1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18 
19 #ifndef __ARM_KVM_MMU_H__
20 #define __ARM_KVM_MMU_H__
21 
22 #include <asm/memory.h>
23 #include <asm/page.h>
24 
25 /*
26  * We directly use the kernel VA for the HYP, as we can directly share
27  * the mapping (HTTBR "covers" TTBR1).
28  */
29 #define HYP_PAGE_OFFSET_MASK	UL(~0)
30 #define HYP_PAGE_OFFSET		PAGE_OFFSET
31 #define KERN_TO_HYP(kva)	(kva)
32 
33 /*
34  * Our virtual mapping for the boot-time MMU-enable code. Must be
35  * shared across all the page-tables. Conveniently, we use the vectors
36  * page, where no kernel data will ever be shared with HYP.
37  */
38 #define TRAMPOLINE_VA		UL(CONFIG_VECTORS_BASE)
39 
40 /*
41  * KVM_MMU_CACHE_MIN_PAGES is the number of stage2 page table translation levels.
42  */
43 #define KVM_MMU_CACHE_MIN_PAGES	2
44 
45 #ifndef __ASSEMBLY__
46 
47 #include <linux/highmem.h>
48 #include <asm/cacheflush.h>
49 #include <asm/pgalloc.h>
50 
51 int create_hyp_mappings(void *from, void *to);
52 int create_hyp_io_mappings(void *from, void *to, phys_addr_t);
53 void free_boot_hyp_pgd(void);
54 void free_hyp_pgds(void);
55 
56 void stage2_unmap_vm(struct kvm *kvm);
57 int kvm_alloc_stage2_pgd(struct kvm *kvm);
58 void kvm_free_stage2_pgd(struct kvm *kvm);
59 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
60 			  phys_addr_t pa, unsigned long size, bool writable);
61 
62 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
63 
64 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
65 
66 phys_addr_t kvm_mmu_get_httbr(void);
67 phys_addr_t kvm_mmu_get_boot_httbr(void);
68 phys_addr_t kvm_get_idmap_vector(void);
69 int kvm_mmu_init(void);
70 void kvm_clear_hyp_idmap(void);
71 
kvm_set_pmd(pmd_t * pmd,pmd_t new_pmd)72 static inline void kvm_set_pmd(pmd_t *pmd, pmd_t new_pmd)
73 {
74 	*pmd = new_pmd;
75 	flush_pmd_entry(pmd);
76 }
77 
kvm_set_pte(pte_t * pte,pte_t new_pte)78 static inline void kvm_set_pte(pte_t *pte, pte_t new_pte)
79 {
80 	*pte = new_pte;
81 	/*
82 	 * flush_pmd_entry just takes a void pointer and cleans the necessary
83 	 * cache entries, so we can reuse the function for ptes.
84 	 */
85 	flush_pmd_entry(pte);
86 }
87 
kvm_clean_pgd(pgd_t * pgd)88 static inline void kvm_clean_pgd(pgd_t *pgd)
89 {
90 	clean_dcache_area(pgd, PTRS_PER_S2_PGD * sizeof(pgd_t));
91 }
92 
kvm_clean_pmd(pmd_t * pmd)93 static inline void kvm_clean_pmd(pmd_t *pmd)
94 {
95 	clean_dcache_area(pmd, PTRS_PER_PMD * sizeof(pmd_t));
96 }
97 
kvm_clean_pmd_entry(pmd_t * pmd)98 static inline void kvm_clean_pmd_entry(pmd_t *pmd)
99 {
100 	clean_pmd_entry(pmd);
101 }
102 
kvm_clean_pte(pte_t * pte)103 static inline void kvm_clean_pte(pte_t *pte)
104 {
105 	clean_pte_table(pte);
106 }
107 
kvm_set_s2pte_writable(pte_t * pte)108 static inline void kvm_set_s2pte_writable(pte_t *pte)
109 {
110 	pte_val(*pte) |= L_PTE_S2_RDWR;
111 }
112 
kvm_set_s2pmd_writable(pmd_t * pmd)113 static inline void kvm_set_s2pmd_writable(pmd_t *pmd)
114 {
115 	pmd_val(*pmd) |= L_PMD_S2_RDWR;
116 }
117 
kvm_set_s2pte_readonly(pte_t * pte)118 static inline void kvm_set_s2pte_readonly(pte_t *pte)
119 {
120 	pte_val(*pte) = (pte_val(*pte) & ~L_PTE_S2_RDWR) | L_PTE_S2_RDONLY;
121 }
122 
kvm_s2pte_readonly(pte_t * pte)123 static inline bool kvm_s2pte_readonly(pte_t *pte)
124 {
125 	return (pte_val(*pte) & L_PTE_S2_RDWR) == L_PTE_S2_RDONLY;
126 }
127 
kvm_set_s2pmd_readonly(pmd_t * pmd)128 static inline void kvm_set_s2pmd_readonly(pmd_t *pmd)
129 {
130 	pmd_val(*pmd) = (pmd_val(*pmd) & ~L_PMD_S2_RDWR) | L_PMD_S2_RDONLY;
131 }
132 
kvm_s2pmd_readonly(pmd_t * pmd)133 static inline bool kvm_s2pmd_readonly(pmd_t *pmd)
134 {
135 	return (pmd_val(*pmd) & L_PMD_S2_RDWR) == L_PMD_S2_RDONLY;
136 }
137 
138 
139 /* Open coded p*d_addr_end that can deal with 64bit addresses */
140 #define kvm_pgd_addr_end(addr, end)					\
141 ({	u64 __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;		\
142 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
143 })
144 
145 #define kvm_pud_addr_end(addr,end)		(end)
146 
147 #define kvm_pmd_addr_end(addr, end)					\
148 ({	u64 __boundary = ((addr) + PMD_SIZE) & PMD_MASK;		\
149 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
150 })
151 
152 #define kvm_pgd_index(addr)			pgd_index(addr)
153 
kvm_page_empty(void * ptr)154 static inline bool kvm_page_empty(void *ptr)
155 {
156 	struct page *ptr_page = virt_to_page(ptr);
157 	return page_count(ptr_page) == 1;
158 }
159 
160 #define kvm_pte_table_empty(kvm, ptep) kvm_page_empty(ptep)
161 #define kvm_pmd_table_empty(kvm, pmdp) kvm_page_empty(pmdp)
162 #define kvm_pud_table_empty(kvm, pudp) (0)
163 
164 #define KVM_PREALLOC_LEVEL	0
165 
kvm_get_hwpgd(struct kvm * kvm)166 static inline void *kvm_get_hwpgd(struct kvm *kvm)
167 {
168 	return kvm->arch.pgd;
169 }
170 
kvm_get_hwpgd_size(void)171 static inline unsigned int kvm_get_hwpgd_size(void)
172 {
173 	return PTRS_PER_S2_PGD * sizeof(pgd_t);
174 }
175 
176 struct kvm;
177 
178 #define kvm_flush_dcache_to_poc(a,l)	__cpuc_flush_dcache_area((a), (l))
179 
vcpu_has_cache_enabled(struct kvm_vcpu * vcpu)180 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
181 {
182 	return (vcpu->arch.cp15[c1_SCTLR] & 0b101) == 0b101;
183 }
184 
__coherent_cache_guest_page(struct kvm_vcpu * vcpu,pfn_t pfn,unsigned long size,bool ipa_uncached)185 static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu, pfn_t pfn,
186 					       unsigned long size,
187 					       bool ipa_uncached)
188 {
189 	/*
190 	 * If we are going to insert an instruction page and the icache is
191 	 * either VIPT or PIPT, there is a potential problem where the host
192 	 * (or another VM) may have used the same page as this guest, and we
193 	 * read incorrect data from the icache.  If we're using a PIPT cache,
194 	 * we can invalidate just that page, but if we are using a VIPT cache
195 	 * we need to invalidate the entire icache - damn shame - as written
196 	 * in the ARM ARM (DDI 0406C.b - Page B3-1393).
197 	 *
198 	 * VIVT caches are tagged using both the ASID and the VMID and doesn't
199 	 * need any kind of flushing (DDI 0406C.b - Page B3-1392).
200 	 *
201 	 * We need to do this through a kernel mapping (using the
202 	 * user-space mapping has proved to be the wrong
203 	 * solution). For that, we need to kmap one page at a time,
204 	 * and iterate over the range.
205 	 */
206 
207 	bool need_flush = !vcpu_has_cache_enabled(vcpu) || ipa_uncached;
208 
209 	VM_BUG_ON(size & ~PAGE_MASK);
210 
211 	if (!need_flush && !icache_is_pipt())
212 		goto vipt_cache;
213 
214 	while (size) {
215 		void *va = kmap_atomic_pfn(pfn);
216 
217 		if (need_flush)
218 			kvm_flush_dcache_to_poc(va, PAGE_SIZE);
219 
220 		if (icache_is_pipt())
221 			__cpuc_coherent_user_range((unsigned long)va,
222 						   (unsigned long)va + PAGE_SIZE);
223 
224 		size -= PAGE_SIZE;
225 		pfn++;
226 
227 		kunmap_atomic(va);
228 	}
229 
230 vipt_cache:
231 	if (!icache_is_pipt() && !icache_is_vivt_asid_tagged()) {
232 		/* any kind of VIPT cache */
233 		__flush_icache_all();
234 	}
235 }
236 
__kvm_flush_dcache_pte(pte_t pte)237 static inline void __kvm_flush_dcache_pte(pte_t pte)
238 {
239 	void *va = kmap_atomic(pte_page(pte));
240 
241 	kvm_flush_dcache_to_poc(va, PAGE_SIZE);
242 
243 	kunmap_atomic(va);
244 }
245 
__kvm_flush_dcache_pmd(pmd_t pmd)246 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
247 {
248 	unsigned long size = PMD_SIZE;
249 	pfn_t pfn = pmd_pfn(pmd);
250 
251 	while (size) {
252 		void *va = kmap_atomic_pfn(pfn);
253 
254 		kvm_flush_dcache_to_poc(va, PAGE_SIZE);
255 
256 		pfn++;
257 		size -= PAGE_SIZE;
258 
259 		kunmap_atomic(va);
260 	}
261 }
262 
__kvm_flush_dcache_pud(pud_t pud)263 static inline void __kvm_flush_dcache_pud(pud_t pud)
264 {
265 }
266 
267 #define kvm_virt_to_phys(x)		virt_to_idmap((unsigned long)(x))
268 
269 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
270 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
271 
__kvm_cpu_uses_extended_idmap(void)272 static inline bool __kvm_cpu_uses_extended_idmap(void)
273 {
274 	return false;
275 }
276 
__kvm_extend_hypmap(pgd_t * boot_hyp_pgd,pgd_t * hyp_pgd,pgd_t * merged_hyp_pgd,unsigned long hyp_idmap_start)277 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
278 				       pgd_t *hyp_pgd,
279 				       pgd_t *merged_hyp_pgd,
280 				       unsigned long hyp_idmap_start) { }
281 
282 #endif	/* !__ASSEMBLY__ */
283 
284 #endif /* __ARM_KVM_MMU_H__ */
285