1 /*
2  * Machine check handler.
3  *
4  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5  * Rest from unknown author(s).
6  * 2004 Andi Kleen. Rewrote most of it.
7  * Copyright 2008 Intel Corporation
8  * Author: Andi Kleen
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/thread_info.h>
14 #include <linux/capability.h>
15 #include <linux/miscdevice.h>
16 #include <linux/ratelimit.h>
17 #include <linux/kallsyms.h>
18 #include <linux/rcupdate.h>
19 #include <linux/kobject.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kernel.h>
23 #include <linux/percpu.h>
24 #include <linux/string.h>
25 #include <linux/device.h>
26 #include <linux/syscore_ops.h>
27 #include <linux/delay.h>
28 #include <linux/ctype.h>
29 #include <linux/sched.h>
30 #include <linux/sysfs.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/kmod.h>
35 #include <linux/poll.h>
36 #include <linux/nmi.h>
37 #include <linux/cpu.h>
38 #include <linux/smp.h>
39 #include <linux/fs.h>
40 #include <linux/mm.h>
41 #include <linux/debugfs.h>
42 #include <linux/irq_work.h>
43 #include <linux/export.h>
44 
45 #include <asm/processor.h>
46 #include <asm/traps.h>
47 #include <asm/tlbflush.h>
48 #include <asm/mce.h>
49 #include <asm/msr.h>
50 
51 #include "mce-internal.h"
52 
53 static DEFINE_MUTEX(mce_chrdev_read_mutex);
54 
55 #define mce_log_get_idx_check(p) \
56 ({ \
57 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
58 			 !lockdep_is_held(&mce_chrdev_read_mutex), \
59 			 "suspicious mce_log_get_idx_check() usage"); \
60 	smp_load_acquire(&(p)); \
61 })
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/mce.h>
65 
66 #define SPINUNIT		100	/* 100ns */
67 
68 DEFINE_PER_CPU(unsigned, mce_exception_count);
69 
70 struct mce_bank *mce_banks __read_mostly;
71 struct mce_vendor_flags mce_flags __read_mostly;
72 
73 struct mca_config mca_cfg __read_mostly = {
74 	.bootlog  = -1,
75 	/*
76 	 * Tolerant levels:
77 	 * 0: always panic on uncorrected errors, log corrected errors
78 	 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
79 	 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
80 	 * 3: never panic or SIGBUS, log all errors (for testing only)
81 	 */
82 	.tolerant = 1,
83 	.monarch_timeout = -1
84 };
85 
86 /* User mode helper program triggered by machine check event */
87 static unsigned long		mce_need_notify;
88 static char			mce_helper[128];
89 static char			*mce_helper_argv[2] = { mce_helper, NULL };
90 
91 static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
92 
93 static DEFINE_PER_CPU(struct mce, mces_seen);
94 static int			cpu_missing;
95 
96 /*
97  * MCA banks polled by the period polling timer for corrected events.
98  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
99  */
100 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
101 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
102 };
103 
104 /*
105  * MCA banks controlled through firmware first for corrected errors.
106  * This is a global list of banks for which we won't enable CMCI and we
107  * won't poll. Firmware controls these banks and is responsible for
108  * reporting corrected errors through GHES. Uncorrected/recoverable
109  * errors are still notified through a machine check.
110  */
111 mce_banks_t mce_banks_ce_disabled;
112 
113 static struct work_struct mce_work;
114 static struct irq_work mce_irq_work;
115 
116 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
117 static int mce_usable_address(struct mce *m);
118 
119 /*
120  * CPU/chipset specific EDAC code can register a notifier call here to print
121  * MCE errors in a human-readable form.
122  */
123 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
124 
125 /* Do initial initialization of a struct mce */
mce_setup(struct mce * m)126 void mce_setup(struct mce *m)
127 {
128 	memset(m, 0, sizeof(struct mce));
129 	m->cpu = m->extcpu = smp_processor_id();
130 	m->tsc = rdtsc();
131 	/* We hope get_seconds stays lockless */
132 	m->time = get_seconds();
133 	m->cpuvendor = boot_cpu_data.x86_vendor;
134 	m->cpuid = cpuid_eax(1);
135 	m->socketid = cpu_data(m->extcpu).phys_proc_id;
136 	m->apicid = cpu_data(m->extcpu).initial_apicid;
137 	rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
138 }
139 
140 DEFINE_PER_CPU(struct mce, injectm);
141 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
142 
143 /*
144  * Lockless MCE logging infrastructure.
145  * This avoids deadlocks on printk locks without having to break locks. Also
146  * separate MCEs from kernel messages to avoid bogus bug reports.
147  */
148 
149 static struct mce_log mcelog = {
150 	.signature	= MCE_LOG_SIGNATURE,
151 	.len		= MCE_LOG_LEN,
152 	.recordlen	= sizeof(struct mce),
153 };
154 
mce_log(struct mce * mce)155 void mce_log(struct mce *mce)
156 {
157 	unsigned next, entry;
158 
159 	/* Emit the trace record: */
160 	trace_mce_record(mce);
161 
162 	if (!mce_gen_pool_add(mce))
163 		irq_work_queue(&mce_irq_work);
164 
165 	mce->finished = 0;
166 	wmb();
167 	for (;;) {
168 		entry = mce_log_get_idx_check(mcelog.next);
169 		for (;;) {
170 
171 			/*
172 			 * When the buffer fills up discard new entries.
173 			 * Assume that the earlier errors are the more
174 			 * interesting ones:
175 			 */
176 			if (entry >= MCE_LOG_LEN) {
177 				set_bit(MCE_OVERFLOW,
178 					(unsigned long *)&mcelog.flags);
179 				return;
180 			}
181 			/* Old left over entry. Skip: */
182 			if (mcelog.entry[entry].finished) {
183 				entry++;
184 				continue;
185 			}
186 			break;
187 		}
188 		smp_rmb();
189 		next = entry + 1;
190 		if (cmpxchg(&mcelog.next, entry, next) == entry)
191 			break;
192 	}
193 	memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
194 	wmb();
195 	mcelog.entry[entry].finished = 1;
196 	wmb();
197 
198 	mce->finished = 1;
199 	set_bit(0, &mce_need_notify);
200 }
201 
mce_inject_log(struct mce * m)202 void mce_inject_log(struct mce *m)
203 {
204 	mutex_lock(&mce_chrdev_read_mutex);
205 	mce_log(m);
206 	mutex_unlock(&mce_chrdev_read_mutex);
207 }
208 EXPORT_SYMBOL_GPL(mce_inject_log);
209 
210 static struct notifier_block mce_srao_nb;
211 
mce_register_decode_chain(struct notifier_block * nb)212 void mce_register_decode_chain(struct notifier_block *nb)
213 {
214 	/* Ensure SRAO notifier has the highest priority in the decode chain. */
215 	if (nb != &mce_srao_nb && nb->priority == INT_MAX)
216 		nb->priority -= 1;
217 
218 	atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
219 }
220 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
221 
mce_unregister_decode_chain(struct notifier_block * nb)222 void mce_unregister_decode_chain(struct notifier_block *nb)
223 {
224 	atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
225 }
226 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
227 
print_mce(struct mce * m)228 static void print_mce(struct mce *m)
229 {
230 	int ret = 0;
231 
232 	pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
233 	       m->extcpu, m->mcgstatus, m->bank, m->status);
234 
235 	if (m->ip) {
236 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
237 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
238 				m->cs, m->ip);
239 
240 		if (m->cs == __KERNEL_CS)
241 			print_symbol("{%s}", m->ip);
242 		pr_cont("\n");
243 	}
244 
245 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
246 	if (m->addr)
247 		pr_cont("ADDR %llx ", m->addr);
248 	if (m->misc)
249 		pr_cont("MISC %llx ", m->misc);
250 
251 	pr_cont("\n");
252 	/*
253 	 * Note this output is parsed by external tools and old fields
254 	 * should not be changed.
255 	 */
256 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
257 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
258 		cpu_data(m->extcpu).microcode);
259 
260 	/*
261 	 * Print out human-readable details about the MCE error,
262 	 * (if the CPU has an implementation for that)
263 	 */
264 	ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
265 	if (ret == NOTIFY_STOP)
266 		return;
267 
268 	pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
269 }
270 
271 #define PANIC_TIMEOUT 5 /* 5 seconds */
272 
273 static atomic_t mce_panicked;
274 
275 static int fake_panic;
276 static atomic_t mce_fake_panicked;
277 
278 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)279 static void wait_for_panic(void)
280 {
281 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
282 
283 	preempt_disable();
284 	local_irq_enable();
285 	while (timeout-- > 0)
286 		udelay(1);
287 	if (panic_timeout == 0)
288 		panic_timeout = mca_cfg.panic_timeout;
289 	panic("Panicing machine check CPU died");
290 }
291 
mce_panic(const char * msg,struct mce * final,char * exp)292 static void mce_panic(const char *msg, struct mce *final, char *exp)
293 {
294 	int i, apei_err = 0;
295 
296 	if (!fake_panic) {
297 		/*
298 		 * Make sure only one CPU runs in machine check panic
299 		 */
300 		if (atomic_inc_return(&mce_panicked) > 1)
301 			wait_for_panic();
302 		barrier();
303 
304 		bust_spinlocks(1);
305 		console_verbose();
306 	} else {
307 		/* Don't log too much for fake panic */
308 		if (atomic_inc_return(&mce_fake_panicked) > 1)
309 			return;
310 	}
311 	/* First print corrected ones that are still unlogged */
312 	for (i = 0; i < MCE_LOG_LEN; i++) {
313 		struct mce *m = &mcelog.entry[i];
314 		if (!(m->status & MCI_STATUS_VAL))
315 			continue;
316 		if (!(m->status & MCI_STATUS_UC)) {
317 			print_mce(m);
318 			if (!apei_err)
319 				apei_err = apei_write_mce(m);
320 		}
321 	}
322 	/* Now print uncorrected but with the final one last */
323 	for (i = 0; i < MCE_LOG_LEN; i++) {
324 		struct mce *m = &mcelog.entry[i];
325 		if (!(m->status & MCI_STATUS_VAL))
326 			continue;
327 		if (!(m->status & MCI_STATUS_UC))
328 			continue;
329 		if (!final || memcmp(m, final, sizeof(struct mce))) {
330 			print_mce(m);
331 			if (!apei_err)
332 				apei_err = apei_write_mce(m);
333 		}
334 	}
335 	if (final) {
336 		print_mce(final);
337 		if (!apei_err)
338 			apei_err = apei_write_mce(final);
339 	}
340 	if (cpu_missing)
341 		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
342 	if (exp)
343 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
344 	if (!fake_panic) {
345 		if (panic_timeout == 0)
346 			panic_timeout = mca_cfg.panic_timeout;
347 		panic(msg);
348 	} else
349 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
350 }
351 
352 /* Support code for software error injection */
353 
msr_to_offset(u32 msr)354 static int msr_to_offset(u32 msr)
355 {
356 	unsigned bank = __this_cpu_read(injectm.bank);
357 
358 	if (msr == mca_cfg.rip_msr)
359 		return offsetof(struct mce, ip);
360 	if (msr == MSR_IA32_MCx_STATUS(bank))
361 		return offsetof(struct mce, status);
362 	if (msr == MSR_IA32_MCx_ADDR(bank))
363 		return offsetof(struct mce, addr);
364 	if (msr == MSR_IA32_MCx_MISC(bank))
365 		return offsetof(struct mce, misc);
366 	if (msr == MSR_IA32_MCG_STATUS)
367 		return offsetof(struct mce, mcgstatus);
368 	return -1;
369 }
370 
371 /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)372 static u64 mce_rdmsrl(u32 msr)
373 {
374 	u64 v;
375 
376 	if (__this_cpu_read(injectm.finished)) {
377 		int offset = msr_to_offset(msr);
378 
379 		if (offset < 0)
380 			return 0;
381 		return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
382 	}
383 
384 	if (rdmsrl_safe(msr, &v)) {
385 		WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
386 		/*
387 		 * Return zero in case the access faulted. This should
388 		 * not happen normally but can happen if the CPU does
389 		 * something weird, or if the code is buggy.
390 		 */
391 		v = 0;
392 	}
393 
394 	return v;
395 }
396 
mce_wrmsrl(u32 msr,u64 v)397 static void mce_wrmsrl(u32 msr, u64 v)
398 {
399 	if (__this_cpu_read(injectm.finished)) {
400 		int offset = msr_to_offset(msr);
401 
402 		if (offset >= 0)
403 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
404 		return;
405 	}
406 	wrmsrl(msr, v);
407 }
408 
409 /*
410  * Collect all global (w.r.t. this processor) status about this machine
411  * check into our "mce" struct so that we can use it later to assess
412  * the severity of the problem as we read per-bank specific details.
413  */
mce_gather_info(struct mce * m,struct pt_regs * regs)414 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
415 {
416 	mce_setup(m);
417 
418 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
419 	if (regs) {
420 		/*
421 		 * Get the address of the instruction at the time of
422 		 * the machine check error.
423 		 */
424 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
425 			m->ip = regs->ip;
426 			m->cs = regs->cs;
427 
428 			/*
429 			 * When in VM86 mode make the cs look like ring 3
430 			 * always. This is a lie, but it's better than passing
431 			 * the additional vm86 bit around everywhere.
432 			 */
433 			if (v8086_mode(regs))
434 				m->cs |= 3;
435 		}
436 		/* Use accurate RIP reporting if available. */
437 		if (mca_cfg.rip_msr)
438 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
439 	}
440 }
441 
mce_available(struct cpuinfo_x86 * c)442 int mce_available(struct cpuinfo_x86 *c)
443 {
444 	if (mca_cfg.disabled)
445 		return 0;
446 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
447 }
448 
mce_schedule_work(void)449 static void mce_schedule_work(void)
450 {
451 	if (!mce_gen_pool_empty() && keventd_up())
452 		schedule_work(&mce_work);
453 }
454 
mce_irq_work_cb(struct irq_work * entry)455 static void mce_irq_work_cb(struct irq_work *entry)
456 {
457 	mce_notify_irq();
458 	mce_schedule_work();
459 }
460 
mce_report_event(struct pt_regs * regs)461 static void mce_report_event(struct pt_regs *regs)
462 {
463 	if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
464 		mce_notify_irq();
465 		/*
466 		 * Triggering the work queue here is just an insurance
467 		 * policy in case the syscall exit notify handler
468 		 * doesn't run soon enough or ends up running on the
469 		 * wrong CPU (can happen when audit sleeps)
470 		 */
471 		mce_schedule_work();
472 		return;
473 	}
474 
475 	irq_work_queue(&mce_irq_work);
476 }
477 
srao_decode_notifier(struct notifier_block * nb,unsigned long val,void * data)478 static int srao_decode_notifier(struct notifier_block *nb, unsigned long val,
479 				void *data)
480 {
481 	struct mce *mce = (struct mce *)data;
482 	unsigned long pfn;
483 
484 	if (!mce)
485 		return NOTIFY_DONE;
486 
487 	if (mce->usable_addr && (mce->severity == MCE_AO_SEVERITY)) {
488 		pfn = mce->addr >> PAGE_SHIFT;
489 		memory_failure(pfn, MCE_VECTOR, 0);
490 	}
491 
492 	return NOTIFY_OK;
493 }
494 static struct notifier_block mce_srao_nb = {
495 	.notifier_call	= srao_decode_notifier,
496 	.priority = INT_MAX,
497 };
498 
499 /*
500  * Read ADDR and MISC registers.
501  */
mce_read_aux(struct mce * m,int i)502 static void mce_read_aux(struct mce *m, int i)
503 {
504 	if (m->status & MCI_STATUS_MISCV)
505 		m->misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
506 	if (m->status & MCI_STATUS_ADDRV) {
507 		m->addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
508 
509 		/*
510 		 * Mask the reported address by the reported granularity.
511 		 */
512 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
513 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
514 			m->addr >>= shift;
515 			m->addr <<= shift;
516 		}
517 	}
518 }
519 
memory_error(struct mce * m)520 static bool memory_error(struct mce *m)
521 {
522 	struct cpuinfo_x86 *c = &boot_cpu_data;
523 
524 	if (c->x86_vendor == X86_VENDOR_AMD) {
525 		/*
526 		 * coming soon
527 		 */
528 		return false;
529 	} else if (c->x86_vendor == X86_VENDOR_INTEL) {
530 		/*
531 		 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
532 		 *
533 		 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
534 		 * indicating a memory error. Bit 8 is used for indicating a
535 		 * cache hierarchy error. The combination of bit 2 and bit 3
536 		 * is used for indicating a `generic' cache hierarchy error
537 		 * But we can't just blindly check the above bits, because if
538 		 * bit 11 is set, then it is a bus/interconnect error - and
539 		 * either way the above bits just gives more detail on what
540 		 * bus/interconnect error happened. Note that bit 12 can be
541 		 * ignored, as it's the "filter" bit.
542 		 */
543 		return (m->status & 0xef80) == BIT(7) ||
544 		       (m->status & 0xef00) == BIT(8) ||
545 		       (m->status & 0xeffc) == 0xc;
546 	}
547 
548 	return false;
549 }
550 
551 DEFINE_PER_CPU(unsigned, mce_poll_count);
552 
553 /*
554  * Poll for corrected events or events that happened before reset.
555  * Those are just logged through /dev/mcelog.
556  *
557  * This is executed in standard interrupt context.
558  *
559  * Note: spec recommends to panic for fatal unsignalled
560  * errors here. However this would be quite problematic --
561  * we would need to reimplement the Monarch handling and
562  * it would mess up the exclusion between exception handler
563  * and poll hander -- * so we skip this for now.
564  * These cases should not happen anyways, or only when the CPU
565  * is already totally * confused. In this case it's likely it will
566  * not fully execute the machine check handler either.
567  */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)568 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
569 {
570 	bool error_logged = false;
571 	struct mce m;
572 	int severity;
573 	int i;
574 
575 	this_cpu_inc(mce_poll_count);
576 
577 	mce_gather_info(&m, NULL);
578 
579 	for (i = 0; i < mca_cfg.banks; i++) {
580 		if (!mce_banks[i].ctl || !test_bit(i, *b))
581 			continue;
582 
583 		m.misc = 0;
584 		m.addr = 0;
585 		m.bank = i;
586 		m.tsc = 0;
587 
588 		barrier();
589 		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
590 		if (!(m.status & MCI_STATUS_VAL))
591 			continue;
592 
593 
594 		/*
595 		 * Uncorrected or signalled events are handled by the exception
596 		 * handler when it is enabled, so don't process those here.
597 		 *
598 		 * TBD do the same check for MCI_STATUS_EN here?
599 		 */
600 		if (!(flags & MCP_UC) &&
601 		    (m.status & (mca_cfg.ser ? MCI_STATUS_S : MCI_STATUS_UC)))
602 			continue;
603 
604 		mce_read_aux(&m, i);
605 
606 		if (!(flags & MCP_TIMESTAMP))
607 			m.tsc = 0;
608 
609 		severity = mce_severity(&m, mca_cfg.tolerant, NULL, false);
610 
611 		/*
612 		 * In the cases where we don't have a valid address after all,
613 		 * do not add it into the ring buffer.
614 		 */
615 		if (severity == MCE_DEFERRED_SEVERITY && memory_error(&m)) {
616 			if (m.status & MCI_STATUS_ADDRV) {
617 				m.severity = severity;
618 				m.usable_addr = mce_usable_address(&m);
619 
620 				if (!mce_gen_pool_add(&m))
621 					mce_schedule_work();
622 			}
623 		}
624 
625 		/*
626 		 * Don't get the IP here because it's unlikely to
627 		 * have anything to do with the actual error location.
628 		 */
629 		if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce) {
630 			error_logged = true;
631 			mce_log(&m);
632 		}
633 
634 		/*
635 		 * Clear state for this bank.
636 		 */
637 		mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
638 	}
639 
640 	/*
641 	 * Don't clear MCG_STATUS here because it's only defined for
642 	 * exceptions.
643 	 */
644 
645 	sync_core();
646 
647 	return error_logged;
648 }
649 EXPORT_SYMBOL_GPL(machine_check_poll);
650 
651 /*
652  * Do a quick check if any of the events requires a panic.
653  * This decides if we keep the events around or clear them.
654  */
mce_no_way_out(struct mce * m,char ** msg,unsigned long * validp,struct pt_regs * regs)655 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
656 			  struct pt_regs *regs)
657 {
658 	int i, ret = 0;
659 	char *tmp;
660 
661 	for (i = 0; i < mca_cfg.banks; i++) {
662 		m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
663 		if (m->status & MCI_STATUS_VAL) {
664 			__set_bit(i, validp);
665 			if (quirk_no_way_out)
666 				quirk_no_way_out(i, m, regs);
667 		}
668 
669 		if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
670 			*msg = tmp;
671 			ret = 1;
672 		}
673 	}
674 	return ret;
675 }
676 
677 /*
678  * Variable to establish order between CPUs while scanning.
679  * Each CPU spins initially until executing is equal its number.
680  */
681 static atomic_t mce_executing;
682 
683 /*
684  * Defines order of CPUs on entry. First CPU becomes Monarch.
685  */
686 static atomic_t mce_callin;
687 
688 /*
689  * Check if a timeout waiting for other CPUs happened.
690  */
mce_timed_out(u64 * t,const char * msg)691 static int mce_timed_out(u64 *t, const char *msg)
692 {
693 	/*
694 	 * The others already did panic for some reason.
695 	 * Bail out like in a timeout.
696 	 * rmb() to tell the compiler that system_state
697 	 * might have been modified by someone else.
698 	 */
699 	rmb();
700 	if (atomic_read(&mce_panicked))
701 		wait_for_panic();
702 	if (!mca_cfg.monarch_timeout)
703 		goto out;
704 	if ((s64)*t < SPINUNIT) {
705 		if (mca_cfg.tolerant <= 1)
706 			mce_panic(msg, NULL, NULL);
707 		cpu_missing = 1;
708 		return 1;
709 	}
710 	*t -= SPINUNIT;
711 out:
712 	touch_nmi_watchdog();
713 	return 0;
714 }
715 
716 /*
717  * The Monarch's reign.  The Monarch is the CPU who entered
718  * the machine check handler first. It waits for the others to
719  * raise the exception too and then grades them. When any
720  * error is fatal panic. Only then let the others continue.
721  *
722  * The other CPUs entering the MCE handler will be controlled by the
723  * Monarch. They are called Subjects.
724  *
725  * This way we prevent any potential data corruption in a unrecoverable case
726  * and also makes sure always all CPU's errors are examined.
727  *
728  * Also this detects the case of a machine check event coming from outer
729  * space (not detected by any CPUs) In this case some external agent wants
730  * us to shut down, so panic too.
731  *
732  * The other CPUs might still decide to panic if the handler happens
733  * in a unrecoverable place, but in this case the system is in a semi-stable
734  * state and won't corrupt anything by itself. It's ok to let the others
735  * continue for a bit first.
736  *
737  * All the spin loops have timeouts; when a timeout happens a CPU
738  * typically elects itself to be Monarch.
739  */
mce_reign(void)740 static void mce_reign(void)
741 {
742 	int cpu;
743 	struct mce *m = NULL;
744 	int global_worst = 0;
745 	char *msg = NULL;
746 	char *nmsg = NULL;
747 
748 	/*
749 	 * This CPU is the Monarch and the other CPUs have run
750 	 * through their handlers.
751 	 * Grade the severity of the errors of all the CPUs.
752 	 */
753 	for_each_possible_cpu(cpu) {
754 		int severity = mce_severity(&per_cpu(mces_seen, cpu),
755 					    mca_cfg.tolerant,
756 					    &nmsg, true);
757 		if (severity > global_worst) {
758 			msg = nmsg;
759 			global_worst = severity;
760 			m = &per_cpu(mces_seen, cpu);
761 		}
762 	}
763 
764 	/*
765 	 * Cannot recover? Panic here then.
766 	 * This dumps all the mces in the log buffer and stops the
767 	 * other CPUs.
768 	 */
769 	if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
770 		mce_panic("Fatal machine check", m, msg);
771 
772 	/*
773 	 * For UC somewhere we let the CPU who detects it handle it.
774 	 * Also must let continue the others, otherwise the handling
775 	 * CPU could deadlock on a lock.
776 	 */
777 
778 	/*
779 	 * No machine check event found. Must be some external
780 	 * source or one CPU is hung. Panic.
781 	 */
782 	if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
783 		mce_panic("Fatal machine check from unknown source", NULL, NULL);
784 
785 	/*
786 	 * Now clear all the mces_seen so that they don't reappear on
787 	 * the next mce.
788 	 */
789 	for_each_possible_cpu(cpu)
790 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
791 }
792 
793 static atomic_t global_nwo;
794 
795 /*
796  * Start of Monarch synchronization. This waits until all CPUs have
797  * entered the exception handler and then determines if any of them
798  * saw a fatal event that requires panic. Then it executes them
799  * in the entry order.
800  * TBD double check parallel CPU hotunplug
801  */
mce_start(int * no_way_out)802 static int mce_start(int *no_way_out)
803 {
804 	int order;
805 	int cpus = num_online_cpus();
806 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
807 
808 	if (!timeout)
809 		return -1;
810 
811 	atomic_add(*no_way_out, &global_nwo);
812 	/*
813 	 * global_nwo should be updated before mce_callin
814 	 */
815 	smp_wmb();
816 	order = atomic_inc_return(&mce_callin);
817 
818 	/*
819 	 * Wait for everyone.
820 	 */
821 	while (atomic_read(&mce_callin) != cpus) {
822 		if (mce_timed_out(&timeout,
823 				  "Timeout: Not all CPUs entered broadcast exception handler")) {
824 			atomic_set(&global_nwo, 0);
825 			return -1;
826 		}
827 		ndelay(SPINUNIT);
828 	}
829 
830 	/*
831 	 * mce_callin should be read before global_nwo
832 	 */
833 	smp_rmb();
834 
835 	if (order == 1) {
836 		/*
837 		 * Monarch: Starts executing now, the others wait.
838 		 */
839 		atomic_set(&mce_executing, 1);
840 	} else {
841 		/*
842 		 * Subject: Now start the scanning loop one by one in
843 		 * the original callin order.
844 		 * This way when there are any shared banks it will be
845 		 * only seen by one CPU before cleared, avoiding duplicates.
846 		 */
847 		while (atomic_read(&mce_executing) < order) {
848 			if (mce_timed_out(&timeout,
849 					  "Timeout: Subject CPUs unable to finish machine check processing")) {
850 				atomic_set(&global_nwo, 0);
851 				return -1;
852 			}
853 			ndelay(SPINUNIT);
854 		}
855 	}
856 
857 	/*
858 	 * Cache the global no_way_out state.
859 	 */
860 	*no_way_out = atomic_read(&global_nwo);
861 
862 	return order;
863 }
864 
865 /*
866  * Synchronize between CPUs after main scanning loop.
867  * This invokes the bulk of the Monarch processing.
868  */
mce_end(int order)869 static int mce_end(int order)
870 {
871 	int ret = -1;
872 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
873 
874 	if (!timeout)
875 		goto reset;
876 	if (order < 0)
877 		goto reset;
878 
879 	/*
880 	 * Allow others to run.
881 	 */
882 	atomic_inc(&mce_executing);
883 
884 	if (order == 1) {
885 		/* CHECKME: Can this race with a parallel hotplug? */
886 		int cpus = num_online_cpus();
887 
888 		/*
889 		 * Monarch: Wait for everyone to go through their scanning
890 		 * loops.
891 		 */
892 		while (atomic_read(&mce_executing) <= cpus) {
893 			if (mce_timed_out(&timeout,
894 					  "Timeout: Monarch CPU unable to finish machine check processing"))
895 				goto reset;
896 			ndelay(SPINUNIT);
897 		}
898 
899 		mce_reign();
900 		barrier();
901 		ret = 0;
902 	} else {
903 		/*
904 		 * Subject: Wait for Monarch to finish.
905 		 */
906 		while (atomic_read(&mce_executing) != 0) {
907 			if (mce_timed_out(&timeout,
908 					  "Timeout: Monarch CPU did not finish machine check processing"))
909 				goto reset;
910 			ndelay(SPINUNIT);
911 		}
912 
913 		/*
914 		 * Don't reset anything. That's done by the Monarch.
915 		 */
916 		return 0;
917 	}
918 
919 	/*
920 	 * Reset all global state.
921 	 */
922 reset:
923 	atomic_set(&global_nwo, 0);
924 	atomic_set(&mce_callin, 0);
925 	barrier();
926 
927 	/*
928 	 * Let others run again.
929 	 */
930 	atomic_set(&mce_executing, 0);
931 	return ret;
932 }
933 
934 /*
935  * Check if the address reported by the CPU is in a format we can parse.
936  * It would be possible to add code for most other cases, but all would
937  * be somewhat complicated (e.g. segment offset would require an instruction
938  * parser). So only support physical addresses up to page granuality for now.
939  */
mce_usable_address(struct mce * m)940 static int mce_usable_address(struct mce *m)
941 {
942 	if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
943 		return 0;
944 	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
945 		return 0;
946 	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
947 		return 0;
948 	return 1;
949 }
950 
mce_clear_state(unsigned long * toclear)951 static void mce_clear_state(unsigned long *toclear)
952 {
953 	int i;
954 
955 	for (i = 0; i < mca_cfg.banks; i++) {
956 		if (test_bit(i, toclear))
957 			mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
958 	}
959 }
960 
961 /*
962  * The actual machine check handler. This only handles real
963  * exceptions when something got corrupted coming in through int 18.
964  *
965  * This is executed in NMI context not subject to normal locking rules. This
966  * implies that most kernel services cannot be safely used. Don't even
967  * think about putting a printk in there!
968  *
969  * On Intel systems this is entered on all CPUs in parallel through
970  * MCE broadcast. However some CPUs might be broken beyond repair,
971  * so be always careful when synchronizing with others.
972  */
do_machine_check(struct pt_regs * regs,long error_code)973 void do_machine_check(struct pt_regs *regs, long error_code)
974 {
975 	struct mca_config *cfg = &mca_cfg;
976 	struct mce m, *final;
977 	int i;
978 	int worst = 0;
979 	int severity;
980 	/*
981 	 * Establish sequential order between the CPUs entering the machine
982 	 * check handler.
983 	 */
984 	int order;
985 	/*
986 	 * If no_way_out gets set, there is no safe way to recover from this
987 	 * MCE.  If mca_cfg.tolerant is cranked up, we'll try anyway.
988 	 */
989 	int no_way_out = 0;
990 	/*
991 	 * If kill_it gets set, there might be a way to recover from this
992 	 * error.
993 	 */
994 	int kill_it = 0;
995 	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
996 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
997 	char *msg = "Unknown";
998 	u64 recover_paddr = ~0ull;
999 	int flags = MF_ACTION_REQUIRED;
1000 	int lmce = 0;
1001 
1002 	/* If this CPU is offline, just bail out. */
1003 	if (cpu_is_offline(smp_processor_id())) {
1004 		u64 mcgstatus;
1005 
1006 		mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
1007 		if (mcgstatus & MCG_STATUS_RIPV) {
1008 			mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1009 			return;
1010 		}
1011 	}
1012 
1013 	ist_enter(regs);
1014 
1015 	this_cpu_inc(mce_exception_count);
1016 
1017 	if (!cfg->banks)
1018 		goto out;
1019 
1020 	mce_gather_info(&m, regs);
1021 
1022 	final = this_cpu_ptr(&mces_seen);
1023 	*final = m;
1024 
1025 	memset(valid_banks, 0, sizeof(valid_banks));
1026 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1027 
1028 	barrier();
1029 
1030 	/*
1031 	 * When no restart IP might need to kill or panic.
1032 	 * Assume the worst for now, but if we find the
1033 	 * severity is MCE_AR_SEVERITY we have other options.
1034 	 */
1035 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1036 		kill_it = 1;
1037 
1038 	/*
1039 	 * Check if this MCE is signaled to only this logical processor
1040 	 */
1041 	if (m.mcgstatus & MCG_STATUS_LMCES)
1042 		lmce = 1;
1043 	else {
1044 		/*
1045 		 * Go through all the banks in exclusion of the other CPUs.
1046 		 * This way we don't report duplicated events on shared banks
1047 		 * because the first one to see it will clear it.
1048 		 * If this is a Local MCE, then no need to perform rendezvous.
1049 		 */
1050 		order = mce_start(&no_way_out);
1051 	}
1052 
1053 	for (i = 0; i < cfg->banks; i++) {
1054 		__clear_bit(i, toclear);
1055 		if (!test_bit(i, valid_banks))
1056 			continue;
1057 		if (!mce_banks[i].ctl)
1058 			continue;
1059 
1060 		m.misc = 0;
1061 		m.addr = 0;
1062 		m.bank = i;
1063 
1064 		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
1065 		if ((m.status & MCI_STATUS_VAL) == 0)
1066 			continue;
1067 
1068 		/*
1069 		 * Non uncorrected or non signaled errors are handled by
1070 		 * machine_check_poll. Leave them alone, unless this panics.
1071 		 */
1072 		if (!(m.status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1073 			!no_way_out)
1074 			continue;
1075 
1076 		/*
1077 		 * Set taint even when machine check was not enabled.
1078 		 */
1079 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1080 
1081 		severity = mce_severity(&m, cfg->tolerant, NULL, true);
1082 
1083 		/*
1084 		 * When machine check was for corrected/deferred handler don't
1085 		 * touch, unless we're panicing.
1086 		 */
1087 		if ((severity == MCE_KEEP_SEVERITY ||
1088 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1089 			continue;
1090 		__set_bit(i, toclear);
1091 		if (severity == MCE_NO_SEVERITY) {
1092 			/*
1093 			 * Machine check event was not enabled. Clear, but
1094 			 * ignore.
1095 			 */
1096 			continue;
1097 		}
1098 
1099 		mce_read_aux(&m, i);
1100 
1101 		/* assuming valid severity level != 0 */
1102 		m.severity = severity;
1103 		m.usable_addr = mce_usable_address(&m);
1104 
1105 		mce_log(&m);
1106 
1107 		if (severity > worst) {
1108 			*final = m;
1109 			worst = severity;
1110 		}
1111 	}
1112 
1113 	/* mce_clear_state will clear *final, save locally for use later */
1114 	m = *final;
1115 
1116 	if (!no_way_out)
1117 		mce_clear_state(toclear);
1118 
1119 	/*
1120 	 * Do most of the synchronization with other CPUs.
1121 	 * When there's any problem use only local no_way_out state.
1122 	 */
1123 	if (!lmce) {
1124 		if (mce_end(order) < 0)
1125 			no_way_out = worst >= MCE_PANIC_SEVERITY;
1126 	} else {
1127 		/*
1128 		 * Local MCE skipped calling mce_reign()
1129 		 * If we found a fatal error, we need to panic here.
1130 		 */
1131 		 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
1132 			mce_panic("Machine check from unknown source",
1133 				NULL, NULL);
1134 	}
1135 
1136 	/*
1137 	 * At insane "tolerant" levels we take no action. Otherwise
1138 	 * we only die if we have no other choice. For less serious
1139 	 * issues we try to recover, or limit damage to the current
1140 	 * process.
1141 	 */
1142 	if (cfg->tolerant < 3) {
1143 		if (no_way_out)
1144 			mce_panic("Fatal machine check on current CPU", &m, msg);
1145 		if (worst == MCE_AR_SEVERITY) {
1146 			recover_paddr = m.addr;
1147 			if (!(m.mcgstatus & MCG_STATUS_RIPV))
1148 				flags |= MF_MUST_KILL;
1149 		} else if (kill_it) {
1150 			force_sig(SIGBUS, current);
1151 		}
1152 	}
1153 
1154 	if (worst > 0)
1155 		mce_report_event(regs);
1156 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1157 out:
1158 	sync_core();
1159 
1160 	if (recover_paddr == ~0ull)
1161 		goto done;
1162 
1163 	pr_err("Uncorrected hardware memory error in user-access at %llx",
1164 		 recover_paddr);
1165 	/*
1166 	 * We must call memory_failure() here even if the current process is
1167 	 * doomed. We still need to mark the page as poisoned and alert any
1168 	 * other users of the page.
1169 	 */
1170 	ist_begin_non_atomic(regs);
1171 	local_irq_enable();
1172 	if (memory_failure(recover_paddr >> PAGE_SHIFT, MCE_VECTOR, flags) < 0) {
1173 		pr_err("Memory error not recovered");
1174 		force_sig(SIGBUS, current);
1175 	}
1176 	local_irq_disable();
1177 	ist_end_non_atomic();
1178 done:
1179 	ist_exit(regs);
1180 }
1181 EXPORT_SYMBOL_GPL(do_machine_check);
1182 
1183 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int vector,int flags)1184 int memory_failure(unsigned long pfn, int vector, int flags)
1185 {
1186 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1187 	BUG_ON(flags & MF_ACTION_REQUIRED);
1188 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1189 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1190 	       pfn);
1191 
1192 	return 0;
1193 }
1194 #endif
1195 
1196 /*
1197  * Action optional processing happens here (picking up
1198  * from the list of faulting pages that do_machine_check()
1199  * placed into the genpool).
1200  */
mce_process_work(struct work_struct * dummy)1201 static void mce_process_work(struct work_struct *dummy)
1202 {
1203 	mce_gen_pool_process();
1204 }
1205 
1206 #ifdef CONFIG_X86_MCE_INTEL
1207 /***
1208  * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1209  * @cpu: The CPU on which the event occurred.
1210  * @status: Event status information
1211  *
1212  * This function should be called by the thermal interrupt after the
1213  * event has been processed and the decision was made to log the event
1214  * further.
1215  *
1216  * The status parameter will be saved to the 'status' field of 'struct mce'
1217  * and historically has been the register value of the
1218  * MSR_IA32_THERMAL_STATUS (Intel) msr.
1219  */
mce_log_therm_throt_event(__u64 status)1220 void mce_log_therm_throt_event(__u64 status)
1221 {
1222 	struct mce m;
1223 
1224 	mce_setup(&m);
1225 	m.bank = MCE_THERMAL_BANK;
1226 	m.status = status;
1227 	mce_log(&m);
1228 }
1229 #endif /* CONFIG_X86_MCE_INTEL */
1230 
1231 /*
1232  * Periodic polling timer for "silent" machine check errors.  If the
1233  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1234  * errors, poll 2x slower (up to check_interval seconds).
1235  */
1236 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1237 
1238 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1239 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1240 
mce_adjust_timer_default(unsigned long interval)1241 static unsigned long mce_adjust_timer_default(unsigned long interval)
1242 {
1243 	return interval;
1244 }
1245 
1246 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1247 
__restart_timer(struct timer_list * t,unsigned long interval)1248 static void __restart_timer(struct timer_list *t, unsigned long interval)
1249 {
1250 	unsigned long when = jiffies + interval;
1251 	unsigned long flags;
1252 
1253 	local_irq_save(flags);
1254 
1255 	if (timer_pending(t)) {
1256 		if (time_before(when, t->expires))
1257 			mod_timer_pinned(t, when);
1258 	} else {
1259 		t->expires = round_jiffies(when);
1260 		add_timer_on(t, smp_processor_id());
1261 	}
1262 
1263 	local_irq_restore(flags);
1264 }
1265 
mce_timer_fn(unsigned long data)1266 static void mce_timer_fn(unsigned long data)
1267 {
1268 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1269 	int cpu = smp_processor_id();
1270 	unsigned long iv;
1271 
1272 	WARN_ON(cpu != data);
1273 
1274 	iv = __this_cpu_read(mce_next_interval);
1275 
1276 	if (mce_available(this_cpu_ptr(&cpu_info))) {
1277 		machine_check_poll(MCP_TIMESTAMP, this_cpu_ptr(&mce_poll_banks));
1278 
1279 		if (mce_intel_cmci_poll()) {
1280 			iv = mce_adjust_timer(iv);
1281 			goto done;
1282 		}
1283 	}
1284 
1285 	/*
1286 	 * Alert userspace if needed. If we logged an MCE, reduce the polling
1287 	 * interval, otherwise increase the polling interval.
1288 	 */
1289 	if (mce_notify_irq())
1290 		iv = max(iv / 2, (unsigned long) HZ/100);
1291 	else
1292 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1293 
1294 done:
1295 	__this_cpu_write(mce_next_interval, iv);
1296 	__restart_timer(t, iv);
1297 }
1298 
1299 /*
1300  * Ensure that the timer is firing in @interval from now.
1301  */
mce_timer_kick(unsigned long interval)1302 void mce_timer_kick(unsigned long interval)
1303 {
1304 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1305 	unsigned long iv = __this_cpu_read(mce_next_interval);
1306 
1307 	__restart_timer(t, interval);
1308 
1309 	if (interval < iv)
1310 		__this_cpu_write(mce_next_interval, interval);
1311 }
1312 
1313 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
mce_timer_delete_all(void)1314 static void mce_timer_delete_all(void)
1315 {
1316 	int cpu;
1317 
1318 	for_each_online_cpu(cpu)
1319 		del_timer_sync(&per_cpu(mce_timer, cpu));
1320 }
1321 
mce_do_trigger(struct work_struct * work)1322 static void mce_do_trigger(struct work_struct *work)
1323 {
1324 	call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1325 }
1326 
1327 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1328 
1329 /*
1330  * Notify the user(s) about new machine check events.
1331  * Can be called from interrupt context, but not from machine check/NMI
1332  * context.
1333  */
mce_notify_irq(void)1334 int mce_notify_irq(void)
1335 {
1336 	/* Not more than two messages every minute */
1337 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1338 
1339 	if (test_and_clear_bit(0, &mce_need_notify)) {
1340 		/* wake processes polling /dev/mcelog */
1341 		wake_up_interruptible(&mce_chrdev_wait);
1342 
1343 		if (mce_helper[0])
1344 			schedule_work(&mce_trigger_work);
1345 
1346 		if (__ratelimit(&ratelimit))
1347 			pr_info(HW_ERR "Machine check events logged\n");
1348 
1349 		return 1;
1350 	}
1351 	return 0;
1352 }
1353 EXPORT_SYMBOL_GPL(mce_notify_irq);
1354 
__mcheck_cpu_mce_banks_init(void)1355 static int __mcheck_cpu_mce_banks_init(void)
1356 {
1357 	int i;
1358 	u8 num_banks = mca_cfg.banks;
1359 
1360 	mce_banks = kzalloc(num_banks * sizeof(struct mce_bank), GFP_KERNEL);
1361 	if (!mce_banks)
1362 		return -ENOMEM;
1363 
1364 	for (i = 0; i < num_banks; i++) {
1365 		struct mce_bank *b = &mce_banks[i];
1366 
1367 		b->ctl = -1ULL;
1368 		b->init = 1;
1369 	}
1370 	return 0;
1371 }
1372 
1373 /*
1374  * Initialize Machine Checks for a CPU.
1375  */
__mcheck_cpu_cap_init(void)1376 static int __mcheck_cpu_cap_init(void)
1377 {
1378 	unsigned b;
1379 	u64 cap;
1380 
1381 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1382 
1383 	b = cap & MCG_BANKCNT_MASK;
1384 	if (!mca_cfg.banks)
1385 		pr_info("CPU supports %d MCE banks\n", b);
1386 
1387 	if (b > MAX_NR_BANKS) {
1388 		pr_warn("Using only %u machine check banks out of %u\n",
1389 			MAX_NR_BANKS, b);
1390 		b = MAX_NR_BANKS;
1391 	}
1392 
1393 	/* Don't support asymmetric configurations today */
1394 	WARN_ON(mca_cfg.banks != 0 && b != mca_cfg.banks);
1395 	mca_cfg.banks = b;
1396 
1397 	if (!mce_banks) {
1398 		int err = __mcheck_cpu_mce_banks_init();
1399 
1400 		if (err)
1401 			return err;
1402 	}
1403 
1404 	/* Use accurate RIP reporting if available. */
1405 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1406 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1407 
1408 	if (cap & MCG_SER_P)
1409 		mca_cfg.ser = true;
1410 
1411 	return 0;
1412 }
1413 
__mcheck_cpu_init_generic(void)1414 static void __mcheck_cpu_init_generic(void)
1415 {
1416 	enum mcp_flags m_fl = 0;
1417 	mce_banks_t all_banks;
1418 	u64 cap;
1419 	int i;
1420 
1421 	if (!mca_cfg.bootlog)
1422 		m_fl = MCP_DONTLOG;
1423 
1424 	/*
1425 	 * Log the machine checks left over from the previous reset.
1426 	 */
1427 	bitmap_fill(all_banks, MAX_NR_BANKS);
1428 	machine_check_poll(MCP_UC | m_fl, &all_banks);
1429 
1430 	cr4_set_bits(X86_CR4_MCE);
1431 
1432 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1433 	if (cap & MCG_CTL_P)
1434 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1435 
1436 	for (i = 0; i < mca_cfg.banks; i++) {
1437 		struct mce_bank *b = &mce_banks[i];
1438 
1439 		if (!b->init)
1440 			continue;
1441 		wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1442 		wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1443 	}
1444 }
1445 
1446 /*
1447  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1448  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1449  * Vol 3B Table 15-20). But this confuses both the code that determines
1450  * whether the machine check occurred in kernel or user mode, and also
1451  * the severity assessment code. Pretend that EIPV was set, and take the
1452  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1453  */
quirk_sandybridge_ifu(int bank,struct mce * m,struct pt_regs * regs)1454 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1455 {
1456 	if (bank != 0)
1457 		return;
1458 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1459 		return;
1460 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1461 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1462 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1463 			  MCACOD)) !=
1464 			 (MCI_STATUS_UC|MCI_STATUS_EN|
1465 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1466 			  MCI_STATUS_AR|MCACOD_INSTR))
1467 		return;
1468 
1469 	m->mcgstatus |= MCG_STATUS_EIPV;
1470 	m->ip = regs->ip;
1471 	m->cs = regs->cs;
1472 }
1473 
1474 /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)1475 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1476 {
1477 	struct mca_config *cfg = &mca_cfg;
1478 
1479 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1480 		pr_info("unknown CPU type - not enabling MCE support\n");
1481 		return -EOPNOTSUPP;
1482 	}
1483 
1484 	/* This should be disabled by the BIOS, but isn't always */
1485 	if (c->x86_vendor == X86_VENDOR_AMD) {
1486 		if (c->x86 == 15 && cfg->banks > 4) {
1487 			/*
1488 			 * disable GART TBL walk error reporting, which
1489 			 * trips off incorrectly with the IOMMU & 3ware
1490 			 * & Cerberus:
1491 			 */
1492 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1493 		}
1494 		if (c->x86 <= 17 && cfg->bootlog < 0) {
1495 			/*
1496 			 * Lots of broken BIOS around that don't clear them
1497 			 * by default and leave crap in there. Don't log:
1498 			 */
1499 			cfg->bootlog = 0;
1500 		}
1501 		/*
1502 		 * Various K7s with broken bank 0 around. Always disable
1503 		 * by default.
1504 		 */
1505 		if (c->x86 == 6 && cfg->banks > 0)
1506 			mce_banks[0].ctl = 0;
1507 
1508 		/*
1509 		 * overflow_recov is supported for F15h Models 00h-0fh
1510 		 * even though we don't have a CPUID bit for it.
1511 		 */
1512 		if (c->x86 == 0x15 && c->x86_model <= 0xf)
1513 			mce_flags.overflow_recov = 1;
1514 
1515 		/*
1516 		 * Turn off MC4_MISC thresholding banks on those models since
1517 		 * they're not supported there.
1518 		 */
1519 		if (c->x86 == 0x15 &&
1520 		    (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
1521 			int i;
1522 			u64 hwcr;
1523 			bool need_toggle;
1524 			u32 msrs[] = {
1525 				0x00000413, /* MC4_MISC0 */
1526 				0xc0000408, /* MC4_MISC1 */
1527 			};
1528 
1529 			rdmsrl(MSR_K7_HWCR, hwcr);
1530 
1531 			/* McStatusWrEn has to be set */
1532 			need_toggle = !(hwcr & BIT(18));
1533 
1534 			if (need_toggle)
1535 				wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
1536 
1537 			/* Clear CntP bit safely */
1538 			for (i = 0; i < ARRAY_SIZE(msrs); i++)
1539 				msr_clear_bit(msrs[i], 62);
1540 
1541 			/* restore old settings */
1542 			if (need_toggle)
1543 				wrmsrl(MSR_K7_HWCR, hwcr);
1544 		}
1545 	}
1546 
1547 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1548 		/*
1549 		 * SDM documents that on family 6 bank 0 should not be written
1550 		 * because it aliases to another special BIOS controlled
1551 		 * register.
1552 		 * But it's not aliased anymore on model 0x1a+
1553 		 * Don't ignore bank 0 completely because there could be a
1554 		 * valid event later, merely don't write CTL0.
1555 		 */
1556 
1557 		if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
1558 			mce_banks[0].init = 0;
1559 
1560 		/*
1561 		 * All newer Intel systems support MCE broadcasting. Enable
1562 		 * synchronization with a one second timeout.
1563 		 */
1564 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1565 			cfg->monarch_timeout < 0)
1566 			cfg->monarch_timeout = USEC_PER_SEC;
1567 
1568 		/*
1569 		 * There are also broken BIOSes on some Pentium M and
1570 		 * earlier systems:
1571 		 */
1572 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1573 			cfg->bootlog = 0;
1574 
1575 		if (c->x86 == 6 && c->x86_model == 45)
1576 			quirk_no_way_out = quirk_sandybridge_ifu;
1577 	}
1578 	if (cfg->monarch_timeout < 0)
1579 		cfg->monarch_timeout = 0;
1580 	if (cfg->bootlog != 0)
1581 		cfg->panic_timeout = 30;
1582 
1583 	return 0;
1584 }
1585 
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1586 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1587 {
1588 	if (c->x86 != 5)
1589 		return 0;
1590 
1591 	switch (c->x86_vendor) {
1592 	case X86_VENDOR_INTEL:
1593 		intel_p5_mcheck_init(c);
1594 		return 1;
1595 		break;
1596 	case X86_VENDOR_CENTAUR:
1597 		winchip_mcheck_init(c);
1598 		return 1;
1599 		break;
1600 	default:
1601 		return 0;
1602 	}
1603 
1604 	return 0;
1605 }
1606 
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)1607 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1608 {
1609 	switch (c->x86_vendor) {
1610 	case X86_VENDOR_INTEL:
1611 		mce_intel_feature_init(c);
1612 		mce_adjust_timer = cmci_intel_adjust_timer;
1613 		break;
1614 
1615 	case X86_VENDOR_AMD: {
1616 		u32 ebx = cpuid_ebx(0x80000007);
1617 
1618 		mce_amd_feature_init(c);
1619 		mce_flags.overflow_recov = !!(ebx & BIT(0));
1620 		mce_flags.succor	 = !!(ebx & BIT(1));
1621 		mce_flags.smca		 = !!(ebx & BIT(3));
1622 
1623 		break;
1624 		}
1625 
1626 	default:
1627 		break;
1628 	}
1629 }
1630 
__mcheck_cpu_clear_vendor(struct cpuinfo_x86 * c)1631 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1632 {
1633 	switch (c->x86_vendor) {
1634 	case X86_VENDOR_INTEL:
1635 		mce_intel_feature_clear(c);
1636 		break;
1637 	default:
1638 		break;
1639 	}
1640 }
1641 
mce_start_timer(unsigned int cpu,struct timer_list * t)1642 static void mce_start_timer(unsigned int cpu, struct timer_list *t)
1643 {
1644 	unsigned long iv = check_interval * HZ;
1645 
1646 	if (mca_cfg.ignore_ce || !iv)
1647 		return;
1648 
1649 	per_cpu(mce_next_interval, cpu) = iv;
1650 
1651 	t->expires = round_jiffies(jiffies + iv);
1652 	add_timer_on(t, cpu);
1653 }
1654 
__mcheck_cpu_init_timer(void)1655 static void __mcheck_cpu_init_timer(void)
1656 {
1657 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1658 	unsigned int cpu = smp_processor_id();
1659 
1660 	setup_timer(t, mce_timer_fn, cpu);
1661 	mce_start_timer(cpu, t);
1662 }
1663 
1664 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs,long error_code)1665 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1666 {
1667 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1668 	       smp_processor_id());
1669 }
1670 
1671 /* Call the installed machine check handler for this CPU setup. */
1672 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1673 						unexpected_machine_check;
1674 
1675 /*
1676  * Called for each booted CPU to set up machine checks.
1677  * Must be called with preempt off:
1678  */
mcheck_cpu_init(struct cpuinfo_x86 * c)1679 void mcheck_cpu_init(struct cpuinfo_x86 *c)
1680 {
1681 	if (mca_cfg.disabled)
1682 		return;
1683 
1684 	if (__mcheck_cpu_ancient_init(c))
1685 		return;
1686 
1687 	if (!mce_available(c))
1688 		return;
1689 
1690 	if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1691 		mca_cfg.disabled = true;
1692 		return;
1693 	}
1694 
1695 	if (mce_gen_pool_init()) {
1696 		mca_cfg.disabled = true;
1697 		pr_emerg("Couldn't allocate MCE records pool!\n");
1698 		return;
1699 	}
1700 
1701 	machine_check_vector = do_machine_check;
1702 
1703 	__mcheck_cpu_init_generic();
1704 	__mcheck_cpu_init_vendor(c);
1705 	__mcheck_cpu_init_timer();
1706 }
1707 
1708 /*
1709  * Called for each booted CPU to clear some machine checks opt-ins
1710  */
mcheck_cpu_clear(struct cpuinfo_x86 * c)1711 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
1712 {
1713 	if (mca_cfg.disabled)
1714 		return;
1715 
1716 	if (!mce_available(c))
1717 		return;
1718 
1719 	/*
1720 	 * Possibly to clear general settings generic to x86
1721 	 * __mcheck_cpu_clear_generic(c);
1722 	 */
1723 	__mcheck_cpu_clear_vendor(c);
1724 
1725 }
1726 
1727 /*
1728  * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1729  */
1730 
1731 static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1732 static int mce_chrdev_open_count;	/* #times opened */
1733 static int mce_chrdev_open_exclu;	/* already open exclusive? */
1734 
mce_chrdev_open(struct inode * inode,struct file * file)1735 static int mce_chrdev_open(struct inode *inode, struct file *file)
1736 {
1737 	spin_lock(&mce_chrdev_state_lock);
1738 
1739 	if (mce_chrdev_open_exclu ||
1740 	    (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1741 		spin_unlock(&mce_chrdev_state_lock);
1742 
1743 		return -EBUSY;
1744 	}
1745 
1746 	if (file->f_flags & O_EXCL)
1747 		mce_chrdev_open_exclu = 1;
1748 	mce_chrdev_open_count++;
1749 
1750 	spin_unlock(&mce_chrdev_state_lock);
1751 
1752 	return nonseekable_open(inode, file);
1753 }
1754 
mce_chrdev_release(struct inode * inode,struct file * file)1755 static int mce_chrdev_release(struct inode *inode, struct file *file)
1756 {
1757 	spin_lock(&mce_chrdev_state_lock);
1758 
1759 	mce_chrdev_open_count--;
1760 	mce_chrdev_open_exclu = 0;
1761 
1762 	spin_unlock(&mce_chrdev_state_lock);
1763 
1764 	return 0;
1765 }
1766 
collect_tscs(void * data)1767 static void collect_tscs(void *data)
1768 {
1769 	unsigned long *cpu_tsc = (unsigned long *)data;
1770 
1771 	cpu_tsc[smp_processor_id()] = rdtsc();
1772 }
1773 
1774 static int mce_apei_read_done;
1775 
1776 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
__mce_read_apei(char __user ** ubuf,size_t usize)1777 static int __mce_read_apei(char __user **ubuf, size_t usize)
1778 {
1779 	int rc;
1780 	u64 record_id;
1781 	struct mce m;
1782 
1783 	if (usize < sizeof(struct mce))
1784 		return -EINVAL;
1785 
1786 	rc = apei_read_mce(&m, &record_id);
1787 	/* Error or no more MCE record */
1788 	if (rc <= 0) {
1789 		mce_apei_read_done = 1;
1790 		/*
1791 		 * When ERST is disabled, mce_chrdev_read() should return
1792 		 * "no record" instead of "no device."
1793 		 */
1794 		if (rc == -ENODEV)
1795 			return 0;
1796 		return rc;
1797 	}
1798 	rc = -EFAULT;
1799 	if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1800 		return rc;
1801 	/*
1802 	 * In fact, we should have cleared the record after that has
1803 	 * been flushed to the disk or sent to network in
1804 	 * /sbin/mcelog, but we have no interface to support that now,
1805 	 * so just clear it to avoid duplication.
1806 	 */
1807 	rc = apei_clear_mce(record_id);
1808 	if (rc) {
1809 		mce_apei_read_done = 1;
1810 		return rc;
1811 	}
1812 	*ubuf += sizeof(struct mce);
1813 
1814 	return 0;
1815 }
1816 
mce_chrdev_read(struct file * filp,char __user * ubuf,size_t usize,loff_t * off)1817 static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1818 				size_t usize, loff_t *off)
1819 {
1820 	char __user *buf = ubuf;
1821 	unsigned long *cpu_tsc;
1822 	unsigned prev, next;
1823 	int i, err;
1824 
1825 	cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1826 	if (!cpu_tsc)
1827 		return -ENOMEM;
1828 
1829 	mutex_lock(&mce_chrdev_read_mutex);
1830 
1831 	if (!mce_apei_read_done) {
1832 		err = __mce_read_apei(&buf, usize);
1833 		if (err || buf != ubuf)
1834 			goto out;
1835 	}
1836 
1837 	next = mce_log_get_idx_check(mcelog.next);
1838 
1839 	/* Only supports full reads right now */
1840 	err = -EINVAL;
1841 	if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1842 		goto out;
1843 
1844 	err = 0;
1845 	prev = 0;
1846 	do {
1847 		for (i = prev; i < next; i++) {
1848 			unsigned long start = jiffies;
1849 			struct mce *m = &mcelog.entry[i];
1850 
1851 			while (!m->finished) {
1852 				if (time_after_eq(jiffies, start + 2)) {
1853 					memset(m, 0, sizeof(*m));
1854 					goto timeout;
1855 				}
1856 				cpu_relax();
1857 			}
1858 			smp_rmb();
1859 			err |= copy_to_user(buf, m, sizeof(*m));
1860 			buf += sizeof(*m);
1861 timeout:
1862 			;
1863 		}
1864 
1865 		memset(mcelog.entry + prev, 0,
1866 		       (next - prev) * sizeof(struct mce));
1867 		prev = next;
1868 		next = cmpxchg(&mcelog.next, prev, 0);
1869 	} while (next != prev);
1870 
1871 	synchronize_sched();
1872 
1873 	/*
1874 	 * Collect entries that were still getting written before the
1875 	 * synchronize.
1876 	 */
1877 	on_each_cpu(collect_tscs, cpu_tsc, 1);
1878 
1879 	for (i = next; i < MCE_LOG_LEN; i++) {
1880 		struct mce *m = &mcelog.entry[i];
1881 
1882 		if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1883 			err |= copy_to_user(buf, m, sizeof(*m));
1884 			smp_rmb();
1885 			buf += sizeof(*m);
1886 			memset(m, 0, sizeof(*m));
1887 		}
1888 	}
1889 
1890 	if (err)
1891 		err = -EFAULT;
1892 
1893 out:
1894 	mutex_unlock(&mce_chrdev_read_mutex);
1895 	kfree(cpu_tsc);
1896 
1897 	return err ? err : buf - ubuf;
1898 }
1899 
mce_chrdev_poll(struct file * file,poll_table * wait)1900 static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1901 {
1902 	poll_wait(file, &mce_chrdev_wait, wait);
1903 	if (READ_ONCE(mcelog.next))
1904 		return POLLIN | POLLRDNORM;
1905 	if (!mce_apei_read_done && apei_check_mce())
1906 		return POLLIN | POLLRDNORM;
1907 	return 0;
1908 }
1909 
mce_chrdev_ioctl(struct file * f,unsigned int cmd,unsigned long arg)1910 static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1911 				unsigned long arg)
1912 {
1913 	int __user *p = (int __user *)arg;
1914 
1915 	if (!capable(CAP_SYS_ADMIN))
1916 		return -EPERM;
1917 
1918 	switch (cmd) {
1919 	case MCE_GET_RECORD_LEN:
1920 		return put_user(sizeof(struct mce), p);
1921 	case MCE_GET_LOG_LEN:
1922 		return put_user(MCE_LOG_LEN, p);
1923 	case MCE_GETCLEAR_FLAGS: {
1924 		unsigned flags;
1925 
1926 		do {
1927 			flags = mcelog.flags;
1928 		} while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1929 
1930 		return put_user(flags, p);
1931 	}
1932 	default:
1933 		return -ENOTTY;
1934 	}
1935 }
1936 
1937 static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
1938 			    size_t usize, loff_t *off);
1939 
register_mce_write_callback(ssize_t (* fn)(struct file * filp,const char __user * ubuf,size_t usize,loff_t * off))1940 void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
1941 			     const char __user *ubuf,
1942 			     size_t usize, loff_t *off))
1943 {
1944 	mce_write = fn;
1945 }
1946 EXPORT_SYMBOL_GPL(register_mce_write_callback);
1947 
mce_chrdev_write(struct file * filp,const char __user * ubuf,size_t usize,loff_t * off)1948 static ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
1949 				size_t usize, loff_t *off)
1950 {
1951 	if (mce_write)
1952 		return mce_write(filp, ubuf, usize, off);
1953 	else
1954 		return -EINVAL;
1955 }
1956 
1957 static const struct file_operations mce_chrdev_ops = {
1958 	.open			= mce_chrdev_open,
1959 	.release		= mce_chrdev_release,
1960 	.read			= mce_chrdev_read,
1961 	.write			= mce_chrdev_write,
1962 	.poll			= mce_chrdev_poll,
1963 	.unlocked_ioctl		= mce_chrdev_ioctl,
1964 	.llseek			= no_llseek,
1965 };
1966 
1967 static struct miscdevice mce_chrdev_device = {
1968 	MISC_MCELOG_MINOR,
1969 	"mcelog",
1970 	&mce_chrdev_ops,
1971 };
1972 
__mce_disable_bank(void * arg)1973 static void __mce_disable_bank(void *arg)
1974 {
1975 	int bank = *((int *)arg);
1976 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
1977 	cmci_disable_bank(bank);
1978 }
1979 
mce_disable_bank(int bank)1980 void mce_disable_bank(int bank)
1981 {
1982 	if (bank >= mca_cfg.banks) {
1983 		pr_warn(FW_BUG
1984 			"Ignoring request to disable invalid MCA bank %d.\n",
1985 			bank);
1986 		return;
1987 	}
1988 	set_bit(bank, mce_banks_ce_disabled);
1989 	on_each_cpu(__mce_disable_bank, &bank, 1);
1990 }
1991 
1992 /*
1993  * mce=off Disables machine check
1994  * mce=no_cmci Disables CMCI
1995  * mce=no_lmce Disables LMCE
1996  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1997  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1998  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1999  *	monarchtimeout is how long to wait for other CPUs on machine
2000  *	check, or 0 to not wait
2001  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
2002  * mce=nobootlog Don't log MCEs from before booting.
2003  * mce=bios_cmci_threshold Don't program the CMCI threshold
2004  */
mcheck_enable(char * str)2005 static int __init mcheck_enable(char *str)
2006 {
2007 	struct mca_config *cfg = &mca_cfg;
2008 
2009 	if (*str == 0) {
2010 		enable_p5_mce();
2011 		return 1;
2012 	}
2013 	if (*str == '=')
2014 		str++;
2015 	if (!strcmp(str, "off"))
2016 		cfg->disabled = true;
2017 	else if (!strcmp(str, "no_cmci"))
2018 		cfg->cmci_disabled = true;
2019 	else if (!strcmp(str, "no_lmce"))
2020 		cfg->lmce_disabled = true;
2021 	else if (!strcmp(str, "dont_log_ce"))
2022 		cfg->dont_log_ce = true;
2023 	else if (!strcmp(str, "ignore_ce"))
2024 		cfg->ignore_ce = true;
2025 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2026 		cfg->bootlog = (str[0] == 'b');
2027 	else if (!strcmp(str, "bios_cmci_threshold"))
2028 		cfg->bios_cmci_threshold = true;
2029 	else if (isdigit(str[0])) {
2030 		if (get_option(&str, &cfg->tolerant) == 2)
2031 			get_option(&str, &(cfg->monarch_timeout));
2032 	} else {
2033 		pr_info("mce argument %s ignored. Please use /sys\n", str);
2034 		return 0;
2035 	}
2036 	return 1;
2037 }
2038 __setup("mce", mcheck_enable);
2039 
mcheck_init(void)2040 int __init mcheck_init(void)
2041 {
2042 	mcheck_intel_therm_init();
2043 	mce_register_decode_chain(&mce_srao_nb);
2044 	mcheck_vendor_init_severity();
2045 
2046 	INIT_WORK(&mce_work, mce_process_work);
2047 	init_irq_work(&mce_irq_work, mce_irq_work_cb);
2048 
2049 	return 0;
2050 }
2051 
2052 /*
2053  * mce_syscore: PM support
2054  */
2055 
2056 /*
2057  * Disable machine checks on suspend and shutdown. We can't really handle
2058  * them later.
2059  */
mce_disable_error_reporting(void)2060 static void mce_disable_error_reporting(void)
2061 {
2062 	int i;
2063 
2064 	for (i = 0; i < mca_cfg.banks; i++) {
2065 		struct mce_bank *b = &mce_banks[i];
2066 
2067 		if (b->init)
2068 			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2069 	}
2070 	return;
2071 }
2072 
vendor_disable_error_reporting(void)2073 static void vendor_disable_error_reporting(void)
2074 {
2075 	/*
2076 	 * Don't clear on Intel CPUs. Some of these MSRs are socket-wide.
2077 	 * Disabling them for just a single offlined CPU is bad, since it will
2078 	 * inhibit reporting for all shared resources on the socket like the
2079 	 * last level cache (LLC), the integrated memory controller (iMC), etc.
2080 	 */
2081 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2082 		return;
2083 
2084 	mce_disable_error_reporting();
2085 }
2086 
mce_syscore_suspend(void)2087 static int mce_syscore_suspend(void)
2088 {
2089 	vendor_disable_error_reporting();
2090 	return 0;
2091 }
2092 
mce_syscore_shutdown(void)2093 static void mce_syscore_shutdown(void)
2094 {
2095 	vendor_disable_error_reporting();
2096 }
2097 
2098 /*
2099  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2100  * Only one CPU is active at this time, the others get re-added later using
2101  * CPU hotplug:
2102  */
mce_syscore_resume(void)2103 static void mce_syscore_resume(void)
2104 {
2105 	__mcheck_cpu_init_generic();
2106 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2107 }
2108 
2109 static struct syscore_ops mce_syscore_ops = {
2110 	.suspend	= mce_syscore_suspend,
2111 	.shutdown	= mce_syscore_shutdown,
2112 	.resume		= mce_syscore_resume,
2113 };
2114 
2115 /*
2116  * mce_device: Sysfs support
2117  */
2118 
mce_cpu_restart(void * data)2119 static void mce_cpu_restart(void *data)
2120 {
2121 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2122 		return;
2123 	__mcheck_cpu_init_generic();
2124 	__mcheck_cpu_init_timer();
2125 }
2126 
2127 /* Reinit MCEs after user configuration changes */
mce_restart(void)2128 static void mce_restart(void)
2129 {
2130 	mce_timer_delete_all();
2131 	on_each_cpu(mce_cpu_restart, NULL, 1);
2132 }
2133 
2134 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)2135 static void mce_disable_cmci(void *data)
2136 {
2137 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2138 		return;
2139 	cmci_clear();
2140 }
2141 
mce_enable_ce(void * all)2142 static void mce_enable_ce(void *all)
2143 {
2144 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2145 		return;
2146 	cmci_reenable();
2147 	cmci_recheck();
2148 	if (all)
2149 		__mcheck_cpu_init_timer();
2150 }
2151 
2152 static struct bus_type mce_subsys = {
2153 	.name		= "machinecheck",
2154 	.dev_name	= "machinecheck",
2155 };
2156 
2157 DEFINE_PER_CPU(struct device *, mce_device);
2158 
2159 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
2160 
attr_to_bank(struct device_attribute * attr)2161 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2162 {
2163 	return container_of(attr, struct mce_bank, attr);
2164 }
2165 
show_bank(struct device * s,struct device_attribute * attr,char * buf)2166 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2167 			 char *buf)
2168 {
2169 	return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2170 }
2171 
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2172 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2173 			const char *buf, size_t size)
2174 {
2175 	u64 new;
2176 
2177 	if (kstrtou64(buf, 0, &new) < 0)
2178 		return -EINVAL;
2179 
2180 	attr_to_bank(attr)->ctl = new;
2181 	mce_restart();
2182 
2183 	return size;
2184 }
2185 
2186 static ssize_t
show_trigger(struct device * s,struct device_attribute * attr,char * buf)2187 show_trigger(struct device *s, struct device_attribute *attr, char *buf)
2188 {
2189 	strcpy(buf, mce_helper);
2190 	strcat(buf, "\n");
2191 	return strlen(mce_helper) + 1;
2192 }
2193 
set_trigger(struct device * s,struct device_attribute * attr,const char * buf,size_t siz)2194 static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
2195 				const char *buf, size_t siz)
2196 {
2197 	char *p;
2198 
2199 	strncpy(mce_helper, buf, sizeof(mce_helper));
2200 	mce_helper[sizeof(mce_helper)-1] = 0;
2201 	p = strchr(mce_helper, '\n');
2202 
2203 	if (p)
2204 		*p = 0;
2205 
2206 	return strlen(mce_helper) + !!p;
2207 }
2208 
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2209 static ssize_t set_ignore_ce(struct device *s,
2210 			     struct device_attribute *attr,
2211 			     const char *buf, size_t size)
2212 {
2213 	u64 new;
2214 
2215 	if (kstrtou64(buf, 0, &new) < 0)
2216 		return -EINVAL;
2217 
2218 	if (mca_cfg.ignore_ce ^ !!new) {
2219 		if (new) {
2220 			/* disable ce features */
2221 			mce_timer_delete_all();
2222 			on_each_cpu(mce_disable_cmci, NULL, 1);
2223 			mca_cfg.ignore_ce = true;
2224 		} else {
2225 			/* enable ce features */
2226 			mca_cfg.ignore_ce = false;
2227 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2228 		}
2229 	}
2230 	return size;
2231 }
2232 
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2233 static ssize_t set_cmci_disabled(struct device *s,
2234 				 struct device_attribute *attr,
2235 				 const char *buf, size_t size)
2236 {
2237 	u64 new;
2238 
2239 	if (kstrtou64(buf, 0, &new) < 0)
2240 		return -EINVAL;
2241 
2242 	if (mca_cfg.cmci_disabled ^ !!new) {
2243 		if (new) {
2244 			/* disable cmci */
2245 			on_each_cpu(mce_disable_cmci, NULL, 1);
2246 			mca_cfg.cmci_disabled = true;
2247 		} else {
2248 			/* enable cmci */
2249 			mca_cfg.cmci_disabled = false;
2250 			on_each_cpu(mce_enable_ce, NULL, 1);
2251 		}
2252 	}
2253 	return size;
2254 }
2255 
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2256 static ssize_t store_int_with_restart(struct device *s,
2257 				      struct device_attribute *attr,
2258 				      const char *buf, size_t size)
2259 {
2260 	ssize_t ret = device_store_int(s, attr, buf, size);
2261 	mce_restart();
2262 	return ret;
2263 }
2264 
2265 static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
2266 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2267 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2268 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2269 
2270 static struct dev_ext_attribute dev_attr_check_interval = {
2271 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2272 	&check_interval
2273 };
2274 
2275 static struct dev_ext_attribute dev_attr_ignore_ce = {
2276 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2277 	&mca_cfg.ignore_ce
2278 };
2279 
2280 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2281 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2282 	&mca_cfg.cmci_disabled
2283 };
2284 
2285 static struct device_attribute *mce_device_attrs[] = {
2286 	&dev_attr_tolerant.attr,
2287 	&dev_attr_check_interval.attr,
2288 	&dev_attr_trigger,
2289 	&dev_attr_monarch_timeout.attr,
2290 	&dev_attr_dont_log_ce.attr,
2291 	&dev_attr_ignore_ce.attr,
2292 	&dev_attr_cmci_disabled.attr,
2293 	NULL
2294 };
2295 
2296 static cpumask_var_t mce_device_initialized;
2297 
mce_device_release(struct device * dev)2298 static void mce_device_release(struct device *dev)
2299 {
2300 	kfree(dev);
2301 }
2302 
2303 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
mce_device_create(unsigned int cpu)2304 static int mce_device_create(unsigned int cpu)
2305 {
2306 	struct device *dev;
2307 	int err;
2308 	int i, j;
2309 
2310 	if (!mce_available(&boot_cpu_data))
2311 		return -EIO;
2312 
2313 	dev = kzalloc(sizeof *dev, GFP_KERNEL);
2314 	if (!dev)
2315 		return -ENOMEM;
2316 	dev->id  = cpu;
2317 	dev->bus = &mce_subsys;
2318 	dev->release = &mce_device_release;
2319 
2320 	err = device_register(dev);
2321 	if (err) {
2322 		put_device(dev);
2323 		return err;
2324 	}
2325 
2326 	for (i = 0; mce_device_attrs[i]; i++) {
2327 		err = device_create_file(dev, mce_device_attrs[i]);
2328 		if (err)
2329 			goto error;
2330 	}
2331 	for (j = 0; j < mca_cfg.banks; j++) {
2332 		err = device_create_file(dev, &mce_banks[j].attr);
2333 		if (err)
2334 			goto error2;
2335 	}
2336 	cpumask_set_cpu(cpu, mce_device_initialized);
2337 	per_cpu(mce_device, cpu) = dev;
2338 
2339 	return 0;
2340 error2:
2341 	while (--j >= 0)
2342 		device_remove_file(dev, &mce_banks[j].attr);
2343 error:
2344 	while (--i >= 0)
2345 		device_remove_file(dev, mce_device_attrs[i]);
2346 
2347 	device_unregister(dev);
2348 
2349 	return err;
2350 }
2351 
mce_device_remove(unsigned int cpu)2352 static void mce_device_remove(unsigned int cpu)
2353 {
2354 	struct device *dev = per_cpu(mce_device, cpu);
2355 	int i;
2356 
2357 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2358 		return;
2359 
2360 	for (i = 0; mce_device_attrs[i]; i++)
2361 		device_remove_file(dev, mce_device_attrs[i]);
2362 
2363 	for (i = 0; i < mca_cfg.banks; i++)
2364 		device_remove_file(dev, &mce_banks[i].attr);
2365 
2366 	device_unregister(dev);
2367 	cpumask_clear_cpu(cpu, mce_device_initialized);
2368 	per_cpu(mce_device, cpu) = NULL;
2369 }
2370 
2371 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void * h)2372 static void mce_disable_cpu(void *h)
2373 {
2374 	unsigned long action = *(unsigned long *)h;
2375 
2376 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2377 		return;
2378 
2379 	if (!(action & CPU_TASKS_FROZEN))
2380 		cmci_clear();
2381 
2382 	vendor_disable_error_reporting();
2383 }
2384 
mce_reenable_cpu(void * h)2385 static void mce_reenable_cpu(void *h)
2386 {
2387 	unsigned long action = *(unsigned long *)h;
2388 	int i;
2389 
2390 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2391 		return;
2392 
2393 	if (!(action & CPU_TASKS_FROZEN))
2394 		cmci_reenable();
2395 	for (i = 0; i < mca_cfg.banks; i++) {
2396 		struct mce_bank *b = &mce_banks[i];
2397 
2398 		if (b->init)
2399 			wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2400 	}
2401 }
2402 
2403 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2404 static int
mce_cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)2405 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2406 {
2407 	unsigned int cpu = (unsigned long)hcpu;
2408 	struct timer_list *t = &per_cpu(mce_timer, cpu);
2409 
2410 	switch (action & ~CPU_TASKS_FROZEN) {
2411 	case CPU_ONLINE:
2412 		mce_device_create(cpu);
2413 		if (threshold_cpu_callback)
2414 			threshold_cpu_callback(action, cpu);
2415 		break;
2416 	case CPU_DEAD:
2417 		if (threshold_cpu_callback)
2418 			threshold_cpu_callback(action, cpu);
2419 		mce_device_remove(cpu);
2420 		mce_intel_hcpu_update(cpu);
2421 
2422 		/* intentionally ignoring frozen here */
2423 		if (!(action & CPU_TASKS_FROZEN))
2424 			cmci_rediscover();
2425 		break;
2426 	case CPU_DOWN_PREPARE:
2427 		smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2428 		del_timer_sync(t);
2429 		break;
2430 	case CPU_DOWN_FAILED:
2431 		smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2432 		mce_start_timer(cpu, t);
2433 		break;
2434 	}
2435 
2436 	return NOTIFY_OK;
2437 }
2438 
2439 static struct notifier_block mce_cpu_notifier = {
2440 	.notifier_call = mce_cpu_callback,
2441 };
2442 
mce_init_banks(void)2443 static __init void mce_init_banks(void)
2444 {
2445 	int i;
2446 
2447 	for (i = 0; i < mca_cfg.banks; i++) {
2448 		struct mce_bank *b = &mce_banks[i];
2449 		struct device_attribute *a = &b->attr;
2450 
2451 		sysfs_attr_init(&a->attr);
2452 		a->attr.name	= b->attrname;
2453 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2454 
2455 		a->attr.mode	= 0644;
2456 		a->show		= show_bank;
2457 		a->store	= set_bank;
2458 	}
2459 }
2460 
mcheck_init_device(void)2461 static __init int mcheck_init_device(void)
2462 {
2463 	int err;
2464 	int i = 0;
2465 
2466 	if (!mce_available(&boot_cpu_data)) {
2467 		err = -EIO;
2468 		goto err_out;
2469 	}
2470 
2471 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2472 		err = -ENOMEM;
2473 		goto err_out;
2474 	}
2475 
2476 	mce_init_banks();
2477 
2478 	err = subsys_system_register(&mce_subsys, NULL);
2479 	if (err)
2480 		goto err_out_mem;
2481 
2482 	cpu_notifier_register_begin();
2483 	for_each_online_cpu(i) {
2484 		err = mce_device_create(i);
2485 		if (err) {
2486 			/*
2487 			 * Register notifier anyway (and do not unreg it) so
2488 			 * that we don't leave undeleted timers, see notifier
2489 			 * callback above.
2490 			 */
2491 			__register_hotcpu_notifier(&mce_cpu_notifier);
2492 			cpu_notifier_register_done();
2493 			goto err_device_create;
2494 		}
2495 	}
2496 
2497 	__register_hotcpu_notifier(&mce_cpu_notifier);
2498 	cpu_notifier_register_done();
2499 
2500 	register_syscore_ops(&mce_syscore_ops);
2501 
2502 	/* register character device /dev/mcelog */
2503 	err = misc_register(&mce_chrdev_device);
2504 	if (err)
2505 		goto err_register;
2506 
2507 	return 0;
2508 
2509 err_register:
2510 	unregister_syscore_ops(&mce_syscore_ops);
2511 
2512 err_device_create:
2513 	/*
2514 	 * We didn't keep track of which devices were created above, but
2515 	 * even if we had, the set of online cpus might have changed.
2516 	 * Play safe and remove for every possible cpu, since
2517 	 * mce_device_remove() will do the right thing.
2518 	 */
2519 	for_each_possible_cpu(i)
2520 		mce_device_remove(i);
2521 
2522 err_out_mem:
2523 	free_cpumask_var(mce_device_initialized);
2524 
2525 err_out:
2526 	pr_err("Unable to init device /dev/mcelog (rc: %d)\n", err);
2527 
2528 	return err;
2529 }
2530 device_initcall_sync(mcheck_init_device);
2531 
2532 /*
2533  * Old style boot options parsing. Only for compatibility.
2534  */
mcheck_disable(char * str)2535 static int __init mcheck_disable(char *str)
2536 {
2537 	mca_cfg.disabled = true;
2538 	return 1;
2539 }
2540 __setup("nomce", mcheck_disable);
2541 
2542 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2543 struct dentry *mce_get_debugfs_dir(void)
2544 {
2545 	static struct dentry *dmce;
2546 
2547 	if (!dmce)
2548 		dmce = debugfs_create_dir("mce", NULL);
2549 
2550 	return dmce;
2551 }
2552 
mce_reset(void)2553 static void mce_reset(void)
2554 {
2555 	cpu_missing = 0;
2556 	atomic_set(&mce_fake_panicked, 0);
2557 	atomic_set(&mce_executing, 0);
2558 	atomic_set(&mce_callin, 0);
2559 	atomic_set(&global_nwo, 0);
2560 }
2561 
fake_panic_get(void * data,u64 * val)2562 static int fake_panic_get(void *data, u64 *val)
2563 {
2564 	*val = fake_panic;
2565 	return 0;
2566 }
2567 
fake_panic_set(void * data,u64 val)2568 static int fake_panic_set(void *data, u64 val)
2569 {
2570 	mce_reset();
2571 	fake_panic = val;
2572 	return 0;
2573 }
2574 
2575 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2576 			fake_panic_set, "%llu\n");
2577 
mcheck_debugfs_init(void)2578 static int __init mcheck_debugfs_init(void)
2579 {
2580 	struct dentry *dmce, *ffake_panic;
2581 
2582 	dmce = mce_get_debugfs_dir();
2583 	if (!dmce)
2584 		return -ENOMEM;
2585 	ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2586 					  &fake_panic_fops);
2587 	if (!ffake_panic)
2588 		return -ENOMEM;
2589 
2590 	return 0;
2591 }
2592 #else
mcheck_debugfs_init(void)2593 static int __init mcheck_debugfs_init(void) { return -EINVAL; }
2594 #endif
2595 
mcheck_late_init(void)2596 static int __init mcheck_late_init(void)
2597 {
2598 	mcheck_debugfs_init();
2599 
2600 	/*
2601 	 * Flush out everything that has been logged during early boot, now that
2602 	 * everything has been initialized (workqueues, decoders, ...).
2603 	 */
2604 	mce_schedule_work();
2605 
2606 	return 0;
2607 }
2608 late_initcall(mcheck_late_init);
2609