1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  */
36 
37 #ifndef __LUSTRE_LU_OBJECT_H
38 #define __LUSTRE_LU_OBJECT_H
39 
40 #include <stdarg.h>
41 #include "../../include/linux/libcfs/libcfs.h"
42 #include "lustre/lustre_idl.h"
43 #include "lu_ref.h"
44 
45 struct seq_file;
46 struct proc_dir_entry;
47 struct lustre_cfg;
48 struct lprocfs_stats;
49 
50 /** \defgroup lu lu
51  * lu_* data-types represent server-side entities shared by data and meta-data
52  * stacks.
53  *
54  * Design goals:
55  *
56  * -# support for layering.
57  *
58  *     Server side object is split into layers, one per device in the
59  *     corresponding device stack. Individual layer is represented by struct
60  *     lu_object. Compound layered object --- by struct lu_object_header. Most
61  *     interface functions take lu_object as an argument and operate on the
62  *     whole compound object. This decision was made due to the following
63  *     reasons:
64  *
65  *	- it's envisaged that lu_object will be used much more often than
66  *	lu_object_header;
67  *
68  *	- we want lower (non-top) layers to be able to initiate operations
69  *	on the whole object.
70  *
71  *     Generic code supports layering more complex than simple stacking, e.g.,
72  *     it is possible that at some layer object "spawns" multiple sub-objects
73  *     on the lower layer.
74  *
75  * -# fid-based identification.
76  *
77  *     Compound object is uniquely identified by its fid. Objects are indexed
78  *     by their fids (hash table is used for index).
79  *
80  * -# caching and life-cycle management.
81  *
82  *     Object's life-time is controlled by reference counting. When reference
83  *     count drops to 0, object is returned to cache. Cached objects still
84  *     retain their identity (i.e., fid), and can be recovered from cache.
85  *
86  *     Objects are kept in the global LRU list, and lu_site_purge() function
87  *     can be used to reclaim given number of unused objects from the tail of
88  *     the LRU.
89  *
90  * -# avoiding recursion.
91  *
92  *     Generic code tries to replace recursion through layers by iterations
93  *     where possible. Additionally to the end of reducing stack consumption,
94  *     data, when practically possible, are allocated through lu_context_key
95  *     interface rather than on stack.
96  * @{
97  */
98 
99 struct lu_site;
100 struct lu_object;
101 struct lu_device;
102 struct lu_object_header;
103 struct lu_context;
104 struct lu_env;
105 
106 /**
107  * Operations common for data and meta-data devices.
108  */
109 struct lu_device_operations {
110 	/**
111 	 * Allocate object for the given device (without lower-layer
112 	 * parts). This is called by lu_object_operations::loo_object_init()
113 	 * from the parent layer, and should setup at least lu_object::lo_dev
114 	 * and lu_object::lo_ops fields of resulting lu_object.
115 	 *
116 	 * Object creation protocol.
117 	 *
118 	 * Due to design goal of avoiding recursion, object creation (see
119 	 * lu_object_alloc()) is somewhat involved:
120 	 *
121 	 *  - first, lu_device_operations::ldo_object_alloc() method of the
122 	 *  top-level device in the stack is called. It should allocate top
123 	 *  level object (including lu_object_header), but without any
124 	 *  lower-layer sub-object(s).
125 	 *
126 	 *  - then lu_object_alloc() sets fid in the header of newly created
127 	 *  object.
128 	 *
129 	 *  - then lu_object_operations::loo_object_init() is called. It has
130 	 *  to allocate lower-layer object(s). To do this,
131 	 *  lu_object_operations::loo_object_init() calls ldo_object_alloc()
132 	 *  of the lower-layer device(s).
133 	 *
134 	 *  - for all new objects allocated by
135 	 *  lu_object_operations::loo_object_init() (and inserted into object
136 	 *  stack), lu_object_operations::loo_object_init() is called again
137 	 *  repeatedly, until no new objects are created.
138 	 *
139 	 * \post ergo(!IS_ERR(result), result->lo_dev == d &&
140 	 *			     result->lo_ops != NULL);
141 	 */
142 	struct lu_object *(*ldo_object_alloc)(const struct lu_env *env,
143 					      const struct lu_object_header *h,
144 					      struct lu_device *d);
145 	/**
146 	 * process config specific for device.
147 	 */
148 	int (*ldo_process_config)(const struct lu_env *env,
149 				  struct lu_device *, struct lustre_cfg *);
150 	int (*ldo_recovery_complete)(const struct lu_env *,
151 				     struct lu_device *);
152 
153 	/**
154 	 * initialize local objects for device. this method called after layer has
155 	 * been initialized (after LCFG_SETUP stage) and before it starts serving
156 	 * user requests.
157 	 */
158 
159 	int (*ldo_prepare)(const struct lu_env *,
160 			   struct lu_device *parent,
161 			   struct lu_device *dev);
162 
163 };
164 
165 /**
166  * For lu_object_conf flags
167  */
168 typedef enum {
169 	/* This is a new object to be allocated, or the file
170 	 * corresponding to the object does not exists. */
171 	LOC_F_NEW	= 0x00000001,
172 } loc_flags_t;
173 
174 /**
175  * Object configuration, describing particulars of object being created. On
176  * server this is not used, as server objects are full identified by fid. On
177  * client configuration contains struct lustre_md.
178  */
179 struct lu_object_conf {
180 	/**
181 	 * Some hints for obj find and alloc.
182 	 */
183 	loc_flags_t     loc_flags;
184 };
185 
186 /**
187  * Type of "printer" function used by lu_object_operations::loo_object_print()
188  * method.
189  *
190  * Printer function is needed to provide some flexibility in (semi-)debugging
191  * output: possible implementations: printk, CDEBUG, sysfs/seq_file
192  */
193 typedef int (*lu_printer_t)(const struct lu_env *env,
194 			    void *cookie, const char *format, ...)
195 	__printf(3, 4);
196 
197 /**
198  * Operations specific for particular lu_object.
199  */
200 struct lu_object_operations {
201 
202 	/**
203 	 * Allocate lower-layer parts of the object by calling
204 	 * lu_device_operations::ldo_object_alloc() of the corresponding
205 	 * underlying device.
206 	 *
207 	 * This method is called once for each object inserted into object
208 	 * stack. It's responsibility of this method to insert lower-layer
209 	 * object(s) it create into appropriate places of object stack.
210 	 */
211 	int (*loo_object_init)(const struct lu_env *env,
212 			       struct lu_object *o,
213 			       const struct lu_object_conf *conf);
214 	/**
215 	 * Called (in top-to-bottom order) during object allocation after all
216 	 * layers were allocated and initialized. Can be used to perform
217 	 * initialization depending on lower layers.
218 	 */
219 	int (*loo_object_start)(const struct lu_env *env,
220 				struct lu_object *o);
221 	/**
222 	 * Called before lu_object_operations::loo_object_free() to signal
223 	 * that object is being destroyed. Dual to
224 	 * lu_object_operations::loo_object_init().
225 	 */
226 	void (*loo_object_delete)(const struct lu_env *env,
227 				  struct lu_object *o);
228 	/**
229 	 * Dual to lu_device_operations::ldo_object_alloc(). Called when
230 	 * object is removed from memory.
231 	 */
232 	void (*loo_object_free)(const struct lu_env *env,
233 				struct lu_object *o);
234 	/**
235 	 * Called when last active reference to the object is released (and
236 	 * object returns to the cache). This method is optional.
237 	 */
238 	void (*loo_object_release)(const struct lu_env *env,
239 				   struct lu_object *o);
240 	/**
241 	 * Optional debugging helper. Print given object.
242 	 */
243 	int (*loo_object_print)(const struct lu_env *env, void *cookie,
244 				lu_printer_t p, const struct lu_object *o);
245 	/**
246 	 * Optional debugging method. Returns true iff method is internally
247 	 * consistent.
248 	 */
249 	int (*loo_object_invariant)(const struct lu_object *o);
250 };
251 
252 /**
253  * Type of lu_device.
254  */
255 struct lu_device_type;
256 
257 /**
258  * Device: a layer in the server side abstraction stacking.
259  */
260 struct lu_device {
261 	/**
262 	 * reference count. This is incremented, in particular, on each object
263 	 * created at this layer.
264 	 *
265 	 * \todo XXX which means that atomic_t is probably too small.
266 	 */
267 	atomic_t		       ld_ref;
268 	/**
269 	 * Pointer to device type. Never modified once set.
270 	 */
271 	struct lu_device_type       *ld_type;
272 	/**
273 	 * Operation vector for this device.
274 	 */
275 	const struct lu_device_operations *ld_ops;
276 	/**
277 	 * Stack this device belongs to.
278 	 */
279 	struct lu_site		    *ld_site;
280 	struct proc_dir_entry	     *ld_proc_entry;
281 
282 	/** \todo XXX: temporary back pointer into obd. */
283 	struct obd_device		 *ld_obd;
284 	/**
285 	 * A list of references to this object, for debugging.
286 	 */
287 	struct lu_ref		      ld_reference;
288 	/**
289 	 * Link the device to the site.
290 	 **/
291 	struct list_head			 ld_linkage;
292 };
293 
294 struct lu_device_type_operations;
295 
296 /**
297  * Tag bits for device type. They are used to distinguish certain groups of
298  * device types.
299  */
300 enum lu_device_tag {
301 	/** this is meta-data device */
302 	LU_DEVICE_MD = (1 << 0),
303 	/** this is data device */
304 	LU_DEVICE_DT = (1 << 1),
305 	/** data device in the client stack */
306 	LU_DEVICE_CL = (1 << 2)
307 };
308 
309 /**
310  * Type of device.
311  */
312 struct lu_device_type {
313 	/**
314 	 * Tag bits. Taken from enum lu_device_tag. Never modified once set.
315 	 */
316 	__u32				   ldt_tags;
317 	/**
318 	 * Name of this class. Unique system-wide. Never modified once set.
319 	 */
320 	char				   *ldt_name;
321 	/**
322 	 * Operations for this type.
323 	 */
324 	const struct lu_device_type_operations *ldt_ops;
325 	/**
326 	 * \todo XXX: temporary pointer to associated obd_type.
327 	 */
328 	struct obd_type			*ldt_obd_type;
329 	/**
330 	 * \todo XXX: temporary: context tags used by obd_*() calls.
331 	 */
332 	__u32				   ldt_ctx_tags;
333 	/**
334 	 * Number of existing device type instances.
335 	 */
336 	unsigned				ldt_device_nr;
337 	/**
338 	 * Linkage into a global list of all device types.
339 	 *
340 	 * \see lu_device_types.
341 	 */
342 	struct list_head			      ldt_linkage;
343 };
344 
345 /**
346  * Operations on a device type.
347  */
348 struct lu_device_type_operations {
349 	/**
350 	 * Allocate new device.
351 	 */
352 	struct lu_device *(*ldto_device_alloc)(const struct lu_env *env,
353 					       struct lu_device_type *t,
354 					       struct lustre_cfg *lcfg);
355 	/**
356 	 * Free device. Dual to
357 	 * lu_device_type_operations::ldto_device_alloc(). Returns pointer to
358 	 * the next device in the stack.
359 	 */
360 	struct lu_device *(*ldto_device_free)(const struct lu_env *,
361 					      struct lu_device *);
362 
363 	/**
364 	 * Initialize the devices after allocation
365 	 */
366 	int  (*ldto_device_init)(const struct lu_env *env,
367 				 struct lu_device *, const char *,
368 				 struct lu_device *);
369 	/**
370 	 * Finalize device. Dual to
371 	 * lu_device_type_operations::ldto_device_init(). Returns pointer to
372 	 * the next device in the stack.
373 	 */
374 	struct lu_device *(*ldto_device_fini)(const struct lu_env *env,
375 					      struct lu_device *);
376 	/**
377 	 * Initialize device type. This is called on module load.
378 	 */
379 	int  (*ldto_init)(struct lu_device_type *t);
380 	/**
381 	 * Finalize device type. Dual to
382 	 * lu_device_type_operations::ldto_init(). Called on module unload.
383 	 */
384 	void (*ldto_fini)(struct lu_device_type *t);
385 	/**
386 	 * Called when the first device is created.
387 	 */
388 	void (*ldto_start)(struct lu_device_type *t);
389 	/**
390 	 * Called when number of devices drops to 0.
391 	 */
392 	void (*ldto_stop)(struct lu_device_type *t);
393 };
394 
lu_device_is_md(const struct lu_device * d)395 static inline int lu_device_is_md(const struct lu_device *d)
396 {
397 	return ergo(d != NULL, d->ld_type->ldt_tags & LU_DEVICE_MD);
398 }
399 
400 /**
401  * Common object attributes.
402  */
403 struct lu_attr {
404 	/** size in bytes */
405 	__u64	  la_size;
406 	/** modification time in seconds since Epoch */
407 	s64	  la_mtime;
408 	/** access time in seconds since Epoch */
409 	s64	  la_atime;
410 	/** change time in seconds since Epoch */
411 	s64	  la_ctime;
412 	/** 512-byte blocks allocated to object */
413 	__u64	  la_blocks;
414 	/** permission bits and file type */
415 	__u32	  la_mode;
416 	/** owner id */
417 	__u32	  la_uid;
418 	/** group id */
419 	__u32	  la_gid;
420 	/** object flags */
421 	__u32	  la_flags;
422 	/** number of persistent references to this object */
423 	__u32	  la_nlink;
424 	/** blk bits of the object*/
425 	__u32	  la_blkbits;
426 	/** blk size of the object*/
427 	__u32	  la_blksize;
428 	/** real device */
429 	__u32	  la_rdev;
430 	/**
431 	 * valid bits
432 	 *
433 	 * \see enum la_valid
434 	 */
435 	__u64	  la_valid;
436 };
437 
438 /** Bit-mask of valid attributes */
439 enum la_valid {
440 	LA_ATIME = 1 << 0,
441 	LA_MTIME = 1 << 1,
442 	LA_CTIME = 1 << 2,
443 	LA_SIZE  = 1 << 3,
444 	LA_MODE  = 1 << 4,
445 	LA_UID   = 1 << 5,
446 	LA_GID   = 1 << 6,
447 	LA_BLOCKS = 1 << 7,
448 	LA_TYPE   = 1 << 8,
449 	LA_FLAGS  = 1 << 9,
450 	LA_NLINK  = 1 << 10,
451 	LA_RDEV   = 1 << 11,
452 	LA_BLKSIZE = 1 << 12,
453 	LA_KILL_SUID = 1 << 13,
454 	LA_KILL_SGID = 1 << 14,
455 };
456 
457 /**
458  * Layer in the layered object.
459  */
460 struct lu_object {
461 	/**
462 	 * Header for this object.
463 	 */
464 	struct lu_object_header	   *lo_header;
465 	/**
466 	 * Device for this layer.
467 	 */
468 	struct lu_device		  *lo_dev;
469 	/**
470 	 * Operations for this object.
471 	 */
472 	const struct lu_object_operations *lo_ops;
473 	/**
474 	 * Linkage into list of all layers.
475 	 */
476 	struct list_head			 lo_linkage;
477 	/**
478 	 * Link to the device, for debugging.
479 	 */
480 	struct lu_ref_link                 lo_dev_ref;
481 };
482 
483 enum lu_object_header_flags {
484 	/**
485 	 * Don't keep this object in cache. Object will be destroyed as soon
486 	 * as last reference to it is released. This flag cannot be cleared
487 	 * once set.
488 	 */
489 	LU_OBJECT_HEARD_BANSHEE = 0,
490 	/**
491 	 * Mark this object has already been taken out of cache.
492 	 */
493 	LU_OBJECT_UNHASHED = 1
494 };
495 
496 enum lu_object_header_attr {
497 	LOHA_EXISTS   = 1 << 0,
498 	LOHA_REMOTE   = 1 << 1,
499 	/**
500 	 * UNIX file type is stored in S_IFMT bits.
501 	 */
502 	LOHA_FT_START = 001 << 12, /**< S_IFIFO */
503 	LOHA_FT_END   = 017 << 12, /**< S_IFMT */
504 };
505 
506 /**
507  * "Compound" object, consisting of multiple layers.
508  *
509  * Compound object with given fid is unique with given lu_site.
510  *
511  * Note, that object does *not* necessary correspond to the real object in the
512  * persistent storage: object is an anchor for locking and method calling, so
513  * it is created for things like not-yet-existing child created by mkdir or
514  * create calls. lu_object_operations::loo_exists() can be used to check
515  * whether object is backed by persistent storage entity.
516  */
517 struct lu_object_header {
518 	/**
519 	 * Fid, uniquely identifying this object.
520 	 */
521 	struct lu_fid		loh_fid;
522 	/**
523 	 * Object flags from enum lu_object_header_flags. Set and checked
524 	 * atomically.
525 	 */
526 	unsigned long	  loh_flags;
527 	/**
528 	 * Object reference count. Protected by lu_site::ls_guard.
529 	 */
530 	atomic_t	   loh_ref;
531 	/**
532 	 * Common object attributes, cached for efficiency. From enum
533 	 * lu_object_header_attr.
534 	 */
535 	__u32		  loh_attr;
536 	/**
537 	 * Linkage into per-site hash table. Protected by lu_site::ls_guard.
538 	 */
539 	struct hlist_node       loh_hash;
540 	/**
541 	 * Linkage into per-site LRU list. Protected by lu_site::ls_guard.
542 	 */
543 	struct list_head	     loh_lru;
544 	/**
545 	 * Linkage into list of layers. Never modified once set (except lately
546 	 * during object destruction). No locking is necessary.
547 	 */
548 	struct list_head	     loh_layers;
549 	/**
550 	 * A list of references to this object, for debugging.
551 	 */
552 	struct lu_ref	  loh_reference;
553 };
554 
555 struct fld;
556 
557 struct lu_site_bkt_data {
558 	/**
559 	 * number of busy object on this bucket
560 	 */
561 	long		      lsb_busy;
562 	/**
563 	 * LRU list, updated on each access to object. Protected by
564 	 * bucket lock of lu_site::ls_obj_hash.
565 	 *
566 	 * "Cold" end of LRU is lu_site::ls_lru.next. Accessed object are
567 	 * moved to the lu_site::ls_lru.prev (this is due to the non-existence
568 	 * of list_for_each_entry_safe_reverse()).
569 	 */
570 	struct list_head		lsb_lru;
571 	/**
572 	 * Wait-queue signaled when an object in this site is ultimately
573 	 * destroyed (lu_object_free()). It is used by lu_object_find() to
574 	 * wait before re-trying when object in the process of destruction is
575 	 * found in the hash table.
576 	 *
577 	 * \see htable_lookup().
578 	 */
579 	wait_queue_head_t	       lsb_marche_funebre;
580 };
581 
582 enum {
583 	LU_SS_CREATED	 = 0,
584 	LU_SS_CACHE_HIT,
585 	LU_SS_CACHE_MISS,
586 	LU_SS_CACHE_RACE,
587 	LU_SS_CACHE_DEATH_RACE,
588 	LU_SS_LRU_PURGED,
589 	LU_SS_LAST_STAT
590 };
591 
592 /**
593  * lu_site is a "compartment" within which objects are unique, and LRU
594  * discipline is maintained.
595  *
596  * lu_site exists so that multiple layered stacks can co-exist in the same
597  * address space.
598  *
599  * lu_site has the same relation to lu_device as lu_object_header to
600  * lu_object.
601  */
602 struct lu_site {
603 	/**
604 	 * objects hash table
605 	 */
606 	struct cfs_hash	       *ls_obj_hash;
607 	/**
608 	 * index of bucket on hash table while purging
609 	 */
610 	int		       ls_purge_start;
611 	/**
612 	 * Top-level device for this stack.
613 	 */
614 	struct lu_device	 *ls_top_dev;
615 	/**
616 	 * Bottom-level device for this stack
617 	 */
618 	struct lu_device	*ls_bottom_dev;
619 	/**
620 	 * Linkage into global list of sites.
621 	 */
622 	struct list_head		ls_linkage;
623 	/**
624 	 * List for lu device for this site, protected
625 	 * by ls_ld_lock.
626 	 **/
627 	struct list_head		ls_ld_linkage;
628 	spinlock_t		ls_ld_lock;
629 
630 	/**
631 	 * lu_site stats
632 	 */
633 	struct lprocfs_stats	*ls_stats;
634 	/**
635 	 * XXX: a hack! fld has to find md_site via site, remove when possible
636 	 */
637 	struct seq_server_site	*ld_seq_site;
638 };
639 
640 static inline struct lu_site_bkt_data *
lu_site_bkt_from_fid(struct lu_site * site,struct lu_fid * fid)641 lu_site_bkt_from_fid(struct lu_site *site, struct lu_fid *fid)
642 {
643 	struct cfs_hash_bd bd;
644 
645 	cfs_hash_bd_get(site->ls_obj_hash, fid, &bd);
646 	return cfs_hash_bd_extra_get(site->ls_obj_hash, &bd);
647 }
648 
lu_site2seq(const struct lu_site * s)649 static inline struct seq_server_site *lu_site2seq(const struct lu_site *s)
650 {
651 	return s->ld_seq_site;
652 }
653 
654 /** \name ctors
655  * Constructors/destructors.
656  * @{
657  */
658 
659 int  lu_site_init	 (struct lu_site *s, struct lu_device *d);
660 void lu_site_fini	 (struct lu_site *s);
661 int  lu_site_init_finish  (struct lu_site *s);
662 void lu_stack_fini	(const struct lu_env *env, struct lu_device *top);
663 void lu_device_get	(struct lu_device *d);
664 void lu_device_put	(struct lu_device *d);
665 int  lu_device_init       (struct lu_device *d, struct lu_device_type *t);
666 void lu_device_fini       (struct lu_device *d);
667 int  lu_object_header_init(struct lu_object_header *h);
668 void lu_object_header_fini(struct lu_object_header *h);
669 int  lu_object_init       (struct lu_object *o,
670 			   struct lu_object_header *h, struct lu_device *d);
671 void lu_object_fini       (struct lu_object *o);
672 void lu_object_add_top    (struct lu_object_header *h, struct lu_object *o);
673 void lu_object_add	(struct lu_object *before, struct lu_object *o);
674 
675 void lu_dev_add_linkage(struct lu_site *s, struct lu_device *d);
676 void lu_dev_del_linkage(struct lu_site *s, struct lu_device *d);
677 
678 /**
679  * Helpers to initialize and finalize device types.
680  */
681 
682 int  lu_device_type_init(struct lu_device_type *ldt);
683 void lu_device_type_fini(struct lu_device_type *ldt);
684 void lu_types_stop(void);
685 
686 /** @} ctors */
687 
688 /** \name caching
689  * Caching and reference counting.
690  * @{
691  */
692 
693 /**
694  * Acquire additional reference to the given object. This function is used to
695  * attain additional reference. To acquire initial reference use
696  * lu_object_find().
697  */
lu_object_get(struct lu_object * o)698 static inline void lu_object_get(struct lu_object *o)
699 {
700 	LASSERT(atomic_read(&o->lo_header->loh_ref) > 0);
701 	atomic_inc(&o->lo_header->loh_ref);
702 }
703 
704 /**
705  * Return true of object will not be cached after last reference to it is
706  * released.
707  */
lu_object_is_dying(const struct lu_object_header * h)708 static inline int lu_object_is_dying(const struct lu_object_header *h)
709 {
710 	return test_bit(LU_OBJECT_HEARD_BANSHEE, &h->loh_flags);
711 }
712 
713 void lu_object_put(const struct lu_env *env, struct lu_object *o);
714 void lu_object_put_nocache(const struct lu_env *env, struct lu_object *o);
715 void lu_object_unhash(const struct lu_env *env, struct lu_object *o);
716 
717 int lu_site_purge(const struct lu_env *env, struct lu_site *s, int nr);
718 
719 void lu_site_print(const struct lu_env *env, struct lu_site *s, void *cookie,
720 		   lu_printer_t printer);
721 struct lu_object *lu_object_find(const struct lu_env *env,
722 				 struct lu_device *dev, const struct lu_fid *f,
723 				 const struct lu_object_conf *conf);
724 struct lu_object *lu_object_find_at(const struct lu_env *env,
725 				    struct lu_device *dev,
726 				    const struct lu_fid *f,
727 				    const struct lu_object_conf *conf);
728 struct lu_object *lu_object_find_slice(const struct lu_env *env,
729 				       struct lu_device *dev,
730 				       const struct lu_fid *f,
731 				       const struct lu_object_conf *conf);
732 /** @} caching */
733 
734 /** \name helpers
735  * Helpers.
736  * @{
737  */
738 
739 /**
740  * First (topmost) sub-object of given compound object
741  */
lu_object_top(struct lu_object_header * h)742 static inline struct lu_object *lu_object_top(struct lu_object_header *h)
743 {
744 	LASSERT(!list_empty(&h->loh_layers));
745 	return container_of0(h->loh_layers.next, struct lu_object, lo_linkage);
746 }
747 
748 /**
749  * Next sub-object in the layering
750  */
lu_object_next(const struct lu_object * o)751 static inline struct lu_object *lu_object_next(const struct lu_object *o)
752 {
753 	return container_of0(o->lo_linkage.next, struct lu_object, lo_linkage);
754 }
755 
756 /**
757  * Pointer to the fid of this object.
758  */
lu_object_fid(const struct lu_object * o)759 static inline const struct lu_fid *lu_object_fid(const struct lu_object *o)
760 {
761 	return &o->lo_header->loh_fid;
762 }
763 
764 /**
765  * return device operations vector for this object
766  */
767 static const inline struct lu_device_operations *
lu_object_ops(const struct lu_object * o)768 lu_object_ops(const struct lu_object *o)
769 {
770 	return o->lo_dev->ld_ops;
771 }
772 
773 /**
774  * Given a compound object, find its slice, corresponding to the device type
775  * \a dtype.
776  */
777 struct lu_object *lu_object_locate(struct lu_object_header *h,
778 				   const struct lu_device_type *dtype);
779 
780 /**
781  * Printer function emitting messages through libcfs_debug_msg().
782  */
783 int lu_cdebug_printer(const struct lu_env *env,
784 		      void *cookie, const char *format, ...);
785 
786 /**
787  * Print object description followed by a user-supplied message.
788  */
789 #define LU_OBJECT_DEBUG(mask, env, object, format, ...)		   \
790 do {								      \
791 	LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, mask, NULL);		  \
792 									  \
793 	if (cfs_cdebug_show(mask, DEBUG_SUBSYSTEM)) {		     \
794 		lu_object_print(env, &msgdata, lu_cdebug_printer, object);\
795 		CDEBUG(mask, format , ## __VA_ARGS__);		    \
796 	}								 \
797 } while (0)
798 
799 /**
800  * Print short object description followed by a user-supplied message.
801  */
802 #define LU_OBJECT_HEADER(mask, env, object, format, ...)		\
803 do {								    \
804 	LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, mask, NULL);		\
805 									\
806 	if (cfs_cdebug_show(mask, DEBUG_SUBSYSTEM)) {		   \
807 		lu_object_header_print(env, &msgdata, lu_cdebug_printer,\
808 				       (object)->lo_header);	    \
809 		lu_cdebug_printer(env, &msgdata, "\n");		 \
810 		CDEBUG(mask, format , ## __VA_ARGS__);		  \
811 	}							       \
812 } while (0)
813 
814 void lu_object_print       (const struct lu_env *env, void *cookie,
815 			    lu_printer_t printer, const struct lu_object *o);
816 void lu_object_header_print(const struct lu_env *env, void *cookie,
817 			    lu_printer_t printer,
818 			    const struct lu_object_header *hdr);
819 
820 /**
821  * Check object consistency.
822  */
823 int lu_object_invariant(const struct lu_object *o);
824 
825 
826 /**
827  * Check whether object exists, no matter on local or remote storage.
828  * Note: LOHA_EXISTS will be set once some one created the object,
829  * and it does not needs to be committed to storage.
830  */
831 #define lu_object_exists(o) ((o)->lo_header->loh_attr & LOHA_EXISTS)
832 
833 /**
834  * Check whether object on the remote storage.
835  */
836 #define lu_object_remote(o) unlikely((o)->lo_header->loh_attr & LOHA_REMOTE)
837 
lu_object_assert_exists(const struct lu_object * o)838 static inline int lu_object_assert_exists(const struct lu_object *o)
839 {
840 	return lu_object_exists(o);
841 }
842 
lu_object_assert_not_exists(const struct lu_object * o)843 static inline int lu_object_assert_not_exists(const struct lu_object *o)
844 {
845 	return !lu_object_exists(o);
846 }
847 
848 /**
849  * Attr of this object.
850  */
lu_object_attr(const struct lu_object * o)851 static inline __u32 lu_object_attr(const struct lu_object *o)
852 {
853 	LASSERT(lu_object_exists(o) != 0);
854 	return o->lo_header->loh_attr;
855 }
856 
lu_object_ref_add(struct lu_object * o,const char * scope,const void * source)857 static inline void lu_object_ref_add(struct lu_object *o,
858 				     const char *scope,
859 				     const void *source)
860 {
861 	lu_ref_add(&o->lo_header->loh_reference, scope, source);
862 }
863 
lu_object_ref_add_at(struct lu_object * o,struct lu_ref_link * link,const char * scope,const void * source)864 static inline void lu_object_ref_add_at(struct lu_object *o,
865 					struct lu_ref_link *link,
866 					const char *scope,
867 					const void *source)
868 {
869 	lu_ref_add_at(&o->lo_header->loh_reference, link, scope, source);
870 }
871 
lu_object_ref_del(struct lu_object * o,const char * scope,const void * source)872 static inline void lu_object_ref_del(struct lu_object *o,
873 				     const char *scope, const void *source)
874 {
875 	lu_ref_del(&o->lo_header->loh_reference, scope, source);
876 }
877 
lu_object_ref_del_at(struct lu_object * o,struct lu_ref_link * link,const char * scope,const void * source)878 static inline void lu_object_ref_del_at(struct lu_object *o,
879 					struct lu_ref_link *link,
880 					const char *scope, const void *source)
881 {
882 	lu_ref_del_at(&o->lo_header->loh_reference, link, scope, source);
883 }
884 
885 /** input params, should be filled out by mdt */
886 struct lu_rdpg {
887 	/** hash */
888 	__u64		   rp_hash;
889 	/** count in bytes */
890 	unsigned int	    rp_count;
891 	/** number of pages */
892 	unsigned int	    rp_npages;
893 	/** requested attr */
894 	__u32		   rp_attrs;
895 	/** pointers to pages */
896 	struct page	   **rp_pages;
897 };
898 
899 enum lu_xattr_flags {
900 	LU_XATTR_REPLACE = (1 << 0),
901 	LU_XATTR_CREATE  = (1 << 1)
902 };
903 
904 /** @} helpers */
905 
906 /** \name lu_context
907  * @{ */
908 
909 /** For lu_context health-checks */
910 enum lu_context_state {
911 	LCS_INITIALIZED = 1,
912 	LCS_ENTERED,
913 	LCS_LEFT,
914 	LCS_FINALIZED
915 };
916 
917 /**
918  * lu_context. Execution context for lu_object methods. Currently associated
919  * with thread.
920  *
921  * All lu_object methods, except device and device type methods (called during
922  * system initialization and shutdown) are executed "within" some
923  * lu_context. This means, that pointer to some "current" lu_context is passed
924  * as an argument to all methods.
925  *
926  * All service ptlrpc threads create lu_context as part of their
927  * initialization. It is possible to create "stand-alone" context for other
928  * execution environments (like system calls).
929  *
930  * lu_object methods mainly use lu_context through lu_context_key interface
931  * that allows each layer to associate arbitrary pieces of data with each
932  * context (see pthread_key_create(3) for similar interface).
933  *
934  * On a client, lu_context is bound to a thread, see cl_env_get().
935  *
936  * \see lu_context_key
937  */
938 struct lu_context {
939 	/**
940 	 * lu_context is used on the client side too. Yet we don't want to
941 	 * allocate values of server-side keys for the client contexts and
942 	 * vice versa.
943 	 *
944 	 * To achieve this, set of tags in introduced. Contexts and keys are
945 	 * marked with tags. Key value are created only for context whose set
946 	 * of tags has non-empty intersection with one for key. Tags are taken
947 	 * from enum lu_context_tag.
948 	 */
949 	__u32		  lc_tags;
950 	enum lu_context_state  lc_state;
951 	/**
952 	 * Pointer to the home service thread. NULL for other execution
953 	 * contexts.
954 	 */
955 	struct ptlrpc_thread  *lc_thread;
956 	/**
957 	 * Pointer to an array with key values. Internal implementation
958 	 * detail.
959 	 */
960 	void		 **lc_value;
961 	/**
962 	 * Linkage into a list of all remembered contexts. Only
963 	 * `non-transient' contexts, i.e., ones created for service threads
964 	 * are placed here.
965 	 */
966 	struct list_head	     lc_remember;
967 	/**
968 	 * Version counter used to skip calls to lu_context_refill() when no
969 	 * keys were registered.
970 	 */
971 	unsigned	       lc_version;
972 	/**
973 	 * Debugging cookie.
974 	 */
975 	unsigned	       lc_cookie;
976 };
977 
978 /**
979  * lu_context_key interface. Similar to pthread_key.
980  */
981 
982 enum lu_context_tag {
983 	/**
984 	 * Thread on md server
985 	 */
986 	LCT_MD_THREAD = 1 << 0,
987 	/**
988 	 * Thread on dt server
989 	 */
990 	LCT_DT_THREAD = 1 << 1,
991 	/**
992 	 * Context for transaction handle
993 	 */
994 	LCT_TX_HANDLE = 1 << 2,
995 	/**
996 	 * Thread on client
997 	 */
998 	LCT_CL_THREAD = 1 << 3,
999 	/**
1000 	 * A per-request session on a server, and a per-system-call session on
1001 	 * a client.
1002 	 */
1003 	LCT_SESSION   = 1 << 4,
1004 	/**
1005 	 * A per-request data on OSP device
1006 	 */
1007 	LCT_OSP_THREAD = 1 << 5,
1008 	/**
1009 	 * MGS device thread
1010 	 */
1011 	LCT_MG_THREAD = 1 << 6,
1012 	/**
1013 	 * Context for local operations
1014 	 */
1015 	LCT_LOCAL = 1 << 7,
1016 	/**
1017 	 * Set when at least one of keys, having values in this context has
1018 	 * non-NULL lu_context_key::lct_exit() method. This is used to
1019 	 * optimize lu_context_exit() call.
1020 	 */
1021 	LCT_HAS_EXIT  = 1 << 28,
1022 	/**
1023 	 * Don't add references for modules creating key values in that context.
1024 	 * This is only for contexts used internally by lu_object framework.
1025 	 */
1026 	LCT_NOREF     = 1 << 29,
1027 	/**
1028 	 * Key is being prepared for retiring, don't create new values for it.
1029 	 */
1030 	LCT_QUIESCENT = 1 << 30,
1031 	/**
1032 	 * Context should be remembered.
1033 	 */
1034 	LCT_REMEMBER  = 1 << 31,
1035 	/**
1036 	 * Contexts usable in cache shrinker thread.
1037 	 */
1038 	LCT_SHRINKER  = LCT_MD_THREAD|LCT_DT_THREAD|LCT_CL_THREAD|LCT_NOREF
1039 };
1040 
1041 /**
1042  * Key. Represents per-context value slot.
1043  *
1044  * Keys are usually registered when module owning the key is initialized, and
1045  * de-registered when module is unloaded. Once key is registered, all new
1046  * contexts with matching tags, will get key value. "Old" contexts, already
1047  * initialized at the time of key registration, can be forced to get key value
1048  * by calling lu_context_refill().
1049  *
1050  * Every key value is counted in lu_context_key::lct_used and acquires a
1051  * reference on an owning module. This means, that all key values have to be
1052  * destroyed before module can be unloaded. This is usually achieved by
1053  * stopping threads started by the module, that created contexts in their
1054  * entry functions. Situation is complicated by the threads shared by multiple
1055  * modules, like ptlrpcd daemon on a client. To work around this problem,
1056  * contexts, created in such threads, are `remembered' (see
1057  * LCT_REMEMBER)---i.e., added into a global list. When module is preparing
1058  * for unloading it does the following:
1059  *
1060  *     - marks its keys as `quiescent' (lu_context_tag::LCT_QUIESCENT)
1061  *       preventing new key values from being allocated in the new contexts,
1062  *       and
1063  *
1064  *     - scans a list of remembered contexts, destroying values of module
1065  *       keys, thus releasing references to the module.
1066  *
1067  * This is done by lu_context_key_quiesce(). If module is re-activated
1068  * before key has been de-registered, lu_context_key_revive() call clears
1069  * `quiescent' marker.
1070  *
1071  * lu_context code doesn't provide any internal synchronization for these
1072  * activities---it's assumed that startup (including threads start-up) and
1073  * shutdown are serialized by some external means.
1074  *
1075  * \see lu_context
1076  */
1077 struct lu_context_key {
1078 	/**
1079 	 * Set of tags for which values of this key are to be instantiated.
1080 	 */
1081 	__u32 lct_tags;
1082 	/**
1083 	 * Value constructor. This is called when new value is created for a
1084 	 * context. Returns pointer to new value of error pointer.
1085 	 */
1086 	void  *(*lct_init)(const struct lu_context *ctx,
1087 			   struct lu_context_key *key);
1088 	/**
1089 	 * Value destructor. Called when context with previously allocated
1090 	 * value of this slot is destroyed. \a data is a value that was returned
1091 	 * by a matching call to lu_context_key::lct_init().
1092 	 */
1093 	void   (*lct_fini)(const struct lu_context *ctx,
1094 			   struct lu_context_key *key, void *data);
1095 	/**
1096 	 * Optional method called on lu_context_exit() for all allocated
1097 	 * keys. Can be used by debugging code checking that locks are
1098 	 * released, etc.
1099 	 */
1100 	void   (*lct_exit)(const struct lu_context *ctx,
1101 			   struct lu_context_key *key, void *data);
1102 	/**
1103 	 * Internal implementation detail: index within lu_context::lc_value[]
1104 	 * reserved for this key.
1105 	 */
1106 	int      lct_index;
1107 	/**
1108 	 * Internal implementation detail: number of values created for this
1109 	 * key.
1110 	 */
1111 	atomic_t lct_used;
1112 	/**
1113 	 * Internal implementation detail: module for this key.
1114 	 */
1115 	struct module *lct_owner;
1116 	/**
1117 	 * References to this key. For debugging.
1118 	 */
1119 	struct lu_ref  lct_reference;
1120 };
1121 
1122 #define LU_KEY_INIT(mod, type)				    \
1123 	static void *mod##_key_init(const struct lu_context *ctx, \
1124 				    struct lu_context_key *key)   \
1125 	{							 \
1126 		type *value;				      \
1127 								  \
1128 		CLASSERT(PAGE_CACHE_SIZE >= sizeof (*value));       \
1129 								  \
1130 		OBD_ALLOC_PTR(value);			     \
1131 		if (value == NULL)				\
1132 			value = ERR_PTR(-ENOMEM);		 \
1133 								  \
1134 		return value;				     \
1135 	}							 \
1136 	struct __##mod##__dummy_init {;} /* semicolon catcher */
1137 
1138 #define LU_KEY_FINI(mod, type)					      \
1139 	static void mod##_key_fini(const struct lu_context *ctx,	    \
1140 				    struct lu_context_key *key, void *data) \
1141 	{								   \
1142 		type *info = data;					  \
1143 									    \
1144 		OBD_FREE_PTR(info);					 \
1145 	}								   \
1146 	struct __##mod##__dummy_fini {;} /* semicolon catcher */
1147 
1148 #define LU_KEY_INIT_FINI(mod, type)   \
1149 	LU_KEY_INIT(mod, type);	\
1150 	LU_KEY_FINI(mod, type)
1151 
1152 #define LU_CONTEXT_KEY_DEFINE(mod, tags)		\
1153 	struct lu_context_key mod##_thread_key = {      \
1154 		.lct_tags = tags,		       \
1155 		.lct_init = mod##_key_init,	     \
1156 		.lct_fini = mod##_key_fini	      \
1157 	}
1158 
1159 #define LU_CONTEXT_KEY_INIT(key)			\
1160 do {						    \
1161 	(key)->lct_owner = THIS_MODULE;		 \
1162 } while (0)
1163 
1164 int   lu_context_key_register(struct lu_context_key *key);
1165 void  lu_context_key_degister(struct lu_context_key *key);
1166 void *lu_context_key_get     (const struct lu_context *ctx,
1167 			       const struct lu_context_key *key);
1168 void  lu_context_key_quiesce (struct lu_context_key *key);
1169 void  lu_context_key_revive  (struct lu_context_key *key);
1170 
1171 
1172 /*
1173  * LU_KEY_INIT_GENERIC() has to be a macro to correctly determine an
1174  * owning module.
1175  */
1176 
1177 #define LU_KEY_INIT_GENERIC(mod)					\
1178 	static void mod##_key_init_generic(struct lu_context_key *k, ...) \
1179 	{							       \
1180 		struct lu_context_key *key = k;			 \
1181 		va_list args;					   \
1182 									\
1183 		va_start(args, k);				      \
1184 		do {						    \
1185 			LU_CONTEXT_KEY_INIT(key);		       \
1186 			key = va_arg(args, struct lu_context_key *);    \
1187 		} while (key != NULL);				  \
1188 		va_end(args);					   \
1189 	}
1190 
1191 #define LU_TYPE_INIT(mod, ...)					  \
1192 	LU_KEY_INIT_GENERIC(mod)					\
1193 	static int mod##_type_init(struct lu_device_type *t)	    \
1194 	{							       \
1195 		mod##_key_init_generic(__VA_ARGS__, NULL);	      \
1196 		return lu_context_key_register_many(__VA_ARGS__, NULL); \
1197 	}							       \
1198 	struct __##mod##_dummy_type_init {;}
1199 
1200 #define LU_TYPE_FINI(mod, ...)					  \
1201 	static void mod##_type_fini(struct lu_device_type *t)	   \
1202 	{							       \
1203 		lu_context_key_degister_many(__VA_ARGS__, NULL);	\
1204 	}							       \
1205 	struct __##mod##_dummy_type_fini {;}
1206 
1207 #define LU_TYPE_START(mod, ...)				 \
1208 	static void mod##_type_start(struct lu_device_type *t)  \
1209 	{						       \
1210 		lu_context_key_revive_many(__VA_ARGS__, NULL);  \
1211 	}						       \
1212 	struct __##mod##_dummy_type_start {;}
1213 
1214 #define LU_TYPE_STOP(mod, ...)				  \
1215 	static void mod##_type_stop(struct lu_device_type *t)   \
1216 	{						       \
1217 		lu_context_key_quiesce_many(__VA_ARGS__, NULL); \
1218 	}						       \
1219 	struct __##mod##_dummy_type_stop {;}
1220 
1221 
1222 
1223 #define LU_TYPE_INIT_FINI(mod, ...)	     \
1224 	LU_TYPE_INIT(mod, __VA_ARGS__);	 \
1225 	LU_TYPE_FINI(mod, __VA_ARGS__);	 \
1226 	LU_TYPE_START(mod, __VA_ARGS__);	\
1227 	LU_TYPE_STOP(mod, __VA_ARGS__)
1228 
1229 int   lu_context_init  (struct lu_context *ctx, __u32 tags);
1230 void  lu_context_fini  (struct lu_context *ctx);
1231 void  lu_context_enter (struct lu_context *ctx);
1232 void  lu_context_exit  (struct lu_context *ctx);
1233 int   lu_context_refill(struct lu_context *ctx);
1234 
1235 /*
1236  * Helper functions to operate on multiple keys. These are used by the default
1237  * device type operations, defined by LU_TYPE_INIT_FINI().
1238  */
1239 
1240 int  lu_context_key_register_many(struct lu_context_key *k, ...);
1241 void lu_context_key_degister_many(struct lu_context_key *k, ...);
1242 void lu_context_key_revive_many  (struct lu_context_key *k, ...);
1243 void lu_context_key_quiesce_many (struct lu_context_key *k, ...);
1244 
1245 /*
1246  * update/clear ctx/ses tags.
1247  */
1248 void lu_context_tags_update(__u32 tags);
1249 void lu_context_tags_clear(__u32 tags);
1250 void lu_session_tags_update(__u32 tags);
1251 void lu_session_tags_clear(__u32 tags);
1252 
1253 /**
1254  * Environment.
1255  */
1256 struct lu_env {
1257 	/**
1258 	 * "Local" context, used to store data instead of stack.
1259 	 */
1260 	struct lu_context  le_ctx;
1261 	/**
1262 	 * "Session" context for per-request data.
1263 	 */
1264 	struct lu_context *le_ses;
1265 };
1266 
1267 int  lu_env_init  (struct lu_env *env, __u32 tags);
1268 void lu_env_fini  (struct lu_env *env);
1269 int  lu_env_refill(struct lu_env *env);
1270 int  lu_env_refill_by_tags(struct lu_env *env, __u32 ctags, __u32 stags);
1271 
1272 /** @} lu_context */
1273 
1274 /**
1275  * Output site statistical counters into a buffer. Suitable for
1276  * ll_rd_*()-style functions.
1277  */
1278 int lu_site_stats_print(const struct lu_site *s, struct seq_file *m);
1279 
1280 /**
1281  * Common name structure to be passed around for various name related methods.
1282  */
1283 struct lu_name {
1284 	const char    *ln_name;
1285 	int	    ln_namelen;
1286 };
1287 
1288 /**
1289  * Common buffer structure to be passed around for various xattr_{s,g}et()
1290  * methods.
1291  */
1292 struct lu_buf {
1293 	void   *lb_buf;
1294 	ssize_t lb_len;
1295 };
1296 
1297 #define DLUBUF "(%p %zu)"
1298 #define PLUBUF(buf) (buf)->lb_buf, (buf)->lb_len
1299 /**
1300  * One-time initializers, called at obdclass module initialization, not
1301  * exported.
1302  */
1303 
1304 /**
1305  * Initialization of global lu_* data.
1306  */
1307 int lu_global_init(void);
1308 
1309 /**
1310  * Dual to lu_global_init().
1311  */
1312 void lu_global_fini(void);
1313 
1314 struct lu_kmem_descr {
1315 	struct kmem_cache **ckd_cache;
1316 	const char       *ckd_name;
1317 	const size_t      ckd_size;
1318 };
1319 
1320 int  lu_kmem_init(struct lu_kmem_descr *caches);
1321 void lu_kmem_fini(struct lu_kmem_descr *caches);
1322 
1323 void lu_object_assign_fid(const struct lu_env *env, struct lu_object *o,
1324 			  const struct lu_fid *fid);
1325 struct lu_object *lu_object_anon(const struct lu_env *env,
1326 				 struct lu_device *dev,
1327 				 const struct lu_object_conf *conf);
1328 
1329 /** null buffer */
1330 extern struct lu_buf LU_BUF_NULL;
1331 
1332 void lu_buf_free(struct lu_buf *buf);
1333 void lu_buf_alloc(struct lu_buf *buf, int size);
1334 void lu_buf_realloc(struct lu_buf *buf, int size);
1335 
1336 int lu_buf_check_and_grow(struct lu_buf *buf, int len);
1337 struct lu_buf *lu_buf_check_and_alloc(struct lu_buf *buf, int len);
1338 
1339 /** @} lu */
1340 #endif /* __LUSTRE_LU_OBJECT_H */
1341