset != 0)
1497 		rdev->badblocks.shift = 0;
1498 
1499 	if (!refdev) {
1500 		ret = 1;
1501 	} else {
1502 		__u64 ev1, ev2;
1503 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1504 
1505 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1506 		    sb->level != refsb->level ||
1507 		    sb->layout != refsb->layout ||
1508 		    sb->chunksize != refsb->chunksize) {
1509 			printk(KERN_WARNING "md: %s has strangely different"
1510 				" superblock to %s\n",
1511 				bdevname(rdev->bdev,b),
1512 				bdevname(refdev->bdev,b2));
1513 			return -EINVAL;
1514 		}
1515 		ev1 = le64_to_cpu(sb->events);
1516 		ev2 = le64_to_cpu(refsb->events);
1517 
1518 		if (ev1 > ev2)
1519 			ret = 1;
1520 		else
1521 			ret = 0;
1522 	}
1523 	if (minor_version) {
1524 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1525 		sectors -= rdev->data_offset;
1526 	} else
1527 		sectors = rdev->sb_start;
1528 	if (sectors < le64_to_cpu(sb->data_size))
1529 		return -EINVAL;
1530 	rdev->sectors = le64_to_cpu(sb->data_size);
1531 	return ret;
1532 }
1533 
super_1_validate(struct mddev * mddev,struct md_rdev * rdev)1534 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1535 {
1536 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1537 	__u64 ev1 = le64_to_cpu(sb->events);
1538 
1539 	rdev->raid_disk = -1;
1540 	clear_bit(Faulty, &rdev->flags);
1541 	clear_bit(In_sync, &rdev->flags);
1542 	clear_bit(Bitmap_sync, &rdev->flags);
1543 	clear_bit(WriteMostly, &rdev->flags);
1544 
1545 	if (mddev->raid_disks == 0) {
1546 		mddev->major_version = 1;
1547 		mddev->patch_version = 0;
1548 		mddev->external = 0;
1549 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1550 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1551 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1552 		mddev->level = le32_to_cpu(sb->level);
1553 		mddev->clevel[0] = 0;
1554 		mddev->layout = le32_to_cpu(sb->layout);
1555 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1556 		mddev->dev_sectors = le64_to_cpu(sb->size);
1557 		mddev->events = ev1;
1558 		mddev->bitmap_info.offset = 0;
1559 		mddev->bitmap_info.space = 0;
1560 		/* Default location for bitmap is 1K after superblock
1561 		 * using 3K - total of 4K
1562 		 */
1563 		mddev->bitmap_info.default_offset = 1024 >> 9;
1564 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1565 		mddev->reshape_backwards = 0;
1566 
1567 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1568 		memcpy(mddev->uuid, sb->set_uuid, 16);
1569 
1570 		mddev->max_disks =  (4096-256)/2;
1571 
1572 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1573 		    mddev->bitmap_info.file == NULL) {
1574 			mddev->bitmap_info.offset =
1575 				(__s32)le32_to_cpu(sb->bitmap_offset);
1576 			/* Metadata doesn't record how much space is available.
1577 			 * For 1.0, we assume we can use up to the superblock
1578 			 * if before, else to 4K beyond superblock.
1579 			 * For others, assume no change is possible.
1580 			 */
1581 			if (mddev->minor_version > 0)
1582 				mddev->bitmap_info.space = 0;
1583 			else if (mddev->bitmap_info.offset > 0)
1584 				mddev->bitmap_info.space =
1585 					8 - mddev->bitmap_info.offset;
1586 			else
1587 				mddev->bitmap_info.space =
1588 					-mddev->bitmap_info.offset;
1589 		}
1590 
1591 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1592 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1593 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1594 			mddev->new_level = le32_to_cpu(sb->new_level);
1595 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1596 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1597 			if (mddev->delta_disks < 0 ||
1598 			    (mddev->delta_disks == 0 &&
1599 			     (le32_to_cpu(sb->feature_map)
1600 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1601 				mddev->reshape_backwards = 1;
1602 		} else {
1603 			mddev->reshape_position = MaxSector;
1604 			mddev->delta_disks = 0;
1605 			mddev->new_level = mddev->level;
1606 			mddev->new_layout = mddev->layout;
1607 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1608 		}
1609 
1610 	} else if (mddev->pers == NULL) {
1611 		/* Insist of good event counter while assembling, except for
1612 		 * spares (which don't need an event count) */
1613 		++ev1;
1614 		if (rdev->desc_nr >= 0 &&
1615 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1616 		    (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1617 		     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1618 			if (ev1 < mddev->events)
1619 				return -EINVAL;
1620 	} else if (mddev->bitmap) {
1621 		/* If adding to array with a bitmap, then we can accept an
1622 		 * older device, but not too old.
1623 		 */
1624 		if (ev1 < mddev->bitmap->events_cleared)
1625 			return 0;
1626 		if (ev1 < mddev->events)
1627 			set_bit(Bitmap_sync, &rdev->flags);
1628 	} else {
1629 		if (ev1 < mddev->events)
1630 			/* just a hot-add of a new device, leave raid_disk at -1 */
1631 			return 0;
1632 	}
1633 	if (mddev->level != LEVEL_MULTIPATH) {
1634 		int role;
1635 		if (rdev->desc_nr < 0 ||
1636 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1637 			role = MD_DISK_ROLE_SPARE;
1638 			rdev->desc_nr = -1;
1639 		} else
1640 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1641 		switch(role) {
1642 		case MD_DISK_ROLE_SPARE: /* spare */
1643 			break;
1644 		case MD_DISK_ROLE_FAULTY: /* faulty */
1645 			set_bit(Faulty, &rdev->flags);
1646 			break;
1647 		case MD_DISK_ROLE_JOURNAL: /* journal device */
1648 			if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1649 				/* journal device without journal feature */
1650 				printk(KERN_WARNING
1651 				  "md: journal device provided without journal feature, ignoring the device\n");
1652 				return -EINVAL;
1653 			}
1654 			set_bit(Journal, &rdev->flags);
1655 			rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1656 			if (mddev->recovery_cp == MaxSector)
1657 				set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
1658 			rdev->raid_disk = 0;
1659 			break;
1660 		default:
1661 			rdev->saved_raid_disk = role;
1662 			if ((le32_to_cpu(sb->feature_map) &
1663 			     MD_FEATURE_RECOVERY_OFFSET)) {
1664 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1665 				if (!(le32_to_cpu(sb->feature_map) &
1666 				      MD_FEATURE_RECOVERY_BITMAP))
1667 					rdev->saved_raid_disk = -1;
1668 			} else
1669 				set_bit(In_sync, &rdev->flags);
1670 			rdev->raid_disk = role;
1671 			break;
1672 		}
1673 		if (sb->devflags & WriteMostly1)
1674 			set_bit(WriteMostly, &rdev->flags);
1675 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1676 			set_bit(Replacement, &rdev->flags);
1677 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1678 			set_bit(MD_HAS_JOURNAL, &mddev->flags);
1679 	} else /* MULTIPATH are always insync */
1680 		set_bit(In_sync, &rdev->flags);
1681 
1682 	return 0;
1683 }
1684 
super_1_sync(struct mddev * mddev,struct md_rdev * rdev)1685 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1686 {
1687 	struct mdp_superblock_1 *sb;
1688 	struct md_rdev *rdev2;
1689 	int max_dev, i;
1690 	/* make rdev->sb match mddev and rdev data. */
1691 
1692 	sb = page_address(rdev->sb_page);
1693 
1694 	sb->feature_map = 0;
1695 	sb->pad0 = 0;
1696 	sb->recovery_offset = cpu_to_le64(0);
1697 	memset(sb->pad3, 0, sizeof(sb->pad3));
1698 
1699 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1700 	sb->events = cpu_to_le64(mddev->events);
1701 	if (mddev->in_sync)
1702 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1703 	else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1704 		sb->resync_offset = cpu_to_le64(MaxSector);
1705 	else
1706 		sb->resync_offset = cpu_to_le64(0);
1707 
1708 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1709 
1710 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1711 	sb->size = cpu_to_le64(mddev->dev_sectors);
1712 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1713 	sb->level = cpu_to_le32(mddev->level);
1714 	sb->layout = cpu_to_le32(mddev->layout);
1715 
1716 	if (test_bit(WriteMostly, &rdev->flags))
1717 		sb->devflags |= WriteMostly1;
1718 	else
1719 		sb->devflags &= ~WriteMostly1;
1720 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1721 	sb->data_size = cpu_to_le64(rdev->sectors);
1722 
1723 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1724 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1725 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1726 	}
1727 
1728 	if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1729 	    !test_bit(In_sync, &rdev->flags)) {
1730 		sb->feature_map |=
1731 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1732 		sb->recovery_offset =
1733 			cpu_to_le64(rdev->recovery_offset);
1734 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1735 			sb->feature_map |=
1736 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1737 	}
1738 	/* Note: recovery_offset and journal_tail share space  */
1739 	if (test_bit(Journal, &rdev->flags))
1740 		sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1741 	if (test_bit(Replacement, &rdev->flags))
1742 		sb->feature_map |=
1743 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1744 
1745 	if (mddev->reshape_position != MaxSector) {
1746 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1747 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1748 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1749 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1750 		sb->new_level = cpu_to_le32(mddev->new_level);
1751 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1752 		if (mddev->delta_disks == 0 &&
1753 		    mddev->reshape_backwards)
1754 			sb->feature_map
1755 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1756 		if (rdev->new_data_offset != rdev->data_offset) {
1757 			sb->feature_map
1758 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1759 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1760 							     - rdev->data_offset));
1761 		}
1762 	}
1763 
1764 	if (mddev_is_clustered(mddev))
1765 		sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1766 
1767 	if (rdev->badblocks.count == 0)
1768 		/* Nothing to do for bad blocks*/ ;
1769 	else if (sb->bblog_offset == 0)
1770 		/* Cannot record bad blocks on this device */
1771 		md_error(mddev, rdev);
1772 	else {
1773 		struct badblocks *bb = &rdev->badblocks;
1774 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1775 		u64 *p = bb->page;
1776 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1777 		if (bb->changed) {
1778 			unsigned seq;
1779 
1780 retry:
1781 			seq = read_seqbegin(&bb->lock);
1782 
1783 			memset(bbp, 0xff, PAGE_SIZE);
1784 
1785 			for (i = 0 ; i < bb->count ; i++) {
1786 				u64 internal_bb = p[i];
1787 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1788 						| BB_LEN(internal_bb));
1789 				bbp[i] = cpu_to_le64(store_bb);
1790 			}
1791 			bb->changed = 0;
1792 			if (read_seqretry(&bb->lock, seq))
1793 				goto retry;
1794 
1795 			bb->sector = (rdev->sb_start +
1796 				      (int)le32_to_cpu(sb->bblog_offset));
1797 			bb->size = le16_to_cpu(sb->bblog_size);
1798 		}
1799 	}
1800 
1801 	max_dev = 0;
1802 	rdev_for_each(rdev2, mddev)
1803 		if (rdev2->desc_nr+1 > max_dev)
1804 			max_dev = rdev2->desc_nr+1;
1805 
1806 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1807 		int bmask;
1808 		sb->max_dev = cpu_to_le32(max_dev);
1809 		rdev->sb_size = max_dev * 2 + 256;
1810 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1811 		if (rdev->sb_size & bmask)
1812 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1813 	} else
1814 		max_dev = le32_to_cpu(sb->max_dev);
1815 
1816 	for (i=0; i<max_dev;i++)
1817 		sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1818 
1819 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1820 		sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1821 
1822 	rdev_for_each(rdev2, mddev) {
1823 		i = rdev2->desc_nr;
1824 		if (test_bit(Faulty, &rdev2->flags))
1825 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1826 		else if (test_bit(In_sync, &rdev2->flags))
1827 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1828 		else if (test_bit(Journal, &rdev2->flags))
1829 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1830 		else if (rdev2->raid_disk >= 0)
1831 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1832 		else
1833 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1834 	}
1835 
1836 	sb->sb_csum = calc_sb_1_csum(sb);
1837 }
1838 
1839 static unsigned long long
super_1_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1840 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1841 {
1842 	struct mdp_superblock_1 *sb;
1843 	sector_t max_sectors;
1844 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1845 		return 0; /* component must fit device */
1846 	if (rdev->data_offset != rdev->new_data_offset)
1847 		return 0; /* too confusing */
1848 	if (rdev->sb_start < rdev->data_offset) {
1849 		/* minor versions 1 and 2; superblock before data */
1850 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1851 		max_sectors -= rdev->data_offset;
1852 		if (!num_sectors || num_sectors > max_sectors)
1853 			num_sectors = max_sectors;
1854 	} else if (rdev->mddev->bitmap_info.offset) {
1855 		/* minor version 0 with bitmap we can't move */
1856 		return 0;
1857 	} else {
1858 		/* minor version 0; superblock after data */
1859 		sector_t sb_start;
1860 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1861 		sb_start &= ~(sector_t)(4*2 - 1);
1862 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1863 		if (!num_sectors || num_sectors > max_sectors)
1864 			num_sectors = max_sectors;
1865 		rdev->sb_start = sb_start;
1866 	}
1867 	sb = page_address(rdev->sb_page);
1868 	sb->data_size = cpu_to_le64(num_sectors);
1869 	sb->super_offset = rdev->sb_start;
1870 	sb->sb_csum = calc_sb_1_csum(sb);
1871 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1872 		       rdev->sb_page);
1873 	md_super_wait(rdev->mddev);
1874 	return num_sectors;
1875 
1876 }
1877 
1878 static int
super_1_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1879 super_1_allow_new_offset(struct md_rdev *rdev,
1880 			 unsigned long long new_offset)
1881 {
1882 	/* All necessary checks on new >= old have been done */
1883 	struct bitmap *bitmap;
1884 	if (new_offset >= rdev->data_offset)
1885 		return 1;
1886 
1887 	/* with 1.0 metadata, there is no metadata to tread on
1888 	 * so we can always move back */
1889 	if (rdev->mddev->minor_version == 0)
1890 		return 1;
1891 
1892 	/* otherwise we must be sure not to step on
1893 	 * any metadata, so stay:
1894 	 * 36K beyond start of superblock
1895 	 * beyond end of badblocks
1896 	 * beyond write-intent bitmap
1897 	 */
1898 	if (rdev->sb_start + (32+4)*2 > new_offset)
1899 		return 0;
1900 	bitmap = rdev->mddev->bitmap;
1901 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1902 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1903 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1904 		return 0;
1905 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1906 		return 0;
1907 
1908 	return 1;
1909 }
1910 
1911 static struct super_type super_types[] = {
1912 	[0] = {
1913 		.name	= "0.90.0",
1914 		.owner	= THIS_MODULE,
1915 		.load_super	    = super_90_load,
1916 		.validate_super	    = super_90_validate,
1917 		.sync_super	    = super_90_sync,
1918 		.rdev_size_change   = super_90_rdev_size_change,
1919 		.allow_new_offset   = super_90_allow_new_offset,
1920 	},
1921 	[1] = {
1922 		.name	= "md-1",
1923 		.owner	= THIS_MODULE,
1924 		.load_super	    = super_1_load,
1925 		.validate_super	    = super_1_validate,
1926 		.sync_super	    = super_1_sync,
1927 		.rdev_size_change   = super_1_rdev_size_change,
1928 		.allow_new_offset   = super_1_allow_new_offset,
1929 	},
1930 };
1931 
sync_super(struct mddev * mddev,struct md_rdev * rdev)1932 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1933 {
1934 	if (mddev->sync_super) {
1935 		mddev->sync_super(mddev, rdev);
1936 		return;
1937 	}
1938 
1939 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1940 
1941 	super_types[mddev->major_version].sync_super(mddev, rdev);
1942 }
1943 
match_mddev_units(struct mddev * mddev1,struct mddev * mddev2)1944 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1945 {
1946 	struct md_rdev *rdev, *rdev2;
1947 
1948 	rcu_read_lock();
1949 	rdev_for_each_rcu(rdev, mddev1) {
1950 		if (test_bit(Faulty, &rdev->flags) ||
1951 		    test_bit(Journal, &rdev->flags) ||
1952 		    rdev->raid_disk == -1)
1953 			continue;
1954 		rdev_for_each_rcu(rdev2, mddev2) {
1955 			if (test_bit(Faulty, &rdev2->flags) ||
1956 			    test_bit(Journal, &rdev2->flags) ||
1957 			    rdev2->raid_disk == -1)
1958 				continue;
1959 			if (rdev->bdev->bd_contains ==
1960 			    rdev2->bdev->bd_contains) {
1961 				rcu_read_unlock();
1962 				return 1;
1963 			}
1964 		}
1965 	}
1966 	rcu_read_unlock();
1967 	return 0;
1968 }
1969 
1970 static LIST_HEAD(pending_raid_disks);
1971 
1972 /*
1973  * Try to register data integrity profile for an mddev
1974  *
1975  * This is called when an array is started and after a disk has been kicked
1976  * from the array. It only succeeds if all working and active component devices
1977  * are integrity capable with matching profiles.
1978  */
md_integrity_register(struct mddev * mddev)1979 int md_integrity_register(struct mddev *mddev)
1980 {
1981 	struct md_rdev *rdev, *reference = NULL;
1982 
1983 	if (list_empty(&mddev->disks))
1984 		return 0; /* nothing to do */
1985 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1986 		return 0; /* shouldn't register, or already is */
1987 	rdev_for_each(rdev, mddev) {
1988 		/* skip spares and non-functional disks */
1989 		if (test_bit(Faulty, &rdev->flags))
1990 			continue;
1991 		if (rdev->raid_disk < 0)
1992 			continue;
1993 		if (!reference) {
1994 			/* Use the first rdev as the reference */
1995 			reference = rdev;
1996 			continue;
1997 		}
1998 		/* does this rdev's profile match the reference profile? */
1999 		if (blk_integrity_compare(reference->bdev->bd_disk,
2000 				rdev->bdev->bd_disk) < 0)
2001 			return -EINVAL;
2002 	}
2003 	if (!reference || !bdev_get_integrity(reference->bdev))
2004 		return 0;
2005 	/*
2006 	 * All component devices are integrity capable and have matching
2007 	 * profiles, register the common profile for the md device.
2008 	 */
2009 	blk_integrity_register(mddev->gendisk,
2010 			       bdev_get_integrity(reference->bdev));
2011 
2012 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2013 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2014 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2015 		       mdname(mddev));
2016 		return -EINVAL;
2017 	}
2018 	return 0;
2019 }
2020 EXPORT_SYMBOL(md_integrity_register);
2021 
2022 /*
2023  * Attempt to add an rdev, but only if it is consistent with the current
2024  * integrity profile
2025  */
md_integrity_add_rdev(struct md_rdev * rdev,struct mddev * mddev)2026 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2027 {
2028 	struct blk_integrity *bi_rdev;
2029 	struct blk_integrity *bi_mddev;
2030 	char name[BDEVNAME_SIZE];
2031 
2032 	if (!mddev->gendisk)
2033 		return 0;
2034 
2035 	bi_rdev = bdev_get_integrity(rdev->bdev);
2036 	bi_mddev = blk_get_integrity(mddev->gendisk);
2037 
2038 	if (!bi_mddev) /* nothing to do */
2039 		return 0;
2040 
2041 	if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2042 		printk(KERN_NOTICE "%s: incompatible integrity profile for %s\n",
2043 				mdname(mddev), bdevname(rdev->bdev, name));
2044 		return -ENXIO;
2045 	}
2046 
2047 	return 0;
2048 }
2049 EXPORT_SYMBOL(md_integrity_add_rdev);
2050 
bind_rdev_to_array(struct md_rdev * rdev,struct mddev * mddev)2051 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2052 {
2053 	char b[BDEVNAME_SIZE];
2054 	struct kobject *ko;
2055 	int err;
2056 
2057 	/* prevent duplicates */
2058 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2059 		return -EEXIST;
2060 
2061 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2062 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2063 			rdev->sectors < mddev->dev_sectors)) {
2064 		if (mddev->pers) {
2065 			/* Cannot change size, so fail
2066 			 * If mddev->level <= 0, then we don't care
2067 			 * about aligning sizes (e.g. linear)
2068 			 */
2069 			if (mddev->level > 0)
2070 				return -ENOSPC;
2071 		} else
2072 			mddev->dev_sectors = rdev->sectors;
2073 	}
2074 
2075 	/* Verify rdev->desc_nr is unique.
2076 	 * If it is -1, assign a free number, else
2077 	 * check number is not in use
2078 	 */
2079 	rcu_read_lock();
2080 	if (rdev->desc_nr < 0) {
2081 		int choice = 0;
2082 		if (mddev->pers)
2083 			choice = mddev->raid_disks;
2084 		while (md_find_rdev_nr_rcu(mddev, choice))
2085 			choice++;
2086 		rdev->desc_nr = choice;
2087 	} else {
2088 		if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2089 			rcu_read_unlock();
2090 			return -EBUSY;
2091 		}
2092 	}
2093 	rcu_read_unlock();
2094 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2095 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2096 		       mdname(mddev), mddev->max_disks);
2097 		return -EBUSY;
2098 	}
2099 	bdevname(rdev->bdev,b);
2100 	strreplace(b, '/', '!');
2101 
2102 	rdev->mddev = mddev;
2103 	printk(KERN_INFO "md: bind<%s>\n", b);
2104 
2105 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2106 		goto fail;
2107 
2108 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2109 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2110 		/* failure here is OK */;
2111 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2112 
2113 	list_add_rcu(&rdev->same_set, &mddev->disks);
2114 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2115 
2116 	/* May as well allow recovery to be retried once */
2117 	mddev->recovery_disabled++;
2118 
2119 	return 0;
2120 
2121  fail:
2122 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2123 	       b, mdname(mddev));
2124 	return err;
2125 }
2126 
md_delayed_delete(struct work_struct * ws)2127 static void md_delayed_delete(struct work_struct *ws)
2128 {
2129 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2130 	kobject_del(&rdev->kobj);
2131 	kobject_put(&rdev->kobj);
2132 }
2133 
unbind_rdev_from_array(struct md_rdev * rdev)2134 static void unbind_rdev_from_array(struct md_rdev *rdev)
2135 {
2136 	char b[BDEVNAME_SIZE];
2137 
2138 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2139 	list_del_rcu(&rdev->same_set);
2140 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2141 	rdev->mddev = NULL;
2142 	sysfs_remove_link(&rdev->kobj, "block");
2143 	sysfs_put(rdev->sysfs_state);
2144 	rdev->sysfs_state = NULL;
2145 	rdev->badblocks.count = 0;
2146 	/* We need to delay this, otherwise we can deadlock when
2147 	 * writing to 'remove' to "dev/state".  We also need
2148 	 * to delay it due to rcu usage.
2149 	 */
2150 	synchronize_rcu();
2151 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2152 	kobject_get(&rdev->kobj);
2153 	queue_work(md_misc_wq, &rdev->del_work);
2154 }
2155 
2156 /*
2157  * prevent the device from being mounted, repartitioned or
2158  * otherwise reused by a RAID array (or any other kernel
2159  * subsystem), by bd_claiming the device.
2160  */
lock_rdev(struct md_rdev * rdev,dev_t dev,int shared)2161 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2162 {
2163 	int err = 0;
2164 	struct block_device *bdev;
2165 	char b[BDEVNAME_SIZE];
2166 
2167 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2168 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2169 	if (IS_ERR(bdev)) {
2170 		printk(KERN_ERR "md: could not open %s.\n",
2171 			__bdevname(dev, b));
2172 		return PTR_ERR(bdev);
2173 	}
2174 	rdev->bdev = bdev;
2175 	return err;
2176 }
2177 
unlock_rdev(struct md_rdev * rdev)2178 static void unlock_rdev(struct md_rdev *rdev)
2179 {
2180 	struct block_device *bdev = rdev->bdev;
2181 	rdev->bdev = NULL;
2182 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2183 }
2184 
2185 void md_autodetect_dev(dev_t dev);
2186 
export_rdev(struct md_rdev * rdev)2187 static void export_rdev(struct md_rdev *rdev)
2188 {
2189 	char b[BDEVNAME_SIZE];
2190 
2191 	printk(KERN_INFO "md: export_rdev(%s)\n",
2192 		bdevname(rdev->bdev,b));
2193 	md_rdev_clear(rdev);
2194 #ifndef MODULE
2195 	if (test_bit(AutoDetected, &rdev->flags))
2196 		md_autodetect_dev(rdev->bdev->bd_dev);
2197 #endif
2198 	unlock_rdev(rdev);
2199 	kobject_put(&rdev->kobj);
2200 }
2201 
md_kick_rdev_from_array(struct md_rdev * rdev)2202 void md_kick_rdev_from_array(struct md_rdev *rdev)
2203 {
2204 	unbind_rdev_from_array(rdev);
2205 	export_rdev(rdev);
2206 }
2207 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2208 
export_array(struct mddev * mddev)2209 static void export_array(struct mddev *mddev)
2210 {
2211 	struct md_rdev *rdev;
2212 
2213 	while (!list_empty(&mddev->disks)) {
2214 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2215 					same_set);
2216 		md_kick_rdev_from_array(rdev);
2217 	}
2218 	mddev->raid_disks = 0;
2219 	mddev->major_version = 0;
2220 }
2221 
sync_sbs(struct mddev * mddev,int nospares)2222 static void sync_sbs(struct mddev *mddev, int nospares)
2223 {
2224 	/* Update each superblock (in-memory image), but
2225 	 * if we are allowed to, skip spares which already
2226 	 * have the right event counter, or have one earlier
2227 	 * (which would mean they aren't being marked as dirty
2228 	 * with the rest of the array)
2229 	 */
2230 	struct md_rdev *rdev;
2231 	rdev_for_each(rdev, mddev) {
2232 		if (rdev->sb_events == mddev->events ||
2233 		    (nospares &&
2234 		     rdev->raid_disk < 0 &&
2235 		     rdev->sb_events+1 == mddev->events)) {
2236 			/* Don't update this superblock */
2237 			rdev->sb_loaded = 2;
2238 		} else {
2239 			sync_super(mddev, rdev);
2240 			rdev->sb_loaded = 1;
2241 		}
2242 	}
2243 }
2244 
does_sb_need_changing(struct mddev * mddev)2245 static bool does_sb_need_changing(struct mddev *mddev)
2246 {
2247 	struct md_rdev *rdev;
2248 	struct mdp_superblock_1 *sb;
2249 	int role;
2250 
2251 	/* Find a good rdev */
2252 	rdev_for_each(rdev, mddev)
2253 		if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2254 			break;
2255 
2256 	/* No good device found. */
2257 	if (!rdev)
2258 		return false;
2259 
2260 	sb = page_address(rdev->sb_page);
2261 	/* Check if a device has become faulty or a spare become active */
2262 	rdev_for_each(rdev, mddev) {
2263 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2264 		/* Device activated? */
2265 		if (role == 0xffff && rdev->raid_disk >=0 &&
2266 		    !test_bit(Faulty, &rdev->flags))
2267 			return true;
2268 		/* Device turned faulty? */
2269 		if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2270 			return true;
2271 	}
2272 
2273 	/* Check if any mddev parameters have changed */
2274 	if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2275 	    (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2276 	    (mddev->layout != le64_to_cpu(sb->layout)) ||
2277 	    (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2278 	    (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2279 		return true;
2280 
2281 	return false;
2282 }
2283 
md_update_sb(struct mddev * mddev,int force_change)2284 void md_update_sb(struct mddev *mddev, int force_change)
2285 {
2286 	struct md_rdev *rdev;
2287 	int sync_req;
2288 	int nospares = 0;
2289 	int any_badblocks_changed = 0;
2290 	int ret = -1;
2291 
2292 	if (mddev->ro) {
2293 		if (force_change)
2294 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2295 		return;
2296 	}
2297 
2298 	if (mddev_is_clustered(mddev)) {
2299 		if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2300 			force_change = 1;
2301 		ret = md_cluster_ops->metadata_update_start(mddev);
2302 		/* Has someone else has updated the sb */
2303 		if (!does_sb_need_changing(mddev)) {
2304 			if (ret == 0)
2305 				md_cluster_ops->metadata_update_cancel(mddev);
2306 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2307 			return;
2308 		}
2309 	}
2310 repeat:
2311 	/* First make sure individual recovery_offsets are correct */
2312 	rdev_for_each(rdev, mddev) {
2313 		if (rdev->raid_disk >= 0 &&
2314 		    mddev->delta_disks >= 0 &&
2315 		    !test_bit(Journal, &rdev->flags) &&
2316 		    !test_bit(In_sync, &rdev->flags) &&
2317 		    mddev->curr_resync_completed > rdev->recovery_offset)
2318 				rdev->recovery_offset = mddev->curr_resync_completed;
2319 
2320 	}
2321 	if (!mddev->persistent) {
2322 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2323 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2324 		if (!mddev->external) {
2325 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2326 			rdev_for_each(rdev, mddev) {
2327 				if (rdev->badblocks.changed) {
2328 					rdev->badblocks.changed = 0;
2329 					md_ack_all_badblocks(&rdev->badblocks);
2330 					md_error(mddev, rdev);
2331 				}
2332 				clear_bit(Blocked, &rdev->flags);
2333 				clear_bit(BlockedBadBlocks, &rdev->flags);
2334 				wake_up(&rdev->blocked_wait);
2335 			}
2336 		}
2337 		wake_up(&mddev->sb_wait);
2338 		return;
2339 	}
2340 
2341 	spin_lock(&mddev->lock);
2342 
2343 	mddev->utime = get_seconds();
2344 
2345 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2346 		force_change = 1;
2347 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2348 		/* just a clean<-> dirty transition, possibly leave spares alone,
2349 		 * though if events isn't the right even/odd, we will have to do
2350 		 * spares after all
2351 		 */
2352 		nospares = 1;
2353 	if (force_change)
2354 		nospares = 0;
2355 	if (mddev->degraded)
2356 		/* If the array is degraded, then skipping spares is both
2357 		 * dangerous and fairly pointless.
2358 		 * Dangerous because a device that was removed from the array
2359 		 * might have a event_count that still looks up-to-date,
2360 		 * so it can be re-added without a resync.
2361 		 * Pointless because if there are any spares to skip,
2362 		 * then a recovery will happen and soon that array won't
2363 		 * be degraded any more and the spare can go back to sleep then.
2364 		 */
2365 		nospares = 0;
2366 
2367 	sync_req = mddev->in_sync;
2368 
2369 	/* If this is just a dirty<->clean transition, and the array is clean
2370 	 * and 'events' is odd, we can roll back to the previous clean state */
2371 	if (nospares
2372 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2373 	    && mddev->can_decrease_events
2374 	    && mddev->events != 1) {
2375 		mddev->events--;
2376 		mddev->can_decrease_events = 0;
2377 	} else {
2378 		/* otherwise we have to go forward and ... */
2379 		mddev->events ++;
2380 		mddev->can_decrease_events = nospares;
2381 	}
2382 
2383 	/*
2384 	 * This 64-bit counter should never wrap.
2385 	 * Either we are in around ~1 trillion A.C., assuming
2386 	 * 1 reboot per second, or we have a bug...
2387 	 */
2388 	WARN_ON(mddev->events == 0);
2389 
2390 	rdev_for_each(rdev, mddev) {
2391 		if (rdev->badblocks.changed)
2392 			any_badblocks_changed++;
2393 		if (test_bit(Faulty, &rdev->flags))
2394 			set_bit(FaultRecorded, &rdev->flags);
2395 	}
2396 
2397 	sync_sbs(mddev, nospares);
2398 	spin_unlock(&mddev->lock);
2399 
2400 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2401 		 mdname(mddev), mddev->in_sync);
2402 
2403 	bitmap_update_sb(mddev->bitmap);
2404 	rdev_for_each(rdev, mddev) {
2405 		char b[BDEVNAME_SIZE];
2406 
2407 		if (rdev->sb_loaded != 1)
2408 			continue; /* no noise on spare devices */
2409 
2410 		if (!test_bit(Faulty, &rdev->flags)) {
2411 			md_super_write(mddev,rdev,
2412 				       rdev->sb_start, rdev->sb_size,
2413 				       rdev->sb_page);
2414 			pr_debug("md: (write) %s's sb offset: %llu\n",
2415 				 bdevname(rdev->bdev, b),
2416 				 (unsigned long long)rdev->sb_start);
2417 			rdev->sb_events = mddev->events;
2418 			if (rdev->badblocks.size) {
2419 				md_super_write(mddev, rdev,
2420 					       rdev->badblocks.sector,
2421 					       rdev->badblocks.size << 9,
2422 					       rdev->bb_page);
2423 				rdev->badblocks.size = 0;
2424 			}
2425 
2426 		} else
2427 			pr_debug("md: %s (skipping faulty)\n",
2428 				 bdevname(rdev->bdev, b));
2429 
2430 		if (mddev->level == LEVEL_MULTIPATH)
2431 			/* only need to write one superblock... */
2432 			break;
2433 	}
2434 	md_super_wait(mddev);
2435 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2436 
2437 	spin_lock(&mddev->lock);
2438 	if (mddev->in_sync != sync_req ||
2439 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2440 		/* have to write it out again */
2441 		spin_unlock(&mddev->lock);
2442 		goto repeat;
2443 	}
2444 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2445 	spin_unlock(&mddev->lock);
2446 	wake_up(&mddev->sb_wait);
2447 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2448 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2449 
2450 	rdev_for_each(rdev, mddev) {
2451 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2452 			clear_bit(Blocked, &rdev->flags);
2453 
2454 		if (any_badblocks_changed)
2455 			md_ack_all_badblocks(&rdev->badblocks);
2456 		clear_bit(BlockedBadBlocks, &rdev->flags);
2457 		wake_up(&rdev->blocked_wait);
2458 	}
2459 
2460 	if (mddev_is_clustered(mddev) && ret == 0)
2461 		md_cluster_ops->metadata_update_finish(mddev);
2462 }
2463 EXPORT_SYMBOL(md_update_sb);
2464 
add_bound_rdev(struct md_rdev * rdev)2465 static int add_bound_rdev(struct md_rdev *rdev)
2466 {
2467 	struct mddev *mddev = rdev->mddev;
2468 	int err = 0;
2469 
2470 	if (!mddev->pers->hot_remove_disk) {
2471 		/* If there is hot_add_disk but no hot_remove_disk
2472 		 * then added disks for geometry changes,
2473 		 * and should be added immediately.
2474 		 */
2475 		super_types[mddev->major_version].
2476 			validate_super(mddev, rdev);
2477 		err = mddev->pers->hot_add_disk(mddev, rdev);
2478 		if (err) {
2479 			unbind_rdev_from_array(rdev);
2480 			export_rdev(rdev);
2481 			return err;
2482 		}
2483 	}
2484 	sysfs_notify_dirent_safe(rdev->sysfs_state);
2485 
2486 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2487 	if (mddev->degraded)
2488 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2489 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2490 	md_new_event(mddev);
2491 	md_wakeup_thread(mddev->thread);
2492 	return 0;
2493 }
2494 
2495 /* words written to sysfs files may, or may not, be \n terminated.
2496  * We want to accept with case. For this we use cmd_match.
2497  */
cmd_match(const char * cmd,const char * str)2498 static int cmd_match(const char *cmd, const char *str)
2499 {
2500 	/* See if cmd, written into a sysfs file, matches
2501 	 * str.  They must either be the same, or cmd can
2502 	 * have a trailing newline
2503 	 */
2504 	while (*cmd && *str && *cmd == *str) {
2505 		cmd++;
2506 		str++;
2507 	}
2508 	if (*cmd == '\n')
2509 		cmd++;
2510 	if (*str || *cmd)
2511 		return 0;
2512 	return 1;
2513 }
2514 
2515 struct rdev_sysfs_entry {
2516 	struct attribute attr;
2517 	ssize_t (*show)(struct md_rdev *, char *);
2518 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2519 };
2520 
2521 static ssize_t
state_show(struct md_rdev * rdev,char * page)2522 state_show(struct md_rdev *rdev, char *page)
2523 {
2524 	char *sep = "";
2525 	size_t len = 0;
2526 	unsigned long flags = ACCESS_ONCE(rdev->flags);
2527 
2528 	if (test_bit(Faulty, &flags) ||
2529 	    rdev->badblocks.unacked_exist) {
2530 		len+= sprintf(page+len, "%sfaulty",sep);
2531 		sep = ",";
2532 	}
2533 	if (test_bit(In_sync, &flags)) {
2534 		len += sprintf(page+len, "%sin_sync",sep);
2535 		sep = ",";
2536 	}
2537 	if (test_bit(Journal, &flags)) {
2538 		len += sprintf(page+len, "%sjournal",sep);
2539 		sep = ",";
2540 	}
2541 	if (test_bit(WriteMostly, &flags)) {
2542 		len += sprintf(page+len, "%swrite_mostly",sep);
2543 		sep = ",";
2544 	}
2545 	if (test_bit(Blocked, &flags) ||
2546 	    (rdev->badblocks.unacked_exist
2547 	     && !test_bit(Faulty, &flags))) {
2548 		len += sprintf(page+len, "%sblocked", sep);
2549 		sep = ",";
2550 	}
2551 	if (!test_bit(Faulty, &flags) &&
2552 	    !test_bit(Journal, &flags) &&
2553 	    !test_bit(In_sync, &flags)) {
2554 		len += sprintf(page+len, "%sspare", sep);
2555 		sep = ",";
2556 	}
2557 	if (test_bit(WriteErrorSeen, &flags)) {
2558 		len += sprintf(page+len, "%swrite_error", sep);
2559 		sep = ",";
2560 	}
2561 	if (test_bit(WantReplacement, &flags)) {
2562 		len += sprintf(page+len, "%swant_replacement", sep);
2563 		sep = ",";
2564 	}
2565 	if (test_bit(Replacement, &flags)) {
2566 		len += sprintf(page+len, "%sreplacement", sep);
2567 		sep = ",";
2568 	}
2569 
2570 	return len+sprintf(page+len, "\n");
2571 }
2572 
2573 static ssize_t
state_store(struct md_rdev * rdev,const char * buf,size_t len)2574 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2575 {
2576 	/* can write
2577 	 *  faulty  - simulates an error
2578 	 *  remove  - disconnects the device
2579 	 *  writemostly - sets write_mostly
2580 	 *  -writemostly - clears write_mostly
2581 	 *  blocked - sets the Blocked flags
2582 	 *  -blocked - clears the Blocked and possibly simulates an error
2583 	 *  insync - sets Insync providing device isn't active
2584 	 *  -insync - clear Insync for a device with a slot assigned,
2585 	 *            so that it gets rebuilt based on bitmap
2586 	 *  write_error - sets WriteErrorSeen
2587 	 *  -write_error - clears WriteErrorSeen
2588 	 */
2589 	int err = -EINVAL;
2590 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2591 		md_error(rdev->mddev, rdev);
2592 		if (test_bit(Faulty, &rdev->flags))
2593 			err = 0;
2594 		else
2595 			err = -EBUSY;
2596 	} else if (cmd_match(buf, "remove")) {
2597 		if (rdev->raid_disk >= 0)
2598 			err = -EBUSY;
2599 		else {
2600 			struct mddev *mddev = rdev->mddev;
2601 			err = 0;
2602 			if (mddev_is_clustered(mddev))
2603 				err = md_cluster_ops->remove_disk(mddev, rdev);
2604 
2605 			if (err == 0) {
2606 				md_kick_rdev_from_array(rdev);
2607 				if (mddev->pers)
2608 					md_update_sb(mddev, 1);
2609 				md_new_event(mddev);
2610 			}
2611 		}
2612 	} else if (cmd_match(buf, "writemostly")) {
2613 		set_bit(WriteMostly, &rdev->flags);
2614 		err = 0;
2615 	} else if (cmd_match(buf, "-writemostly")) {
2616 		clear_bit(WriteMostly, &rdev->flags);
2617 		err = 0;
2618 	} else if (cmd_match(buf, "blocked")) {
2619 		set_bit(Blocked, &rdev->flags);
2620 		err = 0;
2621 	} else if (cmd_match(buf, "-blocked")) {
2622 		if (!test_bit(Faulty, &rdev->flags) &&
2623 		    rdev->badblocks.unacked_exist) {
2624 			/* metadata handler doesn't understand badblocks,
2625 			 * so we need to fail the device
2626 			 */
2627 			md_error(rdev->mddev, rdev);
2628 		}
2629 		clear_bit(Blocked, &rdev->flags);
2630 		clear_bit(BlockedBadBlocks, &rdev->flags);
2631 		wake_up(&rdev->blocked_wait);
2632 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2633 		md_wakeup_thread(rdev->mddev->thread);
2634 
2635 		err = 0;
2636 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2637 		set_bit(In_sync, &rdev->flags);
2638 		err = 0;
2639 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2640 		   !test_bit(Journal, &rdev->flags)) {
2641 		if (rdev->mddev->pers == NULL) {
2642 			clear_bit(In_sync, &rdev->flags);
2643 			rdev->saved_raid_disk = rdev->raid_disk;
2644 			rdev->raid_disk = -1;
2645 			err = 0;
2646 		}
2647 	} else if (cmd_match(buf, "write_error")) {
2648 		set_bit(WriteErrorSeen, &rdev->flags);
2649 		err = 0;
2650 	} else if (cmd_match(buf, "-write_error")) {
2651 		clear_bit(WriteErrorSeen, &rdev->flags);
2652 		err = 0;
2653 	} else if (cmd_match(buf, "want_replacement")) {
2654 		/* Any non-spare device that is not a replacement can
2655 		 * become want_replacement at any time, but we then need to
2656 		 * check if recovery is needed.
2657 		 */
2658 		if (rdev->raid_disk >= 0 &&
2659 		    !test_bit(Journal, &rdev->flags) &&
2660 		    !test_bit(Replacement, &rdev->flags))
2661 			set_bit(WantReplacement, &rdev->flags);
2662 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2663 		md_wakeup_thread(rdev->mddev->thread);
2664 		err = 0;
2665 	} else if (cmd_match(buf, "-want_replacement")) {
2666 		/* Clearing 'want_replacement' is always allowed.
2667 		 * Once replacements starts it is too late though.
2668 		 */
2669 		err = 0;
2670 		clear_bit(WantReplacement, &rdev->flags);
2671 	} else if (cmd_match(buf, "replacement")) {
2672 		/* Can only set a device as a replacement when array has not
2673 		 * yet been started.  Once running, replacement is automatic
2674 		 * from spares, or by assigning 'slot'.
2675 		 */
2676 		if (rdev->mddev->pers)
2677 			err = -EBUSY;
2678 		else {
2679 			set_bit(Replacement, &rdev->flags);
2680 			err = 0;
2681 		}
2682 	} else if (cmd_match(buf, "-replacement")) {
2683 		/* Similarly, can only clear Replacement before start */
2684 		if (rdev->mddev->pers)
2685 			err = -EBUSY;
2686 		else {
2687 			clear_bit(Replacement, &rdev->flags);
2688 			err = 0;
2689 		}
2690 	} else if (cmd_match(buf, "re-add")) {
2691 		if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2692 			/* clear_bit is performed _after_ all the devices
2693 			 * have their local Faulty bit cleared. If any writes
2694 			 * happen in the meantime in the local node, they
2695 			 * will land in the local bitmap, which will be synced
2696 			 * by this node eventually
2697 			 */
2698 			if (!mddev_is_clustered(rdev->mddev) ||
2699 			    (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2700 				clear_bit(Faulty, &rdev->flags);
2701 				err = add_bound_rdev(rdev);
2702 			}
2703 		} else
2704 			err = -EBUSY;
2705 	}
2706 	if (!err)
2707 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2708 	return err ? err : len;
2709 }
2710 static struct rdev_sysfs_entry rdev_state =
2711 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2712 
2713 static ssize_t
errors_show(struct md_rdev * rdev,char * page)2714 errors_show(struct md_rdev *rdev, char *page)
2715 {
2716 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2717 }
2718 
2719 static ssize_t
errors_store(struct md_rdev * rdev,const char * buf,size_t len)2720 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2721 {
2722 	unsigned int n;
2723 	int rv;
2724 
2725 	rv = kstrtouint(buf, 10, &n);
2726 	if (rv < 0)
2727 		return rv;
2728 	atomic_set(&rdev->corrected_errors, n);
2729 	return len;
2730 }
2731 static struct rdev_sysfs_entry rdev_errors =
2732 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2733 
2734 static ssize_t
slot_show(struct md_rdev * rdev,char * page)2735 slot_show(struct md_rdev *rdev, char *page)
2736 {
2737 	if (test_bit(Journal, &rdev->flags))
2738 		return sprintf(page, "journal\n");
2739 	else if (rdev->raid_disk < 0)
2740 		return sprintf(page, "none\n");
2741 	else
2742 		return sprintf(page, "%d\n", rdev->raid_disk);
2743 }
2744 
2745 static ssize_t
slot_store(struct md_rdev * rdev,const char * buf,size_t len)2746 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2747 {
2748 	int slot;
2749 	int err;
2750 
2751 	if (test_bit(Journal, &rdev->flags))
2752 		return -EBUSY;
2753 	if (strncmp(buf, "none", 4)==0)
2754 		slot = -1;
2755 	else {
2756 		err = kstrtouint(buf, 10, (unsigned int *)&slot);
2757 		if (err < 0)
2758 			return err;
2759 	}
2760 	if (rdev->mddev->pers && slot == -1) {
2761 		/* Setting 'slot' on an active array requires also
2762 		 * updating the 'rd%d' link, and communicating
2763 		 * with the personality with ->hot_*_disk.
2764 		 * For now we only support removing
2765 		 * failed/spare devices.  This normally happens automatically,
2766 		 * but not when the metadata is externally managed.
2767 		 */
2768 		if (rdev->raid_disk == -1)
2769 			return -EEXIST;
2770 		/* personality does all needed checks */
2771 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2772 			return -EINVAL;
2773 		clear_bit(Blocked, &rdev->flags);
2774 		remove_and_add_spares(rdev->mddev, rdev);
2775 		if (rdev->raid_disk >= 0)
2776 			return -EBUSY;
2777 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2778 		md_wakeup_thread(rdev->mddev->thread);
2779 	} else if (rdev->mddev->pers) {
2780 		/* Activating a spare .. or possibly reactivating
2781 		 * if we ever get bitmaps working here.
2782 		 */
2783 		int err;
2784 
2785 		if (rdev->raid_disk != -1)
2786 			return -EBUSY;
2787 
2788 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2789 			return -EBUSY;
2790 
2791 		if (rdev->mddev->pers->hot_add_disk == NULL)
2792 			return -EINVAL;
2793 
2794 		if (slot >= rdev->mddev->raid_disks &&
2795 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2796 			return -ENOSPC;
2797 
2798 		rdev->raid_disk = slot;
2799 		if (test_bit(In_sync, &rdev->flags))
2800 			rdev->saved_raid_disk = slot;
2801 		else
2802 			rdev->saved_raid_disk = -1;
2803 		clear_bit(In_sync, &rdev->flags);
2804 		clear_bit(Bitmap_sync, &rdev->flags);
2805 		err = rdev->mddev->pers->
2806 			hot_add_disk(rdev->mddev, rdev);
2807 		if (err) {
2808 			rdev->raid_disk = -1;
2809 			return err;
2810 		} else
2811 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2812 		if (sysfs_link_rdev(rdev->mddev, rdev))
2813 			/* failure here is OK */;
2814 		/* don't wakeup anyone, leave that to userspace. */
2815 	} else {
2816 		if (slot >= rdev->mddev->raid_disks &&
2817 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2818 			return -ENOSPC;
2819 		rdev->raid_disk = slot;
2820 		/* assume it is working */
2821 		clear_bit(Faulty, &rdev->flags);
2822 		clear_bit(WriteMostly, &rdev->flags);
2823 		set_bit(In_sync, &rdev->flags);
2824 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2825 	}
2826 	return len;
2827 }
2828 
2829 static struct rdev_sysfs_entry rdev_slot =
2830 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2831 
2832 static ssize_t
offset_show(struct md_rdev * rdev,char * page)2833 offset_show(struct md_rdev *rdev, char *page)
2834 {
2835 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2836 }
2837 
2838 static ssize_t
offset_store(struct md_rdev * rdev,const char * buf,size_t len)2839 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2840 {
2841 	unsigned long long offset;
2842 	if (kstrtoull(buf, 10, &offset) < 0)
2843 		return -EINVAL;
2844 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2845 		return -EBUSY;
2846 	if (rdev->sectors && rdev->mddev->external)
2847 		/* Must set offset before size, so overlap checks
2848 		 * can be sane */
2849 		return -EBUSY;
2850 	rdev->data_offset = offset;
2851 	rdev->new_data_offset = offset;
2852 	return len;
2853 }
2854 
2855 static struct rdev_sysfs_entry rdev_offset =
2856 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2857 
new_offset_show(struct md_rdev * rdev,char * page)2858 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2859 {
2860 	return sprintf(page, "%llu\n",
2861 		       (unsigned long long)rdev->new_data_offset);
2862 }
2863 
new_offset_store(struct md_rdev * rdev,const char * buf,size_t len)2864 static ssize_t new_offset_store(struct md_rdev *rdev,
2865 				const char *buf, size_t len)
2866 {
2867 	unsigned long long new_offset;
2868 	struct mddev *mddev = rdev->mddev;
2869 
2870 	if (kstrtoull(buf, 10, &new_offset) < 0)
2871 		return -EINVAL;
2872 
2873 	if (mddev->sync_thread ||
2874 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2875 		return -EBUSY;
2876 	if (new_offset == rdev->data_offset)
2877 		/* reset is always permitted */
2878 		;
2879 	else if (new_offset > rdev->data_offset) {
2880 		/* must not push array size beyond rdev_sectors */
2881 		if (new_offset - rdev->data_offset
2882 		    + mddev->dev_sectors > rdev->sectors)
2883 				return -E2BIG;
2884 	}
2885 	/* Metadata worries about other space details. */
2886 
2887 	/* decreasing the offset is inconsistent with a backwards
2888 	 * reshape.
2889 	 */
2890 	if (new_offset < rdev->data_offset &&
2891 	    mddev->reshape_backwards)
2892 		return -EINVAL;
2893 	/* Increasing offset is inconsistent with forwards
2894 	 * reshape.  reshape_direction should be set to
2895 	 * 'backwards' first.
2896 	 */
2897 	if (new_offset > rdev->data_offset &&
2898 	    !mddev->reshape_backwards)
2899 		return -EINVAL;
2900 
2901 	if (mddev->pers && mddev->persistent &&
2902 	    !super_types[mddev->major_version]
2903 	    .allow_new_offset(rdev, new_offset))
2904 		return -E2BIG;
2905 	rdev->new_data_offset = new_offset;
2906 	if (new_offset > rdev->data_offset)
2907 		mddev->reshape_backwards = 1;
2908 	else if (new_offset < rdev->data_offset)
2909 		mddev->reshape_backwards = 0;
2910 
2911 	return len;
2912 }
2913 static struct rdev_sysfs_entry rdev_new_offset =
2914 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2915 
2916 static ssize_t
rdev_size_show(struct md_rdev * rdev,char * page)2917 rdev_size_show(struct md_rdev *rdev, char *page)
2918 {
2919 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2920 }
2921 
overlaps(sector_t s1,sector_t l1,sector_t s2,sector_t l2)2922 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2923 {
2924 	/* check if two start/length pairs overlap */
2925 	if (s1+l1 <= s2)
2926 		return 0;
2927 	if (s2+l2 <= s1)
2928 		return 0;
2929 	return 1;
2930 }
2931 
strict_blocks_to_sectors(const char * buf,sector_t * sectors)2932 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2933 {
2934 	unsigned long long blocks;
2935 	sector_t new;
2936 
2937 	if (kstrtoull(buf, 10, &blocks) < 0)
2938 		return -EINVAL;
2939 
2940 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2941 		return -EINVAL; /* sector conversion overflow */
2942 
2943 	new = blocks * 2;
2944 	if (new != blocks * 2)
2945 		return -EINVAL; /* unsigned long long to sector_t overflow */
2946 
2947 	*sectors = new;
2948 	return 0;
2949 }
2950 
2951 static ssize_t
rdev_size_store(struct md_rdev * rdev,const char * buf,size_t len)2952 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2953 {
2954 	struct mddev *my_mddev = rdev->mddev;
2955 	sector_t oldsectors = rdev->sectors;
2956 	sector_t sectors;
2957 
2958 	if (test_bit(Journal, &rdev->flags))
2959 		return -EBUSY;
2960 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2961 		return -EINVAL;
2962 	if (rdev->data_offset != rdev->new_data_offset)
2963 		return -EINVAL; /* too confusing */
2964 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2965 		if (my_mddev->persistent) {
2966 			sectors = super_types[my_mddev->major_version].
2967 				rdev_size_change(rdev, sectors);
2968 			if (!sectors)
2969 				return -EBUSY;
2970 		} else if (!sectors)
2971 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2972 				rdev->data_offset;
2973 		if (!my_mddev->pers->resize)
2974 			/* Cannot change size for RAID0 or Linear etc */
2975 			return -EINVAL;
2976 	}
2977 	if (sectors < my_mddev->dev_sectors)
2978 		return -EINVAL; /* component must fit device */
2979 
2980 	rdev->sectors = sectors;
2981 	if (sectors > oldsectors && my_mddev->external) {
2982 		/* Need to check that all other rdevs with the same
2983 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
2984 		 * the rdev lists safely.
2985 		 * This check does not provide a hard guarantee, it
2986 		 * just helps avoid dangerous mistakes.
2987 		 */
2988 		struct mddev *mddev;
2989 		int overlap = 0;
2990 		struct list_head *tmp;
2991 
2992 		rcu_read_lock();
2993 		for_each_mddev(mddev, tmp) {
2994 			struct md_rdev *rdev2;
2995 
2996 			rdev_for_each(rdev2, mddev)
2997 				if (rdev->bdev == rdev2->bdev &&
2998 				    rdev != rdev2 &&
2999 				    overlaps(rdev->data_offset, rdev->sectors,
3000 					     rdev2->data_offset,
3001 					     rdev2->sectors)) {
3002 					overlap = 1;
3003 					break;
3004 				}
3005 			if (overlap) {
3006 				mddev_put(mddev);
3007 				break;
3008 			}
3009 		}
3010 		rcu_read_unlock();
3011 		if (overlap) {
3012 			/* Someone else could have slipped in a size
3013 			 * change here, but doing so is just silly.
3014 			 * We put oldsectors back because we *know* it is
3015 			 * safe, and trust userspace not to race with
3016 			 * itself
3017 			 */
3018 			rdev->sectors = oldsectors;
3019 			return -EBUSY;
3020 		}
3021 	}
3022 	return len;
3023 }
3024 
3025 static struct rdev_sysfs_entry rdev_size =
3026 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3027 
recovery_start_show(struct md_rdev * rdev,char * page)3028 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3029 {
3030 	unsigned long long recovery_start = rdev->recovery_offset;
3031 
3032 	if (test_bit(In_sync, &rdev->flags) ||
3033 	    recovery_start == MaxSector)
3034 		return sprintf(page, "none\n");
3035 
3036 	return sprintf(page, "%llu\n", recovery_start);
3037 }
3038 
recovery_start_store(struct md_rdev * rdev,const char * buf,size_t len)3039 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3040 {
3041 	unsigned long long recovery_start;
3042 
3043 	if (cmd_match(buf, "none"))
3044 		recovery_start = MaxSector;
3045 	else if (kstrtoull(buf, 10, &recovery_start))
3046 		return -EINVAL;
3047 
3048 	if (rdev->mddev->pers &&
3049 	    rdev->raid_disk >= 0)
3050 		return -EBUSY;
3051 
3052 	rdev->recovery_offset = recovery_start;
3053 	if (recovery_start == MaxSector)
3054 		set_bit(In_sync, &rdev->flags);
3055 	else
3056 		clear_bit(In_sync, &rdev->flags);
3057 	return len;
3058 }
3059 
3060 static struct rdev_sysfs_entry rdev_recovery_start =
3061 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3062 
3063 static ssize_t
3064 badblocks_show(struct badblocks *bb, char *page, int unack);
3065 static ssize_t
3066 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3067 
bb_show(struct md_rdev * rdev,char * page)3068 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3069 {
3070 	return badblocks_show(&rdev->badblocks, page, 0);
3071 }
bb_store(struct md_rdev * rdev,const char * page,size_t len)3072 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3073 {
3074 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3075 	/* Maybe that ack was all we needed */
3076 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3077 		wake_up(&rdev->blocked_wait);
3078 	return rv;
3079 }
3080 static struct rdev_sysfs_entry rdev_bad_blocks =
3081 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3082 
ubb_show(struct md_rdev * rdev,char * page)3083 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3084 {
3085 	return badblocks_show(&rdev->badblocks, page, 1);
3086 }
ubb_store(struct md_rdev * rdev,const char * page,size_t len)3087 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3088 {
3089 	return badblocks_store(&rdev->badblocks, page, len, 1);
3090 }
3091 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3092 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3093 
3094 static struct attribute *rdev_default_attrs[] = {
3095 	&rdev_state.attr,
3096 	&rdev_errors.attr,
3097 	&rdev_slot.attr,
3098 	&rdev_offset.attr,
3099 	&rdev_new_offset.attr,
3100 	&rdev_size.attr,
3101 	&rdev_recovery_start.attr,
3102 	&rdev_bad_blocks.attr,
3103 	&rdev_unack_bad_blocks.attr,
3104 	NULL,
3105 };
3106 static ssize_t
rdev_attr_show(struct kobject * kobj,struct attribute * attr,char * page)3107 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3108 {
3109 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3110 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3111 
3112 	if (!entry->show)
3113 		return -EIO;
3114 	if (!rdev->mddev)
3115 		return -EBUSY;
3116 	return entry->show(rdev, page);
3117 }
3118 
3119 static ssize_t
rdev_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)3120 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3121 	      const char *page, size_t length)
3122 {
3123 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3124 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3125 	ssize_t rv;
3126 	struct mddev *mddev = rdev->mddev;
3127 
3128 	if (!entry->store)
3129 		return -EIO;
3130 	if (!capable(CAP_SYS_ADMIN))
3131 		return -EACCES;
3132 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3133 	if (!rv) {
3134 		if (rdev->mddev == NULL)
3135 			rv = -EBUSY;
3136 		else
3137 			rv = entry->store(rdev, page, length);
3138 		mddev_unlock(mddev);
3139 	}
3140 	return rv;
3141 }
3142 
rdev_free(struct kobject * ko)3143 static void rdev_free(struct kobject *ko)
3144 {
3145 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3146 	kfree(rdev);
3147 }
3148 static const struct sysfs_ops rdev_sysfs_ops = {
3149 	.show		= rdev_attr_show,
3150 	.store		= rdev_attr_store,
3151 };
3152 static struct kobj_type rdev_ktype = {
3153 	.release	= rdev_free,
3154 	.sysfs_ops	= &rdev_sysfs_ops,
3155 	.default_attrs	= rdev_default_attrs,
3156 };
3157 
md_rdev_init(struct md_rdev * rdev)3158 int md_rdev_init(struct md_rdev *rdev)
3159 {
3160 	rdev->desc_nr = -1;
3161 	rdev->saved_raid_disk = -1;
3162 	rdev->raid_disk = -1;
3163 	rdev->flags = 0;
3164 	rdev->data_offset = 0;
3165 	rdev->new_data_offset = 0;
3166 	rdev->sb_events = 0;
3167 	rdev->last_read_error.tv_sec  = 0;
3168 	rdev->last_read_error.tv_nsec = 0;
3169 	rdev->sb_loaded = 0;
3170 	rdev->bb_page = NULL;
3171 	atomic_set(&rdev->nr_pending, 0);
3172 	atomic_set(&rdev->read_errors, 0);
3173 	atomic_set(&rdev->corrected_errors, 0);
3174 
3175 	INIT_LIST_HEAD(&rdev->same_set);
3176 	init_waitqueue_head(&rdev->blocked_wait);
3177 
3178 	/* Add space to store bad block list.
3179 	 * This reserves the space even on arrays where it cannot
3180 	 * be used - I wonder if that matters
3181 	 */
3182 	rdev->badblocks.count = 0;
3183 	rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3184 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3185 	seqlock_init(&rdev->badblocks.lock);
3186 	if (rdev->badblocks.page == NULL)
3187 		return -ENOMEM;
3188 
3189 	return 0;
3190 }
3191 EXPORT_SYMBOL_GPL(md_rdev_init);
3192 /*
3193  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3194  *
3195  * mark the device faulty if:
3196  *
3197  *   - the device is nonexistent (zero size)
3198  *   - the device has no valid superblock
3199  *
3200  * a faulty rdev _never_ has rdev->sb set.
3201  */
md_import_device(dev_t newdev,int super_format,int super_minor)3202 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3203 {
3204 	char b[BDEVNAME_SIZE];
3205 	int err;
3206 	struct md_rdev *rdev;
3207 	sector_t size;
3208 
3209 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3210 	if (!rdev) {
3211 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3212 		return ERR_PTR(-ENOMEM);
3213 	}
3214 
3215 	err = md_rdev_init(rdev);
3216 	if (err)
3217 		goto abort_free;
3218 	err = alloc_disk_sb(rdev);
3219 	if (err)
3220 		goto abort_free;
3221 
3222 	err = lock_rdev(rdev, newdev, super_format == -2);
3223 	if (err)
3224 		goto abort_free;
3225 
3226 	kobject_init(&rdev->kobj, &rdev_ktype);
3227 
3228 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3229 	if (!size) {
3230 		printk(KERN_WARNING
3231 			"md: %s has zero or unknown size, marking faulty!\n",
3232 			bdevname(rdev->bdev,b));
3233 		err = -EINVAL;
3234 		goto abort_free;
3235 	}
3236 
3237 	if (super_format >= 0) {
3238 		err = super_types[super_format].
3239 			load_super(rdev, NULL, super_minor);
3240 		if (err == -EINVAL) {
3241 			printk(KERN_WARNING
3242 				"md: %s does not have a valid v%d.%d "
3243 			       "superblock, not importing!\n",
3244 				bdevname(rdev->bdev,b),
3245 			       super_format, super_minor);
3246 			goto abort_free;
3247 		}
3248 		if (err < 0) {
3249 			printk(KERN_WARNING
3250 				"md: could not read %s's sb, not importing!\n",
3251 				bdevname(rdev->bdev,b));
3252 			goto abort_free;
3253 		}
3254 	}
3255 
3256 	return rdev;
3257 
3258 abort_free:
3259 	if (rdev->bdev)
3260 		unlock_rdev(rdev);
3261 	md_rdev_clear(rdev);
3262 	kfree(rdev);
3263 	return ERR_PTR(err);
3264 }
3265 
3266 /*
3267  * Check a full RAID array for plausibility
3268  */
3269 
analyze_sbs(struct mddev * mddev)3270 static void analyze_sbs(struct mddev *mddev)
3271 {
3272 	int i;
3273 	struct md_rdev *rdev, *freshest, *tmp;
3274 	char b[BDEVNAME_SIZE];
3275 
3276 	freshest = NULL;
3277 	rdev_for_each_safe(rdev, tmp, mddev)
3278 		switch (super_types[mddev->major_version].
3279 			load_super(rdev, freshest, mddev->minor_version)) {
3280 		case 1:
3281 			freshest = rdev;
3282 			break;
3283 		case 0:
3284 			break;
3285 		default:
3286 			printk( KERN_ERR \
3287 				"md: fatal superblock inconsistency in %s"
3288 				" -- removing from array\n",
3289 				bdevname(rdev->bdev,b));
3290 			md_kick_rdev_from_array(rdev);
3291 		}
3292 
3293 	super_types[mddev->major_version].
3294 		validate_super(mddev, freshest);
3295 
3296 	i = 0;
3297 	rdev_for_each_safe(rdev, tmp, mddev) {
3298 		if (mddev->max_disks &&
3299 		    (rdev->desc_nr >= mddev->max_disks ||
3300 		     i > mddev->max_disks)) {
3301 			printk(KERN_WARNING
3302 			       "md: %s: %s: only %d devices permitted\n",
3303 			       mdname(mddev), bdevname(rdev->bdev, b),
3304 			       mddev->max_disks);
3305 			md_kick_rdev_from_array(rdev);
3306 			continue;
3307 		}
3308 		if (rdev != freshest) {
3309 			if (super_types[mddev->major_version].
3310 			    validate_super(mddev, rdev)) {
3311 				printk(KERN_WARNING "md: kicking non-fresh %s"
3312 					" from array!\n",
3313 					bdevname(rdev->bdev,b));
3314 				md_kick_rdev_from_array(rdev);
3315 				continue;
3316 			}
3317 		}
3318 		if (mddev->level == LEVEL_MULTIPATH) {
3319 			rdev->desc_nr = i++;
3320 			rdev->raid_disk = rdev->desc_nr;
3321 			set_bit(In_sync, &rdev->flags);
3322 		} else if (rdev->raid_disk >=
3323 			    (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3324 			   !test_bit(Journal, &rdev->flags)) {
3325 			rdev->raid_disk = -1;
3326 			clear_bit(In_sync, &rdev->flags);
3327 		}
3328 	}
3329 }
3330 
3331 /* Read a fixed-point number.
3332  * Numbers in sysfs attributes should be in "standard" units where
3333  * possible, so time should be in seconds.
3334  * However we internally use a a much smaller unit such as
3335  * milliseconds or jiffies.
3336  * This function takes a decimal number with a possible fractional
3337  * component, and produces an integer which is the result of
3338  * multiplying that number by 10^'scale'.
3339  * all without any floating-point arithmetic.
3340  */
strict_strtoul_scaled(const char * cp,unsigned long * res,int scale)3341 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3342 {
3343 	unsigned long result = 0;
3344 	long decimals = -1;
3345 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3346 		if (*cp == '.')
3347 			decimals = 0;
3348 		else if (decimals < scale) {
3349 			unsigned int value;
3350 			value = *cp - '0';
3351 			result = result * 10 + value;
3352 			if (decimals >= 0)
3353 				decimals++;
3354 		}
3355 		cp++;
3356 	}
3357 	if (*cp == '\n')
3358 		cp++;
3359 	if (*cp)
3360 		return -EINVAL;
3361 	if (decimals < 0)
3362 		decimals = 0;
3363 	while (decimals < scale) {
3364 		result *= 10;
3365 		decimals ++;
3366 	}
3367 	*res = result;
3368 	return 0;
3369 }
3370 
3371 static ssize_t
safe_delay_show(struct mddev * mddev,char * page)3372 safe_delay_show(struct mddev *mddev, char *page)
3373 {
3374 	int msec = (mddev->safemode_delay*1000)/HZ;
3375 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3376 }
3377 static ssize_t
safe_delay_store(struct mddev * mddev,const char * cbuf,size_t len)3378 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3379 {
3380 	unsigned long msec;
3381 
3382 	if (mddev_is_clustered(mddev)) {
3383 		pr_info("md: Safemode is disabled for clustered mode\n");
3384 		return -EINVAL;
3385 	}
3386 
3387 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3388 		return -EINVAL;
3389 	if (msec == 0)
3390 		mddev->safemode_delay = 0;
3391 	else {
3392 		unsigned long old_delay = mddev->safemode_delay;
3393 		unsigned long new_delay = (msec*HZ)/1000;
3394 
3395 		if (new_delay == 0)
3396 			new_delay = 1;
3397 		mddev->safemode_delay = new_delay;
3398 		if (new_delay < old_delay || old_delay == 0)
3399 			mod_timer(&mddev->safemode_timer, jiffies+1);
3400 	}
3401 	return len;
3402 }
3403 static struct md_sysfs_entry md_safe_delay =
3404 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3405 
3406 static ssize_t
level_show(struct mddev * mddev,char * page)3407 level_show(struct mddev *mddev, char *page)
3408 {
3409 	struct md_personality *p;
3410 	int ret;
3411 	spin_lock(&mddev->lock);
3412 	p = mddev->pers;
3413 	if (p)
3414 		ret = sprintf(page, "%s\n", p->name);
3415 	else if (mddev->clevel[0])
3416 		ret = sprintf(page, "%s\n", mddev->clevel);
3417 	else if (mddev->level != LEVEL_NONE)
3418 		ret = sprintf(page, "%d\n", mddev->level);
3419 	else
3420 		ret = 0;
3421 	spin_unlock(&mddev->lock);
3422 	return ret;
3423 }
3424 
3425 static ssize_t
level_store(struct mddev * mddev,const char * buf,size_t len)3426 level_store(struct mddev *mddev, const char *buf, size_t len)
3427 {
3428 	char clevel[16];
3429 	ssize_t rv;
3430 	size_t slen = len;
3431 	struct md_personality *pers, *oldpers;
3432 	long level;
3433 	void *priv, *oldpriv;
3434 	struct md_rdev *rdev;
3435 
3436 	if (slen == 0 || slen >= sizeof(clevel))
3437 		return -EINVAL;
3438 
3439 	rv = mddev_lock(mddev);
3440 	if (rv)
3441 		return rv;
3442 
3443 	if (mddev->pers == NULL) {
3444 		strncpy(mddev->clevel, buf, slen);
3445 		if (mddev->clevel[slen-1] == '\n')
3446 			slen--;
3447 		mddev->clevel[slen] = 0;
3448 		mddev->level = LEVEL_NONE;
3449 		rv = len;
3450 		goto out_unlock;
3451 	}
3452 	rv = -EROFS;
3453 	if (mddev->ro)
3454 		goto out_unlock;
3455 
3456 	/* request to change the personality.  Need to ensure:
3457 	 *  - array is not engaged in resync/recovery/reshape
3458 	 *  - old personality can be suspended
3459 	 *  - new personality will access other array.
3460 	 */
3461 
3462 	rv = -EBUSY;
3463 	if (mddev->sync_thread ||
3464 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3465 	    mddev->reshape_position != MaxSector ||
3466 	    mddev->sysfs_active)
3467 		goto out_unlock;
3468 
3469 	rv = -EINVAL;
3470 	if (!mddev->pers->quiesce) {
3471 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3472 		       mdname(mddev), mddev->pers->name);
3473 		goto out_unlock;
3474 	}
3475 
3476 	/* Now find the new personality */
3477 	strncpy(clevel, buf, slen);
3478 	if (clevel[slen-1] == '\n')
3479 		slen--;
3480 	clevel[slen] = 0;
3481 	if (kstrtol(clevel, 10, &level))
3482 		level = LEVEL_NONE;
3483 
3484 	if (request_module("md-%s", clevel) != 0)
3485 		request_module("md-level-%s", clevel);
3486 	spin_lock(&pers_lock);
3487 	pers = find_pers(level, clevel);
3488 	if (!pers || !try_module_get(pers->owner)) {
3489 		spin_unlock(&pers_lock);
3490 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3491 		rv = -EINVAL;
3492 		goto out_unlock;
3493 	}
3494 	spin_unlock(&pers_lock);
3495 
3496 	if (pers == mddev->pers) {
3497 		/* Nothing to do! */
3498 		module_put(pers->owner);
3499 		rv = len;
3500 		goto out_unlock;
3501 	}
3502 	if (!pers->takeover) {
3503 		module_put(pers->owner);
3504 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3505 		       mdname(mddev), clevel);
3506 		rv = -EINVAL;
3507 		goto out_unlock;
3508 	}
3509 
3510 	rdev_for_each(rdev, mddev)
3511 		rdev->new_raid_disk = rdev->raid_disk;
3512 
3513 	/* ->takeover must set new_* and/or delta_disks
3514 	 * if it succeeds, and may set them when it fails.
3515 	 */
3516 	priv = pers->takeover(mddev);
3517 	if (IS_ERR(priv)) {
3518 		mddev->new_level = mddev->level;
3519 		mddev->new_layout = mddev->layout;
3520 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3521 		mddev->raid_disks -= mddev->delta_disks;
3522 		mddev->delta_disks = 0;
3523 		mddev->reshape_backwards = 0;
3524 		module_put(pers->owner);
3525 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3526 		       mdname(mddev), clevel);
3527 		rv = PTR_ERR(priv);
3528 		goto out_unlock;
3529 	}
3530 
3531 	/* Looks like we have a winner */
3532 	mddev_suspend(mddev);
3533 	mddev_detach(mddev);
3534 
3535 	spin_lock(&mddev->lock);
3536 	oldpers = mddev->pers;
3537 	oldpriv = mddev->private;
3538 	mddev->pers = pers;
3539 	mddev->private = priv;
3540 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3541 	mddev->level = mddev->new_level;
3542 	mddev->layout = mddev->new_layout;
3543 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3544 	mddev->delta_disks = 0;
3545 	mddev->reshape_backwards = 0;
3546 	mddev->degraded = 0;
3547 	spin_unlock(&mddev->lock);
3548 
3549 	if (oldpers->sync_request == NULL &&
3550 	    mddev->external) {
3551 		/* We are converting from a no-redundancy array
3552 		 * to a redundancy array and metadata is managed
3553 		 * externally so we need to be sure that writes
3554 		 * won't block due to a need to transition
3555 		 *      clean->dirty
3556 		 * until external management is started.
3557 		 */
3558 		mddev->in_sync = 0;
3559 		mddev->safemode_delay = 0;
3560 		mddev->safemode = 0;
3561 	}
3562 
3563 	oldpers->free(mddev, oldpriv);
3564 
3565 	if (oldpers->sync_request == NULL &&
3566 	    pers->sync_request != NULL) {
3567 		/* need to add the md_redundancy_group */
3568 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3569 			printk(KERN_WARNING
3570 			       "md: cannot register extra attributes for %s\n",
3571 			       mdname(mddev));
3572 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3573 	}
3574 	if (oldpers->sync_request != NULL &&
3575 	    pers->sync_request == NULL) {
3576 		/* need to remove the md_redundancy_group */
3577 		if (mddev->to_remove == NULL)
3578 			mddev->to_remove = &md_redundancy_group;
3579 	}
3580 
3581 	rdev_for_each(rdev, mddev) {
3582 		if (rdev->raid_disk < 0)
3583 			continue;
3584 		if (rdev->new_raid_disk >= mddev->raid_disks)
3585 			rdev->new_raid_disk = -1;
3586 		if (rdev->new_raid_disk == rdev->raid_disk)
3587 			continue;
3588 		sysfs_unlink_rdev(mddev, rdev);
3589 	}
3590 	rdev_for_each(rdev, mddev) {
3591 		if (rdev->raid_disk < 0)
3592 			continue;
3593 		if (rdev->new_raid_disk == rdev->raid_disk)
3594 			continue;
3595 		rdev->raid_disk = rdev->new_raid_disk;
3596 		if (rdev->raid_disk < 0)
3597 			clear_bit(In_sync, &rdev->flags);
3598 		else {
3599 			if (sysfs_link_rdev(mddev, rdev))
3600 				printk(KERN_WARNING "md: cannot register rd%d"
3601 				       " for %s after level change\n",
3602 				       rdev->raid_disk, mdname(mddev));
3603 		}
3604 	}
3605 
3606 	if (pers->sync_request == NULL) {
3607 		/* this is now an array without redundancy, so
3608 		 * it must always be in_sync
3609 		 */
3610 		mddev->in_sync = 1;
3611 		del_timer_sync(&mddev->safemode_timer);
3612 	}
3613 	blk_set_stacking_limits(&mddev->queue->limits);
3614 	pers->run(mddev);
3615 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3616 	mddev_resume(mddev);
3617 	if (!mddev->thread)
3618 		md_update_sb(mddev, 1);
3619 	sysfs_notify(&mddev->kobj, NULL, "level");
3620 	md_new_event(mddev);
3621 	rv = len;
3622 out_unlock:
3623 	mddev_unlock(mddev);
3624 	return rv;
3625 }
3626 
3627 static struct md_sysfs_entry md_level =
3628 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3629 
3630 static ssize_t
layout_show(struct mddev * mddev,char * page)3631 layout_show(struct mddev *mddev, char *page)
3632 {
3633 	/* just a number, not meaningful for all levels */
3634 	if (mddev->reshape_position != MaxSector &&
3635 	    mddev->layout != mddev->new_layout)
3636 		return sprintf(page, "%d (%d)\n",
3637 			       mddev->new_layout, mddev->layout);
3638 	return sprintf(page, "%d\n", mddev->layout);
3639 }
3640 
3641 static ssize_t
layout_store(struct mddev * mddev,const char * buf,size_t len)3642 layout_store(struct mddev *mddev, const char *buf, size_t len)
3643 {
3644 	unsigned int n;
3645 	int err;
3646 
3647 	err = kstrtouint(buf, 10, &n);
3648 	if (err < 0)
3649 		return err;
3650 	err = mddev_lock(mddev);
3651 	if (err)
3652 		return err;
3653 
3654 	if (mddev->pers) {
3655 		if (mddev->pers->check_reshape == NULL)
3656 			err = -EBUSY;
3657 		else if (mddev->ro)
3658 			err = -EROFS;
3659 		else {
3660 			mddev->new_layout = n;
3661 			err = mddev->pers->check_reshape(mddev);
3662 			if (err)
3663 				mddev->new_layout = mddev->layout;
3664 		}
3665 	} else {
3666 		mddev->new_layout = n;
3667 		if (mddev->reshape_position == MaxSector)
3668 			mddev->layout = n;
3669 	}
3670 	mddev_unlock(mddev);
3671 	return err ?: len;
3672 }
3673 static struct md_sysfs_entry md_layout =
3674 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3675 
3676 static ssize_t
raid_disks_show(struct mddev * mddev,char * page)3677 raid_disks_show(struct mddev *mddev, char *page)
3678 {
3679 	if (mddev->raid_disks == 0)
3680 		return 0;
3681 	if (mddev->reshape_position != MaxSector &&
3682 	    mddev->delta_disks != 0)
3683 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3684 			       mddev->raid_disks - mddev->delta_disks);
3685 	return sprintf(page, "%d\n", mddev->raid_disks);
3686 }
3687 
3688 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3689 
3690 static ssize_t
raid_disks_store(struct mddev * mddev,const char * buf,size_t len)3691 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3692 {
3693 	unsigned int n;
3694 	int err;
3695 
3696 	err = kstrtouint(buf, 10, &n);
3697 	if (err < 0)
3698 		return err;
3699 
3700 	err = mddev_lock(mddev);
3701 	if (err)
3702 		return err;
3703 	if (mddev->pers)
3704 		err = update_raid_disks(mddev, n);
3705 	else if (mddev->reshape_position != MaxSector) {
3706 		struct md_rdev *rdev;
3707 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3708 
3709 		err = -EINVAL;
3710 		rdev_for_each(rdev, mddev) {
3711 			if (olddisks < n &&
3712 			    rdev->data_offset < rdev->new_data_offset)
3713 				goto out_unlock;
3714 			if (olddisks > n &&
3715 			    rdev->data_offset > rdev->new_data_offset)
3716 				goto out_unlock;
3717 		}
3718 		err = 0;
3719 		mddev->delta_disks = n - olddisks;
3720 		mddev->raid_disks = n;
3721 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3722 	} else
3723 		mddev->raid_disks = n;
3724 out_unlock:
3725 	mddev_unlock(mddev);
3726 	return err ? err : len;
3727 }
3728 static struct md_sysfs_entry md_raid_disks =
3729 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3730 
3731 static ssize_t
chunk_size_show(struct mddev * mddev,char * page)3732 chunk_size_show(struct mddev *mddev, char *page)
3733 {
3734 	if (mddev->reshape_position != MaxSector &&
3735 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3736 		return sprintf(page, "%d (%d)\n",
3737 			       mddev->new_chunk_sectors << 9,
3738 			       mddev->chunk_sectors << 9);
3739 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3740 }
3741 
3742 static ssize_t
chunk_size_store(struct mddev * mddev,const char * buf,size_t len)3743 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3744 {
3745 	unsigned long n;
3746 	int err;
3747 
3748 	err = kstrtoul(buf, 10, &n);
3749 	if (err < 0)
3750 		return err;
3751 
3752 	err = mddev_lock(mddev);
3753 	if (err)
3754 		return err;
3755 	if (mddev->pers) {
3756 		if (mddev->pers->check_reshape == NULL)
3757 			err = -EBUSY;
3758 		else if (mddev->ro)
3759 			err = -EROFS;
3760 		else {
3761 			mddev->new_chunk_sectors = n >> 9;
3762 			err = mddev->pers->check_reshape(mddev);
3763 			if (err)
3764 				mddev->new_chunk_sectors = mddev->chunk_sectors;
3765 		}
3766 	} else {
3767 		mddev->new_chunk_sectors = n >> 9;
3768 		if (mddev->reshape_position == MaxSector)
3769 			mddev->chunk_sectors = n >> 9;
3770 	}
3771 	mddev_unlock(mddev);
3772 	return err ?: len;
3773 }
3774 static struct md_sysfs_entry md_chunk_size =
3775 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3776 
3777 static ssize_t
resync_start_show(struct mddev * mddev,char * page)3778 resync_start_show(struct mddev *mddev, char *page)
3779 {
3780 	if (mddev->recovery_cp == MaxSector)
3781 		return sprintf(page, "none\n");
3782 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3783 }
3784 
3785 static ssize_t
resync_start_store(struct mddev * mddev,const char * buf,size_t len)3786 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3787 {
3788 	unsigned long long n;
3789 	int err;
3790 
3791 	if (cmd_match(buf, "none"))
3792 		n = MaxSector;
3793 	else {
3794 		err = kstrtoull(buf, 10, &n);
3795 		if (err < 0)
3796 			return err;
3797 		if (n != (sector_t)n)
3798 			return -EINVAL;
3799 	}
3800 
3801 	err = mddev_lock(mddev);
3802 	if (err)
3803 		return err;
3804 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3805 		err = -EBUSY;
3806 
3807 	if (!err) {
3808 		mddev->recovery_cp = n;
3809 		if (mddev->pers)
3810 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3811 	}
3812 	mddev_unlock(mddev);
3813 	return err ?: len;
3814 }
3815 static struct md_sysfs_entry md_resync_start =
3816 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3817 		resync_start_show, resync_start_store);
3818 
3819 /*
3820  * The array state can be:
3821  *
3822  * clear
3823  *     No devices, no size, no level
3824  *     Equivalent to STOP_ARRAY ioctl
3825  * inactive
3826  *     May have some settings, but array is not active
3827  *        all IO results in error
3828  *     When written, doesn't tear down array, but just stops it
3829  * suspended (not supported yet)
3830  *     All IO requests will block. The array can be reconfigured.
3831  *     Writing this, if accepted, will block until array is quiescent
3832  * readonly
3833  *     no resync can happen.  no superblocks get written.
3834  *     write requests fail
3835  * read-auto
3836  *     like readonly, but behaves like 'clean' on a write request.
3837  *
3838  * clean - no pending writes, but otherwise active.
3839  *     When written to inactive array, starts without resync
3840  *     If a write request arrives then
3841  *       if metadata is known, mark 'dirty' and switch to 'active'.
3842  *       if not known, block and switch to write-pending
3843  *     If written to an active array that has pending writes, then fails.
3844  * active
3845  *     fully active: IO and resync can be happening.
3846  *     When written to inactive array, starts with resync
3847  *
3848  * write-pending
3849  *     clean, but writes are blocked waiting for 'active' to be written.
3850  *
3851  * active-idle
3852  *     like active, but no writes have been seen for a while (100msec).
3853  *
3854  */
3855 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3856 		   write_pending, active_idle, bad_word};
3857 static char *array_states[] = {
3858 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3859 	"write-pending", "active-idle", NULL };
3860 
match_word(const char * word,char ** list)3861 static int match_word(const char *word, char **list)
3862 {
3863 	int n;
3864 	for (n=0; list[n]; n++)
3865 		if (cmd_match(word, list[n]))
3866 			break;
3867 	return n;
3868 }
3869 
3870 static ssize_t
array_state_show(struct mddev * mddev,char * page)3871 array_state_show(struct mddev *mddev, char *page)
3872 {
3873 	enum array_state st = inactive;
3874 
3875 	if (mddev->pers)
3876 		switch(mddev->ro) {
3877 		case 1:
3878 			st = readonly;
3879 			break;
3880 		case 2:
3881 			st = read_auto;
3882 			break;
3883 		case 0:
3884 			if (mddev->in_sync)
3885 				st = clean;
3886 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3887 				st = write_pending;
3888 			else if (mddev->safemode)
3889 				st = active_idle;
3890 			else
3891 				st = active;
3892 		}
3893 	else {
3894 		if (list_empty(&mddev->disks) &&
3895 		    mddev->raid_disks == 0 &&
3896 		    mddev->dev_sectors == 0)
3897 			st = clear;
3898 		else
3899 			st = inactive;
3900 	}
3901 	return sprintf(page, "%s\n", array_states[st]);
3902 }
3903 
3904 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3905 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3906 static int do_md_run(struct mddev *mddev);
3907 static int restart_array(struct mddev *mddev);
3908 
3909 static ssize_t
array_state_store(struct mddev * mddev,const char * buf,size_t len)3910 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3911 {
3912 	int err;
3913 	enum array_state st = match_word(buf, array_states);
3914 
3915 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3916 		/* don't take reconfig_mutex when toggling between
3917 		 * clean and active
3918 		 */
3919 		spin_lock(&mddev->lock);
3920 		if (st == active) {
3921 			restart_array(mddev);
3922 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3923 			wake_up(&mddev->sb_wait);
3924 			err = 0;
3925 		} else /* st == clean */ {
3926 			restart_array(mddev);
3927 			if (atomic_read(&mddev->writes_pending) == 0) {
3928 				if (mddev->in_sync == 0) {
3929 					mddev->in_sync = 1;
3930 					if (mddev->safemode == 1)
3931 						mddev->safemode = 0;
3932 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3933 				}
3934 				err = 0;
3935 			} else
3936 				err = -EBUSY;
3937 		}
3938 		spin_unlock(&mddev->lock);
3939 		return err ?: len;
3940 	}
3941 	err = mddev_lock(mddev);
3942 	if (err)
3943 		return err;
3944 	err = -EINVAL;
3945 	switch(st) {
3946 	case bad_word:
3947 		break;
3948 	case clear:
3949 		/* stopping an active array */
3950 		err = do_md_stop(mddev, 0, NULL);
3951 		break;
3952 	case inactive:
3953 		/* stopping an active array */
3954 		if (mddev->pers)
3955 			err = do_md_stop(mddev, 2, NULL);
3956 		else
3957 			err = 0; /* already inactive */
3958 		break;
3959 	case suspended:
3960 		break; /* not supported yet */
3961 	case readonly:
3962 		if (mddev->pers)
3963 			err = md_set_readonly(mddev, NULL);
3964 		else {
3965 			mddev->ro = 1;
3966 			set_disk_ro(mddev->gendisk, 1);
3967 			err = do_md_run(mddev);
3968 		}
3969 		break;
3970 	case read_auto:
3971 		if (mddev->pers) {
3972 			if (mddev->ro == 0)
3973 				err = md_set_readonly(mddev, NULL);
3974 			else if (mddev->ro == 1)
3975 				err = restart_array(mddev);
3976 			if (err == 0) {
3977 				mddev->ro = 2;
3978 				set_disk_ro(mddev->gendisk, 0);
3979 			}
3980 		} else {
3981 			mddev->ro = 2;
3982 			err = do_md_run(mddev);
3983 		}
3984 		break;
3985 	case clean:
3986 		if (mddev->pers) {
3987 			err = restart_array(mddev);
3988 			if (err)
3989 				break;
3990 			spin_lock(&mddev->lock);
3991 			if (atomic_read(&mddev->writes_pending) == 0) {
3992 				if (mddev->in_sync == 0) {
3993 					mddev->in_sync = 1;
3994 					if (mddev->safemode == 1)
3995 						mddev->safemode = 0;
3996 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3997 				}
3998 				err = 0;
3999 			} else
4000 				err = -EBUSY;
4001 			spin_unlock(&mddev->lock);
4002 		} else
4003 			err = -EINVAL;
4004 		break;
4005 	case active:
4006 		if (mddev->pers) {
4007 			err = restart_array(mddev);
4008 			if (err)
4009 				break;
4010 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
4011 			wake_up(&mddev->sb_wait);
4012 			err = 0;
4013 		} else {
4014 			mddev->ro = 0;
4015 			set_disk_ro(mddev->gendisk, 0);
4016 			err = do_md_run(mddev);
4017 		}
4018 		break;
4019 	case write_pending:
4020 	case active_idle:
4021 		/* these cannot be set */
4022 		break;
4023 	}
4024 
4025 	if (!err) {
4026 		if (mddev->hold_active == UNTIL_IOCTL)
4027 			mddev->hold_active = 0;
4028 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4029 	}
4030 	mddev_unlock(mddev);
4031 	return err ?: len;
4032 }
4033 static struct md_sysfs_entry md_array_state =
4034 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4035 
4036 static ssize_t
max_corrected_read_errors_show(struct mddev * mddev,char * page)4037 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4038 	return sprintf(page, "%d\n",
4039 		       atomic_read(&mddev->max_corr_read_errors));
4040 }
4041 
4042 static ssize_t
max_corrected_read_errors_store(struct mddev * mddev,const char * buf,size_t len)4043 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4044 {
4045 	unsigned int n;
4046 	int rv;
4047 
4048 	rv = kstrtouint(buf, 10, &n);
4049 	if (rv < 0)
4050 		return rv;
4051 	atomic_set(&mddev->max_corr_read_errors, n);
4052 	return len;
4053 }
4054 
4055 static struct md_sysfs_entry max_corr_read_errors =
4056 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4057 	max_corrected_read_errors_store);
4058 
4059 static ssize_t
null_show(struct mddev * mddev,char * page)4060 null_show(struct mddev *mddev, char *page)
4061 {
4062 	return -EINVAL;
4063 }
4064 
4065 static ssize_t
new_dev_store(struct mddev * mddev,const char * buf,size_t len)4066 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4067 {
4068 	/* buf must be %d:%d\n? giving major and minor numbers */
4069 	/* The new device is added to the array.
4070 	 * If the array has a persistent superblock, we read the
4071 	 * superblock to initialise info and check validity.
4072 	 * Otherwise, only checking done is that in bind_rdev_to_array,
4073 	 * which mainly checks size.
4074 	 */
4075 	char *e;
4076 	int major = simple_strtoul(buf, &e, 10);
4077 	int minor;
4078 	dev_t dev;
4079 	struct md_rdev *rdev;
4080 	int err;
4081 
4082 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4083 		return -EINVAL;
4084 	minor = simple_strtoul(e+1, &e, 10);
4085 	if (*e && *e != '\n')
4086 		return -EINVAL;
4087 	dev = MKDEV(major, minor);
4088 	if (major != MAJOR(dev) ||
4089 	    minor != MINOR(dev))
4090 		return -EOVERFLOW;
4091 
4092 	flush_workqueue(md_misc_wq);
4093 
4094 	err = mddev_lock(mddev);
4095 	if (err)
4096 		return err;
4097 	if (mddev->persistent) {
4098 		rdev = md_import_device(dev, mddev->major_version,
4099 					mddev->minor_version);
4100 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4101 			struct md_rdev *rdev0
4102 				= list_entry(mddev->disks.next,
4103 					     struct md_rdev, same_set);
4104 			err = super_types[mddev->major_version]
4105 				.load_super(rdev, rdev0, mddev->minor_version);
4106 			if (err < 0)
4107 				goto out;
4108 		}
4109 	} else if (mddev->external)
4110 		rdev = md_import_device(dev, -2, -1);
4111 	else
4112 		rdev = md_import_device(dev, -1, -1);
4113 
4114 	if (IS_ERR(rdev)) {
4115 		mddev_unlock(mddev);
4116 		return PTR_ERR(rdev);
4117 	}
4118 	err = bind_rdev_to_array(rdev, mddev);
4119  out:
4120 	if (err)
4121 		export_rdev(rdev);
4122 	mddev_unlock(mddev);
4123 	return err ? err : len;
4124 }
4125 
4126 static struct md_sysfs_entry md_new_device =
4127 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4128 
4129 static ssize_t
bitmap_store(struct mddev * mddev,const char * buf,size_t len)4130 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4131 {
4132 	char *end;
4133 	unsigned long chunk, end_chunk;
4134 	int err;
4135 
4136 	err = mddev_lock(mddev);
4137 	if (err)
4138 		return err;
4139 	if (!mddev->bitmap)
4140 		goto out;
4141 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4142 	while (*buf) {
4143 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4144 		if (buf == end) break;
4145 		if (*end == '-') { /* range */
4146 			buf = end + 1;
4147 			end_chunk = simple_strtoul(buf, &end, 0);
4148 			if (buf == end) break;
4149 		}
4150 		if (*end && !isspace(*end)) break;
4151 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4152 		buf = skip_spaces(end);
4153 	}
4154 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4155 out:
4156 	mddev_unlock(mddev);
4157 	return len;
4158 }
4159 
4160 static struct md_sysfs_entry md_bitmap =
4161 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4162 
4163 static ssize_t
size_show(struct mddev * mddev,char * page)4164 size_show(struct mddev *mddev, char *page)
4165 {
4166 	return sprintf(page, "%llu\n",
4167 		(unsigned long long)mddev->dev_sectors / 2);
4168 }
4169 
4170 static int update_size(struct mddev *mddev, sector_t num_sectors);
4171 
4172 static ssize_t
size_store(struct mddev * mddev,const char * buf,size_t len)4173 size_store(struct mddev *mddev, const char *buf, size_t len)
4174 {
4175 	/* If array is inactive, we can reduce the component size, but
4176 	 * not increase it (except from 0).
4177 	 * If array is active, we can try an on-line resize
4178 	 */
4179 	sector_t sectors;
4180 	int err = strict_blocks_to_sectors(buf, &sectors);
4181 
4182 	if (err < 0)
4183 		return err;
4184 	err = mddev_lock(mddev);
4185 	if (err)
4186 		return err;
4187 	if (mddev->pers) {
4188 		err = update_size(mddev, sectors);
4189 		md_update_sb(mddev, 1);
4190 	} else {
4191 		if (mddev->dev_sectors == 0 ||
4192 		    mddev->dev_sectors > sectors)
4193 			mddev->dev_sectors = sectors;
4194 		else
4195 			err = -ENOSPC;
4196 	}
4197 	mddev_unlock(mddev);
4198 	return err ? err : len;
4199 }
4200 
4201 static struct md_sysfs_entry md_size =
4202 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4203 
4204 /* Metadata version.
4205  * This is one of
4206  *   'none' for arrays with no metadata (good luck...)
4207  *   'external' for arrays with externally managed metadata,
4208  * or N.M for internally known formats
4209  */
4210 static ssize_t
metadata_show(struct mddev * mddev,char * page)4211 metadata_show(struct mddev *mddev, char *page)
4212 {
4213 	if (mddev->persistent)
4214 		return sprintf(page, "%d.%d\n",
4215 			       mddev->major_version, mddev->minor_version);
4216 	else if (mddev->external)
4217 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4218 	else
4219 		return sprintf(page, "none\n");
4220 }
4221 
4222 static ssize_t
metadata_store(struct mddev * mddev,const char * buf,size_t len)4223 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4224 {
4225 	int major, minor;
4226 	char *e;
4227 	int err;
4228 	/* Changing the details of 'external' metadata is
4229 	 * always permitted.  Otherwise there must be
4230 	 * no devices attached to the array.
4231 	 */
4232 
4233 	err = mddev_lock(mddev);
4234 	if (err)
4235 		return err;
4236 	err = -EBUSY;
4237 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4238 		;
4239 	else if (!list_empty(&mddev->disks))
4240 		goto out_unlock;
4241 
4242 	err = 0;
4243 	if (cmd_match(buf, "none")) {
4244 		mddev->persistent = 0;
4245 		mddev->external = 0;
4246 		mddev->major_version = 0;
4247 		mddev->minor_version = 90;
4248 		goto out_unlock;
4249 	}
4250 	if (strncmp(buf, "external:", 9) == 0) {
4251 		size_t namelen = len-9;
4252 		if (namelen >= sizeof(mddev->metadata_type))
4253 			namelen = sizeof(mddev->metadata_type)-1;
4254 		strncpy(mddev->metadata_type, buf+9, namelen);
4255 		mddev->metadata_type[namelen] = 0;
4256 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4257 			mddev->metadata_type[--namelen] = 0;
4258 		mddev->persistent = 0;
4259 		mddev->external = 1;
4260 		mddev->major_version = 0;
4261 		mddev->minor_version = 90;
4262 		goto out_unlock;
4263 	}
4264 	major = simple_strtoul(buf, &e, 10);
4265 	err = -EINVAL;
4266 	if (e==buf || *e != '.')
4267 		goto out_unlock;
4268 	buf = e+1;
4269 	minor = simple_strtoul(buf, &e, 10);
4270 	if (e==buf || (*e && *e != '\n') )
4271 		goto out_unlock;
4272 	err = -ENOENT;
4273 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4274 		goto out_unlock;
4275 	mddev->major_version = major;
4276 	mddev->minor_version = minor;
4277 	mddev->persistent = 1;
4278 	mddev->external = 0;
4279 	err = 0;
4280 out_unlock:
4281 	mddev_unlock(mddev);
4282 	return err ?: len;
4283 }
4284 
4285 static struct md_sysfs_entry md_metadata =
4286 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4287 
4288 static ssize_t
action_show(struct mddev * mddev,char * page)4289 action_show(struct mddev *mddev, char *page)
4290 {
4291 	char *type = "idle";
4292 	unsigned long recovery = mddev->recovery;
4293 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4294 		type = "frozen";
4295 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4296 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4297 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4298 			type = "reshape";
4299 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4300 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4301 				type = "resync";
4302 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4303 				type = "check";
4304 			else
4305 				type = "repair";
4306 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4307 			type = "recover";
4308 		else if (mddev->reshape_position != MaxSector)
4309 			type = "reshape";
4310 	}
4311 	return sprintf(page, "%s\n", type);
4312 }
4313 
4314 static ssize_t
action_store(struct mddev * mddev,const char * page,size_t len)4315 action_store(struct mddev *mddev, const char *page, size_t len)
4316 {
4317 	if (!mddev->pers || !mddev->pers->sync_request)
4318 		return -EINVAL;
4319 
4320 
4321 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4322 		if (cmd_match(page, "frozen"))
4323 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4324 		else
4325 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4326 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4327 		    mddev_lock(mddev) == 0) {
4328 			flush_workqueue(md_misc_wq);
4329 			if (mddev->sync_thread) {
4330 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4331 				md_reap_sync_thread(mddev);
4332 			}
4333 			mddev_unlock(mddev);
4334 		}
4335 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4336 		return -EBUSY;
4337 	else if (cmd_match(page, "resync"))
4338 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4339 	else if (cmd_match(page, "recover")) {
4340 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4341 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4342 	} else if (cmd_match(page, "reshape")) {
4343 		int err;
4344 		if (mddev->pers->start_reshape == NULL)
4345 			return -EINVAL;
4346 		err = mddev_lock(mddev);
4347 		if (!err) {
4348 			if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4349 				err =  -EBUSY;
4350 			else {
4351 				clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4352 				err = mddev->pers->start_reshape(mddev);
4353 			}
4354 			mddev_unlock(mddev);
4355 		}
4356 		if (err)
4357 			return err;
4358 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4359 	} else {
4360 		if (cmd_match(page, "check"))
4361 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4362 		else if (!cmd_match(page, "repair"))
4363 			return -EINVAL;
4364 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4365 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4366 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4367 	}
4368 	if (mddev->ro == 2) {
4369 		/* A write to sync_action is enough to justify
4370 		 * canceling read-auto mode
4371 		 */
4372 		mddev->ro = 0;
4373 		md_wakeup_thread(mddev->sync_thread);
4374 	}
4375 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4376 	md_wakeup_thread(mddev->thread);
4377 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4378 	return len;
4379 }
4380 
4381 static struct md_sysfs_entry md_scan_mode =
4382 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4383 
4384 static ssize_t
last_sync_action_show(struct mddev * mddev,char * page)4385 last_sync_action_show(struct mddev *mddev, char *page)
4386 {
4387 	return sprintf(page, "%s\n", mddev->last_sync_action);
4388 }
4389 
4390 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4391 
4392 static ssize_t
mismatch_cnt_show(struct mddev * mddev,char * page)4393 mismatch_cnt_show(struct mddev *mddev, char *page)
4394 {
4395 	return sprintf(page, "%llu\n",
4396 		       (unsigned long long)
4397 		       atomic64_read(&mddev->resync_mismatches));
4398 }
4399 
4400 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4401 
4402 static ssize_t
sync_min_show(struct mddev * mddev,char * page)4403 sync_min_show(struct mddev *mddev, char *page)
4404 {
4405 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4406 		       mddev->sync_speed_min ? "local": "system");
4407 }
4408 
4409 static ssize_t
sync_min_store(struct mddev * mddev,const char * buf,size_t len)4410 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4411 {
4412 	unsigned int min;
4413 	int rv;
4414 
4415 	if (strncmp(buf, "system", 6)==0) {
4416 		min = 0;
4417 	} else {
4418 		rv = kstrtouint(buf, 10, &min);
4419 		if (rv < 0)
4420 			return rv;
4421 		if (min == 0)
4422 			return -EINVAL;
4423 	}
4424 	mddev->sync_speed_min = min;
4425 	return len;
4426 }
4427 
4428 static struct md_sysfs_entry md_sync_min =
4429 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4430 
4431 static ssize_t
sync_max_show(struct mddev * mddev,char * page)4432 sync_max_show(struct mddev *mddev, char *page)
4433 {
4434 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4435 		       mddev->sync_speed_max ? "local": "system");
4436 }
4437 
4438 static ssize_t
sync_max_store(struct mddev * mddev,const char * buf,size_t len)4439 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4440 {
4441 	unsigned int max;
4442 	int rv;
4443 
4444 	if (strncmp(buf, "system", 6)==0) {
4445 		max = 0;
4446 	} else {
4447 		rv = kstrtouint(buf, 10, &max);
4448 		if (rv < 0)
4449 			return rv;
4450 		if (max == 0)
4451 			return -EINVAL;
4452 	}
4453 	mddev->sync_speed_max = max;
4454 	return len;
4455 }
4456 
4457 static struct md_sysfs_entry md_sync_max =
4458 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4459 
4460 static ssize_t
degraded_show(struct mddev * mddev,char * page)4461 degraded_show(struct mddev *mddev, char *page)
4462 {
4463 	return sprintf(page, "%d\n", mddev->degraded);
4464 }
4465 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4466 
4467 static ssize_t
sync_force_parallel_show(struct mddev * mddev,char * page)4468 sync_force_parallel_show(struct mddev *mddev, char *page)
4469 {
4470 	return sprintf(page, "%d\n", mddev->parallel_resync);
4471 }
4472 
4473 static ssize_t
sync_force_parallel_store(struct mddev * mddev,const char * buf,size_t len)4474 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4475 {
4476 	long n;
4477 
4478 	if (kstrtol(buf, 10, &n))
4479 		return -EINVAL;
4480 
4481 	if (n != 0 && n != 1)
4482 		return -EINVAL;
4483 
4484 	mddev->parallel_resync = n;
4485 
4486 	if (mddev->sync_thread)
4487 		wake_up(&resync_wait);
4488 
4489 	return len;
4490 }
4491 
4492 /* force parallel resync, even with shared block devices */
4493 static struct md_sysfs_entry md_sync_force_parallel =
4494 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4495        sync_force_parallel_show, sync_force_parallel_store);
4496 
4497 static ssize_t
sync_speed_show(struct mddev * mddev,char * page)4498 sync_speed_show(struct mddev *mddev, char *page)
4499 {
4500 	unsigned long resync, dt, db;
4501 	if (mddev->curr_resync == 0)
4502 		return sprintf(page, "none\n");
4503 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4504 	dt = (jiffies - mddev->resync_mark) / HZ;
4505 	if (!dt) dt++;
4506 	db = resync - mddev->resync_mark_cnt;
4507 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4508 }
4509 
4510 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4511 
4512 static ssize_t
sync_completed_show(struct mddev * mddev,char * page)4513 sync_completed_show(struct mddev *mddev, char *page)
4514 {
4515 	unsigned long long max_sectors, resync;
4516 
4517 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4518 		return sprintf(page, "none\n");
4519 
4520 	if (mddev->curr_resync == 1 ||
4521 	    mddev->curr_resync == 2)
4522 		return sprintf(page, "delayed\n");
4523 
4524 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4525 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4526 		max_sectors = mddev->resync_max_sectors;
4527 	else
4528 		max_sectors = mddev->dev_sectors;
4529 
4530 	resync = mddev->curr_resync_completed;
4531 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4532 }
4533 
4534 static struct md_sysfs_entry md_sync_completed =
4535 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4536 
4537 static ssize_t
min_sync_show(struct mddev * mddev,char * page)4538 min_sync_show(struct mddev *mddev, char *page)
4539 {
4540 	return sprintf(page, "%llu\n",
4541 		       (unsigned long long)mddev->resync_min);
4542 }
4543 static ssize_t
min_sync_store(struct mddev * mddev,const char * buf,size_t len)4544 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4545 {
4546 	unsigned long long min;
4547 	int err;
4548 
4549 	if (kstrtoull(buf, 10, &min))
4550 		return -EINVAL;
4551 
4552 	spin_lock(&mddev->lock);
4553 	err = -EINVAL;
4554 	if (min > mddev->resync_max)
4555 		goto out_unlock;
4556 
4557 	err = -EBUSY;
4558 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4559 		goto out_unlock;
4560 
4561 	/* Round down to multiple of 4K for safety */
4562 	mddev->resync_min = round_down(min, 8);
4563 	err = 0;
4564 
4565 out_unlock:
4566 	spin_unlock(&mddev->lock);
4567 	return err ?: len;
4568 }
4569 
4570 static struct md_sysfs_entry md_min_sync =
4571 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4572 
4573 static ssize_t
max_sync_show(struct mddev * mddev,char * page)4574 max_sync_show(struct mddev *mddev, char *page)
4575 {
4576 	if (mddev->resync_max == MaxSector)
4577 		return sprintf(page, "max\n");
4578 	else
4579 		return sprintf(page, "%llu\n",
4580 			       (unsigned long long)mddev->resync_max);
4581 }
4582 static ssize_t
max_sync_store(struct mddev * mddev,const char * buf,size_t len)4583 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4584 {
4585 	int err;
4586 	spin_lock(&mddev->lock);
4587 	if (strncmp(buf, "max", 3) == 0)
4588 		mddev->resync_max = MaxSector;
4589 	else {
4590 		unsigned long long max;
4591 		int chunk;
4592 
4593 		err = -EINVAL;
4594 		if (kstrtoull(buf, 10, &max))
4595 			goto out_unlock;
4596 		if (max < mddev->resync_min)
4597 			goto out_unlock;
4598 
4599 		err = -EBUSY;
4600 		if (max < mddev->resync_max &&
4601 		    mddev->ro == 0 &&
4602 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4603 			goto out_unlock;
4604 
4605 		/* Must be a multiple of chunk_size */
4606 		chunk = mddev->chunk_sectors;
4607 		if (chunk) {
4608 			sector_t temp = max;
4609 
4610 			err = -EINVAL;
4611 			if (sector_div(temp, chunk))
4612 				goto out_unlock;
4613 		}
4614 		mddev->resync_max = max;
4615 	}
4616 	wake_up(&mddev->recovery_wait);
4617 	err = 0;
4618 out_unlock:
4619 	spin_unlock(&mddev->lock);
4620 	return err ?: len;
4621 }
4622 
4623 static struct md_sysfs_entry md_max_sync =
4624 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4625 
4626 static ssize_t
suspend_lo_show(struct mddev * mddev,char * page)4627 suspend_lo_show(struct mddev *mddev, char *page)
4628 {
4629 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4630 }
4631 
4632 static ssize_t
suspend_lo_store(struct mddev * mddev,const char * buf,size_t len)4633 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4634 {
4635 	unsigned long long old, new;
4636 	int err;
4637 
4638 	err = kstrtoull(buf, 10, &new);
4639 	if (err < 0)
4640 		return err;
4641 	if (new != (sector_t)new)
4642 		return -EINVAL;
4643 
4644 	err = mddev_lock(mddev);
4645 	if (err)
4646 		return err;
4647 	err = -EINVAL;
4648 	if (mddev->pers == NULL ||
4649 	    mddev->pers->quiesce == NULL)
4650 		goto unlock;
4651 	old = mddev->suspend_lo;
4652 	mddev->suspend_lo = new;
4653 	if (new >= old)
4654 		/* Shrinking suspended region */
4655 		mddev->pers->quiesce(mddev, 2);
4656 	else {
4657 		/* Expanding suspended region - need to wait */
4658 		mddev->pers->quiesce(mddev, 1);
4659 		mddev->pers->quiesce(mddev, 0);
4660 	}
4661 	err = 0;
4662 unlock:
4663 	mddev_unlock(mddev);
4664 	return err ?: len;
4665 }
4666 static struct md_sysfs_entry md_suspend_lo =
4667 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4668 
4669 static ssize_t
suspend_hi_show(struct mddev * mddev,char * page)4670 suspend_hi_show(struct mddev *mddev, char *page)
4671 {
4672 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4673 }
4674 
4675 static ssize_t
suspend_hi_store(struct mddev * mddev,const char * buf,size_t len)4676 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4677 {
4678 	unsigned long long old, new;
4679 	int err;
4680 
4681 	err = kstrtoull(buf, 10, &new);
4682 	if (err < 0)
4683 		return err;
4684 	if (new != (sector_t)new)
4685 		return -EINVAL;
4686 
4687 	err = mddev_lock(mddev);
4688 	if (err)
4689 		return err;
4690 	err = -EINVAL;
4691 	if (mddev->pers == NULL ||
4692 	    mddev->pers->quiesce == NULL)
4693 		goto unlock;
4694 	old = mddev->suspend_hi;
4695 	mddev->suspend_hi = new;
4696 	if (new <= old)
4697 		/* Shrinking suspended region */
4698 		mddev->pers->quiesce(mddev, 2);
4699 	else {
4700 		/* Expanding suspended region - need to wait */
4701 		mddev->pers->quiesce(mddev, 1);
4702 		mddev->pers->quiesce(mddev, 0);
4703 	}
4704 	err = 0;
4705 unlock:
4706 	mddev_unlock(mddev);
4707 	return err ?: len;
4708 }
4709 static struct md_sysfs_entry md_suspend_hi =
4710 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4711 
4712 static ssize_t
reshape_position_show(struct mddev * mddev,char * page)4713 reshape_position_show(struct mddev *mddev, char *page)
4714 {
4715 	if (mddev->reshape_position != MaxSector)
4716 		return sprintf(page, "%llu\n",
4717 			       (unsigned long long)mddev->reshape_position);
4718 	strcpy(page, "none\n");
4719 	return 5;
4720 }
4721 
4722 static ssize_t
reshape_position_store(struct mddev * mddev,const char * buf,size_t len)4723 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4724 {
4725 	struct md_rdev *rdev;
4726 	unsigned long long new;
4727 	int err;
4728 
4729 	err = kstrtoull(buf, 10, &new);
4730 	if (err < 0)
4731 		return err;
4732 	if (new != (sector_t)new)
4733 		return -EINVAL;
4734 	err = mddev_lock(mddev);
4735 	if (err)
4736 		return err;
4737 	err = -EBUSY;
4738 	if (mddev->pers)
4739 		goto unlock;
4740 	mddev->reshape_position = new;
4741 	mddev->delta_disks = 0;
4742 	mddev->reshape_backwards = 0;
4743 	mddev->new_level = mddev->level;
4744 	mddev->new_layout = mddev->layout;
4745 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4746 	rdev_for_each(rdev, mddev)
4747 		rdev->new_data_offset = rdev->data_offset;
4748 	err = 0;
4749 unlock:
4750 	mddev_unlock(mddev);
4751 	return err ?: len;
4752 }
4753 
4754 static struct md_sysfs_entry md_reshape_position =
4755 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4756        reshape_position_store);
4757 
4758 static ssize_t
reshape_direction_show(struct mddev * mddev,char * page)4759 reshape_direction_show(struct mddev *mddev, char *page)
4760 {
4761 	return sprintf(page, "%s\n",
4762 		       mddev->reshape_backwards ? "backwards" : "forwards");
4763 }
4764 
4765 static ssize_t
reshape_direction_store(struct mddev * mddev,const char * buf,size_t len)4766 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4767 {
4768 	int backwards = 0;
4769 	int err;
4770 
4771 	if (cmd_match(buf, "forwards"))
4772 		backwards = 0;
4773 	else if (cmd_match(buf, "backwards"))
4774 		backwards = 1;
4775 	else
4776 		return -EINVAL;
4777 	if (mddev->reshape_backwards == backwards)
4778 		return len;
4779 
4780 	err = mddev_lock(mddev);
4781 	if (err)
4782 		return err;
4783 	/* check if we are allowed to change */
4784 	if (mddev->delta_disks)
4785 		err = -EBUSY;
4786 	else if (mddev->persistent &&
4787 	    mddev->major_version == 0)
4788 		err =  -EINVAL;
4789 	else
4790 		mddev->reshape_backwards = backwards;
4791 	mddev_unlock(mddev);
4792 	return err ?: len;
4793 }
4794 
4795 static struct md_sysfs_entry md_reshape_direction =
4796 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4797        reshape_direction_store);
4798 
4799 static ssize_t
array_size_show(struct mddev * mddev,char * page)4800 array_size_show(struct mddev *mddev, char *page)
4801 {
4802 	if (mddev->external_size)
4803 		return sprintf(page, "%llu\n",
4804 			       (unsigned long long)mddev->array_sectors/2);
4805 	else
4806 		return sprintf(page, "default\n");
4807 }
4808 
4809 static ssize_t
array_size_store(struct mddev * mddev,const char * buf,size_t len)4810 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4811 {
4812 	sector_t sectors;
4813 	int err;
4814 
4815 	err = mddev_lock(mddev);
4816 	if (err)
4817 		return err;
4818 
4819 	if (strncmp(buf, "default", 7) == 0) {
4820 		if (mddev->pers)
4821 			sectors = mddev->pers->size(mddev, 0, 0);
4822 		else
4823 			sectors = mddev->array_sectors;
4824 
4825 		mddev->external_size = 0;
4826 	} else {
4827 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4828 			err = -EINVAL;
4829 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4830 			err = -E2BIG;
4831 		else
4832 			mddev->external_size = 1;
4833 	}
4834 
4835 	if (!err) {
4836 		mddev->array_sectors = sectors;
4837 		if (mddev->pers) {
4838 			set_capacity(mddev->gendisk, mddev->array_sectors);
4839 			revalidate_disk(mddev->gendisk);
4840 		}
4841 	}
4842 	mddev_unlock(mddev);
4843 	return err ?: len;
4844 }
4845 
4846 static struct md_sysfs_entry md_array_size =
4847 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4848        array_size_store);
4849 
4850 static struct attribute *md_default_attrs[] = {
4851 	&md_level.attr,
4852 	&md_layout.attr,
4853 	&md_raid_disks.attr,
4854 	&md_chunk_size.attr,
4855 	&md_size.attr,
4856 	&md_resync_start.attr,
4857 	&md_metadata.attr,
4858 	&md_new_device.attr,
4859 	&md_safe_delay.attr,
4860 	&md_array_state.attr,
4861 	&md_reshape_position.attr,
4862 	&md_reshape_direction.attr,
4863 	&md_array_size.attr,
4864 	&max_corr_read_errors.attr,
4865 	NULL,
4866 };
4867 
4868 static struct attribute *md_redundancy_attrs[] = {
4869 	&md_scan_mode.attr,
4870 	&md_last_scan_mode.attr,
4871 	&md_mismatches.attr,
4872 	&md_sync_min.attr,
4873 	&md_sync_max.attr,
4874 	&md_sync_speed.attr,
4875 	&md_sync_force_parallel.attr,
4876 	&md_sync_completed.attr,
4877 	&md_min_sync.attr,
4878 	&md_max_sync.attr,
4879 	&md_suspend_lo.attr,
4880 	&md_suspend_hi.attr,
4881 	&md_bitmap.attr,
4882 	&md_degraded.attr,
4883 	NULL,
4884 };
4885 static struct attribute_group md_redundancy_group = {
4886 	.name = NULL,
4887 	.attrs = md_redundancy_attrs,
4888 };
4889 
4890 static ssize_t
md_attr_show(struct kobject * kobj,struct attribute * attr,char * page)4891 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4892 {
4893 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4894 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4895 	ssize_t rv;
4896 
4897 	if (!entry->show)
4898 		return -EIO;
4899 	spin_lock(&all_mddevs_lock);
4900 	if (list_empty(&mddev->all_mddevs)) {
4901 		spin_unlock(&all_mddevs_lock);
4902 		return -EBUSY;
4903 	}
4904 	mddev_get(mddev);
4905 	spin_unlock(&all_mddevs_lock);
4906 
4907 	rv = entry->show(mddev, page);
4908 	mddev_put(mddev);
4909 	return rv;
4910 }
4911 
4912 static ssize_t
md_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)4913 md_attr_store(struct kobject *kobj, struct attribute *attr,
4914 	      const char *page, size_t length)
4915 {
4916 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4917 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4918 	ssize_t rv;
4919 
4920 	if (!entry->store)
4921 		return -EIO;
4922 	if (!capable(CAP_SYS_ADMIN))
4923 		return -EACCES;
4924 	spin_lock(&all_mddevs_lock);
4925 	if (list_empty(&mddev->all_mddevs)) {
4926 		spin_unlock(&all_mddevs_lock);
4927 		return -EBUSY;
4928 	}
4929 	mddev_get(mddev);
4930 	spin_unlock(&all_mddevs_lock);
4931 	rv = entry->store(mddev, page, length);
4932 	mddev_put(mddev);
4933 	return rv;
4934 }
4935 
md_free(struct kobject * ko)4936 static void md_free(struct kobject *ko)
4937 {
4938 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4939 
4940 	if (mddev->sysfs_state)
4941 		sysfs_put(mddev->sysfs_state);
4942 
4943 	if (mddev->queue)
4944 		blk_cleanup_queue(mddev->queue);
4945 	if (mddev->gendisk) {
4946 		del_gendisk(mddev->gendisk);
4947 		put_disk(mddev->gendisk);
4948 	}
4949 
4950 	kfree(mddev);
4951 }
4952 
4953 static const struct sysfs_ops md_sysfs_ops = {
4954 	.show	= md_attr_show,
4955 	.store	= md_attr_store,
4956 };
4957 static struct kobj_type md_ktype = {
4958 	.release	= md_free,
4959 	.sysfs_ops	= &md_sysfs_ops,
4960 	.default_attrs	= md_default_attrs,
4961 };
4962 
4963 int mdp_major = 0;
4964 
mddev_delayed_delete(struct work_struct * ws)4965 static void mddev_delayed_delete(struct work_struct *ws)
4966 {
4967 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4968 
4969 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4970 	kobject_del(&mddev->kobj);
4971 	kobject_put(&mddev->kobj);
4972 }
4973 
md_alloc(dev_t dev,char * name)4974 static int md_alloc(dev_t dev, char *name)
4975 {
4976 	static DEFINE_MUTEX(disks_mutex);
4977 	struct mddev *mddev = mddev_find(dev);
4978 	struct gendisk *disk;
4979 	int partitioned;
4980 	int shift;
4981 	int unit;
4982 	int error;
4983 
4984 	if (!mddev)
4985 		return -ENODEV;
4986 
4987 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4988 	shift = partitioned ? MdpMinorShift : 0;
4989 	unit = MINOR(mddev->unit) >> shift;
4990 
4991 	/* wait for any previous instance of this device to be
4992 	 * completely removed (mddev_delayed_delete).
4993 	 */
4994 	flush_workqueue(md_misc_wq);
4995 
4996 	mutex_lock(&disks_mutex);
4997 	error = -EEXIST;
4998 	if (mddev->gendisk)
4999 		goto abort;
5000 
5001 	if (name) {
5002 		/* Need to ensure that 'name' is not a duplicate.
5003 		 */
5004 		struct mddev *mddev2;
5005 		spin_lock(&all_mddevs_lock);
5006 
5007 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5008 			if (mddev2->gendisk &&
5009 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
5010 				spin_unlock(&all_mddevs_lock);
5011 				goto abort;
5012 			}
5013 		spin_unlock(&all_mddevs_lock);
5014 	}
5015 
5016 	error = -ENOMEM;
5017 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
5018 	if (!mddev->queue)
5019 		goto abort;
5020 	mddev->queue->queuedata = mddev;
5021 
5022 	blk_queue_make_request(mddev->queue, md_make_request);
5023 	blk_set_stacking_limits(&mddev->queue->limits);
5024 
5025 	disk = alloc_disk(1 << shift);
5026 	if (!disk) {
5027 		blk_cleanup_queue(mddev->queue);
5028 		mddev->queue = NULL;
5029 		goto abort;
5030 	}
5031 	disk->major = MAJOR(mddev->unit);
5032 	disk->first_minor = unit << shift;
5033 	if (name)
5034 		strcpy(disk->disk_name, name);
5035 	else if (partitioned)
5036 		sprintf(disk->disk_name, "md_d%d", unit);
5037 	else
5038 		sprintf(disk->disk_name, "md%d", unit);
5039 	disk->fops = &md_fops;
5040 	disk->private_data = mddev;
5041 	disk->queue = mddev->queue;
5042 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
5043 	/* Allow extended partitions.  This makes the
5044 	 * 'mdp' device redundant, but we can't really
5045 	 * remove it now.
5046 	 */
5047 	disk->flags |= GENHD_FL_EXT_DEVT;
5048 	mddev->gendisk = disk;
5049 	/* As soon as we call add_disk(), another thread could get
5050 	 * through to md_open, so make sure it doesn't get too far
5051 	 */
5052 	mutex_lock(&mddev->open_mutex);
5053 	add_disk(disk);
5054 
5055 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5056 				     &disk_to_dev(disk)->kobj, "%s", "md");
5057 	if (error) {
5058 		/* This isn't possible, but as kobject_init_and_add is marked
5059 		 * __must_check, we must do something with the result
5060 		 */
5061 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
5062 		       disk->disk_name);
5063 		error = 0;
5064 	}
5065 	if (mddev->kobj.sd &&
5066 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5067 		printk(KERN_DEBUG "pointless warning\n");
5068 	mutex_unlock(&mddev->open_mutex);
5069  abort:
5070 	mutex_unlock(&disks_mutex);
5071 	if (!error && mddev->kobj.sd) {
5072 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
5073 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5074 	}
5075 	mddev_put(mddev);
5076 	return error;
5077 }
5078 
md_probe(dev_t dev,int * part,void * data)5079 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5080 {
5081 	md_alloc(dev, NULL);
5082 	return NULL;
5083 }
5084 
add_named_array(const char * val,struct kernel_param * kp)5085 static int add_named_array(const char *val, struct kernel_param *kp)
5086 {
5087 	/* val must be "md_*" where * is not all digits.
5088 	 * We allocate an array with a large free minor number, and
5089 	 * set the name to val.  val must not already be an active name.
5090 	 */
5091 	int len = strlen(val);
5092 	char buf[DISK_NAME_LEN];
5093 
5094 	while (len && val[len-1] == '\n')
5095 		len--;
5096 	if (len >= DISK_NAME_LEN)
5097 		return -E2BIG;
5098 	strlcpy(buf, val, len+1);
5099 	if (strncmp(buf, "md_", 3) != 0)
5100 		return -EINVAL;
5101 	return md_alloc(0, buf);
5102 }
5103 
md_safemode_timeout(unsigned long data)5104 static void md_safemode_timeout(unsigned long data)
5105 {
5106 	struct mddev *mddev = (struct mddev *) data;
5107 
5108 	if (!atomic_read(&mddev->writes_pending)) {
5109 		mddev->safemode = 1;
5110 		if (mddev->external)
5111 			sysfs_notify_dirent_safe(mddev->sysfs_state);
5112 	}
5113 	md_wakeup_thread(mddev->thread);
5114 }
5115 
5116 static int start_dirty_degraded;
5117 
md_run(struct mddev * mddev)5118 int md_run(struct mddev *mddev)
5119 {
5120 	int err;
5121 	struct md_rdev *rdev;
5122 	struct md_personality *pers;
5123 
5124 	if (list_empty(&mddev->disks))
5125 		/* cannot run an array with no devices.. */
5126 		return -EINVAL;
5127 
5128 	if (mddev->pers)
5129 		return -EBUSY;
5130 	/* Cannot run until previous stop completes properly */
5131 	if (mddev->sysfs_active)
5132 		return -EBUSY;
5133 
5134 	/*
5135 	 * Analyze all RAID superblock(s)
5136 	 */
5137 	if (!mddev->raid_disks) {
5138 		if (!mddev->persistent)
5139 			return -EINVAL;
5140 		analyze_sbs(mddev);
5141 	}
5142 
5143 	if (mddev->level != LEVEL_NONE)
5144 		request_module("md-level-%d", mddev->level);
5145 	else if (mddev->clevel[0])
5146 		request_module("md-%s", mddev->clevel);
5147 
5148 	/*
5149 	 * Drop all container device buffers, from now on
5150 	 * the only valid external interface is through the md
5151 	 * device.
5152 	 */
5153 	rdev_for_each(rdev, mddev) {
5154 		if (test_bit(Faulty, &rdev->flags))
5155 			continue;
5156 		sync_blockdev(rdev->bdev);
5157 		invalidate_bdev(rdev->bdev);
5158 
5159 		/* perform some consistency tests on the device.
5160 		 * We don't want the data to overlap the metadata,
5161 		 * Internal Bitmap issues have been handled elsewhere.
5162 		 */
5163 		if (rdev->meta_bdev) {
5164 			/* Nothing to check */;
5165 		} else if (rdev->data_offset < rdev->sb_start) {
5166 			if (mddev->dev_sectors &&
5167 			    rdev->data_offset + mddev->dev_sectors
5168 			    > rdev->sb_start) {
5169 				printk("md: %s: data overlaps metadata\n",
5170 				       mdname(mddev));
5171 				return -EINVAL;
5172 			}
5173 		} else {
5174 			if (rdev->sb_start + rdev->sb_size/512
5175 			    > rdev->data_offset) {
5176 				printk("md: %s: metadata overlaps data\n",
5177 				       mdname(mddev));
5178 				return -EINVAL;
5179 			}
5180 		}
5181 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5182 	}
5183 
5184 	if (mddev->bio_set == NULL)
5185 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5186 
5187 	spin_lock(&pers_lock);
5188 	pers = find_pers(mddev->level, mddev->clevel);
5189 	if (!pers || !try_module_get(pers->owner)) {
5190 		spin_unlock(&pers_lock);
5191 		if (mddev->level != LEVEL_NONE)
5192 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5193 			       mddev->level);
5194 		else
5195 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5196 			       mddev->clevel);
5197 		return -EINVAL;
5198 	}
5199 	spin_unlock(&pers_lock);
5200 	if (mddev->level != pers->level) {
5201 		mddev->level = pers->level;
5202 		mddev->new_level = pers->level;
5203 	}
5204 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5205 
5206 	if (mddev->reshape_position != MaxSector &&
5207 	    pers->start_reshape == NULL) {
5208 		/* This personality cannot handle reshaping... */
5209 		module_put(pers->owner);
5210 		return -EINVAL;
5211 	}
5212 
5213 	if (pers->sync_request) {
5214 		/* Warn if this is a potentially silly
5215 		 * configuration.
5216 		 */
5217 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5218 		struct md_rdev *rdev2;
5219 		int warned = 0;
5220 
5221 		rdev_for_each(rdev, mddev)
5222 			rdev_for_each(rdev2, mddev) {
5223 				if (rdev < rdev2 &&
5224 				    rdev->bdev->bd_contains ==
5225 				    rdev2->bdev->bd_contains) {
5226 					printk(KERN_WARNING
5227 					       "%s: WARNING: %s appears to be"
5228 					       " on the same physical disk as"
5229 					       " %s.\n",
5230 					       mdname(mddev),
5231 					       bdevname(rdev->bdev,b),
5232 					       bdevname(rdev2->bdev,b2));
5233 					warned = 1;
5234 				}
5235 			}
5236 
5237 		if (warned)
5238 			printk(KERN_WARNING
5239 			       "True protection against single-disk"
5240 			       " failure might be compromised.\n");
5241 	}
5242 
5243 	mddev->recovery = 0;
5244 	/* may be over-ridden by personality */
5245 	mddev->resync_max_sectors = mddev->dev_sectors;
5246 
5247 	mddev->ok_start_degraded = start_dirty_degraded;
5248 
5249 	if (start_readonly && mddev->ro == 0)
5250 		mddev->ro = 2; /* read-only, but switch on first write */
5251 
5252 	err = pers->run(mddev);
5253 	if (err)
5254 		printk(KERN_ERR "md: pers->run() failed ...\n");
5255 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5256 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5257 			  " but 'external_size' not in effect?\n", __func__);
5258 		printk(KERN_ERR
5259 		       "md: invalid array_size %llu > default size %llu\n",
5260 		       (unsigned long long)mddev->array_sectors / 2,
5261 		       (unsigned long long)pers->size(mddev, 0, 0) / 2);
5262 		err = -EINVAL;
5263 	}
5264 	if (err == 0 && pers->sync_request &&
5265 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5266 		struct bitmap *bitmap;
5267 
5268 		bitmap = bitmap_create(mddev, -1);
5269 		if (IS_ERR(bitmap)) {
5270 			err = PTR_ERR(bitmap);
5271 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5272 			       mdname(mddev), err);
5273 		} else
5274 			mddev->bitmap = bitmap;
5275 
5276 	}
5277 	if (err) {
5278 		mddev_detach(mddev);
5279 		if (mddev->private)
5280 			pers->free(mddev, mddev->private);
5281 		mddev->private = NULL;
5282 		module_put(pers->owner);
5283 		bitmap_destroy(mddev);
5284 		return err;
5285 	}
5286 	if (mddev->queue) {
5287 		mddev->queue->backing_dev_info.congested_data = mddev;
5288 		mddev->queue->backing_dev_info.congested_fn = md_congested;
5289 	}
5290 	if (pers->sync_request) {
5291 		if (mddev->kobj.sd &&
5292 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5293 			printk(KERN_WARNING
5294 			       "md: cannot register extra attributes for %s\n",
5295 			       mdname(mddev));
5296 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5297 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5298 		mddev->ro = 0;
5299 
5300 	atomic_set(&mddev->writes_pending,0);
5301 	atomic_set(&mddev->max_corr_read_errors,
5302 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5303 	mddev->safemode = 0;
5304 	if (mddev_is_clustered(mddev))
5305 		mddev->safemode_delay = 0;
5306 	else
5307 		mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5308 	mddev->in_sync = 1;
5309 	smp_wmb();
5310 	spin_lock(&mddev->lock);
5311 	mddev->pers = pers;
5312 	mddev->ready = 1;
5313 	spin_unlock(&mddev->lock);
5314 	rdev_for_each(rdev, mddev)
5315 		if (rdev->raid_disk >= 0)
5316 			if (sysfs_link_rdev(mddev, rdev))
5317 				/* failure here is OK */;
5318 
5319 	if (mddev->degraded && !mddev->ro)
5320 		/* This ensures that recovering status is reported immediately
5321 		 * via sysfs - until a lack of spares is confirmed.
5322 		 */
5323 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5324 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5325 
5326 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
5327 		md_update_sb(mddev, 0);
5328 
5329 	md_new_event(mddev);
5330 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5331 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5332 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5333 	return 0;
5334 }
5335 EXPORT_SYMBOL_GPL(md_run);
5336 
do_md_run(struct mddev * mddev)5337 static int do_md_run(struct mddev *mddev)
5338 {
5339 	int err;
5340 
5341 	err = md_run(mddev);
5342 	if (err)
5343 		goto out;
5344 	err = bitmap_load(mddev);
5345 	if (err) {
5346 		bitmap_destroy(mddev);
5347 		goto out;
5348 	}
5349 
5350 	if (mddev_is_clustered(mddev))
5351 		md_allow_write(mddev);
5352 
5353 	md_wakeup_thread(mddev->thread);
5354 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5355 
5356 	set_capacity(mddev->gendisk, mddev->array_sectors);
5357 	revalidate_disk(mddev->gendisk);
5358 	mddev->changed = 1;
5359 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5360 out:
5361 	return err;
5362 }
5363 
restart_array(struct mddev * mddev)5364 static int restart_array(struct mddev *mddev)
5365 {
5366 	struct gendisk *disk = mddev->gendisk;
5367 
5368 	/* Complain if it has no devices */
5369 	if (list_empty(&mddev->disks))
5370 		return -ENXIO;
5371 	if (!mddev->pers)
5372 		return -EINVAL;
5373 	if (!mddev->ro)
5374 		return -EBUSY;
5375 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5376 		struct md_rdev *rdev;
5377 		bool has_journal = false;
5378 
5379 		rcu_read_lock();
5380 		rdev_for_each_rcu(rdev, mddev) {
5381 			if (test_bit(Journal, &rdev->flags) &&
5382 			    !test_bit(Faulty, &rdev->flags)) {
5383 				has_journal = true;
5384 				break;
5385 			}
5386 		}
5387 		rcu_read_unlock();
5388 
5389 		/* Don't restart rw with journal missing/faulty */
5390 		if (!has_journal)
5391 			return -EINVAL;
5392 	}
5393 
5394 	mddev->safemode = 0;
5395 	mddev->ro = 0;
5396 	set_disk_ro(disk, 0);
5397 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5398 		mdname(mddev));
5399 	/* Kick recovery or resync if necessary */
5400 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5401 	md_wakeup_thread(mddev->thread);
5402 	md_wakeup_thread(mddev->sync_thread);
5403 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5404 	return 0;
5405 }
5406 
md_clean(struct mddev * mddev)5407 static void md_clean(struct mddev *mddev)
5408 {
5409 	mddev->array_sectors = 0;
5410 	mddev->external_size = 0;
5411 	mddev->dev_sectors = 0;
5412 	mddev->raid_disks = 0;
5413 	mddev->recovery_cp = 0;
5414 	mddev->resync_min = 0;
5415 	mddev->resync_max = MaxSector;
5416 	mddev->reshape_position = MaxSector;
5417 	mddev->external = 0;
5418 	mddev->persistent = 0;
5419 	mddev->level = LEVEL_NONE;
5420 	mddev->clevel[0] = 0;
5421 	mddev->flags = 0;
5422 	mddev->ro = 0;
5423 	mddev->metadata_type[0] = 0;
5424 	mddev->chunk_sectors = 0;
5425 	mddev->ctime = mddev->utime = 0;
5426 	mddev->layout = 0;
5427 	mddev->max_disks = 0;
5428 	mddev->events = 0;
5429 	mddev->can_decrease_events = 0;
5430 	mddev->delta_disks = 0;
5431 	mddev->reshape_backwards = 0;
5432 	mddev->new_level = LEVEL_NONE;
5433 	mddev->new_layout = 0;
5434 	mddev->new_chunk_sectors = 0;
5435 	mddev->curr_resync = 0;
5436 	atomic64_set(&mddev->resync_mismatches, 0);
5437 	mddev->suspend_lo = mddev->suspend_hi = 0;
5438 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5439 	mddev->recovery = 0;
5440 	mddev->in_sync = 0;
5441 	mddev->changed = 0;
5442 	mddev->degraded = 0;
5443 	mddev->safemode = 0;
5444 	mddev->private = NULL;
5445 	mddev->bitmap_info.offset = 0;
5446 	mddev->bitmap_info.default_offset = 0;
5447 	mddev->bitmap_info.default_space = 0;
5448 	mddev->bitmap_info.chunksize = 0;
5449 	mddev->bitmap_info.daemon_sleep = 0;
5450 	mddev->bitmap_info.max_write_behind = 0;
5451 }
5452 
__md_stop_writes(struct mddev * mddev)5453 static void __md_stop_writes(struct mddev *mddev)
5454 {
5455 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5456 	flush_workqueue(md_misc_wq);
5457 	if (mddev->sync_thread) {
5458 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5459 		md_reap_sync_thread(mddev);
5460 	}
5461 
5462 	del_timer_sync(&mddev->safemode_timer);
5463 
5464 	bitmap_flush(mddev);
5465 	md_super_wait(mddev);
5466 
5467 	if (mddev->ro == 0 &&
5468 	    ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5469 	     (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5470 		/* mark array as shutdown cleanly */
5471 		if (!mddev_is_clustered(mddev))
5472 			mddev->in_sync = 1;
5473 		md_update_sb(mddev, 1);
5474 	}
5475 }
5476 
md_stop_writes(struct mddev * mddev)5477 void md_stop_writes(struct mddev *mddev)
5478 {
5479 	mddev_lock_nointr(mddev);
5480 	__md_stop_writes(mddev);
5481 	mddev_unlock(mddev);
5482 }
5483 EXPORT_SYMBOL_GPL(md_stop_writes);
5484 
mddev_detach(struct mddev * mddev)5485 static void mddev_detach(struct mddev *mddev)
5486 {
5487 	struct bitmap *bitmap = mddev->bitmap;
5488 	/* wait for behind writes to complete */
5489 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5490 		printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5491 		       mdname(mddev));
5492 		/* need to kick something here to make sure I/O goes? */
5493 		wait_event(bitmap->behind_wait,
5494 			   atomic_read(&bitmap->behind_writes) == 0);
5495 	}
5496 	if (mddev->pers && mddev->pers->quiesce) {
5497 		mddev->pers->quiesce(mddev, 1);
5498 		mddev->pers->quiesce(mddev, 0);
5499 	}
5500 	md_unregister_thread(&mddev->thread);
5501 	if (mddev->queue)
5502 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5503 }
5504 
__md_stop(struct mddev * mddev)5505 static void __md_stop(struct mddev *mddev)
5506 {
5507 	struct md_personality *pers = mddev->pers;
5508 	mddev_detach(mddev);
5509 	/* Ensure ->event_work is done */
5510 	flush_workqueue(md_misc_wq);
5511 	spin_lock(&mddev->lock);
5512 	mddev->ready = 0;
5513 	mddev->pers = NULL;
5514 	spin_unlock(&mddev->lock);
5515 	pers->free(mddev, mddev->private);
5516 	mddev->private = NULL;
5517 	if (pers->sync_request && mddev->to_remove == NULL)
5518 		mddev->to_remove = &md_redundancy_group;
5519 	module_put(pers->owner);
5520 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5521 }
5522 
md_stop(struct mddev * mddev)5523 void md_stop(struct mddev *mddev)
5524 {
5525 	/* stop the array and free an attached data structures.
5526 	 * This is called from dm-raid
5527 	 */
5528 	__md_stop(mddev);
5529 	bitmap_destroy(mddev);
5530 	if (mddev->bio_set)
5531 		bioset_free(mddev->bio_set);
5532 }
5533 
5534 EXPORT_SYMBOL_GPL(md_stop);
5535 
md_set_readonly(struct mddev * mddev,struct block_device * bdev)5536 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5537 {
5538 	int err = 0;
5539 	int did_freeze = 0;
5540 
5541 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5542 		did_freeze = 1;
5543 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5544 		md_wakeup_thread(mddev->thread);
5545 	}
5546 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5547 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5548 	if (mddev->sync_thread)
5549 		/* Thread might be blocked waiting for metadata update
5550 		 * which will now never happen */
5551 		wake_up_process(mddev->sync_thread->tsk);
5552 
5553 	if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5554 		return -EBUSY;
5555 	mddev_unlock(mddev);
5556 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5557 					  &mddev->recovery));
5558 	wait_event(mddev->sb_wait,
5559 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5560 	mddev_lock_nointr(mddev);
5561 
5562 	mutex_lock(&mddev->open_mutex);
5563 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5564 	    mddev->sync_thread ||
5565 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5566 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5567 		printk("md: %s still in use.\n",mdname(mddev));
5568 		if (did_freeze) {
5569 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5570 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5571 			md_wakeup_thread(mddev->thread);
5572 		}
5573 		err = -EBUSY;
5574 		goto out;
5575 	}
5576 	if (mddev->pers) {
5577 		__md_stop_writes(mddev);
5578 
5579 		err  = -ENXIO;
5580 		if (mddev->ro==1)
5581 			goto out;
5582 		mddev->ro = 1;
5583 		set_disk_ro(mddev->gendisk, 1);
5584 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5585 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5586 		md_wakeup_thread(mddev->thread);
5587 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5588 		err = 0;
5589 	}
5590 out:
5591 	mutex_unlock(&mddev->open_mutex);
5592 	return err;
5593 }
5594 
5595 /* mode:
5596  *   0 - completely stop and dis-assemble array
5597  *   2 - stop but do not disassemble array
5598  */
do_md_stop(struct mddev * mddev,int mode,struct block_device * bdev)5599 static int do_md_stop(struct mddev *mddev, int mode,
5600 		      struct block_device *bdev)
5601 {
5602 	struct gendisk *disk = mddev->gendisk;
5603 	struct md_rdev *rdev;
5604 	int did_freeze = 0;
5605 
5606 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5607 		did_freeze = 1;
5608 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5609 		md_wakeup_thread(mddev->thread);
5610 	}
5611 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5612 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5613 	if (mddev->sync_thread)
5614 		/* Thread might be blocked waiting for metadata update
5615 		 * which will now never happen */
5616 		wake_up_process(mddev->sync_thread->tsk);
5617 
5618 	mddev_unlock(mddev);
5619 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
5620 				 !test_bit(MD_RECOVERY_RUNNING,
5621 					   &mddev->recovery)));
5622 	mddev_lock_nointr(mddev);
5623 
5624 	mutex_lock(&mddev->open_mutex);
5625 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5626 	    mddev->sysfs_active ||
5627 	    mddev->sync_thread ||
5628 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5629 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5630 		printk("md: %s still in use.\n",mdname(mddev));
5631 		mutex_unlock(&mddev->open_mutex);
5632 		if (did_freeze) {
5633 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5634 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5635 			md_wakeup_thread(mddev->thread);
5636 		}
5637 		return -EBUSY;
5638 	}
5639 	if (mddev->pers) {
5640 		if (mddev->ro)
5641 			set_disk_ro(disk, 0);
5642 
5643 		__md_stop_writes(mddev);
5644 		__md_stop(mddev);
5645 		mddev->queue->backing_dev_info.congested_fn = NULL;
5646 
5647 		/* tell userspace to handle 'inactive' */
5648 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5649 
5650 		rdev_for_each(rdev, mddev)
5651 			if (rdev->raid_disk >= 0)
5652 				sysfs_unlink_rdev(mddev, rdev);
5653 
5654 		set_capacity(disk, 0);
5655 		mutex_unlock(&mddev->open_mutex);
5656 		mddev->changed = 1;
5657 		revalidate_disk(disk);
5658 
5659 		if (mddev->ro)
5660 			mddev->ro = 0;
5661 	} else
5662 		mutex_unlock(&mddev->open_mutex);
5663 	/*
5664 	 * Free resources if final stop
5665 	 */
5666 	if (mode == 0) {
5667 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5668 
5669 		bitmap_destroy(mddev);
5670 		if (mddev->bitmap_info.file) {
5671 			struct file *f = mddev->bitmap_info.file;
5672 			spin_lock(&mddev->lock);
5673 			mddev->bitmap_info.file = NULL;
5674 			spin_unlock(&mddev->lock);
5675 			fput(f);
5676 		}
5677 		mddev->bitmap_info.offset = 0;
5678 
5679 		export_array(mddev);
5680 
5681 		md_clean(mddev);
5682 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5683 		if (mddev->hold_active == UNTIL_STOP)
5684 			mddev->hold_active = 0;
5685 	}
5686 	md_new_event(mddev);
5687 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5688 	return 0;
5689 }
5690 
5691 #ifndef MODULE
autorun_array(struct mddev * mddev)5692 static void autorun_array(struct mddev *mddev)
5693 {
5694 	struct md_rdev *rdev;
5695 	int err;
5696 
5697 	if (list_empty(&mddev->disks))
5698 		return;
5699 
5700 	printk(KERN_INFO "md: running: ");
5701 
5702 	rdev_for_each(rdev, mddev) {
5703 		char b[BDEVNAME_SIZE];
5704 		printk("<%s>", bdevname(rdev->bdev,b));
5705 	}
5706 	printk("\n");
5707 
5708 	err = do_md_run(mddev);
5709 	if (err) {
5710 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5711 		do_md_stop(mddev, 0, NULL);
5712 	}
5713 }
5714 
5715 /*
5716  * lets try to run arrays based on all disks that have arrived
5717  * until now. (those are in pending_raid_disks)
5718  *
5719  * the method: pick the first pending disk, collect all disks with
5720  * the same UUID, remove all from the pending list and put them into
5721  * the 'same_array' list. Then order this list based on superblock
5722  * update time (freshest comes first), kick out 'old' disks and
5723  * compare superblocks. If everything's fine then run it.
5724  *
5725  * If "unit" is allocated, then bump its reference count
5726  */
autorun_devices(int part)5727 static void autorun_devices(int part)
5728 {
5729 	struct md_rdev *rdev0, *rdev, *tmp;
5730 	struct mddev *mddev;
5731 	char b[BDEVNAME_SIZE];
5732 
5733 	printk(KERN_INFO "md: autorun ...\n");
5734 	while (!list_empty(&pending_raid_disks)) {
5735 		int unit;
5736 		dev_t dev;
5737 		LIST_HEAD(candidates);
5738 		rdev0 = list_entry(pending_raid_disks.next,
5739 					 struct md_rdev, same_set);
5740 
5741 		printk(KERN_INFO "md: considering %s ...\n",
5742 			bdevname(rdev0->bdev,b));
5743 		INIT_LIST_HEAD(&candidates);
5744 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5745 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5746 				printk(KERN_INFO "md:  adding %s ...\n",
5747 					bdevname(rdev->bdev,b));
5748 				list_move(&rdev->same_set, &candidates);
5749 			}
5750 		/*
5751 		 * now we have a set of devices, with all of them having
5752 		 * mostly sane superblocks. It's time to allocate the
5753 		 * mddev.
5754 		 */
5755 		if (part) {
5756 			dev = MKDEV(mdp_major,
5757 				    rdev0->preferred_minor << MdpMinorShift);
5758 			unit = MINOR(dev) >> MdpMinorShift;
5759 		} else {
5760 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5761 			unit = MINOR(dev);
5762 		}
5763 		if (rdev0->preferred_minor != unit) {
5764 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5765 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5766 			break;
5767 		}
5768 
5769 		md_probe(dev, NULL, NULL);
5770 		mddev = mddev_find(dev);
5771 		if (!mddev || !mddev->gendisk) {
5772 			if (mddev)
5773 				mddev_put(mddev);
5774 			printk(KERN_ERR
5775 				"md: cannot allocate memory for md drive.\n");
5776 			break;
5777 		}
5778 		if (mddev_lock(mddev))
5779 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5780 			       mdname(mddev));
5781 		else if (mddev->raid_disks || mddev->major_version
5782 			 || !list_empty(&mddev->disks)) {
5783 			printk(KERN_WARNING
5784 				"md: %s already running, cannot run %s\n",
5785 				mdname(mddev), bdevname(rdev0->bdev,b));
5786 			mddev_unlock(mddev);
5787 		} else {
5788 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5789 			mddev->persistent = 1;
5790 			rdev_for_each_list(rdev, tmp, &candidates) {
5791 				list_del_init(&rdev->same_set);
5792 				if (bind_rdev_to_array(rdev, mddev))
5793 					export_rdev(rdev);
5794 			}
5795 			autorun_array(mddev);
5796 			mddev_unlock(mddev);
5797 		}
5798 		/* on success, candidates will be empty, on error
5799 		 * it won't...
5800 		 */
5801 		rdev_for_each_list(rdev, tmp, &candidates) {
5802 			list_del_init(&rdev->same_set);
5803 			export_rdev(rdev);
5804 		}
5805 		mddev_put(mddev);
5806 	}
5807 	printk(KERN_INFO "md: ... autorun DONE.\n");
5808 }
5809 #endif /* !MODULE */
5810 
get_version(void __user * arg)5811 static int get_version(void __user *arg)
5812 {
5813 	mdu_version_t ver;
5814 
5815 	ver.major = MD_MAJOR_VERSION;
5816 	ver.minor = MD_MINOR_VERSION;
5817 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5818 
5819 	if (copy_to_user(arg, &ver, sizeof(ver)))
5820 		return -EFAULT;
5821 
5822 	return 0;
5823 }
5824 
get_array_info(struct mddev * mddev,void __user * arg)5825 static int get_array_info(struct mddev *mddev, void __user *arg)
5826 {
5827 	mdu_array_info_t info;
5828 	int nr,working,insync,failed,spare;
5829 	struct md_rdev *rdev;
5830 
5831 	nr = working = insync = failed = spare = 0;
5832 	rcu_read_lock();
5833 	rdev_for_each_rcu(rdev, mddev) {
5834 		nr++;
5835 		if (test_bit(Faulty, &rdev->flags))
5836 			failed++;
5837 		else {
5838 			working++;
5839 			if (test_bit(In_sync, &rdev->flags))
5840 				insync++;
5841 			else
5842 				spare++;
5843 		}
5844 	}
5845 	rcu_read_unlock();
5846 
5847 	info.major_version = mddev->major_version;
5848 	info.minor_version = mddev->minor_version;
5849 	info.patch_version = MD_PATCHLEVEL_VERSION;
5850 	info.ctime         = mddev->ctime;
5851 	info.level         = mddev->level;
5852 	info.size          = mddev->dev_sectors / 2;
5853 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5854 		info.size = -1;
5855 	info.nr_disks      = nr;
5856 	info.raid_disks    = mddev->raid_disks;
5857 	info.md_minor      = mddev->md_minor;
5858 	info.not_persistent= !mddev->persistent;
5859 
5860 	info.utime         = mddev->utime;
5861 	info.state         = 0;
5862 	if (mddev->in_sync)
5863 		info.state = (1<<MD_SB_CLEAN);
5864 	if (mddev->bitmap && mddev->bitmap_info.offset)
5865 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
5866 	if (mddev_is_clustered(mddev))
5867 		info.state |= (1<<MD_SB_CLUSTERED);
5868 	info.active_disks  = insync;
5869 	info.working_disks = working;
5870 	info.failed_disks  = failed;
5871 	info.spare_disks   = spare;
5872 
5873 	info.layout        = mddev->layout;
5874 	info.chunk_size    = mddev->chunk_sectors << 9;
5875 
5876 	if (copy_to_user(arg, &info, sizeof(info)))
5877 		return -EFAULT;
5878 
5879 	return 0;
5880 }
5881 
get_bitmap_file(struct mddev * mddev,void __user * arg)5882 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5883 {
5884 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5885 	char *ptr;
5886 	int err;
5887 
5888 	file = kzalloc(sizeof(*file), GFP_NOIO);
5889 	if (!file)
5890 		return -ENOMEM;
5891 
5892 	err = 0;
5893 	spin_lock(&mddev->lock);
5894 	/* bitmap enabled */
5895 	if (mddev->bitmap_info.file) {
5896 		ptr = file_path(mddev->bitmap_info.file, file->pathname,
5897 				sizeof(file->pathname));
5898 		if (IS_ERR(ptr))
5899 			err = PTR_ERR(ptr);
5900 		else
5901 			memmove(file->pathname, ptr,
5902 				sizeof(file->pathname)-(ptr-file->pathname));
5903 	}
5904 	spin_unlock(&mddev->lock);
5905 
5906 	if (err == 0 &&
5907 	    copy_to_user(arg, file, sizeof(*file)))
5908 		err = -EFAULT;
5909 
5910 	kfree(file);
5911 	return err;
5912 }
5913 
get_disk_info(struct mddev * mddev,void __user * arg)5914 static int get_disk_info(struct mddev *mddev, void __user * arg)
5915 {
5916 	mdu_disk_info_t info;
5917 	struct md_rdev *rdev;
5918 
5919 	if (copy_from_user(&info, arg, sizeof(info)))
5920 		return -EFAULT;
5921 
5922 	rcu_read_lock();
5923 	rdev = md_find_rdev_nr_rcu(mddev, info.number);
5924 	if (rdev) {
5925 		info.major = MAJOR(rdev->bdev->bd_dev);
5926 		info.minor = MINOR(rdev->bdev->bd_dev);
5927 		info.raid_disk = rdev->raid_disk;
5928 		info.state = 0;
5929 		if (test_bit(Faulty, &rdev->flags))
5930 			info.state |= (1<<MD_DISK_FAULTY);
5931 		else if (test_bit(In_sync, &rdev->flags)) {
5932 			info.state |= (1<<MD_DISK_ACTIVE);
5933 			info.state |= (1<<MD_DISK_SYNC);
5934 		}
5935 		if (test_bit(Journal, &rdev->flags))
5936 			info.state |= (1<<MD_DISK_JOURNAL);
5937 		if (test_bit(WriteMostly, &rdev->flags))
5938 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5939 	} else {
5940 		info.major = info.minor = 0;
5941 		info.raid_disk = -1;
5942 		info.state = (1<<MD_DISK_REMOVED);
5943 	}
5944 	rcu_read_unlock();
5945 
5946 	if (copy_to_user(arg, &info, sizeof(info)))
5947 		return -EFAULT;
5948 
5949 	return 0;
5950 }
5951 
add_new_disk(struct mddev * mddev,mdu_disk_info_t * info)5952 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5953 {
5954 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5955 	struct md_rdev *rdev;
5956 	dev_t dev = MKDEV(info->major,info->minor);
5957 
5958 	if (mddev_is_clustered(mddev) &&
5959 		!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5960 		pr_err("%s: Cannot add to clustered mddev.\n",
5961 			       mdname(mddev));
5962 		return -EINVAL;
5963 	}
5964 
5965 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5966 		return -EOVERFLOW;
5967 
5968 	if (!mddev->raid_disks) {
5969 		int err;
5970 		/* expecting a device which has a superblock */
5971 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5972 		if (IS_ERR(rdev)) {
5973 			printk(KERN_WARNING
5974 				"md: md_import_device returned %ld\n",
5975 				PTR_ERR(rdev));
5976 			return PTR_ERR(rdev);
5977 		}
5978 		if (!list_empty(&mddev->disks)) {
5979 			struct md_rdev *rdev0
5980 				= list_entry(mddev->disks.next,
5981 					     struct md_rdev, same_set);
5982 			err = super_types[mddev->major_version]
5983 				.load_super(rdev, rdev0, mddev->minor_version);
5984 			if (err < 0) {
5985 				printk(KERN_WARNING
5986 					"md: %s has different UUID to %s\n",
5987 					bdevname(rdev->bdev,b),
5988 					bdevname(rdev0->bdev,b2));
5989 				export_rdev(rdev);
5990 				return -EINVAL;
5991 			}
5992 		}
5993 		err = bind_rdev_to_array(rdev, mddev);
5994 		if (err)
5995 			export_rdev(rdev);
5996 		return err;
5997 	}
5998 
5999 	/*
6000 	 * add_new_disk can be used once the array is assembled
6001 	 * to add "hot spares".  They must already have a superblock
6002 	 * written
6003 	 */
6004 	if (mddev->pers) {
6005 		int err;
6006 		if (!mddev->pers->hot_add_disk) {
6007 			printk(KERN_WARNING
6008 				"%s: personality does not support diskops!\n",
6009 			       mdname(mddev));
6010 			return -EINVAL;
6011 		}
6012 		if (mddev->persistent)
6013 			rdev = md_import_device(dev, mddev->major_version,
6014 						mddev->minor_version);
6015 		else
6016 			rdev = md_import_device(dev, -1, -1);
6017 		if (IS_ERR(rdev)) {
6018 			printk(KERN_WARNING
6019 				"md: md_import_device returned %ld\n",
6020 				PTR_ERR(rdev));
6021 			return PTR_ERR(rdev);
6022 		}
6023 		/* set saved_raid_disk if appropriate */
6024 		if (!mddev->persistent) {
6025 			if (info->state & (1<<MD_DISK_SYNC)  &&
6026 			    info->raid_disk < mddev->raid_disks) {
6027 				rdev->raid_disk = info->raid_disk;
6028 				set_bit(In_sync, &rdev->flags);
6029 				clear_bit(Bitmap_sync, &rdev->flags);
6030 			} else
6031 				rdev->raid_disk = -1;
6032 			rdev->saved_raid_disk = rdev->raid_disk;
6033 		} else
6034 			super_types[mddev->major_version].
6035 				validate_super(mddev, rdev);
6036 		if ((info->state & (1<<MD_DISK_SYNC)) &&
6037 		     rdev->raid_disk != info->raid_disk) {
6038 			/* This was a hot-add request, but events doesn't
6039 			 * match, so reject it.
6040 			 */
6041 			export_rdev(rdev);
6042 			return -EINVAL;
6043 		}
6044 
6045 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
6046 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6047 			set_bit(WriteMostly, &rdev->flags);
6048 		else
6049 			clear_bit(WriteMostly, &rdev->flags);
6050 
6051 		if (info->state & (1<<MD_DISK_JOURNAL))
6052 			set_bit(Journal, &rdev->flags);
6053 		/*
6054 		 * check whether the device shows up in other nodes
6055 		 */
6056 		if (mddev_is_clustered(mddev)) {
6057 			if (info->state & (1 << MD_DISK_CANDIDATE))
6058 				set_bit(Candidate, &rdev->flags);
6059 			else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6060 				/* --add initiated by this node */
6061 				err = md_cluster_ops->add_new_disk(mddev, rdev);
6062 				if (err) {
6063 					export_rdev(rdev);
6064 					return err;
6065 				}
6066 			}
6067 		}
6068 
6069 		rdev->raid_disk = -1;
6070 		err = bind_rdev_to_array(rdev, mddev);
6071 
6072 		if (err)
6073 			export_rdev(rdev);
6074 
6075 		if (mddev_is_clustered(mddev)) {
6076 			if (info->state & (1 << MD_DISK_CANDIDATE))
6077 				md_cluster_ops->new_disk_ack(mddev, (err == 0));
6078 			else {
6079 				if (err)
6080 					md_cluster_ops->add_new_disk_cancel(mddev);
6081 				else
6082 					err = add_bound_rdev(rdev);
6083 			}
6084 
6085 		} else if (!err)
6086 			err = add_bound_rdev(rdev);
6087 
6088 		return err;
6089 	}
6090 
6091 	/* otherwise, add_new_disk is only allowed
6092 	 * for major_version==0 superblocks
6093 	 */
6094 	if (mddev->major_version != 0) {
6095 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
6096 		       mdname(mddev));
6097 		return -EINVAL;
6098 	}
6099 
6100 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
6101 		int err;
6102 		rdev = md_import_device(dev, -1, 0);
6103 		if (IS_ERR(rdev)) {
6104 			printk(KERN_WARNING
6105 				"md: error, md_import_device() returned %ld\n",
6106 				PTR_ERR(rdev));
6107 			return PTR_ERR(rdev);
6108 		}
6109 		rdev->desc_nr = info->number;
6110 		if (info->raid_disk < mddev->raid_disks)
6111 			rdev->raid_disk = info->raid_disk;
6112 		else
6113 			rdev->raid_disk = -1;
6114 
6115 		if (rdev->raid_disk < mddev->raid_disks)
6116 			if (info->state & (1<<MD_DISK_SYNC))
6117 				set_bit(In_sync, &rdev->flags);
6118 
6119 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6120 			set_bit(WriteMostly, &rdev->flags);
6121 
6122 		if (!mddev->persistent) {
6123 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
6124 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6125 		} else
6126 			rdev->sb_start = calc_dev_sboffset(rdev);
6127 		rdev->sectors = rdev->sb_start;
6128 
6129 		err = bind_rdev_to_array(rdev, mddev);
6130 		if (err) {
6131 			export_rdev(rdev);
6132 			return err;
6133 		}
6134 	}
6135 
6136 	return 0;
6137 }
6138 
hot_remove_disk(struct mddev * mddev,dev_t dev)6139 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6140 {
6141 	char b[BDEVNAME_SIZE];
6142 	struct md_rdev *rdev;
6143 	int ret = -1;
6144 
6145 	rdev = find_rdev(mddev, dev);
6146 	if (!rdev)
6147 		return -ENXIO;
6148 
6149 	if (mddev_is_clustered(mddev))
6150 		ret = md_cluster_ops->metadata_update_start(mddev);
6151 
6152 	if (rdev->raid_disk < 0)
6153 		goto kick_rdev;
6154 
6155 	clear_bit(Blocked, &rdev->flags);
6156 	remove_and_add_spares(mddev, rdev);
6157 
6158 	if (rdev->raid_disk >= 0)
6159 		goto busy;
6160 
6161 kick_rdev:
6162 	if (mddev_is_clustered(mddev) && ret == 0)
6163 		md_cluster_ops->remove_disk(mddev, rdev);
6164 
6165 	md_kick_rdev_from_array(rdev);
6166 	md_update_sb(mddev, 1);
6167 	md_new_event(mddev);
6168 
6169 	return 0;
6170 busy:
6171 	if (mddev_is_clustered(mddev) && ret == 0)
6172 		md_cluster_ops->metadata_update_cancel(mddev);
6173 
6174 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6175 		bdevname(rdev->bdev,b), mdname(mddev));
6176 	return -EBUSY;
6177 }
6178 
hot_add_disk(struct mddev * mddev,dev_t dev)6179 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6180 {
6181 	char b[BDEVNAME_SIZE];
6182 	int err;
6183 	struct md_rdev *rdev;
6184 
6185 	if (!mddev->pers)
6186 		return -ENODEV;
6187 
6188 	if (mddev->major_version != 0) {
6189 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6190 			" version-0 superblocks.\n",
6191 			mdname(mddev));
6192 		return -EINVAL;
6193 	}
6194 	if (!mddev->pers->hot_add_disk) {
6195 		printk(KERN_WARNING
6196 			"%s: personality does not support diskops!\n",
6197 			mdname(mddev));
6198 		return -EINVAL;
6199 	}
6200 
6201 	rdev = md_import_device(dev, -1, 0);
6202 	if (IS_ERR(rdev)) {
6203 		printk(KERN_WARNING
6204 			"md: error, md_import_device() returned %ld\n",
6205 			PTR_ERR(rdev));
6206 		return -EINVAL;
6207 	}
6208 
6209 	if (mddev->persistent)
6210 		rdev->sb_start = calc_dev_sboffset(rdev);
6211 	else
6212 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6213 
6214 	rdev->sectors = rdev->sb_start;
6215 
6216 	if (test_bit(Faulty, &rdev->flags)) {
6217 		printk(KERN_WARNING
6218 			"md: can not hot-add faulty %s disk to %s!\n",
6219 			bdevname(rdev->bdev,b), mdname(mddev));
6220 		err = -EINVAL;
6221 		goto abort_export;
6222 	}
6223 
6224 	clear_bit(In_sync, &rdev->flags);
6225 	rdev->desc_nr = -1;
6226 	rdev->saved_raid_disk = -1;
6227 	err = bind_rdev_to_array(rdev, mddev);
6228 	if (err)
6229 		goto abort_export;
6230 
6231 	/*
6232 	 * The rest should better be atomic, we can have disk failures
6233 	 * noticed in interrupt contexts ...
6234 	 */
6235 
6236 	rdev->raid_disk = -1;
6237 
6238 	md_update_sb(mddev, 1);
6239 	/*
6240 	 * Kick recovery, maybe this spare has to be added to the
6241 	 * array immediately.
6242 	 */
6243 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6244 	md_wakeup_thread(mddev->thread);
6245 	md_new_event(mddev);
6246 	return 0;
6247 
6248 abort_export:
6249 	export_rdev(rdev);
6250 	return err;
6251 }
6252 
set_bitmap_file(struct mddev * mddev,int fd)6253 static int set_bitmap_file(struct mddev *mddev, int fd)
6254 {
6255 	int err = 0;
6256 
6257 	if (mddev->pers) {
6258 		if (!mddev->pers->quiesce || !mddev->thread)
6259 			return -EBUSY;
6260 		if (mddev->recovery || mddev->sync_thread)
6261 			return -EBUSY;
6262 		/* we should be able to change the bitmap.. */
6263 	}
6264 
6265 	if (fd >= 0) {
6266 		struct inode *inode;
6267 		struct file *f;
6268 
6269 		if (mddev->bitmap || mddev->bitmap_info.file)
6270 			return -EEXIST; /* cannot add when bitmap is present */
6271 		f = fget(fd);
6272 
6273 		if (f == NULL) {
6274 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6275 			       mdname(mddev));
6276 			return -EBADF;
6277 		}
6278 
6279 		inode = f->f_mapping->host;
6280 		if (!S_ISREG(inode->i_mode)) {
6281 			printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6282 			       mdname(mddev));
6283 			err = -EBADF;
6284 		} else if (!(f->f_mode & FMODE_WRITE)) {
6285 			printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6286 			       mdname(mddev));
6287 			err = -EBADF;
6288 		} else if (atomic_read(&inode->i_writecount) != 1) {
6289 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6290 			       mdname(mddev));
6291 			err = -EBUSY;
6292 		}
6293 		if (err) {
6294 			fput(f);
6295 			return err;
6296 		}
6297 		mddev->bitmap_info.file = f;
6298 		mddev->bitmap_info.offset = 0; /* file overrides offset */
6299 	} else if (mddev->bitmap == NULL)
6300 		return -ENOENT; /* cannot remove what isn't there */
6301 	err = 0;
6302 	if (mddev->pers) {
6303 		mddev->pers->quiesce(mddev, 1);
6304 		if (fd >= 0) {
6305 			struct bitmap *bitmap;
6306 
6307 			bitmap = bitmap_create(mddev, -1);
6308 			if (!IS_ERR(bitmap)) {
6309 				mddev->bitmap = bitmap;
6310 				err = bitmap_load(mddev);
6311 			} else
6312 				err = PTR_ERR(bitmap);
6313 		}
6314 		if (fd < 0 || err) {
6315 			bitmap_destroy(mddev);
6316 			fd = -1; /* make sure to put the file */
6317 		}
6318 		mddev->pers->quiesce(mddev, 0);
6319 	}
6320 	if (fd < 0) {
6321 		struct file *f = mddev->bitmap_info.file;
6322 		if (f) {
6323 			spin_lock(&mddev->lock);
6324 			mddev->bitmap_info.file = NULL;
6325 			spin_unlock(&mddev->lock);
6326 			fput(f);
6327 		}
6328 	}
6329 
6330 	return err;
6331 }
6332 
6333 /*
6334  * set_array_info is used two different ways
6335  * The original usage is when creating a new array.
6336  * In this usage, raid_disks is > 0 and it together with
6337  *  level, size, not_persistent,layout,chunksize determine the
6338  *  shape of the array.
6339  *  This will always create an array with a type-0.90.0 superblock.
6340  * The newer usage is when assembling an array.
6341  *  In this case raid_disks will be 0, and the major_version field is
6342  *  use to determine which style super-blocks are to be found on the devices.
6343  *  The minor and patch _version numbers are also kept incase the
6344  *  super_block handler wishes to interpret them.
6345  */
set_array_info(struct mddev * mddev,mdu_array_info_t * info)6346 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6347 {
6348 
6349 	if (info->raid_disks == 0) {
6350 		/* just setting version number for superblock loading */
6351 		if (info->major_version < 0 ||
6352 		    info->major_version >= ARRAY_SIZE(super_types) ||
6353 		    super_types[info->major_version].name == NULL) {
6354 			/* maybe try to auto-load a module? */
6355 			printk(KERN_INFO
6356 				"md: superblock version %d not known\n",
6357 				info->major_version);
6358 			return -EINVAL;
6359 		}
6360 		mddev->major_version = info->major_version;
6361 		mddev->minor_version = info->minor_version;
6362 		mddev->patch_version = info->patch_version;
6363 		mddev->persistent = !info->not_persistent;
6364 		/* ensure mddev_put doesn't delete this now that there
6365 		 * is some minimal configuration.
6366 		 */
6367 		mddev->ctime         = get_seconds();
6368 		return 0;
6369 	}
6370 	mddev->major_version = MD_MAJOR_VERSION;
6371 	mddev->minor_version = MD_MINOR_VERSION;
6372 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6373 	mddev->ctime         = get_seconds();
6374 
6375 	mddev->level         = info->level;
6376 	mddev->clevel[0]     = 0;
6377 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6378 	mddev->raid_disks    = info->raid_disks;
6379 	/* don't set md_minor, it is determined by which /dev/md* was
6380 	 * openned
6381 	 */
6382 	if (info->state & (1<<MD_SB_CLEAN))
6383 		mddev->recovery_cp = MaxSector;
6384 	else
6385 		mddev->recovery_cp = 0;
6386 	mddev->persistent    = ! info->not_persistent;
6387 	mddev->external	     = 0;
6388 
6389 	mddev->layout        = info->layout;
6390 	mddev->chunk_sectors = info->chunk_size >> 9;
6391 
6392 	mddev->max_disks     = MD_SB_DISKS;
6393 
6394 	if (mddev->persistent)
6395 		mddev->flags         = 0;
6396 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6397 
6398 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6399 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6400 	mddev->bitmap_info.offset = 0;
6401 
6402 	mddev->reshape_position = MaxSector;
6403 
6404 	/*
6405 	 * Generate a 128 bit UUID
6406 	 */
6407 	get_random_bytes(mddev->uuid, 16);
6408 
6409 	mddev->new_level = mddev->level;
6410 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6411 	mddev->new_layout = mddev->layout;
6412 	mddev->delta_disks = 0;
6413 	mddev->reshape_backwards = 0;
6414 
6415 	return 0;
6416 }
6417 
md_set_array_sectors(struct mddev * mddev,sector_t array_sectors)6418 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6419 {
6420 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6421 
6422 	if (mddev->external_size)
6423 		return;
6424 
6425 	mddev->array_sectors = array_sectors;
6426 }
6427 EXPORT_SYMBOL(md_set_array_sectors);
6428 
update_size(struct mddev * mddev,sector_t num_sectors)6429 static int update_size(struct mddev *mddev, sector_t num_sectors)
6430 {
6431 	struct md_rdev *rdev;
6432 	int rv;
6433 	int fit = (num_sectors == 0);
6434 
6435 	if (mddev->pers->resize == NULL)
6436 		return -EINVAL;
6437 	/* The "num_sectors" is the number of sectors of each device that
6438 	 * is used.  This can only make sense for arrays with redundancy.
6439 	 * linear and raid0 always use whatever space is available. We can only
6440 	 * consider changing this number if no resync or reconstruction is
6441 	 * happening, and if the new size is acceptable. It must fit before the
6442 	 * sb_start or, if that is <data_offset, it must fit before the size
6443 	 * of each device.  If num_sectors is zero, we find the largest size
6444 	 * that fits.
6445 	 */
6446 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6447 	    mddev->sync_thread)
6448 		return -EBUSY;
6449 	if (mddev->ro)
6450 		return -EROFS;
6451 
6452 	rdev_for_each(rdev, mddev) {
6453 		sector_t avail = rdev->sectors;
6454 
6455 		if (fit && (num_sectors == 0 || num_sectors > avail))
6456 			num_sectors = avail;
6457 		if (avail < num_sectors)
6458 			return -ENOSPC;
6459 	}
6460 	rv = mddev->pers->resize(mddev, num_sectors);
6461 	if (!rv)
6462 		revalidate_disk(mddev->gendisk);
6463 	return rv;
6464 }
6465 
update_raid_disks(struct mddev * mddev,int raid_disks)6466 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6467 {
6468 	int rv;
6469 	struct md_rdev *rdev;
6470 	/* change the number of raid disks */
6471 	if (mddev->pers->check_reshape == NULL)
6472 		return -EINVAL;
6473 	if (mddev->ro)
6474 		return -EROFS;
6475 	if (raid_disks <= 0 ||
6476 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6477 		return -EINVAL;
6478 	if (mddev->sync_thread ||
6479 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6480 	    mddev->reshape_position != MaxSector)
6481 		return -EBUSY;
6482 
6483 	rdev_for_each(rdev, mddev) {
6484 		if (mddev->raid_disks < raid_disks &&
6485 		    rdev->data_offset < rdev->new_data_offset)
6486 			return -EINVAL;
6487 		if (mddev->raid_disks > raid_disks &&
6488 		    rdev->data_offset > rdev->new_data_offset)
6489 			return -EINVAL;
6490 	}
6491 
6492 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6493 	if (mddev->delta_disks < 0)
6494 		mddev->reshape_backwards = 1;
6495 	else if (mddev->delta_disks > 0)
6496 		mddev->reshape_backwards = 0;
6497 
6498 	rv = mddev->pers->check_reshape(mddev);
6499 	if (rv < 0) {
6500 		mddev->delta_disks = 0;
6501 		mddev->reshape_backwards = 0;
6502 	}
6503 	return rv;
6504 }
6505 
6506 /*
6507  * update_array_info is used to change the configuration of an
6508  * on-line array.
6509  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6510  * fields in the info are checked against the array.
6511  * Any differences that cannot be handled will cause an error.
6512  * Normally, only one change can be managed at a time.
6513  */
update_array_info(struct mddev * mddev,mdu_array_info_t * info)6514 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6515 {
6516 	int rv = 0;
6517 	int cnt = 0;
6518 	int state = 0;
6519 
6520 	/* calculate expected state,ignoring low bits */
6521 	if (mddev->bitmap && mddev->bitmap_info.offset)
6522 		state |= (1 << MD_SB_BITMAP_PRESENT);
6523 
6524 	if (mddev->major_version != info->major_version ||
6525 	    mddev->minor_version != info->minor_version ||
6526 /*	    mddev->patch_version != info->patch_version || */
6527 	    mddev->ctime         != info->ctime         ||
6528 	    mddev->level         != info->level         ||
6529 /*	    mddev->layout        != info->layout        || */
6530 	    mddev->persistent	 != !info->not_persistent ||
6531 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6532 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6533 	    ((state^info->state) & 0xfffffe00)
6534 		)
6535 		return -EINVAL;
6536 	/* Check there is only one change */
6537 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6538 		cnt++;
6539 	if (mddev->raid_disks != info->raid_disks)
6540 		cnt++;
6541 	if (mddev->layout != info->layout)
6542 		cnt++;
6543 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6544 		cnt++;
6545 	if (cnt == 0)
6546 		return 0;
6547 	if (cnt > 1)
6548 		return -EINVAL;
6549 
6550 	if (mddev->layout != info->layout) {
6551 		/* Change layout
6552 		 * we don't need to do anything at the md level, the
6553 		 * personality will take care of it all.
6554 		 */
6555 		if (mddev->pers->check_reshape == NULL)
6556 			return -EINVAL;
6557 		else {
6558 			mddev->new_layout = info->layout;
6559 			rv = mddev->pers->check_reshape(mddev);
6560 			if (rv)
6561 				mddev->new_layout = mddev->layout;
6562 			return rv;
6563 		}
6564 	}
6565 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6566 		rv = update_size(mddev, (sector_t)info->size * 2);
6567 
6568 	if (mddev->raid_disks    != info->raid_disks)
6569 		rv = update_raid_disks(mddev, info->raid_disks);
6570 
6571 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6572 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6573 			rv = -EINVAL;
6574 			goto err;
6575 		}
6576 		if (mddev->recovery || mddev->sync_thread) {
6577 			rv = -EBUSY;
6578 			goto err;
6579 		}
6580 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6581 			struct bitmap *bitmap;
6582 			/* add the bitmap */
6583 			if (mddev->bitmap) {
6584 				rv = -EEXIST;
6585 				goto err;
6586 			}
6587 			if (mddev->bitmap_info.default_offset == 0) {
6588 				rv = -EINVAL;
6589 				goto err;
6590 			}
6591 			mddev->bitmap_info.offset =
6592 				mddev->bitmap_info.default_offset;
6593 			mddev->bitmap_info.space =
6594 				mddev->bitmap_info.default_space;
6595 			mddev->pers->quiesce(mddev, 1);
6596 			bitmap = bitmap_create(mddev, -1);
6597 			if (!IS_ERR(bitmap)) {
6598 				mddev->bitmap = bitmap;
6599 				rv = bitmap_load(mddev);
6600 			} else
6601 				rv = PTR_ERR(bitmap);
6602 			if (rv)
6603 				bitmap_destroy(mddev);
6604 			mddev->pers->quiesce(mddev, 0);
6605 		} else {
6606 			/* remove the bitmap */
6607 			if (!mddev->bitmap) {
6608 				rv = -ENOENT;
6609 				goto err;
6610 			}
6611 			if (mddev->bitmap->storage.file) {
6612 				rv = -EINVAL;
6613 				goto err;
6614 			}
6615 			mddev->pers->quiesce(mddev, 1);
6616 			bitmap_destroy(mddev);
6617 			mddev->pers->quiesce(mddev, 0);
6618 			mddev->bitmap_info.offset = 0;
6619 		}
6620 	}
6621 	md_update_sb(mddev, 1);
6622 	return rv;
6623 err:
6624 	return rv;
6625 }
6626 
set_disk_faulty(struct mddev * mddev,dev_t dev)6627 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6628 {
6629 	struct md_rdev *rdev;
6630 	int err = 0;
6631 
6632 	if (mddev->pers == NULL)
6633 		return -ENODEV;
6634 
6635 	rcu_read_lock();
6636 	rdev = find_rdev_rcu(mddev, dev);
6637 	if (!rdev)
6638 		err =  -ENODEV;
6639 	else {
6640 		md_error(mddev, rdev);
6641 		if (!test_bit(Faulty, &rdev->flags))
6642 			err = -EBUSY;
6643 	}
6644 	rcu_read_unlock();
6645 	return err;
6646 }
6647 
6648 /*
6649  * We have a problem here : there is no easy way to give a CHS
6650  * virtual geometry. We currently pretend that we have a 2 heads
6651  * 4 sectors (with a BIG number of cylinders...). This drives
6652  * dosfs just mad... ;-)
6653  */
md_getgeo(struct block_device * bdev,struct hd_geometry * geo)6654 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6655 {
6656 	struct mddev *mddev = bdev->bd_disk->private_data;
6657 
6658 	geo->heads = 2;
6659 	geo->sectors = 4;
6660 	geo->cylinders = mddev->array_sectors / 8;
6661 	return 0;
6662 }
6663 
md_ioctl_valid(unsigned int cmd)6664 static inline bool md_ioctl_valid(unsigned int cmd)
6665 {
6666 	switch (cmd) {
6667 	case ADD_NEW_DISK:
6668 	case BLKROSET:
6669 	case GET_ARRAY_INFO:
6670 	case GET_BITMAP_FILE:
6671 	case GET_DISK_INFO:
6672 	case HOT_ADD_DISK:
6673 	case HOT_REMOVE_DISK:
6674 	case RAID_AUTORUN:
6675 	case RAID_VERSION:
6676 	case RESTART_ARRAY_RW:
6677 	case RUN_ARRAY:
6678 	case SET_ARRAY_INFO:
6679 	case SET_BITMAP_FILE:
6680 	case SET_DISK_FAULTY:
6681 	case STOP_ARRAY:
6682 	case STOP_ARRAY_RO:
6683 	case CLUSTERED_DISK_NACK:
6684 		return true;
6685 	default:
6686 		return false;
6687 	}
6688 }
6689 
md_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)6690 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6691 			unsigned int cmd, unsigned long arg)
6692 {
6693 	int err = 0;
6694 	void __user *argp = (void __user *)arg;
6695 	struct mddev *mddev = NULL;
6696 	int ro;
6697 
6698 	if (!md_ioctl_valid(cmd))
6699 		return -ENOTTY;
6700 
6701 	switch (cmd) {
6702 	case RAID_VERSION:
6703 	case GET_ARRAY_INFO:
6704 	case GET_DISK_INFO:
6705 		break;
6706 	default:
6707 		if (!capable(CAP_SYS_ADMIN))
6708 			return -EACCES;
6709 	}
6710 
6711 	/*
6712 	 * Commands dealing with the RAID driver but not any
6713 	 * particular array:
6714 	 */
6715 	switch (cmd) {
6716 	case RAID_VERSION:
6717 		err = get_version(argp);
6718 		goto out;
6719 
6720 #ifndef MODULE
6721 	case RAID_AUTORUN:
6722 		err = 0;
6723 		autostart_arrays(arg);
6724 		goto out;
6725 #endif
6726 	default:;
6727 	}
6728 
6729 	/*
6730 	 * Commands creating/starting a new array:
6731 	 */
6732 
6733 	mddev = bdev->bd_disk->private_data;
6734 
6735 	if (!mddev) {
6736 		BUG();
6737 		goto out;
6738 	}
6739 
6740 	/* Some actions do not requires the mutex */
6741 	switch (cmd) {
6742 	case GET_ARRAY_INFO:
6743 		if (!mddev->raid_disks && !mddev->external)
6744 			err = -ENODEV;
6745 		else
6746 			err = get_array_info(mddev, argp);
6747 		goto out;
6748 
6749 	case GET_DISK_INFO:
6750 		if (!mddev->raid_disks && !mddev->external)
6751 			err = -ENODEV;
6752 		else
6753 			err = get_disk_info(mddev, argp);
6754 		goto out;
6755 
6756 	case SET_DISK_FAULTY:
6757 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6758 		goto out;
6759 
6760 	case GET_BITMAP_FILE:
6761 		err = get_bitmap_file(mddev, argp);
6762 		goto out;
6763 
6764 	}
6765 
6766 	if (cmd == ADD_NEW_DISK)
6767 		/* need to ensure md_delayed_delete() has completed */
6768 		flush_workqueue(md_misc_wq);
6769 
6770 	if (cmd == HOT_REMOVE_DISK)
6771 		/* need to ensure recovery thread has run */
6772 		wait_event_interruptible_timeout(mddev->sb_wait,
6773 						 !test_bit(MD_RECOVERY_NEEDED,
6774 							   &mddev->flags),
6775 						 msecs_to_jiffies(5000));
6776 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6777 		/* Need to flush page cache, and ensure no-one else opens
6778 		 * and writes
6779 		 */
6780 		mutex_lock(&mddev->open_mutex);
6781 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6782 			mutex_unlock(&mddev->open_mutex);
6783 			err = -EBUSY;
6784 			goto out;
6785 		}
6786 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6787 		mutex_unlock(&mddev->open_mutex);
6788 		sync_blockdev(bdev);
6789 	}
6790 	err = mddev_lock(mddev);
6791 	if (err) {
6792 		printk(KERN_INFO
6793 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6794 			err, cmd);
6795 		goto out;
6796 	}
6797 
6798 	if (cmd == SET_ARRAY_INFO) {
6799 		mdu_array_info_t info;
6800 		if (!arg)
6801 			memset(&info, 0, sizeof(info));
6802 		else if (copy_from_user(&info, argp, sizeof(info))) {
6803 			err = -EFAULT;
6804 			goto unlock;
6805 		}
6806 		if (mddev->pers) {
6807 			err = update_array_info(mddev, &info);
6808 			if (err) {
6809 				printk(KERN_WARNING "md: couldn't update"
6810 				       " array info. %d\n", err);
6811 				goto unlock;
6812 			}
6813 			goto unlock;
6814 		}
6815 		if (!list_empty(&mddev->disks)) {
6816 			printk(KERN_WARNING
6817 			       "md: array %s already has disks!\n",
6818 			       mdname(mddev));
6819 			err = -EBUSY;
6820 			goto unlock;
6821 		}
6822 		if (mddev->raid_disks) {
6823 			printk(KERN_WARNING
6824 			       "md: array %s already initialised!\n",
6825 			       mdname(mddev));
6826 			err = -EBUSY;
6827 			goto unlock;
6828 		}
6829 		err = set_array_info(mddev, &info);
6830 		if (err) {
6831 			printk(KERN_WARNING "md: couldn't set"
6832 			       " array info. %d\n", err);
6833 			goto unlock;
6834 		}
6835 		goto unlock;
6836 	}
6837 
6838 	/*
6839 	 * Commands querying/configuring an existing array:
6840 	 */
6841 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6842 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6843 	if ((!mddev->raid_disks && !mddev->external)
6844 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6845 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6846 	    && cmd != GET_BITMAP_FILE) {
6847 		err = -ENODEV;
6848 		goto unlock;
6849 	}
6850 
6851 	/*
6852 	 * Commands even a read-only array can execute:
6853 	 */
6854 	switch (cmd) {
6855 	case RESTART_ARRAY_RW:
6856 		err = restart_array(mddev);
6857 		goto unlock;
6858 
6859 	case STOP_ARRAY:
6860 		err = do_md_stop(mddev, 0, bdev);
6861 		goto unlock;
6862 
6863 	case STOP_ARRAY_RO:
6864 		err = md_set_readonly(mddev, bdev);
6865 		goto unlock;
6866 
6867 	case HOT_REMOVE_DISK:
6868 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6869 		goto unlock;
6870 
6871 	case ADD_NEW_DISK:
6872 		/* We can support ADD_NEW_DISK on read-only arrays
6873 		 * on if we are re-adding a preexisting device.
6874 		 * So require mddev->pers and MD_DISK_SYNC.
6875 		 */
6876 		if (mddev->pers) {
6877 			mdu_disk_info_t info;
6878 			if (copy_from_user(&info, argp, sizeof(info)))
6879 				err = -EFAULT;
6880 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6881 				/* Need to clear read-only for this */
6882 				break;
6883 			else
6884 				err = add_new_disk(mddev, &info);
6885 			goto unlock;
6886 		}
6887 		break;
6888 
6889 	case BLKROSET:
6890 		if (get_user(ro, (int __user *)(arg))) {
6891 			err = -EFAULT;
6892 			goto unlock;
6893 		}
6894 		err = -EINVAL;
6895 
6896 		/* if the bdev is going readonly the value of mddev->ro
6897 		 * does not matter, no writes are coming
6898 		 */
6899 		if (ro)
6900 			goto unlock;
6901 
6902 		/* are we are already prepared for writes? */
6903 		if (mddev->ro != 1)
6904 			goto unlock;
6905 
6906 		/* transitioning to readauto need only happen for
6907 		 * arrays that call md_write_start
6908 		 */
6909 		if (mddev->pers) {
6910 			err = restart_array(mddev);
6911 			if (err == 0) {
6912 				mddev->ro = 2;
6913 				set_disk_ro(mddev->gendisk, 0);
6914 			}
6915 		}
6916 		goto unlock;
6917 	}
6918 
6919 	/*
6920 	 * The remaining ioctls are changing the state of the
6921 	 * superblock, so we do not allow them on read-only arrays.
6922 	 */
6923 	if (mddev->ro && mddev->pers) {
6924 		if (mddev->ro == 2) {
6925 			mddev->ro = 0;
6926 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6927 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6928 			/* mddev_unlock will wake thread */
6929 			/* If a device failed while we were read-only, we
6930 			 * need to make sure the metadata is updated now.
6931 			 */
6932 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6933 				mddev_unlock(mddev);
6934 				wait_event(mddev->sb_wait,
6935 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6936 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6937 				mddev_lock_nointr(mddev);
6938 			}
6939 		} else {
6940 			err = -EROFS;
6941 			goto unlock;
6942 		}
6943 	}
6944 
6945 	switch (cmd) {
6946 	case ADD_NEW_DISK:
6947 	{
6948 		mdu_disk_info_t info;
6949 		if (copy_from_user(&info, argp, sizeof(info)))
6950 			err = -EFAULT;
6951 		else
6952 			err = add_new_disk(mddev, &info);
6953 		goto unlock;
6954 	}
6955 
6956 	case CLUSTERED_DISK_NACK:
6957 		if (mddev_is_clustered(mddev))
6958 			md_cluster_ops->new_disk_ack(mddev, false);
6959 		else
6960 			err = -EINVAL;
6961 		goto unlock;
6962 
6963 	case HOT_ADD_DISK:
6964 		err = hot_add_disk(mddev, new_decode_dev(arg));
6965 		goto unlock;
6966 
6967 	case RUN_ARRAY:
6968 		err = do_md_run(mddev);
6969 		goto unlock;
6970 
6971 	case SET_BITMAP_FILE:
6972 		err = set_bitmap_file(mddev, (int)arg);
6973 		goto unlock;
6974 
6975 	default:
6976 		err = -EINVAL;
6977 		goto unlock;
6978 	}
6979 
6980 unlock:
6981 	if (mddev->hold_active == UNTIL_IOCTL &&
6982 	    err != -EINVAL)
6983 		mddev->hold_active = 0;
6984 	mddev_unlock(mddev);
6985 out:
6986 	return err;
6987 }
6988 #ifdef CONFIG_COMPAT
md_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)6989 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6990 		    unsigned int cmd, unsigned long arg)
6991 {
6992 	switch (cmd) {
6993 	case HOT_REMOVE_DISK:
6994 	case HOT_ADD_DISK:
6995 	case SET_DISK_FAULTY:
6996 	case SET_BITMAP_FILE:
6997 		/* These take in integer arg, do not convert */
6998 		break;
6999 	default:
7000 		arg = (unsigned long)compat_ptr(arg);
7001 		break;
7002 	}
7003 
7004 	return md_ioctl(bdev, mode, cmd, arg);
7005 }
7006 #endif /* CONFIG_COMPAT */
7007 
md_open(struct block_device * bdev,fmode_t mode)7008 static int md_open(struct block_device *bdev, fmode_t mode)
7009 {
7010 	/*
7011 	 * Succeed if we can lock the mddev, which confirms that
7012 	 * it isn't being stopped right now.
7013 	 */
7014 	struct mddev *mddev = mddev_find(bdev->bd_dev);
7015 	int err;
7016 
7017 	if (!mddev)
7018 		return -ENODEV;
7019 
7020 	if (mddev->gendisk != bdev->bd_disk) {
7021 		/* we are racing with mddev_put which is discarding this
7022 		 * bd_disk.
7023 		 */
7024 		mddev_put(mddev);
7025 		/* Wait until bdev->bd_disk is definitely gone */
7026 		flush_workqueue(md_misc_wq);
7027 		/* Then retry the open from the top */
7028 		return -ERESTARTSYS;
7029 	}
7030 	BUG_ON(mddev != bdev->bd_disk->private_data);
7031 
7032 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7033 		goto out;
7034 
7035 	err = 0;
7036 	atomic_inc(&mddev->openers);
7037 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
7038 	mutex_unlock(&mddev->open_mutex);
7039 
7040 	check_disk_change(bdev);
7041  out:
7042 	return err;
7043 }
7044 
md_release(struct gendisk * disk,fmode_t mode)7045 static void md_release(struct gendisk *disk, fmode_t mode)
7046 {
7047 	struct mddev *mddev = disk->private_data;
7048 
7049 	BUG_ON(!mddev);
7050 	atomic_dec(&mddev->openers);
7051 	mddev_put(mddev);
7052 }
7053 
md_media_changed(struct gendisk * disk)7054 static int md_media_changed(struct gendisk *disk)
7055 {
7056 	struct mddev *mddev = disk->private_data;
7057 
7058 	return mddev->changed;
7059 }
7060 
md_revalidate(struct gendisk * disk)7061 static int md_revalidate(struct gendisk *disk)
7062 {
7063 	struct mddev *mddev = disk->private_data;
7064 
7065 	mddev->changed = 0;
7066 	return 0;
7067 }
7068 static const struct block_device_operations md_fops =
7069 {
7070 	.owner		= THIS_MODULE,
7071 	.open		= md_open,
7072 	.release	= md_release,
7073 	.ioctl		= md_ioctl,
7074 #ifdef CONFIG_COMPAT
7075 	.compat_ioctl	= md_compat_ioctl,
7076 #endif
7077 	.getgeo		= md_getgeo,
7078 	.media_changed  = md_media_changed,
7079 	.revalidate_disk= md_revalidate,
7080 };
7081 
md_thread(void * arg)7082 static int md_thread(void *arg)
7083 {
7084 	struct md_thread *thread = arg;
7085 
7086 	/*
7087 	 * md_thread is a 'system-thread', it's priority should be very
7088 	 * high. We avoid resource deadlocks individually in each
7089 	 * raid personality. (RAID5 does preallocation) We also use RR and
7090 	 * the very same RT priority as kswapd, thus we will never get
7091 	 * into a priority inversion deadlock.
7092 	 *
7093 	 * we definitely have to have equal or higher priority than
7094 	 * bdflush, otherwise bdflush will deadlock if there are too
7095 	 * many dirty RAID5 blocks.
7096 	 */
7097 
7098 	allow_signal(SIGKILL);
7099 	while (!kthread_should_stop()) {
7100 
7101 		/* We need to wait INTERRUPTIBLE so that
7102 		 * we don't add to the load-average.
7103 		 * That means we need to be sure no signals are
7104 		 * pending
7105 		 */
7106 		if (signal_pending(current))
7107 			flush_signals(current);
7108 
7109 		wait_event_interruptible_timeout
7110 			(thread->wqueue,
7111 			 test_bit(THREAD_WAKEUP, &thread->flags)
7112 			 || kthread_should_stop(),
7113 			 thread->timeout);
7114 
7115 		clear_bit(THREAD_WAKEUP, &thread->flags);
7116 		if (!kthread_should_stop())
7117 			thread->run(thread);
7118 	}
7119 
7120 	return 0;
7121 }
7122 
md_wakeup_thread(struct md_thread * thread)7123 void md_wakeup_thread(struct md_thread *thread)
7124 {
7125 	if (thread) {
7126 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7127 		set_bit(THREAD_WAKEUP, &thread->flags);
7128 		wake_up(&thread->wqueue);
7129 	}
7130 }
7131 EXPORT_SYMBOL(md_wakeup_thread);
7132 
md_register_thread(void (* run)(struct md_thread *),struct mddev * mddev,const char * name)7133 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7134 		struct mddev *mddev, const char *name)
7135 {
7136 	struct md_thread *thread;
7137 
7138 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7139 	if (!thread)
7140 		return NULL;
7141 
7142 	init_waitqueue_head(&thread->wqueue);
7143 
7144 	thread->run = run;
7145 	thread->mddev = mddev;
7146 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
7147 	thread->tsk = kthread_run(md_thread, thread,
7148 				  "%s_%s",
7149 				  mdname(thread->mddev),
7150 				  name);
7151 	if (IS_ERR(thread->tsk)) {
7152 		kfree(thread);
7153 		return NULL;
7154 	}
7155 	return thread;
7156 }
7157 EXPORT_SYMBOL(md_register_thread);
7158 
md_unregister_thread(struct md_thread ** threadp)7159 void md_unregister_thread(struct md_thread **threadp)
7160 {
7161 	struct md_thread *thread = *threadp;
7162 	if (!thread)
7163 		return;
7164 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7165 	/* Locking ensures that mddev_unlock does not wake_up a
7166 	 * non-existent thread
7167 	 */
7168 	spin_lock(&pers_lock);
7169 	*threadp = NULL;
7170 	spin_unlock(&pers_lock);
7171 
7172 	kthread_stop(thread->tsk);
7173 	kfree(thread);
7174 }
7175 EXPORT_SYMBOL(md_unregister_thread);
7176 
md_error(struct mddev * mddev,struct md_rdev * rdev)7177 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7178 {
7179 	if (!rdev || test_bit(Faulty, &rdev->flags))
7180 		return;
7181 
7182 	if (!mddev->pers || !mddev->pers->error_handler)
7183 		return;
7184 	mddev->pers->error_handler(mddev,rdev);
7185 	if (mddev->degraded)
7186 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7187 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7188 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7189 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7190 	md_wakeup_thread(mddev->thread);
7191 	if (mddev->event_work.func)
7192 		queue_work(md_misc_wq, &mddev->event_work);
7193 	md_new_event_inintr(mddev);
7194 }
7195 EXPORT_SYMBOL(md_error);
7196 
7197 /* seq_file implementation /proc/mdstat */
7198 
status_unused(struct seq_file * seq)7199 static void status_unused(struct seq_file *seq)
7200 {
7201 	int i = 0;
7202 	struct md_rdev *rdev;
7203 
7204 	seq_printf(seq, "unused devices: ");
7205 
7206 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7207 		char b[BDEVNAME_SIZE];
7208 		i++;
7209 		seq_printf(seq, "%s ",
7210 			      bdevname(rdev->bdev,b));
7211 	}
7212 	if (!i)
7213 		seq_printf(seq, "<none>");
7214 
7215 	seq_printf(seq, "\n");
7216 }
7217 
status_resync(struct seq_file * seq,struct mddev * mddev)7218 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7219 {
7220 	sector_t max_sectors, resync, res;
7221 	unsigned long dt, db;
7222 	sector_t rt;
7223 	int scale;
7224 	unsigned int per_milli;
7225 
7226 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7227 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7228 		max_sectors = mddev->resync_max_sectors;
7229 	else
7230 		max_sectors = mddev->dev_sectors;
7231 
7232 	resync = mddev->curr_resync;
7233 	if (resync <= 3) {
7234 		if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7235 			/* Still cleaning up */
7236 			resync = max_sectors;
7237 	} else
7238 		resync -= atomic_read(&mddev->recovery_active);
7239 
7240 	if (resync == 0) {
7241 		if (mddev->recovery_cp < MaxSector) {
7242 			seq_printf(seq, "\tresync=PENDING");
7243 			return 1;
7244 		}
7245 		return 0;
7246 	}
7247 	if (resync < 3) {
7248 		seq_printf(seq, "\tresync=DELAYED");
7249 		return 1;
7250 	}
7251 
7252 	WARN_ON(max_sectors == 0);
7253 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
7254 	 * in a sector_t, and (max_sectors>>scale) will fit in a
7255 	 * u32, as those are the requirements for sector_div.
7256 	 * Thus 'scale' must be at least 10
7257 	 */
7258 	scale = 10;
7259 	if (sizeof(sector_t) > sizeof(unsigned long)) {
7260 		while ( max_sectors/2 > (1ULL<<(scale+32)))
7261 			scale++;
7262 	}
7263 	res = (resync>>scale)*1000;
7264 	sector_div(res, (u32)((max_sectors>>scale)+1));
7265 
7266 	per_milli = res;
7267 	{
7268 		int i, x = per_milli/50, y = 20-x;
7269 		seq_printf(seq, "[");
7270 		for (i = 0; i < x; i++)
7271 			seq_printf(seq, "=");
7272 		seq_printf(seq, ">");
7273 		for (i = 0; i < y; i++)
7274 			seq_printf(seq, ".");
7275 		seq_printf(seq, "] ");
7276 	}
7277 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7278 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7279 		    "reshape" :
7280 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7281 		     "check" :
7282 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7283 		      "resync" : "recovery"))),
7284 		   per_milli/10, per_milli % 10,
7285 		   (unsigned long long) resync/2,
7286 		   (unsigned long long) max_sectors/2);
7287 
7288 	/*
7289 	 * dt: time from mark until now
7290 	 * db: blocks written from mark until now
7291 	 * rt: remaining time
7292 	 *
7293 	 * rt is a sector_t, so could be 32bit or 64bit.
7294 	 * So we divide before multiply in case it is 32bit and close
7295 	 * to the limit.
7296 	 * We scale the divisor (db) by 32 to avoid losing precision
7297 	 * near the end of resync when the number of remaining sectors
7298 	 * is close to 'db'.
7299 	 * We then divide rt by 32 after multiplying by db to compensate.
7300 	 * The '+1' avoids division by zero if db is very small.
7301 	 */
7302 	dt = ((jiffies - mddev->resync_mark) / HZ);
7303 	if (!dt) dt++;
7304 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7305 		- mddev->resync_mark_cnt;
7306 
7307 	rt = max_sectors - resync;    /* number of remaining sectors */
7308 	sector_div(rt, db/32+1);
7309 	rt *= dt;
7310 	rt >>= 5;
7311 
7312 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7313 		   ((unsigned long)rt % 60)/6);
7314 
7315 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7316 	return 1;
7317 }
7318 
md_seq_start(struct seq_file * seq,loff_t * pos)7319 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7320 {
7321 	struct list_head *tmp;
7322 	loff_t l = *pos;
7323 	struct mddev *mddev;
7324 
7325 	if (l >= 0x10000)
7326 		return NULL;
7327 	if (!l--)
7328 		/* header */
7329 		return (void*)1;
7330 
7331 	spin_lock(&all_mddevs_lock);
7332 	list_for_each(tmp,&all_mddevs)
7333 		if (!l--) {
7334 			mddev = list_entry(tmp, struct mddev, all_mddevs);
7335 			mddev_get(mddev);
7336 			spin_unlock(&all_mddevs_lock);
7337 			return mddev;
7338 		}
7339 	spin_unlock(&all_mddevs_lock);
7340 	if (!l--)
7341 		return (void*)2;/* tail */
7342 	return NULL;
7343 }
7344 
md_seq_next(struct seq_file * seq,void * v,loff_t * pos)7345 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7346 {
7347 	struct list_head *tmp;
7348 	struct mddev *next_mddev, *mddev = v;
7349 
7350 	++*pos;
7351 	if (v == (void*)2)
7352 		return NULL;
7353 
7354 	spin_lock(&all_mddevs_lock);
7355 	if (v == (void*)1)
7356 		tmp = all_mddevs.next;
7357 	else
7358 		tmp = mddev->all_mddevs.next;
7359 	if (tmp != &all_mddevs)
7360 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7361 	else {
7362 		next_mddev = (void*)2;
7363 		*pos = 0x10000;
7364 	}
7365 	spin_unlock(&all_mddevs_lock);
7366 
7367 	if (v != (void*)1)
7368 		mddev_put(mddev);
7369 	return next_mddev;
7370 
7371 }
7372 
md_seq_stop(struct seq_file * seq,void * v)7373 static void md_seq_stop(struct seq_file *seq, void *v)
7374 {
7375 	struct mddev *mddev = v;
7376 
7377 	if (mddev && v != (void*)1 && v != (void*)2)
7378 		mddev_put(mddev);
7379 }
7380 
md_seq_show(struct seq_file * seq,void * v)7381 static int md_seq_show(struct seq_file *seq, void *v)
7382 {
7383 	struct mddev *mddev = v;
7384 	sector_t sectors;
7385 	struct md_rdev *rdev;
7386 
7387 	if (v == (void*)1) {
7388 		struct md_personality *pers;
7389 		seq_printf(seq, "Personalities : ");
7390 		spin_lock(&pers_lock);
7391 		list_for_each_entry(pers, &pers_list, list)
7392 			seq_printf(seq, "[%s] ", pers->name);
7393 
7394 		spin_unlock(&pers_lock);
7395 		seq_printf(seq, "\n");
7396 		seq->poll_event = atomic_read(&md_event_count);
7397 		return 0;
7398 	}
7399 	if (v == (void*)2) {
7400 		status_unused(seq);
7401 		return 0;
7402 	}
7403 
7404 	spin_lock(&mddev->lock);
7405 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7406 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7407 						mddev->pers ? "" : "in");
7408 		if (mddev->pers) {
7409 			if (mddev->ro==1)
7410 				seq_printf(seq, " (read-only)");
7411 			if (mddev->ro==2)
7412 				seq_printf(seq, " (auto-read-only)");
7413 			seq_printf(seq, " %s", mddev->pers->name);
7414 		}
7415 
7416 		sectors = 0;
7417 		rcu_read_lock();
7418 		rdev_for_each_rcu(rdev, mddev) {
7419 			char b[BDEVNAME_SIZE];
7420 			seq_printf(seq, " %s[%d]",
7421 				bdevname(rdev->bdev,b), rdev->desc_nr);
7422 			if (test_bit(WriteMostly, &rdev->flags))
7423 				seq_printf(seq, "(W)");
7424 			if (test_bit(Journal, &rdev->flags))
7425 				seq_printf(seq, "(J)");
7426 			if (test_bit(Faulty, &rdev->flags)) {
7427 				seq_printf(seq, "(F)");
7428 				continue;
7429 			}
7430 			if (rdev->raid_disk < 0)
7431 				seq_printf(seq, "(S)"); /* spare */
7432 			if (test_bit(Replacement, &rdev->flags))
7433 				seq_printf(seq, "(R)");
7434 			sectors += rdev->sectors;
7435 		}
7436 		rcu_read_unlock();
7437 
7438 		if (!list_empty(&mddev->disks)) {
7439 			if (mddev->pers)
7440 				seq_printf(seq, "\n      %llu blocks",
7441 					   (unsigned long long)
7442 					   mddev->array_sectors / 2);
7443 			else
7444 				seq_printf(seq, "\n      %llu blocks",
7445 					   (unsigned long long)sectors / 2);
7446 		}
7447 		if (mddev->persistent) {
7448 			if (mddev->major_version != 0 ||
7449 			    mddev->minor_version != 90) {
7450 				seq_printf(seq," super %d.%d",
7451 					   mddev->major_version,
7452 					   mddev->minor_version);
7453 			}
7454 		} else if (mddev->external)
7455 			seq_printf(seq, " super external:%s",
7456 				   mddev->metadata_type);
7457 		else
7458 			seq_printf(seq, " super non-persistent");
7459 
7460 		if (mddev->pers) {
7461 			mddev->pers->status(seq, mddev);
7462 			seq_printf(seq, "\n      ");
7463 			if (mddev->pers->sync_request) {
7464 				if (status_resync(seq, mddev))
7465 					seq_printf(seq, "\n      ");
7466 			}
7467 		} else
7468 			seq_printf(seq, "\n       ");
7469 
7470 		bitmap_status(seq, mddev->bitmap);
7471 
7472 		seq_printf(seq, "\n");
7473 	}
7474 	spin_unlock(&mddev->lock);
7475 
7476 	return 0;
7477 }
7478 
7479 static const struct seq_operations md_seq_ops = {
7480 	.start  = md_seq_start,
7481 	.next   = md_seq_next,
7482 	.stop   = md_seq_stop,
7483 	.show   = md_seq_show,
7484 };
7485 
md_seq_open(struct inode * inode,struct file * file)7486 static int md_seq_open(struct inode *inode, struct file *file)
7487 {
7488 	struct seq_file *seq;
7489 	int error;
7490 
7491 	error = seq_open(file, &md_seq_ops);
7492 	if (error)
7493 		return error;
7494 
7495 	seq = file->private_data;
7496 	seq->poll_event = atomic_read(&md_event_count);
7497 	return error;
7498 }
7499 
7500 static int md_unloading;
mdstat_poll(struct file * filp,poll_table * wait)7501 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7502 {
7503 	struct seq_file *seq = filp->private_data;
7504 	int mask;
7505 
7506 	if (md_unloading)
7507 		return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7508 	poll_wait(filp, &md_event_waiters, wait);
7509 
7510 	/* always allow read */
7511 	mask = POLLIN | POLLRDNORM;
7512 
7513 	if (seq->poll_event != atomic_read(&md_event_count))
7514 		mask |= POLLERR | POLLPRI;
7515 	return mask;
7516 }
7517 
7518 static const struct file_operations md_seq_fops = {
7519 	.owner		= THIS_MODULE,
7520 	.open           = md_seq_open,
7521 	.read           = seq_read,
7522 	.llseek         = seq_lseek,
7523 	.release	= seq_release_private,
7524 	.poll		= mdstat_poll,
7525 };
7526 
register_md_personality(struct md_personality * p)7527 int register_md_personality(struct md_personality *p)
7528 {
7529 	printk(KERN_INFO "md: %s personality registered for level %d\n",
7530 						p->name, p->level);
7531 	spin_lock(&pers_lock);
7532 	list_add_tail(&p->list, &pers_list);
7533 	spin_unlock(&pers_lock);
7534 	return 0;
7535 }
7536 EXPORT_SYMBOL(register_md_personality);
7537 
unregister_md_personality(struct md_personality * p)7538 int unregister_md_personality(struct md_personality *p)
7539 {
7540 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7541 	spin_lock(&pers_lock);
7542 	list_del_init(&p->list);
7543 	spin_unlock(&pers_lock);
7544 	return 0;
7545 }
7546 EXPORT_SYMBOL(unregister_md_personality);
7547 
register_md_cluster_operations(struct md_cluster_operations * ops,struct module * module)7548 int register_md_cluster_operations(struct md_cluster_operations *ops,
7549 				   struct module *module)
7550 {
7551 	int ret = 0;
7552 	spin_lock(&pers_lock);
7553 	if (md_cluster_ops != NULL)
7554 		ret = -EALREADY;
7555 	else {
7556 		md_cluster_ops = ops;
7557 		md_cluster_mod = module;
7558 	}
7559 	spin_unlock(&pers_lock);
7560 	return ret;
7561 }
7562 EXPORT_SYMBOL(register_md_cluster_operations);
7563 
unregister_md_cluster_operations(void)7564 int unregister_md_cluster_operations(void)
7565 {
7566 	spin_lock(&pers_lock);
7567 	md_cluster_ops = NULL;
7568 	spin_unlock(&pers_lock);
7569 	return 0;
7570 }
7571 EXPORT_SYMBOL(unregister_md_cluster_operations);
7572 
md_setup_cluster(struct mddev * mddev,int nodes)7573 int md_setup_cluster(struct mddev *mddev, int nodes)
7574 {
7575 	int err;
7576 
7577 	err = request_module("md-cluster");
7578 	if (err) {
7579 		pr_err("md-cluster module not found.\n");
7580 		return -ENOENT;
7581 	}
7582 
7583 	spin_lock(&pers_lock);
7584 	if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7585 		spin_unlock(&pers_lock);
7586 		return -ENOENT;
7587 	}
7588 	spin_unlock(&pers_lock);
7589 
7590 	return md_cluster_ops->join(mddev, nodes);
7591 }
7592 
md_cluster_stop(struct mddev * mddev)7593 void md_cluster_stop(struct mddev *mddev)
7594 {
7595 	if (!md_cluster_ops)
7596 		return;
7597 	md_cluster_ops->leave(mddev);
7598 	module_put(md_cluster_mod);
7599 }
7600 
is_mddev_idle(struct mddev * mddev,int init)7601 static int is_mddev_idle(struct mddev *mddev, int init)
7602 {
7603 	struct md_rdev *rdev;
7604 	int idle;
7605 	int curr_events;
7606 
7607 	idle = 1;
7608 	rcu_read_lock();
7609 	rdev_for_each_rcu(rdev, mddev) {
7610 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7611 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7612 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7613 			      atomic_read(&disk->sync_io);
7614 		/* sync IO will cause sync_io to increase before the disk_stats
7615 		 * as sync_io is counted when a request starts, and
7616 		 * disk_stats is counted when it completes.
7617 		 * So resync activity will cause curr_events to be smaller than
7618 		 * when there was no such activity.
7619 		 * non-sync IO will cause disk_stat to increase without
7620 		 * increasing sync_io so curr_events will (eventually)
7621 		 * be larger than it was before.  Once it becomes
7622 		 * substantially larger, the test below will cause
7623 		 * the array to appear non-idle, and resync will slow
7624 		 * down.
7625 		 * If there is a lot of outstanding resync activity when
7626 		 * we set last_event to curr_events, then all that activity
7627 		 * completing might cause the array to appear non-idle
7628 		 * and resync will be slowed down even though there might
7629 		 * not have been non-resync activity.  This will only
7630 		 * happen once though.  'last_events' will soon reflect
7631 		 * the state where there is little or no outstanding
7632 		 * resync requests, and further resync activity will
7633 		 * always make curr_events less than last_events.
7634 		 *
7635 		 */
7636 		if (init || curr_events - rdev->last_events > 64) {
7637 			rdev->last_events = curr_events;
7638 			idle = 0;
7639 		}
7640 	}
7641 	rcu_read_unlock();
7642 	return idle;
7643 }
7644 
md_done_sync(struct mddev * mddev,int blocks,int ok)7645 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7646 {
7647 	/* another "blocks" (512byte) blocks have been synced */
7648 	atomic_sub(blocks, &mddev->recovery_active);
7649 	wake_up(&mddev->recovery_wait);
7650 	if (!ok) {
7651 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7652 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7653 		md_wakeup_thread(mddev->thread);
7654 		// stop recovery, signal do_sync ....
7655 	}
7656 }
7657 EXPORT_SYMBOL(md_done_sync);
7658 
7659 /* md_write_start(mddev, bi)
7660  * If we need to update some array metadata (e.g. 'active' flag
7661  * in superblock) before writing, schedule a superblock update
7662  * and wait for it to complete.
7663  */
md_write_start(struct mddev * mddev,struct bio * bi)7664 void md_write_start(struct mddev *mddev, struct bio *bi)
7665 {
7666 	int did_change = 0;
7667 	if (bio_data_dir(bi) != WRITE)
7668 		return;
7669 
7670 	BUG_ON(mddev->ro == 1);
7671 	if (mddev->ro == 2) {
7672 		/* need to switch to read/write */
7673 		mddev->ro = 0;
7674 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7675 		md_wakeup_thread(mddev->thread);
7676 		md_wakeup_thread(mddev->sync_thread);
7677 		did_change = 1;
7678 	}
7679 	atomic_inc(&mddev->writes_pending);
7680 	if (mddev->safemode == 1)
7681 		mddev->safemode = 0;
7682 	if (mddev->in_sync) {
7683 		spin_lock(&mddev->lock);
7684 		if (mddev->in_sync) {
7685 			mddev->in_sync = 0;
7686 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7687 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7688 			md_wakeup_thread(mddev->thread);
7689 			did_change = 1;
7690 		}
7691 		spin_unlock(&mddev->lock);
7692 	}
7693 	if (did_change)
7694 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7695 	wait_event(mddev->sb_wait,
7696 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7697 }
7698 EXPORT_SYMBOL(md_write_start);
7699 
md_write_end(struct mddev * mddev)7700 void md_write_end(struct mddev *mddev)
7701 {
7702 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7703 		if (mddev->safemode == 2)
7704 			md_wakeup_thread(mddev->thread);
7705 		else if (mddev->safemode_delay)
7706 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7707 	}
7708 }
7709 EXPORT_SYMBOL(md_write_end);
7710 
7711 /* md_allow_write(mddev)
7712  * Calling this ensures that the array is marked 'active' so that writes
7713  * may proceed without blocking.  It is important to call this before
7714  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7715  * Must be called with mddev_lock held.
7716  *
7717  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7718  * is dropped, so return -EAGAIN after notifying userspace.
7719  */
md_allow_write(struct mddev * mddev)7720 int md_allow_write(struct mddev *mddev)
7721 {
7722 	if (!mddev->pers)
7723 		return 0;
7724 	if (mddev->ro)
7725 		return 0;
7726 	if (!mddev->pers->sync_request)
7727 		return 0;
7728 
7729 	spin_lock(&mddev->lock);
7730 	if (mddev->in_sync) {
7731 		mddev->in_sync = 0;
7732 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7733 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7734 		if (mddev->safemode_delay &&
7735 		    mddev->safemode == 0)
7736 			mddev->safemode = 1;
7737 		spin_unlock(&mddev->lock);
7738 		md_update_sb(mddev, 0);
7739 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7740 	} else
7741 		spin_unlock(&mddev->lock);
7742 
7743 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7744 		return -EAGAIN;
7745 	else
7746 		return 0;
7747 }
7748 EXPORT_SYMBOL_GPL(md_allow_write);
7749 
7750 #define SYNC_MARKS	10
7751 #define	SYNC_MARK_STEP	(3*HZ)
7752 #define UPDATE_FREQUENCY (5*60*HZ)
md_do_sync(struct md_thread * thread)7753 void md_do_sync(struct md_thread *thread)
7754 {
7755 	struct mddev *mddev = thread->mddev;
7756 	struct mddev *mddev2;
7757 	unsigned int currspeed = 0,
7758 		 window;
7759 	sector_t max_sectors,j, io_sectors, recovery_done;
7760 	unsigned long mark[SYNC_MARKS];
7761 	unsigned long update_time;
7762 	sector_t mark_cnt[SYNC_MARKS];
7763 	int last_mark,m;
7764 	struct list_head *tmp;
7765 	sector_t last_check;
7766 	int skipped = 0;
7767 	struct md_rdev *rdev;
7768 	char *desc, *action = NULL;
7769 	struct blk_plug plug;
7770 	bool cluster_resync_finished = false;
7771 
7772 	/* just incase thread restarts... */
7773 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7774 		return;
7775 	if (mddev->ro) {/* never try to sync a read-only array */
7776 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7777 		return;
7778 	}
7779 
7780 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7781 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7782 			desc = "data-check";
7783 			action = "check";
7784 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7785 			desc = "requested-resync";
7786 			action = "repair";
7787 		} else
7788 			desc = "resync";
7789 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7790 		desc = "reshape";
7791 	else
7792 		desc = "recovery";
7793 
7794 	mddev->last_sync_action = action ?: desc;
7795 
7796 	/* we overload curr_resync somewhat here.
7797 	 * 0 == not engaged in resync at all
7798 	 * 2 == checking that there is no conflict with another sync
7799 	 * 1 == like 2, but have yielded to allow conflicting resync to
7800 	 *		commense
7801 	 * other == active in resync - this many blocks
7802 	 *
7803 	 * Before starting a resync we must have set curr_resync to
7804 	 * 2, and then checked that every "conflicting" array has curr_resync
7805 	 * less than ours.  When we find one that is the same or higher
7806 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7807 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7808 	 * This will mean we have to start checking from the beginning again.
7809 	 *
7810 	 */
7811 
7812 	do {
7813 		mddev->curr_resync = 2;
7814 
7815 	try_again:
7816 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7817 			goto skip;
7818 		for_each_mddev(mddev2, tmp) {
7819 			if (mddev2 == mddev)
7820 				continue;
7821 			if (!mddev->parallel_resync
7822 			&&  mddev2->curr_resync
7823 			&&  match_mddev_units(mddev, mddev2)) {
7824 				DEFINE_WAIT(wq);
7825 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7826 					/* arbitrarily yield */
7827 					mddev->curr_resync = 1;
7828 					wake_up(&resync_wait);
7829 				}
7830 				if (mddev > mddev2 && mddev->curr_resync == 1)
7831 					/* no need to wait here, we can wait the next
7832 					 * time 'round when curr_resync == 2
7833 					 */
7834 					continue;
7835 				/* We need to wait 'interruptible' so as not to
7836 				 * contribute to the load average, and not to
7837 				 * be caught by 'softlockup'
7838 				 */
7839 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7840 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7841 				    mddev2->curr_resync >= mddev->curr_resync) {
7842 					printk(KERN_INFO "md: delaying %s of %s"
7843 					       " until %s has finished (they"
7844 					       " share one or more physical units)\n",
7845 					       desc, mdname(mddev), mdname(mddev2));
7846 					mddev_put(mddev2);
7847 					if (signal_pending(current))
7848 						flush_signals(current);
7849 					schedule();
7850 					finish_wait(&resync_wait, &wq);
7851 					goto try_again;
7852 				}
7853 				finish_wait(&resync_wait, &wq);
7854 			}
7855 		}
7856 	} while (mddev->curr_resync < 2);
7857 
7858 	j = 0;
7859 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7860 		/* resync follows the size requested by the personality,
7861 		 * which defaults to physical size, but can be virtual size
7862 		 */
7863 		max_sectors = mddev->resync_max_sectors;
7864 		atomic64_set(&mddev->resync_mismatches, 0);
7865 		/* we don't use the checkpoint if there's a bitmap */
7866 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7867 			j = mddev->resync_min;
7868 		else if (!mddev->bitmap)
7869 			j = mddev->recovery_cp;
7870 
7871 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7872 		max_sectors = mddev->resync_max_sectors;
7873 	else {
7874 		/* recovery follows the physical size of devices */
7875 		max_sectors = mddev->dev_sectors;
7876 		j = MaxSector;
7877 		rcu_read_lock();
7878 		rdev_for_each_rcu(rdev, mddev)
7879 			if (rdev->raid_disk >= 0 &&
7880 			    !test_bit(Journal, &rdev->flags) &&
7881 			    !test_bit(Faulty, &rdev->flags) &&
7882 			    !test_bit(In_sync, &rdev->flags) &&
7883 			    rdev->recovery_offset < j)
7884 				j = rdev->recovery_offset;
7885 		rcu_read_unlock();
7886 
7887 		/* If there is a bitmap, we need to make sure all
7888 		 * writes that started before we added a spare
7889 		 * complete before we start doing a recovery.
7890 		 * Otherwise the write might complete and (via
7891 		 * bitmap_endwrite) set a bit in the bitmap after the
7892 		 * recovery has checked that bit and skipped that
7893 		 * region.
7894 		 */
7895 		if (mddev->bitmap) {
7896 			mddev->pers->quiesce(mddev, 1);
7897 			mddev->pers->quiesce(mddev, 0);
7898 		}
7899 	}
7900 
7901 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7902 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7903 		" %d KB/sec/disk.\n", speed_min(mddev));
7904 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7905 	       "(but not more than %d KB/sec) for %s.\n",
7906 	       speed_max(mddev), desc);
7907 
7908 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7909 
7910 	io_sectors = 0;
7911 	for (m = 0; m < SYNC_MARKS; m++) {
7912 		mark[m] = jiffies;
7913 		mark_cnt[m] = io_sectors;
7914 	}
7915 	last_mark = 0;
7916 	mddev->resync_mark = mark[last_mark];
7917 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7918 
7919 	/*
7920 	 * Tune reconstruction:
7921 	 */
7922 	window = 32*(PAGE_SIZE/512);
7923 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7924 		window/2, (unsigned long long)max_sectors/2);
7925 
7926 	atomic_set(&mddev->recovery_active, 0);
7927 	last_check = 0;
7928 
7929 	if (j>2) {
7930 		printk(KERN_INFO
7931 		       "md: resuming %s of %s from checkpoint.\n",
7932 		       desc, mdname(mddev));
7933 		mddev->curr_resync = j;
7934 	} else
7935 		mddev->curr_resync = 3; /* no longer delayed */
7936 	mddev->curr_resync_completed = j;
7937 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7938 	md_new_event(mddev);
7939 	update_time = jiffies;
7940 
7941 	blk_start_plug(&plug);
7942 	while (j < max_sectors) {
7943 		sector_t sectors;
7944 
7945 		skipped = 0;
7946 
7947 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7948 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7949 		      (mddev->curr_resync - mddev->curr_resync_completed)
7950 		      > (max_sectors >> 4)) ||
7951 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7952 		     (j - mddev->curr_resync_completed)*2
7953 		     >= mddev->resync_max - mddev->curr_resync_completed ||
7954 		     mddev->curr_resync_completed > mddev->resync_max
7955 			    )) {
7956 			/* time to update curr_resync_completed */
7957 			wait_event(mddev->recovery_wait,
7958 				   atomic_read(&mddev->recovery_active) == 0);
7959 			mddev->curr_resync_completed = j;
7960 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7961 			    j > mddev->recovery_cp)
7962 				mddev->recovery_cp = j;
7963 			update_time = jiffies;
7964 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7965 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7966 		}
7967 
7968 		while (j >= mddev->resync_max &&
7969 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7970 			/* As this condition is controlled by user-space,
7971 			 * we can block indefinitely, so use '_interruptible'
7972 			 * to avoid triggering warnings.
7973 			 */
7974 			flush_signals(current); /* just in case */
7975 			wait_event_interruptible(mddev->recovery_wait,
7976 						 mddev->resync_max > j
7977 						 || test_bit(MD_RECOVERY_INTR,
7978 							     &mddev->recovery));
7979 		}
7980 
7981 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7982 			break;
7983 
7984 		sectors = mddev->pers->sync_request(mddev, j, &skipped);
7985 		if (sectors == 0) {
7986 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7987 			break;
7988 		}
7989 
7990 		if (!skipped) { /* actual IO requested */
7991 			io_sectors += sectors;
7992 			atomic_add(sectors, &mddev->recovery_active);
7993 		}
7994 
7995 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7996 			break;
7997 
7998 		j += sectors;
7999 		if (j > max_sectors)
8000 			/* when skipping, extra large numbers can be returned. */
8001 			j = max_sectors;
8002 		if (j > 2)
8003 			mddev->curr_resync = j;
8004 		mddev->curr_mark_cnt = io_sectors;
8005 		if (last_check == 0)
8006 			/* this is the earliest that rebuild will be
8007 			 * visible in /proc/mdstat
8008 			 */
8009 			md_new_event(mddev);
8010 
8011 		if (last_check + window > io_sectors || j == max_sectors)
8012 			continue;
8013 
8014 		last_check = io_sectors;
8015 	repeat:
8016 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8017 			/* step marks */
8018 			int next = (last_mark+1) % SYNC_MARKS;
8019 
8020 			mddev->resync_mark = mark[next];
8021 			mddev->resync_mark_cnt = mark_cnt[next];
8022 			mark[next] = jiffies;
8023 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8024 			last_mark = next;
8025 		}
8026 
8027 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8028 			break;
8029 
8030 		/*
8031 		 * this loop exits only if either when we are slower than
8032 		 * the 'hard' speed limit, or the system was IO-idle for
8033 		 * a jiffy.
8034 		 * the system might be non-idle CPU-wise, but we only care
8035 		 * about not overloading the IO subsystem. (things like an
8036 		 * e2fsck being done on the RAID array should execute fast)
8037 		 */
8038 		cond_resched();
8039 
8040 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8041 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8042 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
8043 
8044 		if (currspeed > speed_min(mddev)) {
8045 			if (currspeed > speed_max(mddev)) {
8046 				msleep(500);
8047 				goto repeat;
8048 			}
8049 			if (!is_mddev_idle(mddev, 0)) {
8050 				/*
8051 				 * Give other IO more of a chance.
8052 				 * The faster the devices, the less we wait.
8053 				 */
8054 				wait_event(mddev->recovery_wait,
8055 					   !atomic_read(&mddev->recovery_active));
8056 			}
8057 		}
8058 	}
8059 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
8060 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8061 	       ? "interrupted" : "done");
8062 	/*
8063 	 * this also signals 'finished resyncing' to md_stop
8064 	 */
8065 	blk_finish_plug(&plug);
8066 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8067 
8068 	if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8069 	    !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8070 	    mddev->curr_resync > 2) {
8071 		mddev->curr_resync_completed = mddev->curr_resync;
8072 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8073 	}
8074 	/* tell personality and other nodes that we are finished */
8075 	if (mddev_is_clustered(mddev)) {
8076 		md_cluster_ops->resync_finish(mddev);
8077 		cluster_resync_finished = true;
8078 	}
8079 	mddev->pers->sync_request(mddev, max_sectors, &skipped);
8080 
8081 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8082 	    mddev->curr_resync > 2) {
8083 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8084 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8085 				if (mddev->curr_resync >= mddev->recovery_cp) {
8086 					printk(KERN_INFO
8087 					       "md: checkpointing %s of %s.\n",
8088 					       desc, mdname(mddev));
8089 					if (test_bit(MD_RECOVERY_ERROR,
8090 						&mddev->recovery))
8091 						mddev->recovery_cp =
8092 							mddev->curr_resync_completed;
8093 					else
8094 						mddev->recovery_cp =
8095 							mddev->curr_resync;
8096 				}
8097 			} else
8098 				mddev->recovery_cp = MaxSector;
8099 		} else {
8100 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8101 				mddev->curr_resync = MaxSector;
8102 			rcu_read_lock();
8103 			rdev_for_each_rcu(rdev, mddev)
8104 				if (rdev->raid_disk >= 0 &&
8105 				    mddev->delta_disks >= 0 &&
8106 				    !test_bit(Journal, &rdev->flags) &&
8107 				    !test_bit(Faulty, &rdev->flags) &&
8108 				    !test_bit(In_sync, &rdev->flags) &&
8109 				    rdev->recovery_offset < mddev->curr_resync)
8110 					rdev->recovery_offset = mddev->curr_resync;
8111 			rcu_read_unlock();
8112 		}
8113 	}
8114  skip:
8115 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
8116 
8117 	if (mddev_is_clustered(mddev) &&
8118 	    test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8119 	    !cluster_resync_finished)
8120 		md_cluster_ops->resync_finish(mddev);
8121 
8122 	spin_lock(&mddev->lock);
8123 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8124 		/* We completed so min/max setting can be forgotten if used. */
8125 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8126 			mddev->resync_min = 0;
8127 		mddev->resync_max = MaxSector;
8128 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8129 		mddev->resync_min = mddev->curr_resync_completed;
8130 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8131 	mddev->curr_resync = 0;
8132 	spin_unlock(&mddev->lock);
8133 
8134 	wake_up(&resync_wait);
8135 	md_wakeup_thread(mddev->thread);
8136 	return;
8137 }
8138 EXPORT_SYMBOL_GPL(md_do_sync);
8139 
remove_and_add_spares(struct mddev * mddev,struct md_rdev * this)8140 static int remove_and_add_spares(struct mddev *mddev,
8141 				 struct md_rdev *this)
8142 {
8143 	struct md_rdev *rdev;
8144 	int spares = 0;
8145 	int removed = 0;
8146 
8147 	rdev_for_each(rdev, mddev)
8148 		if ((this == NULL || rdev == this) &&
8149 		    rdev->raid_disk >= 0 &&
8150 		    !test_bit(Blocked, &rdev->flags) &&
8151 		    (test_bit(Faulty, &rdev->flags) ||
8152 		     (!test_bit(In_sync, &rdev->flags) &&
8153 		      !test_bit(Journal, &rdev->flags))) &&
8154 		    atomic_read(&rdev->nr_pending)==0) {
8155 			if (mddev->pers->hot_remove_disk(
8156 				    mddev, rdev) == 0) {
8157 				sysfs_unlink_rdev(mddev, rdev);
8158 				rdev->raid_disk = -1;
8159 				removed++;
8160 			}
8161 		}
8162 	if (removed && mddev->kobj.sd)
8163 		sysfs_notify(&mddev->kobj, NULL, "degraded");
8164 
8165 	if (this && removed)
8166 		goto no_add;
8167 
8168 	rdev_for_each(rdev, mddev) {
8169 		if (this && this != rdev)
8170 			continue;
8171 		if (test_bit(Candidate, &rdev->flags))
8172 			continue;
8173 		if (rdev->raid_disk >= 0 &&
8174 		    !test_bit(In_sync, &rdev->flags) &&
8175 		    !test_bit(Journal, &rdev->flags) &&
8176 		    !test_bit(Faulty, &rdev->flags))
8177 			spares++;
8178 		if (rdev->raid_disk >= 0)
8179 			continue;
8180 		if (test_bit(Faulty, &rdev->flags))
8181 			continue;
8182 		if (test_bit(Journal, &rdev->flags))
8183 			continue;
8184 		if (mddev->ro &&
8185 		    ! (rdev->saved_raid_disk >= 0 &&
8186 		       !test_bit(Bitmap_sync, &rdev->flags)))
8187 			continue;
8188 
8189 		rdev->recovery_offset = 0;
8190 		if (mddev->pers->
8191 		    hot_add_disk(mddev, rdev) == 0) {
8192 			if (sysfs_link_rdev(mddev, rdev))
8193 				/* failure here is OK */;
8194 			spares++;
8195 			md_new_event(mddev);
8196 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8197 		}
8198 	}
8199 no_add:
8200 	if (removed)
8201 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
8202 	return spares;
8203 }
8204 
md_start_sync(struct work_struct * ws)8205 static void md_start_sync(struct work_struct *ws)
8206 {
8207 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
8208 	int ret = 0;
8209 
8210 	if (mddev_is_clustered(mddev)) {
8211 		ret = md_cluster_ops->resync_start(mddev);
8212 		if (ret) {
8213 			mddev->sync_thread = NULL;
8214 			goto out;
8215 		}
8216 	}
8217 
8218 	mddev->sync_thread = md_register_thread(md_do_sync,
8219 						mddev,
8220 						"resync");
8221 out:
8222 	if (!mddev->sync_thread) {
8223 		if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
8224 			printk(KERN_ERR "%s: could not start resync"
8225 			       " thread...\n",
8226 			       mdname(mddev));
8227 		/* leave the spares where they are, it shouldn't hurt */
8228 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8229 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8230 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8231 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8232 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8233 		wake_up(&resync_wait);
8234 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8235 				       &mddev->recovery))
8236 			if (mddev->sysfs_action)
8237 				sysfs_notify_dirent_safe(mddev->sysfs_action);
8238 	} else
8239 		md_wakeup_thread(mddev->sync_thread);
8240 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8241 	md_new_event(mddev);
8242 }
8243 
8244 /*
8245  * This routine is regularly called by all per-raid-array threads to
8246  * deal with generic issues like resync and super-block update.
8247  * Raid personalities that don't have a thread (linear/raid0) do not
8248  * need this as they never do any recovery or update the superblock.
8249  *
8250  * It does not do any resync itself, but rather "forks" off other threads
8251  * to do that as needed.
8252  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8253  * "->recovery" and create a thread at ->sync_thread.
8254  * When the thread finishes it sets MD_RECOVERY_DONE
8255  * and wakeups up this thread which will reap the thread and finish up.
8256  * This thread also removes any faulty devices (with nr_pending == 0).
8257  *
8258  * The overall approach is:
8259  *  1/ if the superblock needs updating, update it.
8260  *  2/ If a recovery thread is running, don't do anything else.
8261  *  3/ If recovery has finished, clean up, possibly marking spares active.
8262  *  4/ If there are any faulty devices, remove them.
8263  *  5/ If array is degraded, try to add spares devices
8264  *  6/ If array has spares or is not in-sync, start a resync thread.
8265  */
md_check_recovery(struct mddev * mddev)8266 void md_check_recovery(struct mddev *mddev)
8267 {
8268 	if (mddev->suspended)
8269 		return;
8270 
8271 	if (mddev->bitmap)
8272 		bitmap_daemon_work(mddev);
8273 
8274 	if (signal_pending(current)) {
8275 		if (mddev->pers->sync_request && !mddev->external) {
8276 			printk(KERN_INFO "md: %s in immediate safe mode\n",
8277 			       mdname(mddev));
8278 			mddev->safemode = 2;
8279 		}
8280 		flush_signals(current);
8281 	}
8282 
8283 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8284 		return;
8285 	if ( ! (
8286 		(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8287 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8288 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8289 		(mddev->external == 0 && mddev->safemode == 1) ||
8290 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8291 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8292 		))
8293 		return;
8294 
8295 	if (mddev_trylock(mddev)) {
8296 		int spares = 0;
8297 
8298 		if (mddev->ro) {
8299 			struct md_rdev *rdev;
8300 			if (!mddev->external && mddev->in_sync)
8301 				/* 'Blocked' flag not needed as failed devices
8302 				 * will be recorded if array switched to read/write.
8303 				 * Leaving it set will prevent the device
8304 				 * from being removed.
8305 				 */
8306 				rdev_for_each(rdev, mddev)
8307 					clear_bit(Blocked, &rdev->flags);
8308 			/* On a read-only array we can:
8309 			 * - remove failed devices
8310 			 * - add already-in_sync devices if the array itself
8311 			 *   is in-sync.
8312 			 * As we only add devices that are already in-sync,
8313 			 * we can activate the spares immediately.
8314 			 */
8315 			remove_and_add_spares(mddev, NULL);
8316 			/* There is no thread, but we need to call
8317 			 * ->spare_active and clear saved_raid_disk
8318 			 */
8319 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8320 			md_reap_sync_thread(mddev);
8321 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8322 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8323 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8324 			goto unlock;
8325 		}
8326 
8327 		if (!mddev->external) {
8328 			int did_change = 0;
8329 			spin_lock(&mddev->lock);
8330 			if (mddev->safemode &&
8331 			    !atomic_read(&mddev->writes_pending) &&
8332 			    !mddev->in_sync &&
8333 			    mddev->recovery_cp == MaxSector) {
8334 				mddev->in_sync = 1;
8335 				did_change = 1;
8336 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8337 			}
8338 			if (mddev->safemode == 1)
8339 				mddev->safemode = 0;
8340 			spin_unlock(&mddev->lock);
8341 			if (did_change)
8342 				sysfs_notify_dirent_safe(mddev->sysfs_state);
8343 		}
8344 
8345 		if (mddev->flags & MD_UPDATE_SB_FLAGS)
8346 			md_update_sb(mddev, 0);
8347 
8348 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8349 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8350 			/* resync/recovery still happening */
8351 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8352 			goto unlock;
8353 		}
8354 		if (mddev->sync_thread) {
8355 			md_reap_sync_thread(mddev);
8356 			goto unlock;
8357 		}
8358 		/* Set RUNNING before clearing NEEDED to avoid
8359 		 * any transients in the value of "sync_action".
8360 		 */
8361 		mddev->curr_resync_completed = 0;
8362 		spin_lock(&mddev->lock);
8363 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8364 		spin_unlock(&mddev->lock);
8365 		/* Clear some bits that don't mean anything, but
8366 		 * might be left set
8367 		 */
8368 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8369 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8370 
8371 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8372 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8373 			goto not_running;
8374 		/* no recovery is running.
8375 		 * remove any failed drives, then
8376 		 * add spares if possible.
8377 		 * Spares are also removed and re-added, to allow
8378 		 * the personality to fail the re-add.
8379 		 */
8380 
8381 		if (mddev->reshape_position != MaxSector) {
8382 			if (mddev->pers->check_reshape == NULL ||
8383 			    mddev->pers->check_reshape(mddev) != 0)
8384 				/* Cannot proceed */
8385 				goto not_running;
8386 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8387 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8388 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
8389 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8390 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8391 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8392 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8393 		} else if (mddev->recovery_cp < MaxSector) {
8394 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8395 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8396 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8397 			/* nothing to be done ... */
8398 			goto not_running;
8399 
8400 		if (mddev->pers->sync_request) {
8401 			if (spares) {
8402 				/* We are adding a device or devices to an array
8403 				 * which has the bitmap stored on all devices.
8404 				 * So make sure all bitmap pages get written
8405 				 */
8406 				bitmap_write_all(mddev->bitmap);
8407 			}
8408 			INIT_WORK(&mddev->del_work, md_start_sync);
8409 			queue_work(md_misc_wq, &mddev->del_work);
8410 			goto unlock;
8411 		}
8412 	not_running:
8413 		if (!mddev->sync_thread) {
8414 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8415 			wake_up(&resync_wait);
8416 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8417 					       &mddev->recovery))
8418 				if (mddev->sysfs_action)
8419 					sysfs_notify_dirent_safe(mddev->sysfs_action);
8420 		}
8421 	unlock:
8422 		wake_up(&mddev->sb_wait);
8423 		mddev_unlock(mddev);
8424 	}
8425 }
8426 EXPORT_SYMBOL(md_check_recovery);
8427 
md_reap_sync_thread(struct mddev * mddev)8428 void md_reap_sync_thread(struct mddev *mddev)
8429 {
8430 	struct md_rdev *rdev;
8431 
8432 	/* resync has finished, collect result */
8433 	md_unregister_thread(&mddev->sync_thread);
8434 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8435 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8436 		/* success...*/
8437 		/* activate any spares */
8438 		if (mddev->pers->spare_active(mddev)) {
8439 			sysfs_notify(&mddev->kobj, NULL,
8440 				     "degraded");
8441 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8442 		}
8443 	}
8444 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8445 	    mddev->pers->finish_reshape)
8446 		mddev->pers->finish_reshape(mddev);
8447 
8448 	/* If array is no-longer degraded, then any saved_raid_disk
8449 	 * information must be scrapped.
8450 	 */
8451 	if (!mddev->degraded)
8452 		rdev_for_each(rdev, mddev)
8453 			rdev->saved_raid_disk = -1;
8454 
8455 	md_update_sb(mddev, 1);
8456 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8457 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8458 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8459 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8460 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8461 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8462 	wake_up(&resync_wait);
8463 	/* flag recovery needed just to double check */
8464 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8465 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8466 	md_new_event(mddev);
8467 	if (mddev->event_work.func)
8468 		queue_work(md_misc_wq, &mddev->event_work);
8469 }
8470 EXPORT_SYMBOL(md_reap_sync_thread);
8471 
md_wait_for_blocked_rdev(struct md_rdev * rdev,struct mddev * mddev)8472 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8473 {
8474 	sysfs_notify_dirent_safe(rdev->sysfs_state);
8475 	wait_event_timeout(rdev->blocked_wait,
8476 			   !test_bit(Blocked, &rdev->flags) &&
8477 			   !test_bit(BlockedBadBlocks, &rdev->flags),
8478 			   msecs_to_jiffies(5000));
8479 	rdev_dec_pending(rdev, mddev);
8480 }
8481 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8482 
md_finish_reshape(struct mddev * mddev)8483 void md_finish_reshape(struct mddev *mddev)
8484 {
8485 	/* called be personality module when reshape completes. */
8486 	struct md_rdev *rdev;
8487 
8488 	rdev_for_each(rdev, mddev) {
8489 		if (rdev->data_offset > rdev->new_data_offset)
8490 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8491 		else
8492 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8493 		rdev->data_offset = rdev->new_data_offset;
8494 	}
8495 }
8496 EXPORT_SYMBOL(md_finish_reshape);
8497 
8498 /* Bad block management.
8499  * We can record which blocks on each device are 'bad' and so just
8500  * fail those blocks, or that stripe, rather than the whole device.
8501  * Entries in the bad-block table are 64bits wide.  This comprises:
8502  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8503  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8504  *  A 'shift' can be set so that larger blocks are tracked and
8505  *  consequently larger devices can be covered.
8506  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8507  *
8508  * Locking of the bad-block table uses a seqlock so md_is_badblock
8509  * might need to retry if it is very unlucky.
8510  * We will sometimes want to check for bad blocks in a bi_end_io function,
8511  * so we use the write_seqlock_irq variant.
8512  *
8513  * When looking for a bad block we specify a range and want to
8514  * know if any block in the range is bad.  So we binary-search
8515  * to the last range that starts at-or-before the given endpoint,
8516  * (or "before the sector after the target range")
8517  * then see if it ends after the given start.
8518  * We return
8519  *  0 if there are no known bad blocks in the range
8520  *  1 if there are known bad block which are all acknowledged
8521  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8522  * plus the start/length of the first bad section we overlap.
8523  */
md_is_badblock(struct badblocks * bb,sector_t s,int sectors,sector_t * first_bad,int * bad_sectors)8524 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8525 		   sector_t *first_bad, int *bad_sectors)
8526 {
8527 	int hi;
8528 	int lo;
8529 	u64 *p = bb->page;
8530 	int rv;
8531 	sector_t target = s + sectors;
8532 	unsigned seq;
8533 
8534 	if (bb->shift > 0) {
8535 		/* round the start down, and the end up */
8536 		s >>= bb->shift;
8537 		target += (1<<bb->shift) - 1;
8538 		target >>= bb->shift;
8539 		sectors = target - s;
8540 	}
8541 	/* 'target' is now the first block after the bad range */
8542 
8543 retry:
8544 	seq = read_seqbegin(&bb->lock);
8545 	lo = 0;
8546 	rv = 0;
8547 	hi = bb->count;
8548 
8549 	/* Binary search between lo and hi for 'target'
8550 	 * i.e. for the last range that starts before 'target'
8551 	 */
8552 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8553 	 * are known not to be the last range before target.
8554 	 * VARIANT: hi-lo is the number of possible
8555 	 * ranges, and decreases until it reaches 1
8556 	 */
8557 	while (hi - lo > 1) {
8558 		int mid = (lo + hi) / 2;
8559 		sector_t a = BB_OFFSET(p[mid]);
8560 		if (a < target)
8561 			/* This could still be the one, earlier ranges
8562 			 * could not. */
8563 			lo = mid;
8564 		else
8565 			/* This and later ranges are definitely out. */
8566 			hi = mid;
8567 	}
8568 	/* 'lo' might be the last that started before target, but 'hi' isn't */
8569 	if (hi > lo) {
8570 		/* need to check all range that end after 's' to see if
8571 		 * any are unacknowledged.
8572 		 */
8573 		while (lo >= 0 &&
8574 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8575 			if (BB_OFFSET(p[lo]) < target) {
8576 				/* starts before the end, and finishes after
8577 				 * the start, so they must overlap
8578 				 */
8579 				if (rv != -1 && BB_ACK(p[lo]))
8580 					rv = 1;
8581 				else
8582 					rv = -1;
8583 				*first_bad = BB_OFFSET(p[lo]);
8584 				*bad_sectors = BB_LEN(p[lo]);
8585 			}
8586 			lo--;
8587 		}
8588 	}
8589 
8590 	if (read_seqretry(&bb->lock, seq))
8591 		goto retry;
8592 
8593 	return rv;
8594 }
8595 EXPORT_SYMBOL_GPL(md_is_badblock);
8596 
8597 /*
8598  * Add a range of bad blocks to the table.
8599  * This might extend the table, or might contract it
8600  * if two adjacent ranges can be merged.
8601  * We binary-search to find the 'insertion' point, then
8602  * decide how best to handle it.
8603  */
md_set_badblocks(struct badblocks * bb,sector_t s,int sectors,int acknowledged)8604 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8605 			    int acknowledged)
8606 {
8607 	u64 *p;
8608 	int lo, hi;
8609 	int rv = 1;
8610 	unsigned long flags;
8611 
8612 	if (bb->shift < 0)
8613 		/* badblocks are disabled */
8614 		return 0;
8615 
8616 	if (bb->shift) {
8617 		/* round the start down, and the end up */
8618 		sector_t next = s + sectors;
8619 		s >>= bb->shift;
8620 		next += (1<<bb->shift) - 1;
8621 		next >>= bb->shift;
8622 		sectors = next - s;
8623 	}
8624 
8625 	write_seqlock_irqsave(&bb->lock, flags);
8626 
8627 	p = bb->page;
8628 	lo = 0;
8629 	hi = bb->count;
8630 	/* Find the last range that starts at-or-before 's' */
8631 	while (hi - lo > 1) {
8632 		int mid = (lo + hi) / 2;
8633 		sector_t a = BB_OFFSET(p[mid]);
8634 		if (a <= s)
8635 			lo = mid;
8636 		else
8637 			hi = mid;
8638 	}
8639 	if (hi > lo && BB_OFFSET(p[lo]) > s)
8640 		hi = lo;
8641 
8642 	if (hi > lo) {
8643 		/* we found a range that might merge with the start
8644 		 * of our new range
8645 		 */
8646 		sector_t a = BB_OFFSET(p[lo]);
8647 		sector_t e = a + BB_LEN(p[lo]);
8648 		int ack = BB_ACK(p[lo]);
8649 		if (e >= s) {
8650 			/* Yes, we can merge with a previous range */
8651 			if (s == a && s + sectors >= e)
8652 				/* new range covers old */
8653 				ack = acknowledged;
8654 			else
8655 				ack = ack && acknowledged;
8656 
8657 			if (e < s + sectors)
8658 				e = s + sectors;
8659 			if (e - a <= BB_MAX_LEN) {
8660 				p[lo] = BB_MAKE(a, e-a, ack);
8661 				s = e;
8662 			} else {
8663 				/* does not all fit in one range,
8664 				 * make p[lo] maximal
8665 				 */
8666 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8667 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8668 				s = a + BB_MAX_LEN;
8669 			}
8670 			sectors = e - s;
8671 		}
8672 	}
8673 	if (sectors && hi < bb->count) {
8674 		/* 'hi' points to the first range that starts after 's'.
8675 		 * Maybe we can merge with the start of that range */
8676 		sector_t a = BB_OFFSET(p[hi]);
8677 		sector_t e = a + BB_LEN(p[hi]);
8678 		int ack = BB_ACK(p[hi]);
8679 		if (a <= s + sectors) {
8680 			/* merging is possible */
8681 			if (e <= s + sectors) {
8682 				/* full overlap */
8683 				e = s + sectors;
8684 				ack = acknowledged;
8685 			} else
8686 				ack = ack && acknowledged;
8687 
8688 			a = s;
8689 			if (e - a <= BB_MAX_LEN) {
8690 				p[hi] = BB_MAKE(a, e-a, ack);
8691 				s = e;
8692 			} else {
8693 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8694 				s = a + BB_MAX_LEN;
8695 			}
8696 			sectors = e - s;
8697 			lo = hi;
8698 			hi++;
8699 		}
8700 	}
8701 	if (sectors == 0 && hi < bb->count) {
8702 		/* we might be able to combine lo and hi */
8703 		/* Note: 's' is at the end of 'lo' */
8704 		sector_t a = BB_OFFSET(p[hi]);
8705 		int lolen = BB_LEN(p[lo]);
8706 		int hilen = BB_LEN(p[hi]);
8707 		int newlen = lolen + hilen - (s - a);
8708 		if (s >= a && newlen < BB_MAX_LEN) {
8709 			/* yes, we can combine them */
8710 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8711 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8712 			memmove(p + hi, p + hi + 1,
8713 				(bb->count - hi - 1) * 8);
8714 			bb->count--;
8715 		}
8716 	}
8717 	while (sectors) {
8718 		/* didn't merge (it all).
8719 		 * Need to add a range just before 'hi' */
8720 		if (bb->count >= MD_MAX_BADBLOCKS) {
8721 			/* No room for more */
8722 			rv = 0;
8723 			break;
8724 		} else {
8725 			int this_sectors = sectors;
8726 			memmove(p + hi + 1, p + hi,
8727 				(bb->count - hi) * 8);
8728 			bb->count++;
8729 
8730 			if (this_sectors > BB_MAX_LEN)
8731 				this_sectors = BB_MAX_LEN;
8732 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8733 			sectors -= this_sectors;
8734 			s += this_sectors;
8735 		}
8736 	}
8737 
8738 	bb->changed = 1;
8739 	if (!acknowledged)
8740 		bb->unacked_exist = 1;
8741 	write_sequnlock_irqrestore(&bb->lock, flags);
8742 
8743 	return rv;
8744 }
8745 
rdev_set_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)8746 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8747 		       int is_new)
8748 {
8749 	int rv;
8750 	if (is_new)
8751 		s += rdev->new_data_offset;
8752 	else
8753 		s += rdev->data_offset;
8754 	rv = md_set_badblocks(&rdev->badblocks,
8755 			      s, sectors, 0);
8756 	if (rv) {
8757 		/* Make sure they get written out promptly */
8758 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8759 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8760 		set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
8761 		md_wakeup_thread(rdev->mddev->thread);
8762 	}
8763 	return rv;
8764 }
8765 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8766 
8767 /*
8768  * Remove a range of bad blocks from the table.
8769  * This may involve extending the table if we spilt a region,
8770  * but it must not fail.  So if the table becomes full, we just
8771  * drop the remove request.
8772  */
md_clear_badblocks(struct badblocks * bb,sector_t s,int sectors)8773 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8774 {
8775 	u64 *p;
8776 	int lo, hi;
8777 	sector_t target = s + sectors;
8778 	int rv = 0;
8779 
8780 	if (bb->shift > 0) {
8781 		/* When clearing we round the start up and the end down.
8782 		 * This should not matter as the shift should align with
8783 		 * the block size and no rounding should ever be needed.
8784 		 * However it is better the think a block is bad when it
8785 		 * isn't than to think a block is not bad when it is.
8786 		 */
8787 		s += (1<<bb->shift) - 1;
8788 		s >>= bb->shift;
8789 		target >>= bb->shift;
8790 		sectors = target - s;
8791 	}
8792 
8793 	write_seqlock_irq(&bb->lock);
8794 
8795 	p = bb->page;
8796 	lo = 0;
8797 	hi = bb->count;
8798 	/* Find the last range that starts before 'target' */
8799 	while (hi - lo > 1) {
8800 		int mid = (lo + hi) / 2;
8801 		sector_t a = BB_OFFSET(p[mid]);
8802 		if (a < target)
8803 			lo = mid;
8804 		else
8805 			hi = mid;
8806 	}
8807 	if (hi > lo) {
8808 		/* p[lo] is the last range that could overlap the
8809 		 * current range.  Earlier ranges could also overlap,
8810 		 * but only this one can overlap the end of the range.
8811 		 */
8812 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8813 			/* Partial overlap, leave the tail of this range */
8814 			int ack = BB_ACK(p[lo]);
8815 			sector_t a = BB_OFFSET(p[lo]);
8816 			sector_t end = a + BB_LEN(p[lo]);
8817 
8818 			if (a < s) {
8819 				/* we need to split this range */
8820 				if (bb->count >= MD_MAX_BADBLOCKS) {
8821 					rv = -ENOSPC;
8822 					goto out;
8823 				}
8824 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8825 				bb->count++;
8826 				p[lo] = BB_MAKE(a, s-a, ack);
8827 				lo++;
8828 			}
8829 			p[lo] = BB_MAKE(target, end - target, ack);
8830 			/* there is no longer an overlap */
8831 			hi = lo;
8832 			lo--;
8833 		}
8834 		while (lo >= 0 &&
8835 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8836 			/* This range does overlap */
8837 			if (BB_OFFSET(p[lo]) < s) {
8838 				/* Keep the early parts of this range. */
8839 				int ack = BB_ACK(p[lo]);
8840 				sector_t start = BB_OFFSET(p[lo]);
8841 				p[lo] = BB_MAKE(start, s - start, ack);
8842 				/* now low doesn't overlap, so.. */
8843 				break;
8844 			}
8845 			lo--;
8846 		}
8847 		/* 'lo' is strictly before, 'hi' is strictly after,
8848 		 * anything between needs to be discarded
8849 		 */
8850 		if (hi - lo > 1) {
8851 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8852 			bb->count -= (hi - lo - 1);
8853 		}
8854 	}
8855 
8856 	bb->changed = 1;
8857 out:
8858 	write_sequnlock_irq(&bb->lock);
8859 	return rv;
8860 }
8861 
rdev_clear_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)8862 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8863 			 int is_new)
8864 {
8865 	if (is_new)
8866 		s += rdev->new_data_offset;
8867 	else
8868 		s += rdev->data_offset;
8869 	return md_clear_badblocks(&rdev->badblocks,
8870 				  s, sectors);
8871 }
8872 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8873 
8874 /*
8875  * Acknowledge all bad blocks in a list.
8876  * This only succeeds if ->changed is clear.  It is used by
8877  * in-kernel metadata updates
8878  */
md_ack_all_badblocks(struct badblocks * bb)8879 void md_ack_all_badblocks(struct badblocks *bb)
8880 {
8881 	if (bb->page == NULL || bb->changed)
8882 		/* no point even trying */
8883 		return;
8884 	write_seqlock_irq(&bb->lock);
8885 
8886 	if (bb->changed == 0 && bb->unacked_exist) {
8887 		u64 *p = bb->page;
8888 		int i;
8889 		for (i = 0; i < bb->count ; i++) {
8890 			if (!BB_ACK(p[i])) {
8891 				sector_t start = BB_OFFSET(p[i]);
8892 				int len = BB_LEN(p[i]);
8893 				p[i] = BB_MAKE(start, len, 1);
8894 			}
8895 		}
8896 		bb->unacked_exist = 0;
8897 	}
8898 	write_sequnlock_irq(&bb->lock);
8899 }
8900 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8901 
8902 /* sysfs access to bad-blocks list.
8903  * We present two files.
8904  * 'bad-blocks' lists sector numbers and lengths of ranges that
8905  *    are recorded as bad.  The list is truncated to fit within
8906  *    the one-page limit of sysfs.
8907  *    Writing "sector length" to this file adds an acknowledged
8908  *    bad block list.
8909  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8910  *    been acknowledged.  Writing to this file adds bad blocks
8911  *    without acknowledging them.  This is largely for testing.
8912  */
8913 
8914 static ssize_t
badblocks_show(struct badblocks * bb,char * page,int unack)8915 badblocks_show(struct badblocks *bb, char *page, int unack)
8916 {
8917 	size_t len;
8918 	int i;
8919 	u64 *p = bb->page;
8920 	unsigned seq;
8921 
8922 	if (bb->shift < 0)
8923 		return 0;
8924 
8925 retry:
8926 	seq = read_seqbegin(&bb->lock);
8927 
8928 	len = 0;
8929 	i = 0;
8930 
8931 	while (len < PAGE_SIZE && i < bb->count) {
8932 		sector_t s = BB_OFFSET(p[i]);
8933 		unsigned int length = BB_LEN(p[i]);
8934 		int ack = BB_ACK(p[i]);
8935 		i++;
8936 
8937 		if (unack && ack)
8938 			continue;
8939 
8940 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8941 				(unsigned long long)s << bb->shift,
8942 				length << bb->shift);
8943 	}
8944 	if (unack && len == 0)
8945 		bb->unacked_exist = 0;
8946 
8947 	if (read_seqretry(&bb->lock, seq))
8948 		goto retry;
8949 
8950 	return len;
8951 }
8952 
8953 #define DO_DEBUG 1
8954 
8955 static ssize_t
badblocks_store(struct badblocks * bb,const char * page,size_t len,int unack)8956 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8957 {
8958 	unsigned long long sector;
8959 	int length;
8960 	char newline;
8961 #ifdef DO_DEBUG
8962 	/* Allow clearing via sysfs *only* for testing/debugging.
8963 	 * Normally only a successful write may clear a badblock
8964 	 */
8965 	int clear = 0;
8966 	if (page[0] == '-') {
8967 		clear = 1;
8968 		page++;
8969 	}
8970 #endif /* DO_DEBUG */
8971 
8972 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8973 	case 3:
8974 		if (newline != '\n')
8975 			return -EINVAL;
8976 	case 2:
8977 		if (length <= 0)
8978 			return -EINVAL;
8979 		break;
8980 	default:
8981 		return -EINVAL;
8982 	}
8983 
8984 #ifdef DO_DEBUG
8985 	if (clear) {
8986 		md_clear_badblocks(bb, sector, length);
8987 		return len;
8988 	}
8989 #endif /* DO_DEBUG */
8990 	if (md_set_badblocks(bb, sector, length, !unack))
8991 		return len;
8992 	else
8993 		return -ENOSPC;
8994 }
8995 
md_notify_reboot(struct notifier_block * this,unsigned long code,void * x)8996 static int md_notify_reboot(struct notifier_block *this,
8997 			    unsigned long code, void *x)
8998 {
8999 	struct list_head *tmp;
9000 	struct mddev *mddev;
9001 	int need_delay = 0;
9002 
9003 	for_each_mddev(mddev, tmp) {
9004 		if (mddev_trylock(mddev)) {
9005 			if (mddev->pers)
9006 				__md_stop_writes(mddev);
9007 			if (mddev->persistent)
9008 				mddev->safemode = 2;
9009 			mddev_unlock(mddev);
9010 		}
9011 		need_delay = 1;
9012 	}
9013 	/*
9014 	 * certain more exotic SCSI devices are known to be
9015 	 * volatile wrt too early system reboots. While the
9016 	 * right place to handle this issue is the given
9017 	 * driver, we do want to have a safe RAID driver ...
9018 	 */
9019 	if (need_delay)
9020 		mdelay(1000*1);
9021 
9022 	return NOTIFY_DONE;
9023 }
9024 
9025 static struct notifier_block md_notifier = {
9026 	.notifier_call	= md_notify_reboot,
9027 	.next		= NULL,
9028 	.priority	= INT_MAX, /* before any real devices */
9029 };
9030 
md_geninit(void)9031 static void md_geninit(void)
9032 {
9033 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9034 
9035 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
9036 }
9037 
md_init(void)9038 static int __init md_init(void)
9039 {
9040 	int ret = -ENOMEM;
9041 
9042 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9043 	if (!md_wq)
9044 		goto err_wq;
9045 
9046 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9047 	if (!md_misc_wq)
9048 		goto err_misc_wq;
9049 
9050 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
9051 		goto err_md;
9052 
9053 	if ((ret = register_blkdev(0, "mdp")) < 0)
9054 		goto err_mdp;
9055 	mdp_major = ret;
9056 
9057 	blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
9058 			    md_probe, NULL, NULL);
9059 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
9060 			    md_probe, NULL, NULL);
9061 
9062 	register_reboot_notifier(&md_notifier);
9063 	raid_table_header = register_sysctl_table(raid_root_table);
9064 
9065 	md_geninit();
9066 	return 0;
9067 
9068 err_mdp:
9069 	unregister_blkdev(MD_MAJOR, "md");
9070 err_md:
9071 	destroy_workqueue(md_misc_wq);
9072 err_misc_wq:
9073 	destroy_workqueue(md_wq);
9074 err_wq:
9075 	return ret;
9076 }
9077 
check_sb_changes(struct mddev * mddev,struct md_rdev * rdev)9078 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9079 {
9080 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9081 	struct md_rdev *rdev2;
9082 	int role, ret;
9083 	char b[BDEVNAME_SIZE];
9084 
9085 	/* Check for change of roles in the active devices */
9086 	rdev_for_each(rdev2, mddev) {
9087 		if (test_bit(Faulty, &rdev2->flags))
9088 			continue;
9089 
9090 		/* Check if the roles changed */
9091 		role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9092 
9093 		if (test_bit(Candidate, &rdev2->flags)) {
9094 			if (role == 0xfffe) {
9095 				pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9096 				md_kick_rdev_from_array(rdev2);
9097 				continue;
9098 			}
9099 			else
9100 				clear_bit(Candidate, &rdev2->flags);
9101 		}
9102 
9103 		if (role != rdev2->raid_disk) {
9104 			/* got activated */
9105 			if (rdev2->raid_disk == -1 && role != 0xffff) {
9106 				rdev2->saved_raid_disk = role;
9107 				ret = remove_and_add_spares(mddev, rdev2);
9108 				pr_info("Activated spare: %s\n",
9109 						bdevname(rdev2->bdev,b));
9110 				continue;
9111 			}
9112 			/* device faulty
9113 			 * We just want to do the minimum to mark the disk
9114 			 * as faulty. The recovery is performed by the
9115 			 * one who initiated the error.
9116 			 */
9117 			if ((role == 0xfffe) || (role == 0xfffd)) {
9118 				md_error(mddev, rdev2);
9119 				clear_bit(Blocked, &rdev2->flags);
9120 			}
9121 		}
9122 	}
9123 
9124 	if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
9125 		update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9126 
9127 	/* Finally set the event to be up to date */
9128 	mddev->events = le64_to_cpu(sb->events);
9129 }
9130 
read_rdev(struct mddev * mddev,struct md_rdev * rdev)9131 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9132 {
9133 	int err;
9134 	struct page *swapout = rdev->sb_page;
9135 	struct mdp_superblock_1 *sb;
9136 
9137 	/* Store the sb page of the rdev in the swapout temporary
9138 	 * variable in case we err in the future
9139 	 */
9140 	rdev->sb_page = NULL;
9141 	alloc_disk_sb(rdev);
9142 	ClearPageUptodate(rdev->sb_page);
9143 	rdev->sb_loaded = 0;
9144 	err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
9145 
9146 	if (err < 0) {
9147 		pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9148 				__func__, __LINE__, rdev->desc_nr, err);
9149 		put_page(rdev->sb_page);
9150 		rdev->sb_page = swapout;
9151 		rdev->sb_loaded = 1;
9152 		return err;
9153 	}
9154 
9155 	sb = page_address(rdev->sb_page);
9156 	/* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9157 	 * is not set
9158 	 */
9159 
9160 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9161 		rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9162 
9163 	/* The other node finished recovery, call spare_active to set
9164 	 * device In_sync and mddev->degraded
9165 	 */
9166 	if (rdev->recovery_offset == MaxSector &&
9167 	    !test_bit(In_sync, &rdev->flags) &&
9168 	    mddev->pers->spare_active(mddev))
9169 		sysfs_notify(&mddev->kobj, NULL, "degraded");
9170 
9171 	put_page(swapout);
9172 	return 0;
9173 }
9174 
md_reload_sb(struct mddev * mddev,int nr)9175 void md_reload_sb(struct mddev *mddev, int nr)
9176 {
9177 	struct md_rdev *rdev;
9178 	int err;
9179 
9180 	/* Find the rdev */
9181 	rdev_for_each_rcu(rdev, mddev) {
9182 		if (rdev->desc_nr == nr)
9183 			break;
9184 	}
9185 
9186 	if (!rdev || rdev->desc_nr != nr) {
9187 		pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9188 		return;
9189 	}
9190 
9191 	err = read_rdev(mddev, rdev);
9192 	if (err < 0)
9193 		return;
9194 
9195 	check_sb_changes(mddev, rdev);
9196 
9197 	/* Read all rdev's to update recovery_offset */
9198 	rdev_for_each_rcu(rdev, mddev)
9199 		read_rdev(mddev, rdev);
9200 }
9201 EXPORT_SYMBOL(md_reload_sb);
9202 
9203 #ifndef MODULE
9204 
9205 /*
9206  * Searches all registered partitions for autorun RAID arrays
9207  * at boot time.
9208  */
9209 
9210 static LIST_HEAD(all_detected_devices);
9211 struct detected_devices_node {
9212 	struct list_head list;
9213 	dev_t dev;
9214 };
9215 
md_autodetect_dev(dev_t dev)9216 void md_autodetect_dev(dev_t dev)
9217 {
9218 	struct detected_devices_node *node_detected_dev;
9219 
9220 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9221 	if (node_detected_dev) {
9222 		node_detected_dev->dev = dev;
9223 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
9224 	} else {
9225 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
9226 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
9227 	}
9228 }
9229 
autostart_arrays(int part)9230 static void autostart_arrays(int part)
9231 {
9232 	struct md_rdev *rdev;
9233 	struct detected_devices_node *node_detected_dev;
9234 	dev_t dev;
9235 	int i_scanned, i_passed;
9236 
9237 	i_scanned = 0;
9238 	i_passed = 0;
9239 
9240 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
9241 
9242 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9243 		i_scanned++;
9244 		node_detected_dev = list_entry(all_detected_devices.next,
9245 					struct detected_devices_node, list);
9246 		list_del(&node_detected_dev->list);
9247 		dev = node_detected_dev->dev;
9248 		kfree(node_detected_dev);
9249 		rdev = md_import_device(dev,0, 90);
9250 		if (IS_ERR(rdev))
9251 			continue;
9252 
9253 		if (test_bit(Faulty, &rdev->flags))
9254 			continue;
9255 
9256 		set_bit(AutoDetected, &rdev->flags);
9257 		list_add(&rdev->same_set, &pending_raid_disks);
9258 		i_passed++;
9259 	}
9260 
9261 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
9262 						i_scanned, i_passed);
9263 
9264 	autorun_devices(part);
9265 }
9266 
9267 #endif /* !MODULE */
9268 
md_exit(void)9269 static __exit void md_exit(void)
9270 {
9271 	struct mddev *mddev;
9272 	struct list_head *tmp;
9273 	int delay = 1;
9274 
9275 	blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9276 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9277 
9278 	unregister_blkdev(MD_MAJOR,"md");
9279 	unregister_blkdev(mdp_major, "mdp");
9280 	unregister_reboot_notifier(&md_notifier);
9281 	unregister_sysctl_table(raid_table_header);
9282 
9283 	/* We cannot unload the modules while some process is
9284 	 * waiting for us in select() or poll() - wake them up
9285 	 */
9286 	md_unloading = 1;
9287 	while (waitqueue_active(&md_event_waiters)) {
9288 		/* not safe to leave yet */
9289 		wake_up(&md_event_waiters);
9290 		msleep(delay);
9291 		delay += delay;
9292 	}
9293 	remove_proc_entry("mdstat", NULL);
9294 
9295 	for_each_mddev(mddev, tmp) {
9296 		export_array(mddev);
9297 		mddev->hold_active = 0;
9298 	}
9299 	destroy_workqueue(md_misc_wq);
9300 	destroy_workqueue(md_wq);
9301 }
9302 
9303 subsys_initcall(md_init);
module_exit(md_exit)9304 module_exit(md_exit)
9305 
9306 static int get_ro(char *buffer, struct kernel_param *kp)
9307 {
9308 	return sprintf(buffer, "%d", start_readonly);
9309 }
set_ro(const char * val,struct kernel_param * kp)9310 static int set_ro(const char *val, struct kernel_param *kp)
9311 {
9312 	return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9313 }
9314 
9315 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9316 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9317 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9318 
9319 MODULE_LICENSE("GPL");
9320 MODULE_DESCRIPTION("MD RAID framework");
9321 MODULE_ALIAS("md");
9322 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
9323