1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  *
36  * lustre/llite/rw.c
37  *
38  * Lustre Lite I/O page cache routines shared by different kernel revs
39  */
40 
41 #include <linux/kernel.h>
42 #include <linux/mm.h>
43 #include <linux/string.h>
44 #include <linux/stat.h>
45 #include <linux/errno.h>
46 #include <linux/unistd.h>
47 #include <linux/writeback.h>
48 #include <linux/uaccess.h>
49 
50 #include <linux/fs.h>
51 #include <linux/pagemap.h>
52 /* current_is_kswapd() */
53 #include <linux/swap.h>
54 
55 #define DEBUG_SUBSYSTEM S_LLITE
56 
57 #include "../include/lustre_lite.h"
58 #include "../include/obd_cksum.h"
59 #include "llite_internal.h"
60 #include "../include/linux/lustre_compat25.h"
61 
62 /**
63  * Finalizes cl-data before exiting typical address_space operation. Dual to
64  * ll_cl_init().
65  */
ll_cl_fini(struct ll_cl_context * lcc)66 static void ll_cl_fini(struct ll_cl_context *lcc)
67 {
68 	struct lu_env  *env  = lcc->lcc_env;
69 	struct cl_io   *io   = lcc->lcc_io;
70 	struct cl_page *page = lcc->lcc_page;
71 
72 	LASSERT(lcc->lcc_cookie == current);
73 	LASSERT(env != NULL);
74 
75 	if (page != NULL) {
76 		lu_ref_del(&page->cp_reference, "cl_io", io);
77 		cl_page_put(env, page);
78 	}
79 
80 	cl_env_put(env, &lcc->lcc_refcheck);
81 }
82 
83 /**
84  * Initializes common cl-data at the typical address_space operation entry
85  * point.
86  */
ll_cl_init(struct file * file,struct page * vmpage,int create)87 static struct ll_cl_context *ll_cl_init(struct file *file,
88 					struct page *vmpage, int create)
89 {
90 	struct ll_cl_context *lcc;
91 	struct lu_env    *env;
92 	struct cl_io     *io;
93 	struct cl_object *clob;
94 	struct ccc_io    *cio;
95 
96 	int refcheck;
97 	int result = 0;
98 
99 	clob = ll_i2info(vmpage->mapping->host)->lli_clob;
100 	LASSERT(clob != NULL);
101 
102 	env = cl_env_get(&refcheck);
103 	if (IS_ERR(env))
104 		return ERR_CAST(env);
105 
106 	lcc = &vvp_env_info(env)->vti_io_ctx;
107 	memset(lcc, 0, sizeof(*lcc));
108 	lcc->lcc_env = env;
109 	lcc->lcc_refcheck = refcheck;
110 	lcc->lcc_cookie = current;
111 
112 	cio = ccc_env_io(env);
113 	io = cio->cui_cl.cis_io;
114 	if (io == NULL && create) {
115 		struct inode *inode = vmpage->mapping->host;
116 		loff_t pos;
117 
118 		if (mutex_trylock(&inode->i_mutex)) {
119 			mutex_unlock(&(inode)->i_mutex);
120 
121 			/* this is too bad. Someone is trying to write the
122 			 * page w/o holding inode mutex. This means we can
123 			 * add dirty pages into cache during truncate */
124 			CERROR("Proc %s is dirtying page w/o inode lock, this will break truncate\n",
125 			       current->comm);
126 			dump_stack();
127 			LBUG();
128 			return ERR_PTR(-EIO);
129 		}
130 
131 		/*
132 		 * Loop-back driver calls ->prepare_write().
133 		 * methods directly, bypassing file system ->write() operation,
134 		 * so cl_io has to be created here.
135 		 */
136 		io = ccc_env_thread_io(env);
137 		ll_io_init(io, file, 1);
138 
139 		/* No lock at all for this kind of IO - we can't do it because
140 		 * we have held page lock, it would cause deadlock.
141 		 * XXX: This causes poor performance to loop device - One page
142 		 *      per RPC.
143 		 *      In order to get better performance, users should use
144 		 *      lloop driver instead.
145 		 */
146 		io->ci_lockreq = CILR_NEVER;
147 
148 		pos = vmpage->index << PAGE_CACHE_SHIFT;
149 
150 		/* Create a temp IO to serve write. */
151 		result = cl_io_rw_init(env, io, CIT_WRITE, pos, PAGE_CACHE_SIZE);
152 		if (result == 0) {
153 			cio->cui_fd = LUSTRE_FPRIVATE(file);
154 			cio->cui_iter = NULL;
155 			result = cl_io_iter_init(env, io);
156 			if (result == 0) {
157 				result = cl_io_lock(env, io);
158 				if (result == 0)
159 					result = cl_io_start(env, io);
160 			}
161 		} else
162 			result = io->ci_result;
163 	}
164 
165 	lcc->lcc_io = io;
166 	if (io == NULL)
167 		result = -EIO;
168 	if (result == 0) {
169 		struct cl_page   *page;
170 
171 		LASSERT(io != NULL);
172 		LASSERT(io->ci_state == CIS_IO_GOING);
173 		LASSERT(cio->cui_fd == LUSTRE_FPRIVATE(file));
174 		page = cl_page_find(env, clob, vmpage->index, vmpage,
175 				    CPT_CACHEABLE);
176 		if (!IS_ERR(page)) {
177 			lcc->lcc_page = page;
178 			lu_ref_add(&page->cp_reference, "cl_io", io);
179 			result = 0;
180 		} else
181 			result = PTR_ERR(page);
182 	}
183 	if (result) {
184 		ll_cl_fini(lcc);
185 		lcc = ERR_PTR(result);
186 	}
187 
188 	CDEBUG(D_VFSTRACE, "%lu@"DFID" -> %d %p %p\n",
189 	       vmpage->index, PFID(lu_object_fid(&clob->co_lu)), result,
190 	       env, io);
191 	return lcc;
192 }
193 
ll_cl_get(void)194 static struct ll_cl_context *ll_cl_get(void)
195 {
196 	struct ll_cl_context *lcc;
197 	struct lu_env *env;
198 	int refcheck;
199 
200 	env = cl_env_get(&refcheck);
201 	LASSERT(!IS_ERR(env));
202 	lcc = &vvp_env_info(env)->vti_io_ctx;
203 	LASSERT(env == lcc->lcc_env);
204 	LASSERT(current == lcc->lcc_cookie);
205 	cl_env_put(env, &refcheck);
206 
207 	/* env has got in ll_cl_init, so it is still usable. */
208 	return lcc;
209 }
210 
211 /**
212  * ->prepare_write() address space operation called by generic_file_write()
213  * for every page during write.
214  */
ll_prepare_write(struct file * file,struct page * vmpage,unsigned from,unsigned to)215 int ll_prepare_write(struct file *file, struct page *vmpage, unsigned from,
216 		     unsigned to)
217 {
218 	struct ll_cl_context *lcc;
219 	int result;
220 
221 	lcc = ll_cl_init(file, vmpage, 1);
222 	if (!IS_ERR(lcc)) {
223 		struct lu_env  *env = lcc->lcc_env;
224 		struct cl_io   *io  = lcc->lcc_io;
225 		struct cl_page *page = lcc->lcc_page;
226 
227 		cl_page_assume(env, io, page);
228 
229 		result = cl_io_prepare_write(env, io, page, from, to);
230 		if (result == 0) {
231 			/*
232 			 * Add a reference, so that page is not evicted from
233 			 * the cache until ->commit_write() is called.
234 			 */
235 			cl_page_get(page);
236 			lu_ref_add(&page->cp_reference, "prepare_write",
237 				   current);
238 		} else {
239 			cl_page_unassume(env, io, page);
240 			ll_cl_fini(lcc);
241 		}
242 		/* returning 0 in prepare assumes commit must be called
243 		 * afterwards */
244 	} else {
245 		result = PTR_ERR(lcc);
246 	}
247 	return result;
248 }
249 
ll_commit_write(struct file * file,struct page * vmpage,unsigned from,unsigned to)250 int ll_commit_write(struct file *file, struct page *vmpage, unsigned from,
251 		    unsigned to)
252 {
253 	struct ll_cl_context *lcc;
254 	struct lu_env    *env;
255 	struct cl_io     *io;
256 	struct cl_page   *page;
257 	int result = 0;
258 
259 	lcc  = ll_cl_get();
260 	env  = lcc->lcc_env;
261 	page = lcc->lcc_page;
262 	io   = lcc->lcc_io;
263 
264 	LASSERT(cl_page_is_owned(page, io));
265 	LASSERT(from <= to);
266 	if (from != to) /* handle short write case. */
267 		result = cl_io_commit_write(env, io, page, from, to);
268 	if (cl_page_is_owned(page, io))
269 		cl_page_unassume(env, io, page);
270 
271 	/*
272 	 * Release reference acquired by ll_prepare_write().
273 	 */
274 	lu_ref_del(&page->cp_reference, "prepare_write", current);
275 	cl_page_put(env, page);
276 	ll_cl_fini(lcc);
277 	return result;
278 }
279 
cl_capa_lookup(struct inode * inode,enum cl_req_type crt)280 struct obd_capa *cl_capa_lookup(struct inode *inode, enum cl_req_type crt)
281 {
282 	__u64 opc;
283 
284 	opc = crt == CRT_WRITE ? CAPA_OPC_OSS_WRITE : CAPA_OPC_OSS_RW;
285 	return ll_osscapa_get(inode, opc);
286 }
287 
288 static void ll_ra_stats_inc_sbi(struct ll_sb_info *sbi, enum ra_stat which);
289 
290 /**
291  * Get readahead pages from the filesystem readahead pool of the client for a
292  * thread.
293  *
294  * /param sbi superblock for filesystem readahead state ll_ra_info
295  * /param ria per-thread readahead state
296  * /param pages number of pages requested for readahead for the thread.
297  *
298  * WARNING: This algorithm is used to reduce contention on sbi->ll_lock.
299  * It should work well if the ra_max_pages is much greater than the single
300  * file's read-ahead window, and not too many threads contending for
301  * these readahead pages.
302  *
303  * TODO: There may be a 'global sync problem' if many threads are trying
304  * to get an ra budget that is larger than the remaining readahead pages
305  * and reach here at exactly the same time. They will compute /a ret to
306  * consume the remaining pages, but will fail at atomic_add_return() and
307  * get a zero ra window, although there is still ra space remaining. - Jay */
308 
ll_ra_count_get(struct ll_sb_info * sbi,struct ra_io_arg * ria,unsigned long pages)309 static unsigned long ll_ra_count_get(struct ll_sb_info *sbi,
310 				     struct ra_io_arg *ria,
311 				     unsigned long pages)
312 {
313 	struct ll_ra_info *ra = &sbi->ll_ra_info;
314 	long ret;
315 
316 	/* If read-ahead pages left are less than 1M, do not do read-ahead,
317 	 * otherwise it will form small read RPC(< 1M), which hurt server
318 	 * performance a lot. */
319 	ret = min(ra->ra_max_pages - atomic_read(&ra->ra_cur_pages), pages);
320 	if (ret < 0 || ret < min_t(long, PTLRPC_MAX_BRW_PAGES, pages)) {
321 		ret = 0;
322 		goto out;
323 	}
324 
325 	/* If the non-strided (ria_pages == 0) readahead window
326 	 * (ria_start + ret) has grown across an RPC boundary, then trim
327 	 * readahead size by the amount beyond the RPC so it ends on an
328 	 * RPC boundary. If the readahead window is already ending on
329 	 * an RPC boundary (beyond_rpc == 0), or smaller than a full
330 	 * RPC (beyond_rpc < ret) the readahead size is unchanged.
331 	 * The (beyond_rpc != 0) check is skipped since the conditional
332 	 * branch is more expensive than subtracting zero from the result.
333 	 *
334 	 * Strided read is left unaligned to avoid small fragments beyond
335 	 * the RPC boundary from needing an extra read RPC. */
336 	if (ria->ria_pages == 0) {
337 		long beyond_rpc = (ria->ria_start + ret) % PTLRPC_MAX_BRW_PAGES;
338 		if (/* beyond_rpc != 0 && */ beyond_rpc < ret)
339 			ret -= beyond_rpc;
340 	}
341 
342 	if (atomic_add_return(ret, &ra->ra_cur_pages) > ra->ra_max_pages) {
343 		atomic_sub(ret, &ra->ra_cur_pages);
344 		ret = 0;
345 	}
346 
347 out:
348 	return ret;
349 }
350 
ll_ra_count_put(struct ll_sb_info * sbi,unsigned long len)351 void ll_ra_count_put(struct ll_sb_info *sbi, unsigned long len)
352 {
353 	struct ll_ra_info *ra = &sbi->ll_ra_info;
354 	atomic_sub(len, &ra->ra_cur_pages);
355 }
356 
ll_ra_stats_inc_sbi(struct ll_sb_info * sbi,enum ra_stat which)357 static void ll_ra_stats_inc_sbi(struct ll_sb_info *sbi, enum ra_stat which)
358 {
359 	LASSERTF(which >= 0 && which < _NR_RA_STAT, "which: %u\n", which);
360 	lprocfs_counter_incr(sbi->ll_ra_stats, which);
361 }
362 
ll_ra_stats_inc(struct address_space * mapping,enum ra_stat which)363 void ll_ra_stats_inc(struct address_space *mapping, enum ra_stat which)
364 {
365 	struct ll_sb_info *sbi = ll_i2sbi(mapping->host);
366 	ll_ra_stats_inc_sbi(sbi, which);
367 }
368 
369 #define RAS_CDEBUG(ras) \
370 	CDEBUG(D_READA,						      \
371 	       "lrp %lu cr %lu cp %lu ws %lu wl %lu nra %lu r %lu ri %lu"    \
372 	       "csr %lu sf %lu sp %lu sl %lu \n",			    \
373 	       ras->ras_last_readpage, ras->ras_consecutive_requests,	\
374 	       ras->ras_consecutive_pages, ras->ras_window_start,	    \
375 	       ras->ras_window_len, ras->ras_next_readahead,		 \
376 	       ras->ras_requests, ras->ras_request_index,		    \
377 	       ras->ras_consecutive_stride_requests, ras->ras_stride_offset, \
378 	       ras->ras_stride_pages, ras->ras_stride_length)
379 
index_in_window(unsigned long index,unsigned long point,unsigned long before,unsigned long after)380 static int index_in_window(unsigned long index, unsigned long point,
381 			   unsigned long before, unsigned long after)
382 {
383 	unsigned long start = point - before, end = point + after;
384 
385 	if (start > point)
386 	       start = 0;
387 	if (end < point)
388 	       end = ~0;
389 
390 	return start <= index && index <= end;
391 }
392 
ll_ras_get(struct file * f)393 static struct ll_readahead_state *ll_ras_get(struct file *f)
394 {
395 	struct ll_file_data       *fd;
396 
397 	fd = LUSTRE_FPRIVATE(f);
398 	return &fd->fd_ras;
399 }
400 
ll_ra_read_in(struct file * f,struct ll_ra_read * rar)401 void ll_ra_read_in(struct file *f, struct ll_ra_read *rar)
402 {
403 	struct ll_readahead_state *ras;
404 
405 	ras = ll_ras_get(f);
406 
407 	spin_lock(&ras->ras_lock);
408 	ras->ras_requests++;
409 	ras->ras_request_index = 0;
410 	ras->ras_consecutive_requests++;
411 	rar->lrr_reader = current;
412 
413 	list_add(&rar->lrr_linkage, &ras->ras_read_beads);
414 	spin_unlock(&ras->ras_lock);
415 }
416 
ll_ra_read_ex(struct file * f,struct ll_ra_read * rar)417 void ll_ra_read_ex(struct file *f, struct ll_ra_read *rar)
418 {
419 	struct ll_readahead_state *ras;
420 
421 	ras = ll_ras_get(f);
422 
423 	spin_lock(&ras->ras_lock);
424 	list_del_init(&rar->lrr_linkage);
425 	spin_unlock(&ras->ras_lock);
426 }
427 
ll_ra_read_get_locked(struct ll_readahead_state * ras)428 static struct ll_ra_read *ll_ra_read_get_locked(struct ll_readahead_state *ras)
429 {
430 	struct ll_ra_read *scan;
431 
432 	list_for_each_entry(scan, &ras->ras_read_beads, lrr_linkage) {
433 		if (scan->lrr_reader == current)
434 			return scan;
435 	}
436 	return NULL;
437 }
438 
ll_ra_read_get(struct file * f)439 struct ll_ra_read *ll_ra_read_get(struct file *f)
440 {
441 	struct ll_readahead_state *ras;
442 	struct ll_ra_read	 *bead;
443 
444 	ras = ll_ras_get(f);
445 
446 	spin_lock(&ras->ras_lock);
447 	bead = ll_ra_read_get_locked(ras);
448 	spin_unlock(&ras->ras_lock);
449 	return bead;
450 }
451 
cl_read_ahead_page(const struct lu_env * env,struct cl_io * io,struct cl_page_list * queue,struct cl_page * page,struct page * vmpage)452 static int cl_read_ahead_page(const struct lu_env *env, struct cl_io *io,
453 			      struct cl_page_list *queue, struct cl_page *page,
454 			      struct page *vmpage)
455 {
456 	struct ccc_page *cp;
457 	int	      rc;
458 
459 	rc = 0;
460 	cl_page_assume(env, io, page);
461 	lu_ref_add(&page->cp_reference, "ra", current);
462 	cp = cl2ccc_page(cl_page_at(page, &vvp_device_type));
463 	if (!cp->cpg_defer_uptodate && !PageUptodate(vmpage)) {
464 		rc = cl_page_is_under_lock(env, io, page);
465 		if (rc == -EBUSY) {
466 			cp->cpg_defer_uptodate = 1;
467 			cp->cpg_ra_used = 0;
468 			cl_page_list_add(queue, page);
469 			rc = 1;
470 		} else {
471 			cl_page_delete(env, page);
472 			rc = -ENOLCK;
473 		}
474 	} else {
475 		/* skip completed pages */
476 		cl_page_unassume(env, io, page);
477 	}
478 	lu_ref_del(&page->cp_reference, "ra", current);
479 	cl_page_put(env, page);
480 	return rc;
481 }
482 
483 /**
484  * Initiates read-ahead of a page with given index.
485  *
486  * \retval     +ve: page was added to \a queue.
487  *
488  * \retval -ENOLCK: there is no extent lock for this part of a file, stop
489  *		  read-ahead.
490  *
491  * \retval  -ve, 0: page wasn't added to \a queue for other reason.
492  */
ll_read_ahead_page(const struct lu_env * env,struct cl_io * io,struct cl_page_list * queue,pgoff_t index,struct address_space * mapping)493 static int ll_read_ahead_page(const struct lu_env *env, struct cl_io *io,
494 			      struct cl_page_list *queue,
495 			      pgoff_t index, struct address_space *mapping)
496 {
497 	struct page      *vmpage;
498 	struct cl_object *clob  = ll_i2info(mapping->host)->lli_clob;
499 	struct cl_page   *page;
500 	enum ra_stat      which = _NR_RA_STAT; /* keep gcc happy */
501 	int	       rc    = 0;
502 	const char       *msg   = NULL;
503 
504 	vmpage = grab_cache_page_nowait(mapping, index);
505 	if (vmpage != NULL) {
506 		/* Check if vmpage was truncated or reclaimed */
507 		if (vmpage->mapping == mapping) {
508 			page = cl_page_find(env, clob, vmpage->index,
509 					    vmpage, CPT_CACHEABLE);
510 			if (!IS_ERR(page)) {
511 				rc = cl_read_ahead_page(env, io, queue,
512 							page, vmpage);
513 				if (rc == -ENOLCK) {
514 					which = RA_STAT_FAILED_MATCH;
515 					msg   = "lock match failed";
516 				}
517 			} else {
518 				which = RA_STAT_FAILED_GRAB_PAGE;
519 				msg   = "cl_page_find failed";
520 			}
521 		} else {
522 			which = RA_STAT_WRONG_GRAB_PAGE;
523 			msg   = "g_c_p_n returned invalid page";
524 		}
525 		if (rc != 1)
526 			unlock_page(vmpage);
527 		page_cache_release(vmpage);
528 	} else {
529 		which = RA_STAT_FAILED_GRAB_PAGE;
530 		msg   = "g_c_p_n failed";
531 	}
532 	if (msg != NULL) {
533 		ll_ra_stats_inc(mapping, which);
534 		CDEBUG(D_READA, "%s\n", msg);
535 	}
536 	return rc;
537 }
538 
539 #define RIA_DEBUG(ria)						       \
540 	CDEBUG(D_READA, "rs %lu re %lu ro %lu rl %lu rp %lu\n",       \
541 	ria->ria_start, ria->ria_end, ria->ria_stoff, ria->ria_length,\
542 	ria->ria_pages)
543 
544 /* Limit this to the blocksize instead of PTLRPC_BRW_MAX_SIZE, since we don't
545  * know what the actual RPC size is.  If this needs to change, it makes more
546  * sense to tune the i_blkbits value for the file based on the OSTs it is
547  * striped over, rather than having a constant value for all files here. */
548 
549 /* RAS_INCREASE_STEP should be (1UL << (inode->i_blkbits - PAGE_CACHE_SHIFT)).
550  * Temporarily set RAS_INCREASE_STEP to 1MB. After 4MB RPC is enabled
551  * by default, this should be adjusted corresponding with max_read_ahead_mb
552  * and max_read_ahead_per_file_mb otherwise the readahead budget can be used
553  * up quickly which will affect read performance significantly. See LU-2816 */
554 #define RAS_INCREASE_STEP(inode) (ONE_MB_BRW_SIZE >> PAGE_CACHE_SHIFT)
555 
stride_io_mode(struct ll_readahead_state * ras)556 static inline int stride_io_mode(struct ll_readahead_state *ras)
557 {
558 	return ras->ras_consecutive_stride_requests > 1;
559 }
560 /* The function calculates how much pages will be read in
561  * [off, off + length], in such stride IO area,
562  * stride_offset = st_off, stride_length = st_len,
563  * stride_pages = st_pgs
564  *
565  *   |------------------|*****|------------------|*****|------------|*****|....
566  * st_off
567  *   |--- st_pgs     ---|
568  *   |-----     st_len   -----|
569  *
570  *	      How many pages it should read in such pattern
571  *	      |-------------------------------------------------------------|
572  *	      off
573  *	      |<------		  length		      ------->|
574  *
575  *	  =   |<----->|  +  |-------------------------------------| +   |---|
576  *	     start_left		 st_pgs * i		    end_left
577  */
578 static unsigned long
stride_pg_count(pgoff_t st_off,unsigned long st_len,unsigned long st_pgs,unsigned long off,unsigned long length)579 stride_pg_count(pgoff_t st_off, unsigned long st_len, unsigned long st_pgs,
580 		unsigned long off, unsigned long length)
581 {
582 	__u64 start = off > st_off ? off - st_off : 0;
583 	__u64 end = off + length > st_off ? off + length - st_off : 0;
584 	unsigned long start_left = 0;
585 	unsigned long end_left = 0;
586 	unsigned long pg_count;
587 
588 	if (st_len == 0 || length == 0 || end == 0)
589 		return length;
590 
591 	start_left = do_div(start, st_len);
592 	if (start_left < st_pgs)
593 		start_left = st_pgs - start_left;
594 	else
595 		start_left = 0;
596 
597 	end_left = do_div(end, st_len);
598 	if (end_left > st_pgs)
599 		end_left = st_pgs;
600 
601 	CDEBUG(D_READA, "start %llu, end %llu start_left %lu end_left %lu \n",
602 	       start, end, start_left, end_left);
603 
604 	if (start == end)
605 		pg_count = end_left - (st_pgs - start_left);
606 	else
607 		pg_count = start_left + st_pgs * (end - start - 1) + end_left;
608 
609 	CDEBUG(D_READA, "st_off %lu, st_len %lu st_pgs %lu off %lu length %lu pgcount %lu\n",
610 	       st_off, st_len, st_pgs, off, length, pg_count);
611 
612 	return pg_count;
613 }
614 
ria_page_count(struct ra_io_arg * ria)615 static int ria_page_count(struct ra_io_arg *ria)
616 {
617 	__u64 length = ria->ria_end >= ria->ria_start ?
618 		       ria->ria_end - ria->ria_start + 1 : 0;
619 
620 	return stride_pg_count(ria->ria_stoff, ria->ria_length,
621 			       ria->ria_pages, ria->ria_start,
622 			       length);
623 }
624 
625 /*Check whether the index is in the defined ra-window */
ras_inside_ra_window(unsigned long idx,struct ra_io_arg * ria)626 static int ras_inside_ra_window(unsigned long idx, struct ra_io_arg *ria)
627 {
628 	/* If ria_length == ria_pages, it means non-stride I/O mode,
629 	 * idx should always inside read-ahead window in this case
630 	 * For stride I/O mode, just check whether the idx is inside
631 	 * the ria_pages. */
632 	return ria->ria_length == 0 || ria->ria_length == ria->ria_pages ||
633 	       (idx >= ria->ria_stoff && (idx - ria->ria_stoff) %
634 		ria->ria_length < ria->ria_pages);
635 }
636 
ll_read_ahead_pages(const struct lu_env * env,struct cl_io * io,struct cl_page_list * queue,struct ra_io_arg * ria,unsigned long * reserved_pages,struct address_space * mapping,unsigned long * ra_end)637 static int ll_read_ahead_pages(const struct lu_env *env,
638 			       struct cl_io *io, struct cl_page_list *queue,
639 			       struct ra_io_arg *ria,
640 			       unsigned long *reserved_pages,
641 			       struct address_space *mapping,
642 			       unsigned long *ra_end)
643 {
644 	int rc, count = 0, stride_ria;
645 	unsigned long page_idx;
646 
647 	LASSERT(ria != NULL);
648 	RIA_DEBUG(ria);
649 
650 	stride_ria = ria->ria_length > ria->ria_pages && ria->ria_pages > 0;
651 	for (page_idx = ria->ria_start; page_idx <= ria->ria_end &&
652 			*reserved_pages > 0; page_idx++) {
653 		if (ras_inside_ra_window(page_idx, ria)) {
654 			/* If the page is inside the read-ahead window*/
655 			rc = ll_read_ahead_page(env, io, queue,
656 						page_idx, mapping);
657 			if (rc == 1) {
658 				(*reserved_pages)--;
659 				count ++;
660 			} else if (rc == -ENOLCK)
661 				break;
662 		} else if (stride_ria) {
663 			/* If it is not in the read-ahead window, and it is
664 			 * read-ahead mode, then check whether it should skip
665 			 * the stride gap */
666 			pgoff_t offset;
667 			/* FIXME: This assertion only is valid when it is for
668 			 * forward read-ahead, it will be fixed when backward
669 			 * read-ahead is implemented */
670 			LASSERTF(page_idx > ria->ria_stoff, "Invalid page_idx %lu rs %lu re %lu ro %lu rl %lu rp %lu\n",
671 				 page_idx,
672 				 ria->ria_start, ria->ria_end, ria->ria_stoff,
673 				 ria->ria_length, ria->ria_pages);
674 			offset = page_idx - ria->ria_stoff;
675 			offset = offset % (ria->ria_length);
676 			if (offset > ria->ria_pages) {
677 				page_idx += ria->ria_length - offset;
678 				CDEBUG(D_READA, "i %lu skip %lu \n", page_idx,
679 				       ria->ria_length - offset);
680 				continue;
681 			}
682 		}
683 	}
684 	*ra_end = page_idx;
685 	return count;
686 }
687 
ll_readahead(const struct lu_env * env,struct cl_io * io,struct ll_readahead_state * ras,struct address_space * mapping,struct cl_page_list * queue,int flags)688 int ll_readahead(const struct lu_env *env, struct cl_io *io,
689 		 struct ll_readahead_state *ras, struct address_space *mapping,
690 		 struct cl_page_list *queue, int flags)
691 {
692 	struct vvp_io *vio = vvp_env_io(env);
693 	struct vvp_thread_info *vti = vvp_env_info(env);
694 	struct cl_attr *attr = ccc_env_thread_attr(env);
695 	unsigned long start = 0, end = 0, reserved;
696 	unsigned long ra_end, len;
697 	struct inode *inode;
698 	struct ll_ra_read *bead;
699 	struct ra_io_arg *ria = &vti->vti_ria;
700 	struct ll_inode_info *lli;
701 	struct cl_object *clob;
702 	int ret = 0;
703 	__u64 kms;
704 
705 	inode = mapping->host;
706 	lli = ll_i2info(inode);
707 	clob = lli->lli_clob;
708 
709 	memset(ria, 0, sizeof(*ria));
710 
711 	cl_object_attr_lock(clob);
712 	ret = cl_object_attr_get(env, clob, attr);
713 	cl_object_attr_unlock(clob);
714 
715 	if (ret != 0)
716 		return ret;
717 	kms = attr->cat_kms;
718 	if (kms == 0) {
719 		ll_ra_stats_inc(mapping, RA_STAT_ZERO_LEN);
720 		return 0;
721 	}
722 
723 	spin_lock(&ras->ras_lock);
724 	if (vio->cui_ra_window_set)
725 		bead = &vio->cui_bead;
726 	else
727 		bead = NULL;
728 
729 	/* Enlarge the RA window to encompass the full read */
730 	if (bead != NULL && ras->ras_window_start + ras->ras_window_len <
731 	    bead->lrr_start + bead->lrr_count) {
732 		ras->ras_window_len = bead->lrr_start + bead->lrr_count -
733 				      ras->ras_window_start;
734 	}
735 	/* Reserve a part of the read-ahead window that we'll be issuing */
736 	if (ras->ras_window_len) {
737 		start = ras->ras_next_readahead;
738 		end = ras->ras_window_start + ras->ras_window_len - 1;
739 	}
740 	if (end != 0) {
741 		unsigned long rpc_boundary;
742 		/*
743 		 * Align RA window to an optimal boundary.
744 		 *
745 		 * XXX This would be better to align to cl_max_pages_per_rpc
746 		 * instead of PTLRPC_MAX_BRW_PAGES, because the RPC size may
747 		 * be aligned to the RAID stripe size in the future and that
748 		 * is more important than the RPC size.
749 		 */
750 		/* Note: we only trim the RPC, instead of extending the RPC
751 		 * to the boundary, so to avoid reading too much pages during
752 		 * random reading. */
753 		rpc_boundary = (end + 1) & (~(PTLRPC_MAX_BRW_PAGES - 1));
754 		if (rpc_boundary > 0)
755 			rpc_boundary--;
756 
757 		if (rpc_boundary  > start)
758 			end = rpc_boundary;
759 
760 		/* Truncate RA window to end of file */
761 		end = min(end, (unsigned long)((kms - 1) >> PAGE_CACHE_SHIFT));
762 
763 		ras->ras_next_readahead = max(end, end + 1);
764 		RAS_CDEBUG(ras);
765 	}
766 	ria->ria_start = start;
767 	ria->ria_end = end;
768 	/* If stride I/O mode is detected, get stride window*/
769 	if (stride_io_mode(ras)) {
770 		ria->ria_stoff = ras->ras_stride_offset;
771 		ria->ria_length = ras->ras_stride_length;
772 		ria->ria_pages = ras->ras_stride_pages;
773 	}
774 	spin_unlock(&ras->ras_lock);
775 
776 	if (end == 0) {
777 		ll_ra_stats_inc(mapping, RA_STAT_ZERO_WINDOW);
778 		return 0;
779 	}
780 	len = ria_page_count(ria);
781 	if (len == 0)
782 		return 0;
783 
784 	reserved = ll_ra_count_get(ll_i2sbi(inode), ria, len);
785 	if (reserved < len)
786 		ll_ra_stats_inc(mapping, RA_STAT_MAX_IN_FLIGHT);
787 
788 	CDEBUG(D_READA, "reserved page %lu ra_cur %d ra_max %lu\n", reserved,
789 	       atomic_read(&ll_i2sbi(inode)->ll_ra_info.ra_cur_pages),
790 	       ll_i2sbi(inode)->ll_ra_info.ra_max_pages);
791 
792 	ret = ll_read_ahead_pages(env, io, queue,
793 				  ria, &reserved, mapping, &ra_end);
794 
795 	LASSERTF(reserved >= 0, "reserved %lu\n", reserved);
796 	if (reserved != 0)
797 		ll_ra_count_put(ll_i2sbi(inode), reserved);
798 
799 	if (ra_end == end + 1 && ra_end == (kms >> PAGE_CACHE_SHIFT))
800 		ll_ra_stats_inc(mapping, RA_STAT_EOF);
801 
802 	/* if we didn't get to the end of the region we reserved from
803 	 * the ras we need to go back and update the ras so that the
804 	 * next read-ahead tries from where we left off.  we only do so
805 	 * if the region we failed to issue read-ahead on is still ahead
806 	 * of the app and behind the next index to start read-ahead from */
807 	CDEBUG(D_READA, "ra_end %lu end %lu stride end %lu \n",
808 	       ra_end, end, ria->ria_end);
809 
810 	if (ra_end != end + 1) {
811 		spin_lock(&ras->ras_lock);
812 		if (ra_end < ras->ras_next_readahead &&
813 		    index_in_window(ra_end, ras->ras_window_start, 0,
814 				    ras->ras_window_len)) {
815 			ras->ras_next_readahead = ra_end;
816 			RAS_CDEBUG(ras);
817 		}
818 		spin_unlock(&ras->ras_lock);
819 	}
820 
821 	return ret;
822 }
823 
ras_set_start(struct inode * inode,struct ll_readahead_state * ras,unsigned long index)824 static void ras_set_start(struct inode *inode, struct ll_readahead_state *ras,
825 			  unsigned long index)
826 {
827 	ras->ras_window_start = index & (~(RAS_INCREASE_STEP(inode) - 1));
828 }
829 
830 /* called with the ras_lock held or from places where it doesn't matter */
ras_reset(struct inode * inode,struct ll_readahead_state * ras,unsigned long index)831 static void ras_reset(struct inode *inode, struct ll_readahead_state *ras,
832 		      unsigned long index)
833 {
834 	ras->ras_last_readpage = index;
835 	ras->ras_consecutive_requests = 0;
836 	ras->ras_consecutive_pages = 0;
837 	ras->ras_window_len = 0;
838 	ras_set_start(inode, ras, index);
839 	ras->ras_next_readahead = max(ras->ras_window_start, index);
840 
841 	RAS_CDEBUG(ras);
842 }
843 
844 /* called with the ras_lock held or from places where it doesn't matter */
ras_stride_reset(struct ll_readahead_state * ras)845 static void ras_stride_reset(struct ll_readahead_state *ras)
846 {
847 	ras->ras_consecutive_stride_requests = 0;
848 	ras->ras_stride_length = 0;
849 	ras->ras_stride_pages = 0;
850 	RAS_CDEBUG(ras);
851 }
852 
ll_readahead_init(struct inode * inode,struct ll_readahead_state * ras)853 void ll_readahead_init(struct inode *inode, struct ll_readahead_state *ras)
854 {
855 	spin_lock_init(&ras->ras_lock);
856 	ras_reset(inode, ras, 0);
857 	ras->ras_requests = 0;
858 	INIT_LIST_HEAD(&ras->ras_read_beads);
859 }
860 
861 /*
862  * Check whether the read request is in the stride window.
863  * If it is in the stride window, return 1, otherwise return 0.
864  */
index_in_stride_window(struct ll_readahead_state * ras,unsigned long index)865 static int index_in_stride_window(struct ll_readahead_state *ras,
866 				  unsigned long index)
867 {
868 	unsigned long stride_gap;
869 
870 	if (ras->ras_stride_length == 0 || ras->ras_stride_pages == 0 ||
871 	    ras->ras_stride_pages == ras->ras_stride_length)
872 		return 0;
873 
874 	stride_gap = index - ras->ras_last_readpage - 1;
875 
876 	/* If it is contiguous read */
877 	if (stride_gap == 0)
878 		return ras->ras_consecutive_pages + 1 <= ras->ras_stride_pages;
879 
880 	/* Otherwise check the stride by itself */
881 	return (ras->ras_stride_length - ras->ras_stride_pages) == stride_gap &&
882 		ras->ras_consecutive_pages == ras->ras_stride_pages;
883 }
884 
ras_update_stride_detector(struct ll_readahead_state * ras,unsigned long index)885 static void ras_update_stride_detector(struct ll_readahead_state *ras,
886 				       unsigned long index)
887 {
888 	unsigned long stride_gap = index - ras->ras_last_readpage - 1;
889 
890 	if (!stride_io_mode(ras) && (stride_gap != 0 ||
891 	     ras->ras_consecutive_stride_requests == 0)) {
892 		ras->ras_stride_pages = ras->ras_consecutive_pages;
893 		ras->ras_stride_length = stride_gap +ras->ras_consecutive_pages;
894 	}
895 	LASSERT(ras->ras_request_index == 0);
896 	LASSERT(ras->ras_consecutive_stride_requests == 0);
897 
898 	if (index <= ras->ras_last_readpage) {
899 		/*Reset stride window for forward read*/
900 		ras_stride_reset(ras);
901 		return;
902 	}
903 
904 	ras->ras_stride_pages = ras->ras_consecutive_pages;
905 	ras->ras_stride_length = stride_gap +ras->ras_consecutive_pages;
906 
907 	RAS_CDEBUG(ras);
908 	return;
909 }
910 
911 static unsigned long
stride_page_count(struct ll_readahead_state * ras,unsigned long len)912 stride_page_count(struct ll_readahead_state *ras, unsigned long len)
913 {
914 	return stride_pg_count(ras->ras_stride_offset, ras->ras_stride_length,
915 			       ras->ras_stride_pages, ras->ras_stride_offset,
916 			       len);
917 }
918 
919 /* Stride Read-ahead window will be increased inc_len according to
920  * stride I/O pattern */
ras_stride_increase_window(struct ll_readahead_state * ras,struct ll_ra_info * ra,unsigned long inc_len)921 static void ras_stride_increase_window(struct ll_readahead_state *ras,
922 				       struct ll_ra_info *ra,
923 				       unsigned long inc_len)
924 {
925 	unsigned long left, step, window_len;
926 	unsigned long stride_len;
927 
928 	LASSERT(ras->ras_stride_length > 0);
929 	LASSERTF(ras->ras_window_start + ras->ras_window_len
930 		 >= ras->ras_stride_offset, "window_start %lu, window_len %lu stride_offset %lu\n",
931 		 ras->ras_window_start,
932 		 ras->ras_window_len, ras->ras_stride_offset);
933 
934 	stride_len = ras->ras_window_start + ras->ras_window_len -
935 		     ras->ras_stride_offset;
936 
937 	left = stride_len % ras->ras_stride_length;
938 	window_len = ras->ras_window_len - left;
939 
940 	if (left < ras->ras_stride_pages)
941 		left += inc_len;
942 	else
943 		left = ras->ras_stride_pages + inc_len;
944 
945 	LASSERT(ras->ras_stride_pages != 0);
946 
947 	step = left / ras->ras_stride_pages;
948 	left %= ras->ras_stride_pages;
949 
950 	window_len += step * ras->ras_stride_length + left;
951 
952 	if (stride_page_count(ras, window_len) <= ra->ra_max_pages_per_file)
953 		ras->ras_window_len = window_len;
954 
955 	RAS_CDEBUG(ras);
956 }
957 
ras_increase_window(struct inode * inode,struct ll_readahead_state * ras,struct ll_ra_info * ra)958 static void ras_increase_window(struct inode *inode,
959 				struct ll_readahead_state *ras,
960 				struct ll_ra_info *ra)
961 {
962 	/* The stretch of ra-window should be aligned with max rpc_size
963 	 * but current clio architecture does not support retrieve such
964 	 * information from lower layer. FIXME later
965 	 */
966 	if (stride_io_mode(ras))
967 		ras_stride_increase_window(ras, ra, RAS_INCREASE_STEP(inode));
968 	else
969 		ras->ras_window_len = min(ras->ras_window_len +
970 					  RAS_INCREASE_STEP(inode),
971 					  ra->ra_max_pages_per_file);
972 }
973 
ras_update(struct ll_sb_info * sbi,struct inode * inode,struct ll_readahead_state * ras,unsigned long index,unsigned hit)974 void ras_update(struct ll_sb_info *sbi, struct inode *inode,
975 		struct ll_readahead_state *ras, unsigned long index,
976 		unsigned hit)
977 {
978 	struct ll_ra_info *ra = &sbi->ll_ra_info;
979 	int zero = 0, stride_detect = 0, ra_miss = 0;
980 
981 	spin_lock(&ras->ras_lock);
982 
983 	ll_ra_stats_inc_sbi(sbi, hit ? RA_STAT_HIT : RA_STAT_MISS);
984 
985 	/* reset the read-ahead window in two cases.  First when the app seeks
986 	 * or reads to some other part of the file.  Secondly if we get a
987 	 * read-ahead miss that we think we've previously issued.  This can
988 	 * be a symptom of there being so many read-ahead pages that the VM is
989 	 * reclaiming it before we get to it. */
990 	if (!index_in_window(index, ras->ras_last_readpage, 8, 8)) {
991 		zero = 1;
992 		ll_ra_stats_inc_sbi(sbi, RA_STAT_DISTANT_READPAGE);
993 	} else if (!hit && ras->ras_window_len &&
994 		   index < ras->ras_next_readahead &&
995 		   index_in_window(index, ras->ras_window_start, 0,
996 				   ras->ras_window_len)) {
997 		ra_miss = 1;
998 		ll_ra_stats_inc_sbi(sbi, RA_STAT_MISS_IN_WINDOW);
999 	}
1000 
1001 	/* On the second access to a file smaller than the tunable
1002 	 * ra_max_read_ahead_whole_pages trigger RA on all pages in the
1003 	 * file up to ra_max_pages_per_file.  This is simply a best effort
1004 	 * and only occurs once per open file.  Normal RA behavior is reverted
1005 	 * to for subsequent IO.  The mmap case does not increment
1006 	 * ras_requests and thus can never trigger this behavior. */
1007 	if (ras->ras_requests == 2 && !ras->ras_request_index) {
1008 		__u64 kms_pages;
1009 
1010 		kms_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1011 			    PAGE_CACHE_SHIFT;
1012 
1013 		CDEBUG(D_READA, "kmsp %llu mwp %lu mp %lu\n", kms_pages,
1014 		       ra->ra_max_read_ahead_whole_pages, ra->ra_max_pages_per_file);
1015 
1016 		if (kms_pages &&
1017 		    kms_pages <= ra->ra_max_read_ahead_whole_pages) {
1018 			ras->ras_window_start = 0;
1019 			ras->ras_last_readpage = 0;
1020 			ras->ras_next_readahead = 0;
1021 			ras->ras_window_len = min(ra->ra_max_pages_per_file,
1022 				ra->ra_max_read_ahead_whole_pages);
1023 			goto out_unlock;
1024 		}
1025 	}
1026 	if (zero) {
1027 		/* check whether it is in stride I/O mode*/
1028 		if (!index_in_stride_window(ras, index)) {
1029 			if (ras->ras_consecutive_stride_requests == 0 &&
1030 			    ras->ras_request_index == 0) {
1031 				ras_update_stride_detector(ras, index);
1032 				ras->ras_consecutive_stride_requests++;
1033 			} else {
1034 				ras_stride_reset(ras);
1035 			}
1036 			ras_reset(inode, ras, index);
1037 			ras->ras_consecutive_pages++;
1038 			goto out_unlock;
1039 		} else {
1040 			ras->ras_consecutive_pages = 0;
1041 			ras->ras_consecutive_requests = 0;
1042 			if (++ras->ras_consecutive_stride_requests > 1)
1043 				stride_detect = 1;
1044 			RAS_CDEBUG(ras);
1045 		}
1046 	} else {
1047 		if (ra_miss) {
1048 			if (index_in_stride_window(ras, index) &&
1049 			    stride_io_mode(ras)) {
1050 				/*If stride-RA hit cache miss, the stride dector
1051 				 *will not be reset to avoid the overhead of
1052 				 *redetecting read-ahead mode */
1053 				if (index != ras->ras_last_readpage + 1)
1054 					ras->ras_consecutive_pages = 0;
1055 				ras_reset(inode, ras, index);
1056 				RAS_CDEBUG(ras);
1057 			} else {
1058 				/* Reset both stride window and normal RA
1059 				 * window */
1060 				ras_reset(inode, ras, index);
1061 				ras->ras_consecutive_pages++;
1062 				ras_stride_reset(ras);
1063 				goto out_unlock;
1064 			}
1065 		} else if (stride_io_mode(ras)) {
1066 			/* If this is contiguous read but in stride I/O mode
1067 			 * currently, check whether stride step still is valid,
1068 			 * if invalid, it will reset the stride ra window*/
1069 			if (!index_in_stride_window(ras, index)) {
1070 				/* Shrink stride read-ahead window to be zero */
1071 				ras_stride_reset(ras);
1072 				ras->ras_window_len = 0;
1073 				ras->ras_next_readahead = index;
1074 			}
1075 		}
1076 	}
1077 	ras->ras_consecutive_pages++;
1078 	ras->ras_last_readpage = index;
1079 	ras_set_start(inode, ras, index);
1080 
1081 	if (stride_io_mode(ras))
1082 		/* Since stride readahead is sensitive to the offset
1083 		 * of read-ahead, so we use original offset here,
1084 		 * instead of ras_window_start, which is RPC aligned */
1085 		ras->ras_next_readahead = max(index, ras->ras_next_readahead);
1086 	else
1087 		ras->ras_next_readahead = max(ras->ras_window_start,
1088 					      ras->ras_next_readahead);
1089 	RAS_CDEBUG(ras);
1090 
1091 	/* Trigger RA in the mmap case where ras_consecutive_requests
1092 	 * is not incremented and thus can't be used to trigger RA */
1093 	if (!ras->ras_window_len && ras->ras_consecutive_pages == 4) {
1094 		ras->ras_window_len = RAS_INCREASE_STEP(inode);
1095 		goto out_unlock;
1096 	}
1097 
1098 	/* Initially reset the stride window offset to next_readahead*/
1099 	if (ras->ras_consecutive_stride_requests == 2 && stride_detect) {
1100 		/**
1101 		 * Once stride IO mode is detected, next_readahead should be
1102 		 * reset to make sure next_readahead > stride offset
1103 		 */
1104 		ras->ras_next_readahead = max(index, ras->ras_next_readahead);
1105 		ras->ras_stride_offset = index;
1106 		ras->ras_window_len = RAS_INCREASE_STEP(inode);
1107 	}
1108 
1109 	/* The initial ras_window_len is set to the request size.  To avoid
1110 	 * uselessly reading and discarding pages for random IO the window is
1111 	 * only increased once per consecutive request received. */
1112 	if ((ras->ras_consecutive_requests > 1 || stride_detect) &&
1113 	    !ras->ras_request_index)
1114 		ras_increase_window(inode, ras, ra);
1115 out_unlock:
1116 	RAS_CDEBUG(ras);
1117 	ras->ras_request_index++;
1118 	spin_unlock(&ras->ras_lock);
1119 	return;
1120 }
1121 
ll_writepage(struct page * vmpage,struct writeback_control * wbc)1122 int ll_writepage(struct page *vmpage, struct writeback_control *wbc)
1123 {
1124 	struct inode	       *inode = vmpage->mapping->host;
1125 	struct ll_inode_info   *lli   = ll_i2info(inode);
1126 	struct lu_env	  *env;
1127 	struct cl_io	   *io;
1128 	struct cl_page	 *page;
1129 	struct cl_object       *clob;
1130 	struct cl_env_nest      nest;
1131 	bool redirtied = false;
1132 	bool unlocked = false;
1133 	int result;
1134 
1135 	LASSERT(PageLocked(vmpage));
1136 	LASSERT(!PageWriteback(vmpage));
1137 
1138 	LASSERT(ll_i2dtexp(inode) != NULL);
1139 
1140 	env = cl_env_nested_get(&nest);
1141 	if (IS_ERR(env)) {
1142 		result = PTR_ERR(env);
1143 		goto out;
1144 	}
1145 
1146 	clob  = ll_i2info(inode)->lli_clob;
1147 	LASSERT(clob != NULL);
1148 
1149 	io = ccc_env_thread_io(env);
1150 	io->ci_obj = clob;
1151 	io->ci_ignore_layout = 1;
1152 	result = cl_io_init(env, io, CIT_MISC, clob);
1153 	if (result == 0) {
1154 		page = cl_page_find(env, clob, vmpage->index,
1155 				    vmpage, CPT_CACHEABLE);
1156 		if (!IS_ERR(page)) {
1157 			lu_ref_add(&page->cp_reference, "writepage",
1158 				   current);
1159 			cl_page_assume(env, io, page);
1160 			result = cl_page_flush(env, io, page);
1161 			if (result != 0) {
1162 				/*
1163 				 * Re-dirty page on error so it retries write,
1164 				 * but not in case when IO has actually
1165 				 * occurred and completed with an error.
1166 				 */
1167 				if (!PageError(vmpage)) {
1168 					redirty_page_for_writepage(wbc, vmpage);
1169 					result = 0;
1170 					redirtied = true;
1171 				}
1172 			}
1173 			cl_page_disown(env, io, page);
1174 			unlocked = true;
1175 			lu_ref_del(&page->cp_reference,
1176 				   "writepage", current);
1177 			cl_page_put(env, page);
1178 		} else {
1179 			result = PTR_ERR(page);
1180 		}
1181 	}
1182 	cl_io_fini(env, io);
1183 
1184 	if (redirtied && wbc->sync_mode == WB_SYNC_ALL) {
1185 		loff_t offset = cl_offset(clob, vmpage->index);
1186 
1187 		/* Flush page failed because the extent is being written out.
1188 		 * Wait for the write of extent to be finished to avoid
1189 		 * breaking kernel which assumes ->writepage should mark
1190 		 * PageWriteback or clean the page. */
1191 		result = cl_sync_file_range(inode, offset,
1192 					    offset + PAGE_CACHE_SIZE - 1,
1193 					    CL_FSYNC_LOCAL, 1);
1194 		if (result > 0) {
1195 			/* actually we may have written more than one page.
1196 			 * decreasing this page because the caller will count
1197 			 * it. */
1198 			wbc->nr_to_write -= result - 1;
1199 			result = 0;
1200 		}
1201 	}
1202 
1203 	cl_env_nested_put(&nest, env);
1204 	goto out;
1205 
1206 out:
1207 	if (result < 0) {
1208 		if (!lli->lli_async_rc)
1209 			lli->lli_async_rc = result;
1210 		SetPageError(vmpage);
1211 		if (!unlocked)
1212 			unlock_page(vmpage);
1213 	}
1214 	return result;
1215 }
1216 
ll_writepages(struct address_space * mapping,struct writeback_control * wbc)1217 int ll_writepages(struct address_space *mapping, struct writeback_control *wbc)
1218 {
1219 	struct inode *inode = mapping->host;
1220 	struct ll_sb_info *sbi = ll_i2sbi(inode);
1221 	loff_t start;
1222 	loff_t end;
1223 	enum cl_fsync_mode mode;
1224 	int range_whole = 0;
1225 	int result;
1226 	int ignore_layout = 0;
1227 
1228 	if (wbc->range_cyclic) {
1229 		start = mapping->writeback_index << PAGE_CACHE_SHIFT;
1230 		end = OBD_OBJECT_EOF;
1231 	} else {
1232 		start = wbc->range_start;
1233 		end = wbc->range_end;
1234 		if (end == LLONG_MAX) {
1235 			end = OBD_OBJECT_EOF;
1236 			range_whole = start == 0;
1237 		}
1238 	}
1239 
1240 	mode = CL_FSYNC_NONE;
1241 	if (wbc->sync_mode == WB_SYNC_ALL)
1242 		mode = CL_FSYNC_LOCAL;
1243 
1244 	if (sbi->ll_umounting)
1245 		/* if the mountpoint is being umounted, all pages have to be
1246 		 * evicted to avoid hitting LBUG when truncate_inode_pages()
1247 		 * is called later on. */
1248 		ignore_layout = 1;
1249 	result = cl_sync_file_range(inode, start, end, mode, ignore_layout);
1250 	if (result > 0) {
1251 		wbc->nr_to_write -= result;
1252 		result = 0;
1253 	 }
1254 
1255 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) {
1256 		if (end == OBD_OBJECT_EOF)
1257 			end = i_size_read(inode);
1258 		mapping->writeback_index = (end >> PAGE_CACHE_SHIFT) + 1;
1259 	}
1260 	return result;
1261 }
1262 
ll_readpage(struct file * file,struct page * vmpage)1263 int ll_readpage(struct file *file, struct page *vmpage)
1264 {
1265 	struct ll_cl_context *lcc;
1266 	int result;
1267 
1268 	lcc = ll_cl_init(file, vmpage, 0);
1269 	if (!IS_ERR(lcc)) {
1270 		struct lu_env  *env  = lcc->lcc_env;
1271 		struct cl_io   *io   = lcc->lcc_io;
1272 		struct cl_page *page = lcc->lcc_page;
1273 
1274 		LASSERT(page->cp_type == CPT_CACHEABLE);
1275 		if (likely(!PageUptodate(vmpage))) {
1276 			cl_page_assume(env, io, page);
1277 			result = cl_io_read_page(env, io, page);
1278 		} else {
1279 			/* Page from a non-object file. */
1280 			unlock_page(vmpage);
1281 			result = 0;
1282 		}
1283 		ll_cl_fini(lcc);
1284 	} else {
1285 		unlock_page(vmpage);
1286 		result = PTR_ERR(lcc);
1287 	}
1288 	return result;
1289 }
1290