1 /*
2  * Software multibuffer async crypto daemon.
3  *
4  * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com>
5  *
6  * Adapted from crypto daemon.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the Free
10  * Software Foundation; either version 2 of the License, or (at your option)
11  * any later version.
12  *
13  */
14 
15 #include <crypto/algapi.h>
16 #include <crypto/internal/hash.h>
17 #include <crypto/internal/aead.h>
18 #include <crypto/mcryptd.h>
19 #include <crypto/crypto_wq.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/hardirq.h>
29 
30 #define MCRYPTD_MAX_CPU_QLEN 100
31 #define MCRYPTD_BATCH 9
32 
33 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
34 				   unsigned int tail);
35 
36 struct mcryptd_flush_list {
37 	struct list_head list;
38 	struct mutex lock;
39 };
40 
41 static struct mcryptd_flush_list __percpu *mcryptd_flist;
42 
43 struct hashd_instance_ctx {
44 	struct crypto_shash_spawn spawn;
45 	struct mcryptd_queue *queue;
46 };
47 
48 static void mcryptd_queue_worker(struct work_struct *work);
49 
mcryptd_arm_flusher(struct mcryptd_alg_cstate * cstate,unsigned long delay)50 void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay)
51 {
52 	struct mcryptd_flush_list *flist;
53 
54 	if (!cstate->flusher_engaged) {
55 		/* put the flusher on the flush list */
56 		flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
57 		mutex_lock(&flist->lock);
58 		list_add_tail(&cstate->flush_list, &flist->list);
59 		cstate->flusher_engaged = true;
60 		cstate->next_flush = jiffies + delay;
61 		queue_delayed_work_on(smp_processor_id(), kcrypto_wq,
62 			&cstate->flush, delay);
63 		mutex_unlock(&flist->lock);
64 	}
65 }
66 EXPORT_SYMBOL(mcryptd_arm_flusher);
67 
mcryptd_init_queue(struct mcryptd_queue * queue,unsigned int max_cpu_qlen)68 static int mcryptd_init_queue(struct mcryptd_queue *queue,
69 			     unsigned int max_cpu_qlen)
70 {
71 	int cpu;
72 	struct mcryptd_cpu_queue *cpu_queue;
73 
74 	queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue);
75 	pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue);
76 	if (!queue->cpu_queue)
77 		return -ENOMEM;
78 	for_each_possible_cpu(cpu) {
79 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
80 		pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue);
81 		crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
82 		INIT_WORK(&cpu_queue->work, mcryptd_queue_worker);
83 	}
84 	return 0;
85 }
86 
mcryptd_fini_queue(struct mcryptd_queue * queue)87 static void mcryptd_fini_queue(struct mcryptd_queue *queue)
88 {
89 	int cpu;
90 	struct mcryptd_cpu_queue *cpu_queue;
91 
92 	for_each_possible_cpu(cpu) {
93 		cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
94 		BUG_ON(cpu_queue->queue.qlen);
95 	}
96 	free_percpu(queue->cpu_queue);
97 }
98 
mcryptd_enqueue_request(struct mcryptd_queue * queue,struct crypto_async_request * request,struct mcryptd_hash_request_ctx * rctx)99 static int mcryptd_enqueue_request(struct mcryptd_queue *queue,
100 				  struct crypto_async_request *request,
101 				  struct mcryptd_hash_request_ctx *rctx)
102 {
103 	int cpu, err;
104 	struct mcryptd_cpu_queue *cpu_queue;
105 
106 	cpu = get_cpu();
107 	cpu_queue = this_cpu_ptr(queue->cpu_queue);
108 	rctx->tag.cpu = cpu;
109 
110 	err = crypto_enqueue_request(&cpu_queue->queue, request);
111 	pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n",
112 		 cpu, cpu_queue, request);
113 	queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
114 	put_cpu();
115 
116 	return err;
117 }
118 
119 /*
120  * Try to opportunisticlly flush the partially completed jobs if
121  * crypto daemon is the only task running.
122  */
mcryptd_opportunistic_flush(void)123 static void mcryptd_opportunistic_flush(void)
124 {
125 	struct mcryptd_flush_list *flist;
126 	struct mcryptd_alg_cstate *cstate;
127 
128 	flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
129 	while (single_task_running()) {
130 		mutex_lock(&flist->lock);
131 		if (list_empty(&flist->list)) {
132 			mutex_unlock(&flist->lock);
133 			return;
134 		}
135 		cstate = list_entry(flist->list.next,
136 				struct mcryptd_alg_cstate, flush_list);
137 		if (!cstate->flusher_engaged) {
138 			mutex_unlock(&flist->lock);
139 			return;
140 		}
141 		list_del(&cstate->flush_list);
142 		cstate->flusher_engaged = false;
143 		mutex_unlock(&flist->lock);
144 		cstate->alg_state->flusher(cstate);
145 	}
146 }
147 
148 /*
149  * Called in workqueue context, do one real cryption work (via
150  * req->complete) and reschedule itself if there are more work to
151  * do.
152  */
mcryptd_queue_worker(struct work_struct * work)153 static void mcryptd_queue_worker(struct work_struct *work)
154 {
155 	struct mcryptd_cpu_queue *cpu_queue;
156 	struct crypto_async_request *req, *backlog;
157 	int i;
158 
159 	/*
160 	 * Need to loop through more than once for multi-buffer to
161 	 * be effective.
162 	 */
163 
164 	cpu_queue = container_of(work, struct mcryptd_cpu_queue, work);
165 	i = 0;
166 	while (i < MCRYPTD_BATCH || single_task_running()) {
167 		/*
168 		 * preempt_disable/enable is used to prevent
169 		 * being preempted by mcryptd_enqueue_request()
170 		 */
171 		local_bh_disable();
172 		preempt_disable();
173 		backlog = crypto_get_backlog(&cpu_queue->queue);
174 		req = crypto_dequeue_request(&cpu_queue->queue);
175 		preempt_enable();
176 		local_bh_enable();
177 
178 		if (!req) {
179 			mcryptd_opportunistic_flush();
180 			return;
181 		}
182 
183 		if (backlog)
184 			backlog->complete(backlog, -EINPROGRESS);
185 		req->complete(req, 0);
186 		if (!cpu_queue->queue.qlen)
187 			return;
188 		++i;
189 	}
190 	if (cpu_queue->queue.qlen)
191 		queue_work(kcrypto_wq, &cpu_queue->work);
192 }
193 
mcryptd_flusher(struct work_struct * __work)194 void mcryptd_flusher(struct work_struct *__work)
195 {
196 	struct	mcryptd_alg_cstate	*alg_cpu_state;
197 	struct	mcryptd_alg_state	*alg_state;
198 	struct	mcryptd_flush_list	*flist;
199 	int	cpu;
200 
201 	cpu = smp_processor_id();
202 	alg_cpu_state = container_of(to_delayed_work(__work),
203 				     struct mcryptd_alg_cstate, flush);
204 	alg_state = alg_cpu_state->alg_state;
205 	if (alg_cpu_state->cpu != cpu)
206 		pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n",
207 				cpu, alg_cpu_state->cpu);
208 
209 	if (alg_cpu_state->flusher_engaged) {
210 		flist = per_cpu_ptr(mcryptd_flist, cpu);
211 		mutex_lock(&flist->lock);
212 		list_del(&alg_cpu_state->flush_list);
213 		alg_cpu_state->flusher_engaged = false;
214 		mutex_unlock(&flist->lock);
215 		alg_state->flusher(alg_cpu_state);
216 	}
217 }
218 EXPORT_SYMBOL_GPL(mcryptd_flusher);
219 
mcryptd_get_queue(struct crypto_tfm * tfm)220 static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm)
221 {
222 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
223 	struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
224 
225 	return ictx->queue;
226 }
227 
mcryptd_alloc_instance(struct crypto_alg * alg,unsigned int head,unsigned int tail)228 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
229 				   unsigned int tail)
230 {
231 	char *p;
232 	struct crypto_instance *inst;
233 	int err;
234 
235 	p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
236 	if (!p)
237 		return ERR_PTR(-ENOMEM);
238 
239 	inst = (void *)(p + head);
240 
241 	err = -ENAMETOOLONG;
242 	if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
243 		    "mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
244 		goto out_free_inst;
245 
246 	memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
247 
248 	inst->alg.cra_priority = alg->cra_priority + 50;
249 	inst->alg.cra_blocksize = alg->cra_blocksize;
250 	inst->alg.cra_alignmask = alg->cra_alignmask;
251 
252 out:
253 	return p;
254 
255 out_free_inst:
256 	kfree(p);
257 	p = ERR_PTR(err);
258 	goto out;
259 }
260 
mcryptd_check_internal(struct rtattr ** tb,u32 * type,u32 * mask)261 static inline void mcryptd_check_internal(struct rtattr **tb, u32 *type,
262 					  u32 *mask)
263 {
264 	struct crypto_attr_type *algt;
265 
266 	algt = crypto_get_attr_type(tb);
267 	if (IS_ERR(algt))
268 		return;
269 	if ((algt->type & CRYPTO_ALG_INTERNAL))
270 		*type |= CRYPTO_ALG_INTERNAL;
271 	if ((algt->mask & CRYPTO_ALG_INTERNAL))
272 		*mask |= CRYPTO_ALG_INTERNAL;
273 }
274 
mcryptd_hash_init_tfm(struct crypto_tfm * tfm)275 static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm)
276 {
277 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
278 	struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
279 	struct crypto_shash_spawn *spawn = &ictx->spawn;
280 	struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
281 	struct crypto_shash *hash;
282 
283 	hash = crypto_spawn_shash(spawn);
284 	if (IS_ERR(hash))
285 		return PTR_ERR(hash);
286 
287 	ctx->child = hash;
288 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
289 				 sizeof(struct mcryptd_hash_request_ctx) +
290 				 crypto_shash_descsize(hash));
291 	return 0;
292 }
293 
mcryptd_hash_exit_tfm(struct crypto_tfm * tfm)294 static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm)
295 {
296 	struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
297 
298 	crypto_free_shash(ctx->child);
299 }
300 
mcryptd_hash_setkey(struct crypto_ahash * parent,const u8 * key,unsigned int keylen)301 static int mcryptd_hash_setkey(struct crypto_ahash *parent,
302 				   const u8 *key, unsigned int keylen)
303 {
304 	struct mcryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
305 	struct crypto_shash *child = ctx->child;
306 	int err;
307 
308 	crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
309 	crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
310 				      CRYPTO_TFM_REQ_MASK);
311 	err = crypto_shash_setkey(child, key, keylen);
312 	crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) &
313 				       CRYPTO_TFM_RES_MASK);
314 	return err;
315 }
316 
mcryptd_hash_enqueue(struct ahash_request * req,crypto_completion_t complete)317 static int mcryptd_hash_enqueue(struct ahash_request *req,
318 				crypto_completion_t complete)
319 {
320 	int ret;
321 
322 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
323 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
324 	struct mcryptd_queue *queue =
325 		mcryptd_get_queue(crypto_ahash_tfm(tfm));
326 
327 	rctx->complete = req->base.complete;
328 	req->base.complete = complete;
329 
330 	ret = mcryptd_enqueue_request(queue, &req->base, rctx);
331 
332 	return ret;
333 }
334 
mcryptd_hash_init(struct crypto_async_request * req_async,int err)335 static void mcryptd_hash_init(struct crypto_async_request *req_async, int err)
336 {
337 	struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
338 	struct crypto_shash *child = ctx->child;
339 	struct ahash_request *req = ahash_request_cast(req_async);
340 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
341 	struct shash_desc *desc = &rctx->desc;
342 
343 	if (unlikely(err == -EINPROGRESS))
344 		goto out;
345 
346 	desc->tfm = child;
347 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
348 
349 	err = crypto_shash_init(desc);
350 
351 	req->base.complete = rctx->complete;
352 
353 out:
354 	local_bh_disable();
355 	rctx->complete(&req->base, err);
356 	local_bh_enable();
357 }
358 
mcryptd_hash_init_enqueue(struct ahash_request * req)359 static int mcryptd_hash_init_enqueue(struct ahash_request *req)
360 {
361 	return mcryptd_hash_enqueue(req, mcryptd_hash_init);
362 }
363 
mcryptd_hash_update(struct crypto_async_request * req_async,int err)364 static void mcryptd_hash_update(struct crypto_async_request *req_async, int err)
365 {
366 	struct ahash_request *req = ahash_request_cast(req_async);
367 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
368 
369 	if (unlikely(err == -EINPROGRESS))
370 		goto out;
371 
372 	err = shash_ahash_mcryptd_update(req, &rctx->desc);
373 	if (err) {
374 		req->base.complete = rctx->complete;
375 		goto out;
376 	}
377 
378 	return;
379 out:
380 	local_bh_disable();
381 	rctx->complete(&req->base, err);
382 	local_bh_enable();
383 }
384 
mcryptd_hash_update_enqueue(struct ahash_request * req)385 static int mcryptd_hash_update_enqueue(struct ahash_request *req)
386 {
387 	return mcryptd_hash_enqueue(req, mcryptd_hash_update);
388 }
389 
mcryptd_hash_final(struct crypto_async_request * req_async,int err)390 static void mcryptd_hash_final(struct crypto_async_request *req_async, int err)
391 {
392 	struct ahash_request *req = ahash_request_cast(req_async);
393 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
394 
395 	if (unlikely(err == -EINPROGRESS))
396 		goto out;
397 
398 	err = shash_ahash_mcryptd_final(req, &rctx->desc);
399 	if (err) {
400 		req->base.complete = rctx->complete;
401 		goto out;
402 	}
403 
404 	return;
405 out:
406 	local_bh_disable();
407 	rctx->complete(&req->base, err);
408 	local_bh_enable();
409 }
410 
mcryptd_hash_final_enqueue(struct ahash_request * req)411 static int mcryptd_hash_final_enqueue(struct ahash_request *req)
412 {
413 	return mcryptd_hash_enqueue(req, mcryptd_hash_final);
414 }
415 
mcryptd_hash_finup(struct crypto_async_request * req_async,int err)416 static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err)
417 {
418 	struct ahash_request *req = ahash_request_cast(req_async);
419 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
420 
421 	if (unlikely(err == -EINPROGRESS))
422 		goto out;
423 
424 	err = shash_ahash_mcryptd_finup(req, &rctx->desc);
425 
426 	if (err) {
427 		req->base.complete = rctx->complete;
428 		goto out;
429 	}
430 
431 	return;
432 out:
433 	local_bh_disable();
434 	rctx->complete(&req->base, err);
435 	local_bh_enable();
436 }
437 
mcryptd_hash_finup_enqueue(struct ahash_request * req)438 static int mcryptd_hash_finup_enqueue(struct ahash_request *req)
439 {
440 	return mcryptd_hash_enqueue(req, mcryptd_hash_finup);
441 }
442 
mcryptd_hash_digest(struct crypto_async_request * req_async,int err)443 static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err)
444 {
445 	struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
446 	struct crypto_shash *child = ctx->child;
447 	struct ahash_request *req = ahash_request_cast(req_async);
448 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
449 	struct shash_desc *desc = &rctx->desc;
450 
451 	if (unlikely(err == -EINPROGRESS))
452 		goto out;
453 
454 	desc->tfm = child;
455 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;  /* check this again */
456 
457 	err = shash_ahash_mcryptd_digest(req, desc);
458 
459 	if (err) {
460 		req->base.complete = rctx->complete;
461 		goto out;
462 	}
463 
464 	return;
465 out:
466 	local_bh_disable();
467 	rctx->complete(&req->base, err);
468 	local_bh_enable();
469 }
470 
mcryptd_hash_digest_enqueue(struct ahash_request * req)471 static int mcryptd_hash_digest_enqueue(struct ahash_request *req)
472 {
473 	return mcryptd_hash_enqueue(req, mcryptd_hash_digest);
474 }
475 
mcryptd_hash_export(struct ahash_request * req,void * out)476 static int mcryptd_hash_export(struct ahash_request *req, void *out)
477 {
478 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
479 
480 	return crypto_shash_export(&rctx->desc, out);
481 }
482 
mcryptd_hash_import(struct ahash_request * req,const void * in)483 static int mcryptd_hash_import(struct ahash_request *req, const void *in)
484 {
485 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
486 
487 	return crypto_shash_import(&rctx->desc, in);
488 }
489 
mcryptd_create_hash(struct crypto_template * tmpl,struct rtattr ** tb,struct mcryptd_queue * queue)490 static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
491 			      struct mcryptd_queue *queue)
492 {
493 	struct hashd_instance_ctx *ctx;
494 	struct ahash_instance *inst;
495 	struct shash_alg *salg;
496 	struct crypto_alg *alg;
497 	u32 type = 0;
498 	u32 mask = 0;
499 	int err;
500 
501 	mcryptd_check_internal(tb, &type, &mask);
502 
503 	salg = shash_attr_alg(tb[1], type, mask);
504 	if (IS_ERR(salg))
505 		return PTR_ERR(salg);
506 
507 	alg = &salg->base;
508 	pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name);
509 	inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(),
510 					sizeof(*ctx));
511 	err = PTR_ERR(inst);
512 	if (IS_ERR(inst))
513 		goto out_put_alg;
514 
515 	ctx = ahash_instance_ctx(inst);
516 	ctx->queue = queue;
517 
518 	err = crypto_init_shash_spawn(&ctx->spawn, salg,
519 				      ahash_crypto_instance(inst));
520 	if (err)
521 		goto out_free_inst;
522 
523 	type = CRYPTO_ALG_ASYNC;
524 	if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
525 		type |= CRYPTO_ALG_INTERNAL;
526 	inst->alg.halg.base.cra_flags = type;
527 
528 	inst->alg.halg.digestsize = salg->digestsize;
529 	inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx);
530 
531 	inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm;
532 	inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm;
533 
534 	inst->alg.init   = mcryptd_hash_init_enqueue;
535 	inst->alg.update = mcryptd_hash_update_enqueue;
536 	inst->alg.final  = mcryptd_hash_final_enqueue;
537 	inst->alg.finup  = mcryptd_hash_finup_enqueue;
538 	inst->alg.export = mcryptd_hash_export;
539 	inst->alg.import = mcryptd_hash_import;
540 	inst->alg.setkey = mcryptd_hash_setkey;
541 	inst->alg.digest = mcryptd_hash_digest_enqueue;
542 
543 	err = ahash_register_instance(tmpl, inst);
544 	if (err) {
545 		crypto_drop_shash(&ctx->spawn);
546 out_free_inst:
547 		kfree(inst);
548 	}
549 
550 out_put_alg:
551 	crypto_mod_put(alg);
552 	return err;
553 }
554 
555 static struct mcryptd_queue mqueue;
556 
mcryptd_create(struct crypto_template * tmpl,struct rtattr ** tb)557 static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
558 {
559 	struct crypto_attr_type *algt;
560 
561 	algt = crypto_get_attr_type(tb);
562 	if (IS_ERR(algt))
563 		return PTR_ERR(algt);
564 
565 	switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
566 	case CRYPTO_ALG_TYPE_DIGEST:
567 		return mcryptd_create_hash(tmpl, tb, &mqueue);
568 	break;
569 	}
570 
571 	return -EINVAL;
572 }
573 
mcryptd_free(struct crypto_instance * inst)574 static void mcryptd_free(struct crypto_instance *inst)
575 {
576 	struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
577 	struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
578 
579 	switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
580 	case CRYPTO_ALG_TYPE_AHASH:
581 		crypto_drop_shash(&hctx->spawn);
582 		kfree(ahash_instance(inst));
583 		return;
584 	default:
585 		crypto_drop_spawn(&ctx->spawn);
586 		kfree(inst);
587 	}
588 }
589 
590 static struct crypto_template mcryptd_tmpl = {
591 	.name = "mcryptd",
592 	.create = mcryptd_create,
593 	.free = mcryptd_free,
594 	.module = THIS_MODULE,
595 };
596 
mcryptd_alloc_ahash(const char * alg_name,u32 type,u32 mask)597 struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name,
598 					u32 type, u32 mask)
599 {
600 	char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME];
601 	struct crypto_ahash *tfm;
602 
603 	if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME,
604 		     "mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
605 		return ERR_PTR(-EINVAL);
606 	tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask);
607 	if (IS_ERR(tfm))
608 		return ERR_CAST(tfm);
609 	if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
610 		crypto_free_ahash(tfm);
611 		return ERR_PTR(-EINVAL);
612 	}
613 
614 	return __mcryptd_ahash_cast(tfm);
615 }
616 EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash);
617 
shash_ahash_mcryptd_digest(struct ahash_request * req,struct shash_desc * desc)618 int shash_ahash_mcryptd_digest(struct ahash_request *req,
619 			       struct shash_desc *desc)
620 {
621 	int err;
622 
623 	err = crypto_shash_init(desc) ?:
624 	      shash_ahash_mcryptd_finup(req, desc);
625 
626 	return err;
627 }
628 EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_digest);
629 
shash_ahash_mcryptd_update(struct ahash_request * req,struct shash_desc * desc)630 int shash_ahash_mcryptd_update(struct ahash_request *req,
631 			       struct shash_desc *desc)
632 {
633 	struct crypto_shash *tfm = desc->tfm;
634 	struct shash_alg *shash = crypto_shash_alg(tfm);
635 
636 	/* alignment is to be done by multi-buffer crypto algorithm if needed */
637 
638 	return shash->update(desc, NULL, 0);
639 }
640 EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_update);
641 
shash_ahash_mcryptd_finup(struct ahash_request * req,struct shash_desc * desc)642 int shash_ahash_mcryptd_finup(struct ahash_request *req,
643 			      struct shash_desc *desc)
644 {
645 	struct crypto_shash *tfm = desc->tfm;
646 	struct shash_alg *shash = crypto_shash_alg(tfm);
647 
648 	/* alignment is to be done by multi-buffer crypto algorithm if needed */
649 
650 	return shash->finup(desc, NULL, 0, req->result);
651 }
652 EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_finup);
653 
shash_ahash_mcryptd_final(struct ahash_request * req,struct shash_desc * desc)654 int shash_ahash_mcryptd_final(struct ahash_request *req,
655 			      struct shash_desc *desc)
656 {
657 	struct crypto_shash *tfm = desc->tfm;
658 	struct shash_alg *shash = crypto_shash_alg(tfm);
659 
660 	/* alignment is to be done by multi-buffer crypto algorithm if needed */
661 
662 	return shash->final(desc, req->result);
663 }
664 EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_final);
665 
mcryptd_ahash_child(struct mcryptd_ahash * tfm)666 struct crypto_shash *mcryptd_ahash_child(struct mcryptd_ahash *tfm)
667 {
668 	struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
669 
670 	return ctx->child;
671 }
672 EXPORT_SYMBOL_GPL(mcryptd_ahash_child);
673 
mcryptd_shash_desc(struct ahash_request * req)674 struct shash_desc *mcryptd_shash_desc(struct ahash_request *req)
675 {
676 	struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
677 	return &rctx->desc;
678 }
679 EXPORT_SYMBOL_GPL(mcryptd_shash_desc);
680 
mcryptd_free_ahash(struct mcryptd_ahash * tfm)681 void mcryptd_free_ahash(struct mcryptd_ahash *tfm)
682 {
683 	crypto_free_ahash(&tfm->base);
684 }
685 EXPORT_SYMBOL_GPL(mcryptd_free_ahash);
686 
687 
mcryptd_init(void)688 static int __init mcryptd_init(void)
689 {
690 	int err, cpu;
691 	struct mcryptd_flush_list *flist;
692 
693 	mcryptd_flist = alloc_percpu(struct mcryptd_flush_list);
694 	for_each_possible_cpu(cpu) {
695 		flist = per_cpu_ptr(mcryptd_flist, cpu);
696 		INIT_LIST_HEAD(&flist->list);
697 		mutex_init(&flist->lock);
698 	}
699 
700 	err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN);
701 	if (err) {
702 		free_percpu(mcryptd_flist);
703 		return err;
704 	}
705 
706 	err = crypto_register_template(&mcryptd_tmpl);
707 	if (err) {
708 		mcryptd_fini_queue(&mqueue);
709 		free_percpu(mcryptd_flist);
710 	}
711 
712 	return err;
713 }
714 
mcryptd_exit(void)715 static void __exit mcryptd_exit(void)
716 {
717 	mcryptd_fini_queue(&mqueue);
718 	crypto_unregister_template(&mcryptd_tmpl);
719 	free_percpu(mcryptd_flist);
720 }
721 
722 subsys_initcall(mcryptd_init);
723 module_exit(mcryptd_exit);
724 
725 MODULE_LICENSE("GPL");
726 MODULE_DESCRIPTION("Software async multibuffer crypto daemon");
727 MODULE_ALIAS_CRYPTO("mcryptd");
728