1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57 
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61 
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69 
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74 
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78 
79 static int remove_and_add_spares(struct mddev *mddev,
80 				 struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82 
83 /*
84  * Default number of read corrections we'll attempt on an rdev
85  * before ejecting it from the array. We divide the read error
86  * count by 2 for every hour elapsed between read errors.
87  */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91  * is 1000 KB/sec, so the extra system load does not show up that much.
92  * Increase it if you want to have more _guaranteed_ speed. Note that
93  * the RAID driver will use the maximum available bandwidth if the IO
94  * subsystem is idle. There is also an 'absolute maximum' reconstruction
95  * speed limit - in case reconstruction slows down your system despite
96  * idle IO detection.
97  *
98  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99  * or /sys/block/mdX/md/sync_speed_{min,max}
100  */
101 
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
speed_min(struct mddev * mddev)104 static inline int speed_min(struct mddev *mddev)
105 {
106 	return mddev->sync_speed_min ?
107 		mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109 
speed_max(struct mddev * mddev)110 static inline int speed_max(struct mddev *mddev)
111 {
112 	return mddev->sync_speed_max ?
113 		mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115 
116 static struct ctl_table_header *raid_table_header;
117 
118 static struct ctl_table raid_table[] = {
119 	{
120 		.procname	= "speed_limit_min",
121 		.data		= &sysctl_speed_limit_min,
122 		.maxlen		= sizeof(int),
123 		.mode		= S_IRUGO|S_IWUSR,
124 		.proc_handler	= proc_dointvec,
125 	},
126 	{
127 		.procname	= "speed_limit_max",
128 		.data		= &sysctl_speed_limit_max,
129 		.maxlen		= sizeof(int),
130 		.mode		= S_IRUGO|S_IWUSR,
131 		.proc_handler	= proc_dointvec,
132 	},
133 	{ }
134 };
135 
136 static struct ctl_table raid_dir_table[] = {
137 	{
138 		.procname	= "raid",
139 		.maxlen		= 0,
140 		.mode		= S_IRUGO|S_IXUGO,
141 		.child		= raid_table,
142 	},
143 	{ }
144 };
145 
146 static struct ctl_table raid_root_table[] = {
147 	{
148 		.procname	= "dev",
149 		.maxlen		= 0,
150 		.mode		= 0555,
151 		.child		= raid_dir_table,
152 	},
153 	{  }
154 };
155 
156 static const struct block_device_operations md_fops;
157 
158 static int start_readonly;
159 
160 /* bio_clone_mddev
161  * like bio_clone, but with a local bio set
162  */
163 
bio_alloc_mddev(gfp_t gfp_mask,int nr_iovecs,struct mddev * mddev)164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165 			    struct mddev *mddev)
166 {
167 	struct bio *b;
168 
169 	if (!mddev || !mddev->bio_set)
170 		return bio_alloc(gfp_mask, nr_iovecs);
171 
172 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173 	if (!b)
174 		return NULL;
175 	return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178 
bio_clone_mddev(struct bio * bio,gfp_t gfp_mask,struct mddev * mddev)179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180 			    struct mddev *mddev)
181 {
182 	if (!mddev || !mddev->bio_set)
183 		return bio_clone(bio, gfp_mask);
184 
185 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188 
189 /*
190  * We have a system wide 'event count' that is incremented
191  * on any 'interesting' event, and readers of /proc/mdstat
192  * can use 'poll' or 'select' to find out when the event
193  * count increases.
194  *
195  * Events are:
196  *  start array, stop array, error, add device, remove device,
197  *  start build, activate spare
198  */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
md_new_event(struct mddev * mddev)201 void md_new_event(struct mddev *mddev)
202 {
203 	atomic_inc(&md_event_count);
204 	wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207 
208 /* Alternate version that can be called from interrupts
209  * when calling sysfs_notify isn't needed.
210  */
md_new_event_inintr(struct mddev * mddev)211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213 	atomic_inc(&md_event_count);
214 	wake_up(&md_event_waiters);
215 }
216 
217 /*
218  * Enables to iterate over all existing md arrays
219  * all_mddevs_lock protects this list.
220  */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223 
224 /*
225  * iterates through all used mddevs in the system.
226  * We take care to grab the all_mddevs_lock whenever navigating
227  * the list, and to always hold a refcount when unlocked.
228  * Any code which breaks out of this loop while own
229  * a reference to the current mddev and must mddev_put it.
230  */
231 #define for_each_mddev(_mddev,_tmp)					\
232 									\
233 	for (({ spin_lock(&all_mddevs_lock);				\
234 		_tmp = all_mddevs.next;					\
235 		_mddev = NULL;});					\
236 	     ({ if (_tmp != &all_mddevs)				\
237 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238 		spin_unlock(&all_mddevs_lock);				\
239 		if (_mddev) mddev_put(_mddev);				\
240 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
241 		_tmp != &all_mddevs;});					\
242 	     ({ spin_lock(&all_mddevs_lock);				\
243 		_tmp = _tmp->next;})					\
244 		)
245 
246 /* Rather than calling directly into the personality make_request function,
247  * IO requests come here first so that we can check if the device is
248  * being suspended pending a reconfiguration.
249  * We hold a refcount over the call to ->make_request.  By the time that
250  * call has finished, the bio has been linked into some internal structure
251  * and so is visible to ->quiesce(), so we don't need the refcount any more.
252  */
md_make_request(struct request_queue * q,struct bio * bio)253 static void md_make_request(struct request_queue *q, struct bio *bio)
254 {
255 	const int rw = bio_data_dir(bio);
256 	struct mddev *mddev = q->queuedata;
257 	unsigned int sectors;
258 	int cpu;
259 
260 	if (mddev == NULL || mddev->pers == NULL
261 	    || !mddev->ready) {
262 		bio_io_error(bio);
263 		return;
264 	}
265 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
266 		bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
267 		return;
268 	}
269 	smp_rmb(); /* Ensure implications of  'active' are visible */
270 	rcu_read_lock();
271 	if (mddev->suspended) {
272 		DEFINE_WAIT(__wait);
273 		for (;;) {
274 			prepare_to_wait(&mddev->sb_wait, &__wait,
275 					TASK_UNINTERRUPTIBLE);
276 			if (!mddev->suspended)
277 				break;
278 			rcu_read_unlock();
279 			schedule();
280 			rcu_read_lock();
281 		}
282 		finish_wait(&mddev->sb_wait, &__wait);
283 	}
284 	atomic_inc(&mddev->active_io);
285 	rcu_read_unlock();
286 
287 	/*
288 	 * save the sectors now since our bio can
289 	 * go away inside make_request
290 	 */
291 	sectors = bio_sectors(bio);
292 	/* bio could be mergeable after passing to underlayer */
293 	bio->bi_rw &= ~REQ_NOMERGE;
294 	mddev->pers->make_request(mddev, bio);
295 
296 	cpu = part_stat_lock();
297 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
298 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
299 	part_stat_unlock();
300 
301 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
302 		wake_up(&mddev->sb_wait);
303 }
304 
305 /* mddev_suspend makes sure no new requests are submitted
306  * to the device, and that any requests that have been submitted
307  * are completely handled.
308  * Once mddev_detach() is called and completes, the module will be
309  * completely unused.
310  */
mddev_suspend(struct mddev * mddev)311 void mddev_suspend(struct mddev *mddev)
312 {
313 	BUG_ON(mddev->suspended);
314 	mddev->suspended = 1;
315 	synchronize_rcu();
316 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
317 	mddev->pers->quiesce(mddev, 1);
318 
319 	del_timer_sync(&mddev->safemode_timer);
320 }
321 EXPORT_SYMBOL_GPL(mddev_suspend);
322 
mddev_resume(struct mddev * mddev)323 void mddev_resume(struct mddev *mddev)
324 {
325 	mddev->suspended = 0;
326 	wake_up(&mddev->sb_wait);
327 	mddev->pers->quiesce(mddev, 0);
328 
329 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
330 	md_wakeup_thread(mddev->thread);
331 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
332 }
333 EXPORT_SYMBOL_GPL(mddev_resume);
334 
mddev_congested(struct mddev * mddev,int bits)335 int mddev_congested(struct mddev *mddev, int bits)
336 {
337 	struct md_personality *pers = mddev->pers;
338 	int ret = 0;
339 
340 	rcu_read_lock();
341 	if (mddev->suspended)
342 		ret = 1;
343 	else if (pers && pers->congested)
344 		ret = pers->congested(mddev, bits);
345 	rcu_read_unlock();
346 	return ret;
347 }
348 EXPORT_SYMBOL_GPL(mddev_congested);
md_congested(void * data,int bits)349 static int md_congested(void *data, int bits)
350 {
351 	struct mddev *mddev = data;
352 	return mddev_congested(mddev, bits);
353 }
354 
md_mergeable_bvec(struct request_queue * q,struct bvec_merge_data * bvm,struct bio_vec * biovec)355 static int md_mergeable_bvec(struct request_queue *q,
356 			     struct bvec_merge_data *bvm,
357 			     struct bio_vec *biovec)
358 {
359 	struct mddev *mddev = q->queuedata;
360 	int ret;
361 	rcu_read_lock();
362 	if (mddev->suspended) {
363 		/* Must always allow one vec */
364 		if (bvm->bi_size == 0)
365 			ret = biovec->bv_len;
366 		else
367 			ret = 0;
368 	} else {
369 		struct md_personality *pers = mddev->pers;
370 		if (pers && pers->mergeable_bvec)
371 			ret = pers->mergeable_bvec(mddev, bvm, biovec);
372 		else
373 			ret = biovec->bv_len;
374 	}
375 	rcu_read_unlock();
376 	return ret;
377 }
378 /*
379  * Generic flush handling for md
380  */
381 
md_end_flush(struct bio * bio,int err)382 static void md_end_flush(struct bio *bio, int err)
383 {
384 	struct md_rdev *rdev = bio->bi_private;
385 	struct mddev *mddev = rdev->mddev;
386 
387 	rdev_dec_pending(rdev, mddev);
388 
389 	if (atomic_dec_and_test(&mddev->flush_pending)) {
390 		/* The pre-request flush has finished */
391 		queue_work(md_wq, &mddev->flush_work);
392 	}
393 	bio_put(bio);
394 }
395 
396 static void md_submit_flush_data(struct work_struct *ws);
397 
submit_flushes(struct work_struct * ws)398 static void submit_flushes(struct work_struct *ws)
399 {
400 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
401 	struct md_rdev *rdev;
402 
403 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
404 	atomic_set(&mddev->flush_pending, 1);
405 	rcu_read_lock();
406 	rdev_for_each_rcu(rdev, mddev)
407 		if (rdev->raid_disk >= 0 &&
408 		    !test_bit(Faulty, &rdev->flags)) {
409 			/* Take two references, one is dropped
410 			 * when request finishes, one after
411 			 * we reclaim rcu_read_lock
412 			 */
413 			struct bio *bi;
414 			atomic_inc(&rdev->nr_pending);
415 			atomic_inc(&rdev->nr_pending);
416 			rcu_read_unlock();
417 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
418 			bi->bi_end_io = md_end_flush;
419 			bi->bi_private = rdev;
420 			bi->bi_bdev = rdev->bdev;
421 			atomic_inc(&mddev->flush_pending);
422 			submit_bio(WRITE_FLUSH, bi);
423 			rcu_read_lock();
424 			rdev_dec_pending(rdev, mddev);
425 		}
426 	rcu_read_unlock();
427 	if (atomic_dec_and_test(&mddev->flush_pending))
428 		queue_work(md_wq, &mddev->flush_work);
429 }
430 
md_submit_flush_data(struct work_struct * ws)431 static void md_submit_flush_data(struct work_struct *ws)
432 {
433 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
434 	struct bio *bio = mddev->flush_bio;
435 
436 	if (bio->bi_iter.bi_size == 0)
437 		/* an empty barrier - all done */
438 		bio_endio(bio, 0);
439 	else {
440 		bio->bi_rw &= ~REQ_FLUSH;
441 		mddev->pers->make_request(mddev, bio);
442 	}
443 
444 	mddev->flush_bio = NULL;
445 	wake_up(&mddev->sb_wait);
446 }
447 
md_flush_request(struct mddev * mddev,struct bio * bio)448 void md_flush_request(struct mddev *mddev, struct bio *bio)
449 {
450 	spin_lock_irq(&mddev->lock);
451 	wait_event_lock_irq(mddev->sb_wait,
452 			    !mddev->flush_bio,
453 			    mddev->lock);
454 	mddev->flush_bio = bio;
455 	spin_unlock_irq(&mddev->lock);
456 
457 	INIT_WORK(&mddev->flush_work, submit_flushes);
458 	queue_work(md_wq, &mddev->flush_work);
459 }
460 EXPORT_SYMBOL(md_flush_request);
461 
md_unplug(struct blk_plug_cb * cb,bool from_schedule)462 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
463 {
464 	struct mddev *mddev = cb->data;
465 	md_wakeup_thread(mddev->thread);
466 	kfree(cb);
467 }
468 EXPORT_SYMBOL(md_unplug);
469 
mddev_get(struct mddev * mddev)470 static inline struct mddev *mddev_get(struct mddev *mddev)
471 {
472 	atomic_inc(&mddev->active);
473 	return mddev;
474 }
475 
476 static void mddev_delayed_delete(struct work_struct *ws);
477 
mddev_put(struct mddev * mddev)478 static void mddev_put(struct mddev *mddev)
479 {
480 	struct bio_set *bs = NULL;
481 
482 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
483 		return;
484 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
485 	    mddev->ctime == 0 && !mddev->hold_active) {
486 		/* Array is not configured at all, and not held active,
487 		 * so destroy it */
488 		list_del_init(&mddev->all_mddevs);
489 		bs = mddev->bio_set;
490 		mddev->bio_set = NULL;
491 		if (mddev->gendisk) {
492 			/* We did a probe so need to clean up.  Call
493 			 * queue_work inside the spinlock so that
494 			 * flush_workqueue() after mddev_find will
495 			 * succeed in waiting for the work to be done.
496 			 */
497 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
498 			queue_work(md_misc_wq, &mddev->del_work);
499 		} else
500 			kfree(mddev);
501 	}
502 	spin_unlock(&all_mddevs_lock);
503 	if (bs)
504 		bioset_free(bs);
505 }
506 
mddev_init(struct mddev * mddev)507 void mddev_init(struct mddev *mddev)
508 {
509 	mutex_init(&mddev->open_mutex);
510 	mutex_init(&mddev->reconfig_mutex);
511 	mutex_init(&mddev->bitmap_info.mutex);
512 	INIT_LIST_HEAD(&mddev->disks);
513 	INIT_LIST_HEAD(&mddev->all_mddevs);
514 	init_timer(&mddev->safemode_timer);
515 	atomic_set(&mddev->active, 1);
516 	atomic_set(&mddev->openers, 0);
517 	atomic_set(&mddev->active_io, 0);
518 	spin_lock_init(&mddev->lock);
519 	atomic_set(&mddev->flush_pending, 0);
520 	init_waitqueue_head(&mddev->sb_wait);
521 	init_waitqueue_head(&mddev->recovery_wait);
522 	mddev->reshape_position = MaxSector;
523 	mddev->reshape_backwards = 0;
524 	mddev->last_sync_action = "none";
525 	mddev->resync_min = 0;
526 	mddev->resync_max = MaxSector;
527 	mddev->level = LEVEL_NONE;
528 }
529 EXPORT_SYMBOL_GPL(mddev_init);
530 
mddev_find(dev_t unit)531 static struct mddev *mddev_find(dev_t unit)
532 {
533 	struct mddev *mddev, *new = NULL;
534 
535 	if (unit && MAJOR(unit) != MD_MAJOR)
536 		unit &= ~((1<<MdpMinorShift)-1);
537 
538  retry:
539 	spin_lock(&all_mddevs_lock);
540 
541 	if (unit) {
542 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
543 			if (mddev->unit == unit) {
544 				mddev_get(mddev);
545 				spin_unlock(&all_mddevs_lock);
546 				kfree(new);
547 				return mddev;
548 			}
549 
550 		if (new) {
551 			list_add(&new->all_mddevs, &all_mddevs);
552 			spin_unlock(&all_mddevs_lock);
553 			new->hold_active = UNTIL_IOCTL;
554 			return new;
555 		}
556 	} else if (new) {
557 		/* find an unused unit number */
558 		static int next_minor = 512;
559 		int start = next_minor;
560 		int is_free = 0;
561 		int dev = 0;
562 		while (!is_free) {
563 			dev = MKDEV(MD_MAJOR, next_minor);
564 			next_minor++;
565 			if (next_minor > MINORMASK)
566 				next_minor = 0;
567 			if (next_minor == start) {
568 				/* Oh dear, all in use. */
569 				spin_unlock(&all_mddevs_lock);
570 				kfree(new);
571 				return NULL;
572 			}
573 
574 			is_free = 1;
575 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
576 				if (mddev->unit == dev) {
577 					is_free = 0;
578 					break;
579 				}
580 		}
581 		new->unit = dev;
582 		new->md_minor = MINOR(dev);
583 		new->hold_active = UNTIL_STOP;
584 		list_add(&new->all_mddevs, &all_mddevs);
585 		spin_unlock(&all_mddevs_lock);
586 		return new;
587 	}
588 	spin_unlock(&all_mddevs_lock);
589 
590 	new = kzalloc(sizeof(*new), GFP_KERNEL);
591 	if (!new)
592 		return NULL;
593 
594 	new->unit = unit;
595 	if (MAJOR(unit) == MD_MAJOR)
596 		new->md_minor = MINOR(unit);
597 	else
598 		new->md_minor = MINOR(unit) >> MdpMinorShift;
599 
600 	mddev_init(new);
601 
602 	goto retry;
603 }
604 
605 static struct attribute_group md_redundancy_group;
606 
mddev_unlock(struct mddev * mddev)607 void mddev_unlock(struct mddev *mddev)
608 {
609 	if (mddev->to_remove) {
610 		/* These cannot be removed under reconfig_mutex as
611 		 * an access to the files will try to take reconfig_mutex
612 		 * while holding the file unremovable, which leads to
613 		 * a deadlock.
614 		 * So hold set sysfs_active while the remove in happeing,
615 		 * and anything else which might set ->to_remove or my
616 		 * otherwise change the sysfs namespace will fail with
617 		 * -EBUSY if sysfs_active is still set.
618 		 * We set sysfs_active under reconfig_mutex and elsewhere
619 		 * test it under the same mutex to ensure its correct value
620 		 * is seen.
621 		 */
622 		struct attribute_group *to_remove = mddev->to_remove;
623 		mddev->to_remove = NULL;
624 		mddev->sysfs_active = 1;
625 		mutex_unlock(&mddev->reconfig_mutex);
626 
627 		if (mddev->kobj.sd) {
628 			if (to_remove != &md_redundancy_group)
629 				sysfs_remove_group(&mddev->kobj, to_remove);
630 			if (mddev->pers == NULL ||
631 			    mddev->pers->sync_request == NULL) {
632 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
633 				if (mddev->sysfs_action)
634 					sysfs_put(mddev->sysfs_action);
635 				mddev->sysfs_action = NULL;
636 			}
637 		}
638 		mddev->sysfs_active = 0;
639 	} else
640 		mutex_unlock(&mddev->reconfig_mutex);
641 
642 	/* As we've dropped the mutex we need a spinlock to
643 	 * make sure the thread doesn't disappear
644 	 */
645 	spin_lock(&pers_lock);
646 	md_wakeup_thread(mddev->thread);
647 	spin_unlock(&pers_lock);
648 }
649 EXPORT_SYMBOL_GPL(mddev_unlock);
650 
md_find_rdev_nr_rcu(struct mddev * mddev,int nr)651 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
652 {
653 	struct md_rdev *rdev;
654 
655 	rdev_for_each_rcu(rdev, mddev)
656 		if (rdev->desc_nr == nr)
657 			return rdev;
658 
659 	return NULL;
660 }
661 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
662 
find_rdev(struct mddev * mddev,dev_t dev)663 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
664 {
665 	struct md_rdev *rdev;
666 
667 	rdev_for_each(rdev, mddev)
668 		if (rdev->bdev->bd_dev == dev)
669 			return rdev;
670 
671 	return NULL;
672 }
673 
find_rdev_rcu(struct mddev * mddev,dev_t dev)674 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
675 {
676 	struct md_rdev *rdev;
677 
678 	rdev_for_each_rcu(rdev, mddev)
679 		if (rdev->bdev->bd_dev == dev)
680 			return rdev;
681 
682 	return NULL;
683 }
684 
find_pers(int level,char * clevel)685 static struct md_personality *find_pers(int level, char *clevel)
686 {
687 	struct md_personality *pers;
688 	list_for_each_entry(pers, &pers_list, list) {
689 		if (level != LEVEL_NONE && pers->level == level)
690 			return pers;
691 		if (strcmp(pers->name, clevel)==0)
692 			return pers;
693 	}
694 	return NULL;
695 }
696 
697 /* return the offset of the super block in 512byte sectors */
calc_dev_sboffset(struct md_rdev * rdev)698 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
699 {
700 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
701 	return MD_NEW_SIZE_SECTORS(num_sectors);
702 }
703 
alloc_disk_sb(struct md_rdev * rdev)704 static int alloc_disk_sb(struct md_rdev *rdev)
705 {
706 	rdev->sb_page = alloc_page(GFP_KERNEL);
707 	if (!rdev->sb_page) {
708 		printk(KERN_ALERT "md: out of memory.\n");
709 		return -ENOMEM;
710 	}
711 
712 	return 0;
713 }
714 
md_rdev_clear(struct md_rdev * rdev)715 void md_rdev_clear(struct md_rdev *rdev)
716 {
717 	if (rdev->sb_page) {
718 		put_page(rdev->sb_page);
719 		rdev->sb_loaded = 0;
720 		rdev->sb_page = NULL;
721 		rdev->sb_start = 0;
722 		rdev->sectors = 0;
723 	}
724 	if (rdev->bb_page) {
725 		put_page(rdev->bb_page);
726 		rdev->bb_page = NULL;
727 	}
728 	kfree(rdev->badblocks.page);
729 	rdev->badblocks.page = NULL;
730 }
731 EXPORT_SYMBOL_GPL(md_rdev_clear);
732 
super_written(struct bio * bio,int error)733 static void super_written(struct bio *bio, int error)
734 {
735 	struct md_rdev *rdev = bio->bi_private;
736 	struct mddev *mddev = rdev->mddev;
737 
738 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
739 		printk("md: super_written gets error=%d, uptodate=%d\n",
740 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
741 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
742 		md_error(mddev, rdev);
743 	}
744 
745 	if (atomic_dec_and_test(&mddev->pending_writes))
746 		wake_up(&mddev->sb_wait);
747 	bio_put(bio);
748 }
749 
md_super_write(struct mddev * mddev,struct md_rdev * rdev,sector_t sector,int size,struct page * page)750 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
751 		   sector_t sector, int size, struct page *page)
752 {
753 	/* write first size bytes of page to sector of rdev
754 	 * Increment mddev->pending_writes before returning
755 	 * and decrement it on completion, waking up sb_wait
756 	 * if zero is reached.
757 	 * If an error occurred, call md_error
758 	 */
759 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
760 
761 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
762 	bio->bi_iter.bi_sector = sector;
763 	bio_add_page(bio, page, size, 0);
764 	bio->bi_private = rdev;
765 	bio->bi_end_io = super_written;
766 
767 	atomic_inc(&mddev->pending_writes);
768 	submit_bio(WRITE_FLUSH_FUA, bio);
769 }
770 
md_super_wait(struct mddev * mddev)771 void md_super_wait(struct mddev *mddev)
772 {
773 	/* wait for all superblock writes that were scheduled to complete */
774 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
775 }
776 
sync_page_io(struct md_rdev * rdev,sector_t sector,int size,struct page * page,int rw,bool metadata_op)777 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
778 		 struct page *page, int rw, bool metadata_op)
779 {
780 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
781 	int ret;
782 
783 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
784 		rdev->meta_bdev : rdev->bdev;
785 	if (metadata_op)
786 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
787 	else if (rdev->mddev->reshape_position != MaxSector &&
788 		 (rdev->mddev->reshape_backwards ==
789 		  (sector >= rdev->mddev->reshape_position)))
790 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
791 	else
792 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
793 	bio_add_page(bio, page, size, 0);
794 	submit_bio_wait(rw, bio);
795 
796 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
797 	bio_put(bio);
798 	return ret;
799 }
800 EXPORT_SYMBOL_GPL(sync_page_io);
801 
read_disk_sb(struct md_rdev * rdev,int size)802 static int read_disk_sb(struct md_rdev *rdev, int size)
803 {
804 	char b[BDEVNAME_SIZE];
805 
806 	if (rdev->sb_loaded)
807 		return 0;
808 
809 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
810 		goto fail;
811 	rdev->sb_loaded = 1;
812 	return 0;
813 
814 fail:
815 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
816 		bdevname(rdev->bdev,b));
817 	return -EINVAL;
818 }
819 
uuid_equal(mdp_super_t * sb1,mdp_super_t * sb2)820 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
821 {
822 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
823 		sb1->set_uuid1 == sb2->set_uuid1 &&
824 		sb1->set_uuid2 == sb2->set_uuid2 &&
825 		sb1->set_uuid3 == sb2->set_uuid3;
826 }
827 
sb_equal(mdp_super_t * sb1,mdp_super_t * sb2)828 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
829 {
830 	int ret;
831 	mdp_super_t *tmp1, *tmp2;
832 
833 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
834 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
835 
836 	if (!tmp1 || !tmp2) {
837 		ret = 0;
838 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
839 		goto abort;
840 	}
841 
842 	*tmp1 = *sb1;
843 	*tmp2 = *sb2;
844 
845 	/*
846 	 * nr_disks is not constant
847 	 */
848 	tmp1->nr_disks = 0;
849 	tmp2->nr_disks = 0;
850 
851 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
852 abort:
853 	kfree(tmp1);
854 	kfree(tmp2);
855 	return ret;
856 }
857 
md_csum_fold(u32 csum)858 static u32 md_csum_fold(u32 csum)
859 {
860 	csum = (csum & 0xffff) + (csum >> 16);
861 	return (csum & 0xffff) + (csum >> 16);
862 }
863 
calc_sb_csum(mdp_super_t * sb)864 static unsigned int calc_sb_csum(mdp_super_t *sb)
865 {
866 	u64 newcsum = 0;
867 	u32 *sb32 = (u32*)sb;
868 	int i;
869 	unsigned int disk_csum, csum;
870 
871 	disk_csum = sb->sb_csum;
872 	sb->sb_csum = 0;
873 
874 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
875 		newcsum += sb32[i];
876 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
877 
878 #ifdef CONFIG_ALPHA
879 	/* This used to use csum_partial, which was wrong for several
880 	 * reasons including that different results are returned on
881 	 * different architectures.  It isn't critical that we get exactly
882 	 * the same return value as before (we always csum_fold before
883 	 * testing, and that removes any differences).  However as we
884 	 * know that csum_partial always returned a 16bit value on
885 	 * alphas, do a fold to maximise conformity to previous behaviour.
886 	 */
887 	sb->sb_csum = md_csum_fold(disk_csum);
888 #else
889 	sb->sb_csum = disk_csum;
890 #endif
891 	return csum;
892 }
893 
894 /*
895  * Handle superblock details.
896  * We want to be able to handle multiple superblock formats
897  * so we have a common interface to them all, and an array of
898  * different handlers.
899  * We rely on user-space to write the initial superblock, and support
900  * reading and updating of superblocks.
901  * Interface methods are:
902  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
903  *      loads and validates a superblock on dev.
904  *      if refdev != NULL, compare superblocks on both devices
905  *    Return:
906  *      0 - dev has a superblock that is compatible with refdev
907  *      1 - dev has a superblock that is compatible and newer than refdev
908  *          so dev should be used as the refdev in future
909  *     -EINVAL superblock incompatible or invalid
910  *     -othererror e.g. -EIO
911  *
912  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
913  *      Verify that dev is acceptable into mddev.
914  *       The first time, mddev->raid_disks will be 0, and data from
915  *       dev should be merged in.  Subsequent calls check that dev
916  *       is new enough.  Return 0 or -EINVAL
917  *
918  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
919  *     Update the superblock for rdev with data in mddev
920  *     This does not write to disc.
921  *
922  */
923 
924 struct super_type  {
925 	char		    *name;
926 	struct module	    *owner;
927 	int		    (*load_super)(struct md_rdev *rdev,
928 					  struct md_rdev *refdev,
929 					  int minor_version);
930 	int		    (*validate_super)(struct mddev *mddev,
931 					      struct md_rdev *rdev);
932 	void		    (*sync_super)(struct mddev *mddev,
933 					  struct md_rdev *rdev);
934 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
935 						sector_t num_sectors);
936 	int		    (*allow_new_offset)(struct md_rdev *rdev,
937 						unsigned long long new_offset);
938 };
939 
940 /*
941  * Check that the given mddev has no bitmap.
942  *
943  * This function is called from the run method of all personalities that do not
944  * support bitmaps. It prints an error message and returns non-zero if mddev
945  * has a bitmap. Otherwise, it returns 0.
946  *
947  */
md_check_no_bitmap(struct mddev * mddev)948 int md_check_no_bitmap(struct mddev *mddev)
949 {
950 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
951 		return 0;
952 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
953 		mdname(mddev), mddev->pers->name);
954 	return 1;
955 }
956 EXPORT_SYMBOL(md_check_no_bitmap);
957 
958 /*
959  * load_super for 0.90.0
960  */
super_90_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)961 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
962 {
963 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
964 	mdp_super_t *sb;
965 	int ret;
966 
967 	/*
968 	 * Calculate the position of the superblock (512byte sectors),
969 	 * it's at the end of the disk.
970 	 *
971 	 * It also happens to be a multiple of 4Kb.
972 	 */
973 	rdev->sb_start = calc_dev_sboffset(rdev);
974 
975 	ret = read_disk_sb(rdev, MD_SB_BYTES);
976 	if (ret) return ret;
977 
978 	ret = -EINVAL;
979 
980 	bdevname(rdev->bdev, b);
981 	sb = page_address(rdev->sb_page);
982 
983 	if (sb->md_magic != MD_SB_MAGIC) {
984 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
985 		       b);
986 		goto abort;
987 	}
988 
989 	if (sb->major_version != 0 ||
990 	    sb->minor_version < 90 ||
991 	    sb->minor_version > 91) {
992 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
993 			sb->major_version, sb->minor_version,
994 			b);
995 		goto abort;
996 	}
997 
998 	if (sb->raid_disks <= 0)
999 		goto abort;
1000 
1001 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1002 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1003 			b);
1004 		goto abort;
1005 	}
1006 
1007 	rdev->preferred_minor = sb->md_minor;
1008 	rdev->data_offset = 0;
1009 	rdev->new_data_offset = 0;
1010 	rdev->sb_size = MD_SB_BYTES;
1011 	rdev->badblocks.shift = -1;
1012 
1013 	if (sb->level == LEVEL_MULTIPATH)
1014 		rdev->desc_nr = -1;
1015 	else
1016 		rdev->desc_nr = sb->this_disk.number;
1017 
1018 	if (!refdev) {
1019 		ret = 1;
1020 	} else {
1021 		__u64 ev1, ev2;
1022 		mdp_super_t *refsb = page_address(refdev->sb_page);
1023 		if (!uuid_equal(refsb, sb)) {
1024 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1025 				b, bdevname(refdev->bdev,b2));
1026 			goto abort;
1027 		}
1028 		if (!sb_equal(refsb, sb)) {
1029 			printk(KERN_WARNING "md: %s has same UUID"
1030 			       " but different superblock to %s\n",
1031 			       b, bdevname(refdev->bdev, b2));
1032 			goto abort;
1033 		}
1034 		ev1 = md_event(sb);
1035 		ev2 = md_event(refsb);
1036 		if (ev1 > ev2)
1037 			ret = 1;
1038 		else
1039 			ret = 0;
1040 	}
1041 	rdev->sectors = rdev->sb_start;
1042 	/* Limit to 4TB as metadata cannot record more than that.
1043 	 * (not needed for Linear and RAID0 as metadata doesn't
1044 	 * record this size)
1045 	 */
1046 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1047 		rdev->sectors = (2ULL << 32) - 2;
1048 
1049 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1050 		/* "this cannot possibly happen" ... */
1051 		ret = -EINVAL;
1052 
1053  abort:
1054 	return ret;
1055 }
1056 
1057 /*
1058  * validate_super for 0.90.0
1059  */
super_90_validate(struct mddev * mddev,struct md_rdev * rdev)1060 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1061 {
1062 	mdp_disk_t *desc;
1063 	mdp_super_t *sb = page_address(rdev->sb_page);
1064 	__u64 ev1 = md_event(sb);
1065 
1066 	rdev->raid_disk = -1;
1067 	clear_bit(Faulty, &rdev->flags);
1068 	clear_bit(In_sync, &rdev->flags);
1069 	clear_bit(Bitmap_sync, &rdev->flags);
1070 	clear_bit(WriteMostly, &rdev->flags);
1071 
1072 	if (mddev->raid_disks == 0) {
1073 		mddev->major_version = 0;
1074 		mddev->minor_version = sb->minor_version;
1075 		mddev->patch_version = sb->patch_version;
1076 		mddev->external = 0;
1077 		mddev->chunk_sectors = sb->chunk_size >> 9;
1078 		mddev->ctime = sb->ctime;
1079 		mddev->utime = sb->utime;
1080 		mddev->level = sb->level;
1081 		mddev->clevel[0] = 0;
1082 		mddev->layout = sb->layout;
1083 		mddev->raid_disks = sb->raid_disks;
1084 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1085 		mddev->events = ev1;
1086 		mddev->bitmap_info.offset = 0;
1087 		mddev->bitmap_info.space = 0;
1088 		/* bitmap can use 60 K after the 4K superblocks */
1089 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1090 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1091 		mddev->reshape_backwards = 0;
1092 
1093 		if (mddev->minor_version >= 91) {
1094 			mddev->reshape_position = sb->reshape_position;
1095 			mddev->delta_disks = sb->delta_disks;
1096 			mddev->new_level = sb->new_level;
1097 			mddev->new_layout = sb->new_layout;
1098 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1099 			if (mddev->delta_disks < 0)
1100 				mddev->reshape_backwards = 1;
1101 		} else {
1102 			mddev->reshape_position = MaxSector;
1103 			mddev->delta_disks = 0;
1104 			mddev->new_level = mddev->level;
1105 			mddev->new_layout = mddev->layout;
1106 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1107 		}
1108 
1109 		if (sb->state & (1<<MD_SB_CLEAN))
1110 			mddev->recovery_cp = MaxSector;
1111 		else {
1112 			if (sb->events_hi == sb->cp_events_hi &&
1113 				sb->events_lo == sb->cp_events_lo) {
1114 				mddev->recovery_cp = sb->recovery_cp;
1115 			} else
1116 				mddev->recovery_cp = 0;
1117 		}
1118 
1119 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1120 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1121 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1122 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1123 
1124 		mddev->max_disks = MD_SB_DISKS;
1125 
1126 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1127 		    mddev->bitmap_info.file == NULL) {
1128 			mddev->bitmap_info.offset =
1129 				mddev->bitmap_info.default_offset;
1130 			mddev->bitmap_info.space =
1131 				mddev->bitmap_info.default_space;
1132 		}
1133 
1134 	} else if (mddev->pers == NULL) {
1135 		/* Insist on good event counter while assembling, except
1136 		 * for spares (which don't need an event count) */
1137 		++ev1;
1138 		if (sb->disks[rdev->desc_nr].state & (
1139 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1140 			if (ev1 < mddev->events)
1141 				return -EINVAL;
1142 	} else if (mddev->bitmap) {
1143 		/* if adding to array with a bitmap, then we can accept an
1144 		 * older device ... but not too old.
1145 		 */
1146 		if (ev1 < mddev->bitmap->events_cleared)
1147 			return 0;
1148 		if (ev1 < mddev->events)
1149 			set_bit(Bitmap_sync, &rdev->flags);
1150 	} else {
1151 		if (ev1 < mddev->events)
1152 			/* just a hot-add of a new device, leave raid_disk at -1 */
1153 			return 0;
1154 	}
1155 
1156 	if (mddev->level != LEVEL_MULTIPATH) {
1157 		desc = sb->disks + rdev->desc_nr;
1158 
1159 		if (desc->state & (1<<MD_DISK_FAULTY))
1160 			set_bit(Faulty, &rdev->flags);
1161 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1162 			    desc->raid_disk < mddev->raid_disks */) {
1163 			set_bit(In_sync, &rdev->flags);
1164 			rdev->raid_disk = desc->raid_disk;
1165 			rdev->saved_raid_disk = desc->raid_disk;
1166 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1167 			/* active but not in sync implies recovery up to
1168 			 * reshape position.  We don't know exactly where
1169 			 * that is, so set to zero for now */
1170 			if (mddev->minor_version >= 91) {
1171 				rdev->recovery_offset = 0;
1172 				rdev->raid_disk = desc->raid_disk;
1173 			}
1174 		}
1175 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1176 			set_bit(WriteMostly, &rdev->flags);
1177 	} else /* MULTIPATH are always insync */
1178 		set_bit(In_sync, &rdev->flags);
1179 	return 0;
1180 }
1181 
1182 /*
1183  * sync_super for 0.90.0
1184  */
super_90_sync(struct mddev * mddev,struct md_rdev * rdev)1185 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1186 {
1187 	mdp_super_t *sb;
1188 	struct md_rdev *rdev2;
1189 	int next_spare = mddev->raid_disks;
1190 
1191 	/* make rdev->sb match mddev data..
1192 	 *
1193 	 * 1/ zero out disks
1194 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1195 	 * 3/ any empty disks < next_spare become removed
1196 	 *
1197 	 * disks[0] gets initialised to REMOVED because
1198 	 * we cannot be sure from other fields if it has
1199 	 * been initialised or not.
1200 	 */
1201 	int i;
1202 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1203 
1204 	rdev->sb_size = MD_SB_BYTES;
1205 
1206 	sb = page_address(rdev->sb_page);
1207 
1208 	memset(sb, 0, sizeof(*sb));
1209 
1210 	sb->md_magic = MD_SB_MAGIC;
1211 	sb->major_version = mddev->major_version;
1212 	sb->patch_version = mddev->patch_version;
1213 	sb->gvalid_words  = 0; /* ignored */
1214 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1215 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1216 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1217 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1218 
1219 	sb->ctime = mddev->ctime;
1220 	sb->level = mddev->level;
1221 	sb->size = mddev->dev_sectors / 2;
1222 	sb->raid_disks = mddev->raid_disks;
1223 	sb->md_minor = mddev->md_minor;
1224 	sb->not_persistent = 0;
1225 	sb->utime = mddev->utime;
1226 	sb->state = 0;
1227 	sb->events_hi = (mddev->events>>32);
1228 	sb->events_lo = (u32)mddev->events;
1229 
1230 	if (mddev->reshape_position == MaxSector)
1231 		sb->minor_version = 90;
1232 	else {
1233 		sb->minor_version = 91;
1234 		sb->reshape_position = mddev->reshape_position;
1235 		sb->new_level = mddev->new_level;
1236 		sb->delta_disks = mddev->delta_disks;
1237 		sb->new_layout = mddev->new_layout;
1238 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1239 	}
1240 	mddev->minor_version = sb->minor_version;
1241 	if (mddev->in_sync)
1242 	{
1243 		sb->recovery_cp = mddev->recovery_cp;
1244 		sb->cp_events_hi = (mddev->events>>32);
1245 		sb->cp_events_lo = (u32)mddev->events;
1246 		if (mddev->recovery_cp == MaxSector)
1247 			sb->state = (1<< MD_SB_CLEAN);
1248 	} else
1249 		sb->recovery_cp = 0;
1250 
1251 	sb->layout = mddev->layout;
1252 	sb->chunk_size = mddev->chunk_sectors << 9;
1253 
1254 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1255 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1256 
1257 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1258 	rdev_for_each(rdev2, mddev) {
1259 		mdp_disk_t *d;
1260 		int desc_nr;
1261 		int is_active = test_bit(In_sync, &rdev2->flags);
1262 
1263 		if (rdev2->raid_disk >= 0 &&
1264 		    sb->minor_version >= 91)
1265 			/* we have nowhere to store the recovery_offset,
1266 			 * but if it is not below the reshape_position,
1267 			 * we can piggy-back on that.
1268 			 */
1269 			is_active = 1;
1270 		if (rdev2->raid_disk < 0 ||
1271 		    test_bit(Faulty, &rdev2->flags))
1272 			is_active = 0;
1273 		if (is_active)
1274 			desc_nr = rdev2->raid_disk;
1275 		else
1276 			desc_nr = next_spare++;
1277 		rdev2->desc_nr = desc_nr;
1278 		d = &sb->disks[rdev2->desc_nr];
1279 		nr_disks++;
1280 		d->number = rdev2->desc_nr;
1281 		d->major = MAJOR(rdev2->bdev->bd_dev);
1282 		d->minor = MINOR(rdev2->bdev->bd_dev);
1283 		if (is_active)
1284 			d->raid_disk = rdev2->raid_disk;
1285 		else
1286 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1287 		if (test_bit(Faulty, &rdev2->flags))
1288 			d->state = (1<<MD_DISK_FAULTY);
1289 		else if (is_active) {
1290 			d->state = (1<<MD_DISK_ACTIVE);
1291 			if (test_bit(In_sync, &rdev2->flags))
1292 				d->state |= (1<<MD_DISK_SYNC);
1293 			active++;
1294 			working++;
1295 		} else {
1296 			d->state = 0;
1297 			spare++;
1298 			working++;
1299 		}
1300 		if (test_bit(WriteMostly, &rdev2->flags))
1301 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1302 	}
1303 	/* now set the "removed" and "faulty" bits on any missing devices */
1304 	for (i=0 ; i < mddev->raid_disks ; i++) {
1305 		mdp_disk_t *d = &sb->disks[i];
1306 		if (d->state == 0 && d->number == 0) {
1307 			d->number = i;
1308 			d->raid_disk = i;
1309 			d->state = (1<<MD_DISK_REMOVED);
1310 			d->state |= (1<<MD_DISK_FAULTY);
1311 			failed++;
1312 		}
1313 	}
1314 	sb->nr_disks = nr_disks;
1315 	sb->active_disks = active;
1316 	sb->working_disks = working;
1317 	sb->failed_disks = failed;
1318 	sb->spare_disks = spare;
1319 
1320 	sb->this_disk = sb->disks[rdev->desc_nr];
1321 	sb->sb_csum = calc_sb_csum(sb);
1322 }
1323 
1324 /*
1325  * rdev_size_change for 0.90.0
1326  */
1327 static unsigned long long
super_90_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1328 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1329 {
1330 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1331 		return 0; /* component must fit device */
1332 	if (rdev->mddev->bitmap_info.offset)
1333 		return 0; /* can't move bitmap */
1334 	rdev->sb_start = calc_dev_sboffset(rdev);
1335 	if (!num_sectors || num_sectors > rdev->sb_start)
1336 		num_sectors = rdev->sb_start;
1337 	/* Limit to 4TB as metadata cannot record more than that.
1338 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1339 	 */
1340 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1341 		num_sectors = (2ULL << 32) - 2;
1342 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1343 		       rdev->sb_page);
1344 	md_super_wait(rdev->mddev);
1345 	return num_sectors;
1346 }
1347 
1348 static int
super_90_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1349 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1350 {
1351 	/* non-zero offset changes not possible with v0.90 */
1352 	return new_offset == 0;
1353 }
1354 
1355 /*
1356  * version 1 superblock
1357  */
1358 
calc_sb_1_csum(struct mdp_superblock_1 * sb)1359 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1360 {
1361 	__le32 disk_csum;
1362 	u32 csum;
1363 	unsigned long long newcsum;
1364 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1365 	__le32 *isuper = (__le32*)sb;
1366 
1367 	disk_csum = sb->sb_csum;
1368 	sb->sb_csum = 0;
1369 	newcsum = 0;
1370 	for (; size >= 4; size -= 4)
1371 		newcsum += le32_to_cpu(*isuper++);
1372 
1373 	if (size == 2)
1374 		newcsum += le16_to_cpu(*(__le16*) isuper);
1375 
1376 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1377 	sb->sb_csum = disk_csum;
1378 	return cpu_to_le32(csum);
1379 }
1380 
1381 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1382 			    int acknowledged);
super_1_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1383 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1384 {
1385 	struct mdp_superblock_1 *sb;
1386 	int ret;
1387 	sector_t sb_start;
1388 	sector_t sectors;
1389 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1390 	int bmask;
1391 
1392 	/*
1393 	 * Calculate the position of the superblock in 512byte sectors.
1394 	 * It is always aligned to a 4K boundary and
1395 	 * depeding on minor_version, it can be:
1396 	 * 0: At least 8K, but less than 12K, from end of device
1397 	 * 1: At start of device
1398 	 * 2: 4K from start of device.
1399 	 */
1400 	switch(minor_version) {
1401 	case 0:
1402 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1403 		sb_start -= 8*2;
1404 		sb_start &= ~(sector_t)(4*2-1);
1405 		break;
1406 	case 1:
1407 		sb_start = 0;
1408 		break;
1409 	case 2:
1410 		sb_start = 8;
1411 		break;
1412 	default:
1413 		return -EINVAL;
1414 	}
1415 	rdev->sb_start = sb_start;
1416 
1417 	/* superblock is rarely larger than 1K, but it can be larger,
1418 	 * and it is safe to read 4k, so we do that
1419 	 */
1420 	ret = read_disk_sb(rdev, 4096);
1421 	if (ret) return ret;
1422 
1423 	sb = page_address(rdev->sb_page);
1424 
1425 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1426 	    sb->major_version != cpu_to_le32(1) ||
1427 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1428 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1429 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1430 		return -EINVAL;
1431 
1432 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1433 		printk("md: invalid superblock checksum on %s\n",
1434 			bdevname(rdev->bdev,b));
1435 		return -EINVAL;
1436 	}
1437 	if (le64_to_cpu(sb->data_size) < 10) {
1438 		printk("md: data_size too small on %s\n",
1439 		       bdevname(rdev->bdev,b));
1440 		return -EINVAL;
1441 	}
1442 	if (sb->pad0 ||
1443 	    sb->pad3[0] ||
1444 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1445 		/* Some padding is non-zero, might be a new feature */
1446 		return -EINVAL;
1447 
1448 	rdev->preferred_minor = 0xffff;
1449 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1450 	rdev->new_data_offset = rdev->data_offset;
1451 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1452 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1453 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1454 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1455 
1456 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1457 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1458 	if (rdev->sb_size & bmask)
1459 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1460 
1461 	if (minor_version
1462 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1463 		return -EINVAL;
1464 	if (minor_version
1465 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1466 		return -EINVAL;
1467 
1468 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1469 		rdev->desc_nr = -1;
1470 	else
1471 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1472 
1473 	if (!rdev->bb_page) {
1474 		rdev->bb_page = alloc_page(GFP_KERNEL);
1475 		if (!rdev->bb_page)
1476 			return -ENOMEM;
1477 	}
1478 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1479 	    rdev->badblocks.count == 0) {
1480 		/* need to load the bad block list.
1481 		 * Currently we limit it to one page.
1482 		 */
1483 		s32 offset;
1484 		sector_t bb_sector;
1485 		u64 *bbp;
1486 		int i;
1487 		int sectors = le16_to_cpu(sb->bblog_size);
1488 		if (sectors > (PAGE_SIZE / 512))
1489 			return -EINVAL;
1490 		offset = le32_to_cpu(sb->bblog_offset);
1491 		if (offset == 0)
1492 			return -EINVAL;
1493 		bb_sector = (long long)offset;
1494 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1495 				  rdev->bb_page, READ, true))
1496 			return -EIO;
1497 		bbp = (u64 *)page_address(rdev->bb_page);
1498 		rdev->badblocks.shift = sb->bblog_shift;
1499 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1500 			u64 bb = le64_to_cpu(*bbp);
1501 			int count = bb & (0x3ff);
1502 			u64 sector = bb >> 10;
1503 			sector <<= sb->bblog_shift;
1504 			count <<= sb->bblog_shift;
1505 			if (bb + 1 == 0)
1506 				break;
1507 			if (md_set_badblocks(&rdev->badblocks,
1508 					     sector, count, 1) == 0)
1509 				return -EINVAL;
1510 		}
1511 	} else if (sb->bblog_offset != 0)
1512 		rdev->badblocks.shift = 0;
1513 
1514 	if (!refdev) {
1515 		ret = 1;
1516 	} else {
1517 		__u64 ev1, ev2;
1518 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1519 
1520 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1521 		    sb->level != refsb->level ||
1522 		    sb->layout != refsb->layout ||
1523 		    sb->chunksize != refsb->chunksize) {
1524 			printk(KERN_WARNING "md: %s has strangely different"
1525 				" superblock to %s\n",
1526 				bdevname(rdev->bdev,b),
1527 				bdevname(refdev->bdev,b2));
1528 			return -EINVAL;
1529 		}
1530 		ev1 = le64_to_cpu(sb->events);
1531 		ev2 = le64_to_cpu(refsb->events);
1532 
1533 		if (ev1 > ev2)
1534 			ret = 1;
1535 		else
1536 			ret = 0;
1537 	}
1538 	if (minor_version) {
1539 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1540 		sectors -= rdev->data_offset;
1541 	} else
1542 		sectors = rdev->sb_start;
1543 	if (sectors < le64_to_cpu(sb->data_size))
1544 		return -EINVAL;
1545 	rdev->sectors = le64_to_cpu(sb->data_size);
1546 	return ret;
1547 }
1548 
super_1_validate(struct mddev * mddev,struct md_rdev * rdev)1549 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1550 {
1551 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1552 	__u64 ev1 = le64_to_cpu(sb->events);
1553 
1554 	rdev->raid_disk = -1;
1555 	clear_bit(Faulty, &rdev->flags);
1556 	clear_bit(In_sync, &rdev->flags);
1557 	clear_bit(Bitmap_sync, &rdev->flags);
1558 	clear_bit(WriteMostly, &rdev->flags);
1559 
1560 	if (mddev->raid_disks == 0) {
1561 		mddev->major_version = 1;
1562 		mddev->patch_version = 0;
1563 		mddev->external = 0;
1564 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1565 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1566 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1567 		mddev->level = le32_to_cpu(sb->level);
1568 		mddev->clevel[0] = 0;
1569 		mddev->layout = le32_to_cpu(sb->layout);
1570 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1571 		mddev->dev_sectors = le64_to_cpu(sb->size);
1572 		mddev->events = ev1;
1573 		mddev->bitmap_info.offset = 0;
1574 		mddev->bitmap_info.space = 0;
1575 		/* Default location for bitmap is 1K after superblock
1576 		 * using 3K - total of 4K
1577 		 */
1578 		mddev->bitmap_info.default_offset = 1024 >> 9;
1579 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1580 		mddev->reshape_backwards = 0;
1581 
1582 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1583 		memcpy(mddev->uuid, sb->set_uuid, 16);
1584 
1585 		mddev->max_disks =  (4096-256)/2;
1586 
1587 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1588 		    mddev->bitmap_info.file == NULL) {
1589 			mddev->bitmap_info.offset =
1590 				(__s32)le32_to_cpu(sb->bitmap_offset);
1591 			/* Metadata doesn't record how much space is available.
1592 			 * For 1.0, we assume we can use up to the superblock
1593 			 * if before, else to 4K beyond superblock.
1594 			 * For others, assume no change is possible.
1595 			 */
1596 			if (mddev->minor_version > 0)
1597 				mddev->bitmap_info.space = 0;
1598 			else if (mddev->bitmap_info.offset > 0)
1599 				mddev->bitmap_info.space =
1600 					8 - mddev->bitmap_info.offset;
1601 			else
1602 				mddev->bitmap_info.space =
1603 					-mddev->bitmap_info.offset;
1604 		}
1605 
1606 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1607 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1608 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1609 			mddev->new_level = le32_to_cpu(sb->new_level);
1610 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1611 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1612 			if (mddev->delta_disks < 0 ||
1613 			    (mddev->delta_disks == 0 &&
1614 			     (le32_to_cpu(sb->feature_map)
1615 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1616 				mddev->reshape_backwards = 1;
1617 		} else {
1618 			mddev->reshape_position = MaxSector;
1619 			mddev->delta_disks = 0;
1620 			mddev->new_level = mddev->level;
1621 			mddev->new_layout = mddev->layout;
1622 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1623 		}
1624 
1625 	} else if (mddev->pers == NULL) {
1626 		/* Insist of good event counter while assembling, except for
1627 		 * spares (which don't need an event count) */
1628 		++ev1;
1629 		if (rdev->desc_nr >= 0 &&
1630 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1631 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1632 			if (ev1 < mddev->events)
1633 				return -EINVAL;
1634 	} else if (mddev->bitmap) {
1635 		/* If adding to array with a bitmap, then we can accept an
1636 		 * older device, but not too old.
1637 		 */
1638 		if (ev1 < mddev->bitmap->events_cleared)
1639 			return 0;
1640 		if (ev1 < mddev->events)
1641 			set_bit(Bitmap_sync, &rdev->flags);
1642 	} else {
1643 		if (ev1 < mddev->events)
1644 			/* just a hot-add of a new device, leave raid_disk at -1 */
1645 			return 0;
1646 	}
1647 	if (mddev->level != LEVEL_MULTIPATH) {
1648 		int role;
1649 		if (rdev->desc_nr < 0 ||
1650 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1651 			role = 0xffff;
1652 			rdev->desc_nr = -1;
1653 		} else
1654 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1655 		switch(role) {
1656 		case 0xffff: /* spare */
1657 			break;
1658 		case 0xfffe: /* faulty */
1659 			set_bit(Faulty, &rdev->flags);
1660 			break;
1661 		default:
1662 			rdev->saved_raid_disk = role;
1663 			if ((le32_to_cpu(sb->feature_map) &
1664 			     MD_FEATURE_RECOVERY_OFFSET)) {
1665 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1666 				if (!(le32_to_cpu(sb->feature_map) &
1667 				      MD_FEATURE_RECOVERY_BITMAP))
1668 					rdev->saved_raid_disk = -1;
1669 			} else
1670 				set_bit(In_sync, &rdev->flags);
1671 			rdev->raid_disk = role;
1672 			break;
1673 		}
1674 		if (sb->devflags & WriteMostly1)
1675 			set_bit(WriteMostly, &rdev->flags);
1676 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1677 			set_bit(Replacement, &rdev->flags);
1678 	} else /* MULTIPATH are always insync */
1679 		set_bit(In_sync, &rdev->flags);
1680 
1681 	return 0;
1682 }
1683 
super_1_sync(struct mddev * mddev,struct md_rdev * rdev)1684 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1685 {
1686 	struct mdp_superblock_1 *sb;
1687 	struct md_rdev *rdev2;
1688 	int max_dev, i;
1689 	/* make rdev->sb match mddev and rdev data. */
1690 
1691 	sb = page_address(rdev->sb_page);
1692 
1693 	sb->feature_map = 0;
1694 	sb->pad0 = 0;
1695 	sb->recovery_offset = cpu_to_le64(0);
1696 	memset(sb->pad3, 0, sizeof(sb->pad3));
1697 
1698 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1699 	sb->events = cpu_to_le64(mddev->events);
1700 	if (mddev->in_sync)
1701 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1702 	else
1703 		sb->resync_offset = cpu_to_le64(0);
1704 
1705 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1706 
1707 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1708 	sb->size = cpu_to_le64(mddev->dev_sectors);
1709 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1710 	sb->level = cpu_to_le32(mddev->level);
1711 	sb->layout = cpu_to_le32(mddev->layout);
1712 
1713 	if (test_bit(WriteMostly, &rdev->flags))
1714 		sb->devflags |= WriteMostly1;
1715 	else
1716 		sb->devflags &= ~WriteMostly1;
1717 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1718 	sb->data_size = cpu_to_le64(rdev->sectors);
1719 
1720 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1721 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1722 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1723 	}
1724 
1725 	if (rdev->raid_disk >= 0 &&
1726 	    !test_bit(In_sync, &rdev->flags)) {
1727 		sb->feature_map |=
1728 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1729 		sb->recovery_offset =
1730 			cpu_to_le64(rdev->recovery_offset);
1731 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1732 			sb->feature_map |=
1733 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1734 	}
1735 	if (test_bit(Replacement, &rdev->flags))
1736 		sb->feature_map |=
1737 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1738 
1739 	if (mddev->reshape_position != MaxSector) {
1740 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1741 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1742 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1743 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1744 		sb->new_level = cpu_to_le32(mddev->new_level);
1745 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1746 		if (mddev->delta_disks == 0 &&
1747 		    mddev->reshape_backwards)
1748 			sb->feature_map
1749 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1750 		if (rdev->new_data_offset != rdev->data_offset) {
1751 			sb->feature_map
1752 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1753 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1754 							     - rdev->data_offset));
1755 		}
1756 	}
1757 
1758 	if (rdev->badblocks.count == 0)
1759 		/* Nothing to do for bad blocks*/ ;
1760 	else if (sb->bblog_offset == 0)
1761 		/* Cannot record bad blocks on this device */
1762 		md_error(mddev, rdev);
1763 	else {
1764 		struct badblocks *bb = &rdev->badblocks;
1765 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1766 		u64 *p = bb->page;
1767 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1768 		if (bb->changed) {
1769 			unsigned seq;
1770 
1771 retry:
1772 			seq = read_seqbegin(&bb->lock);
1773 
1774 			memset(bbp, 0xff, PAGE_SIZE);
1775 
1776 			for (i = 0 ; i < bb->count ; i++) {
1777 				u64 internal_bb = p[i];
1778 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1779 						| BB_LEN(internal_bb));
1780 				bbp[i] = cpu_to_le64(store_bb);
1781 			}
1782 			bb->changed = 0;
1783 			if (read_seqretry(&bb->lock, seq))
1784 				goto retry;
1785 
1786 			bb->sector = (rdev->sb_start +
1787 				      (int)le32_to_cpu(sb->bblog_offset));
1788 			bb->size = le16_to_cpu(sb->bblog_size);
1789 		}
1790 	}
1791 
1792 	max_dev = 0;
1793 	rdev_for_each(rdev2, mddev)
1794 		if (rdev2->desc_nr+1 > max_dev)
1795 			max_dev = rdev2->desc_nr+1;
1796 
1797 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1798 		int bmask;
1799 		sb->max_dev = cpu_to_le32(max_dev);
1800 		rdev->sb_size = max_dev * 2 + 256;
1801 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1802 		if (rdev->sb_size & bmask)
1803 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1804 	} else
1805 		max_dev = le32_to_cpu(sb->max_dev);
1806 
1807 	for (i=0; i<max_dev;i++)
1808 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1809 
1810 	rdev_for_each(rdev2, mddev) {
1811 		i = rdev2->desc_nr;
1812 		if (test_bit(Faulty, &rdev2->flags))
1813 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1814 		else if (test_bit(In_sync, &rdev2->flags))
1815 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1816 		else if (rdev2->raid_disk >= 0)
1817 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1818 		else
1819 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1820 	}
1821 
1822 	sb->sb_csum = calc_sb_1_csum(sb);
1823 }
1824 
1825 static unsigned long long
super_1_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1826 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1827 {
1828 	struct mdp_superblock_1 *sb;
1829 	sector_t max_sectors;
1830 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1831 		return 0; /* component must fit device */
1832 	if (rdev->data_offset != rdev->new_data_offset)
1833 		return 0; /* too confusing */
1834 	if (rdev->sb_start < rdev->data_offset) {
1835 		/* minor versions 1 and 2; superblock before data */
1836 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1837 		max_sectors -= rdev->data_offset;
1838 		if (!num_sectors || num_sectors > max_sectors)
1839 			num_sectors = max_sectors;
1840 	} else if (rdev->mddev->bitmap_info.offset) {
1841 		/* minor version 0 with bitmap we can't move */
1842 		return 0;
1843 	} else {
1844 		/* minor version 0; superblock after data */
1845 		sector_t sb_start;
1846 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1847 		sb_start &= ~(sector_t)(4*2 - 1);
1848 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1849 		if (!num_sectors || num_sectors > max_sectors)
1850 			num_sectors = max_sectors;
1851 		rdev->sb_start = sb_start;
1852 	}
1853 	sb = page_address(rdev->sb_page);
1854 	sb->data_size = cpu_to_le64(num_sectors);
1855 	sb->super_offset = rdev->sb_start;
1856 	sb->sb_csum = calc_sb_1_csum(sb);
1857 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1858 		       rdev->sb_page);
1859 	md_super_wait(rdev->mddev);
1860 	return num_sectors;
1861 
1862 }
1863 
1864 static int
super_1_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1865 super_1_allow_new_offset(struct md_rdev *rdev,
1866 			 unsigned long long new_offset)
1867 {
1868 	/* All necessary checks on new >= old have been done */
1869 	struct bitmap *bitmap;
1870 	if (new_offset >= rdev->data_offset)
1871 		return 1;
1872 
1873 	/* with 1.0 metadata, there is no metadata to tread on
1874 	 * so we can always move back */
1875 	if (rdev->mddev->minor_version == 0)
1876 		return 1;
1877 
1878 	/* otherwise we must be sure not to step on
1879 	 * any metadata, so stay:
1880 	 * 36K beyond start of superblock
1881 	 * beyond end of badblocks
1882 	 * beyond write-intent bitmap
1883 	 */
1884 	if (rdev->sb_start + (32+4)*2 > new_offset)
1885 		return 0;
1886 	bitmap = rdev->mddev->bitmap;
1887 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1888 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1889 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1890 		return 0;
1891 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1892 		return 0;
1893 
1894 	return 1;
1895 }
1896 
1897 static struct super_type super_types[] = {
1898 	[0] = {
1899 		.name	= "0.90.0",
1900 		.owner	= THIS_MODULE,
1901 		.load_super	    = super_90_load,
1902 		.validate_super	    = super_90_validate,
1903 		.sync_super	    = super_90_sync,
1904 		.rdev_size_change   = super_90_rdev_size_change,
1905 		.allow_new_offset   = super_90_allow_new_offset,
1906 	},
1907 	[1] = {
1908 		.name	= "md-1",
1909 		.owner	= THIS_MODULE,
1910 		.load_super	    = super_1_load,
1911 		.validate_super	    = super_1_validate,
1912 		.sync_super	    = super_1_sync,
1913 		.rdev_size_change   = super_1_rdev_size_change,
1914 		.allow_new_offset   = super_1_allow_new_offset,
1915 	},
1916 };
1917 
sync_super(struct mddev * mddev,struct md_rdev * rdev)1918 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1919 {
1920 	if (mddev->sync_super) {
1921 		mddev->sync_super(mddev, rdev);
1922 		return;
1923 	}
1924 
1925 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1926 
1927 	super_types[mddev->major_version].sync_super(mddev, rdev);
1928 }
1929 
match_mddev_units(struct mddev * mddev1,struct mddev * mddev2)1930 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1931 {
1932 	struct md_rdev *rdev, *rdev2;
1933 
1934 	rcu_read_lock();
1935 	rdev_for_each_rcu(rdev, mddev1)
1936 		rdev_for_each_rcu(rdev2, mddev2)
1937 			if (rdev->bdev->bd_contains ==
1938 			    rdev2->bdev->bd_contains) {
1939 				rcu_read_unlock();
1940 				return 1;
1941 			}
1942 	rcu_read_unlock();
1943 	return 0;
1944 }
1945 
1946 static LIST_HEAD(pending_raid_disks);
1947 
1948 /*
1949  * Try to register data integrity profile for an mddev
1950  *
1951  * This is called when an array is started and after a disk has been kicked
1952  * from the array. It only succeeds if all working and active component devices
1953  * are integrity capable with matching profiles.
1954  */
md_integrity_register(struct mddev * mddev)1955 int md_integrity_register(struct mddev *mddev)
1956 {
1957 	struct md_rdev *rdev, *reference = NULL;
1958 
1959 	if (list_empty(&mddev->disks))
1960 		return 0; /* nothing to do */
1961 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1962 		return 0; /* shouldn't register, or already is */
1963 	rdev_for_each(rdev, mddev) {
1964 		/* skip spares and non-functional disks */
1965 		if (test_bit(Faulty, &rdev->flags))
1966 			continue;
1967 		if (rdev->raid_disk < 0)
1968 			continue;
1969 		if (!reference) {
1970 			/* Use the first rdev as the reference */
1971 			reference = rdev;
1972 			continue;
1973 		}
1974 		/* does this rdev's profile match the reference profile? */
1975 		if (blk_integrity_compare(reference->bdev->bd_disk,
1976 				rdev->bdev->bd_disk) < 0)
1977 			return -EINVAL;
1978 	}
1979 	if (!reference || !bdev_get_integrity(reference->bdev))
1980 		return 0;
1981 	/*
1982 	 * All component devices are integrity capable and have matching
1983 	 * profiles, register the common profile for the md device.
1984 	 */
1985 	if (blk_integrity_register(mddev->gendisk,
1986 			bdev_get_integrity(reference->bdev)) != 0) {
1987 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1988 			mdname(mddev));
1989 		return -EINVAL;
1990 	}
1991 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1992 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1993 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1994 		       mdname(mddev));
1995 		return -EINVAL;
1996 	}
1997 	return 0;
1998 }
1999 EXPORT_SYMBOL(md_integrity_register);
2000 
2001 /* Disable data integrity if non-capable/non-matching disk is being added */
md_integrity_add_rdev(struct md_rdev * rdev,struct mddev * mddev)2002 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2003 {
2004 	struct blk_integrity *bi_rdev;
2005 	struct blk_integrity *bi_mddev;
2006 
2007 	if (!mddev->gendisk)
2008 		return;
2009 
2010 	bi_rdev = bdev_get_integrity(rdev->bdev);
2011 	bi_mddev = blk_get_integrity(mddev->gendisk);
2012 
2013 	if (!bi_mddev) /* nothing to do */
2014 		return;
2015 	if (rdev->raid_disk < 0) /* skip spares */
2016 		return;
2017 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2018 					     rdev->bdev->bd_disk) >= 0)
2019 		return;
2020 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2021 	blk_integrity_unregister(mddev->gendisk);
2022 }
2023 EXPORT_SYMBOL(md_integrity_add_rdev);
2024 
bind_rdev_to_array(struct md_rdev * rdev,struct mddev * mddev)2025 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2026 {
2027 	char b[BDEVNAME_SIZE];
2028 	struct kobject *ko;
2029 	char *s;
2030 	int err;
2031 
2032 	/* prevent duplicates */
2033 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2034 		return -EEXIST;
2035 
2036 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2037 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2038 			rdev->sectors < mddev->dev_sectors)) {
2039 		if (mddev->pers) {
2040 			/* Cannot change size, so fail
2041 			 * If mddev->level <= 0, then we don't care
2042 			 * about aligning sizes (e.g. linear)
2043 			 */
2044 			if (mddev->level > 0)
2045 				return -ENOSPC;
2046 		} else
2047 			mddev->dev_sectors = rdev->sectors;
2048 	}
2049 
2050 	/* Verify rdev->desc_nr is unique.
2051 	 * If it is -1, assign a free number, else
2052 	 * check number is not in use
2053 	 */
2054 	rcu_read_lock();
2055 	if (rdev->desc_nr < 0) {
2056 		int choice = 0;
2057 		if (mddev->pers)
2058 			choice = mddev->raid_disks;
2059 		while (md_find_rdev_nr_rcu(mddev, choice))
2060 			choice++;
2061 		rdev->desc_nr = choice;
2062 	} else {
2063 		if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2064 			rcu_read_unlock();
2065 			return -EBUSY;
2066 		}
2067 	}
2068 	rcu_read_unlock();
2069 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2070 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2071 		       mdname(mddev), mddev->max_disks);
2072 		return -EBUSY;
2073 	}
2074 	bdevname(rdev->bdev,b);
2075 	while ( (s=strchr(b, '/')) != NULL)
2076 		*s = '!';
2077 
2078 	rdev->mddev = mddev;
2079 	printk(KERN_INFO "md: bind<%s>\n", b);
2080 
2081 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2082 		goto fail;
2083 
2084 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2085 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2086 		/* failure here is OK */;
2087 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2088 
2089 	list_add_rcu(&rdev->same_set, &mddev->disks);
2090 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2091 
2092 	/* May as well allow recovery to be retried once */
2093 	mddev->recovery_disabled++;
2094 
2095 	return 0;
2096 
2097  fail:
2098 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2099 	       b, mdname(mddev));
2100 	return err;
2101 }
2102 
md_delayed_delete(struct work_struct * ws)2103 static void md_delayed_delete(struct work_struct *ws)
2104 {
2105 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2106 	kobject_del(&rdev->kobj);
2107 	kobject_put(&rdev->kobj);
2108 }
2109 
unbind_rdev_from_array(struct md_rdev * rdev)2110 static void unbind_rdev_from_array(struct md_rdev *rdev)
2111 {
2112 	char b[BDEVNAME_SIZE];
2113 
2114 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2115 	list_del_rcu(&rdev->same_set);
2116 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2117 	rdev->mddev = NULL;
2118 	sysfs_remove_link(&rdev->kobj, "block");
2119 	sysfs_put(rdev->sysfs_state);
2120 	rdev->sysfs_state = NULL;
2121 	rdev->badblocks.count = 0;
2122 	/* We need to delay this, otherwise we can deadlock when
2123 	 * writing to 'remove' to "dev/state".  We also need
2124 	 * to delay it due to rcu usage.
2125 	 */
2126 	synchronize_rcu();
2127 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2128 	kobject_get(&rdev->kobj);
2129 	queue_work(md_misc_wq, &rdev->del_work);
2130 }
2131 
2132 /*
2133  * prevent the device from being mounted, repartitioned or
2134  * otherwise reused by a RAID array (or any other kernel
2135  * subsystem), by bd_claiming the device.
2136  */
lock_rdev(struct md_rdev * rdev,dev_t dev,int shared)2137 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2138 {
2139 	int err = 0;
2140 	struct block_device *bdev;
2141 	char b[BDEVNAME_SIZE];
2142 
2143 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2144 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2145 	if (IS_ERR(bdev)) {
2146 		printk(KERN_ERR "md: could not open %s.\n",
2147 			__bdevname(dev, b));
2148 		return PTR_ERR(bdev);
2149 	}
2150 	rdev->bdev = bdev;
2151 	return err;
2152 }
2153 
unlock_rdev(struct md_rdev * rdev)2154 static void unlock_rdev(struct md_rdev *rdev)
2155 {
2156 	struct block_device *bdev = rdev->bdev;
2157 	rdev->bdev = NULL;
2158 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2159 }
2160 
2161 void md_autodetect_dev(dev_t dev);
2162 
export_rdev(struct md_rdev * rdev)2163 static void export_rdev(struct md_rdev *rdev)
2164 {
2165 	char b[BDEVNAME_SIZE];
2166 
2167 	printk(KERN_INFO "md: export_rdev(%s)\n",
2168 		bdevname(rdev->bdev,b));
2169 	md_rdev_clear(rdev);
2170 #ifndef MODULE
2171 	if (test_bit(AutoDetected, &rdev->flags))
2172 		md_autodetect_dev(rdev->bdev->bd_dev);
2173 #endif
2174 	unlock_rdev(rdev);
2175 	kobject_put(&rdev->kobj);
2176 }
2177 
md_kick_rdev_from_array(struct md_rdev * rdev)2178 void md_kick_rdev_from_array(struct md_rdev *rdev)
2179 {
2180 	unbind_rdev_from_array(rdev);
2181 	export_rdev(rdev);
2182 }
2183 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2184 
export_array(struct mddev * mddev)2185 static void export_array(struct mddev *mddev)
2186 {
2187 	struct md_rdev *rdev;
2188 
2189 	while (!list_empty(&mddev->disks)) {
2190 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2191 					same_set);
2192 		md_kick_rdev_from_array(rdev);
2193 	}
2194 	mddev->raid_disks = 0;
2195 	mddev->major_version = 0;
2196 }
2197 
sync_sbs(struct mddev * mddev,int nospares)2198 static void sync_sbs(struct mddev *mddev, int nospares)
2199 {
2200 	/* Update each superblock (in-memory image), but
2201 	 * if we are allowed to, skip spares which already
2202 	 * have the right event counter, or have one earlier
2203 	 * (which would mean they aren't being marked as dirty
2204 	 * with the rest of the array)
2205 	 */
2206 	struct md_rdev *rdev;
2207 	rdev_for_each(rdev, mddev) {
2208 		if (rdev->sb_events == mddev->events ||
2209 		    (nospares &&
2210 		     rdev->raid_disk < 0 &&
2211 		     rdev->sb_events+1 == mddev->events)) {
2212 			/* Don't update this superblock */
2213 			rdev->sb_loaded = 2;
2214 		} else {
2215 			sync_super(mddev, rdev);
2216 			rdev->sb_loaded = 1;
2217 		}
2218 	}
2219 }
2220 
md_update_sb(struct mddev * mddev,int force_change)2221 void md_update_sb(struct mddev *mddev, int force_change)
2222 {
2223 	struct md_rdev *rdev;
2224 	int sync_req;
2225 	int nospares = 0;
2226 	int any_badblocks_changed = 0;
2227 
2228 	if (mddev->ro) {
2229 		if (force_change)
2230 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2231 		return;
2232 	}
2233 repeat:
2234 	/* First make sure individual recovery_offsets are correct */
2235 	rdev_for_each(rdev, mddev) {
2236 		if (rdev->raid_disk >= 0 &&
2237 		    mddev->delta_disks >= 0 &&
2238 		    !test_bit(In_sync, &rdev->flags) &&
2239 		    mddev->curr_resync_completed > rdev->recovery_offset)
2240 				rdev->recovery_offset = mddev->curr_resync_completed;
2241 
2242 	}
2243 	if (!mddev->persistent) {
2244 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2245 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2246 		if (!mddev->external) {
2247 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2248 			rdev_for_each(rdev, mddev) {
2249 				if (rdev->badblocks.changed) {
2250 					rdev->badblocks.changed = 0;
2251 					md_ack_all_badblocks(&rdev->badblocks);
2252 					md_error(mddev, rdev);
2253 				}
2254 				clear_bit(Blocked, &rdev->flags);
2255 				clear_bit(BlockedBadBlocks, &rdev->flags);
2256 				wake_up(&rdev->blocked_wait);
2257 			}
2258 		}
2259 		wake_up(&mddev->sb_wait);
2260 		return;
2261 	}
2262 
2263 	spin_lock(&mddev->lock);
2264 
2265 	mddev->utime = get_seconds();
2266 
2267 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2268 		force_change = 1;
2269 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2270 		/* just a clean<-> dirty transition, possibly leave spares alone,
2271 		 * though if events isn't the right even/odd, we will have to do
2272 		 * spares after all
2273 		 */
2274 		nospares = 1;
2275 	if (force_change)
2276 		nospares = 0;
2277 	if (mddev->degraded)
2278 		/* If the array is degraded, then skipping spares is both
2279 		 * dangerous and fairly pointless.
2280 		 * Dangerous because a device that was removed from the array
2281 		 * might have a event_count that still looks up-to-date,
2282 		 * so it can be re-added without a resync.
2283 		 * Pointless because if there are any spares to skip,
2284 		 * then a recovery will happen and soon that array won't
2285 		 * be degraded any more and the spare can go back to sleep then.
2286 		 */
2287 		nospares = 0;
2288 
2289 	sync_req = mddev->in_sync;
2290 
2291 	/* If this is just a dirty<->clean transition, and the array is clean
2292 	 * and 'events' is odd, we can roll back to the previous clean state */
2293 	if (nospares
2294 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2295 	    && mddev->can_decrease_events
2296 	    && mddev->events != 1) {
2297 		mddev->events--;
2298 		mddev->can_decrease_events = 0;
2299 	} else {
2300 		/* otherwise we have to go forward and ... */
2301 		mddev->events ++;
2302 		mddev->can_decrease_events = nospares;
2303 	}
2304 
2305 	/*
2306 	 * This 64-bit counter should never wrap.
2307 	 * Either we are in around ~1 trillion A.C., assuming
2308 	 * 1 reboot per second, or we have a bug...
2309 	 */
2310 	WARN_ON(mddev->events == 0);
2311 
2312 	rdev_for_each(rdev, mddev) {
2313 		if (rdev->badblocks.changed)
2314 			any_badblocks_changed++;
2315 		if (test_bit(Faulty, &rdev->flags))
2316 			set_bit(FaultRecorded, &rdev->flags);
2317 	}
2318 
2319 	sync_sbs(mddev, nospares);
2320 	spin_unlock(&mddev->lock);
2321 
2322 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2323 		 mdname(mddev), mddev->in_sync);
2324 
2325 	bitmap_update_sb(mddev->bitmap);
2326 	rdev_for_each(rdev, mddev) {
2327 		char b[BDEVNAME_SIZE];
2328 
2329 		if (rdev->sb_loaded != 1)
2330 			continue; /* no noise on spare devices */
2331 
2332 		if (!test_bit(Faulty, &rdev->flags)) {
2333 			md_super_write(mddev,rdev,
2334 				       rdev->sb_start, rdev->sb_size,
2335 				       rdev->sb_page);
2336 			pr_debug("md: (write) %s's sb offset: %llu\n",
2337 				 bdevname(rdev->bdev, b),
2338 				 (unsigned long long)rdev->sb_start);
2339 			rdev->sb_events = mddev->events;
2340 			if (rdev->badblocks.size) {
2341 				md_super_write(mddev, rdev,
2342 					       rdev->badblocks.sector,
2343 					       rdev->badblocks.size << 9,
2344 					       rdev->bb_page);
2345 				rdev->badblocks.size = 0;
2346 			}
2347 
2348 		} else
2349 			pr_debug("md: %s (skipping faulty)\n",
2350 				 bdevname(rdev->bdev, b));
2351 
2352 		if (mddev->level == LEVEL_MULTIPATH)
2353 			/* only need to write one superblock... */
2354 			break;
2355 	}
2356 	md_super_wait(mddev);
2357 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2358 
2359 	spin_lock(&mddev->lock);
2360 	if (mddev->in_sync != sync_req ||
2361 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2362 		/* have to write it out again */
2363 		spin_unlock(&mddev->lock);
2364 		goto repeat;
2365 	}
2366 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2367 	spin_unlock(&mddev->lock);
2368 	wake_up(&mddev->sb_wait);
2369 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2370 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2371 
2372 	rdev_for_each(rdev, mddev) {
2373 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2374 			clear_bit(Blocked, &rdev->flags);
2375 
2376 		if (any_badblocks_changed)
2377 			md_ack_all_badblocks(&rdev->badblocks);
2378 		clear_bit(BlockedBadBlocks, &rdev->flags);
2379 		wake_up(&rdev->blocked_wait);
2380 	}
2381 }
2382 EXPORT_SYMBOL(md_update_sb);
2383 
add_bound_rdev(struct md_rdev * rdev)2384 static int add_bound_rdev(struct md_rdev *rdev)
2385 {
2386 	struct mddev *mddev = rdev->mddev;
2387 	int err = 0;
2388 
2389 	if (!mddev->pers->hot_remove_disk) {
2390 		/* If there is hot_add_disk but no hot_remove_disk
2391 		 * then added disks for geometry changes,
2392 		 * and should be added immediately.
2393 		 */
2394 		super_types[mddev->major_version].
2395 			validate_super(mddev, rdev);
2396 		err = mddev->pers->hot_add_disk(mddev, rdev);
2397 		if (err) {
2398 			unbind_rdev_from_array(rdev);
2399 			export_rdev(rdev);
2400 			return err;
2401 		}
2402 	}
2403 	sysfs_notify_dirent_safe(rdev->sysfs_state);
2404 
2405 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2406 	if (mddev->degraded)
2407 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2408 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2409 	md_new_event(mddev);
2410 	md_wakeup_thread(mddev->thread);
2411 	return 0;
2412 }
2413 
2414 /* words written to sysfs files may, or may not, be \n terminated.
2415  * We want to accept with case. For this we use cmd_match.
2416  */
cmd_match(const char * cmd,const char * str)2417 static int cmd_match(const char *cmd, const char *str)
2418 {
2419 	/* See if cmd, written into a sysfs file, matches
2420 	 * str.  They must either be the same, or cmd can
2421 	 * have a trailing newline
2422 	 */
2423 	while (*cmd && *str && *cmd == *str) {
2424 		cmd++;
2425 		str++;
2426 	}
2427 	if (*cmd == '\n')
2428 		cmd++;
2429 	if (*str || *cmd)
2430 		return 0;
2431 	return 1;
2432 }
2433 
2434 struct rdev_sysfs_entry {
2435 	struct attribute attr;
2436 	ssize_t (*show)(struct md_rdev *, char *);
2437 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2438 };
2439 
2440 static ssize_t
state_show(struct md_rdev * rdev,char * page)2441 state_show(struct md_rdev *rdev, char *page)
2442 {
2443 	char *sep = "";
2444 	size_t len = 0;
2445 	unsigned long flags = ACCESS_ONCE(rdev->flags);
2446 
2447 	if (test_bit(Faulty, &flags) ||
2448 	    rdev->badblocks.unacked_exist) {
2449 		len+= sprintf(page+len, "%sfaulty",sep);
2450 		sep = ",";
2451 	}
2452 	if (test_bit(In_sync, &flags)) {
2453 		len += sprintf(page+len, "%sin_sync",sep);
2454 		sep = ",";
2455 	}
2456 	if (test_bit(WriteMostly, &flags)) {
2457 		len += sprintf(page+len, "%swrite_mostly",sep);
2458 		sep = ",";
2459 	}
2460 	if (test_bit(Blocked, &flags) ||
2461 	    (rdev->badblocks.unacked_exist
2462 	     && !test_bit(Faulty, &flags))) {
2463 		len += sprintf(page+len, "%sblocked", sep);
2464 		sep = ",";
2465 	}
2466 	if (!test_bit(Faulty, &flags) &&
2467 	    !test_bit(In_sync, &flags)) {
2468 		len += sprintf(page+len, "%sspare", sep);
2469 		sep = ",";
2470 	}
2471 	if (test_bit(WriteErrorSeen, &flags)) {
2472 		len += sprintf(page+len, "%swrite_error", sep);
2473 		sep = ",";
2474 	}
2475 	if (test_bit(WantReplacement, &flags)) {
2476 		len += sprintf(page+len, "%swant_replacement", sep);
2477 		sep = ",";
2478 	}
2479 	if (test_bit(Replacement, &flags)) {
2480 		len += sprintf(page+len, "%sreplacement", sep);
2481 		sep = ",";
2482 	}
2483 
2484 	return len+sprintf(page+len, "\n");
2485 }
2486 
2487 static ssize_t
state_store(struct md_rdev * rdev,const char * buf,size_t len)2488 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2489 {
2490 	/* can write
2491 	 *  faulty  - simulates an error
2492 	 *  remove  - disconnects the device
2493 	 *  writemostly - sets write_mostly
2494 	 *  -writemostly - clears write_mostly
2495 	 *  blocked - sets the Blocked flags
2496 	 *  -blocked - clears the Blocked and possibly simulates an error
2497 	 *  insync - sets Insync providing device isn't active
2498 	 *  -insync - clear Insync for a device with a slot assigned,
2499 	 *            so that it gets rebuilt based on bitmap
2500 	 *  write_error - sets WriteErrorSeen
2501 	 *  -write_error - clears WriteErrorSeen
2502 	 */
2503 	int err = -EINVAL;
2504 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2505 		md_error(rdev->mddev, rdev);
2506 		if (test_bit(Faulty, &rdev->flags))
2507 			err = 0;
2508 		else
2509 			err = -EBUSY;
2510 	} else if (cmd_match(buf, "remove")) {
2511 		if (rdev->raid_disk >= 0)
2512 			err = -EBUSY;
2513 		else {
2514 			struct mddev *mddev = rdev->mddev;
2515 			if (mddev_is_clustered(mddev))
2516 				md_cluster_ops->remove_disk(mddev, rdev);
2517 			md_kick_rdev_from_array(rdev);
2518 			if (mddev_is_clustered(mddev))
2519 				md_cluster_ops->metadata_update_start(mddev);
2520 			if (mddev->pers)
2521 				md_update_sb(mddev, 1);
2522 			md_new_event(mddev);
2523 			if (mddev_is_clustered(mddev))
2524 				md_cluster_ops->metadata_update_finish(mddev);
2525 			err = 0;
2526 		}
2527 	} else if (cmd_match(buf, "writemostly")) {
2528 		set_bit(WriteMostly, &rdev->flags);
2529 		err = 0;
2530 	} else if (cmd_match(buf, "-writemostly")) {
2531 		clear_bit(WriteMostly, &rdev->flags);
2532 		err = 0;
2533 	} else if (cmd_match(buf, "blocked")) {
2534 		set_bit(Blocked, &rdev->flags);
2535 		err = 0;
2536 	} else if (cmd_match(buf, "-blocked")) {
2537 		if (!test_bit(Faulty, &rdev->flags) &&
2538 		    rdev->badblocks.unacked_exist) {
2539 			/* metadata handler doesn't understand badblocks,
2540 			 * so we need to fail the device
2541 			 */
2542 			md_error(rdev->mddev, rdev);
2543 		}
2544 		clear_bit(Blocked, &rdev->flags);
2545 		clear_bit(BlockedBadBlocks, &rdev->flags);
2546 		wake_up(&rdev->blocked_wait);
2547 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2548 		md_wakeup_thread(rdev->mddev->thread);
2549 
2550 		err = 0;
2551 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2552 		set_bit(In_sync, &rdev->flags);
2553 		err = 0;
2554 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2555 		if (rdev->mddev->pers == NULL) {
2556 			clear_bit(In_sync, &rdev->flags);
2557 			rdev->saved_raid_disk = rdev->raid_disk;
2558 			rdev->raid_disk = -1;
2559 			err = 0;
2560 		}
2561 	} else if (cmd_match(buf, "write_error")) {
2562 		set_bit(WriteErrorSeen, &rdev->flags);
2563 		err = 0;
2564 	} else if (cmd_match(buf, "-write_error")) {
2565 		clear_bit(WriteErrorSeen, &rdev->flags);
2566 		err = 0;
2567 	} else if (cmd_match(buf, "want_replacement")) {
2568 		/* Any non-spare device that is not a replacement can
2569 		 * become want_replacement at any time, but we then need to
2570 		 * check if recovery is needed.
2571 		 */
2572 		if (rdev->raid_disk >= 0 &&
2573 		    !test_bit(Replacement, &rdev->flags))
2574 			set_bit(WantReplacement, &rdev->flags);
2575 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2576 		md_wakeup_thread(rdev->mddev->thread);
2577 		err = 0;
2578 	} else if (cmd_match(buf, "-want_replacement")) {
2579 		/* Clearing 'want_replacement' is always allowed.
2580 		 * Once replacements starts it is too late though.
2581 		 */
2582 		err = 0;
2583 		clear_bit(WantReplacement, &rdev->flags);
2584 	} else if (cmd_match(buf, "replacement")) {
2585 		/* Can only set a device as a replacement when array has not
2586 		 * yet been started.  Once running, replacement is automatic
2587 		 * from spares, or by assigning 'slot'.
2588 		 */
2589 		if (rdev->mddev->pers)
2590 			err = -EBUSY;
2591 		else {
2592 			set_bit(Replacement, &rdev->flags);
2593 			err = 0;
2594 		}
2595 	} else if (cmd_match(buf, "-replacement")) {
2596 		/* Similarly, can only clear Replacement before start */
2597 		if (rdev->mddev->pers)
2598 			err = -EBUSY;
2599 		else {
2600 			clear_bit(Replacement, &rdev->flags);
2601 			err = 0;
2602 		}
2603 	} else if (cmd_match(buf, "re-add")) {
2604 		if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2605 			/* clear_bit is performed _after_ all the devices
2606 			 * have their local Faulty bit cleared. If any writes
2607 			 * happen in the meantime in the local node, they
2608 			 * will land in the local bitmap, which will be synced
2609 			 * by this node eventually
2610 			 */
2611 			if (!mddev_is_clustered(rdev->mddev) ||
2612 			    (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2613 				clear_bit(Faulty, &rdev->flags);
2614 				err = add_bound_rdev(rdev);
2615 			}
2616 		} else
2617 			err = -EBUSY;
2618 	}
2619 	if (!err)
2620 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2621 	return err ? err : len;
2622 }
2623 static struct rdev_sysfs_entry rdev_state =
2624 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2625 
2626 static ssize_t
errors_show(struct md_rdev * rdev,char * page)2627 errors_show(struct md_rdev *rdev, char *page)
2628 {
2629 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2630 }
2631 
2632 static ssize_t
errors_store(struct md_rdev * rdev,const char * buf,size_t len)2633 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2634 {
2635 	char *e;
2636 	unsigned long n = simple_strtoul(buf, &e, 10);
2637 	if (*buf && (*e == 0 || *e == '\n')) {
2638 		atomic_set(&rdev->corrected_errors, n);
2639 		return len;
2640 	}
2641 	return -EINVAL;
2642 }
2643 static struct rdev_sysfs_entry rdev_errors =
2644 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2645 
2646 static ssize_t
slot_show(struct md_rdev * rdev,char * page)2647 slot_show(struct md_rdev *rdev, char *page)
2648 {
2649 	if (rdev->raid_disk < 0)
2650 		return sprintf(page, "none\n");
2651 	else
2652 		return sprintf(page, "%d\n", rdev->raid_disk);
2653 }
2654 
2655 static ssize_t
slot_store(struct md_rdev * rdev,const char * buf,size_t len)2656 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2657 {
2658 	char *e;
2659 	int err;
2660 	int slot = simple_strtoul(buf, &e, 10);
2661 	if (strncmp(buf, "none", 4)==0)
2662 		slot = -1;
2663 	else if (e==buf || (*e && *e!= '\n'))
2664 		return -EINVAL;
2665 	if (rdev->mddev->pers && slot == -1) {
2666 		/* Setting 'slot' on an active array requires also
2667 		 * updating the 'rd%d' link, and communicating
2668 		 * with the personality with ->hot_*_disk.
2669 		 * For now we only support removing
2670 		 * failed/spare devices.  This normally happens automatically,
2671 		 * but not when the metadata is externally managed.
2672 		 */
2673 		if (rdev->raid_disk == -1)
2674 			return -EEXIST;
2675 		/* personality does all needed checks */
2676 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2677 			return -EINVAL;
2678 		clear_bit(Blocked, &rdev->flags);
2679 		remove_and_add_spares(rdev->mddev, rdev);
2680 		if (rdev->raid_disk >= 0)
2681 			return -EBUSY;
2682 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2683 		md_wakeup_thread(rdev->mddev->thread);
2684 	} else if (rdev->mddev->pers) {
2685 		/* Activating a spare .. or possibly reactivating
2686 		 * if we ever get bitmaps working here.
2687 		 */
2688 
2689 		if (rdev->raid_disk != -1)
2690 			return -EBUSY;
2691 
2692 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2693 			return -EBUSY;
2694 
2695 		if (rdev->mddev->pers->hot_add_disk == NULL)
2696 			return -EINVAL;
2697 
2698 		if (slot >= rdev->mddev->raid_disks &&
2699 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2700 			return -ENOSPC;
2701 
2702 		rdev->raid_disk = slot;
2703 		if (test_bit(In_sync, &rdev->flags))
2704 			rdev->saved_raid_disk = slot;
2705 		else
2706 			rdev->saved_raid_disk = -1;
2707 		clear_bit(In_sync, &rdev->flags);
2708 		clear_bit(Bitmap_sync, &rdev->flags);
2709 		err = rdev->mddev->pers->
2710 			hot_add_disk(rdev->mddev, rdev);
2711 		if (err) {
2712 			rdev->raid_disk = -1;
2713 			return err;
2714 		} else
2715 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2716 		if (sysfs_link_rdev(rdev->mddev, rdev))
2717 			/* failure here is OK */;
2718 		/* don't wakeup anyone, leave that to userspace. */
2719 	} else {
2720 		if (slot >= rdev->mddev->raid_disks &&
2721 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2722 			return -ENOSPC;
2723 		rdev->raid_disk = slot;
2724 		/* assume it is working */
2725 		clear_bit(Faulty, &rdev->flags);
2726 		clear_bit(WriteMostly, &rdev->flags);
2727 		set_bit(In_sync, &rdev->flags);
2728 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2729 	}
2730 	return len;
2731 }
2732 
2733 static struct rdev_sysfs_entry rdev_slot =
2734 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2735 
2736 static ssize_t
offset_show(struct md_rdev * rdev,char * page)2737 offset_show(struct md_rdev *rdev, char *page)
2738 {
2739 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2740 }
2741 
2742 static ssize_t
offset_store(struct md_rdev * rdev,const char * buf,size_t len)2743 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2744 {
2745 	unsigned long long offset;
2746 	if (kstrtoull(buf, 10, &offset) < 0)
2747 		return -EINVAL;
2748 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2749 		return -EBUSY;
2750 	if (rdev->sectors && rdev->mddev->external)
2751 		/* Must set offset before size, so overlap checks
2752 		 * can be sane */
2753 		return -EBUSY;
2754 	rdev->data_offset = offset;
2755 	rdev->new_data_offset = offset;
2756 	return len;
2757 }
2758 
2759 static struct rdev_sysfs_entry rdev_offset =
2760 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2761 
new_offset_show(struct md_rdev * rdev,char * page)2762 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2763 {
2764 	return sprintf(page, "%llu\n",
2765 		       (unsigned long long)rdev->new_data_offset);
2766 }
2767 
new_offset_store(struct md_rdev * rdev,const char * buf,size_t len)2768 static ssize_t new_offset_store(struct md_rdev *rdev,
2769 				const char *buf, size_t len)
2770 {
2771 	unsigned long long new_offset;
2772 	struct mddev *mddev = rdev->mddev;
2773 
2774 	if (kstrtoull(buf, 10, &new_offset) < 0)
2775 		return -EINVAL;
2776 
2777 	if (mddev->sync_thread ||
2778 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2779 		return -EBUSY;
2780 	if (new_offset == rdev->data_offset)
2781 		/* reset is always permitted */
2782 		;
2783 	else if (new_offset > rdev->data_offset) {
2784 		/* must not push array size beyond rdev_sectors */
2785 		if (new_offset - rdev->data_offset
2786 		    + mddev->dev_sectors > rdev->sectors)
2787 				return -E2BIG;
2788 	}
2789 	/* Metadata worries about other space details. */
2790 
2791 	/* decreasing the offset is inconsistent with a backwards
2792 	 * reshape.
2793 	 */
2794 	if (new_offset < rdev->data_offset &&
2795 	    mddev->reshape_backwards)
2796 		return -EINVAL;
2797 	/* Increasing offset is inconsistent with forwards
2798 	 * reshape.  reshape_direction should be set to
2799 	 * 'backwards' first.
2800 	 */
2801 	if (new_offset > rdev->data_offset &&
2802 	    !mddev->reshape_backwards)
2803 		return -EINVAL;
2804 
2805 	if (mddev->pers && mddev->persistent &&
2806 	    !super_types[mddev->major_version]
2807 	    .allow_new_offset(rdev, new_offset))
2808 		return -E2BIG;
2809 	rdev->new_data_offset = new_offset;
2810 	if (new_offset > rdev->data_offset)
2811 		mddev->reshape_backwards = 1;
2812 	else if (new_offset < rdev->data_offset)
2813 		mddev->reshape_backwards = 0;
2814 
2815 	return len;
2816 }
2817 static struct rdev_sysfs_entry rdev_new_offset =
2818 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2819 
2820 static ssize_t
rdev_size_show(struct md_rdev * rdev,char * page)2821 rdev_size_show(struct md_rdev *rdev, char *page)
2822 {
2823 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2824 }
2825 
overlaps(sector_t s1,sector_t l1,sector_t s2,sector_t l2)2826 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2827 {
2828 	/* check if two start/length pairs overlap */
2829 	if (s1+l1 <= s2)
2830 		return 0;
2831 	if (s2+l2 <= s1)
2832 		return 0;
2833 	return 1;
2834 }
2835 
strict_blocks_to_sectors(const char * buf,sector_t * sectors)2836 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2837 {
2838 	unsigned long long blocks;
2839 	sector_t new;
2840 
2841 	if (kstrtoull(buf, 10, &blocks) < 0)
2842 		return -EINVAL;
2843 
2844 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2845 		return -EINVAL; /* sector conversion overflow */
2846 
2847 	new = blocks * 2;
2848 	if (new != blocks * 2)
2849 		return -EINVAL; /* unsigned long long to sector_t overflow */
2850 
2851 	*sectors = new;
2852 	return 0;
2853 }
2854 
2855 static ssize_t
rdev_size_store(struct md_rdev * rdev,const char * buf,size_t len)2856 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2857 {
2858 	struct mddev *my_mddev = rdev->mddev;
2859 	sector_t oldsectors = rdev->sectors;
2860 	sector_t sectors;
2861 
2862 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2863 		return -EINVAL;
2864 	if (rdev->data_offset != rdev->new_data_offset)
2865 		return -EINVAL; /* too confusing */
2866 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2867 		if (my_mddev->persistent) {
2868 			sectors = super_types[my_mddev->major_version].
2869 				rdev_size_change(rdev, sectors);
2870 			if (!sectors)
2871 				return -EBUSY;
2872 		} else if (!sectors)
2873 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2874 				rdev->data_offset;
2875 		if (!my_mddev->pers->resize)
2876 			/* Cannot change size for RAID0 or Linear etc */
2877 			return -EINVAL;
2878 	}
2879 	if (sectors < my_mddev->dev_sectors)
2880 		return -EINVAL; /* component must fit device */
2881 
2882 	rdev->sectors = sectors;
2883 	if (sectors > oldsectors && my_mddev->external) {
2884 		/* Need to check that all other rdevs with the same
2885 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
2886 		 * the rdev lists safely.
2887 		 * This check does not provide a hard guarantee, it
2888 		 * just helps avoid dangerous mistakes.
2889 		 */
2890 		struct mddev *mddev;
2891 		int overlap = 0;
2892 		struct list_head *tmp;
2893 
2894 		rcu_read_lock();
2895 		for_each_mddev(mddev, tmp) {
2896 			struct md_rdev *rdev2;
2897 
2898 			rdev_for_each(rdev2, mddev)
2899 				if (rdev->bdev == rdev2->bdev &&
2900 				    rdev != rdev2 &&
2901 				    overlaps(rdev->data_offset, rdev->sectors,
2902 					     rdev2->data_offset,
2903 					     rdev2->sectors)) {
2904 					overlap = 1;
2905 					break;
2906 				}
2907 			if (overlap) {
2908 				mddev_put(mddev);
2909 				break;
2910 			}
2911 		}
2912 		rcu_read_unlock();
2913 		if (overlap) {
2914 			/* Someone else could have slipped in a size
2915 			 * change here, but doing so is just silly.
2916 			 * We put oldsectors back because we *know* it is
2917 			 * safe, and trust userspace not to race with
2918 			 * itself
2919 			 */
2920 			rdev->sectors = oldsectors;
2921 			return -EBUSY;
2922 		}
2923 	}
2924 	return len;
2925 }
2926 
2927 static struct rdev_sysfs_entry rdev_size =
2928 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2929 
recovery_start_show(struct md_rdev * rdev,char * page)2930 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2931 {
2932 	unsigned long long recovery_start = rdev->recovery_offset;
2933 
2934 	if (test_bit(In_sync, &rdev->flags) ||
2935 	    recovery_start == MaxSector)
2936 		return sprintf(page, "none\n");
2937 
2938 	return sprintf(page, "%llu\n", recovery_start);
2939 }
2940 
recovery_start_store(struct md_rdev * rdev,const char * buf,size_t len)2941 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2942 {
2943 	unsigned long long recovery_start;
2944 
2945 	if (cmd_match(buf, "none"))
2946 		recovery_start = MaxSector;
2947 	else if (kstrtoull(buf, 10, &recovery_start))
2948 		return -EINVAL;
2949 
2950 	if (rdev->mddev->pers &&
2951 	    rdev->raid_disk >= 0)
2952 		return -EBUSY;
2953 
2954 	rdev->recovery_offset = recovery_start;
2955 	if (recovery_start == MaxSector)
2956 		set_bit(In_sync, &rdev->flags);
2957 	else
2958 		clear_bit(In_sync, &rdev->flags);
2959 	return len;
2960 }
2961 
2962 static struct rdev_sysfs_entry rdev_recovery_start =
2963 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2964 
2965 static ssize_t
2966 badblocks_show(struct badblocks *bb, char *page, int unack);
2967 static ssize_t
2968 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2969 
bb_show(struct md_rdev * rdev,char * page)2970 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2971 {
2972 	return badblocks_show(&rdev->badblocks, page, 0);
2973 }
bb_store(struct md_rdev * rdev,const char * page,size_t len)2974 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2975 {
2976 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2977 	/* Maybe that ack was all we needed */
2978 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2979 		wake_up(&rdev->blocked_wait);
2980 	return rv;
2981 }
2982 static struct rdev_sysfs_entry rdev_bad_blocks =
2983 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2984 
ubb_show(struct md_rdev * rdev,char * page)2985 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2986 {
2987 	return badblocks_show(&rdev->badblocks, page, 1);
2988 }
ubb_store(struct md_rdev * rdev,const char * page,size_t len)2989 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2990 {
2991 	return badblocks_store(&rdev->badblocks, page, len, 1);
2992 }
2993 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2994 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2995 
2996 static struct attribute *rdev_default_attrs[] = {
2997 	&rdev_state.attr,
2998 	&rdev_errors.attr,
2999 	&rdev_slot.attr,
3000 	&rdev_offset.attr,
3001 	&rdev_new_offset.attr,
3002 	&rdev_size.attr,
3003 	&rdev_recovery_start.attr,
3004 	&rdev_bad_blocks.attr,
3005 	&rdev_unack_bad_blocks.attr,
3006 	NULL,
3007 };
3008 static ssize_t
rdev_attr_show(struct kobject * kobj,struct attribute * attr,char * page)3009 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3010 {
3011 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3012 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3013 
3014 	if (!entry->show)
3015 		return -EIO;
3016 	if (!rdev->mddev)
3017 		return -EBUSY;
3018 	return entry->show(rdev, page);
3019 }
3020 
3021 static ssize_t
rdev_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)3022 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3023 	      const char *page, size_t length)
3024 {
3025 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3026 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3027 	ssize_t rv;
3028 	struct mddev *mddev = rdev->mddev;
3029 
3030 	if (!entry->store)
3031 		return -EIO;
3032 	if (!capable(CAP_SYS_ADMIN))
3033 		return -EACCES;
3034 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3035 	if (!rv) {
3036 		if (rdev->mddev == NULL)
3037 			rv = -EBUSY;
3038 		else
3039 			rv = entry->store(rdev, page, length);
3040 		mddev_unlock(mddev);
3041 	}
3042 	return rv;
3043 }
3044 
rdev_free(struct kobject * ko)3045 static void rdev_free(struct kobject *ko)
3046 {
3047 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3048 	kfree(rdev);
3049 }
3050 static const struct sysfs_ops rdev_sysfs_ops = {
3051 	.show		= rdev_attr_show,
3052 	.store		= rdev_attr_store,
3053 };
3054 static struct kobj_type rdev_ktype = {
3055 	.release	= rdev_free,
3056 	.sysfs_ops	= &rdev_sysfs_ops,
3057 	.default_attrs	= rdev_default_attrs,
3058 };
3059 
md_rdev_init(struct md_rdev * rdev)3060 int md_rdev_init(struct md_rdev *rdev)
3061 {
3062 	rdev->desc_nr = -1;
3063 	rdev->saved_raid_disk = -1;
3064 	rdev->raid_disk = -1;
3065 	rdev->flags = 0;
3066 	rdev->data_offset = 0;
3067 	rdev->new_data_offset = 0;
3068 	rdev->sb_events = 0;
3069 	rdev->last_read_error.tv_sec  = 0;
3070 	rdev->last_read_error.tv_nsec = 0;
3071 	rdev->sb_loaded = 0;
3072 	rdev->bb_page = NULL;
3073 	atomic_set(&rdev->nr_pending, 0);
3074 	atomic_set(&rdev->read_errors, 0);
3075 	atomic_set(&rdev->corrected_errors, 0);
3076 
3077 	INIT_LIST_HEAD(&rdev->same_set);
3078 	init_waitqueue_head(&rdev->blocked_wait);
3079 
3080 	/* Add space to store bad block list.
3081 	 * This reserves the space even on arrays where it cannot
3082 	 * be used - I wonder if that matters
3083 	 */
3084 	rdev->badblocks.count = 0;
3085 	rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3086 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3087 	seqlock_init(&rdev->badblocks.lock);
3088 	if (rdev->badblocks.page == NULL)
3089 		return -ENOMEM;
3090 
3091 	return 0;
3092 }
3093 EXPORT_SYMBOL_GPL(md_rdev_init);
3094 /*
3095  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3096  *
3097  * mark the device faulty if:
3098  *
3099  *   - the device is nonexistent (zero size)
3100  *   - the device has no valid superblock
3101  *
3102  * a faulty rdev _never_ has rdev->sb set.
3103  */
md_import_device(dev_t newdev,int super_format,int super_minor)3104 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3105 {
3106 	char b[BDEVNAME_SIZE];
3107 	int err;
3108 	struct md_rdev *rdev;
3109 	sector_t size;
3110 
3111 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3112 	if (!rdev) {
3113 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3114 		return ERR_PTR(-ENOMEM);
3115 	}
3116 
3117 	err = md_rdev_init(rdev);
3118 	if (err)
3119 		goto abort_free;
3120 	err = alloc_disk_sb(rdev);
3121 	if (err)
3122 		goto abort_free;
3123 
3124 	err = lock_rdev(rdev, newdev, super_format == -2);
3125 	if (err)
3126 		goto abort_free;
3127 
3128 	kobject_init(&rdev->kobj, &rdev_ktype);
3129 
3130 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3131 	if (!size) {
3132 		printk(KERN_WARNING
3133 			"md: %s has zero or unknown size, marking faulty!\n",
3134 			bdevname(rdev->bdev,b));
3135 		err = -EINVAL;
3136 		goto abort_free;
3137 	}
3138 
3139 	if (super_format >= 0) {
3140 		err = super_types[super_format].
3141 			load_super(rdev, NULL, super_minor);
3142 		if (err == -EINVAL) {
3143 			printk(KERN_WARNING
3144 				"md: %s does not have a valid v%d.%d "
3145 			       "superblock, not importing!\n",
3146 				bdevname(rdev->bdev,b),
3147 			       super_format, super_minor);
3148 			goto abort_free;
3149 		}
3150 		if (err < 0) {
3151 			printk(KERN_WARNING
3152 				"md: could not read %s's sb, not importing!\n",
3153 				bdevname(rdev->bdev,b));
3154 			goto abort_free;
3155 		}
3156 	}
3157 
3158 	return rdev;
3159 
3160 abort_free:
3161 	if (rdev->bdev)
3162 		unlock_rdev(rdev);
3163 	md_rdev_clear(rdev);
3164 	kfree(rdev);
3165 	return ERR_PTR(err);
3166 }
3167 
3168 /*
3169  * Check a full RAID array for plausibility
3170  */
3171 
analyze_sbs(struct mddev * mddev)3172 static void analyze_sbs(struct mddev *mddev)
3173 {
3174 	int i;
3175 	struct md_rdev *rdev, *freshest, *tmp;
3176 	char b[BDEVNAME_SIZE];
3177 
3178 	freshest = NULL;
3179 	rdev_for_each_safe(rdev, tmp, mddev)
3180 		switch (super_types[mddev->major_version].
3181 			load_super(rdev, freshest, mddev->minor_version)) {
3182 		case 1:
3183 			freshest = rdev;
3184 			break;
3185 		case 0:
3186 			break;
3187 		default:
3188 			printk( KERN_ERR \
3189 				"md: fatal superblock inconsistency in %s"
3190 				" -- removing from array\n",
3191 				bdevname(rdev->bdev,b));
3192 			md_kick_rdev_from_array(rdev);
3193 		}
3194 
3195 	super_types[mddev->major_version].
3196 		validate_super(mddev, freshest);
3197 
3198 	i = 0;
3199 	rdev_for_each_safe(rdev, tmp, mddev) {
3200 		if (mddev->max_disks &&
3201 		    (rdev->desc_nr >= mddev->max_disks ||
3202 		     i > mddev->max_disks)) {
3203 			printk(KERN_WARNING
3204 			       "md: %s: %s: only %d devices permitted\n",
3205 			       mdname(mddev), bdevname(rdev->bdev, b),
3206 			       mddev->max_disks);
3207 			md_kick_rdev_from_array(rdev);
3208 			continue;
3209 		}
3210 		if (rdev != freshest) {
3211 			if (super_types[mddev->major_version].
3212 			    validate_super(mddev, rdev)) {
3213 				printk(KERN_WARNING "md: kicking non-fresh %s"
3214 					" from array!\n",
3215 					bdevname(rdev->bdev,b));
3216 				md_kick_rdev_from_array(rdev);
3217 				continue;
3218 			}
3219 			/* No device should have a Candidate flag
3220 			 * when reading devices
3221 			 */
3222 			if (test_bit(Candidate, &rdev->flags)) {
3223 				pr_info("md: kicking Cluster Candidate %s from array!\n",
3224 					bdevname(rdev->bdev, b));
3225 				md_kick_rdev_from_array(rdev);
3226 			}
3227 		}
3228 		if (mddev->level == LEVEL_MULTIPATH) {
3229 			rdev->desc_nr = i++;
3230 			rdev->raid_disk = rdev->desc_nr;
3231 			set_bit(In_sync, &rdev->flags);
3232 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3233 			rdev->raid_disk = -1;
3234 			clear_bit(In_sync, &rdev->flags);
3235 		}
3236 	}
3237 }
3238 
3239 /* Read a fixed-point number.
3240  * Numbers in sysfs attributes should be in "standard" units where
3241  * possible, so time should be in seconds.
3242  * However we internally use a a much smaller unit such as
3243  * milliseconds or jiffies.
3244  * This function takes a decimal number with a possible fractional
3245  * component, and produces an integer which is the result of
3246  * multiplying that number by 10^'scale'.
3247  * all without any floating-point arithmetic.
3248  */
strict_strtoul_scaled(const char * cp,unsigned long * res,int scale)3249 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3250 {
3251 	unsigned long result = 0;
3252 	long decimals = -1;
3253 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3254 		if (*cp == '.')
3255 			decimals = 0;
3256 		else if (decimals < scale) {
3257 			unsigned int value;
3258 			value = *cp - '0';
3259 			result = result * 10 + value;
3260 			if (decimals >= 0)
3261 				decimals++;
3262 		}
3263 		cp++;
3264 	}
3265 	if (*cp == '\n')
3266 		cp++;
3267 	if (*cp)
3268 		return -EINVAL;
3269 	if (decimals < 0)
3270 		decimals = 0;
3271 	while (decimals < scale) {
3272 		result *= 10;
3273 		decimals ++;
3274 	}
3275 	*res = result;
3276 	return 0;
3277 }
3278 
3279 static void md_safemode_timeout(unsigned long data);
3280 
3281 static ssize_t
safe_delay_show(struct mddev * mddev,char * page)3282 safe_delay_show(struct mddev *mddev, char *page)
3283 {
3284 	int msec = (mddev->safemode_delay*1000)/HZ;
3285 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3286 }
3287 static ssize_t
safe_delay_store(struct mddev * mddev,const char * cbuf,size_t len)3288 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3289 {
3290 	unsigned long msec;
3291 
3292 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3293 		return -EINVAL;
3294 	if (msec == 0)
3295 		mddev->safemode_delay = 0;
3296 	else {
3297 		unsigned long old_delay = mddev->safemode_delay;
3298 		unsigned long new_delay = (msec*HZ)/1000;
3299 
3300 		if (new_delay == 0)
3301 			new_delay = 1;
3302 		mddev->safemode_delay = new_delay;
3303 		if (new_delay < old_delay || old_delay == 0)
3304 			mod_timer(&mddev->safemode_timer, jiffies+1);
3305 	}
3306 	return len;
3307 }
3308 static struct md_sysfs_entry md_safe_delay =
3309 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3310 
3311 static ssize_t
level_show(struct mddev * mddev,char * page)3312 level_show(struct mddev *mddev, char *page)
3313 {
3314 	struct md_personality *p;
3315 	int ret;
3316 	spin_lock(&mddev->lock);
3317 	p = mddev->pers;
3318 	if (p)
3319 		ret = sprintf(page, "%s\n", p->name);
3320 	else if (mddev->clevel[0])
3321 		ret = sprintf(page, "%s\n", mddev->clevel);
3322 	else if (mddev->level != LEVEL_NONE)
3323 		ret = sprintf(page, "%d\n", mddev->level);
3324 	else
3325 		ret = 0;
3326 	spin_unlock(&mddev->lock);
3327 	return ret;
3328 }
3329 
3330 static ssize_t
level_store(struct mddev * mddev,const char * buf,size_t len)3331 level_store(struct mddev *mddev, const char *buf, size_t len)
3332 {
3333 	char clevel[16];
3334 	ssize_t rv;
3335 	size_t slen = len;
3336 	struct md_personality *pers, *oldpers;
3337 	long level;
3338 	void *priv, *oldpriv;
3339 	struct md_rdev *rdev;
3340 
3341 	if (slen == 0 || slen >= sizeof(clevel))
3342 		return -EINVAL;
3343 
3344 	rv = mddev_lock(mddev);
3345 	if (rv)
3346 		return rv;
3347 
3348 	if (mddev->pers == NULL) {
3349 		strncpy(mddev->clevel, buf, slen);
3350 		if (mddev->clevel[slen-1] == '\n')
3351 			slen--;
3352 		mddev->clevel[slen] = 0;
3353 		mddev->level = LEVEL_NONE;
3354 		rv = len;
3355 		goto out_unlock;
3356 	}
3357 	rv = -EROFS;
3358 	if (mddev->ro)
3359 		goto out_unlock;
3360 
3361 	/* request to change the personality.  Need to ensure:
3362 	 *  - array is not engaged in resync/recovery/reshape
3363 	 *  - old personality can be suspended
3364 	 *  - new personality will access other array.
3365 	 */
3366 
3367 	rv = -EBUSY;
3368 	if (mddev->sync_thread ||
3369 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3370 	    mddev->reshape_position != MaxSector ||
3371 	    mddev->sysfs_active)
3372 		goto out_unlock;
3373 
3374 	rv = -EINVAL;
3375 	if (!mddev->pers->quiesce) {
3376 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3377 		       mdname(mddev), mddev->pers->name);
3378 		goto out_unlock;
3379 	}
3380 
3381 	/* Now find the new personality */
3382 	strncpy(clevel, buf, slen);
3383 	if (clevel[slen-1] == '\n')
3384 		slen--;
3385 	clevel[slen] = 0;
3386 	if (kstrtol(clevel, 10, &level))
3387 		level = LEVEL_NONE;
3388 
3389 	if (request_module("md-%s", clevel) != 0)
3390 		request_module("md-level-%s", clevel);
3391 	spin_lock(&pers_lock);
3392 	pers = find_pers(level, clevel);
3393 	if (!pers || !try_module_get(pers->owner)) {
3394 		spin_unlock(&pers_lock);
3395 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3396 		rv = -EINVAL;
3397 		goto out_unlock;
3398 	}
3399 	spin_unlock(&pers_lock);
3400 
3401 	if (pers == mddev->pers) {
3402 		/* Nothing to do! */
3403 		module_put(pers->owner);
3404 		rv = len;
3405 		goto out_unlock;
3406 	}
3407 	if (!pers->takeover) {
3408 		module_put(pers->owner);
3409 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3410 		       mdname(mddev), clevel);
3411 		rv = -EINVAL;
3412 		goto out_unlock;
3413 	}
3414 
3415 	rdev_for_each(rdev, mddev)
3416 		rdev->new_raid_disk = rdev->raid_disk;
3417 
3418 	/* ->takeover must set new_* and/or delta_disks
3419 	 * if it succeeds, and may set them when it fails.
3420 	 */
3421 	priv = pers->takeover(mddev);
3422 	if (IS_ERR(priv)) {
3423 		mddev->new_level = mddev->level;
3424 		mddev->new_layout = mddev->layout;
3425 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3426 		mddev->raid_disks -= mddev->delta_disks;
3427 		mddev->delta_disks = 0;
3428 		mddev->reshape_backwards = 0;
3429 		module_put(pers->owner);
3430 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3431 		       mdname(mddev), clevel);
3432 		rv = PTR_ERR(priv);
3433 		goto out_unlock;
3434 	}
3435 
3436 	/* Looks like we have a winner */
3437 	mddev_suspend(mddev);
3438 	mddev_detach(mddev);
3439 
3440 	spin_lock(&mddev->lock);
3441 	oldpers = mddev->pers;
3442 	oldpriv = mddev->private;
3443 	mddev->pers = pers;
3444 	mddev->private = priv;
3445 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3446 	mddev->level = mddev->new_level;
3447 	mddev->layout = mddev->new_layout;
3448 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3449 	mddev->delta_disks = 0;
3450 	mddev->reshape_backwards = 0;
3451 	mddev->degraded = 0;
3452 	spin_unlock(&mddev->lock);
3453 
3454 	if (oldpers->sync_request == NULL &&
3455 	    mddev->external) {
3456 		/* We are converting from a no-redundancy array
3457 		 * to a redundancy array and metadata is managed
3458 		 * externally so we need to be sure that writes
3459 		 * won't block due to a need to transition
3460 		 *      clean->dirty
3461 		 * until external management is started.
3462 		 */
3463 		mddev->in_sync = 0;
3464 		mddev->safemode_delay = 0;
3465 		mddev->safemode = 0;
3466 	}
3467 
3468 	oldpers->free(mddev, oldpriv);
3469 
3470 	if (oldpers->sync_request == NULL &&
3471 	    pers->sync_request != NULL) {
3472 		/* need to add the md_redundancy_group */
3473 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3474 			printk(KERN_WARNING
3475 			       "md: cannot register extra attributes for %s\n",
3476 			       mdname(mddev));
3477 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3478 	}
3479 	if (oldpers->sync_request != NULL &&
3480 	    pers->sync_request == NULL) {
3481 		/* need to remove the md_redundancy_group */
3482 		if (mddev->to_remove == NULL)
3483 			mddev->to_remove = &md_redundancy_group;
3484 	}
3485 
3486 	rdev_for_each(rdev, mddev) {
3487 		if (rdev->raid_disk < 0)
3488 			continue;
3489 		if (rdev->new_raid_disk >= mddev->raid_disks)
3490 			rdev->new_raid_disk = -1;
3491 		if (rdev->new_raid_disk == rdev->raid_disk)
3492 			continue;
3493 		sysfs_unlink_rdev(mddev, rdev);
3494 	}
3495 	rdev_for_each(rdev, mddev) {
3496 		if (rdev->raid_disk < 0)
3497 			continue;
3498 		if (rdev->new_raid_disk == rdev->raid_disk)
3499 			continue;
3500 		rdev->raid_disk = rdev->new_raid_disk;
3501 		if (rdev->raid_disk < 0)
3502 			clear_bit(In_sync, &rdev->flags);
3503 		else {
3504 			if (sysfs_link_rdev(mddev, rdev))
3505 				printk(KERN_WARNING "md: cannot register rd%d"
3506 				       " for %s after level change\n",
3507 				       rdev->raid_disk, mdname(mddev));
3508 		}
3509 	}
3510 
3511 	if (pers->sync_request == NULL) {
3512 		/* this is now an array without redundancy, so
3513 		 * it must always be in_sync
3514 		 */
3515 		mddev->in_sync = 1;
3516 		del_timer_sync(&mddev->safemode_timer);
3517 	}
3518 	blk_set_stacking_limits(&mddev->queue->limits);
3519 	pers->run(mddev);
3520 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3521 	mddev_resume(mddev);
3522 	if (!mddev->thread)
3523 		md_update_sb(mddev, 1);
3524 	sysfs_notify(&mddev->kobj, NULL, "level");
3525 	md_new_event(mddev);
3526 	rv = len;
3527 out_unlock:
3528 	mddev_unlock(mddev);
3529 	return rv;
3530 }
3531 
3532 static struct md_sysfs_entry md_level =
3533 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3534 
3535 static ssize_t
layout_show(struct mddev * mddev,char * page)3536 layout_show(struct mddev *mddev, char *page)
3537 {
3538 	/* just a number, not meaningful for all levels */
3539 	if (mddev->reshape_position != MaxSector &&
3540 	    mddev->layout != mddev->new_layout)
3541 		return sprintf(page, "%d (%d)\n",
3542 			       mddev->new_layout, mddev->layout);
3543 	return sprintf(page, "%d\n", mddev->layout);
3544 }
3545 
3546 static ssize_t
layout_store(struct mddev * mddev,const char * buf,size_t len)3547 layout_store(struct mddev *mddev, const char *buf, size_t len)
3548 {
3549 	char *e;
3550 	unsigned long n = simple_strtoul(buf, &e, 10);
3551 	int err;
3552 
3553 	if (!*buf || (*e && *e != '\n'))
3554 		return -EINVAL;
3555 	err = mddev_lock(mddev);
3556 	if (err)
3557 		return err;
3558 
3559 	if (mddev->pers) {
3560 		if (mddev->pers->check_reshape == NULL)
3561 			err = -EBUSY;
3562 		else if (mddev->ro)
3563 			err = -EROFS;
3564 		else {
3565 			mddev->new_layout = n;
3566 			err = mddev->pers->check_reshape(mddev);
3567 			if (err)
3568 				mddev->new_layout = mddev->layout;
3569 		}
3570 	} else {
3571 		mddev->new_layout = n;
3572 		if (mddev->reshape_position == MaxSector)
3573 			mddev->layout = n;
3574 	}
3575 	mddev_unlock(mddev);
3576 	return err ?: len;
3577 }
3578 static struct md_sysfs_entry md_layout =
3579 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3580 
3581 static ssize_t
raid_disks_show(struct mddev * mddev,char * page)3582 raid_disks_show(struct mddev *mddev, char *page)
3583 {
3584 	if (mddev->raid_disks == 0)
3585 		return 0;
3586 	if (mddev->reshape_position != MaxSector &&
3587 	    mddev->delta_disks != 0)
3588 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3589 			       mddev->raid_disks - mddev->delta_disks);
3590 	return sprintf(page, "%d\n", mddev->raid_disks);
3591 }
3592 
3593 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3594 
3595 static ssize_t
raid_disks_store(struct mddev * mddev,const char * buf,size_t len)3596 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3597 {
3598 	char *e;
3599 	int err;
3600 	unsigned long n = simple_strtoul(buf, &e, 10);
3601 
3602 	if (!*buf || (*e && *e != '\n'))
3603 		return -EINVAL;
3604 
3605 	err = mddev_lock(mddev);
3606 	if (err)
3607 		return err;
3608 	if (mddev->pers)
3609 		err = update_raid_disks(mddev, n);
3610 	else if (mddev->reshape_position != MaxSector) {
3611 		struct md_rdev *rdev;
3612 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3613 
3614 		err = -EINVAL;
3615 		rdev_for_each(rdev, mddev) {
3616 			if (olddisks < n &&
3617 			    rdev->data_offset < rdev->new_data_offset)
3618 				goto out_unlock;
3619 			if (olddisks > n &&
3620 			    rdev->data_offset > rdev->new_data_offset)
3621 				goto out_unlock;
3622 		}
3623 		err = 0;
3624 		mddev->delta_disks = n - olddisks;
3625 		mddev->raid_disks = n;
3626 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3627 	} else
3628 		mddev->raid_disks = n;
3629 out_unlock:
3630 	mddev_unlock(mddev);
3631 	return err ? err : len;
3632 }
3633 static struct md_sysfs_entry md_raid_disks =
3634 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3635 
3636 static ssize_t
chunk_size_show(struct mddev * mddev,char * page)3637 chunk_size_show(struct mddev *mddev, char *page)
3638 {
3639 	if (mddev->reshape_position != MaxSector &&
3640 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3641 		return sprintf(page, "%d (%d)\n",
3642 			       mddev->new_chunk_sectors << 9,
3643 			       mddev->chunk_sectors << 9);
3644 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3645 }
3646 
3647 static ssize_t
chunk_size_store(struct mddev * mddev,const char * buf,size_t len)3648 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3649 {
3650 	int err;
3651 	char *e;
3652 	unsigned long n = simple_strtoul(buf, &e, 10);
3653 
3654 	if (!*buf || (*e && *e != '\n'))
3655 		return -EINVAL;
3656 
3657 	err = mddev_lock(mddev);
3658 	if (err)
3659 		return err;
3660 	if (mddev->pers) {
3661 		if (mddev->pers->check_reshape == NULL)
3662 			err = -EBUSY;
3663 		else if (mddev->ro)
3664 			err = -EROFS;
3665 		else {
3666 			mddev->new_chunk_sectors = n >> 9;
3667 			err = mddev->pers->check_reshape(mddev);
3668 			if (err)
3669 				mddev->new_chunk_sectors = mddev->chunk_sectors;
3670 		}
3671 	} else {
3672 		mddev->new_chunk_sectors = n >> 9;
3673 		if (mddev->reshape_position == MaxSector)
3674 			mddev->chunk_sectors = n >> 9;
3675 	}
3676 	mddev_unlock(mddev);
3677 	return err ?: len;
3678 }
3679 static struct md_sysfs_entry md_chunk_size =
3680 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3681 
3682 static ssize_t
resync_start_show(struct mddev * mddev,char * page)3683 resync_start_show(struct mddev *mddev, char *page)
3684 {
3685 	if (mddev->recovery_cp == MaxSector)
3686 		return sprintf(page, "none\n");
3687 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3688 }
3689 
3690 static ssize_t
resync_start_store(struct mddev * mddev,const char * buf,size_t len)3691 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3692 {
3693 	int err;
3694 	char *e;
3695 	unsigned long long n = simple_strtoull(buf, &e, 10);
3696 
3697 	err = mddev_lock(mddev);
3698 	if (err)
3699 		return err;
3700 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3701 		err = -EBUSY;
3702 	else if (cmd_match(buf, "none"))
3703 		n = MaxSector;
3704 	else if (!*buf || (*e && *e != '\n'))
3705 		err = -EINVAL;
3706 
3707 	if (!err) {
3708 		mddev->recovery_cp = n;
3709 		if (mddev->pers)
3710 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3711 	}
3712 	mddev_unlock(mddev);
3713 	return err ?: len;
3714 }
3715 static struct md_sysfs_entry md_resync_start =
3716 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3717 		resync_start_show, resync_start_store);
3718 
3719 /*
3720  * The array state can be:
3721  *
3722  * clear
3723  *     No devices, no size, no level
3724  *     Equivalent to STOP_ARRAY ioctl
3725  * inactive
3726  *     May have some settings, but array is not active
3727  *        all IO results in error
3728  *     When written, doesn't tear down array, but just stops it
3729  * suspended (not supported yet)
3730  *     All IO requests will block. The array can be reconfigured.
3731  *     Writing this, if accepted, will block until array is quiescent
3732  * readonly
3733  *     no resync can happen.  no superblocks get written.
3734  *     write requests fail
3735  * read-auto
3736  *     like readonly, but behaves like 'clean' on a write request.
3737  *
3738  * clean - no pending writes, but otherwise active.
3739  *     When written to inactive array, starts without resync
3740  *     If a write request arrives then
3741  *       if metadata is known, mark 'dirty' and switch to 'active'.
3742  *       if not known, block and switch to write-pending
3743  *     If written to an active array that has pending writes, then fails.
3744  * active
3745  *     fully active: IO and resync can be happening.
3746  *     When written to inactive array, starts with resync
3747  *
3748  * write-pending
3749  *     clean, but writes are blocked waiting for 'active' to be written.
3750  *
3751  * active-idle
3752  *     like active, but no writes have been seen for a while (100msec).
3753  *
3754  */
3755 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3756 		   write_pending, active_idle, bad_word};
3757 static char *array_states[] = {
3758 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3759 	"write-pending", "active-idle", NULL };
3760 
match_word(const char * word,char ** list)3761 static int match_word(const char *word, char **list)
3762 {
3763 	int n;
3764 	for (n=0; list[n]; n++)
3765 		if (cmd_match(word, list[n]))
3766 			break;
3767 	return n;
3768 }
3769 
3770 static ssize_t
array_state_show(struct mddev * mddev,char * page)3771 array_state_show(struct mddev *mddev, char *page)
3772 {
3773 	enum array_state st = inactive;
3774 
3775 	if (mddev->pers)
3776 		switch(mddev->ro) {
3777 		case 1:
3778 			st = readonly;
3779 			break;
3780 		case 2:
3781 			st = read_auto;
3782 			break;
3783 		case 0:
3784 			if (mddev->in_sync)
3785 				st = clean;
3786 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3787 				st = write_pending;
3788 			else if (mddev->safemode)
3789 				st = active_idle;
3790 			else
3791 				st = active;
3792 		}
3793 	else {
3794 		if (list_empty(&mddev->disks) &&
3795 		    mddev->raid_disks == 0 &&
3796 		    mddev->dev_sectors == 0)
3797 			st = clear;
3798 		else
3799 			st = inactive;
3800 	}
3801 	return sprintf(page, "%s\n", array_states[st]);
3802 }
3803 
3804 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3805 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3806 static int do_md_run(struct mddev *mddev);
3807 static int restart_array(struct mddev *mddev);
3808 
3809 static ssize_t
array_state_store(struct mddev * mddev,const char * buf,size_t len)3810 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3811 {
3812 	int err;
3813 	enum array_state st = match_word(buf, array_states);
3814 
3815 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3816 		/* don't take reconfig_mutex when toggling between
3817 		 * clean and active
3818 		 */
3819 		spin_lock(&mddev->lock);
3820 		if (st == active) {
3821 			restart_array(mddev);
3822 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3823 			wake_up(&mddev->sb_wait);
3824 			err = 0;
3825 		} else /* st == clean */ {
3826 			restart_array(mddev);
3827 			if (atomic_read(&mddev->writes_pending) == 0) {
3828 				if (mddev->in_sync == 0) {
3829 					mddev->in_sync = 1;
3830 					if (mddev->safemode == 1)
3831 						mddev->safemode = 0;
3832 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3833 				}
3834 				err = 0;
3835 			} else
3836 				err = -EBUSY;
3837 		}
3838 		spin_unlock(&mddev->lock);
3839 		return err ?: len;
3840 	}
3841 	err = mddev_lock(mddev);
3842 	if (err)
3843 		return err;
3844 	err = -EINVAL;
3845 	switch(st) {
3846 	case bad_word:
3847 		break;
3848 	case clear:
3849 		/* stopping an active array */
3850 		err = do_md_stop(mddev, 0, NULL);
3851 		break;
3852 	case inactive:
3853 		/* stopping an active array */
3854 		if (mddev->pers)
3855 			err = do_md_stop(mddev, 2, NULL);
3856 		else
3857 			err = 0; /* already inactive */
3858 		break;
3859 	case suspended:
3860 		break; /* not supported yet */
3861 	case readonly:
3862 		if (mddev->pers)
3863 			err = md_set_readonly(mddev, NULL);
3864 		else {
3865 			mddev->ro = 1;
3866 			set_disk_ro(mddev->gendisk, 1);
3867 			err = do_md_run(mddev);
3868 		}
3869 		break;
3870 	case read_auto:
3871 		if (mddev->pers) {
3872 			if (mddev->ro == 0)
3873 				err = md_set_readonly(mddev, NULL);
3874 			else if (mddev->ro == 1)
3875 				err = restart_array(mddev);
3876 			if (err == 0) {
3877 				mddev->ro = 2;
3878 				set_disk_ro(mddev->gendisk, 0);
3879 			}
3880 		} else {
3881 			mddev->ro = 2;
3882 			err = do_md_run(mddev);
3883 		}
3884 		break;
3885 	case clean:
3886 		if (mddev->pers) {
3887 			restart_array(mddev);
3888 			spin_lock(&mddev->lock);
3889 			if (atomic_read(&mddev->writes_pending) == 0) {
3890 				if (mddev->in_sync == 0) {
3891 					mddev->in_sync = 1;
3892 					if (mddev->safemode == 1)
3893 						mddev->safemode = 0;
3894 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3895 				}
3896 				err = 0;
3897 			} else
3898 				err = -EBUSY;
3899 			spin_unlock(&mddev->lock);
3900 		} else
3901 			err = -EINVAL;
3902 		break;
3903 	case active:
3904 		if (mddev->pers) {
3905 			restart_array(mddev);
3906 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3907 			wake_up(&mddev->sb_wait);
3908 			err = 0;
3909 		} else {
3910 			mddev->ro = 0;
3911 			set_disk_ro(mddev->gendisk, 0);
3912 			err = do_md_run(mddev);
3913 		}
3914 		break;
3915 	case write_pending:
3916 	case active_idle:
3917 		/* these cannot be set */
3918 		break;
3919 	}
3920 
3921 	if (!err) {
3922 		if (mddev->hold_active == UNTIL_IOCTL)
3923 			mddev->hold_active = 0;
3924 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3925 	}
3926 	mddev_unlock(mddev);
3927 	return err ?: len;
3928 }
3929 static struct md_sysfs_entry md_array_state =
3930 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3931 
3932 static ssize_t
max_corrected_read_errors_show(struct mddev * mddev,char * page)3933 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3934 	return sprintf(page, "%d\n",
3935 		       atomic_read(&mddev->max_corr_read_errors));
3936 }
3937 
3938 static ssize_t
max_corrected_read_errors_store(struct mddev * mddev,const char * buf,size_t len)3939 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3940 {
3941 	char *e;
3942 	unsigned long n = simple_strtoul(buf, &e, 10);
3943 
3944 	if (*buf && (*e == 0 || *e == '\n')) {
3945 		atomic_set(&mddev->max_corr_read_errors, n);
3946 		return len;
3947 	}
3948 	return -EINVAL;
3949 }
3950 
3951 static struct md_sysfs_entry max_corr_read_errors =
3952 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3953 	max_corrected_read_errors_store);
3954 
3955 static ssize_t
null_show(struct mddev * mddev,char * page)3956 null_show(struct mddev *mddev, char *page)
3957 {
3958 	return -EINVAL;
3959 }
3960 
3961 static ssize_t
new_dev_store(struct mddev * mddev,const char * buf,size_t len)3962 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3963 {
3964 	/* buf must be %d:%d\n? giving major and minor numbers */
3965 	/* The new device is added to the array.
3966 	 * If the array has a persistent superblock, we read the
3967 	 * superblock to initialise info and check validity.
3968 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3969 	 * which mainly checks size.
3970 	 */
3971 	char *e;
3972 	int major = simple_strtoul(buf, &e, 10);
3973 	int minor;
3974 	dev_t dev;
3975 	struct md_rdev *rdev;
3976 	int err;
3977 
3978 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3979 		return -EINVAL;
3980 	minor = simple_strtoul(e+1, &e, 10);
3981 	if (*e && *e != '\n')
3982 		return -EINVAL;
3983 	dev = MKDEV(major, minor);
3984 	if (major != MAJOR(dev) ||
3985 	    minor != MINOR(dev))
3986 		return -EOVERFLOW;
3987 
3988 	flush_workqueue(md_misc_wq);
3989 
3990 	err = mddev_lock(mddev);
3991 	if (err)
3992 		return err;
3993 	if (mddev->persistent) {
3994 		rdev = md_import_device(dev, mddev->major_version,
3995 					mddev->minor_version);
3996 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3997 			struct md_rdev *rdev0
3998 				= list_entry(mddev->disks.next,
3999 					     struct md_rdev, same_set);
4000 			err = super_types[mddev->major_version]
4001 				.load_super(rdev, rdev0, mddev->minor_version);
4002 			if (err < 0)
4003 				goto out;
4004 		}
4005 	} else if (mddev->external)
4006 		rdev = md_import_device(dev, -2, -1);
4007 	else
4008 		rdev = md_import_device(dev, -1, -1);
4009 
4010 	if (IS_ERR(rdev)) {
4011 		mddev_unlock(mddev);
4012 		return PTR_ERR(rdev);
4013 	}
4014 	err = bind_rdev_to_array(rdev, mddev);
4015  out:
4016 	if (err)
4017 		export_rdev(rdev);
4018 	mddev_unlock(mddev);
4019 	return err ? err : len;
4020 }
4021 
4022 static struct md_sysfs_entry md_new_device =
4023 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4024 
4025 static ssize_t
bitmap_store(struct mddev * mddev,const char * buf,size_t len)4026 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4027 {
4028 	char *end;
4029 	unsigned long chunk, end_chunk;
4030 	int err;
4031 
4032 	err = mddev_lock(mddev);
4033 	if (err)
4034 		return err;
4035 	if (!mddev->bitmap)
4036 		goto out;
4037 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4038 	while (*buf) {
4039 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4040 		if (buf == end) break;
4041 		if (*end == '-') { /* range */
4042 			buf = end + 1;
4043 			end_chunk = simple_strtoul(buf, &end, 0);
4044 			if (buf == end) break;
4045 		}
4046 		if (*end && !isspace(*end)) break;
4047 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4048 		buf = skip_spaces(end);
4049 	}
4050 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4051 out:
4052 	mddev_unlock(mddev);
4053 	return len;
4054 }
4055 
4056 static struct md_sysfs_entry md_bitmap =
4057 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4058 
4059 static ssize_t
size_show(struct mddev * mddev,char * page)4060 size_show(struct mddev *mddev, char *page)
4061 {
4062 	return sprintf(page, "%llu\n",
4063 		(unsigned long long)mddev->dev_sectors / 2);
4064 }
4065 
4066 static int update_size(struct mddev *mddev, sector_t num_sectors);
4067 
4068 static ssize_t
size_store(struct mddev * mddev,const char * buf,size_t len)4069 size_store(struct mddev *mddev, const char *buf, size_t len)
4070 {
4071 	/* If array is inactive, we can reduce the component size, but
4072 	 * not increase it (except from 0).
4073 	 * If array is active, we can try an on-line resize
4074 	 */
4075 	sector_t sectors;
4076 	int err = strict_blocks_to_sectors(buf, &sectors);
4077 
4078 	if (err < 0)
4079 		return err;
4080 	err = mddev_lock(mddev);
4081 	if (err)
4082 		return err;
4083 	if (mddev->pers) {
4084 		if (mddev_is_clustered(mddev))
4085 			md_cluster_ops->metadata_update_start(mddev);
4086 		err = update_size(mddev, sectors);
4087 		md_update_sb(mddev, 1);
4088 		if (mddev_is_clustered(mddev))
4089 			md_cluster_ops->metadata_update_finish(mddev);
4090 	} else {
4091 		if (mddev->dev_sectors == 0 ||
4092 		    mddev->dev_sectors > sectors)
4093 			mddev->dev_sectors = sectors;
4094 		else
4095 			err = -ENOSPC;
4096 	}
4097 	mddev_unlock(mddev);
4098 	return err ? err : len;
4099 }
4100 
4101 static struct md_sysfs_entry md_size =
4102 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4103 
4104 /* Metadata version.
4105  * This is one of
4106  *   'none' for arrays with no metadata (good luck...)
4107  *   'external' for arrays with externally managed metadata,
4108  * or N.M for internally known formats
4109  */
4110 static ssize_t
metadata_show(struct mddev * mddev,char * page)4111 metadata_show(struct mddev *mddev, char *page)
4112 {
4113 	if (mddev->persistent)
4114 		return sprintf(page, "%d.%d\n",
4115 			       mddev->major_version, mddev->minor_version);
4116 	else if (mddev->external)
4117 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4118 	else
4119 		return sprintf(page, "none\n");
4120 }
4121 
4122 static ssize_t
metadata_store(struct mddev * mddev,const char * buf,size_t len)4123 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4124 {
4125 	int major, minor;
4126 	char *e;
4127 	int err;
4128 	/* Changing the details of 'external' metadata is
4129 	 * always permitted.  Otherwise there must be
4130 	 * no devices attached to the array.
4131 	 */
4132 
4133 	err = mddev_lock(mddev);
4134 	if (err)
4135 		return err;
4136 	err = -EBUSY;
4137 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4138 		;
4139 	else if (!list_empty(&mddev->disks))
4140 		goto out_unlock;
4141 
4142 	err = 0;
4143 	if (cmd_match(buf, "none")) {
4144 		mddev->persistent = 0;
4145 		mddev->external = 0;
4146 		mddev->major_version = 0;
4147 		mddev->minor_version = 90;
4148 		goto out_unlock;
4149 	}
4150 	if (strncmp(buf, "external:", 9) == 0) {
4151 		size_t namelen = len-9;
4152 		if (namelen >= sizeof(mddev->metadata_type))
4153 			namelen = sizeof(mddev->metadata_type)-1;
4154 		strncpy(mddev->metadata_type, buf+9, namelen);
4155 		mddev->metadata_type[namelen] = 0;
4156 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4157 			mddev->metadata_type[--namelen] = 0;
4158 		mddev->persistent = 0;
4159 		mddev->external = 1;
4160 		mddev->major_version = 0;
4161 		mddev->minor_version = 90;
4162 		goto out_unlock;
4163 	}
4164 	major = simple_strtoul(buf, &e, 10);
4165 	err = -EINVAL;
4166 	if (e==buf || *e != '.')
4167 		goto out_unlock;
4168 	buf = e+1;
4169 	minor = simple_strtoul(buf, &e, 10);
4170 	if (e==buf || (*e && *e != '\n') )
4171 		goto out_unlock;
4172 	err = -ENOENT;
4173 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4174 		goto out_unlock;
4175 	mddev->major_version = major;
4176 	mddev->minor_version = minor;
4177 	mddev->persistent = 1;
4178 	mddev->external = 0;
4179 	err = 0;
4180 out_unlock:
4181 	mddev_unlock(mddev);
4182 	return err ?: len;
4183 }
4184 
4185 static struct md_sysfs_entry md_metadata =
4186 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4187 
4188 static ssize_t
action_show(struct mddev * mddev,char * page)4189 action_show(struct mddev *mddev, char *page)
4190 {
4191 	char *type = "idle";
4192 	unsigned long recovery = mddev->recovery;
4193 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4194 		type = "frozen";
4195 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4196 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4197 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4198 			type = "reshape";
4199 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4200 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4201 				type = "resync";
4202 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4203 				type = "check";
4204 			else
4205 				type = "repair";
4206 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4207 			type = "recover";
4208 	}
4209 	return sprintf(page, "%s\n", type);
4210 }
4211 
4212 static ssize_t
action_store(struct mddev * mddev,const char * page,size_t len)4213 action_store(struct mddev *mddev, const char *page, size_t len)
4214 {
4215 	if (!mddev->pers || !mddev->pers->sync_request)
4216 		return -EINVAL;
4217 
4218 
4219 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4220 		if (cmd_match(page, "frozen"))
4221 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4222 		else
4223 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4224 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4225 		    mddev_lock(mddev) == 0) {
4226 			flush_workqueue(md_misc_wq);
4227 			if (mddev->sync_thread) {
4228 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4229 				md_reap_sync_thread(mddev);
4230 			}
4231 			mddev_unlock(mddev);
4232 		}
4233 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4234 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4235 		return -EBUSY;
4236 	else if (cmd_match(page, "resync"))
4237 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4238 	else if (cmd_match(page, "recover")) {
4239 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4240 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4241 	} else if (cmd_match(page, "reshape")) {
4242 		int err;
4243 		if (mddev->pers->start_reshape == NULL)
4244 			return -EINVAL;
4245 		err = mddev_lock(mddev);
4246 		if (!err) {
4247 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4248 			err = mddev->pers->start_reshape(mddev);
4249 			mddev_unlock(mddev);
4250 		}
4251 		if (err)
4252 			return err;
4253 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4254 	} else {
4255 		if (cmd_match(page, "check"))
4256 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4257 		else if (!cmd_match(page, "repair"))
4258 			return -EINVAL;
4259 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4260 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4261 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4262 	}
4263 	if (mddev->ro == 2) {
4264 		/* A write to sync_action is enough to justify
4265 		 * canceling read-auto mode
4266 		 */
4267 		mddev->ro = 0;
4268 		md_wakeup_thread(mddev->sync_thread);
4269 	}
4270 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4271 	md_wakeup_thread(mddev->thread);
4272 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4273 	return len;
4274 }
4275 
4276 static struct md_sysfs_entry md_scan_mode =
4277 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4278 
4279 static ssize_t
last_sync_action_show(struct mddev * mddev,char * page)4280 last_sync_action_show(struct mddev *mddev, char *page)
4281 {
4282 	return sprintf(page, "%s\n", mddev->last_sync_action);
4283 }
4284 
4285 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4286 
4287 static ssize_t
mismatch_cnt_show(struct mddev * mddev,char * page)4288 mismatch_cnt_show(struct mddev *mddev, char *page)
4289 {
4290 	return sprintf(page, "%llu\n",
4291 		       (unsigned long long)
4292 		       atomic64_read(&mddev->resync_mismatches));
4293 }
4294 
4295 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4296 
4297 static ssize_t
sync_min_show(struct mddev * mddev,char * page)4298 sync_min_show(struct mddev *mddev, char *page)
4299 {
4300 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4301 		       mddev->sync_speed_min ? "local": "system");
4302 }
4303 
4304 static ssize_t
sync_min_store(struct mddev * mddev,const char * buf,size_t len)4305 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4306 {
4307 	int min;
4308 	char *e;
4309 	if (strncmp(buf, "system", 6)==0) {
4310 		mddev->sync_speed_min = 0;
4311 		return len;
4312 	}
4313 	min = simple_strtoul(buf, &e, 10);
4314 	if (buf == e || (*e && *e != '\n') || min <= 0)
4315 		return -EINVAL;
4316 	mddev->sync_speed_min = min;
4317 	return len;
4318 }
4319 
4320 static struct md_sysfs_entry md_sync_min =
4321 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4322 
4323 static ssize_t
sync_max_show(struct mddev * mddev,char * page)4324 sync_max_show(struct mddev *mddev, char *page)
4325 {
4326 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4327 		       mddev->sync_speed_max ? "local": "system");
4328 }
4329 
4330 static ssize_t
sync_max_store(struct mddev * mddev,const char * buf,size_t len)4331 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4332 {
4333 	int max;
4334 	char *e;
4335 	if (strncmp(buf, "system", 6)==0) {
4336 		mddev->sync_speed_max = 0;
4337 		return len;
4338 	}
4339 	max = simple_strtoul(buf, &e, 10);
4340 	if (buf == e || (*e && *e != '\n') || max <= 0)
4341 		return -EINVAL;
4342 	mddev->sync_speed_max = max;
4343 	return len;
4344 }
4345 
4346 static struct md_sysfs_entry md_sync_max =
4347 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4348 
4349 static ssize_t
degraded_show(struct mddev * mddev,char * page)4350 degraded_show(struct mddev *mddev, char *page)
4351 {
4352 	return sprintf(page, "%d\n", mddev->degraded);
4353 }
4354 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4355 
4356 static ssize_t
sync_force_parallel_show(struct mddev * mddev,char * page)4357 sync_force_parallel_show(struct mddev *mddev, char *page)
4358 {
4359 	return sprintf(page, "%d\n", mddev->parallel_resync);
4360 }
4361 
4362 static ssize_t
sync_force_parallel_store(struct mddev * mddev,const char * buf,size_t len)4363 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4364 {
4365 	long n;
4366 
4367 	if (kstrtol(buf, 10, &n))
4368 		return -EINVAL;
4369 
4370 	if (n != 0 && n != 1)
4371 		return -EINVAL;
4372 
4373 	mddev->parallel_resync = n;
4374 
4375 	if (mddev->sync_thread)
4376 		wake_up(&resync_wait);
4377 
4378 	return len;
4379 }
4380 
4381 /* force parallel resync, even with shared block devices */
4382 static struct md_sysfs_entry md_sync_force_parallel =
4383 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4384        sync_force_parallel_show, sync_force_parallel_store);
4385 
4386 static ssize_t
sync_speed_show(struct mddev * mddev,char * page)4387 sync_speed_show(struct mddev *mddev, char *page)
4388 {
4389 	unsigned long resync, dt, db;
4390 	if (mddev->curr_resync == 0)
4391 		return sprintf(page, "none\n");
4392 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4393 	dt = (jiffies - mddev->resync_mark) / HZ;
4394 	if (!dt) dt++;
4395 	db = resync - mddev->resync_mark_cnt;
4396 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4397 }
4398 
4399 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4400 
4401 static ssize_t
sync_completed_show(struct mddev * mddev,char * page)4402 sync_completed_show(struct mddev *mddev, char *page)
4403 {
4404 	unsigned long long max_sectors, resync;
4405 
4406 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4407 		return sprintf(page, "none\n");
4408 
4409 	if (mddev->curr_resync == 1 ||
4410 	    mddev->curr_resync == 2)
4411 		return sprintf(page, "delayed\n");
4412 
4413 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4414 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4415 		max_sectors = mddev->resync_max_sectors;
4416 	else
4417 		max_sectors = mddev->dev_sectors;
4418 
4419 	resync = mddev->curr_resync_completed;
4420 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4421 }
4422 
4423 static struct md_sysfs_entry md_sync_completed =
4424 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4425 
4426 static ssize_t
min_sync_show(struct mddev * mddev,char * page)4427 min_sync_show(struct mddev *mddev, char *page)
4428 {
4429 	return sprintf(page, "%llu\n",
4430 		       (unsigned long long)mddev->resync_min);
4431 }
4432 static ssize_t
min_sync_store(struct mddev * mddev,const char * buf,size_t len)4433 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4434 {
4435 	unsigned long long min;
4436 	int err;
4437 
4438 	if (kstrtoull(buf, 10, &min))
4439 		return -EINVAL;
4440 
4441 	spin_lock(&mddev->lock);
4442 	err = -EINVAL;
4443 	if (min > mddev->resync_max)
4444 		goto out_unlock;
4445 
4446 	err = -EBUSY;
4447 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4448 		goto out_unlock;
4449 
4450 	/* Round down to multiple of 4K for safety */
4451 	mddev->resync_min = round_down(min, 8);
4452 	err = 0;
4453 
4454 out_unlock:
4455 	spin_unlock(&mddev->lock);
4456 	return err ?: len;
4457 }
4458 
4459 static struct md_sysfs_entry md_min_sync =
4460 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4461 
4462 static ssize_t
max_sync_show(struct mddev * mddev,char * page)4463 max_sync_show(struct mddev *mddev, char *page)
4464 {
4465 	if (mddev->resync_max == MaxSector)
4466 		return sprintf(page, "max\n");
4467 	else
4468 		return sprintf(page, "%llu\n",
4469 			       (unsigned long long)mddev->resync_max);
4470 }
4471 static ssize_t
max_sync_store(struct mddev * mddev,const char * buf,size_t len)4472 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4473 {
4474 	int err;
4475 	spin_lock(&mddev->lock);
4476 	if (strncmp(buf, "max", 3) == 0)
4477 		mddev->resync_max = MaxSector;
4478 	else {
4479 		unsigned long long max;
4480 		int chunk;
4481 
4482 		err = -EINVAL;
4483 		if (kstrtoull(buf, 10, &max))
4484 			goto out_unlock;
4485 		if (max < mddev->resync_min)
4486 			goto out_unlock;
4487 
4488 		err = -EBUSY;
4489 		if (max < mddev->resync_max &&
4490 		    mddev->ro == 0 &&
4491 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4492 			goto out_unlock;
4493 
4494 		/* Must be a multiple of chunk_size */
4495 		chunk = mddev->chunk_sectors;
4496 		if (chunk) {
4497 			sector_t temp = max;
4498 
4499 			err = -EINVAL;
4500 			if (sector_div(temp, chunk))
4501 				goto out_unlock;
4502 		}
4503 		mddev->resync_max = max;
4504 	}
4505 	wake_up(&mddev->recovery_wait);
4506 	err = 0;
4507 out_unlock:
4508 	spin_unlock(&mddev->lock);
4509 	return err ?: len;
4510 }
4511 
4512 static struct md_sysfs_entry md_max_sync =
4513 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4514 
4515 static ssize_t
suspend_lo_show(struct mddev * mddev,char * page)4516 suspend_lo_show(struct mddev *mddev, char *page)
4517 {
4518 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4519 }
4520 
4521 static ssize_t
suspend_lo_store(struct mddev * mddev,const char * buf,size_t len)4522 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4523 {
4524 	char *e;
4525 	unsigned long long new = simple_strtoull(buf, &e, 10);
4526 	unsigned long long old;
4527 	int err;
4528 
4529 	if (buf == e || (*e && *e != '\n'))
4530 		return -EINVAL;
4531 
4532 	err = mddev_lock(mddev);
4533 	if (err)
4534 		return err;
4535 	err = -EINVAL;
4536 	if (mddev->pers == NULL ||
4537 	    mddev->pers->quiesce == NULL)
4538 		goto unlock;
4539 	old = mddev->suspend_lo;
4540 	mddev->suspend_lo = new;
4541 	if (new >= old)
4542 		/* Shrinking suspended region */
4543 		mddev->pers->quiesce(mddev, 2);
4544 	else {
4545 		/* Expanding suspended region - need to wait */
4546 		mddev->pers->quiesce(mddev, 1);
4547 		mddev->pers->quiesce(mddev, 0);
4548 	}
4549 	err = 0;
4550 unlock:
4551 	mddev_unlock(mddev);
4552 	return err ?: len;
4553 }
4554 static struct md_sysfs_entry md_suspend_lo =
4555 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4556 
4557 static ssize_t
suspend_hi_show(struct mddev * mddev,char * page)4558 suspend_hi_show(struct mddev *mddev, char *page)
4559 {
4560 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4561 }
4562 
4563 static ssize_t
suspend_hi_store(struct mddev * mddev,const char * buf,size_t len)4564 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4565 {
4566 	char *e;
4567 	unsigned long long new = simple_strtoull(buf, &e, 10);
4568 	unsigned long long old;
4569 	int err;
4570 
4571 	if (buf == e || (*e && *e != '\n'))
4572 		return -EINVAL;
4573 
4574 	err = mddev_lock(mddev);
4575 	if (err)
4576 		return err;
4577 	err = -EINVAL;
4578 	if (mddev->pers == NULL ||
4579 	    mddev->pers->quiesce == NULL)
4580 		goto unlock;
4581 	old = mddev->suspend_hi;
4582 	mddev->suspend_hi = new;
4583 	if (new <= old)
4584 		/* Shrinking suspended region */
4585 		mddev->pers->quiesce(mddev, 2);
4586 	else {
4587 		/* Expanding suspended region - need to wait */
4588 		mddev->pers->quiesce(mddev, 1);
4589 		mddev->pers->quiesce(mddev, 0);
4590 	}
4591 	err = 0;
4592 unlock:
4593 	mddev_unlock(mddev);
4594 	return err ?: len;
4595 }
4596 static struct md_sysfs_entry md_suspend_hi =
4597 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4598 
4599 static ssize_t
reshape_position_show(struct mddev * mddev,char * page)4600 reshape_position_show(struct mddev *mddev, char *page)
4601 {
4602 	if (mddev->reshape_position != MaxSector)
4603 		return sprintf(page, "%llu\n",
4604 			       (unsigned long long)mddev->reshape_position);
4605 	strcpy(page, "none\n");
4606 	return 5;
4607 }
4608 
4609 static ssize_t
reshape_position_store(struct mddev * mddev,const char * buf,size_t len)4610 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4611 {
4612 	struct md_rdev *rdev;
4613 	char *e;
4614 	int err;
4615 	unsigned long long new = simple_strtoull(buf, &e, 10);
4616 
4617 	if (buf == e || (*e && *e != '\n'))
4618 		return -EINVAL;
4619 	err = mddev_lock(mddev);
4620 	if (err)
4621 		return err;
4622 	err = -EBUSY;
4623 	if (mddev->pers)
4624 		goto unlock;
4625 	mddev->reshape_position = new;
4626 	mddev->delta_disks = 0;
4627 	mddev->reshape_backwards = 0;
4628 	mddev->new_level = mddev->level;
4629 	mddev->new_layout = mddev->layout;
4630 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4631 	rdev_for_each(rdev, mddev)
4632 		rdev->new_data_offset = rdev->data_offset;
4633 	err = 0;
4634 unlock:
4635 	mddev_unlock(mddev);
4636 	return err ?: len;
4637 }
4638 
4639 static struct md_sysfs_entry md_reshape_position =
4640 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4641        reshape_position_store);
4642 
4643 static ssize_t
reshape_direction_show(struct mddev * mddev,char * page)4644 reshape_direction_show(struct mddev *mddev, char *page)
4645 {
4646 	return sprintf(page, "%s\n",
4647 		       mddev->reshape_backwards ? "backwards" : "forwards");
4648 }
4649 
4650 static ssize_t
reshape_direction_store(struct mddev * mddev,const char * buf,size_t len)4651 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4652 {
4653 	int backwards = 0;
4654 	int err;
4655 
4656 	if (cmd_match(buf, "forwards"))
4657 		backwards = 0;
4658 	else if (cmd_match(buf, "backwards"))
4659 		backwards = 1;
4660 	else
4661 		return -EINVAL;
4662 	if (mddev->reshape_backwards == backwards)
4663 		return len;
4664 
4665 	err = mddev_lock(mddev);
4666 	if (err)
4667 		return err;
4668 	/* check if we are allowed to change */
4669 	if (mddev->delta_disks)
4670 		err = -EBUSY;
4671 	else if (mddev->persistent &&
4672 	    mddev->major_version == 0)
4673 		err =  -EINVAL;
4674 	else
4675 		mddev->reshape_backwards = backwards;
4676 	mddev_unlock(mddev);
4677 	return err ?: len;
4678 }
4679 
4680 static struct md_sysfs_entry md_reshape_direction =
4681 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4682        reshape_direction_store);
4683 
4684 static ssize_t
array_size_show(struct mddev * mddev,char * page)4685 array_size_show(struct mddev *mddev, char *page)
4686 {
4687 	if (mddev->external_size)
4688 		return sprintf(page, "%llu\n",
4689 			       (unsigned long long)mddev->array_sectors/2);
4690 	else
4691 		return sprintf(page, "default\n");
4692 }
4693 
4694 static ssize_t
array_size_store(struct mddev * mddev,const char * buf,size_t len)4695 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4696 {
4697 	sector_t sectors;
4698 	int err;
4699 
4700 	err = mddev_lock(mddev);
4701 	if (err)
4702 		return err;
4703 
4704 	if (strncmp(buf, "default", 7) == 0) {
4705 		if (mddev->pers)
4706 			sectors = mddev->pers->size(mddev, 0, 0);
4707 		else
4708 			sectors = mddev->array_sectors;
4709 
4710 		mddev->external_size = 0;
4711 	} else {
4712 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4713 			err = -EINVAL;
4714 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4715 			err = -E2BIG;
4716 		else
4717 			mddev->external_size = 1;
4718 	}
4719 
4720 	if (!err) {
4721 		mddev->array_sectors = sectors;
4722 		if (mddev->pers) {
4723 			set_capacity(mddev->gendisk, mddev->array_sectors);
4724 			revalidate_disk(mddev->gendisk);
4725 		}
4726 	}
4727 	mddev_unlock(mddev);
4728 	return err ?: len;
4729 }
4730 
4731 static struct md_sysfs_entry md_array_size =
4732 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4733        array_size_store);
4734 
4735 static struct attribute *md_default_attrs[] = {
4736 	&md_level.attr,
4737 	&md_layout.attr,
4738 	&md_raid_disks.attr,
4739 	&md_chunk_size.attr,
4740 	&md_size.attr,
4741 	&md_resync_start.attr,
4742 	&md_metadata.attr,
4743 	&md_new_device.attr,
4744 	&md_safe_delay.attr,
4745 	&md_array_state.attr,
4746 	&md_reshape_position.attr,
4747 	&md_reshape_direction.attr,
4748 	&md_array_size.attr,
4749 	&max_corr_read_errors.attr,
4750 	NULL,
4751 };
4752 
4753 static struct attribute *md_redundancy_attrs[] = {
4754 	&md_scan_mode.attr,
4755 	&md_last_scan_mode.attr,
4756 	&md_mismatches.attr,
4757 	&md_sync_min.attr,
4758 	&md_sync_max.attr,
4759 	&md_sync_speed.attr,
4760 	&md_sync_force_parallel.attr,
4761 	&md_sync_completed.attr,
4762 	&md_min_sync.attr,
4763 	&md_max_sync.attr,
4764 	&md_suspend_lo.attr,
4765 	&md_suspend_hi.attr,
4766 	&md_bitmap.attr,
4767 	&md_degraded.attr,
4768 	NULL,
4769 };
4770 static struct attribute_group md_redundancy_group = {
4771 	.name = NULL,
4772 	.attrs = md_redundancy_attrs,
4773 };
4774 
4775 static ssize_t
md_attr_show(struct kobject * kobj,struct attribute * attr,char * page)4776 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4777 {
4778 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4779 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4780 	ssize_t rv;
4781 
4782 	if (!entry->show)
4783 		return -EIO;
4784 	spin_lock(&all_mddevs_lock);
4785 	if (list_empty(&mddev->all_mddevs)) {
4786 		spin_unlock(&all_mddevs_lock);
4787 		return -EBUSY;
4788 	}
4789 	mddev_get(mddev);
4790 	spin_unlock(&all_mddevs_lock);
4791 
4792 	rv = entry->show(mddev, page);
4793 	mddev_put(mddev);
4794 	return rv;
4795 }
4796 
4797 static ssize_t
md_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)4798 md_attr_store(struct kobject *kobj, struct attribute *attr,
4799 	      const char *page, size_t length)
4800 {
4801 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4802 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4803 	ssize_t rv;
4804 
4805 	if (!entry->store)
4806 		return -EIO;
4807 	if (!capable(CAP_SYS_ADMIN))
4808 		return -EACCES;
4809 	spin_lock(&all_mddevs_lock);
4810 	if (list_empty(&mddev->all_mddevs)) {
4811 		spin_unlock(&all_mddevs_lock);
4812 		return -EBUSY;
4813 	}
4814 	mddev_get(mddev);
4815 	spin_unlock(&all_mddevs_lock);
4816 	rv = entry->store(mddev, page, length);
4817 	mddev_put(mddev);
4818 	return rv;
4819 }
4820 
md_free(struct kobject * ko)4821 static void md_free(struct kobject *ko)
4822 {
4823 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4824 
4825 	if (mddev->sysfs_state)
4826 		sysfs_put(mddev->sysfs_state);
4827 
4828 	if (mddev->queue)
4829 		blk_cleanup_queue(mddev->queue);
4830 	if (mddev->gendisk) {
4831 		del_gendisk(mddev->gendisk);
4832 		put_disk(mddev->gendisk);
4833 	}
4834 
4835 	kfree(mddev);
4836 }
4837 
4838 static const struct sysfs_ops md_sysfs_ops = {
4839 	.show	= md_attr_show,
4840 	.store	= md_attr_store,
4841 };
4842 static struct kobj_type md_ktype = {
4843 	.release	= md_free,
4844 	.sysfs_ops	= &md_sysfs_ops,
4845 	.default_attrs	= md_default_attrs,
4846 };
4847 
4848 int mdp_major = 0;
4849 
mddev_delayed_delete(struct work_struct * ws)4850 static void mddev_delayed_delete(struct work_struct *ws)
4851 {
4852 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4853 
4854 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4855 	kobject_del(&mddev->kobj);
4856 	kobject_put(&mddev->kobj);
4857 }
4858 
md_alloc(dev_t dev,char * name)4859 static int md_alloc(dev_t dev, char *name)
4860 {
4861 	static DEFINE_MUTEX(disks_mutex);
4862 	struct mddev *mddev = mddev_find(dev);
4863 	struct gendisk *disk;
4864 	int partitioned;
4865 	int shift;
4866 	int unit;
4867 	int error;
4868 
4869 	if (!mddev)
4870 		return -ENODEV;
4871 
4872 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4873 	shift = partitioned ? MdpMinorShift : 0;
4874 	unit = MINOR(mddev->unit) >> shift;
4875 
4876 	/* wait for any previous instance of this device to be
4877 	 * completely removed (mddev_delayed_delete).
4878 	 */
4879 	flush_workqueue(md_misc_wq);
4880 
4881 	mutex_lock(&disks_mutex);
4882 	error = -EEXIST;
4883 	if (mddev->gendisk)
4884 		goto abort;
4885 
4886 	if (name) {
4887 		/* Need to ensure that 'name' is not a duplicate.
4888 		 */
4889 		struct mddev *mddev2;
4890 		spin_lock(&all_mddevs_lock);
4891 
4892 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4893 			if (mddev2->gendisk &&
4894 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4895 				spin_unlock(&all_mddevs_lock);
4896 				goto abort;
4897 			}
4898 		spin_unlock(&all_mddevs_lock);
4899 	}
4900 
4901 	error = -ENOMEM;
4902 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4903 	if (!mddev->queue)
4904 		goto abort;
4905 	mddev->queue->queuedata = mddev;
4906 
4907 	blk_queue_make_request(mddev->queue, md_make_request);
4908 	blk_set_stacking_limits(&mddev->queue->limits);
4909 
4910 	disk = alloc_disk(1 << shift);
4911 	if (!disk) {
4912 		blk_cleanup_queue(mddev->queue);
4913 		mddev->queue = NULL;
4914 		goto abort;
4915 	}
4916 	disk->major = MAJOR(mddev->unit);
4917 	disk->first_minor = unit << shift;
4918 	if (name)
4919 		strcpy(disk->disk_name, name);
4920 	else if (partitioned)
4921 		sprintf(disk->disk_name, "md_d%d", unit);
4922 	else
4923 		sprintf(disk->disk_name, "md%d", unit);
4924 	disk->fops = &md_fops;
4925 	disk->private_data = mddev;
4926 	disk->queue = mddev->queue;
4927 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4928 	/* Allow extended partitions.  This makes the
4929 	 * 'mdp' device redundant, but we can't really
4930 	 * remove it now.
4931 	 */
4932 	disk->flags |= GENHD_FL_EXT_DEVT;
4933 	mddev->gendisk = disk;
4934 	/* As soon as we call add_disk(), another thread could get
4935 	 * through to md_open, so make sure it doesn't get too far
4936 	 */
4937 	mutex_lock(&mddev->open_mutex);
4938 	add_disk(disk);
4939 
4940 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4941 				     &disk_to_dev(disk)->kobj, "%s", "md");
4942 	if (error) {
4943 		/* This isn't possible, but as kobject_init_and_add is marked
4944 		 * __must_check, we must do something with the result
4945 		 */
4946 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4947 		       disk->disk_name);
4948 		error = 0;
4949 	}
4950 	if (mddev->kobj.sd &&
4951 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4952 		printk(KERN_DEBUG "pointless warning\n");
4953 	mutex_unlock(&mddev->open_mutex);
4954  abort:
4955 	mutex_unlock(&disks_mutex);
4956 	if (!error && mddev->kobj.sd) {
4957 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4958 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4959 	}
4960 	mddev_put(mddev);
4961 	return error;
4962 }
4963 
md_probe(dev_t dev,int * part,void * data)4964 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4965 {
4966 	md_alloc(dev, NULL);
4967 	return NULL;
4968 }
4969 
add_named_array(const char * val,struct kernel_param * kp)4970 static int add_named_array(const char *val, struct kernel_param *kp)
4971 {
4972 	/* val must be "md_*" where * is not all digits.
4973 	 * We allocate an array with a large free minor number, and
4974 	 * set the name to val.  val must not already be an active name.
4975 	 */
4976 	int len = strlen(val);
4977 	char buf[DISK_NAME_LEN];
4978 
4979 	while (len && val[len-1] == '\n')
4980 		len--;
4981 	if (len >= DISK_NAME_LEN)
4982 		return -E2BIG;
4983 	strlcpy(buf, val, len+1);
4984 	if (strncmp(buf, "md_", 3) != 0)
4985 		return -EINVAL;
4986 	return md_alloc(0, buf);
4987 }
4988 
md_safemode_timeout(unsigned long data)4989 static void md_safemode_timeout(unsigned long data)
4990 {
4991 	struct mddev *mddev = (struct mddev *) data;
4992 
4993 	if (!atomic_read(&mddev->writes_pending)) {
4994 		mddev->safemode = 1;
4995 		if (mddev->external)
4996 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4997 	}
4998 	md_wakeup_thread(mddev->thread);
4999 }
5000 
5001 static int start_dirty_degraded;
5002 
md_run(struct mddev * mddev)5003 int md_run(struct mddev *mddev)
5004 {
5005 	int err;
5006 	struct md_rdev *rdev;
5007 	struct md_personality *pers;
5008 
5009 	if (list_empty(&mddev->disks))
5010 		/* cannot run an array with no devices.. */
5011 		return -EINVAL;
5012 
5013 	if (mddev->pers)
5014 		return -EBUSY;
5015 	/* Cannot run until previous stop completes properly */
5016 	if (mddev->sysfs_active)
5017 		return -EBUSY;
5018 
5019 	/*
5020 	 * Analyze all RAID superblock(s)
5021 	 */
5022 	if (!mddev->raid_disks) {
5023 		if (!mddev->persistent)
5024 			return -EINVAL;
5025 		analyze_sbs(mddev);
5026 	}
5027 
5028 	if (mddev->level != LEVEL_NONE)
5029 		request_module("md-level-%d", mddev->level);
5030 	else if (mddev->clevel[0])
5031 		request_module("md-%s", mddev->clevel);
5032 
5033 	/*
5034 	 * Drop all container device buffers, from now on
5035 	 * the only valid external interface is through the md
5036 	 * device.
5037 	 */
5038 	rdev_for_each(rdev, mddev) {
5039 		if (test_bit(Faulty, &rdev->flags))
5040 			continue;
5041 		sync_blockdev(rdev->bdev);
5042 		invalidate_bdev(rdev->bdev);
5043 
5044 		/* perform some consistency tests on the device.
5045 		 * We don't want the data to overlap the metadata,
5046 		 * Internal Bitmap issues have been handled elsewhere.
5047 		 */
5048 		if (rdev->meta_bdev) {
5049 			/* Nothing to check */;
5050 		} else if (rdev->data_offset < rdev->sb_start) {
5051 			if (mddev->dev_sectors &&
5052 			    rdev->data_offset + mddev->dev_sectors
5053 			    > rdev->sb_start) {
5054 				printk("md: %s: data overlaps metadata\n",
5055 				       mdname(mddev));
5056 				return -EINVAL;
5057 			}
5058 		} else {
5059 			if (rdev->sb_start + rdev->sb_size/512
5060 			    > rdev->data_offset) {
5061 				printk("md: %s: metadata overlaps data\n",
5062 				       mdname(mddev));
5063 				return -EINVAL;
5064 			}
5065 		}
5066 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5067 	}
5068 
5069 	if (mddev->bio_set == NULL)
5070 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5071 
5072 	spin_lock(&pers_lock);
5073 	pers = find_pers(mddev->level, mddev->clevel);
5074 	if (!pers || !try_module_get(pers->owner)) {
5075 		spin_unlock(&pers_lock);
5076 		if (mddev->level != LEVEL_NONE)
5077 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5078 			       mddev->level);
5079 		else
5080 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5081 			       mddev->clevel);
5082 		return -EINVAL;
5083 	}
5084 	spin_unlock(&pers_lock);
5085 	if (mddev->level != pers->level) {
5086 		mddev->level = pers->level;
5087 		mddev->new_level = pers->level;
5088 	}
5089 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5090 
5091 	if (mddev->reshape_position != MaxSector &&
5092 	    pers->start_reshape == NULL) {
5093 		/* This personality cannot handle reshaping... */
5094 		module_put(pers->owner);
5095 		return -EINVAL;
5096 	}
5097 
5098 	if (pers->sync_request) {
5099 		/* Warn if this is a potentially silly
5100 		 * configuration.
5101 		 */
5102 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5103 		struct md_rdev *rdev2;
5104 		int warned = 0;
5105 
5106 		rdev_for_each(rdev, mddev)
5107 			rdev_for_each(rdev2, mddev) {
5108 				if (rdev < rdev2 &&
5109 				    rdev->bdev->bd_contains ==
5110 				    rdev2->bdev->bd_contains) {
5111 					printk(KERN_WARNING
5112 					       "%s: WARNING: %s appears to be"
5113 					       " on the same physical disk as"
5114 					       " %s.\n",
5115 					       mdname(mddev),
5116 					       bdevname(rdev->bdev,b),
5117 					       bdevname(rdev2->bdev,b2));
5118 					warned = 1;
5119 				}
5120 			}
5121 
5122 		if (warned)
5123 			printk(KERN_WARNING
5124 			       "True protection against single-disk"
5125 			       " failure might be compromised.\n");
5126 	}
5127 
5128 	mddev->recovery = 0;
5129 	/* may be over-ridden by personality */
5130 	mddev->resync_max_sectors = mddev->dev_sectors;
5131 
5132 	mddev->ok_start_degraded = start_dirty_degraded;
5133 
5134 	if (start_readonly && mddev->ro == 0)
5135 		mddev->ro = 2; /* read-only, but switch on first write */
5136 
5137 	err = pers->run(mddev);
5138 	if (err)
5139 		printk(KERN_ERR "md: pers->run() failed ...\n");
5140 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5141 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5142 			  " but 'external_size' not in effect?\n", __func__);
5143 		printk(KERN_ERR
5144 		       "md: invalid array_size %llu > default size %llu\n",
5145 		       (unsigned long long)mddev->array_sectors / 2,
5146 		       (unsigned long long)pers->size(mddev, 0, 0) / 2);
5147 		err = -EINVAL;
5148 	}
5149 	if (err == 0 && pers->sync_request &&
5150 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5151 		struct bitmap *bitmap;
5152 
5153 		bitmap = bitmap_create(mddev, -1);
5154 		if (IS_ERR(bitmap)) {
5155 			err = PTR_ERR(bitmap);
5156 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5157 			       mdname(mddev), err);
5158 		} else
5159 			mddev->bitmap = bitmap;
5160 
5161 	}
5162 	if (err) {
5163 		mddev_detach(mddev);
5164 		if (mddev->private)
5165 			pers->free(mddev, mddev->private);
5166 		mddev->private = NULL;
5167 		module_put(pers->owner);
5168 		bitmap_destroy(mddev);
5169 		return err;
5170 	}
5171 	if (mddev->queue) {
5172 		mddev->queue->backing_dev_info.congested_data = mddev;
5173 		mddev->queue->backing_dev_info.congested_fn = md_congested;
5174 		blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
5175 	}
5176 	if (pers->sync_request) {
5177 		if (mddev->kobj.sd &&
5178 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5179 			printk(KERN_WARNING
5180 			       "md: cannot register extra attributes for %s\n",
5181 			       mdname(mddev));
5182 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5183 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5184 		mddev->ro = 0;
5185 
5186 	atomic_set(&mddev->writes_pending,0);
5187 	atomic_set(&mddev->max_corr_read_errors,
5188 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5189 	mddev->safemode = 0;
5190 	mddev->safemode_timer.function = md_safemode_timeout;
5191 	mddev->safemode_timer.data = (unsigned long) mddev;
5192 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5193 	mddev->in_sync = 1;
5194 	smp_wmb();
5195 	spin_lock(&mddev->lock);
5196 	mddev->pers = pers;
5197 	mddev->ready = 1;
5198 	spin_unlock(&mddev->lock);
5199 	rdev_for_each(rdev, mddev)
5200 		if (rdev->raid_disk >= 0)
5201 			if (sysfs_link_rdev(mddev, rdev))
5202 				/* failure here is OK */;
5203 
5204 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5205 
5206 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
5207 		md_update_sb(mddev, 0);
5208 
5209 	md_new_event(mddev);
5210 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5211 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5212 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5213 	return 0;
5214 }
5215 EXPORT_SYMBOL_GPL(md_run);
5216 
do_md_run(struct mddev * mddev)5217 static int do_md_run(struct mddev *mddev)
5218 {
5219 	int err;
5220 
5221 	err = md_run(mddev);
5222 	if (err)
5223 		goto out;
5224 	err = bitmap_load(mddev);
5225 	if (err) {
5226 		bitmap_destroy(mddev);
5227 		goto out;
5228 	}
5229 
5230 	md_wakeup_thread(mddev->thread);
5231 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5232 
5233 	set_capacity(mddev->gendisk, mddev->array_sectors);
5234 	revalidate_disk(mddev->gendisk);
5235 	mddev->changed = 1;
5236 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5237 out:
5238 	return err;
5239 }
5240 
restart_array(struct mddev * mddev)5241 static int restart_array(struct mddev *mddev)
5242 {
5243 	struct gendisk *disk = mddev->gendisk;
5244 
5245 	/* Complain if it has no devices */
5246 	if (list_empty(&mddev->disks))
5247 		return -ENXIO;
5248 	if (!mddev->pers)
5249 		return -EINVAL;
5250 	if (!mddev->ro)
5251 		return -EBUSY;
5252 	mddev->safemode = 0;
5253 	mddev->ro = 0;
5254 	set_disk_ro(disk, 0);
5255 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5256 		mdname(mddev));
5257 	/* Kick recovery or resync if necessary */
5258 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5259 	md_wakeup_thread(mddev->thread);
5260 	md_wakeup_thread(mddev->sync_thread);
5261 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5262 	return 0;
5263 }
5264 
md_clean(struct mddev * mddev)5265 static void md_clean(struct mddev *mddev)
5266 {
5267 	mddev->array_sectors = 0;
5268 	mddev->external_size = 0;
5269 	mddev->dev_sectors = 0;
5270 	mddev->raid_disks = 0;
5271 	mddev->recovery_cp = 0;
5272 	mddev->resync_min = 0;
5273 	mddev->resync_max = MaxSector;
5274 	mddev->reshape_position = MaxSector;
5275 	mddev->external = 0;
5276 	mddev->persistent = 0;
5277 	mddev->level = LEVEL_NONE;
5278 	mddev->clevel[0] = 0;
5279 	mddev->flags = 0;
5280 	mddev->ro = 0;
5281 	mddev->metadata_type[0] = 0;
5282 	mddev->chunk_sectors = 0;
5283 	mddev->ctime = mddev->utime = 0;
5284 	mddev->layout = 0;
5285 	mddev->max_disks = 0;
5286 	mddev->events = 0;
5287 	mddev->can_decrease_events = 0;
5288 	mddev->delta_disks = 0;
5289 	mddev->reshape_backwards = 0;
5290 	mddev->new_level = LEVEL_NONE;
5291 	mddev->new_layout = 0;
5292 	mddev->new_chunk_sectors = 0;
5293 	mddev->curr_resync = 0;
5294 	atomic64_set(&mddev->resync_mismatches, 0);
5295 	mddev->suspend_lo = mddev->suspend_hi = 0;
5296 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5297 	mddev->recovery = 0;
5298 	mddev->in_sync = 0;
5299 	mddev->changed = 0;
5300 	mddev->degraded = 0;
5301 	mddev->safemode = 0;
5302 	mddev->private = NULL;
5303 	mddev->merge_check_needed = 0;
5304 	mddev->bitmap_info.offset = 0;
5305 	mddev->bitmap_info.default_offset = 0;
5306 	mddev->bitmap_info.default_space = 0;
5307 	mddev->bitmap_info.chunksize = 0;
5308 	mddev->bitmap_info.daemon_sleep = 0;
5309 	mddev->bitmap_info.max_write_behind = 0;
5310 }
5311 
__md_stop_writes(struct mddev * mddev)5312 static void __md_stop_writes(struct mddev *mddev)
5313 {
5314 	if (mddev_is_clustered(mddev))
5315 		md_cluster_ops->metadata_update_start(mddev);
5316 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5317 	flush_workqueue(md_misc_wq);
5318 	if (mddev->sync_thread) {
5319 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5320 		md_reap_sync_thread(mddev);
5321 	}
5322 
5323 	del_timer_sync(&mddev->safemode_timer);
5324 
5325 	bitmap_flush(mddev);
5326 	md_super_wait(mddev);
5327 
5328 	if (mddev->ro == 0 &&
5329 	    (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5330 		/* mark array as shutdown cleanly */
5331 		mddev->in_sync = 1;
5332 		md_update_sb(mddev, 1);
5333 	}
5334 	if (mddev_is_clustered(mddev))
5335 		md_cluster_ops->metadata_update_finish(mddev);
5336 }
5337 
md_stop_writes(struct mddev * mddev)5338 void md_stop_writes(struct mddev *mddev)
5339 {
5340 	mddev_lock_nointr(mddev);
5341 	__md_stop_writes(mddev);
5342 	mddev_unlock(mddev);
5343 }
5344 EXPORT_SYMBOL_GPL(md_stop_writes);
5345 
mddev_detach(struct mddev * mddev)5346 static void mddev_detach(struct mddev *mddev)
5347 {
5348 	struct bitmap *bitmap = mddev->bitmap;
5349 	/* wait for behind writes to complete */
5350 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5351 		printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5352 		       mdname(mddev));
5353 		/* need to kick something here to make sure I/O goes? */
5354 		wait_event(bitmap->behind_wait,
5355 			   atomic_read(&bitmap->behind_writes) == 0);
5356 	}
5357 	if (mddev->pers && mddev->pers->quiesce) {
5358 		mddev->pers->quiesce(mddev, 1);
5359 		mddev->pers->quiesce(mddev, 0);
5360 	}
5361 	md_unregister_thread(&mddev->thread);
5362 	if (mddev->queue)
5363 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5364 }
5365 
__md_stop(struct mddev * mddev)5366 static void __md_stop(struct mddev *mddev)
5367 {
5368 	struct md_personality *pers = mddev->pers;
5369 	mddev_detach(mddev);
5370 	/* Ensure ->event_work is done */
5371 	flush_workqueue(md_misc_wq);
5372 	spin_lock(&mddev->lock);
5373 	mddev->ready = 0;
5374 	mddev->pers = NULL;
5375 	spin_unlock(&mddev->lock);
5376 	pers->free(mddev, mddev->private);
5377 	mddev->private = NULL;
5378 	if (pers->sync_request && mddev->to_remove == NULL)
5379 		mddev->to_remove = &md_redundancy_group;
5380 	module_put(pers->owner);
5381 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5382 }
5383 
md_stop(struct mddev * mddev)5384 void md_stop(struct mddev *mddev)
5385 {
5386 	/* stop the array and free an attached data structures.
5387 	 * This is called from dm-raid
5388 	 */
5389 	__md_stop(mddev);
5390 	bitmap_destroy(mddev);
5391 	if (mddev->bio_set)
5392 		bioset_free(mddev->bio_set);
5393 }
5394 
5395 EXPORT_SYMBOL_GPL(md_stop);
5396 
md_set_readonly(struct mddev * mddev,struct block_device * bdev)5397 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5398 {
5399 	int err = 0;
5400 	int did_freeze = 0;
5401 
5402 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5403 		did_freeze = 1;
5404 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5405 		md_wakeup_thread(mddev->thread);
5406 	}
5407 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5408 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5409 	if (mddev->sync_thread)
5410 		/* Thread might be blocked waiting for metadata update
5411 		 * which will now never happen */
5412 		wake_up_process(mddev->sync_thread->tsk);
5413 
5414 	mddev_unlock(mddev);
5415 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5416 					  &mddev->recovery));
5417 	mddev_lock_nointr(mddev);
5418 
5419 	mutex_lock(&mddev->open_mutex);
5420 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5421 	    mddev->sync_thread ||
5422 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5423 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5424 		printk("md: %s still in use.\n",mdname(mddev));
5425 		if (did_freeze) {
5426 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5427 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5428 			md_wakeup_thread(mddev->thread);
5429 		}
5430 		err = -EBUSY;
5431 		goto out;
5432 	}
5433 	if (mddev->pers) {
5434 		__md_stop_writes(mddev);
5435 
5436 		err  = -ENXIO;
5437 		if (mddev->ro==1)
5438 			goto out;
5439 		mddev->ro = 1;
5440 		set_disk_ro(mddev->gendisk, 1);
5441 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5442 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5443 		md_wakeup_thread(mddev->thread);
5444 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5445 		err = 0;
5446 	}
5447 out:
5448 	mutex_unlock(&mddev->open_mutex);
5449 	return err;
5450 }
5451 
5452 /* mode:
5453  *   0 - completely stop and dis-assemble array
5454  *   2 - stop but do not disassemble array
5455  */
do_md_stop(struct mddev * mddev,int mode,struct block_device * bdev)5456 static int do_md_stop(struct mddev *mddev, int mode,
5457 		      struct block_device *bdev)
5458 {
5459 	struct gendisk *disk = mddev->gendisk;
5460 	struct md_rdev *rdev;
5461 	int did_freeze = 0;
5462 
5463 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5464 		did_freeze = 1;
5465 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5466 		md_wakeup_thread(mddev->thread);
5467 	}
5468 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5469 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5470 	if (mddev->sync_thread)
5471 		/* Thread might be blocked waiting for metadata update
5472 		 * which will now never happen */
5473 		wake_up_process(mddev->sync_thread->tsk);
5474 
5475 	mddev_unlock(mddev);
5476 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
5477 				 !test_bit(MD_RECOVERY_RUNNING,
5478 					   &mddev->recovery)));
5479 	mddev_lock_nointr(mddev);
5480 
5481 	mutex_lock(&mddev->open_mutex);
5482 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5483 	    mddev->sysfs_active ||
5484 	    mddev->sync_thread ||
5485 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5486 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5487 		printk("md: %s still in use.\n",mdname(mddev));
5488 		mutex_unlock(&mddev->open_mutex);
5489 		if (did_freeze) {
5490 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5491 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5492 			md_wakeup_thread(mddev->thread);
5493 		}
5494 		return -EBUSY;
5495 	}
5496 	if (mddev->pers) {
5497 		if (mddev->ro)
5498 			set_disk_ro(disk, 0);
5499 
5500 		__md_stop_writes(mddev);
5501 		__md_stop(mddev);
5502 		mddev->queue->merge_bvec_fn = NULL;
5503 		mddev->queue->backing_dev_info.congested_fn = NULL;
5504 
5505 		/* tell userspace to handle 'inactive' */
5506 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5507 
5508 		rdev_for_each(rdev, mddev)
5509 			if (rdev->raid_disk >= 0)
5510 				sysfs_unlink_rdev(mddev, rdev);
5511 
5512 		set_capacity(disk, 0);
5513 		mutex_unlock(&mddev->open_mutex);
5514 		mddev->changed = 1;
5515 		revalidate_disk(disk);
5516 
5517 		if (mddev->ro)
5518 			mddev->ro = 0;
5519 	} else
5520 		mutex_unlock(&mddev->open_mutex);
5521 	/*
5522 	 * Free resources if final stop
5523 	 */
5524 	if (mode == 0) {
5525 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5526 
5527 		bitmap_destroy(mddev);
5528 		if (mddev->bitmap_info.file) {
5529 			struct file *f = mddev->bitmap_info.file;
5530 			spin_lock(&mddev->lock);
5531 			mddev->bitmap_info.file = NULL;
5532 			spin_unlock(&mddev->lock);
5533 			fput(f);
5534 		}
5535 		mddev->bitmap_info.offset = 0;
5536 
5537 		export_array(mddev);
5538 
5539 		md_clean(mddev);
5540 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5541 		if (mddev->hold_active == UNTIL_STOP)
5542 			mddev->hold_active = 0;
5543 	}
5544 	blk_integrity_unregister(disk);
5545 	md_new_event(mddev);
5546 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5547 	return 0;
5548 }
5549 
5550 #ifndef MODULE
autorun_array(struct mddev * mddev)5551 static void autorun_array(struct mddev *mddev)
5552 {
5553 	struct md_rdev *rdev;
5554 	int err;
5555 
5556 	if (list_empty(&mddev->disks))
5557 		return;
5558 
5559 	printk(KERN_INFO "md: running: ");
5560 
5561 	rdev_for_each(rdev, mddev) {
5562 		char b[BDEVNAME_SIZE];
5563 		printk("<%s>", bdevname(rdev->bdev,b));
5564 	}
5565 	printk("\n");
5566 
5567 	err = do_md_run(mddev);
5568 	if (err) {
5569 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5570 		do_md_stop(mddev, 0, NULL);
5571 	}
5572 }
5573 
5574 /*
5575  * lets try to run arrays based on all disks that have arrived
5576  * until now. (those are in pending_raid_disks)
5577  *
5578  * the method: pick the first pending disk, collect all disks with
5579  * the same UUID, remove all from the pending list and put them into
5580  * the 'same_array' list. Then order this list based on superblock
5581  * update time (freshest comes first), kick out 'old' disks and
5582  * compare superblocks. If everything's fine then run it.
5583  *
5584  * If "unit" is allocated, then bump its reference count
5585  */
autorun_devices(int part)5586 static void autorun_devices(int part)
5587 {
5588 	struct md_rdev *rdev0, *rdev, *tmp;
5589 	struct mddev *mddev;
5590 	char b[BDEVNAME_SIZE];
5591 
5592 	printk(KERN_INFO "md: autorun ...\n");
5593 	while (!list_empty(&pending_raid_disks)) {
5594 		int unit;
5595 		dev_t dev;
5596 		LIST_HEAD(candidates);
5597 		rdev0 = list_entry(pending_raid_disks.next,
5598 					 struct md_rdev, same_set);
5599 
5600 		printk(KERN_INFO "md: considering %s ...\n",
5601 			bdevname(rdev0->bdev,b));
5602 		INIT_LIST_HEAD(&candidates);
5603 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5604 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5605 				printk(KERN_INFO "md:  adding %s ...\n",
5606 					bdevname(rdev->bdev,b));
5607 				list_move(&rdev->same_set, &candidates);
5608 			}
5609 		/*
5610 		 * now we have a set of devices, with all of them having
5611 		 * mostly sane superblocks. It's time to allocate the
5612 		 * mddev.
5613 		 */
5614 		if (part) {
5615 			dev = MKDEV(mdp_major,
5616 				    rdev0->preferred_minor << MdpMinorShift);
5617 			unit = MINOR(dev) >> MdpMinorShift;
5618 		} else {
5619 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5620 			unit = MINOR(dev);
5621 		}
5622 		if (rdev0->preferred_minor != unit) {
5623 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5624 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5625 			break;
5626 		}
5627 
5628 		md_probe(dev, NULL, NULL);
5629 		mddev = mddev_find(dev);
5630 		if (!mddev || !mddev->gendisk) {
5631 			if (mddev)
5632 				mddev_put(mddev);
5633 			printk(KERN_ERR
5634 				"md: cannot allocate memory for md drive.\n");
5635 			break;
5636 		}
5637 		if (mddev_lock(mddev))
5638 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5639 			       mdname(mddev));
5640 		else if (mddev->raid_disks || mddev->major_version
5641 			 || !list_empty(&mddev->disks)) {
5642 			printk(KERN_WARNING
5643 				"md: %s already running, cannot run %s\n",
5644 				mdname(mddev), bdevname(rdev0->bdev,b));
5645 			mddev_unlock(mddev);
5646 		} else {
5647 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5648 			mddev->persistent = 1;
5649 			rdev_for_each_list(rdev, tmp, &candidates) {
5650 				list_del_init(&rdev->same_set);
5651 				if (bind_rdev_to_array(rdev, mddev))
5652 					export_rdev(rdev);
5653 			}
5654 			autorun_array(mddev);
5655 			mddev_unlock(mddev);
5656 		}
5657 		/* on success, candidates will be empty, on error
5658 		 * it won't...
5659 		 */
5660 		rdev_for_each_list(rdev, tmp, &candidates) {
5661 			list_del_init(&rdev->same_set);
5662 			export_rdev(rdev);
5663 		}
5664 		mddev_put(mddev);
5665 	}
5666 	printk(KERN_INFO "md: ... autorun DONE.\n");
5667 }
5668 #endif /* !MODULE */
5669 
get_version(void __user * arg)5670 static int get_version(void __user *arg)
5671 {
5672 	mdu_version_t ver;
5673 
5674 	ver.major = MD_MAJOR_VERSION;
5675 	ver.minor = MD_MINOR_VERSION;
5676 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5677 
5678 	if (copy_to_user(arg, &ver, sizeof(ver)))
5679 		return -EFAULT;
5680 
5681 	return 0;
5682 }
5683 
get_array_info(struct mddev * mddev,void __user * arg)5684 static int get_array_info(struct mddev *mddev, void __user *arg)
5685 {
5686 	mdu_array_info_t info;
5687 	int nr,working,insync,failed,spare;
5688 	struct md_rdev *rdev;
5689 
5690 	nr = working = insync = failed = spare = 0;
5691 	rcu_read_lock();
5692 	rdev_for_each_rcu(rdev, mddev) {
5693 		nr++;
5694 		if (test_bit(Faulty, &rdev->flags))
5695 			failed++;
5696 		else {
5697 			working++;
5698 			if (test_bit(In_sync, &rdev->flags))
5699 				insync++;
5700 			else
5701 				spare++;
5702 		}
5703 	}
5704 	rcu_read_unlock();
5705 
5706 	info.major_version = mddev->major_version;
5707 	info.minor_version = mddev->minor_version;
5708 	info.patch_version = MD_PATCHLEVEL_VERSION;
5709 	info.ctime         = mddev->ctime;
5710 	info.level         = mddev->level;
5711 	info.size          = mddev->dev_sectors / 2;
5712 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5713 		info.size = -1;
5714 	info.nr_disks      = nr;
5715 	info.raid_disks    = mddev->raid_disks;
5716 	info.md_minor      = mddev->md_minor;
5717 	info.not_persistent= !mddev->persistent;
5718 
5719 	info.utime         = mddev->utime;
5720 	info.state         = 0;
5721 	if (mddev->in_sync)
5722 		info.state = (1<<MD_SB_CLEAN);
5723 	if (mddev->bitmap && mddev->bitmap_info.offset)
5724 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
5725 	if (mddev_is_clustered(mddev))
5726 		info.state |= (1<<MD_SB_CLUSTERED);
5727 	info.active_disks  = insync;
5728 	info.working_disks = working;
5729 	info.failed_disks  = failed;
5730 	info.spare_disks   = spare;
5731 
5732 	info.layout        = mddev->layout;
5733 	info.chunk_size    = mddev->chunk_sectors << 9;
5734 
5735 	if (copy_to_user(arg, &info, sizeof(info)))
5736 		return -EFAULT;
5737 
5738 	return 0;
5739 }
5740 
get_bitmap_file(struct mddev * mddev,void __user * arg)5741 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5742 {
5743 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5744 	char *ptr;
5745 	int err;
5746 
5747 	file = kzalloc(sizeof(*file), GFP_NOIO);
5748 	if (!file)
5749 		return -ENOMEM;
5750 
5751 	err = 0;
5752 	spin_lock(&mddev->lock);
5753 	/* bitmap disabled, zero the first byte and copy out */
5754 	if (!mddev->bitmap_info.file)
5755 		file->pathname[0] = '\0';
5756 	else if ((ptr = d_path(&mddev->bitmap_info.file->f_path,
5757 			       file->pathname, sizeof(file->pathname))),
5758 		 IS_ERR(ptr))
5759 		err = PTR_ERR(ptr);
5760 	else
5761 		memmove(file->pathname, ptr,
5762 			sizeof(file->pathname)-(ptr-file->pathname));
5763 	spin_unlock(&mddev->lock);
5764 
5765 	if (err == 0 &&
5766 	    copy_to_user(arg, file, sizeof(*file)))
5767 		err = -EFAULT;
5768 
5769 	kfree(file);
5770 	return err;
5771 }
5772 
get_disk_info(struct mddev * mddev,void __user * arg)5773 static int get_disk_info(struct mddev *mddev, void __user * arg)
5774 {
5775 	mdu_disk_info_t info;
5776 	struct md_rdev *rdev;
5777 
5778 	if (copy_from_user(&info, arg, sizeof(info)))
5779 		return -EFAULT;
5780 
5781 	rcu_read_lock();
5782 	rdev = md_find_rdev_nr_rcu(mddev, info.number);
5783 	if (rdev) {
5784 		info.major = MAJOR(rdev->bdev->bd_dev);
5785 		info.minor = MINOR(rdev->bdev->bd_dev);
5786 		info.raid_disk = rdev->raid_disk;
5787 		info.state = 0;
5788 		if (test_bit(Faulty, &rdev->flags))
5789 			info.state |= (1<<MD_DISK_FAULTY);
5790 		else if (test_bit(In_sync, &rdev->flags)) {
5791 			info.state |= (1<<MD_DISK_ACTIVE);
5792 			info.state |= (1<<MD_DISK_SYNC);
5793 		}
5794 		if (test_bit(WriteMostly, &rdev->flags))
5795 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5796 	} else {
5797 		info.major = info.minor = 0;
5798 		info.raid_disk = -1;
5799 		info.state = (1<<MD_DISK_REMOVED);
5800 	}
5801 	rcu_read_unlock();
5802 
5803 	if (copy_to_user(arg, &info, sizeof(info)))
5804 		return -EFAULT;
5805 
5806 	return 0;
5807 }
5808 
add_new_disk(struct mddev * mddev,mdu_disk_info_t * info)5809 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5810 {
5811 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5812 	struct md_rdev *rdev;
5813 	dev_t dev = MKDEV(info->major,info->minor);
5814 
5815 	if (mddev_is_clustered(mddev) &&
5816 		!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5817 		pr_err("%s: Cannot add to clustered mddev.\n",
5818 			       mdname(mddev));
5819 		return -EINVAL;
5820 	}
5821 
5822 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5823 		return -EOVERFLOW;
5824 
5825 	if (!mddev->raid_disks) {
5826 		int err;
5827 		/* expecting a device which has a superblock */
5828 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5829 		if (IS_ERR(rdev)) {
5830 			printk(KERN_WARNING
5831 				"md: md_import_device returned %ld\n",
5832 				PTR_ERR(rdev));
5833 			return PTR_ERR(rdev);
5834 		}
5835 		if (!list_empty(&mddev->disks)) {
5836 			struct md_rdev *rdev0
5837 				= list_entry(mddev->disks.next,
5838 					     struct md_rdev, same_set);
5839 			err = super_types[mddev->major_version]
5840 				.load_super(rdev, rdev0, mddev->minor_version);
5841 			if (err < 0) {
5842 				printk(KERN_WARNING
5843 					"md: %s has different UUID to %s\n",
5844 					bdevname(rdev->bdev,b),
5845 					bdevname(rdev0->bdev,b2));
5846 				export_rdev(rdev);
5847 				return -EINVAL;
5848 			}
5849 		}
5850 		err = bind_rdev_to_array(rdev, mddev);
5851 		if (err)
5852 			export_rdev(rdev);
5853 		return err;
5854 	}
5855 
5856 	/*
5857 	 * add_new_disk can be used once the array is assembled
5858 	 * to add "hot spares".  They must already have a superblock
5859 	 * written
5860 	 */
5861 	if (mddev->pers) {
5862 		int err;
5863 		if (!mddev->pers->hot_add_disk) {
5864 			printk(KERN_WARNING
5865 				"%s: personality does not support diskops!\n",
5866 			       mdname(mddev));
5867 			return -EINVAL;
5868 		}
5869 		if (mddev->persistent)
5870 			rdev = md_import_device(dev, mddev->major_version,
5871 						mddev->minor_version);
5872 		else
5873 			rdev = md_import_device(dev, -1, -1);
5874 		if (IS_ERR(rdev)) {
5875 			printk(KERN_WARNING
5876 				"md: md_import_device returned %ld\n",
5877 				PTR_ERR(rdev));
5878 			return PTR_ERR(rdev);
5879 		}
5880 		/* set saved_raid_disk if appropriate */
5881 		if (!mddev->persistent) {
5882 			if (info->state & (1<<MD_DISK_SYNC)  &&
5883 			    info->raid_disk < mddev->raid_disks) {
5884 				rdev->raid_disk = info->raid_disk;
5885 				set_bit(In_sync, &rdev->flags);
5886 				clear_bit(Bitmap_sync, &rdev->flags);
5887 			} else
5888 				rdev->raid_disk = -1;
5889 			rdev->saved_raid_disk = rdev->raid_disk;
5890 		} else
5891 			super_types[mddev->major_version].
5892 				validate_super(mddev, rdev);
5893 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5894 		     rdev->raid_disk != info->raid_disk) {
5895 			/* This was a hot-add request, but events doesn't
5896 			 * match, so reject it.
5897 			 */
5898 			export_rdev(rdev);
5899 			return -EINVAL;
5900 		}
5901 
5902 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5903 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5904 			set_bit(WriteMostly, &rdev->flags);
5905 		else
5906 			clear_bit(WriteMostly, &rdev->flags);
5907 
5908 		/*
5909 		 * check whether the device shows up in other nodes
5910 		 */
5911 		if (mddev_is_clustered(mddev)) {
5912 			if (info->state & (1 << MD_DISK_CANDIDATE)) {
5913 				/* Through --cluster-confirm */
5914 				set_bit(Candidate, &rdev->flags);
5915 				err = md_cluster_ops->new_disk_ack(mddev, true);
5916 				if (err) {
5917 					export_rdev(rdev);
5918 					return err;
5919 				}
5920 			} else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
5921 				/* --add initiated by this node */
5922 				err = md_cluster_ops->add_new_disk_start(mddev, rdev);
5923 				if (err) {
5924 					md_cluster_ops->add_new_disk_finish(mddev);
5925 					export_rdev(rdev);
5926 					return err;
5927 				}
5928 			}
5929 		}
5930 
5931 		rdev->raid_disk = -1;
5932 		err = bind_rdev_to_array(rdev, mddev);
5933 		if (err)
5934 			export_rdev(rdev);
5935 		else
5936 			err = add_bound_rdev(rdev);
5937 		if (mddev_is_clustered(mddev) &&
5938 				(info->state & (1 << MD_DISK_CLUSTER_ADD)))
5939 			md_cluster_ops->add_new_disk_finish(mddev);
5940 		return err;
5941 	}
5942 
5943 	/* otherwise, add_new_disk is only allowed
5944 	 * for major_version==0 superblocks
5945 	 */
5946 	if (mddev->major_version != 0) {
5947 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5948 		       mdname(mddev));
5949 		return -EINVAL;
5950 	}
5951 
5952 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5953 		int err;
5954 		rdev = md_import_device(dev, -1, 0);
5955 		if (IS_ERR(rdev)) {
5956 			printk(KERN_WARNING
5957 				"md: error, md_import_device() returned %ld\n",
5958 				PTR_ERR(rdev));
5959 			return PTR_ERR(rdev);
5960 		}
5961 		rdev->desc_nr = info->number;
5962 		if (info->raid_disk < mddev->raid_disks)
5963 			rdev->raid_disk = info->raid_disk;
5964 		else
5965 			rdev->raid_disk = -1;
5966 
5967 		if (rdev->raid_disk < mddev->raid_disks)
5968 			if (info->state & (1<<MD_DISK_SYNC))
5969 				set_bit(In_sync, &rdev->flags);
5970 
5971 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5972 			set_bit(WriteMostly, &rdev->flags);
5973 
5974 		if (!mddev->persistent) {
5975 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5976 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5977 		} else
5978 			rdev->sb_start = calc_dev_sboffset(rdev);
5979 		rdev->sectors = rdev->sb_start;
5980 
5981 		err = bind_rdev_to_array(rdev, mddev);
5982 		if (err) {
5983 			export_rdev(rdev);
5984 			return err;
5985 		}
5986 	}
5987 
5988 	return 0;
5989 }
5990 
hot_remove_disk(struct mddev * mddev,dev_t dev)5991 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5992 {
5993 	char b[BDEVNAME_SIZE];
5994 	struct md_rdev *rdev;
5995 
5996 	rdev = find_rdev(mddev, dev);
5997 	if (!rdev)
5998 		return -ENXIO;
5999 
6000 	if (mddev_is_clustered(mddev))
6001 		md_cluster_ops->metadata_update_start(mddev);
6002 
6003 	clear_bit(Blocked, &rdev->flags);
6004 	remove_and_add_spares(mddev, rdev);
6005 
6006 	if (rdev->raid_disk >= 0)
6007 		goto busy;
6008 
6009 	if (mddev_is_clustered(mddev))
6010 		md_cluster_ops->remove_disk(mddev, rdev);
6011 
6012 	md_kick_rdev_from_array(rdev);
6013 	md_update_sb(mddev, 1);
6014 	md_new_event(mddev);
6015 
6016 	if (mddev_is_clustered(mddev))
6017 		md_cluster_ops->metadata_update_finish(mddev);
6018 
6019 	return 0;
6020 busy:
6021 	if (mddev_is_clustered(mddev))
6022 		md_cluster_ops->metadata_update_cancel(mddev);
6023 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6024 		bdevname(rdev->bdev,b), mdname(mddev));
6025 	return -EBUSY;
6026 }
6027 
hot_add_disk(struct mddev * mddev,dev_t dev)6028 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6029 {
6030 	char b[BDEVNAME_SIZE];
6031 	int err;
6032 	struct md_rdev *rdev;
6033 
6034 	if (!mddev->pers)
6035 		return -ENODEV;
6036 
6037 	if (mddev->major_version != 0) {
6038 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6039 			" version-0 superblocks.\n",
6040 			mdname(mddev));
6041 		return -EINVAL;
6042 	}
6043 	if (!mddev->pers->hot_add_disk) {
6044 		printk(KERN_WARNING
6045 			"%s: personality does not support diskops!\n",
6046 			mdname(mddev));
6047 		return -EINVAL;
6048 	}
6049 
6050 	rdev = md_import_device(dev, -1, 0);
6051 	if (IS_ERR(rdev)) {
6052 		printk(KERN_WARNING
6053 			"md: error, md_import_device() returned %ld\n",
6054 			PTR_ERR(rdev));
6055 		return -EINVAL;
6056 	}
6057 
6058 	if (mddev->persistent)
6059 		rdev->sb_start = calc_dev_sboffset(rdev);
6060 	else
6061 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6062 
6063 	rdev->sectors = rdev->sb_start;
6064 
6065 	if (test_bit(Faulty, &rdev->flags)) {
6066 		printk(KERN_WARNING
6067 			"md: can not hot-add faulty %s disk to %s!\n",
6068 			bdevname(rdev->bdev,b), mdname(mddev));
6069 		err = -EINVAL;
6070 		goto abort_export;
6071 	}
6072 
6073 	if (mddev_is_clustered(mddev))
6074 		md_cluster_ops->metadata_update_start(mddev);
6075 	clear_bit(In_sync, &rdev->flags);
6076 	rdev->desc_nr = -1;
6077 	rdev->saved_raid_disk = -1;
6078 	err = bind_rdev_to_array(rdev, mddev);
6079 	if (err)
6080 		goto abort_clustered;
6081 
6082 	/*
6083 	 * The rest should better be atomic, we can have disk failures
6084 	 * noticed in interrupt contexts ...
6085 	 */
6086 
6087 	rdev->raid_disk = -1;
6088 
6089 	md_update_sb(mddev, 1);
6090 
6091 	if (mddev_is_clustered(mddev))
6092 		md_cluster_ops->metadata_update_finish(mddev);
6093 	/*
6094 	 * Kick recovery, maybe this spare has to be added to the
6095 	 * array immediately.
6096 	 */
6097 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6098 	md_wakeup_thread(mddev->thread);
6099 	md_new_event(mddev);
6100 	return 0;
6101 
6102 abort_clustered:
6103 	if (mddev_is_clustered(mddev))
6104 		md_cluster_ops->metadata_update_cancel(mddev);
6105 abort_export:
6106 	export_rdev(rdev);
6107 	return err;
6108 }
6109 
set_bitmap_file(struct mddev * mddev,int fd)6110 static int set_bitmap_file(struct mddev *mddev, int fd)
6111 {
6112 	int err = 0;
6113 
6114 	if (mddev->pers) {
6115 		if (!mddev->pers->quiesce || !mddev->thread)
6116 			return -EBUSY;
6117 		if (mddev->recovery || mddev->sync_thread)
6118 			return -EBUSY;
6119 		/* we should be able to change the bitmap.. */
6120 	}
6121 
6122 	if (fd >= 0) {
6123 		struct inode *inode;
6124 		struct file *f;
6125 
6126 		if (mddev->bitmap || mddev->bitmap_info.file)
6127 			return -EEXIST; /* cannot add when bitmap is present */
6128 		f = fget(fd);
6129 
6130 		if (f == NULL) {
6131 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6132 			       mdname(mddev));
6133 			return -EBADF;
6134 		}
6135 
6136 		inode = f->f_mapping->host;
6137 		if (!S_ISREG(inode->i_mode)) {
6138 			printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6139 			       mdname(mddev));
6140 			err = -EBADF;
6141 		} else if (!(f->f_mode & FMODE_WRITE)) {
6142 			printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6143 			       mdname(mddev));
6144 			err = -EBADF;
6145 		} else if (atomic_read(&inode->i_writecount) != 1) {
6146 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6147 			       mdname(mddev));
6148 			err = -EBUSY;
6149 		}
6150 		if (err) {
6151 			fput(f);
6152 			return err;
6153 		}
6154 		mddev->bitmap_info.file = f;
6155 		mddev->bitmap_info.offset = 0; /* file overrides offset */
6156 	} else if (mddev->bitmap == NULL)
6157 		return -ENOENT; /* cannot remove what isn't there */
6158 	err = 0;
6159 	if (mddev->pers) {
6160 		mddev->pers->quiesce(mddev, 1);
6161 		if (fd >= 0) {
6162 			struct bitmap *bitmap;
6163 
6164 			bitmap = bitmap_create(mddev, -1);
6165 			if (!IS_ERR(bitmap)) {
6166 				mddev->bitmap = bitmap;
6167 				err = bitmap_load(mddev);
6168 			} else
6169 				err = PTR_ERR(bitmap);
6170 		}
6171 		if (fd < 0 || err) {
6172 			bitmap_destroy(mddev);
6173 			fd = -1; /* make sure to put the file */
6174 		}
6175 		mddev->pers->quiesce(mddev, 0);
6176 	}
6177 	if (fd < 0) {
6178 		struct file *f = mddev->bitmap_info.file;
6179 		if (f) {
6180 			spin_lock(&mddev->lock);
6181 			mddev->bitmap_info.file = NULL;
6182 			spin_unlock(&mddev->lock);
6183 			fput(f);
6184 		}
6185 	}
6186 
6187 	return err;
6188 }
6189 
6190 /*
6191  * set_array_info is used two different ways
6192  * The original usage is when creating a new array.
6193  * In this usage, raid_disks is > 0 and it together with
6194  *  level, size, not_persistent,layout,chunksize determine the
6195  *  shape of the array.
6196  *  This will always create an array with a type-0.90.0 superblock.
6197  * The newer usage is when assembling an array.
6198  *  In this case raid_disks will be 0, and the major_version field is
6199  *  use to determine which style super-blocks are to be found on the devices.
6200  *  The minor and patch _version numbers are also kept incase the
6201  *  super_block handler wishes to interpret them.
6202  */
set_array_info(struct mddev * mddev,mdu_array_info_t * info)6203 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6204 {
6205 
6206 	if (info->raid_disks == 0) {
6207 		/* just setting version number for superblock loading */
6208 		if (info->major_version < 0 ||
6209 		    info->major_version >= ARRAY_SIZE(super_types) ||
6210 		    super_types[info->major_version].name == NULL) {
6211 			/* maybe try to auto-load a module? */
6212 			printk(KERN_INFO
6213 				"md: superblock version %d not known\n",
6214 				info->major_version);
6215 			return -EINVAL;
6216 		}
6217 		mddev->major_version = info->major_version;
6218 		mddev->minor_version = info->minor_version;
6219 		mddev->patch_version = info->patch_version;
6220 		mddev->persistent = !info->not_persistent;
6221 		/* ensure mddev_put doesn't delete this now that there
6222 		 * is some minimal configuration.
6223 		 */
6224 		mddev->ctime         = get_seconds();
6225 		return 0;
6226 	}
6227 	mddev->major_version = MD_MAJOR_VERSION;
6228 	mddev->minor_version = MD_MINOR_VERSION;
6229 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6230 	mddev->ctime         = get_seconds();
6231 
6232 	mddev->level         = info->level;
6233 	mddev->clevel[0]     = 0;
6234 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6235 	mddev->raid_disks    = info->raid_disks;
6236 	/* don't set md_minor, it is determined by which /dev/md* was
6237 	 * openned
6238 	 */
6239 	if (info->state & (1<<MD_SB_CLEAN))
6240 		mddev->recovery_cp = MaxSector;
6241 	else
6242 		mddev->recovery_cp = 0;
6243 	mddev->persistent    = ! info->not_persistent;
6244 	mddev->external	     = 0;
6245 
6246 	mddev->layout        = info->layout;
6247 	mddev->chunk_sectors = info->chunk_size >> 9;
6248 
6249 	mddev->max_disks     = MD_SB_DISKS;
6250 
6251 	if (mddev->persistent)
6252 		mddev->flags         = 0;
6253 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6254 
6255 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6256 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6257 	mddev->bitmap_info.offset = 0;
6258 
6259 	mddev->reshape_position = MaxSector;
6260 
6261 	/*
6262 	 * Generate a 128 bit UUID
6263 	 */
6264 	get_random_bytes(mddev->uuid, 16);
6265 
6266 	mddev->new_level = mddev->level;
6267 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6268 	mddev->new_layout = mddev->layout;
6269 	mddev->delta_disks = 0;
6270 	mddev->reshape_backwards = 0;
6271 
6272 	return 0;
6273 }
6274 
md_set_array_sectors(struct mddev * mddev,sector_t array_sectors)6275 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6276 {
6277 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6278 
6279 	if (mddev->external_size)
6280 		return;
6281 
6282 	mddev->array_sectors = array_sectors;
6283 }
6284 EXPORT_SYMBOL(md_set_array_sectors);
6285 
update_size(struct mddev * mddev,sector_t num_sectors)6286 static int update_size(struct mddev *mddev, sector_t num_sectors)
6287 {
6288 	struct md_rdev *rdev;
6289 	int rv;
6290 	int fit = (num_sectors == 0);
6291 
6292 	if (mddev->pers->resize == NULL)
6293 		return -EINVAL;
6294 	/* The "num_sectors" is the number of sectors of each device that
6295 	 * is used.  This can only make sense for arrays with redundancy.
6296 	 * linear and raid0 always use whatever space is available. We can only
6297 	 * consider changing this number if no resync or reconstruction is
6298 	 * happening, and if the new size is acceptable. It must fit before the
6299 	 * sb_start or, if that is <data_offset, it must fit before the size
6300 	 * of each device.  If num_sectors is zero, we find the largest size
6301 	 * that fits.
6302 	 */
6303 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6304 	    mddev->sync_thread)
6305 		return -EBUSY;
6306 	if (mddev->ro)
6307 		return -EROFS;
6308 
6309 	rdev_for_each(rdev, mddev) {
6310 		sector_t avail = rdev->sectors;
6311 
6312 		if (fit && (num_sectors == 0 || num_sectors > avail))
6313 			num_sectors = avail;
6314 		if (avail < num_sectors)
6315 			return -ENOSPC;
6316 	}
6317 	rv = mddev->pers->resize(mddev, num_sectors);
6318 	if (!rv)
6319 		revalidate_disk(mddev->gendisk);
6320 	return rv;
6321 }
6322 
update_raid_disks(struct mddev * mddev,int raid_disks)6323 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6324 {
6325 	int rv;
6326 	struct md_rdev *rdev;
6327 	/* change the number of raid disks */
6328 	if (mddev->pers->check_reshape == NULL)
6329 		return -EINVAL;
6330 	if (mddev->ro)
6331 		return -EROFS;
6332 	if (raid_disks <= 0 ||
6333 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6334 		return -EINVAL;
6335 	if (mddev->sync_thread ||
6336 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6337 	    mddev->reshape_position != MaxSector)
6338 		return -EBUSY;
6339 
6340 	rdev_for_each(rdev, mddev) {
6341 		if (mddev->raid_disks < raid_disks &&
6342 		    rdev->data_offset < rdev->new_data_offset)
6343 			return -EINVAL;
6344 		if (mddev->raid_disks > raid_disks &&
6345 		    rdev->data_offset > rdev->new_data_offset)
6346 			return -EINVAL;
6347 	}
6348 
6349 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6350 	if (mddev->delta_disks < 0)
6351 		mddev->reshape_backwards = 1;
6352 	else if (mddev->delta_disks > 0)
6353 		mddev->reshape_backwards = 0;
6354 
6355 	rv = mddev->pers->check_reshape(mddev);
6356 	if (rv < 0) {
6357 		mddev->delta_disks = 0;
6358 		mddev->reshape_backwards = 0;
6359 	}
6360 	return rv;
6361 }
6362 
6363 /*
6364  * update_array_info is used to change the configuration of an
6365  * on-line array.
6366  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6367  * fields in the info are checked against the array.
6368  * Any differences that cannot be handled will cause an error.
6369  * Normally, only one change can be managed at a time.
6370  */
update_array_info(struct mddev * mddev,mdu_array_info_t * info)6371 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6372 {
6373 	int rv = 0;
6374 	int cnt = 0;
6375 	int state = 0;
6376 
6377 	/* calculate expected state,ignoring low bits */
6378 	if (mddev->bitmap && mddev->bitmap_info.offset)
6379 		state |= (1 << MD_SB_BITMAP_PRESENT);
6380 
6381 	if (mddev->major_version != info->major_version ||
6382 	    mddev->minor_version != info->minor_version ||
6383 /*	    mddev->patch_version != info->patch_version || */
6384 	    mddev->ctime         != info->ctime         ||
6385 	    mddev->level         != info->level         ||
6386 /*	    mddev->layout        != info->layout        || */
6387 	    mddev->persistent	 != !info->not_persistent ||
6388 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6389 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6390 	    ((state^info->state) & 0xfffffe00)
6391 		)
6392 		return -EINVAL;
6393 	/* Check there is only one change */
6394 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6395 		cnt++;
6396 	if (mddev->raid_disks != info->raid_disks)
6397 		cnt++;
6398 	if (mddev->layout != info->layout)
6399 		cnt++;
6400 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6401 		cnt++;
6402 	if (cnt == 0)
6403 		return 0;
6404 	if (cnt > 1)
6405 		return -EINVAL;
6406 
6407 	if (mddev->layout != info->layout) {
6408 		/* Change layout
6409 		 * we don't need to do anything at the md level, the
6410 		 * personality will take care of it all.
6411 		 */
6412 		if (mddev->pers->check_reshape == NULL)
6413 			return -EINVAL;
6414 		else {
6415 			mddev->new_layout = info->layout;
6416 			rv = mddev->pers->check_reshape(mddev);
6417 			if (rv)
6418 				mddev->new_layout = mddev->layout;
6419 			return rv;
6420 		}
6421 	}
6422 	if (mddev_is_clustered(mddev))
6423 		md_cluster_ops->metadata_update_start(mddev);
6424 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6425 		rv = update_size(mddev, (sector_t)info->size * 2);
6426 
6427 	if (mddev->raid_disks    != info->raid_disks)
6428 		rv = update_raid_disks(mddev, info->raid_disks);
6429 
6430 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6431 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6432 			rv = -EINVAL;
6433 			goto err;
6434 		}
6435 		if (mddev->recovery || mddev->sync_thread) {
6436 			rv = -EBUSY;
6437 			goto err;
6438 		}
6439 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6440 			struct bitmap *bitmap;
6441 			/* add the bitmap */
6442 			if (mddev->bitmap) {
6443 				rv = -EEXIST;
6444 				goto err;
6445 			}
6446 			if (mddev->bitmap_info.default_offset == 0) {
6447 				rv = -EINVAL;
6448 				goto err;
6449 			}
6450 			mddev->bitmap_info.offset =
6451 				mddev->bitmap_info.default_offset;
6452 			mddev->bitmap_info.space =
6453 				mddev->bitmap_info.default_space;
6454 			mddev->pers->quiesce(mddev, 1);
6455 			bitmap = bitmap_create(mddev, -1);
6456 			if (!IS_ERR(bitmap)) {
6457 				mddev->bitmap = bitmap;
6458 				rv = bitmap_load(mddev);
6459 			} else
6460 				rv = PTR_ERR(bitmap);
6461 			if (rv)
6462 				bitmap_destroy(mddev);
6463 			mddev->pers->quiesce(mddev, 0);
6464 		} else {
6465 			/* remove the bitmap */
6466 			if (!mddev->bitmap) {
6467 				rv = -ENOENT;
6468 				goto err;
6469 			}
6470 			if (mddev->bitmap->storage.file) {
6471 				rv = -EINVAL;
6472 				goto err;
6473 			}
6474 			mddev->pers->quiesce(mddev, 1);
6475 			bitmap_destroy(mddev);
6476 			mddev->pers->quiesce(mddev, 0);
6477 			mddev->bitmap_info.offset = 0;
6478 		}
6479 	}
6480 	md_update_sb(mddev, 1);
6481 	if (mddev_is_clustered(mddev))
6482 		md_cluster_ops->metadata_update_finish(mddev);
6483 	return rv;
6484 err:
6485 	if (mddev_is_clustered(mddev))
6486 		md_cluster_ops->metadata_update_cancel(mddev);
6487 	return rv;
6488 }
6489 
set_disk_faulty(struct mddev * mddev,dev_t dev)6490 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6491 {
6492 	struct md_rdev *rdev;
6493 	int err = 0;
6494 
6495 	if (mddev->pers == NULL)
6496 		return -ENODEV;
6497 
6498 	rcu_read_lock();
6499 	rdev = find_rdev_rcu(mddev, dev);
6500 	if (!rdev)
6501 		err =  -ENODEV;
6502 	else {
6503 		md_error(mddev, rdev);
6504 		if (!test_bit(Faulty, &rdev->flags))
6505 			err = -EBUSY;
6506 	}
6507 	rcu_read_unlock();
6508 	return err;
6509 }
6510 
6511 /*
6512  * We have a problem here : there is no easy way to give a CHS
6513  * virtual geometry. We currently pretend that we have a 2 heads
6514  * 4 sectors (with a BIG number of cylinders...). This drives
6515  * dosfs just mad... ;-)
6516  */
md_getgeo(struct block_device * bdev,struct hd_geometry * geo)6517 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6518 {
6519 	struct mddev *mddev = bdev->bd_disk->private_data;
6520 
6521 	geo->heads = 2;
6522 	geo->sectors = 4;
6523 	geo->cylinders = mddev->array_sectors / 8;
6524 	return 0;
6525 }
6526 
md_ioctl_valid(unsigned int cmd)6527 static inline bool md_ioctl_valid(unsigned int cmd)
6528 {
6529 	switch (cmd) {
6530 	case ADD_NEW_DISK:
6531 	case BLKROSET:
6532 	case GET_ARRAY_INFO:
6533 	case GET_BITMAP_FILE:
6534 	case GET_DISK_INFO:
6535 	case HOT_ADD_DISK:
6536 	case HOT_REMOVE_DISK:
6537 	case RAID_AUTORUN:
6538 	case RAID_VERSION:
6539 	case RESTART_ARRAY_RW:
6540 	case RUN_ARRAY:
6541 	case SET_ARRAY_INFO:
6542 	case SET_BITMAP_FILE:
6543 	case SET_DISK_FAULTY:
6544 	case STOP_ARRAY:
6545 	case STOP_ARRAY_RO:
6546 	case CLUSTERED_DISK_NACK:
6547 		return true;
6548 	default:
6549 		return false;
6550 	}
6551 }
6552 
md_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)6553 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6554 			unsigned int cmd, unsigned long arg)
6555 {
6556 	int err = 0;
6557 	void __user *argp = (void __user *)arg;
6558 	struct mddev *mddev = NULL;
6559 	int ro;
6560 
6561 	if (!md_ioctl_valid(cmd))
6562 		return -ENOTTY;
6563 
6564 	switch (cmd) {
6565 	case RAID_VERSION:
6566 	case GET_ARRAY_INFO:
6567 	case GET_DISK_INFO:
6568 		break;
6569 	default:
6570 		if (!capable(CAP_SYS_ADMIN))
6571 			return -EACCES;
6572 	}
6573 
6574 	/*
6575 	 * Commands dealing with the RAID driver but not any
6576 	 * particular array:
6577 	 */
6578 	switch (cmd) {
6579 	case RAID_VERSION:
6580 		err = get_version(argp);
6581 		goto out;
6582 
6583 #ifndef MODULE
6584 	case RAID_AUTORUN:
6585 		err = 0;
6586 		autostart_arrays(arg);
6587 		goto out;
6588 #endif
6589 	default:;
6590 	}
6591 
6592 	/*
6593 	 * Commands creating/starting a new array:
6594 	 */
6595 
6596 	mddev = bdev->bd_disk->private_data;
6597 
6598 	if (!mddev) {
6599 		BUG();
6600 		goto out;
6601 	}
6602 
6603 	/* Some actions do not requires the mutex */
6604 	switch (cmd) {
6605 	case GET_ARRAY_INFO:
6606 		if (!mddev->raid_disks && !mddev->external)
6607 			err = -ENODEV;
6608 		else
6609 			err = get_array_info(mddev, argp);
6610 		goto out;
6611 
6612 	case GET_DISK_INFO:
6613 		if (!mddev->raid_disks && !mddev->external)
6614 			err = -ENODEV;
6615 		else
6616 			err = get_disk_info(mddev, argp);
6617 		goto out;
6618 
6619 	case SET_DISK_FAULTY:
6620 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6621 		goto out;
6622 
6623 	case GET_BITMAP_FILE:
6624 		err = get_bitmap_file(mddev, argp);
6625 		goto out;
6626 
6627 	}
6628 
6629 	if (cmd == ADD_NEW_DISK)
6630 		/* need to ensure md_delayed_delete() has completed */
6631 		flush_workqueue(md_misc_wq);
6632 
6633 	if (cmd == HOT_REMOVE_DISK)
6634 		/* need to ensure recovery thread has run */
6635 		wait_event_interruptible_timeout(mddev->sb_wait,
6636 						 !test_bit(MD_RECOVERY_NEEDED,
6637 							   &mddev->flags),
6638 						 msecs_to_jiffies(5000));
6639 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6640 		/* Need to flush page cache, and ensure no-one else opens
6641 		 * and writes
6642 		 */
6643 		mutex_lock(&mddev->open_mutex);
6644 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6645 			mutex_unlock(&mddev->open_mutex);
6646 			err = -EBUSY;
6647 			goto out;
6648 		}
6649 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6650 		mutex_unlock(&mddev->open_mutex);
6651 		sync_blockdev(bdev);
6652 	}
6653 	err = mddev_lock(mddev);
6654 	if (err) {
6655 		printk(KERN_INFO
6656 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6657 			err, cmd);
6658 		goto out;
6659 	}
6660 
6661 	if (cmd == SET_ARRAY_INFO) {
6662 		mdu_array_info_t info;
6663 		if (!arg)
6664 			memset(&info, 0, sizeof(info));
6665 		else if (copy_from_user(&info, argp, sizeof(info))) {
6666 			err = -EFAULT;
6667 			goto unlock;
6668 		}
6669 		if (mddev->pers) {
6670 			err = update_array_info(mddev, &info);
6671 			if (err) {
6672 				printk(KERN_WARNING "md: couldn't update"
6673 				       " array info. %d\n", err);
6674 				goto unlock;
6675 			}
6676 			goto unlock;
6677 		}
6678 		if (!list_empty(&mddev->disks)) {
6679 			printk(KERN_WARNING
6680 			       "md: array %s already has disks!\n",
6681 			       mdname(mddev));
6682 			err = -EBUSY;
6683 			goto unlock;
6684 		}
6685 		if (mddev->raid_disks) {
6686 			printk(KERN_WARNING
6687 			       "md: array %s already initialised!\n",
6688 			       mdname(mddev));
6689 			err = -EBUSY;
6690 			goto unlock;
6691 		}
6692 		err = set_array_info(mddev, &info);
6693 		if (err) {
6694 			printk(KERN_WARNING "md: couldn't set"
6695 			       " array info. %d\n", err);
6696 			goto unlock;
6697 		}
6698 		goto unlock;
6699 	}
6700 
6701 	/*
6702 	 * Commands querying/configuring an existing array:
6703 	 */
6704 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6705 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6706 	if ((!mddev->raid_disks && !mddev->external)
6707 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6708 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6709 	    && cmd != GET_BITMAP_FILE) {
6710 		err = -ENODEV;
6711 		goto unlock;
6712 	}
6713 
6714 	/*
6715 	 * Commands even a read-only array can execute:
6716 	 */
6717 	switch (cmd) {
6718 	case RESTART_ARRAY_RW:
6719 		err = restart_array(mddev);
6720 		goto unlock;
6721 
6722 	case STOP_ARRAY:
6723 		err = do_md_stop(mddev, 0, bdev);
6724 		goto unlock;
6725 
6726 	case STOP_ARRAY_RO:
6727 		err = md_set_readonly(mddev, bdev);
6728 		goto unlock;
6729 
6730 	case HOT_REMOVE_DISK:
6731 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6732 		goto unlock;
6733 
6734 	case ADD_NEW_DISK:
6735 		/* We can support ADD_NEW_DISK on read-only arrays
6736 		 * on if we are re-adding a preexisting device.
6737 		 * So require mddev->pers and MD_DISK_SYNC.
6738 		 */
6739 		if (mddev->pers) {
6740 			mdu_disk_info_t info;
6741 			if (copy_from_user(&info, argp, sizeof(info)))
6742 				err = -EFAULT;
6743 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6744 				/* Need to clear read-only for this */
6745 				break;
6746 			else
6747 				err = add_new_disk(mddev, &info);
6748 			goto unlock;
6749 		}
6750 		break;
6751 
6752 	case BLKROSET:
6753 		if (get_user(ro, (int __user *)(arg))) {
6754 			err = -EFAULT;
6755 			goto unlock;
6756 		}
6757 		err = -EINVAL;
6758 
6759 		/* if the bdev is going readonly the value of mddev->ro
6760 		 * does not matter, no writes are coming
6761 		 */
6762 		if (ro)
6763 			goto unlock;
6764 
6765 		/* are we are already prepared for writes? */
6766 		if (mddev->ro != 1)
6767 			goto unlock;
6768 
6769 		/* transitioning to readauto need only happen for
6770 		 * arrays that call md_write_start
6771 		 */
6772 		if (mddev->pers) {
6773 			err = restart_array(mddev);
6774 			if (err == 0) {
6775 				mddev->ro = 2;
6776 				set_disk_ro(mddev->gendisk, 0);
6777 			}
6778 		}
6779 		goto unlock;
6780 	}
6781 
6782 	/*
6783 	 * The remaining ioctls are changing the state of the
6784 	 * superblock, so we do not allow them on read-only arrays.
6785 	 */
6786 	if (mddev->ro && mddev->pers) {
6787 		if (mddev->ro == 2) {
6788 			mddev->ro = 0;
6789 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6790 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6791 			/* mddev_unlock will wake thread */
6792 			/* If a device failed while we were read-only, we
6793 			 * need to make sure the metadata is updated now.
6794 			 */
6795 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6796 				mddev_unlock(mddev);
6797 				wait_event(mddev->sb_wait,
6798 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6799 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6800 				mddev_lock_nointr(mddev);
6801 			}
6802 		} else {
6803 			err = -EROFS;
6804 			goto unlock;
6805 		}
6806 	}
6807 
6808 	switch (cmd) {
6809 	case ADD_NEW_DISK:
6810 	{
6811 		mdu_disk_info_t info;
6812 		if (copy_from_user(&info, argp, sizeof(info)))
6813 			err = -EFAULT;
6814 		else
6815 			err = add_new_disk(mddev, &info);
6816 		goto unlock;
6817 	}
6818 
6819 	case CLUSTERED_DISK_NACK:
6820 		if (mddev_is_clustered(mddev))
6821 			md_cluster_ops->new_disk_ack(mddev, false);
6822 		else
6823 			err = -EINVAL;
6824 		goto unlock;
6825 
6826 	case HOT_ADD_DISK:
6827 		err = hot_add_disk(mddev, new_decode_dev(arg));
6828 		goto unlock;
6829 
6830 	case RUN_ARRAY:
6831 		err = do_md_run(mddev);
6832 		goto unlock;
6833 
6834 	case SET_BITMAP_FILE:
6835 		err = set_bitmap_file(mddev, (int)arg);
6836 		goto unlock;
6837 
6838 	default:
6839 		err = -EINVAL;
6840 		goto unlock;
6841 	}
6842 
6843 unlock:
6844 	if (mddev->hold_active == UNTIL_IOCTL &&
6845 	    err != -EINVAL)
6846 		mddev->hold_active = 0;
6847 	mddev_unlock(mddev);
6848 out:
6849 	return err;
6850 }
6851 #ifdef CONFIG_COMPAT
md_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)6852 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6853 		    unsigned int cmd, unsigned long arg)
6854 {
6855 	switch (cmd) {
6856 	case HOT_REMOVE_DISK:
6857 	case HOT_ADD_DISK:
6858 	case SET_DISK_FAULTY:
6859 	case SET_BITMAP_FILE:
6860 		/* These take in integer arg, do not convert */
6861 		break;
6862 	default:
6863 		arg = (unsigned long)compat_ptr(arg);
6864 		break;
6865 	}
6866 
6867 	return md_ioctl(bdev, mode, cmd, arg);
6868 }
6869 #endif /* CONFIG_COMPAT */
6870 
md_open(struct block_device * bdev,fmode_t mode)6871 static int md_open(struct block_device *bdev, fmode_t mode)
6872 {
6873 	/*
6874 	 * Succeed if we can lock the mddev, which confirms that
6875 	 * it isn't being stopped right now.
6876 	 */
6877 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6878 	int err;
6879 
6880 	if (!mddev)
6881 		return -ENODEV;
6882 
6883 	if (mddev->gendisk != bdev->bd_disk) {
6884 		/* we are racing with mddev_put which is discarding this
6885 		 * bd_disk.
6886 		 */
6887 		mddev_put(mddev);
6888 		/* Wait until bdev->bd_disk is definitely gone */
6889 		flush_workqueue(md_misc_wq);
6890 		/* Then retry the open from the top */
6891 		return -ERESTARTSYS;
6892 	}
6893 	BUG_ON(mddev != bdev->bd_disk->private_data);
6894 
6895 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6896 		goto out;
6897 
6898 	err = 0;
6899 	atomic_inc(&mddev->openers);
6900 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
6901 	mutex_unlock(&mddev->open_mutex);
6902 
6903 	check_disk_change(bdev);
6904  out:
6905 	return err;
6906 }
6907 
md_release(struct gendisk * disk,fmode_t mode)6908 static void md_release(struct gendisk *disk, fmode_t mode)
6909 {
6910 	struct mddev *mddev = disk->private_data;
6911 
6912 	BUG_ON(!mddev);
6913 	atomic_dec(&mddev->openers);
6914 	mddev_put(mddev);
6915 }
6916 
md_media_changed(struct gendisk * disk)6917 static int md_media_changed(struct gendisk *disk)
6918 {
6919 	struct mddev *mddev = disk->private_data;
6920 
6921 	return mddev->changed;
6922 }
6923 
md_revalidate(struct gendisk * disk)6924 static int md_revalidate(struct gendisk *disk)
6925 {
6926 	struct mddev *mddev = disk->private_data;
6927 
6928 	mddev->changed = 0;
6929 	return 0;
6930 }
6931 static const struct block_device_operations md_fops =
6932 {
6933 	.owner		= THIS_MODULE,
6934 	.open		= md_open,
6935 	.release	= md_release,
6936 	.ioctl		= md_ioctl,
6937 #ifdef CONFIG_COMPAT
6938 	.compat_ioctl	= md_compat_ioctl,
6939 #endif
6940 	.getgeo		= md_getgeo,
6941 	.media_changed  = md_media_changed,
6942 	.revalidate_disk= md_revalidate,
6943 };
6944 
md_thread(void * arg)6945 static int md_thread(void *arg)
6946 {
6947 	struct md_thread *thread = arg;
6948 
6949 	/*
6950 	 * md_thread is a 'system-thread', it's priority should be very
6951 	 * high. We avoid resource deadlocks individually in each
6952 	 * raid personality. (RAID5 does preallocation) We also use RR and
6953 	 * the very same RT priority as kswapd, thus we will never get
6954 	 * into a priority inversion deadlock.
6955 	 *
6956 	 * we definitely have to have equal or higher priority than
6957 	 * bdflush, otherwise bdflush will deadlock if there are too
6958 	 * many dirty RAID5 blocks.
6959 	 */
6960 
6961 	allow_signal(SIGKILL);
6962 	while (!kthread_should_stop()) {
6963 
6964 		/* We need to wait INTERRUPTIBLE so that
6965 		 * we don't add to the load-average.
6966 		 * That means we need to be sure no signals are
6967 		 * pending
6968 		 */
6969 		if (signal_pending(current))
6970 			flush_signals(current);
6971 
6972 		wait_event_interruptible_timeout
6973 			(thread->wqueue,
6974 			 test_bit(THREAD_WAKEUP, &thread->flags)
6975 			 || kthread_should_stop(),
6976 			 thread->timeout);
6977 
6978 		clear_bit(THREAD_WAKEUP, &thread->flags);
6979 		if (!kthread_should_stop())
6980 			thread->run(thread);
6981 	}
6982 
6983 	return 0;
6984 }
6985 
md_wakeup_thread(struct md_thread * thread)6986 void md_wakeup_thread(struct md_thread *thread)
6987 {
6988 	if (thread) {
6989 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6990 		set_bit(THREAD_WAKEUP, &thread->flags);
6991 		wake_up(&thread->wqueue);
6992 	}
6993 }
6994 EXPORT_SYMBOL(md_wakeup_thread);
6995 
md_register_thread(void (* run)(struct md_thread *),struct mddev * mddev,const char * name)6996 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6997 		struct mddev *mddev, const char *name)
6998 {
6999 	struct md_thread *thread;
7000 
7001 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7002 	if (!thread)
7003 		return NULL;
7004 
7005 	init_waitqueue_head(&thread->wqueue);
7006 
7007 	thread->run = run;
7008 	thread->mddev = mddev;
7009 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
7010 	thread->tsk = kthread_run(md_thread, thread,
7011 				  "%s_%s",
7012 				  mdname(thread->mddev),
7013 				  name);
7014 	if (IS_ERR(thread->tsk)) {
7015 		kfree(thread);
7016 		return NULL;
7017 	}
7018 	return thread;
7019 }
7020 EXPORT_SYMBOL(md_register_thread);
7021 
md_unregister_thread(struct md_thread ** threadp)7022 void md_unregister_thread(struct md_thread **threadp)
7023 {
7024 	struct md_thread *thread = *threadp;
7025 	if (!thread)
7026 		return;
7027 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7028 	/* Locking ensures that mddev_unlock does not wake_up a
7029 	 * non-existent thread
7030 	 */
7031 	spin_lock(&pers_lock);
7032 	*threadp = NULL;
7033 	spin_unlock(&pers_lock);
7034 
7035 	kthread_stop(thread->tsk);
7036 	kfree(thread);
7037 }
7038 EXPORT_SYMBOL(md_unregister_thread);
7039 
md_error(struct mddev * mddev,struct md_rdev * rdev)7040 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7041 {
7042 	if (!rdev || test_bit(Faulty, &rdev->flags))
7043 		return;
7044 
7045 	if (!mddev->pers || !mddev->pers->error_handler)
7046 		return;
7047 	mddev->pers->error_handler(mddev,rdev);
7048 	if (mddev->degraded)
7049 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7050 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7051 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7052 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7053 	md_wakeup_thread(mddev->thread);
7054 	if (mddev->event_work.func)
7055 		queue_work(md_misc_wq, &mddev->event_work);
7056 	md_new_event_inintr(mddev);
7057 }
7058 EXPORT_SYMBOL(md_error);
7059 
7060 /* seq_file implementation /proc/mdstat */
7061 
status_unused(struct seq_file * seq)7062 static void status_unused(struct seq_file *seq)
7063 {
7064 	int i = 0;
7065 	struct md_rdev *rdev;
7066 
7067 	seq_printf(seq, "unused devices: ");
7068 
7069 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7070 		char b[BDEVNAME_SIZE];
7071 		i++;
7072 		seq_printf(seq, "%s ",
7073 			      bdevname(rdev->bdev,b));
7074 	}
7075 	if (!i)
7076 		seq_printf(seq, "<none>");
7077 
7078 	seq_printf(seq, "\n");
7079 }
7080 
status_resync(struct seq_file * seq,struct mddev * mddev)7081 static void status_resync(struct seq_file *seq, struct mddev *mddev)
7082 {
7083 	sector_t max_sectors, resync, res;
7084 	unsigned long dt, db;
7085 	sector_t rt;
7086 	int scale;
7087 	unsigned int per_milli;
7088 
7089 	if (mddev->curr_resync <= 3)
7090 		resync = 0;
7091 	else
7092 		resync = mddev->curr_resync
7093 			- atomic_read(&mddev->recovery_active);
7094 
7095 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7096 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7097 		max_sectors = mddev->resync_max_sectors;
7098 	else
7099 		max_sectors = mddev->dev_sectors;
7100 
7101 	WARN_ON(max_sectors == 0);
7102 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
7103 	 * in a sector_t, and (max_sectors>>scale) will fit in a
7104 	 * u32, as those are the requirements for sector_div.
7105 	 * Thus 'scale' must be at least 10
7106 	 */
7107 	scale = 10;
7108 	if (sizeof(sector_t) > sizeof(unsigned long)) {
7109 		while ( max_sectors/2 > (1ULL<<(scale+32)))
7110 			scale++;
7111 	}
7112 	res = (resync>>scale)*1000;
7113 	sector_div(res, (u32)((max_sectors>>scale)+1));
7114 
7115 	per_milli = res;
7116 	{
7117 		int i, x = per_milli/50, y = 20-x;
7118 		seq_printf(seq, "[");
7119 		for (i = 0; i < x; i++)
7120 			seq_printf(seq, "=");
7121 		seq_printf(seq, ">");
7122 		for (i = 0; i < y; i++)
7123 			seq_printf(seq, ".");
7124 		seq_printf(seq, "] ");
7125 	}
7126 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7127 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7128 		    "reshape" :
7129 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7130 		     "check" :
7131 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7132 		      "resync" : "recovery"))),
7133 		   per_milli/10, per_milli % 10,
7134 		   (unsigned long long) resync/2,
7135 		   (unsigned long long) max_sectors/2);
7136 
7137 	/*
7138 	 * dt: time from mark until now
7139 	 * db: blocks written from mark until now
7140 	 * rt: remaining time
7141 	 *
7142 	 * rt is a sector_t, so could be 32bit or 64bit.
7143 	 * So we divide before multiply in case it is 32bit and close
7144 	 * to the limit.
7145 	 * We scale the divisor (db) by 32 to avoid losing precision
7146 	 * near the end of resync when the number of remaining sectors
7147 	 * is close to 'db'.
7148 	 * We then divide rt by 32 after multiplying by db to compensate.
7149 	 * The '+1' avoids division by zero if db is very small.
7150 	 */
7151 	dt = ((jiffies - mddev->resync_mark) / HZ);
7152 	if (!dt) dt++;
7153 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7154 		- mddev->resync_mark_cnt;
7155 
7156 	rt = max_sectors - resync;    /* number of remaining sectors */
7157 	sector_div(rt, db/32+1);
7158 	rt *= dt;
7159 	rt >>= 5;
7160 
7161 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7162 		   ((unsigned long)rt % 60)/6);
7163 
7164 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7165 }
7166 
md_seq_start(struct seq_file * seq,loff_t * pos)7167 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7168 {
7169 	struct list_head *tmp;
7170 	loff_t l = *pos;
7171 	struct mddev *mddev;
7172 
7173 	if (l >= 0x10000)
7174 		return NULL;
7175 	if (!l--)
7176 		/* header */
7177 		return (void*)1;
7178 
7179 	spin_lock(&all_mddevs_lock);
7180 	list_for_each(tmp,&all_mddevs)
7181 		if (!l--) {
7182 			mddev = list_entry(tmp, struct mddev, all_mddevs);
7183 			mddev_get(mddev);
7184 			spin_unlock(&all_mddevs_lock);
7185 			return mddev;
7186 		}
7187 	spin_unlock(&all_mddevs_lock);
7188 	if (!l--)
7189 		return (void*)2;/* tail */
7190 	return NULL;
7191 }
7192 
md_seq_next(struct seq_file * seq,void * v,loff_t * pos)7193 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7194 {
7195 	struct list_head *tmp;
7196 	struct mddev *next_mddev, *mddev = v;
7197 
7198 	++*pos;
7199 	if (v == (void*)2)
7200 		return NULL;
7201 
7202 	spin_lock(&all_mddevs_lock);
7203 	if (v == (void*)1)
7204 		tmp = all_mddevs.next;
7205 	else
7206 		tmp = mddev->all_mddevs.next;
7207 	if (tmp != &all_mddevs)
7208 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7209 	else {
7210 		next_mddev = (void*)2;
7211 		*pos = 0x10000;
7212 	}
7213 	spin_unlock(&all_mddevs_lock);
7214 
7215 	if (v != (void*)1)
7216 		mddev_put(mddev);
7217 	return next_mddev;
7218 
7219 }
7220 
md_seq_stop(struct seq_file * seq,void * v)7221 static void md_seq_stop(struct seq_file *seq, void *v)
7222 {
7223 	struct mddev *mddev = v;
7224 
7225 	if (mddev && v != (void*)1 && v != (void*)2)
7226 		mddev_put(mddev);
7227 }
7228 
md_seq_show(struct seq_file * seq,void * v)7229 static int md_seq_show(struct seq_file *seq, void *v)
7230 {
7231 	struct mddev *mddev = v;
7232 	sector_t sectors;
7233 	struct md_rdev *rdev;
7234 
7235 	if (v == (void*)1) {
7236 		struct md_personality *pers;
7237 		seq_printf(seq, "Personalities : ");
7238 		spin_lock(&pers_lock);
7239 		list_for_each_entry(pers, &pers_list, list)
7240 			seq_printf(seq, "[%s] ", pers->name);
7241 
7242 		spin_unlock(&pers_lock);
7243 		seq_printf(seq, "\n");
7244 		seq->poll_event = atomic_read(&md_event_count);
7245 		return 0;
7246 	}
7247 	if (v == (void*)2) {
7248 		status_unused(seq);
7249 		return 0;
7250 	}
7251 
7252 	spin_lock(&mddev->lock);
7253 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7254 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7255 						mddev->pers ? "" : "in");
7256 		if (mddev->pers) {
7257 			if (mddev->ro==1)
7258 				seq_printf(seq, " (read-only)");
7259 			if (mddev->ro==2)
7260 				seq_printf(seq, " (auto-read-only)");
7261 			seq_printf(seq, " %s", mddev->pers->name);
7262 		}
7263 
7264 		sectors = 0;
7265 		rcu_read_lock();
7266 		rdev_for_each_rcu(rdev, mddev) {
7267 			char b[BDEVNAME_SIZE];
7268 			seq_printf(seq, " %s[%d]",
7269 				bdevname(rdev->bdev,b), rdev->desc_nr);
7270 			if (test_bit(WriteMostly, &rdev->flags))
7271 				seq_printf(seq, "(W)");
7272 			if (test_bit(Faulty, &rdev->flags)) {
7273 				seq_printf(seq, "(F)");
7274 				continue;
7275 			}
7276 			if (rdev->raid_disk < 0)
7277 				seq_printf(seq, "(S)"); /* spare */
7278 			if (test_bit(Replacement, &rdev->flags))
7279 				seq_printf(seq, "(R)");
7280 			sectors += rdev->sectors;
7281 		}
7282 		rcu_read_unlock();
7283 
7284 		if (!list_empty(&mddev->disks)) {
7285 			if (mddev->pers)
7286 				seq_printf(seq, "\n      %llu blocks",
7287 					   (unsigned long long)
7288 					   mddev->array_sectors / 2);
7289 			else
7290 				seq_printf(seq, "\n      %llu blocks",
7291 					   (unsigned long long)sectors / 2);
7292 		}
7293 		if (mddev->persistent) {
7294 			if (mddev->major_version != 0 ||
7295 			    mddev->minor_version != 90) {
7296 				seq_printf(seq," super %d.%d",
7297 					   mddev->major_version,
7298 					   mddev->minor_version);
7299 			}
7300 		} else if (mddev->external)
7301 			seq_printf(seq, " super external:%s",
7302 				   mddev->metadata_type);
7303 		else
7304 			seq_printf(seq, " super non-persistent");
7305 
7306 		if (mddev->pers) {
7307 			mddev->pers->status(seq, mddev);
7308 			seq_printf(seq, "\n      ");
7309 			if (mddev->pers->sync_request) {
7310 				if (mddev->curr_resync > 2) {
7311 					status_resync(seq, mddev);
7312 					seq_printf(seq, "\n      ");
7313 				} else if (mddev->curr_resync >= 1)
7314 					seq_printf(seq, "\tresync=DELAYED\n      ");
7315 				else if (mddev->recovery_cp < MaxSector)
7316 					seq_printf(seq, "\tresync=PENDING\n      ");
7317 			}
7318 		} else
7319 			seq_printf(seq, "\n       ");
7320 
7321 		bitmap_status(seq, mddev->bitmap);
7322 
7323 		seq_printf(seq, "\n");
7324 	}
7325 	spin_unlock(&mddev->lock);
7326 
7327 	return 0;
7328 }
7329 
7330 static const struct seq_operations md_seq_ops = {
7331 	.start  = md_seq_start,
7332 	.next   = md_seq_next,
7333 	.stop   = md_seq_stop,
7334 	.show   = md_seq_show,
7335 };
7336 
md_seq_open(struct inode * inode,struct file * file)7337 static int md_seq_open(struct inode *inode, struct file *file)
7338 {
7339 	struct seq_file *seq;
7340 	int error;
7341 
7342 	error = seq_open(file, &md_seq_ops);
7343 	if (error)
7344 		return error;
7345 
7346 	seq = file->private_data;
7347 	seq->poll_event = atomic_read(&md_event_count);
7348 	return error;
7349 }
7350 
7351 static int md_unloading;
mdstat_poll(struct file * filp,poll_table * wait)7352 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7353 {
7354 	struct seq_file *seq = filp->private_data;
7355 	int mask;
7356 
7357 	if (md_unloading)
7358 		return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7359 	poll_wait(filp, &md_event_waiters, wait);
7360 
7361 	/* always allow read */
7362 	mask = POLLIN | POLLRDNORM;
7363 
7364 	if (seq->poll_event != atomic_read(&md_event_count))
7365 		mask |= POLLERR | POLLPRI;
7366 	return mask;
7367 }
7368 
7369 static const struct file_operations md_seq_fops = {
7370 	.owner		= THIS_MODULE,
7371 	.open           = md_seq_open,
7372 	.read           = seq_read,
7373 	.llseek         = seq_lseek,
7374 	.release	= seq_release_private,
7375 	.poll		= mdstat_poll,
7376 };
7377 
register_md_personality(struct md_personality * p)7378 int register_md_personality(struct md_personality *p)
7379 {
7380 	printk(KERN_INFO "md: %s personality registered for level %d\n",
7381 						p->name, p->level);
7382 	spin_lock(&pers_lock);
7383 	list_add_tail(&p->list, &pers_list);
7384 	spin_unlock(&pers_lock);
7385 	return 0;
7386 }
7387 EXPORT_SYMBOL(register_md_personality);
7388 
unregister_md_personality(struct md_personality * p)7389 int unregister_md_personality(struct md_personality *p)
7390 {
7391 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7392 	spin_lock(&pers_lock);
7393 	list_del_init(&p->list);
7394 	spin_unlock(&pers_lock);
7395 	return 0;
7396 }
7397 EXPORT_SYMBOL(unregister_md_personality);
7398 
register_md_cluster_operations(struct md_cluster_operations * ops,struct module * module)7399 int register_md_cluster_operations(struct md_cluster_operations *ops, struct module *module)
7400 {
7401 	if (md_cluster_ops != NULL)
7402 		return -EALREADY;
7403 	spin_lock(&pers_lock);
7404 	md_cluster_ops = ops;
7405 	md_cluster_mod = module;
7406 	spin_unlock(&pers_lock);
7407 	return 0;
7408 }
7409 EXPORT_SYMBOL(register_md_cluster_operations);
7410 
unregister_md_cluster_operations(void)7411 int unregister_md_cluster_operations(void)
7412 {
7413 	spin_lock(&pers_lock);
7414 	md_cluster_ops = NULL;
7415 	spin_unlock(&pers_lock);
7416 	return 0;
7417 }
7418 EXPORT_SYMBOL(unregister_md_cluster_operations);
7419 
md_setup_cluster(struct mddev * mddev,int nodes)7420 int md_setup_cluster(struct mddev *mddev, int nodes)
7421 {
7422 	int err;
7423 
7424 	err = request_module("md-cluster");
7425 	if (err) {
7426 		pr_err("md-cluster module not found.\n");
7427 		return err;
7428 	}
7429 
7430 	spin_lock(&pers_lock);
7431 	if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7432 		spin_unlock(&pers_lock);
7433 		return -ENOENT;
7434 	}
7435 	spin_unlock(&pers_lock);
7436 
7437 	return md_cluster_ops->join(mddev, nodes);
7438 }
7439 
md_cluster_stop(struct mddev * mddev)7440 void md_cluster_stop(struct mddev *mddev)
7441 {
7442 	if (!md_cluster_ops)
7443 		return;
7444 	md_cluster_ops->leave(mddev);
7445 	module_put(md_cluster_mod);
7446 }
7447 
is_mddev_idle(struct mddev * mddev,int init)7448 static int is_mddev_idle(struct mddev *mddev, int init)
7449 {
7450 	struct md_rdev *rdev;
7451 	int idle;
7452 	int curr_events;
7453 
7454 	idle = 1;
7455 	rcu_read_lock();
7456 	rdev_for_each_rcu(rdev, mddev) {
7457 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7458 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7459 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7460 			      atomic_read(&disk->sync_io);
7461 		/* sync IO will cause sync_io to increase before the disk_stats
7462 		 * as sync_io is counted when a request starts, and
7463 		 * disk_stats is counted when it completes.
7464 		 * So resync activity will cause curr_events to be smaller than
7465 		 * when there was no such activity.
7466 		 * non-sync IO will cause disk_stat to increase without
7467 		 * increasing sync_io so curr_events will (eventually)
7468 		 * be larger than it was before.  Once it becomes
7469 		 * substantially larger, the test below will cause
7470 		 * the array to appear non-idle, and resync will slow
7471 		 * down.
7472 		 * If there is a lot of outstanding resync activity when
7473 		 * we set last_event to curr_events, then all that activity
7474 		 * completing might cause the array to appear non-idle
7475 		 * and resync will be slowed down even though there might
7476 		 * not have been non-resync activity.  This will only
7477 		 * happen once though.  'last_events' will soon reflect
7478 		 * the state where there is little or no outstanding
7479 		 * resync requests, and further resync activity will
7480 		 * always make curr_events less than last_events.
7481 		 *
7482 		 */
7483 		if (init || curr_events - rdev->last_events > 64) {
7484 			rdev->last_events = curr_events;
7485 			idle = 0;
7486 		}
7487 	}
7488 	rcu_read_unlock();
7489 	return idle;
7490 }
7491 
md_done_sync(struct mddev * mddev,int blocks,int ok)7492 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7493 {
7494 	/* another "blocks" (512byte) blocks have been synced */
7495 	atomic_sub(blocks, &mddev->recovery_active);
7496 	wake_up(&mddev->recovery_wait);
7497 	if (!ok) {
7498 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7499 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7500 		md_wakeup_thread(mddev->thread);
7501 		// stop recovery, signal do_sync ....
7502 	}
7503 }
7504 EXPORT_SYMBOL(md_done_sync);
7505 
7506 /* md_write_start(mddev, bi)
7507  * If we need to update some array metadata (e.g. 'active' flag
7508  * in superblock) before writing, schedule a superblock update
7509  * and wait for it to complete.
7510  */
md_write_start(struct mddev * mddev,struct bio * bi)7511 void md_write_start(struct mddev *mddev, struct bio *bi)
7512 {
7513 	int did_change = 0;
7514 	if (bio_data_dir(bi) != WRITE)
7515 		return;
7516 
7517 	BUG_ON(mddev->ro == 1);
7518 	if (mddev->ro == 2) {
7519 		/* need to switch to read/write */
7520 		mddev->ro = 0;
7521 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7522 		md_wakeup_thread(mddev->thread);
7523 		md_wakeup_thread(mddev->sync_thread);
7524 		did_change = 1;
7525 	}
7526 	atomic_inc(&mddev->writes_pending);
7527 	if (mddev->safemode == 1)
7528 		mddev->safemode = 0;
7529 	if (mddev->in_sync) {
7530 		spin_lock(&mddev->lock);
7531 		if (mddev->in_sync) {
7532 			mddev->in_sync = 0;
7533 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7534 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7535 			md_wakeup_thread(mddev->thread);
7536 			did_change = 1;
7537 		}
7538 		spin_unlock(&mddev->lock);
7539 	}
7540 	if (did_change)
7541 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7542 	wait_event(mddev->sb_wait,
7543 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7544 }
7545 EXPORT_SYMBOL(md_write_start);
7546 
md_write_end(struct mddev * mddev)7547 void md_write_end(struct mddev *mddev)
7548 {
7549 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7550 		if (mddev->safemode == 2)
7551 			md_wakeup_thread(mddev->thread);
7552 		else if (mddev->safemode_delay)
7553 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7554 	}
7555 }
7556 EXPORT_SYMBOL(md_write_end);
7557 
7558 /* md_allow_write(mddev)
7559  * Calling this ensures that the array is marked 'active' so that writes
7560  * may proceed without blocking.  It is important to call this before
7561  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7562  * Must be called with mddev_lock held.
7563  *
7564  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7565  * is dropped, so return -EAGAIN after notifying userspace.
7566  */
md_allow_write(struct mddev * mddev)7567 int md_allow_write(struct mddev *mddev)
7568 {
7569 	if (!mddev->pers)
7570 		return 0;
7571 	if (mddev->ro)
7572 		return 0;
7573 	if (!mddev->pers->sync_request)
7574 		return 0;
7575 
7576 	spin_lock(&mddev->lock);
7577 	if (mddev->in_sync) {
7578 		mddev->in_sync = 0;
7579 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7580 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7581 		if (mddev->safemode_delay &&
7582 		    mddev->safemode == 0)
7583 			mddev->safemode = 1;
7584 		spin_unlock(&mddev->lock);
7585 		if (mddev_is_clustered(mddev))
7586 			md_cluster_ops->metadata_update_start(mddev);
7587 		md_update_sb(mddev, 0);
7588 		if (mddev_is_clustered(mddev))
7589 			md_cluster_ops->metadata_update_finish(mddev);
7590 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7591 	} else
7592 		spin_unlock(&mddev->lock);
7593 
7594 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7595 		return -EAGAIN;
7596 	else
7597 		return 0;
7598 }
7599 EXPORT_SYMBOL_GPL(md_allow_write);
7600 
7601 #define SYNC_MARKS	10
7602 #define	SYNC_MARK_STEP	(3*HZ)
7603 #define UPDATE_FREQUENCY (5*60*HZ)
md_do_sync(struct md_thread * thread)7604 void md_do_sync(struct md_thread *thread)
7605 {
7606 	struct mddev *mddev = thread->mddev;
7607 	struct mddev *mddev2;
7608 	unsigned int currspeed = 0,
7609 		 window;
7610 	sector_t max_sectors,j, io_sectors, recovery_done;
7611 	unsigned long mark[SYNC_MARKS];
7612 	unsigned long update_time;
7613 	sector_t mark_cnt[SYNC_MARKS];
7614 	int last_mark,m;
7615 	struct list_head *tmp;
7616 	sector_t last_check;
7617 	int skipped = 0;
7618 	struct md_rdev *rdev;
7619 	char *desc, *action = NULL;
7620 	struct blk_plug plug;
7621 
7622 	/* just incase thread restarts... */
7623 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7624 		return;
7625 	if (mddev->ro) {/* never try to sync a read-only array */
7626 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7627 		return;
7628 	}
7629 
7630 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7631 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7632 			desc = "data-check";
7633 			action = "check";
7634 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7635 			desc = "requested-resync";
7636 			action = "repair";
7637 		} else
7638 			desc = "resync";
7639 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7640 		desc = "reshape";
7641 	else
7642 		desc = "recovery";
7643 
7644 	mddev->last_sync_action = action ?: desc;
7645 
7646 	/* we overload curr_resync somewhat here.
7647 	 * 0 == not engaged in resync at all
7648 	 * 2 == checking that there is no conflict with another sync
7649 	 * 1 == like 2, but have yielded to allow conflicting resync to
7650 	 *		commense
7651 	 * other == active in resync - this many blocks
7652 	 *
7653 	 * Before starting a resync we must have set curr_resync to
7654 	 * 2, and then checked that every "conflicting" array has curr_resync
7655 	 * less than ours.  When we find one that is the same or higher
7656 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7657 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7658 	 * This will mean we have to start checking from the beginning again.
7659 	 *
7660 	 */
7661 
7662 	do {
7663 		mddev->curr_resync = 2;
7664 
7665 	try_again:
7666 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7667 			goto skip;
7668 		for_each_mddev(mddev2, tmp) {
7669 			if (mddev2 == mddev)
7670 				continue;
7671 			if (!mddev->parallel_resync
7672 			&&  mddev2->curr_resync
7673 			&&  match_mddev_units(mddev, mddev2)) {
7674 				DEFINE_WAIT(wq);
7675 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7676 					/* arbitrarily yield */
7677 					mddev->curr_resync = 1;
7678 					wake_up(&resync_wait);
7679 				}
7680 				if (mddev > mddev2 && mddev->curr_resync == 1)
7681 					/* no need to wait here, we can wait the next
7682 					 * time 'round when curr_resync == 2
7683 					 */
7684 					continue;
7685 				/* We need to wait 'interruptible' so as not to
7686 				 * contribute to the load average, and not to
7687 				 * be caught by 'softlockup'
7688 				 */
7689 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7690 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7691 				    mddev2->curr_resync >= mddev->curr_resync) {
7692 					printk(KERN_INFO "md: delaying %s of %s"
7693 					       " until %s has finished (they"
7694 					       " share one or more physical units)\n",
7695 					       desc, mdname(mddev), mdname(mddev2));
7696 					mddev_put(mddev2);
7697 					if (signal_pending(current))
7698 						flush_signals(current);
7699 					schedule();
7700 					finish_wait(&resync_wait, &wq);
7701 					goto try_again;
7702 				}
7703 				finish_wait(&resync_wait, &wq);
7704 			}
7705 		}
7706 	} while (mddev->curr_resync < 2);
7707 
7708 	j = 0;
7709 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7710 		/* resync follows the size requested by the personality,
7711 		 * which defaults to physical size, but can be virtual size
7712 		 */
7713 		max_sectors = mddev->resync_max_sectors;
7714 		atomic64_set(&mddev->resync_mismatches, 0);
7715 		/* we don't use the checkpoint if there's a bitmap */
7716 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7717 			j = mddev->resync_min;
7718 		else if (!mddev->bitmap)
7719 			j = mddev->recovery_cp;
7720 
7721 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7722 		max_sectors = mddev->resync_max_sectors;
7723 	else {
7724 		/* recovery follows the physical size of devices */
7725 		max_sectors = mddev->dev_sectors;
7726 		j = MaxSector;
7727 		rcu_read_lock();
7728 		rdev_for_each_rcu(rdev, mddev)
7729 			if (rdev->raid_disk >= 0 &&
7730 			    !test_bit(Faulty, &rdev->flags) &&
7731 			    !test_bit(In_sync, &rdev->flags) &&
7732 			    rdev->recovery_offset < j)
7733 				j = rdev->recovery_offset;
7734 		rcu_read_unlock();
7735 
7736 		/* If there is a bitmap, we need to make sure all
7737 		 * writes that started before we added a spare
7738 		 * complete before we start doing a recovery.
7739 		 * Otherwise the write might complete and (via
7740 		 * bitmap_endwrite) set a bit in the bitmap after the
7741 		 * recovery has checked that bit and skipped that
7742 		 * region.
7743 		 */
7744 		if (mddev->bitmap) {
7745 			mddev->pers->quiesce(mddev, 1);
7746 			mddev->pers->quiesce(mddev, 0);
7747 		}
7748 	}
7749 
7750 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7751 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7752 		" %d KB/sec/disk.\n", speed_min(mddev));
7753 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7754 	       "(but not more than %d KB/sec) for %s.\n",
7755 	       speed_max(mddev), desc);
7756 
7757 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7758 
7759 	io_sectors = 0;
7760 	for (m = 0; m < SYNC_MARKS; m++) {
7761 		mark[m] = jiffies;
7762 		mark_cnt[m] = io_sectors;
7763 	}
7764 	last_mark = 0;
7765 	mddev->resync_mark = mark[last_mark];
7766 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7767 
7768 	/*
7769 	 * Tune reconstruction:
7770 	 */
7771 	window = 32*(PAGE_SIZE/512);
7772 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7773 		window/2, (unsigned long long)max_sectors/2);
7774 
7775 	atomic_set(&mddev->recovery_active, 0);
7776 	last_check = 0;
7777 
7778 	if (j>2) {
7779 		printk(KERN_INFO
7780 		       "md: resuming %s of %s from checkpoint.\n",
7781 		       desc, mdname(mddev));
7782 		mddev->curr_resync = j;
7783 	} else
7784 		mddev->curr_resync = 3; /* no longer delayed */
7785 	mddev->curr_resync_completed = j;
7786 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7787 	md_new_event(mddev);
7788 	update_time = jiffies;
7789 
7790 	if (mddev_is_clustered(mddev))
7791 		md_cluster_ops->resync_start(mddev, j, max_sectors);
7792 
7793 	blk_start_plug(&plug);
7794 	while (j < max_sectors) {
7795 		sector_t sectors;
7796 
7797 		skipped = 0;
7798 
7799 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7800 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7801 		      (mddev->curr_resync - mddev->curr_resync_completed)
7802 		      > (max_sectors >> 4)) ||
7803 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7804 		     (j - mddev->curr_resync_completed)*2
7805 		     >= mddev->resync_max - mddev->curr_resync_completed
7806 			    )) {
7807 			/* time to update curr_resync_completed */
7808 			wait_event(mddev->recovery_wait,
7809 				   atomic_read(&mddev->recovery_active) == 0);
7810 			mddev->curr_resync_completed = j;
7811 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7812 			    j > mddev->recovery_cp)
7813 				mddev->recovery_cp = j;
7814 			update_time = jiffies;
7815 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7816 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7817 		}
7818 
7819 		while (j >= mddev->resync_max &&
7820 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7821 			/* As this condition is controlled by user-space,
7822 			 * we can block indefinitely, so use '_interruptible'
7823 			 * to avoid triggering warnings.
7824 			 */
7825 			flush_signals(current); /* just in case */
7826 			wait_event_interruptible(mddev->recovery_wait,
7827 						 mddev->resync_max > j
7828 						 || test_bit(MD_RECOVERY_INTR,
7829 							     &mddev->recovery));
7830 		}
7831 
7832 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7833 			break;
7834 
7835 		sectors = mddev->pers->sync_request(mddev, j, &skipped);
7836 		if (sectors == 0) {
7837 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7838 			break;
7839 		}
7840 
7841 		if (!skipped) { /* actual IO requested */
7842 			io_sectors += sectors;
7843 			atomic_add(sectors, &mddev->recovery_active);
7844 		}
7845 
7846 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7847 			break;
7848 
7849 		j += sectors;
7850 		if (j > 2)
7851 			mddev->curr_resync = j;
7852 		if (mddev_is_clustered(mddev))
7853 			md_cluster_ops->resync_info_update(mddev, j, max_sectors);
7854 		mddev->curr_mark_cnt = io_sectors;
7855 		if (last_check == 0)
7856 			/* this is the earliest that rebuild will be
7857 			 * visible in /proc/mdstat
7858 			 */
7859 			md_new_event(mddev);
7860 
7861 		if (last_check + window > io_sectors || j == max_sectors)
7862 			continue;
7863 
7864 		last_check = io_sectors;
7865 	repeat:
7866 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7867 			/* step marks */
7868 			int next = (last_mark+1) % SYNC_MARKS;
7869 
7870 			mddev->resync_mark = mark[next];
7871 			mddev->resync_mark_cnt = mark_cnt[next];
7872 			mark[next] = jiffies;
7873 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7874 			last_mark = next;
7875 		}
7876 
7877 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7878 			break;
7879 
7880 		/*
7881 		 * this loop exits only if either when we are slower than
7882 		 * the 'hard' speed limit, or the system was IO-idle for
7883 		 * a jiffy.
7884 		 * the system might be non-idle CPU-wise, but we only care
7885 		 * about not overloading the IO subsystem. (things like an
7886 		 * e2fsck being done on the RAID array should execute fast)
7887 		 */
7888 		cond_resched();
7889 
7890 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7891 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7892 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7893 
7894 		if (currspeed > speed_min(mddev)) {
7895 			if (currspeed > speed_max(mddev)) {
7896 				msleep(500);
7897 				goto repeat;
7898 			}
7899 			if (!is_mddev_idle(mddev, 0)) {
7900 				/*
7901 				 * Give other IO more of a chance.
7902 				 * The faster the devices, the less we wait.
7903 				 */
7904 				wait_event(mddev->recovery_wait,
7905 					   !atomic_read(&mddev->recovery_active));
7906 			}
7907 		}
7908 	}
7909 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7910 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7911 	       ? "interrupted" : "done");
7912 	/*
7913 	 * this also signals 'finished resyncing' to md_stop
7914 	 */
7915 	blk_finish_plug(&plug);
7916 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7917 
7918 	/* tell personality that we are finished */
7919 	mddev->pers->sync_request(mddev, max_sectors, &skipped);
7920 
7921 	if (mddev_is_clustered(mddev))
7922 		md_cluster_ops->resync_finish(mddev);
7923 
7924 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7925 	    mddev->curr_resync > 2) {
7926 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7927 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7928 				if (mddev->curr_resync >= mddev->recovery_cp) {
7929 					printk(KERN_INFO
7930 					       "md: checkpointing %s of %s.\n",
7931 					       desc, mdname(mddev));
7932 					if (test_bit(MD_RECOVERY_ERROR,
7933 						&mddev->recovery))
7934 						mddev->recovery_cp =
7935 							mddev->curr_resync_completed;
7936 					else
7937 						mddev->recovery_cp =
7938 							mddev->curr_resync;
7939 				}
7940 			} else
7941 				mddev->recovery_cp = MaxSector;
7942 		} else {
7943 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7944 				mddev->curr_resync = MaxSector;
7945 			rcu_read_lock();
7946 			rdev_for_each_rcu(rdev, mddev)
7947 				if (rdev->raid_disk >= 0 &&
7948 				    mddev->delta_disks >= 0 &&
7949 				    !test_bit(Faulty, &rdev->flags) &&
7950 				    !test_bit(In_sync, &rdev->flags) &&
7951 				    rdev->recovery_offset < mddev->curr_resync)
7952 					rdev->recovery_offset = mddev->curr_resync;
7953 			rcu_read_unlock();
7954 		}
7955 	}
7956  skip:
7957 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7958 
7959 	spin_lock(&mddev->lock);
7960 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7961 		/* We completed so min/max setting can be forgotten if used. */
7962 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7963 			mddev->resync_min = 0;
7964 		mddev->resync_max = MaxSector;
7965 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7966 		mddev->resync_min = mddev->curr_resync_completed;
7967 	mddev->curr_resync = 0;
7968 	spin_unlock(&mddev->lock);
7969 
7970 	wake_up(&resync_wait);
7971 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7972 	md_wakeup_thread(mddev->thread);
7973 	return;
7974 }
7975 EXPORT_SYMBOL_GPL(md_do_sync);
7976 
remove_and_add_spares(struct mddev * mddev,struct md_rdev * this)7977 static int remove_and_add_spares(struct mddev *mddev,
7978 				 struct md_rdev *this)
7979 {
7980 	struct md_rdev *rdev;
7981 	int spares = 0;
7982 	int removed = 0;
7983 
7984 	rdev_for_each(rdev, mddev)
7985 		if ((this == NULL || rdev == this) &&
7986 		    rdev->raid_disk >= 0 &&
7987 		    !test_bit(Blocked, &rdev->flags) &&
7988 		    (test_bit(Faulty, &rdev->flags) ||
7989 		     ! test_bit(In_sync, &rdev->flags)) &&
7990 		    atomic_read(&rdev->nr_pending)==0) {
7991 			if (mddev->pers->hot_remove_disk(
7992 				    mddev, rdev) == 0) {
7993 				sysfs_unlink_rdev(mddev, rdev);
7994 				rdev->raid_disk = -1;
7995 				removed++;
7996 			}
7997 		}
7998 	if (removed && mddev->kobj.sd)
7999 		sysfs_notify(&mddev->kobj, NULL, "degraded");
8000 
8001 	if (this)
8002 		goto no_add;
8003 
8004 	rdev_for_each(rdev, mddev) {
8005 		if (rdev->raid_disk >= 0 &&
8006 		    !test_bit(In_sync, &rdev->flags) &&
8007 		    !test_bit(Faulty, &rdev->flags))
8008 			spares++;
8009 		if (rdev->raid_disk >= 0)
8010 			continue;
8011 		if (test_bit(Faulty, &rdev->flags))
8012 			continue;
8013 		if (mddev->ro &&
8014 		    ! (rdev->saved_raid_disk >= 0 &&
8015 		       !test_bit(Bitmap_sync, &rdev->flags)))
8016 			continue;
8017 
8018 		rdev->recovery_offset = 0;
8019 		if (mddev->pers->
8020 		    hot_add_disk(mddev, rdev) == 0) {
8021 			if (sysfs_link_rdev(mddev, rdev))
8022 				/* failure here is OK */;
8023 			spares++;
8024 			md_new_event(mddev);
8025 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8026 		}
8027 	}
8028 no_add:
8029 	if (removed)
8030 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
8031 	return spares;
8032 }
8033 
md_start_sync(struct work_struct * ws)8034 static void md_start_sync(struct work_struct *ws)
8035 {
8036 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
8037 
8038 	mddev->sync_thread = md_register_thread(md_do_sync,
8039 						mddev,
8040 						"resync");
8041 	if (!mddev->sync_thread) {
8042 		printk(KERN_ERR "%s: could not start resync"
8043 		       " thread...\n",
8044 		       mdname(mddev));
8045 		/* leave the spares where they are, it shouldn't hurt */
8046 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8047 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8048 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8049 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8050 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8051 		wake_up(&resync_wait);
8052 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8053 				       &mddev->recovery))
8054 			if (mddev->sysfs_action)
8055 				sysfs_notify_dirent_safe(mddev->sysfs_action);
8056 	} else
8057 		md_wakeup_thread(mddev->sync_thread);
8058 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8059 	md_new_event(mddev);
8060 }
8061 
8062 /*
8063  * This routine is regularly called by all per-raid-array threads to
8064  * deal with generic issues like resync and super-block update.
8065  * Raid personalities that don't have a thread (linear/raid0) do not
8066  * need this as they never do any recovery or update the superblock.
8067  *
8068  * It does not do any resync itself, but rather "forks" off other threads
8069  * to do that as needed.
8070  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8071  * "->recovery" and create a thread at ->sync_thread.
8072  * When the thread finishes it sets MD_RECOVERY_DONE
8073  * and wakeups up this thread which will reap the thread and finish up.
8074  * This thread also removes any faulty devices (with nr_pending == 0).
8075  *
8076  * The overall approach is:
8077  *  1/ if the superblock needs updating, update it.
8078  *  2/ If a recovery thread is running, don't do anything else.
8079  *  3/ If recovery has finished, clean up, possibly marking spares active.
8080  *  4/ If there are any faulty devices, remove them.
8081  *  5/ If array is degraded, try to add spares devices
8082  *  6/ If array has spares or is not in-sync, start a resync thread.
8083  */
md_check_recovery(struct mddev * mddev)8084 void md_check_recovery(struct mddev *mddev)
8085 {
8086 	if (mddev->suspended)
8087 		return;
8088 
8089 	if (mddev->bitmap)
8090 		bitmap_daemon_work(mddev);
8091 
8092 	if (signal_pending(current)) {
8093 		if (mddev->pers->sync_request && !mddev->external) {
8094 			printk(KERN_INFO "md: %s in immediate safe mode\n",
8095 			       mdname(mddev));
8096 			mddev->safemode = 2;
8097 		}
8098 		flush_signals(current);
8099 	}
8100 
8101 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8102 		return;
8103 	if ( ! (
8104 		(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8105 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8106 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8107 		(mddev->external == 0 && mddev->safemode == 1) ||
8108 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8109 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8110 		))
8111 		return;
8112 
8113 	if (mddev_trylock(mddev)) {
8114 		int spares = 0;
8115 
8116 		if (mddev->ro) {
8117 			/* On a read-only array we can:
8118 			 * - remove failed devices
8119 			 * - add already-in_sync devices if the array itself
8120 			 *   is in-sync.
8121 			 * As we only add devices that are already in-sync,
8122 			 * we can activate the spares immediately.
8123 			 */
8124 			remove_and_add_spares(mddev, NULL);
8125 			/* There is no thread, but we need to call
8126 			 * ->spare_active and clear saved_raid_disk
8127 			 */
8128 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8129 			md_reap_sync_thread(mddev);
8130 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8131 			goto unlock;
8132 		}
8133 
8134 		if (!mddev->external) {
8135 			int did_change = 0;
8136 			spin_lock(&mddev->lock);
8137 			if (mddev->safemode &&
8138 			    !atomic_read(&mddev->writes_pending) &&
8139 			    !mddev->in_sync &&
8140 			    mddev->recovery_cp == MaxSector) {
8141 				mddev->in_sync = 1;
8142 				did_change = 1;
8143 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8144 			}
8145 			if (mddev->safemode == 1)
8146 				mddev->safemode = 0;
8147 			spin_unlock(&mddev->lock);
8148 			if (did_change)
8149 				sysfs_notify_dirent_safe(mddev->sysfs_state);
8150 		}
8151 
8152 		if (mddev->flags & MD_UPDATE_SB_FLAGS) {
8153 			if (mddev_is_clustered(mddev))
8154 				md_cluster_ops->metadata_update_start(mddev);
8155 			md_update_sb(mddev, 0);
8156 			if (mddev_is_clustered(mddev))
8157 				md_cluster_ops->metadata_update_finish(mddev);
8158 		}
8159 
8160 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8161 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8162 			/* resync/recovery still happening */
8163 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8164 			goto unlock;
8165 		}
8166 		if (mddev->sync_thread) {
8167 			md_reap_sync_thread(mddev);
8168 			goto unlock;
8169 		}
8170 		/* Set RUNNING before clearing NEEDED to avoid
8171 		 * any transients in the value of "sync_action".
8172 		 */
8173 		mddev->curr_resync_completed = 0;
8174 		spin_lock(&mddev->lock);
8175 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8176 		spin_unlock(&mddev->lock);
8177 		/* Clear some bits that don't mean anything, but
8178 		 * might be left set
8179 		 */
8180 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8181 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8182 
8183 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8184 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8185 			goto not_running;
8186 		/* no recovery is running.
8187 		 * remove any failed drives, then
8188 		 * add spares if possible.
8189 		 * Spares are also removed and re-added, to allow
8190 		 * the personality to fail the re-add.
8191 		 */
8192 
8193 		if (mddev->reshape_position != MaxSector) {
8194 			if (mddev->pers->check_reshape == NULL ||
8195 			    mddev->pers->check_reshape(mddev) != 0)
8196 				/* Cannot proceed */
8197 				goto not_running;
8198 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8199 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8200 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
8201 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8202 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8203 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8204 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8205 		} else if (mddev->recovery_cp < MaxSector) {
8206 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8207 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8208 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8209 			/* nothing to be done ... */
8210 			goto not_running;
8211 
8212 		if (mddev->pers->sync_request) {
8213 			if (spares) {
8214 				/* We are adding a device or devices to an array
8215 				 * which has the bitmap stored on all devices.
8216 				 * So make sure all bitmap pages get written
8217 				 */
8218 				bitmap_write_all(mddev->bitmap);
8219 			}
8220 			INIT_WORK(&mddev->del_work, md_start_sync);
8221 			queue_work(md_misc_wq, &mddev->del_work);
8222 			goto unlock;
8223 		}
8224 	not_running:
8225 		if (!mddev->sync_thread) {
8226 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8227 			wake_up(&resync_wait);
8228 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8229 					       &mddev->recovery))
8230 				if (mddev->sysfs_action)
8231 					sysfs_notify_dirent_safe(mddev->sysfs_action);
8232 		}
8233 	unlock:
8234 		wake_up(&mddev->sb_wait);
8235 		mddev_unlock(mddev);
8236 	}
8237 }
8238 EXPORT_SYMBOL(md_check_recovery);
8239 
md_reap_sync_thread(struct mddev * mddev)8240 void md_reap_sync_thread(struct mddev *mddev)
8241 {
8242 	struct md_rdev *rdev;
8243 
8244 	/* resync has finished, collect result */
8245 	md_unregister_thread(&mddev->sync_thread);
8246 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8247 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8248 		/* success...*/
8249 		/* activate any spares */
8250 		if (mddev->pers->spare_active(mddev)) {
8251 			sysfs_notify(&mddev->kobj, NULL,
8252 				     "degraded");
8253 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8254 		}
8255 	}
8256 	if (mddev_is_clustered(mddev))
8257 		md_cluster_ops->metadata_update_start(mddev);
8258 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8259 	    mddev->pers->finish_reshape)
8260 		mddev->pers->finish_reshape(mddev);
8261 
8262 	/* If array is no-longer degraded, then any saved_raid_disk
8263 	 * information must be scrapped.
8264 	 */
8265 	if (!mddev->degraded)
8266 		rdev_for_each(rdev, mddev)
8267 			rdev->saved_raid_disk = -1;
8268 
8269 	md_update_sb(mddev, 1);
8270 	if (mddev_is_clustered(mddev))
8271 		md_cluster_ops->metadata_update_finish(mddev);
8272 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8273 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8274 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8275 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8276 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8277 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8278 	wake_up(&resync_wait);
8279 	/* flag recovery needed just to double check */
8280 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8281 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8282 	md_new_event(mddev);
8283 	if (mddev->event_work.func)
8284 		queue_work(md_misc_wq, &mddev->event_work);
8285 }
8286 EXPORT_SYMBOL(md_reap_sync_thread);
8287 
md_wait_for_blocked_rdev(struct md_rdev * rdev,struct mddev * mddev)8288 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8289 {
8290 	sysfs_notify_dirent_safe(rdev->sysfs_state);
8291 	wait_event_timeout(rdev->blocked_wait,
8292 			   !test_bit(Blocked, &rdev->flags) &&
8293 			   !test_bit(BlockedBadBlocks, &rdev->flags),
8294 			   msecs_to_jiffies(5000));
8295 	rdev_dec_pending(rdev, mddev);
8296 }
8297 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8298 
md_finish_reshape(struct mddev * mddev)8299 void md_finish_reshape(struct mddev *mddev)
8300 {
8301 	/* called be personality module when reshape completes. */
8302 	struct md_rdev *rdev;
8303 
8304 	rdev_for_each(rdev, mddev) {
8305 		if (rdev->data_offset > rdev->new_data_offset)
8306 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8307 		else
8308 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8309 		rdev->data_offset = rdev->new_data_offset;
8310 	}
8311 }
8312 EXPORT_SYMBOL(md_finish_reshape);
8313 
8314 /* Bad block management.
8315  * We can record which blocks on each device are 'bad' and so just
8316  * fail those blocks, or that stripe, rather than the whole device.
8317  * Entries in the bad-block table are 64bits wide.  This comprises:
8318  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8319  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8320  *  A 'shift' can be set so that larger blocks are tracked and
8321  *  consequently larger devices can be covered.
8322  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8323  *
8324  * Locking of the bad-block table uses a seqlock so md_is_badblock
8325  * might need to retry if it is very unlucky.
8326  * We will sometimes want to check for bad blocks in a bi_end_io function,
8327  * so we use the write_seqlock_irq variant.
8328  *
8329  * When looking for a bad block we specify a range and want to
8330  * know if any block in the range is bad.  So we binary-search
8331  * to the last range that starts at-or-before the given endpoint,
8332  * (or "before the sector after the target range")
8333  * then see if it ends after the given start.
8334  * We return
8335  *  0 if there are no known bad blocks in the range
8336  *  1 if there are known bad block which are all acknowledged
8337  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8338  * plus the start/length of the first bad section we overlap.
8339  */
md_is_badblock(struct badblocks * bb,sector_t s,int sectors,sector_t * first_bad,int * bad_sectors)8340 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8341 		   sector_t *first_bad, int *bad_sectors)
8342 {
8343 	int hi;
8344 	int lo;
8345 	u64 *p = bb->page;
8346 	int rv;
8347 	sector_t target = s + sectors;
8348 	unsigned seq;
8349 
8350 	if (bb->shift > 0) {
8351 		/* round the start down, and the end up */
8352 		s >>= bb->shift;
8353 		target += (1<<bb->shift) - 1;
8354 		target >>= bb->shift;
8355 		sectors = target - s;
8356 	}
8357 	/* 'target' is now the first block after the bad range */
8358 
8359 retry:
8360 	seq = read_seqbegin(&bb->lock);
8361 	lo = 0;
8362 	rv = 0;
8363 	hi = bb->count;
8364 
8365 	/* Binary search between lo and hi for 'target'
8366 	 * i.e. for the last range that starts before 'target'
8367 	 */
8368 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8369 	 * are known not to be the last range before target.
8370 	 * VARIANT: hi-lo is the number of possible
8371 	 * ranges, and decreases until it reaches 1
8372 	 */
8373 	while (hi - lo > 1) {
8374 		int mid = (lo + hi) / 2;
8375 		sector_t a = BB_OFFSET(p[mid]);
8376 		if (a < target)
8377 			/* This could still be the one, earlier ranges
8378 			 * could not. */
8379 			lo = mid;
8380 		else
8381 			/* This and later ranges are definitely out. */
8382 			hi = mid;
8383 	}
8384 	/* 'lo' might be the last that started before target, but 'hi' isn't */
8385 	if (hi > lo) {
8386 		/* need to check all range that end after 's' to see if
8387 		 * any are unacknowledged.
8388 		 */
8389 		while (lo >= 0 &&
8390 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8391 			if (BB_OFFSET(p[lo]) < target) {
8392 				/* starts before the end, and finishes after
8393 				 * the start, so they must overlap
8394 				 */
8395 				if (rv != -1 && BB_ACK(p[lo]))
8396 					rv = 1;
8397 				else
8398 					rv = -1;
8399 				*first_bad = BB_OFFSET(p[lo]);
8400 				*bad_sectors = BB_LEN(p[lo]);
8401 			}
8402 			lo--;
8403 		}
8404 	}
8405 
8406 	if (read_seqretry(&bb->lock, seq))
8407 		goto retry;
8408 
8409 	return rv;
8410 }
8411 EXPORT_SYMBOL_GPL(md_is_badblock);
8412 
8413 /*
8414  * Add a range of bad blocks to the table.
8415  * This might extend the table, or might contract it
8416  * if two adjacent ranges can be merged.
8417  * We binary-search to find the 'insertion' point, then
8418  * decide how best to handle it.
8419  */
md_set_badblocks(struct badblocks * bb,sector_t s,int sectors,int acknowledged)8420 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8421 			    int acknowledged)
8422 {
8423 	u64 *p;
8424 	int lo, hi;
8425 	int rv = 1;
8426 	unsigned long flags;
8427 
8428 	if (bb->shift < 0)
8429 		/* badblocks are disabled */
8430 		return 0;
8431 
8432 	if (bb->shift) {
8433 		/* round the start down, and the end up */
8434 		sector_t next = s + sectors;
8435 		s >>= bb->shift;
8436 		next += (1<<bb->shift) - 1;
8437 		next >>= bb->shift;
8438 		sectors = next - s;
8439 	}
8440 
8441 	write_seqlock_irqsave(&bb->lock, flags);
8442 
8443 	p = bb->page;
8444 	lo = 0;
8445 	hi = bb->count;
8446 	/* Find the last range that starts at-or-before 's' */
8447 	while (hi - lo > 1) {
8448 		int mid = (lo + hi) / 2;
8449 		sector_t a = BB_OFFSET(p[mid]);
8450 		if (a <= s)
8451 			lo = mid;
8452 		else
8453 			hi = mid;
8454 	}
8455 	if (hi > lo && BB_OFFSET(p[lo]) > s)
8456 		hi = lo;
8457 
8458 	if (hi > lo) {
8459 		/* we found a range that might merge with the start
8460 		 * of our new range
8461 		 */
8462 		sector_t a = BB_OFFSET(p[lo]);
8463 		sector_t e = a + BB_LEN(p[lo]);
8464 		int ack = BB_ACK(p[lo]);
8465 		if (e >= s) {
8466 			/* Yes, we can merge with a previous range */
8467 			if (s == a && s + sectors >= e)
8468 				/* new range covers old */
8469 				ack = acknowledged;
8470 			else
8471 				ack = ack && acknowledged;
8472 
8473 			if (e < s + sectors)
8474 				e = s + sectors;
8475 			if (e - a <= BB_MAX_LEN) {
8476 				p[lo] = BB_MAKE(a, e-a, ack);
8477 				s = e;
8478 			} else {
8479 				/* does not all fit in one range,
8480 				 * make p[lo] maximal
8481 				 */
8482 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8483 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8484 				s = a + BB_MAX_LEN;
8485 			}
8486 			sectors = e - s;
8487 		}
8488 	}
8489 	if (sectors && hi < bb->count) {
8490 		/* 'hi' points to the first range that starts after 's'.
8491 		 * Maybe we can merge with the start of that range */
8492 		sector_t a = BB_OFFSET(p[hi]);
8493 		sector_t e = a + BB_LEN(p[hi]);
8494 		int ack = BB_ACK(p[hi]);
8495 		if (a <= s + sectors) {
8496 			/* merging is possible */
8497 			if (e <= s + sectors) {
8498 				/* full overlap */
8499 				e = s + sectors;
8500 				ack = acknowledged;
8501 			} else
8502 				ack = ack && acknowledged;
8503 
8504 			a = s;
8505 			if (e - a <= BB_MAX_LEN) {
8506 				p[hi] = BB_MAKE(a, e-a, ack);
8507 				s = e;
8508 			} else {
8509 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8510 				s = a + BB_MAX_LEN;
8511 			}
8512 			sectors = e - s;
8513 			lo = hi;
8514 			hi++;
8515 		}
8516 	}
8517 	if (sectors == 0 && hi < bb->count) {
8518 		/* we might be able to combine lo and hi */
8519 		/* Note: 's' is at the end of 'lo' */
8520 		sector_t a = BB_OFFSET(p[hi]);
8521 		int lolen = BB_LEN(p[lo]);
8522 		int hilen = BB_LEN(p[hi]);
8523 		int newlen = lolen + hilen - (s - a);
8524 		if (s >= a && newlen < BB_MAX_LEN) {
8525 			/* yes, we can combine them */
8526 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8527 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8528 			memmove(p + hi, p + hi + 1,
8529 				(bb->count - hi - 1) * 8);
8530 			bb->count--;
8531 		}
8532 	}
8533 	while (sectors) {
8534 		/* didn't merge (it all).
8535 		 * Need to add a range just before 'hi' */
8536 		if (bb->count >= MD_MAX_BADBLOCKS) {
8537 			/* No room for more */
8538 			rv = 0;
8539 			break;
8540 		} else {
8541 			int this_sectors = sectors;
8542 			memmove(p + hi + 1, p + hi,
8543 				(bb->count - hi) * 8);
8544 			bb->count++;
8545 
8546 			if (this_sectors > BB_MAX_LEN)
8547 				this_sectors = BB_MAX_LEN;
8548 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8549 			sectors -= this_sectors;
8550 			s += this_sectors;
8551 		}
8552 	}
8553 
8554 	bb->changed = 1;
8555 	if (!acknowledged)
8556 		bb->unacked_exist = 1;
8557 	write_sequnlock_irqrestore(&bb->lock, flags);
8558 
8559 	return rv;
8560 }
8561 
rdev_set_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)8562 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8563 		       int is_new)
8564 {
8565 	int rv;
8566 	if (is_new)
8567 		s += rdev->new_data_offset;
8568 	else
8569 		s += rdev->data_offset;
8570 	rv = md_set_badblocks(&rdev->badblocks,
8571 			      s, sectors, 0);
8572 	if (rv) {
8573 		/* Make sure they get written out promptly */
8574 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8575 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8576 		md_wakeup_thread(rdev->mddev->thread);
8577 	}
8578 	return rv;
8579 }
8580 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8581 
8582 /*
8583  * Remove a range of bad blocks from the table.
8584  * This may involve extending the table if we spilt a region,
8585  * but it must not fail.  So if the table becomes full, we just
8586  * drop the remove request.
8587  */
md_clear_badblocks(struct badblocks * bb,sector_t s,int sectors)8588 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8589 {
8590 	u64 *p;
8591 	int lo, hi;
8592 	sector_t target = s + sectors;
8593 	int rv = 0;
8594 
8595 	if (bb->shift > 0) {
8596 		/* When clearing we round the start up and the end down.
8597 		 * This should not matter as the shift should align with
8598 		 * the block size and no rounding should ever be needed.
8599 		 * However it is better the think a block is bad when it
8600 		 * isn't than to think a block is not bad when it is.
8601 		 */
8602 		s += (1<<bb->shift) - 1;
8603 		s >>= bb->shift;
8604 		target >>= bb->shift;
8605 		sectors = target - s;
8606 	}
8607 
8608 	write_seqlock_irq(&bb->lock);
8609 
8610 	p = bb->page;
8611 	lo = 0;
8612 	hi = bb->count;
8613 	/* Find the last range that starts before 'target' */
8614 	while (hi - lo > 1) {
8615 		int mid = (lo + hi) / 2;
8616 		sector_t a = BB_OFFSET(p[mid]);
8617 		if (a < target)
8618 			lo = mid;
8619 		else
8620 			hi = mid;
8621 	}
8622 	if (hi > lo) {
8623 		/* p[lo] is the last range that could overlap the
8624 		 * current range.  Earlier ranges could also overlap,
8625 		 * but only this one can overlap the end of the range.
8626 		 */
8627 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8628 			/* Partial overlap, leave the tail of this range */
8629 			int ack = BB_ACK(p[lo]);
8630 			sector_t a = BB_OFFSET(p[lo]);
8631 			sector_t end = a + BB_LEN(p[lo]);
8632 
8633 			if (a < s) {
8634 				/* we need to split this range */
8635 				if (bb->count >= MD_MAX_BADBLOCKS) {
8636 					rv = -ENOSPC;
8637 					goto out;
8638 				}
8639 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8640 				bb->count++;
8641 				p[lo] = BB_MAKE(a, s-a, ack);
8642 				lo++;
8643 			}
8644 			p[lo] = BB_MAKE(target, end - target, ack);
8645 			/* there is no longer an overlap */
8646 			hi = lo;
8647 			lo--;
8648 		}
8649 		while (lo >= 0 &&
8650 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8651 			/* This range does overlap */
8652 			if (BB_OFFSET(p[lo]) < s) {
8653 				/* Keep the early parts of this range. */
8654 				int ack = BB_ACK(p[lo]);
8655 				sector_t start = BB_OFFSET(p[lo]);
8656 				p[lo] = BB_MAKE(start, s - start, ack);
8657 				/* now low doesn't overlap, so.. */
8658 				break;
8659 			}
8660 			lo--;
8661 		}
8662 		/* 'lo' is strictly before, 'hi' is strictly after,
8663 		 * anything between needs to be discarded
8664 		 */
8665 		if (hi - lo > 1) {
8666 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8667 			bb->count -= (hi - lo - 1);
8668 		}
8669 	}
8670 
8671 	bb->changed = 1;
8672 out:
8673 	write_sequnlock_irq(&bb->lock);
8674 	return rv;
8675 }
8676 
rdev_clear_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)8677 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8678 			 int is_new)
8679 {
8680 	if (is_new)
8681 		s += rdev->new_data_offset;
8682 	else
8683 		s += rdev->data_offset;
8684 	return md_clear_badblocks(&rdev->badblocks,
8685 				  s, sectors);
8686 }
8687 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8688 
8689 /*
8690  * Acknowledge all bad blocks in a list.
8691  * This only succeeds if ->changed is clear.  It is used by
8692  * in-kernel metadata updates
8693  */
md_ack_all_badblocks(struct badblocks * bb)8694 void md_ack_all_badblocks(struct badblocks *bb)
8695 {
8696 	if (bb->page == NULL || bb->changed)
8697 		/* no point even trying */
8698 		return;
8699 	write_seqlock_irq(&bb->lock);
8700 
8701 	if (bb->changed == 0 && bb->unacked_exist) {
8702 		u64 *p = bb->page;
8703 		int i;
8704 		for (i = 0; i < bb->count ; i++) {
8705 			if (!BB_ACK(p[i])) {
8706 				sector_t start = BB_OFFSET(p[i]);
8707 				int len = BB_LEN(p[i]);
8708 				p[i] = BB_MAKE(start, len, 1);
8709 			}
8710 		}
8711 		bb->unacked_exist = 0;
8712 	}
8713 	write_sequnlock_irq(&bb->lock);
8714 }
8715 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8716 
8717 /* sysfs access to bad-blocks list.
8718  * We present two files.
8719  * 'bad-blocks' lists sector numbers and lengths of ranges that
8720  *    are recorded as bad.  The list is truncated to fit within
8721  *    the one-page limit of sysfs.
8722  *    Writing "sector length" to this file adds an acknowledged
8723  *    bad block list.
8724  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8725  *    been acknowledged.  Writing to this file adds bad blocks
8726  *    without acknowledging them.  This is largely for testing.
8727  */
8728 
8729 static ssize_t
badblocks_show(struct badblocks * bb,char * page,int unack)8730 badblocks_show(struct badblocks *bb, char *page, int unack)
8731 {
8732 	size_t len;
8733 	int i;
8734 	u64 *p = bb->page;
8735 	unsigned seq;
8736 
8737 	if (bb->shift < 0)
8738 		return 0;
8739 
8740 retry:
8741 	seq = read_seqbegin(&bb->lock);
8742 
8743 	len = 0;
8744 	i = 0;
8745 
8746 	while (len < PAGE_SIZE && i < bb->count) {
8747 		sector_t s = BB_OFFSET(p[i]);
8748 		unsigned int length = BB_LEN(p[i]);
8749 		int ack = BB_ACK(p[i]);
8750 		i++;
8751 
8752 		if (unack && ack)
8753 			continue;
8754 
8755 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8756 				(unsigned long long)s << bb->shift,
8757 				length << bb->shift);
8758 	}
8759 	if (unack && len == 0)
8760 		bb->unacked_exist = 0;
8761 
8762 	if (read_seqretry(&bb->lock, seq))
8763 		goto retry;
8764 
8765 	return len;
8766 }
8767 
8768 #define DO_DEBUG 1
8769 
8770 static ssize_t
badblocks_store(struct badblocks * bb,const char * page,size_t len,int unack)8771 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8772 {
8773 	unsigned long long sector;
8774 	int length;
8775 	char newline;
8776 #ifdef DO_DEBUG
8777 	/* Allow clearing via sysfs *only* for testing/debugging.
8778 	 * Normally only a successful write may clear a badblock
8779 	 */
8780 	int clear = 0;
8781 	if (page[0] == '-') {
8782 		clear = 1;
8783 		page++;
8784 	}
8785 #endif /* DO_DEBUG */
8786 
8787 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8788 	case 3:
8789 		if (newline != '\n')
8790 			return -EINVAL;
8791 	case 2:
8792 		if (length <= 0)
8793 			return -EINVAL;
8794 		break;
8795 	default:
8796 		return -EINVAL;
8797 	}
8798 
8799 #ifdef DO_DEBUG
8800 	if (clear) {
8801 		md_clear_badblocks(bb, sector, length);
8802 		return len;
8803 	}
8804 #endif /* DO_DEBUG */
8805 	if (md_set_badblocks(bb, sector, length, !unack))
8806 		return len;
8807 	else
8808 		return -ENOSPC;
8809 }
8810 
md_notify_reboot(struct notifier_block * this,unsigned long code,void * x)8811 static int md_notify_reboot(struct notifier_block *this,
8812 			    unsigned long code, void *x)
8813 {
8814 	struct list_head *tmp;
8815 	struct mddev *mddev;
8816 	int need_delay = 0;
8817 
8818 	for_each_mddev(mddev, tmp) {
8819 		if (mddev_trylock(mddev)) {
8820 			if (mddev->pers)
8821 				__md_stop_writes(mddev);
8822 			if (mddev->persistent)
8823 				mddev->safemode = 2;
8824 			mddev_unlock(mddev);
8825 		}
8826 		need_delay = 1;
8827 	}
8828 	/*
8829 	 * certain more exotic SCSI devices are known to be
8830 	 * volatile wrt too early system reboots. While the
8831 	 * right place to handle this issue is the given
8832 	 * driver, we do want to have a safe RAID driver ...
8833 	 */
8834 	if (need_delay)
8835 		mdelay(1000*1);
8836 
8837 	return NOTIFY_DONE;
8838 }
8839 
8840 static struct notifier_block md_notifier = {
8841 	.notifier_call	= md_notify_reboot,
8842 	.next		= NULL,
8843 	.priority	= INT_MAX, /* before any real devices */
8844 };
8845 
md_geninit(void)8846 static void md_geninit(void)
8847 {
8848 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8849 
8850 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8851 }
8852 
md_init(void)8853 static int __init md_init(void)
8854 {
8855 	int ret = -ENOMEM;
8856 
8857 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8858 	if (!md_wq)
8859 		goto err_wq;
8860 
8861 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8862 	if (!md_misc_wq)
8863 		goto err_misc_wq;
8864 
8865 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8866 		goto err_md;
8867 
8868 	if ((ret = register_blkdev(0, "mdp")) < 0)
8869 		goto err_mdp;
8870 	mdp_major = ret;
8871 
8872 	blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8873 			    md_probe, NULL, NULL);
8874 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8875 			    md_probe, NULL, NULL);
8876 
8877 	register_reboot_notifier(&md_notifier);
8878 	raid_table_header = register_sysctl_table(raid_root_table);
8879 
8880 	md_geninit();
8881 	return 0;
8882 
8883 err_mdp:
8884 	unregister_blkdev(MD_MAJOR, "md");
8885 err_md:
8886 	destroy_workqueue(md_misc_wq);
8887 err_misc_wq:
8888 	destroy_workqueue(md_wq);
8889 err_wq:
8890 	return ret;
8891 }
8892 
md_reload_sb(struct mddev * mddev)8893 void md_reload_sb(struct mddev *mddev)
8894 {
8895 	struct md_rdev *rdev, *tmp;
8896 
8897 	rdev_for_each_safe(rdev, tmp, mddev) {
8898 		rdev->sb_loaded = 0;
8899 		ClearPageUptodate(rdev->sb_page);
8900 	}
8901 	mddev->raid_disks = 0;
8902 	analyze_sbs(mddev);
8903 	rdev_for_each_safe(rdev, tmp, mddev) {
8904 		struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8905 		/* since we don't write to faulty devices, we figure out if the
8906 		 *  disk is faulty by comparing events
8907 		 */
8908 		if (mddev->events > sb->events)
8909 			set_bit(Faulty, &rdev->flags);
8910 	}
8911 
8912 }
8913 EXPORT_SYMBOL(md_reload_sb);
8914 
8915 #ifndef MODULE
8916 
8917 /*
8918  * Searches all registered partitions for autorun RAID arrays
8919  * at boot time.
8920  */
8921 
8922 static LIST_HEAD(all_detected_devices);
8923 struct detected_devices_node {
8924 	struct list_head list;
8925 	dev_t dev;
8926 };
8927 
md_autodetect_dev(dev_t dev)8928 void md_autodetect_dev(dev_t dev)
8929 {
8930 	struct detected_devices_node *node_detected_dev;
8931 
8932 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8933 	if (node_detected_dev) {
8934 		node_detected_dev->dev = dev;
8935 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8936 	} else {
8937 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8938 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8939 	}
8940 }
8941 
autostart_arrays(int part)8942 static void autostart_arrays(int part)
8943 {
8944 	struct md_rdev *rdev;
8945 	struct detected_devices_node *node_detected_dev;
8946 	dev_t dev;
8947 	int i_scanned, i_passed;
8948 
8949 	i_scanned = 0;
8950 	i_passed = 0;
8951 
8952 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8953 
8954 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8955 		i_scanned++;
8956 		node_detected_dev = list_entry(all_detected_devices.next,
8957 					struct detected_devices_node, list);
8958 		list_del(&node_detected_dev->list);
8959 		dev = node_detected_dev->dev;
8960 		kfree(node_detected_dev);
8961 		rdev = md_import_device(dev,0, 90);
8962 		if (IS_ERR(rdev))
8963 			continue;
8964 
8965 		if (test_bit(Faulty, &rdev->flags))
8966 			continue;
8967 
8968 		set_bit(AutoDetected, &rdev->flags);
8969 		list_add(&rdev->same_set, &pending_raid_disks);
8970 		i_passed++;
8971 	}
8972 
8973 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8974 						i_scanned, i_passed);
8975 
8976 	autorun_devices(part);
8977 }
8978 
8979 #endif /* !MODULE */
8980 
md_exit(void)8981 static __exit void md_exit(void)
8982 {
8983 	struct mddev *mddev;
8984 	struct list_head *tmp;
8985 	int delay = 1;
8986 
8987 	blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8988 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8989 
8990 	unregister_blkdev(MD_MAJOR,"md");
8991 	unregister_blkdev(mdp_major, "mdp");
8992 	unregister_reboot_notifier(&md_notifier);
8993 	unregister_sysctl_table(raid_table_header);
8994 
8995 	/* We cannot unload the modules while some process is
8996 	 * waiting for us in select() or poll() - wake them up
8997 	 */
8998 	md_unloading = 1;
8999 	while (waitqueue_active(&md_event_waiters)) {
9000 		/* not safe to leave yet */
9001 		wake_up(&md_event_waiters);
9002 		msleep(delay);
9003 		delay += delay;
9004 	}
9005 	remove_proc_entry("mdstat", NULL);
9006 
9007 	for_each_mddev(mddev, tmp) {
9008 		export_array(mddev);
9009 		mddev->hold_active = 0;
9010 	}
9011 	destroy_workqueue(md_misc_wq);
9012 	destroy_workqueue(md_wq);
9013 }
9014 
9015 subsys_initcall(md_init);
module_exit(md_exit)9016 module_exit(md_exit)
9017 
9018 static int get_ro(char *buffer, struct kernel_param *kp)
9019 {
9020 	return sprintf(buffer, "%d", start_readonly);
9021 }
set_ro(const char * val,struct kernel_param * kp)9022 static int set_ro(const char *val, struct kernel_param *kp)
9023 {
9024 	char *e;
9025 	int num = simple_strtoul(val, &e, 10);
9026 	if (*val && (*e == '\0' || *e == '\n')) {
9027 		start_readonly = num;
9028 		return 0;
9029 	}
9030 	return -EINVAL;
9031 }
9032 
9033 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9034 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9035 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9036 
9037 MODULE_LICENSE("GPL");
9038 MODULE_DESCRIPTION("MD RAID framework");
9039 MODULE_ALIAS("md");
9040 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
9041