1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26 /*
27 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2012, Intel Corporation.
31 */
32 /*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 */
36 /*
37 * This file is part of Lustre, http://www.lustre.org/
38 * Lustre is a trademark of Sun Microsystems, Inc.
39 *
40 * Internal interfaces of LOV layer.
41 *
42 * Author: Nikita Danilov <nikita.danilov@sun.com>
43 * Author: Jinshan Xiong <jinshan.xiong@intel.com>
44 */
45
46 #ifndef LOV_CL_INTERNAL_H
47 #define LOV_CL_INTERNAL_H
48
49 #include "../../include/linux/libcfs/libcfs.h"
50
51 #include "../include/obd.h"
52 #include "../include/cl_object.h"
53 #include "lov_internal.h"
54
55 /** \defgroup lov lov
56 * Logical object volume layer. This layer implements data striping (raid0).
57 *
58 * At the lov layer top-entity (object, page, lock, io) is connected to one or
59 * more sub-entities: top-object, representing a file is connected to a set of
60 * sub-objects, each representing a stripe, file-level top-lock is connected
61 * to a set of per-stripe sub-locks, top-page is connected to a (single)
62 * sub-page, and a top-level IO is connected to a set of (potentially
63 * concurrent) sub-IO's.
64 *
65 * Sub-object, sub-page, and sub-io have well-defined top-object and top-page
66 * respectively, while a single sub-lock can be part of multiple top-locks.
67 *
68 * Reference counting models are different for different types of entities:
69 *
70 * - top-object keeps a reference to its sub-objects, and destroys them
71 * when it is destroyed.
72 *
73 * - top-page keeps a reference to its sub-page, and destroys it when it
74 * is destroyed.
75 *
76 * - sub-lock keep a reference to its top-locks. Top-lock keeps a
77 * reference (and a hold, see cl_lock_hold()) on its sub-locks when it
78 * actively using them (that is, in cl_lock_state::CLS_QUEUING,
79 * cl_lock_state::CLS_ENQUEUED, cl_lock_state::CLS_HELD states). When
80 * moving into cl_lock_state::CLS_CACHED state, top-lock releases a
81 * hold. From this moment top-lock has only a 'weak' reference to its
82 * sub-locks. This reference is protected by top-lock
83 * cl_lock::cll_guard, and will be automatically cleared by the sub-lock
84 * when the latter is destroyed. When a sub-lock is canceled, a
85 * reference to it is removed from the top-lock array, and top-lock is
86 * moved into CLS_NEW state. It is guaranteed that all sub-locks exist
87 * while their top-lock is in CLS_HELD or CLS_CACHED states.
88 *
89 * - IO's are not reference counted.
90 *
91 * To implement a connection between top and sub entities, lov layer is split
92 * into two pieces: lov ("upper half"), and lovsub ("bottom half"), both
93 * implementing full set of cl-interfaces. For example, top-object has vvp and
94 * lov layers, and it's sub-object has lovsub and osc layers. lovsub layer is
95 * used to track child-parent relationship.
96 *
97 * @{
98 */
99
100 struct lovsub_device;
101 struct lovsub_object;
102 struct lovsub_lock;
103
104 enum lov_device_flags {
105 LOV_DEV_INITIALIZED = 1 << 0
106 };
107
108 /*
109 * Upper half.
110 */
111
112 /**
113 * Resources that are used in memory-cleaning path, and whose allocation
114 * cannot fail even when memory is tight. They are preallocated in sufficient
115 * quantities in lov_device::ld_emerg[], and access to them is serialized
116 * lov_device::ld_mutex.
117 */
118 struct lov_device_emerg {
119 /**
120 * Page list used to submit IO when memory is in pressure.
121 */
122 struct cl_page_list emrg_page_list;
123 /**
124 * sub-io's shared by all threads accessing this device when memory is
125 * too low to allocate sub-io's dynamically.
126 */
127 struct cl_io emrg_subio;
128 /**
129 * Environments used by sub-io's in
130 * lov_device_emerg::emrg_subio.
131 */
132 struct lu_env *emrg_env;
133 /**
134 * Refchecks for lov_device_emerg::emrg_env.
135 *
136 * \see cl_env_get()
137 */
138 int emrg_refcheck;
139 };
140
141 struct lov_device {
142 /*
143 * XXX Locking of lov-private data is missing.
144 */
145 struct cl_device ld_cl;
146 struct lov_obd *ld_lov;
147 /** size of lov_device::ld_target[] array */
148 __u32 ld_target_nr;
149 struct lovsub_device **ld_target;
150 __u32 ld_flags;
151
152 /** Emergency resources used in memory-cleansing paths. */
153 struct lov_device_emerg **ld_emrg;
154 /**
155 * Serializes access to lov_device::ld_emrg in low-memory
156 * conditions.
157 */
158 struct mutex ld_mutex;
159 };
160
161 /**
162 * Layout type.
163 */
164 enum lov_layout_type {
165 LLT_EMPTY, /** empty file without body (mknod + truncate) */
166 LLT_RAID0, /** striped file */
167 LLT_RELEASED, /** file with no objects (data in HSM) */
168 LLT_NR
169 };
170
llt2str(enum lov_layout_type llt)171 static inline char *llt2str(enum lov_layout_type llt)
172 {
173 switch (llt) {
174 case LLT_EMPTY:
175 return "EMPTY";
176 case LLT_RAID0:
177 return "RAID0";
178 case LLT_RELEASED:
179 return "RELEASED";
180 case LLT_NR:
181 LBUG();
182 }
183 LBUG();
184 return "";
185 }
186
187 /**
188 * lov-specific file state.
189 *
190 * lov object has particular layout type, determining how top-object is built
191 * on top of sub-objects. Layout type can change dynamically. When this
192 * happens, lov_object::lo_type_guard semaphore is taken in exclusive mode,
193 * all state pertaining to the old layout type is destroyed, and new state is
194 * constructed. All object methods take said semaphore in the shared mode,
195 * providing serialization against transition between layout types.
196 *
197 * To avoid multiple `if' or `switch' statements, selecting behavior for the
198 * current layout type, object methods perform double-dispatch, invoking
199 * function corresponding to the current layout type.
200 */
201 struct lov_object {
202 struct cl_object lo_cl;
203 /**
204 * Serializes object operations with transitions between layout types.
205 *
206 * This semaphore is taken in shared mode by all object methods, and
207 * is taken in exclusive mode when object type is changed.
208 *
209 * \see lov_object::lo_type
210 */
211 struct rw_semaphore lo_type_guard;
212 /**
213 * Type of an object. Protected by lov_object::lo_type_guard.
214 */
215 enum lov_layout_type lo_type;
216 /**
217 * True if layout is invalid. This bit is cleared when layout lock
218 * is lost.
219 */
220 bool lo_layout_invalid;
221 /**
222 * How many IOs are on going on this object. Layout can be changed
223 * only if there is no active IO.
224 */
225 atomic_t lo_active_ios;
226 /**
227 * Waitq - wait for no one else is using lo_lsm
228 */
229 wait_queue_head_t lo_waitq;
230 /**
231 * Layout metadata. NULL if empty layout.
232 */
233 struct lov_stripe_md *lo_lsm;
234
235 union lov_layout_state {
236 struct lov_layout_raid0 {
237 unsigned lo_nr;
238 /**
239 * When this is true, lov_object::lo_attr contains
240 * valid up to date attributes for a top-level
241 * object. This field is reset to 0 when attributes of
242 * any sub-object change.
243 */
244 int lo_attr_valid;
245 /**
246 * Array of sub-objects. Allocated when top-object is
247 * created (lov_init_raid0()).
248 *
249 * Top-object is a strict master of its sub-objects:
250 * it is created before them, and outlives its
251 * children (this later is necessary so that basic
252 * functions like cl_object_top() always
253 * work). Top-object keeps a reference on every
254 * sub-object.
255 *
256 * When top-object is destroyed (lov_delete_raid0())
257 * it releases its reference to a sub-object and waits
258 * until the latter is finally destroyed.
259 */
260 struct lovsub_object **lo_sub;
261 /**
262 * protect lo_sub
263 */
264 spinlock_t lo_sub_lock;
265 /**
266 * Cached object attribute, built from sub-object
267 * attributes.
268 */
269 struct cl_attr lo_attr;
270 } raid0;
271 struct lov_layout_state_empty {
272 } empty;
273 struct lov_layout_state_released {
274 } released;
275 } u;
276 /**
277 * Thread that acquired lov_object::lo_type_guard in an exclusive
278 * mode.
279 */
280 struct task_struct *lo_owner;
281 };
282
283 /**
284 * Flags that top-lock can set on each of its sub-locks.
285 */
286 enum lov_sub_flags {
287 /** Top-lock acquired a hold (cl_lock_hold()) on a sub-lock. */
288 LSF_HELD = 1 << 0
289 };
290
291 /**
292 * State lov_lock keeps for each sub-lock.
293 */
294 struct lov_lock_sub {
295 /** sub-lock itself */
296 struct lovsub_lock *sub_lock;
297 /** An array of per-sub-lock flags, taken from enum lov_sub_flags */
298 unsigned sub_flags;
299 int sub_stripe;
300 struct cl_lock_descr sub_descr;
301 struct cl_lock_descr sub_got;
302 };
303
304 /**
305 * lov-specific lock state.
306 */
307 struct lov_lock {
308 struct cl_lock_slice lls_cl;
309 /** Number of sub-locks in this lock */
310 int lls_nr;
311 /**
312 * Number of existing sub-locks.
313 */
314 unsigned lls_nr_filled;
315 /**
316 * Set when sub-lock was canceled, while top-lock was being
317 * used, or unused.
318 */
319 unsigned int lls_cancel_race:1;
320 /**
321 * An array of sub-locks
322 *
323 * There are two issues with managing sub-locks:
324 *
325 * - sub-locks are concurrently canceled, and
326 *
327 * - sub-locks are shared with other top-locks.
328 *
329 * To manage cancellation, top-lock acquires a hold on a sublock
330 * (lov_sublock_adopt()) when the latter is inserted into
331 * lov_lock::lls_sub[]. This hold is released (lov_sublock_release())
332 * when top-lock is going into CLS_CACHED state or destroyed. Hold
333 * prevents sub-lock from cancellation.
334 *
335 * Sub-lock sharing means, among other things, that top-lock that is
336 * in the process of creation (i.e., not yet inserted into lock list)
337 * is already accessible to other threads once at least one of its
338 * sub-locks is created, see lov_lock_sub_init().
339 *
340 * Sub-lock can be in one of the following states:
341 *
342 * - doesn't exist, lov_lock::lls_sub[]::sub_lock == NULL. Such
343 * sub-lock was either never created (top-lock is in CLS_NEW
344 * state), or it was created, then canceled, then destroyed
345 * (lov_lock_unlink() cleared sub-lock pointer in the top-lock).
346 *
347 * - sub-lock exists and is on
348 * hold. (lov_lock::lls_sub[]::sub_flags & LSF_HELD). This is a
349 * normal state of a sub-lock in CLS_HELD and CLS_CACHED states
350 * of a top-lock.
351 *
352 * - sub-lock exists, but is not held by the top-lock. This
353 * happens after top-lock released a hold on sub-locks before
354 * going into cache (lov_lock_unuse()).
355 *
356 * \todo To support wide-striping, array has to be replaced with a set
357 * of queues to avoid scanning.
358 */
359 struct lov_lock_sub *lls_sub;
360 /**
361 * Original description with which lock was enqueued.
362 */
363 struct cl_lock_descr lls_orig;
364 };
365
366 struct lov_page {
367 struct cl_page_slice lps_cl;
368 int lps_invalid;
369 };
370
371 /*
372 * Bottom half.
373 */
374
375 struct lovsub_device {
376 struct cl_device acid_cl;
377 struct lov_device *acid_super;
378 int acid_idx;
379 struct cl_device *acid_next;
380 };
381
382 struct lovsub_object {
383 struct cl_object_header lso_header;
384 struct cl_object lso_cl;
385 struct lov_object *lso_super;
386 int lso_index;
387 };
388
389 /**
390 * A link between a top-lock and a sub-lock. Separate data-structure is
391 * necessary, because top-locks and sub-locks are in M:N relationship.
392 *
393 * \todo This can be optimized for a (by far) most frequent case of a single
394 * top-lock per sub-lock.
395 */
396 struct lov_lock_link {
397 struct lov_lock *lll_super;
398 /** An index within parent lock. */
399 int lll_idx;
400 /**
401 * A linkage into per sub-lock list of all corresponding top-locks,
402 * hanging off lovsub_lock::lss_parents.
403 */
404 struct list_head lll_list;
405 };
406
407 /**
408 * Lock state at lovsub layer.
409 */
410 struct lovsub_lock {
411 struct cl_lock_slice lss_cl;
412 /**
413 * List of top-locks that have given sub-lock as their part. Protected
414 * by cl_lock::cll_guard mutex.
415 */
416 struct list_head lss_parents;
417 /**
418 * Top-lock that initiated current operation on this sub-lock. This is
419 * only set during top-to-bottom lock operations like enqueue, and is
420 * used to optimize state change notification. Protected by
421 * cl_lock::cll_guard mutex.
422 *
423 * \see lovsub_lock_state_one().
424 */
425 struct cl_lock *lss_active;
426 };
427
428 /**
429 * Describe the environment settings for sublocks.
430 */
431 struct lov_sublock_env {
432 const struct lu_env *lse_env;
433 struct cl_io *lse_io;
434 struct lov_io_sub *lse_sub;
435 };
436
437 struct lovsub_page {
438 struct cl_page_slice lsb_cl;
439 };
440
441
442 struct lov_thread_info {
443 struct cl_object_conf lti_stripe_conf;
444 struct lu_fid lti_fid;
445 struct cl_lock_descr lti_ldescr;
446 struct ost_lvb lti_lvb;
447 struct cl_2queue lti_cl2q;
448 struct cl_lock_closure lti_closure;
449 wait_queue_t lti_waiter;
450 };
451
452 /**
453 * State that lov_io maintains for every sub-io.
454 */
455 struct lov_io_sub {
456 int sub_stripe;
457 /**
458 * sub-io for a stripe. Ideally sub-io's can be stopped and resumed
459 * independently, with lov acting as a scheduler to maximize overall
460 * throughput.
461 */
462 struct cl_io *sub_io;
463 /**
464 * Linkage into a list (hanging off lov_io::lis_active) of all
465 * sub-io's active for the current IO iteration.
466 */
467 struct list_head sub_linkage;
468 /**
469 * true, iff cl_io_init() was successfully executed against
470 * lov_io_sub::sub_io.
471 */
472 int sub_io_initialized;
473 /**
474 * True, iff lov_io_sub::sub_io and lov_io_sub::sub_env weren't
475 * allocated, but borrowed from a per-device emergency pool.
476 */
477 int sub_borrowed;
478 /**
479 * environment, in which sub-io executes.
480 */
481 struct lu_env *sub_env;
482 /**
483 * environment's refcheck.
484 *
485 * \see cl_env_get()
486 */
487 int sub_refcheck;
488 int sub_refcheck2;
489 int sub_reenter;
490 void *sub_cookie;
491 };
492
493 /**
494 * IO state private for LOV.
495 */
496 struct lov_io {
497 /** super-class */
498 struct cl_io_slice lis_cl;
499 /**
500 * Pointer to the object slice. This is a duplicate of
501 * lov_io::lis_cl::cis_object.
502 */
503 struct lov_object *lis_object;
504 /**
505 * Original end-of-io position for this IO, set by the upper layer as
506 * cl_io::u::ci_rw::pos + cl_io::u::ci_rw::count. lov remembers this,
507 * changes pos and count to fit IO into a single stripe and uses saved
508 * value to determine when IO iterations have to stop.
509 *
510 * This is used only for CIT_READ and CIT_WRITE io's.
511 */
512 loff_t lis_io_endpos;
513
514 /**
515 * starting position within a file, for the current io loop iteration
516 * (stripe), used by ci_io_loop().
517 */
518 u64 lis_pos;
519 /**
520 * end position with in a file, for the current stripe io. This is
521 * exclusive (i.e., next offset after last byte affected by io).
522 */
523 u64 lis_endpos;
524
525 int lis_mem_frozen;
526 int lis_stripe_count;
527 int lis_active_subios;
528
529 /**
530 * the index of ls_single_subio in ls_subios array
531 */
532 int lis_single_subio_index;
533 struct cl_io lis_single_subio;
534
535 /**
536 * size of ls_subios array, actually the highest stripe #
537 */
538 int lis_nr_subios;
539 struct lov_io_sub *lis_subs;
540 /**
541 * List of active sub-io's.
542 */
543 struct list_head lis_active;
544 };
545
546 struct lov_session {
547 struct lov_io ls_io;
548 struct lov_sublock_env ls_subenv;
549 };
550
551 /**
552 * State of transfer for lov.
553 */
554 struct lov_req {
555 struct cl_req_slice lr_cl;
556 };
557
558 /**
559 * State of transfer for lovsub.
560 */
561 struct lovsub_req {
562 struct cl_req_slice lsrq_cl;
563 };
564
565 extern struct lu_device_type lov_device_type;
566 extern struct lu_device_type lovsub_device_type;
567
568 extern struct lu_context_key lov_key;
569 extern struct lu_context_key lov_session_key;
570
571 extern struct kmem_cache *lov_lock_kmem;
572 extern struct kmem_cache *lov_object_kmem;
573 extern struct kmem_cache *lov_thread_kmem;
574 extern struct kmem_cache *lov_session_kmem;
575 extern struct kmem_cache *lov_req_kmem;
576
577 extern struct kmem_cache *lovsub_lock_kmem;
578 extern struct kmem_cache *lovsub_object_kmem;
579 extern struct kmem_cache *lovsub_req_kmem;
580
581 extern struct kmem_cache *lov_lock_link_kmem;
582
583 int lov_object_init(const struct lu_env *env, struct lu_object *obj,
584 const struct lu_object_conf *conf);
585 int lovsub_object_init(const struct lu_env *env, struct lu_object *obj,
586 const struct lu_object_conf *conf);
587 int lov_lock_init(const struct lu_env *env, struct cl_object *obj,
588 struct cl_lock *lock, const struct cl_io *io);
589 int lov_io_init(const struct lu_env *env, struct cl_object *obj,
590 struct cl_io *io);
591 int lovsub_lock_init(const struct lu_env *env, struct cl_object *obj,
592 struct cl_lock *lock, const struct cl_io *io);
593
594 int lov_lock_init_raid0(const struct lu_env *env, struct cl_object *obj,
595 struct cl_lock *lock, const struct cl_io *io);
596 int lov_lock_init_empty(const struct lu_env *env, struct cl_object *obj,
597 struct cl_lock *lock, const struct cl_io *io);
598 int lov_io_init_raid0(const struct lu_env *env, struct cl_object *obj,
599 struct cl_io *io);
600 int lov_io_init_empty(const struct lu_env *env, struct cl_object *obj,
601 struct cl_io *io);
602 int lov_io_init_released(const struct lu_env *env, struct cl_object *obj,
603 struct cl_io *io);
604 void lov_lock_unlink(const struct lu_env *env, struct lov_lock_link *link,
605 struct lovsub_lock *sub);
606
607 struct lov_io_sub *lov_sub_get(const struct lu_env *env, struct lov_io *lio,
608 int stripe);
609 void lov_sub_put(struct lov_io_sub *sub);
610 int lov_sublock_modify(const struct lu_env *env, struct lov_lock *lov,
611 struct lovsub_lock *sublock,
612 const struct cl_lock_descr *d, int idx);
613
614
615 int lov_page_init(const struct lu_env *env, struct cl_object *ob,
616 struct cl_page *page, struct page *vmpage);
617 int lovsub_page_init(const struct lu_env *env, struct cl_object *ob,
618 struct cl_page *page, struct page *vmpage);
619
620 int lov_page_init_empty(const struct lu_env *env,
621 struct cl_object *obj,
622 struct cl_page *page, struct page *vmpage);
623 int lov_page_init_raid0(const struct lu_env *env,
624 struct cl_object *obj,
625 struct cl_page *page, struct page *vmpage);
626 struct lu_object *lov_object_alloc(const struct lu_env *env,
627 const struct lu_object_header *hdr,
628 struct lu_device *dev);
629 struct lu_object *lovsub_object_alloc(const struct lu_env *env,
630 const struct lu_object_header *hdr,
631 struct lu_device *dev);
632
633 struct lov_lock_link *lov_lock_link_find(const struct lu_env *env,
634 struct lov_lock *lck,
635 struct lovsub_lock *sub);
636 struct lov_io_sub *lov_page_subio(const struct lu_env *env,
637 struct lov_io *lio,
638 const struct cl_page_slice *slice);
639
640 void lov_lsm_decref(struct lov_object *lov, struct lov_stripe_md *lsm);
641 struct lov_stripe_md *lov_lsm_addref(struct lov_object *lov);
642
643 #define lov_foreach_target(lov, var) \
644 for (var = 0; var < lov_targets_nr(lov); ++var)
645
646 /*****************************************************************************
647 *
648 * Type conversions.
649 *
650 * Accessors.
651 *
652 */
653
lov_env_session(const struct lu_env * env)654 static inline struct lov_session *lov_env_session(const struct lu_env *env)
655 {
656 struct lov_session *ses;
657
658 ses = lu_context_key_get(env->le_ses, &lov_session_key);
659 LASSERT(ses != NULL);
660 return ses;
661 }
662
lov_env_io(const struct lu_env * env)663 static inline struct lov_io *lov_env_io(const struct lu_env *env)
664 {
665 return &lov_env_session(env)->ls_io;
666 }
667
lov_is_object(const struct lu_object * obj)668 static inline int lov_is_object(const struct lu_object *obj)
669 {
670 return obj->lo_dev->ld_type == &lov_device_type;
671 }
672
lovsub_is_object(const struct lu_object * obj)673 static inline int lovsub_is_object(const struct lu_object *obj)
674 {
675 return obj->lo_dev->ld_type == &lovsub_device_type;
676 }
677
lov2lu_dev(struct lov_device * lov)678 static inline struct lu_device *lov2lu_dev(struct lov_device *lov)
679 {
680 return &lov->ld_cl.cd_lu_dev;
681 }
682
lu2lov_dev(const struct lu_device * d)683 static inline struct lov_device *lu2lov_dev(const struct lu_device *d)
684 {
685 LINVRNT(d->ld_type == &lov_device_type);
686 return container_of0(d, struct lov_device, ld_cl.cd_lu_dev);
687 }
688
lovsub2cl_dev(struct lovsub_device * lovsub)689 static inline struct cl_device *lovsub2cl_dev(struct lovsub_device *lovsub)
690 {
691 return &lovsub->acid_cl;
692 }
693
lovsub2lu_dev(struct lovsub_device * lovsub)694 static inline struct lu_device *lovsub2lu_dev(struct lovsub_device *lovsub)
695 {
696 return &lovsub2cl_dev(lovsub)->cd_lu_dev;
697 }
698
lu2lovsub_dev(const struct lu_device * d)699 static inline struct lovsub_device *lu2lovsub_dev(const struct lu_device *d)
700 {
701 LINVRNT(d->ld_type == &lovsub_device_type);
702 return container_of0(d, struct lovsub_device, acid_cl.cd_lu_dev);
703 }
704
cl2lovsub_dev(const struct cl_device * d)705 static inline struct lovsub_device *cl2lovsub_dev(const struct cl_device *d)
706 {
707 LINVRNT(d->cd_lu_dev.ld_type == &lovsub_device_type);
708 return container_of0(d, struct lovsub_device, acid_cl);
709 }
710
lov2lu(struct lov_object * lov)711 static inline struct lu_object *lov2lu(struct lov_object *lov)
712 {
713 return &lov->lo_cl.co_lu;
714 }
715
lov2cl(struct lov_object * lov)716 static inline struct cl_object *lov2cl(struct lov_object *lov)
717 {
718 return &lov->lo_cl;
719 }
720
lu2lov(const struct lu_object * obj)721 static inline struct lov_object *lu2lov(const struct lu_object *obj)
722 {
723 LINVRNT(lov_is_object(obj));
724 return container_of0(obj, struct lov_object, lo_cl.co_lu);
725 }
726
cl2lov(const struct cl_object * obj)727 static inline struct lov_object *cl2lov(const struct cl_object *obj)
728 {
729 LINVRNT(lov_is_object(&obj->co_lu));
730 return container_of0(obj, struct lov_object, lo_cl);
731 }
732
lovsub2lu(struct lovsub_object * los)733 static inline struct lu_object *lovsub2lu(struct lovsub_object *los)
734 {
735 return &los->lso_cl.co_lu;
736 }
737
lovsub2cl(struct lovsub_object * los)738 static inline struct cl_object *lovsub2cl(struct lovsub_object *los)
739 {
740 return &los->lso_cl;
741 }
742
cl2lovsub(const struct cl_object * obj)743 static inline struct lovsub_object *cl2lovsub(const struct cl_object *obj)
744 {
745 LINVRNT(lovsub_is_object(&obj->co_lu));
746 return container_of0(obj, struct lovsub_object, lso_cl);
747 }
748
lu2lovsub(const struct lu_object * obj)749 static inline struct lovsub_object *lu2lovsub(const struct lu_object *obj)
750 {
751 LINVRNT(lovsub_is_object(obj));
752 return container_of0(obj, struct lovsub_object, lso_cl.co_lu);
753 }
754
755 static inline struct lovsub_lock *
cl2lovsub_lock(const struct cl_lock_slice * slice)756 cl2lovsub_lock(const struct cl_lock_slice *slice)
757 {
758 LINVRNT(lovsub_is_object(&slice->cls_obj->co_lu));
759 return container_of(slice, struct lovsub_lock, lss_cl);
760 }
761
cl2sub_lock(const struct cl_lock * lock)762 static inline struct lovsub_lock *cl2sub_lock(const struct cl_lock *lock)
763 {
764 const struct cl_lock_slice *slice;
765
766 slice = cl_lock_at(lock, &lovsub_device_type);
767 LASSERT(slice != NULL);
768 return cl2lovsub_lock(slice);
769 }
770
cl2lov_lock(const struct cl_lock_slice * slice)771 static inline struct lov_lock *cl2lov_lock(const struct cl_lock_slice *slice)
772 {
773 LINVRNT(lov_is_object(&slice->cls_obj->co_lu));
774 return container_of(slice, struct lov_lock, lls_cl);
775 }
776
cl2lov_page(const struct cl_page_slice * slice)777 static inline struct lov_page *cl2lov_page(const struct cl_page_slice *slice)
778 {
779 LINVRNT(lov_is_object(&slice->cpl_obj->co_lu));
780 return container_of0(slice, struct lov_page, lps_cl);
781 }
782
cl2lov_req(const struct cl_req_slice * slice)783 static inline struct lov_req *cl2lov_req(const struct cl_req_slice *slice)
784 {
785 return container_of0(slice, struct lov_req, lr_cl);
786 }
787
788 static inline struct lovsub_page *
cl2lovsub_page(const struct cl_page_slice * slice)789 cl2lovsub_page(const struct cl_page_slice *slice)
790 {
791 LINVRNT(lovsub_is_object(&slice->cpl_obj->co_lu));
792 return container_of0(slice, struct lovsub_page, lsb_cl);
793 }
794
cl2lovsub_req(const struct cl_req_slice * slice)795 static inline struct lovsub_req *cl2lovsub_req(const struct cl_req_slice *slice)
796 {
797 return container_of0(slice, struct lovsub_req, lsrq_cl);
798 }
799
lov_sub_page(const struct cl_page_slice * slice)800 static inline struct cl_page *lov_sub_page(const struct cl_page_slice *slice)
801 {
802 return slice->cpl_page->cp_child;
803 }
804
cl2lov_io(const struct lu_env * env,const struct cl_io_slice * ios)805 static inline struct lov_io *cl2lov_io(const struct lu_env *env,
806 const struct cl_io_slice *ios)
807 {
808 struct lov_io *lio;
809
810 lio = container_of(ios, struct lov_io, lis_cl);
811 LASSERT(lio == lov_env_io(env));
812 return lio;
813 }
814
lov_targets_nr(const struct lov_device * lov)815 static inline int lov_targets_nr(const struct lov_device *lov)
816 {
817 return lov->ld_lov->desc.ld_tgt_count;
818 }
819
lov_env_info(const struct lu_env * env)820 static inline struct lov_thread_info *lov_env_info(const struct lu_env *env)
821 {
822 struct lov_thread_info *info;
823
824 info = lu_context_key_get(&env->le_ctx, &lov_key);
825 LASSERT(info != NULL);
826 return info;
827 }
828
lov_r0(struct lov_object * lov)829 static inline struct lov_layout_raid0 *lov_r0(struct lov_object *lov)
830 {
831 LASSERT(lov->lo_type == LLT_RAID0);
832 LASSERT(lov->lo_lsm->lsm_wire.lw_magic == LOV_MAGIC ||
833 lov->lo_lsm->lsm_wire.lw_magic == LOV_MAGIC_V3);
834 return &lov->u.raid0;
835 }
836
837 /** @} lov */
838
839 #endif
840