1 /*
2  * Latched RB-trees
3  *
4  * Copyright (C) 2015 Intel Corp., Peter Zijlstra <peterz@infradead.org>
5  *
6  * Since RB-trees have non-atomic modifications they're not immediately suited
7  * for RCU/lockless queries. Even though we made RB-tree lookups non-fatal for
8  * lockless lookups; we cannot guarantee they return a correct result.
9  *
10  * The simplest solution is a seqlock + RB-tree, this will allow lockless
11  * lookups; but has the constraint (inherent to the seqlock) that read sides
12  * cannot nest in write sides.
13  *
14  * If we need to allow unconditional lookups (say as required for NMI context
15  * usage) we need a more complex setup; this data structure provides this by
16  * employing the latch technique -- see @raw_write_seqcount_latch -- to
17  * implement a latched RB-tree which does allow for unconditional lookups by
18  * virtue of always having (at least) one stable copy of the tree.
19  *
20  * However, while we have the guarantee that there is at all times one stable
21  * copy, this does not guarantee an iteration will not observe modifications.
22  * What might have been a stable copy at the start of the iteration, need not
23  * remain so for the duration of the iteration.
24  *
25  * Therefore, this does require a lockless RB-tree iteration to be non-fatal;
26  * see the comment in lib/rbtree.c. Note however that we only require the first
27  * condition -- not seeing partial stores -- because the latch thing isolates
28  * us from loops. If we were to interrupt a modification the lookup would be
29  * pointed at the stable tree and complete while the modification was halted.
30  */
31 
32 #ifndef RB_TREE_LATCH_H
33 #define RB_TREE_LATCH_H
34 
35 #include <linux/rbtree.h>
36 #include <linux/seqlock.h>
37 
38 struct latch_tree_node {
39 	struct rb_node node[2];
40 };
41 
42 struct latch_tree_root {
43 	seqcount_t	seq;
44 	struct rb_root	tree[2];
45 };
46 
47 /**
48  * latch_tree_ops - operators to define the tree order
49  * @less: used for insertion; provides the (partial) order between two elements.
50  * @comp: used for lookups; provides the order between the search key and an element.
51  *
52  * The operators are related like:
53  *
54  *	comp(a->key,b) < 0  := less(a,b)
55  *	comp(a->key,b) > 0  := less(b,a)
56  *	comp(a->key,b) == 0 := !less(a,b) && !less(b,a)
57  *
58  * If these operators define a partial order on the elements we make no
59  * guarantee on which of the elements matching the key is found. See
60  * latch_tree_find().
61  */
62 struct latch_tree_ops {
63 	bool (*less)(struct latch_tree_node *a, struct latch_tree_node *b);
64 	int  (*comp)(void *key,                 struct latch_tree_node *b);
65 };
66 
67 static __always_inline struct latch_tree_node *
__lt_from_rb(struct rb_node * node,int idx)68 __lt_from_rb(struct rb_node *node, int idx)
69 {
70 	return container_of(node, struct latch_tree_node, node[idx]);
71 }
72 
73 static __always_inline void
__lt_insert(struct latch_tree_node * ltn,struct latch_tree_root * ltr,int idx,bool (* less)(struct latch_tree_node * a,struct latch_tree_node * b))74 __lt_insert(struct latch_tree_node *ltn, struct latch_tree_root *ltr, int idx,
75 	    bool (*less)(struct latch_tree_node *a, struct latch_tree_node *b))
76 {
77 	struct rb_root *root = &ltr->tree[idx];
78 	struct rb_node **link = &root->rb_node;
79 	struct rb_node *node = &ltn->node[idx];
80 	struct rb_node *parent = NULL;
81 	struct latch_tree_node *ltp;
82 
83 	while (*link) {
84 		parent = *link;
85 		ltp = __lt_from_rb(parent, idx);
86 
87 		if (less(ltn, ltp))
88 			link = &parent->rb_left;
89 		else
90 			link = &parent->rb_right;
91 	}
92 
93 	rb_link_node_rcu(node, parent, link);
94 	rb_insert_color(node, root);
95 }
96 
97 static __always_inline void
__lt_erase(struct latch_tree_node * ltn,struct latch_tree_root * ltr,int idx)98 __lt_erase(struct latch_tree_node *ltn, struct latch_tree_root *ltr, int idx)
99 {
100 	rb_erase(&ltn->node[idx], &ltr->tree[idx]);
101 }
102 
103 static __always_inline struct latch_tree_node *
__lt_find(void * key,struct latch_tree_root * ltr,int idx,int (* comp)(void * key,struct latch_tree_node * node))104 __lt_find(void *key, struct latch_tree_root *ltr, int idx,
105 	  int (*comp)(void *key, struct latch_tree_node *node))
106 {
107 	struct rb_node *node = rcu_dereference_raw(ltr->tree[idx].rb_node);
108 	struct latch_tree_node *ltn;
109 	int c;
110 
111 	while (node) {
112 		ltn = __lt_from_rb(node, idx);
113 		c = comp(key, ltn);
114 
115 		if (c < 0)
116 			node = rcu_dereference_raw(node->rb_left);
117 		else if (c > 0)
118 			node = rcu_dereference_raw(node->rb_right);
119 		else
120 			return ltn;
121 	}
122 
123 	return NULL;
124 }
125 
126 /**
127  * latch_tree_insert() - insert @node into the trees @root
128  * @node: nodes to insert
129  * @root: trees to insert @node into
130  * @ops: operators defining the node order
131  *
132  * It inserts @node into @root in an ordered fashion such that we can always
133  * observe one complete tree. See the comment for raw_write_seqcount_latch().
134  *
135  * The inserts use rcu_assign_pointer() to publish the element such that the
136  * tree structure is stored before we can observe the new @node.
137  *
138  * All modifications (latch_tree_insert, latch_tree_remove) are assumed to be
139  * serialized.
140  */
141 static __always_inline void
latch_tree_insert(struct latch_tree_node * node,struct latch_tree_root * root,const struct latch_tree_ops * ops)142 latch_tree_insert(struct latch_tree_node *node,
143 		  struct latch_tree_root *root,
144 		  const struct latch_tree_ops *ops)
145 {
146 	raw_write_seqcount_latch(&root->seq);
147 	__lt_insert(node, root, 0, ops->less);
148 	raw_write_seqcount_latch(&root->seq);
149 	__lt_insert(node, root, 1, ops->less);
150 }
151 
152 /**
153  * latch_tree_erase() - removes @node from the trees @root
154  * @node: nodes to remote
155  * @root: trees to remove @node from
156  * @ops: operators defining the node order
157  *
158  * Removes @node from the trees @root in an ordered fashion such that we can
159  * always observe one complete tree. See the comment for
160  * raw_write_seqcount_latch().
161  *
162  * It is assumed that @node will observe one RCU quiescent state before being
163  * reused of freed.
164  *
165  * All modifications (latch_tree_insert, latch_tree_remove) are assumed to be
166  * serialized.
167  */
168 static __always_inline void
latch_tree_erase(struct latch_tree_node * node,struct latch_tree_root * root,const struct latch_tree_ops * ops)169 latch_tree_erase(struct latch_tree_node *node,
170 		 struct latch_tree_root *root,
171 		 const struct latch_tree_ops *ops)
172 {
173 	raw_write_seqcount_latch(&root->seq);
174 	__lt_erase(node, root, 0);
175 	raw_write_seqcount_latch(&root->seq);
176 	__lt_erase(node, root, 1);
177 }
178 
179 /**
180  * latch_tree_find() - find the node matching @key in the trees @root
181  * @key: search key
182  * @root: trees to search for @key
183  * @ops: operators defining the node order
184  *
185  * Does a lockless lookup in the trees @root for the node matching @key.
186  *
187  * It is assumed that this is called while holding the appropriate RCU read
188  * side lock.
189  *
190  * If the operators define a partial order on the elements (there are multiple
191  * elements which have the same key value) it is undefined which of these
192  * elements will be found. Nor is it possible to iterate the tree to find
193  * further elements with the same key value.
194  *
195  * Returns: a pointer to the node matching @key or NULL.
196  */
197 static __always_inline struct latch_tree_node *
latch_tree_find(void * key,struct latch_tree_root * root,const struct latch_tree_ops * ops)198 latch_tree_find(void *key, struct latch_tree_root *root,
199 		const struct latch_tree_ops *ops)
200 {
201 	struct latch_tree_node *node;
202 	unsigned int seq;
203 
204 	do {
205 		seq = raw_read_seqcount_latch(&root->seq);
206 		node = __lt_find(key, root, seq & 1, ops->comp);
207 	} while (read_seqcount_retry(&root->seq, seq));
208 
209 	return node;
210 }
211 
212 #endif /* RB_TREE_LATCH_H */
213