1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18 
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34 
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47 
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension	virt");
50 #endif
51 
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55 
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58 
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63 
kvm_arm_set_running_vcpu(struct kvm_vcpu * vcpu)64 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
65 {
66 	BUG_ON(preemptible());
67 	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
68 }
69 
70 /**
71  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
72  * Must be called from non-preemptible context
73  */
kvm_arm_get_running_vcpu(void)74 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
75 {
76 	BUG_ON(preemptible());
77 	return __this_cpu_read(kvm_arm_running_vcpu);
78 }
79 
80 /**
81  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
82  */
kvm_get_running_vcpus(void)83 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
84 {
85 	return &kvm_arm_running_vcpu;
86 }
87 
kvm_arch_hardware_enable(void)88 int kvm_arch_hardware_enable(void)
89 {
90 	return 0;
91 }
92 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)93 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
94 {
95 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
96 }
97 
kvm_arch_hardware_setup(void)98 int kvm_arch_hardware_setup(void)
99 {
100 	return 0;
101 }
102 
kvm_arch_check_processor_compat(void * rtn)103 void kvm_arch_check_processor_compat(void *rtn)
104 {
105 	*(int *)rtn = 0;
106 }
107 
108 
109 /**
110  * kvm_arch_init_vm - initializes a VM data structure
111  * @kvm:	pointer to the KVM struct
112  */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)113 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
114 {
115 	int ret = 0;
116 
117 	if (type)
118 		return -EINVAL;
119 
120 	ret = kvm_alloc_stage2_pgd(kvm);
121 	if (ret)
122 		goto out_fail_alloc;
123 
124 	ret = create_hyp_mappings(kvm, kvm + 1);
125 	if (ret)
126 		goto out_free_stage2_pgd;
127 
128 	kvm_timer_init(kvm);
129 
130 	/* Mark the initial VMID generation invalid */
131 	kvm->arch.vmid_gen = 0;
132 
133 	/* The maximum number of VCPUs is limited by the host's GIC model */
134 	kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
135 
136 	return ret;
137 out_free_stage2_pgd:
138 	kvm_free_stage2_pgd(kvm);
139 out_fail_alloc:
140 	return ret;
141 }
142 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)143 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
144 {
145 	return VM_FAULT_SIGBUS;
146 }
147 
148 
149 /**
150  * kvm_arch_destroy_vm - destroy the VM data structure
151  * @kvm:	pointer to the KVM struct
152  */
kvm_arch_destroy_vm(struct kvm * kvm)153 void kvm_arch_destroy_vm(struct kvm *kvm)
154 {
155 	int i;
156 
157 	kvm_free_stage2_pgd(kvm);
158 
159 	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
160 		if (kvm->vcpus[i]) {
161 			kvm_arch_vcpu_free(kvm->vcpus[i]);
162 			kvm->vcpus[i] = NULL;
163 		}
164 	}
165 
166 	kvm_vgic_destroy(kvm);
167 }
168 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)169 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
170 {
171 	int r;
172 	switch (ext) {
173 	case KVM_CAP_IRQCHIP:
174 	case KVM_CAP_IRQFD:
175 	case KVM_CAP_IOEVENTFD:
176 	case KVM_CAP_DEVICE_CTRL:
177 	case KVM_CAP_USER_MEMORY:
178 	case KVM_CAP_SYNC_MMU:
179 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
180 	case KVM_CAP_ONE_REG:
181 	case KVM_CAP_ARM_PSCI:
182 	case KVM_CAP_ARM_PSCI_0_2:
183 	case KVM_CAP_READONLY_MEM:
184 	case KVM_CAP_MP_STATE:
185 		r = 1;
186 		break;
187 	case KVM_CAP_COALESCED_MMIO:
188 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
189 		break;
190 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
191 		r = 1;
192 		break;
193 	case KVM_CAP_NR_VCPUS:
194 		r = num_online_cpus();
195 		break;
196 	case KVM_CAP_MAX_VCPUS:
197 		r = KVM_MAX_VCPUS;
198 		break;
199 	default:
200 		r = kvm_arch_dev_ioctl_check_extension(ext);
201 		break;
202 	}
203 	return r;
204 }
205 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)206 long kvm_arch_dev_ioctl(struct file *filp,
207 			unsigned int ioctl, unsigned long arg)
208 {
209 	return -EINVAL;
210 }
211 
212 
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)213 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
214 {
215 	int err;
216 	struct kvm_vcpu *vcpu;
217 
218 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
219 		err = -EBUSY;
220 		goto out;
221 	}
222 
223 	if (id >= kvm->arch.max_vcpus) {
224 		err = -EINVAL;
225 		goto out;
226 	}
227 
228 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
229 	if (!vcpu) {
230 		err = -ENOMEM;
231 		goto out;
232 	}
233 
234 	err = kvm_vcpu_init(vcpu, kvm, id);
235 	if (err)
236 		goto free_vcpu;
237 
238 	err = create_hyp_mappings(vcpu, vcpu + 1);
239 	if (err)
240 		goto vcpu_uninit;
241 
242 	return vcpu;
243 vcpu_uninit:
244 	kvm_vcpu_uninit(vcpu);
245 free_vcpu:
246 	kmem_cache_free(kvm_vcpu_cache, vcpu);
247 out:
248 	return ERR_PTR(err);
249 }
250 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)251 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
252 {
253 }
254 
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)255 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
256 {
257 	kvm_mmu_free_memory_caches(vcpu);
258 	kvm_timer_vcpu_terminate(vcpu);
259 	kvm_vgic_vcpu_destroy(vcpu);
260 	kmem_cache_free(kvm_vcpu_cache, vcpu);
261 }
262 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)263 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
264 {
265 	kvm_arch_vcpu_free(vcpu);
266 }
267 
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)268 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
269 {
270 	return kvm_timer_should_fire(vcpu);
271 }
272 
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)273 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
274 {
275 	/* Force users to call KVM_ARM_VCPU_INIT */
276 	vcpu->arch.target = -1;
277 	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
278 
279 	/* Set up the timer */
280 	kvm_timer_vcpu_init(vcpu);
281 
282 	return 0;
283 }
284 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)285 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
286 {
287 	vcpu->cpu = cpu;
288 	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
289 
290 	kvm_arm_set_running_vcpu(vcpu);
291 }
292 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)293 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
294 {
295 	/*
296 	 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
297 	 * if the vcpu is no longer assigned to a cpu.  This is used for the
298 	 * optimized make_all_cpus_request path.
299 	 */
300 	vcpu->cpu = -1;
301 
302 	kvm_arm_set_running_vcpu(NULL);
303 }
304 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)305 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
306 					struct kvm_guest_debug *dbg)
307 {
308 	return -EINVAL;
309 }
310 
311 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)312 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
313 				    struct kvm_mp_state *mp_state)
314 {
315 	if (vcpu->arch.pause)
316 		mp_state->mp_state = KVM_MP_STATE_STOPPED;
317 	else
318 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
319 
320 	return 0;
321 }
322 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)323 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
324 				    struct kvm_mp_state *mp_state)
325 {
326 	switch (mp_state->mp_state) {
327 	case KVM_MP_STATE_RUNNABLE:
328 		vcpu->arch.pause = false;
329 		break;
330 	case KVM_MP_STATE_STOPPED:
331 		vcpu->arch.pause = true;
332 		break;
333 	default:
334 		return -EINVAL;
335 	}
336 
337 	return 0;
338 }
339 
340 /**
341  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
342  * @v:		The VCPU pointer
343  *
344  * If the guest CPU is not waiting for interrupts or an interrupt line is
345  * asserted, the CPU is by definition runnable.
346  */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)347 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
348 {
349 	return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
350 }
351 
352 /* Just ensure a guest exit from a particular CPU */
exit_vm_noop(void * info)353 static void exit_vm_noop(void *info)
354 {
355 }
356 
force_vm_exit(const cpumask_t * mask)357 void force_vm_exit(const cpumask_t *mask)
358 {
359 	smp_call_function_many(mask, exit_vm_noop, NULL, true);
360 }
361 
362 /**
363  * need_new_vmid_gen - check that the VMID is still valid
364  * @kvm: The VM's VMID to checkt
365  *
366  * return true if there is a new generation of VMIDs being used
367  *
368  * The hardware supports only 256 values with the value zero reserved for the
369  * host, so we check if an assigned value belongs to a previous generation,
370  * which which requires us to assign a new value. If we're the first to use a
371  * VMID for the new generation, we must flush necessary caches and TLBs on all
372  * CPUs.
373  */
need_new_vmid_gen(struct kvm * kvm)374 static bool need_new_vmid_gen(struct kvm *kvm)
375 {
376 	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
377 }
378 
379 /**
380  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
381  * @kvm	The guest that we are about to run
382  *
383  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
384  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
385  * caches and TLBs.
386  */
update_vttbr(struct kvm * kvm)387 static void update_vttbr(struct kvm *kvm)
388 {
389 	phys_addr_t pgd_phys;
390 	u64 vmid;
391 
392 	if (!need_new_vmid_gen(kvm))
393 		return;
394 
395 	spin_lock(&kvm_vmid_lock);
396 
397 	/*
398 	 * We need to re-check the vmid_gen here to ensure that if another vcpu
399 	 * already allocated a valid vmid for this vm, then this vcpu should
400 	 * use the same vmid.
401 	 */
402 	if (!need_new_vmid_gen(kvm)) {
403 		spin_unlock(&kvm_vmid_lock);
404 		return;
405 	}
406 
407 	/* First user of a new VMID generation? */
408 	if (unlikely(kvm_next_vmid == 0)) {
409 		atomic64_inc(&kvm_vmid_gen);
410 		kvm_next_vmid = 1;
411 
412 		/*
413 		 * On SMP we know no other CPUs can use this CPU's or each
414 		 * other's VMID after force_vm_exit returns since the
415 		 * kvm_vmid_lock blocks them from reentry to the guest.
416 		 */
417 		force_vm_exit(cpu_all_mask);
418 		/*
419 		 * Now broadcast TLB + ICACHE invalidation over the inner
420 		 * shareable domain to make sure all data structures are
421 		 * clean.
422 		 */
423 		kvm_call_hyp(__kvm_flush_vm_context);
424 	}
425 
426 	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
427 	kvm->arch.vmid = kvm_next_vmid;
428 	kvm_next_vmid++;
429 
430 	/* update vttbr to be used with the new vmid */
431 	pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
432 	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
433 	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
434 	kvm->arch.vttbr = pgd_phys | vmid;
435 
436 	spin_unlock(&kvm_vmid_lock);
437 }
438 
kvm_vcpu_first_run_init(struct kvm_vcpu * vcpu)439 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
440 {
441 	struct kvm *kvm = vcpu->kvm;
442 	int ret;
443 
444 	if (likely(vcpu->arch.has_run_once))
445 		return 0;
446 
447 	vcpu->arch.has_run_once = true;
448 
449 	/*
450 	 * Map the VGIC hardware resources before running a vcpu the first
451 	 * time on this VM.
452 	 */
453 	if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
454 		ret = kvm_vgic_map_resources(kvm);
455 		if (ret)
456 			return ret;
457 	}
458 
459 	/*
460 	 * Enable the arch timers only if we have an in-kernel VGIC
461 	 * and it has been properly initialized, since we cannot handle
462 	 * interrupts from the virtual timer with a userspace gic.
463 	 */
464 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
465 		kvm_timer_enable(kvm);
466 
467 	return 0;
468 }
469 
kvm_arch_intc_initialized(struct kvm * kvm)470 bool kvm_arch_intc_initialized(struct kvm *kvm)
471 {
472 	return vgic_initialized(kvm);
473 }
474 
vcpu_pause(struct kvm_vcpu * vcpu)475 static void vcpu_pause(struct kvm_vcpu *vcpu)
476 {
477 	wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
478 
479 	wait_event_interruptible(*wq, !vcpu->arch.pause);
480 }
481 
kvm_vcpu_initialized(struct kvm_vcpu * vcpu)482 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
483 {
484 	return vcpu->arch.target >= 0;
485 }
486 
487 /**
488  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
489  * @vcpu:	The VCPU pointer
490  * @run:	The kvm_run structure pointer used for userspace state exchange
491  *
492  * This function is called through the VCPU_RUN ioctl called from user space. It
493  * will execute VM code in a loop until the time slice for the process is used
494  * or some emulation is needed from user space in which case the function will
495  * return with return value 0 and with the kvm_run structure filled in with the
496  * required data for the requested emulation.
497  */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * run)498 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
499 {
500 	int ret;
501 	sigset_t sigsaved;
502 
503 	if (unlikely(!kvm_vcpu_initialized(vcpu)))
504 		return -ENOEXEC;
505 
506 	ret = kvm_vcpu_first_run_init(vcpu);
507 	if (ret)
508 		return ret;
509 
510 	if (run->exit_reason == KVM_EXIT_MMIO) {
511 		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
512 		if (ret)
513 			return ret;
514 	}
515 
516 	if (vcpu->sigset_active)
517 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
518 
519 	ret = 1;
520 	run->exit_reason = KVM_EXIT_UNKNOWN;
521 	while (ret > 0) {
522 		/*
523 		 * Check conditions before entering the guest
524 		 */
525 		cond_resched();
526 
527 		update_vttbr(vcpu->kvm);
528 
529 		if (vcpu->arch.pause)
530 			vcpu_pause(vcpu);
531 
532 		kvm_vgic_flush_hwstate(vcpu);
533 		kvm_timer_flush_hwstate(vcpu);
534 
535 		local_irq_disable();
536 
537 		/*
538 		 * Re-check atomic conditions
539 		 */
540 		if (signal_pending(current)) {
541 			ret = -EINTR;
542 			run->exit_reason = KVM_EXIT_INTR;
543 		}
544 
545 		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
546 			local_irq_enable();
547 			kvm_timer_sync_hwstate(vcpu);
548 			kvm_vgic_sync_hwstate(vcpu);
549 			continue;
550 		}
551 
552 		/**************************************************************
553 		 * Enter the guest
554 		 */
555 		trace_kvm_entry(*vcpu_pc(vcpu));
556 		kvm_guest_enter();
557 		vcpu->mode = IN_GUEST_MODE;
558 
559 		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
560 
561 		vcpu->mode = OUTSIDE_GUEST_MODE;
562 		kvm_guest_exit();
563 		trace_kvm_exit(kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
564 		/*
565 		 * We may have taken a host interrupt in HYP mode (ie
566 		 * while executing the guest). This interrupt is still
567 		 * pending, as we haven't serviced it yet!
568 		 *
569 		 * We're now back in SVC mode, with interrupts
570 		 * disabled.  Enabling the interrupts now will have
571 		 * the effect of taking the interrupt again, in SVC
572 		 * mode this time.
573 		 */
574 		local_irq_enable();
575 
576 		/*
577 		 * Back from guest
578 		 *************************************************************/
579 
580 		kvm_timer_sync_hwstate(vcpu);
581 		kvm_vgic_sync_hwstate(vcpu);
582 
583 		ret = handle_exit(vcpu, run, ret);
584 	}
585 
586 	if (vcpu->sigset_active)
587 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
588 	return ret;
589 }
590 
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)591 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
592 {
593 	int bit_index;
594 	bool set;
595 	unsigned long *ptr;
596 
597 	if (number == KVM_ARM_IRQ_CPU_IRQ)
598 		bit_index = __ffs(HCR_VI);
599 	else /* KVM_ARM_IRQ_CPU_FIQ */
600 		bit_index = __ffs(HCR_VF);
601 
602 	ptr = (unsigned long *)&vcpu->arch.irq_lines;
603 	if (level)
604 		set = test_and_set_bit(bit_index, ptr);
605 	else
606 		set = test_and_clear_bit(bit_index, ptr);
607 
608 	/*
609 	 * If we didn't change anything, no need to wake up or kick other CPUs
610 	 */
611 	if (set == level)
612 		return 0;
613 
614 	/*
615 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
616 	 * trigger a world-switch round on the running physical CPU to set the
617 	 * virtual IRQ/FIQ fields in the HCR appropriately.
618 	 */
619 	kvm_vcpu_kick(vcpu);
620 
621 	return 0;
622 }
623 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)624 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
625 			  bool line_status)
626 {
627 	u32 irq = irq_level->irq;
628 	unsigned int irq_type, vcpu_idx, irq_num;
629 	int nrcpus = atomic_read(&kvm->online_vcpus);
630 	struct kvm_vcpu *vcpu = NULL;
631 	bool level = irq_level->level;
632 
633 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
634 	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
635 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
636 
637 	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
638 
639 	switch (irq_type) {
640 	case KVM_ARM_IRQ_TYPE_CPU:
641 		if (irqchip_in_kernel(kvm))
642 			return -ENXIO;
643 
644 		if (vcpu_idx >= nrcpus)
645 			return -EINVAL;
646 
647 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
648 		if (!vcpu)
649 			return -EINVAL;
650 
651 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
652 			return -EINVAL;
653 
654 		return vcpu_interrupt_line(vcpu, irq_num, level);
655 	case KVM_ARM_IRQ_TYPE_PPI:
656 		if (!irqchip_in_kernel(kvm))
657 			return -ENXIO;
658 
659 		if (vcpu_idx >= nrcpus)
660 			return -EINVAL;
661 
662 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
663 		if (!vcpu)
664 			return -EINVAL;
665 
666 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
667 			return -EINVAL;
668 
669 		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
670 	case KVM_ARM_IRQ_TYPE_SPI:
671 		if (!irqchip_in_kernel(kvm))
672 			return -ENXIO;
673 
674 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
675 			return -EINVAL;
676 
677 		return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
678 	}
679 
680 	return -EINVAL;
681 }
682 
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)683 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
684 			       const struct kvm_vcpu_init *init)
685 {
686 	unsigned int i;
687 	int phys_target = kvm_target_cpu();
688 
689 	if (init->target != phys_target)
690 		return -EINVAL;
691 
692 	/*
693 	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
694 	 * use the same target.
695 	 */
696 	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
697 		return -EINVAL;
698 
699 	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
700 	for (i = 0; i < sizeof(init->features) * 8; i++) {
701 		bool set = (init->features[i / 32] & (1 << (i % 32)));
702 
703 		if (set && i >= KVM_VCPU_MAX_FEATURES)
704 			return -ENOENT;
705 
706 		/*
707 		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
708 		 * use the same feature set.
709 		 */
710 		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
711 		    test_bit(i, vcpu->arch.features) != set)
712 			return -EINVAL;
713 
714 		if (set)
715 			set_bit(i, vcpu->arch.features);
716 	}
717 
718 	vcpu->arch.target = phys_target;
719 
720 	/* Now we know what it is, we can reset it. */
721 	return kvm_reset_vcpu(vcpu);
722 }
723 
724 
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)725 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
726 					 struct kvm_vcpu_init *init)
727 {
728 	int ret;
729 
730 	ret = kvm_vcpu_set_target(vcpu, init);
731 	if (ret)
732 		return ret;
733 
734 	/*
735 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
736 	 * guest MMU is turned off and flush the caches as needed.
737 	 */
738 	if (vcpu->arch.has_run_once)
739 		stage2_unmap_vm(vcpu->kvm);
740 
741 	vcpu_reset_hcr(vcpu);
742 
743 	/*
744 	 * Handle the "start in power-off" case by marking the VCPU as paused.
745 	 */
746 	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
747 		vcpu->arch.pause = true;
748 	else
749 		vcpu->arch.pause = false;
750 
751 	return 0;
752 }
753 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)754 long kvm_arch_vcpu_ioctl(struct file *filp,
755 			 unsigned int ioctl, unsigned long arg)
756 {
757 	struct kvm_vcpu *vcpu = filp->private_data;
758 	void __user *argp = (void __user *)arg;
759 
760 	switch (ioctl) {
761 	case KVM_ARM_VCPU_INIT: {
762 		struct kvm_vcpu_init init;
763 
764 		if (copy_from_user(&init, argp, sizeof(init)))
765 			return -EFAULT;
766 
767 		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
768 	}
769 	case KVM_SET_ONE_REG:
770 	case KVM_GET_ONE_REG: {
771 		struct kvm_one_reg reg;
772 
773 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
774 			return -ENOEXEC;
775 
776 		if (copy_from_user(&reg, argp, sizeof(reg)))
777 			return -EFAULT;
778 		if (ioctl == KVM_SET_ONE_REG)
779 			return kvm_arm_set_reg(vcpu, &reg);
780 		else
781 			return kvm_arm_get_reg(vcpu, &reg);
782 	}
783 	case KVM_GET_REG_LIST: {
784 		struct kvm_reg_list __user *user_list = argp;
785 		struct kvm_reg_list reg_list;
786 		unsigned n;
787 
788 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
789 			return -ENOEXEC;
790 
791 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
792 			return -EFAULT;
793 		n = reg_list.n;
794 		reg_list.n = kvm_arm_num_regs(vcpu);
795 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
796 			return -EFAULT;
797 		if (n < reg_list.n)
798 			return -E2BIG;
799 		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
800 	}
801 	default:
802 		return -EINVAL;
803 	}
804 }
805 
806 /**
807  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
808  * @kvm: kvm instance
809  * @log: slot id and address to which we copy the log
810  *
811  * Steps 1-4 below provide general overview of dirty page logging. See
812  * kvm_get_dirty_log_protect() function description for additional details.
813  *
814  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
815  * always flush the TLB (step 4) even if previous step failed  and the dirty
816  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
817  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
818  * writes will be marked dirty for next log read.
819  *
820  *   1. Take a snapshot of the bit and clear it if needed.
821  *   2. Write protect the corresponding page.
822  *   3. Copy the snapshot to the userspace.
823  *   4. Flush TLB's if needed.
824  */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)825 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
826 {
827 	bool is_dirty = false;
828 	int r;
829 
830 	mutex_lock(&kvm->slots_lock);
831 
832 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
833 
834 	if (is_dirty)
835 		kvm_flush_remote_tlbs(kvm);
836 
837 	mutex_unlock(&kvm->slots_lock);
838 	return r;
839 }
840 
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)841 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
842 					struct kvm_arm_device_addr *dev_addr)
843 {
844 	unsigned long dev_id, type;
845 
846 	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
847 		KVM_ARM_DEVICE_ID_SHIFT;
848 	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
849 		KVM_ARM_DEVICE_TYPE_SHIFT;
850 
851 	switch (dev_id) {
852 	case KVM_ARM_DEVICE_VGIC_V2:
853 		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
854 	default:
855 		return -ENODEV;
856 	}
857 }
858 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)859 long kvm_arch_vm_ioctl(struct file *filp,
860 		       unsigned int ioctl, unsigned long arg)
861 {
862 	struct kvm *kvm = filp->private_data;
863 	void __user *argp = (void __user *)arg;
864 
865 	switch (ioctl) {
866 	case KVM_CREATE_IRQCHIP: {
867 		return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
868 	}
869 	case KVM_ARM_SET_DEVICE_ADDR: {
870 		struct kvm_arm_device_addr dev_addr;
871 
872 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
873 			return -EFAULT;
874 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
875 	}
876 	case KVM_ARM_PREFERRED_TARGET: {
877 		int err;
878 		struct kvm_vcpu_init init;
879 
880 		err = kvm_vcpu_preferred_target(&init);
881 		if (err)
882 			return err;
883 
884 		if (copy_to_user(argp, &init, sizeof(init)))
885 			return -EFAULT;
886 
887 		return 0;
888 	}
889 	default:
890 		return -EINVAL;
891 	}
892 }
893 
cpu_init_hyp_mode(void * dummy)894 static void cpu_init_hyp_mode(void *dummy)
895 {
896 	phys_addr_t boot_pgd_ptr;
897 	phys_addr_t pgd_ptr;
898 	unsigned long hyp_stack_ptr;
899 	unsigned long stack_page;
900 	unsigned long vector_ptr;
901 
902 	/* Switch from the HYP stub to our own HYP init vector */
903 	__hyp_set_vectors(kvm_get_idmap_vector());
904 
905 	boot_pgd_ptr = kvm_mmu_get_boot_httbr();
906 	pgd_ptr = kvm_mmu_get_httbr();
907 	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
908 	hyp_stack_ptr = stack_page + PAGE_SIZE;
909 	vector_ptr = (unsigned long)__kvm_hyp_vector;
910 
911 	__cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
912 }
913 
hyp_init_cpu_notify(struct notifier_block * self,unsigned long action,void * cpu)914 static int hyp_init_cpu_notify(struct notifier_block *self,
915 			       unsigned long action, void *cpu)
916 {
917 	switch (action) {
918 	case CPU_STARTING:
919 	case CPU_STARTING_FROZEN:
920 		if (__hyp_get_vectors() == hyp_default_vectors)
921 			cpu_init_hyp_mode(NULL);
922 		break;
923 	}
924 
925 	return NOTIFY_OK;
926 }
927 
928 static struct notifier_block hyp_init_cpu_nb = {
929 	.notifier_call = hyp_init_cpu_notify,
930 };
931 
932 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)933 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
934 				    unsigned long cmd,
935 				    void *v)
936 {
937 	if (cmd == CPU_PM_EXIT &&
938 	    __hyp_get_vectors() == hyp_default_vectors) {
939 		cpu_init_hyp_mode(NULL);
940 		return NOTIFY_OK;
941 	}
942 
943 	return NOTIFY_DONE;
944 }
945 
946 static struct notifier_block hyp_init_cpu_pm_nb = {
947 	.notifier_call = hyp_init_cpu_pm_notifier,
948 };
949 
hyp_cpu_pm_init(void)950 static void __init hyp_cpu_pm_init(void)
951 {
952 	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
953 }
954 #else
hyp_cpu_pm_init(void)955 static inline void hyp_cpu_pm_init(void)
956 {
957 }
958 #endif
959 
960 /**
961  * Inits Hyp-mode on all online CPUs
962  */
init_hyp_mode(void)963 static int init_hyp_mode(void)
964 {
965 	int cpu;
966 	int err = 0;
967 
968 	/*
969 	 * Allocate Hyp PGD and setup Hyp identity mapping
970 	 */
971 	err = kvm_mmu_init();
972 	if (err)
973 		goto out_err;
974 
975 	/*
976 	 * It is probably enough to obtain the default on one
977 	 * CPU. It's unlikely to be different on the others.
978 	 */
979 	hyp_default_vectors = __hyp_get_vectors();
980 
981 	/*
982 	 * Allocate stack pages for Hypervisor-mode
983 	 */
984 	for_each_possible_cpu(cpu) {
985 		unsigned long stack_page;
986 
987 		stack_page = __get_free_page(GFP_KERNEL);
988 		if (!stack_page) {
989 			err = -ENOMEM;
990 			goto out_free_stack_pages;
991 		}
992 
993 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
994 	}
995 
996 	/*
997 	 * Map the Hyp-code called directly from the host
998 	 */
999 	err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
1000 	if (err) {
1001 		kvm_err("Cannot map world-switch code\n");
1002 		goto out_free_mappings;
1003 	}
1004 
1005 	/*
1006 	 * Map the Hyp stack pages
1007 	 */
1008 	for_each_possible_cpu(cpu) {
1009 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1010 		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1011 
1012 		if (err) {
1013 			kvm_err("Cannot map hyp stack\n");
1014 			goto out_free_mappings;
1015 		}
1016 	}
1017 
1018 	/*
1019 	 * Map the host CPU structures
1020 	 */
1021 	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1022 	if (!kvm_host_cpu_state) {
1023 		err = -ENOMEM;
1024 		kvm_err("Cannot allocate host CPU state\n");
1025 		goto out_free_mappings;
1026 	}
1027 
1028 	for_each_possible_cpu(cpu) {
1029 		kvm_cpu_context_t *cpu_ctxt;
1030 
1031 		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1032 		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1033 
1034 		if (err) {
1035 			kvm_err("Cannot map host CPU state: %d\n", err);
1036 			goto out_free_context;
1037 		}
1038 	}
1039 
1040 	/*
1041 	 * Execute the init code on each CPU.
1042 	 */
1043 	on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1044 
1045 	/*
1046 	 * Init HYP view of VGIC
1047 	 */
1048 	err = kvm_vgic_hyp_init();
1049 	if (err)
1050 		goto out_free_context;
1051 
1052 	/*
1053 	 * Init HYP architected timer support
1054 	 */
1055 	err = kvm_timer_hyp_init();
1056 	if (err)
1057 		goto out_free_mappings;
1058 
1059 #ifndef CONFIG_HOTPLUG_CPU
1060 	free_boot_hyp_pgd();
1061 #endif
1062 
1063 	kvm_perf_init();
1064 
1065 	kvm_info("Hyp mode initialized successfully\n");
1066 
1067 	return 0;
1068 out_free_context:
1069 	free_percpu(kvm_host_cpu_state);
1070 out_free_mappings:
1071 	free_hyp_pgds();
1072 out_free_stack_pages:
1073 	for_each_possible_cpu(cpu)
1074 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1075 out_err:
1076 	kvm_err("error initializing Hyp mode: %d\n", err);
1077 	return err;
1078 }
1079 
check_kvm_target_cpu(void * ret)1080 static void check_kvm_target_cpu(void *ret)
1081 {
1082 	*(int *)ret = kvm_target_cpu();
1083 }
1084 
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)1085 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1086 {
1087 	struct kvm_vcpu *vcpu;
1088 	int i;
1089 
1090 	mpidr &= MPIDR_HWID_BITMASK;
1091 	kvm_for_each_vcpu(i, vcpu, kvm) {
1092 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1093 			return vcpu;
1094 	}
1095 	return NULL;
1096 }
1097 
1098 /**
1099  * Initialize Hyp-mode and memory mappings on all CPUs.
1100  */
kvm_arch_init(void * opaque)1101 int kvm_arch_init(void *opaque)
1102 {
1103 	int err;
1104 	int ret, cpu;
1105 
1106 	if (!is_hyp_mode_available()) {
1107 		kvm_err("HYP mode not available\n");
1108 		return -ENODEV;
1109 	}
1110 
1111 	for_each_online_cpu(cpu) {
1112 		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1113 		if (ret < 0) {
1114 			kvm_err("Error, CPU %d not supported!\n", cpu);
1115 			return -ENODEV;
1116 		}
1117 	}
1118 
1119 	cpu_notifier_register_begin();
1120 
1121 	err = init_hyp_mode();
1122 	if (err)
1123 		goto out_err;
1124 
1125 	err = __register_cpu_notifier(&hyp_init_cpu_nb);
1126 	if (err) {
1127 		kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1128 		goto out_err;
1129 	}
1130 
1131 	cpu_notifier_register_done();
1132 
1133 	hyp_cpu_pm_init();
1134 
1135 	kvm_coproc_table_init();
1136 	return 0;
1137 out_err:
1138 	cpu_notifier_register_done();
1139 	return err;
1140 }
1141 
1142 /* NOP: Compiling as a module not supported */
kvm_arch_exit(void)1143 void kvm_arch_exit(void)
1144 {
1145 	kvm_perf_teardown();
1146 }
1147 
arm_init(void)1148 static int arm_init(void)
1149 {
1150 	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1151 	return rc;
1152 }
1153 
1154 module_init(arm_init);
1155