1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
kvm_arm_set_running_vcpu(struct kvm_vcpu * vcpu)64 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
65 {
66 BUG_ON(preemptible());
67 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
68 }
69
70 /**
71 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
72 * Must be called from non-preemptible context
73 */
kvm_arm_get_running_vcpu(void)74 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
75 {
76 BUG_ON(preemptible());
77 return __this_cpu_read(kvm_arm_running_vcpu);
78 }
79
80 /**
81 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
82 */
kvm_get_running_vcpus(void)83 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
84 {
85 return &kvm_arm_running_vcpu;
86 }
87
kvm_arch_hardware_enable(void)88 int kvm_arch_hardware_enable(void)
89 {
90 return 0;
91 }
92
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)93 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
94 {
95 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
96 }
97
kvm_arch_hardware_setup(void)98 int kvm_arch_hardware_setup(void)
99 {
100 return 0;
101 }
102
kvm_arch_check_processor_compat(void * rtn)103 void kvm_arch_check_processor_compat(void *rtn)
104 {
105 *(int *)rtn = 0;
106 }
107
108
109 /**
110 * kvm_arch_init_vm - initializes a VM data structure
111 * @kvm: pointer to the KVM struct
112 */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)113 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
114 {
115 int ret = 0;
116
117 if (type)
118 return -EINVAL;
119
120 ret = kvm_alloc_stage2_pgd(kvm);
121 if (ret)
122 goto out_fail_alloc;
123
124 ret = create_hyp_mappings(kvm, kvm + 1);
125 if (ret)
126 goto out_free_stage2_pgd;
127
128 kvm_timer_init(kvm);
129
130 /* Mark the initial VMID generation invalid */
131 kvm->arch.vmid_gen = 0;
132
133 /* The maximum number of VCPUs is limited by the host's GIC model */
134 kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
135
136 return ret;
137 out_free_stage2_pgd:
138 kvm_free_stage2_pgd(kvm);
139 out_fail_alloc:
140 return ret;
141 }
142
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)143 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
144 {
145 return VM_FAULT_SIGBUS;
146 }
147
148
149 /**
150 * kvm_arch_destroy_vm - destroy the VM data structure
151 * @kvm: pointer to the KVM struct
152 */
kvm_arch_destroy_vm(struct kvm * kvm)153 void kvm_arch_destroy_vm(struct kvm *kvm)
154 {
155 int i;
156
157 kvm_free_stage2_pgd(kvm);
158
159 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
160 if (kvm->vcpus[i]) {
161 kvm_arch_vcpu_free(kvm->vcpus[i]);
162 kvm->vcpus[i] = NULL;
163 }
164 }
165
166 kvm_vgic_destroy(kvm);
167 }
168
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)169 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
170 {
171 int r;
172 switch (ext) {
173 case KVM_CAP_IRQCHIP:
174 case KVM_CAP_IRQFD:
175 case KVM_CAP_IOEVENTFD:
176 case KVM_CAP_DEVICE_CTRL:
177 case KVM_CAP_USER_MEMORY:
178 case KVM_CAP_SYNC_MMU:
179 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
180 case KVM_CAP_ONE_REG:
181 case KVM_CAP_ARM_PSCI:
182 case KVM_CAP_ARM_PSCI_0_2:
183 case KVM_CAP_READONLY_MEM:
184 case KVM_CAP_MP_STATE:
185 r = 1;
186 break;
187 case KVM_CAP_COALESCED_MMIO:
188 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
189 break;
190 case KVM_CAP_ARM_SET_DEVICE_ADDR:
191 r = 1;
192 break;
193 case KVM_CAP_NR_VCPUS:
194 r = num_online_cpus();
195 break;
196 case KVM_CAP_MAX_VCPUS:
197 r = KVM_MAX_VCPUS;
198 break;
199 default:
200 r = kvm_arch_dev_ioctl_check_extension(ext);
201 break;
202 }
203 return r;
204 }
205
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)206 long kvm_arch_dev_ioctl(struct file *filp,
207 unsigned int ioctl, unsigned long arg)
208 {
209 return -EINVAL;
210 }
211
212
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)213 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
214 {
215 int err;
216 struct kvm_vcpu *vcpu;
217
218 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
219 err = -EBUSY;
220 goto out;
221 }
222
223 if (id >= kvm->arch.max_vcpus) {
224 err = -EINVAL;
225 goto out;
226 }
227
228 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
229 if (!vcpu) {
230 err = -ENOMEM;
231 goto out;
232 }
233
234 err = kvm_vcpu_init(vcpu, kvm, id);
235 if (err)
236 goto free_vcpu;
237
238 err = create_hyp_mappings(vcpu, vcpu + 1);
239 if (err)
240 goto vcpu_uninit;
241
242 return vcpu;
243 vcpu_uninit:
244 kvm_vcpu_uninit(vcpu);
245 free_vcpu:
246 kmem_cache_free(kvm_vcpu_cache, vcpu);
247 out:
248 return ERR_PTR(err);
249 }
250
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)251 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
252 {
253 }
254
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)255 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
256 {
257 kvm_mmu_free_memory_caches(vcpu);
258 kvm_timer_vcpu_terminate(vcpu);
259 kvm_vgic_vcpu_destroy(vcpu);
260 kmem_cache_free(kvm_vcpu_cache, vcpu);
261 }
262
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)263 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
264 {
265 kvm_arch_vcpu_free(vcpu);
266 }
267
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)268 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
269 {
270 return kvm_timer_should_fire(vcpu);
271 }
272
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)273 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
274 {
275 /* Force users to call KVM_ARM_VCPU_INIT */
276 vcpu->arch.target = -1;
277 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
278
279 /* Set up the timer */
280 kvm_timer_vcpu_init(vcpu);
281
282 return 0;
283 }
284
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)285 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
286 {
287 vcpu->cpu = cpu;
288 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
289
290 kvm_arm_set_running_vcpu(vcpu);
291 }
292
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)293 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
294 {
295 /*
296 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
297 * if the vcpu is no longer assigned to a cpu. This is used for the
298 * optimized make_all_cpus_request path.
299 */
300 vcpu->cpu = -1;
301
302 kvm_arm_set_running_vcpu(NULL);
303 }
304
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)305 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
306 struct kvm_guest_debug *dbg)
307 {
308 return -EINVAL;
309 }
310
311
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)312 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
313 struct kvm_mp_state *mp_state)
314 {
315 if (vcpu->arch.pause)
316 mp_state->mp_state = KVM_MP_STATE_STOPPED;
317 else
318 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
319
320 return 0;
321 }
322
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)323 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
324 struct kvm_mp_state *mp_state)
325 {
326 switch (mp_state->mp_state) {
327 case KVM_MP_STATE_RUNNABLE:
328 vcpu->arch.pause = false;
329 break;
330 case KVM_MP_STATE_STOPPED:
331 vcpu->arch.pause = true;
332 break;
333 default:
334 return -EINVAL;
335 }
336
337 return 0;
338 }
339
340 /**
341 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
342 * @v: The VCPU pointer
343 *
344 * If the guest CPU is not waiting for interrupts or an interrupt line is
345 * asserted, the CPU is by definition runnable.
346 */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)347 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
348 {
349 return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
350 }
351
352 /* Just ensure a guest exit from a particular CPU */
exit_vm_noop(void * info)353 static void exit_vm_noop(void *info)
354 {
355 }
356
force_vm_exit(const cpumask_t * mask)357 void force_vm_exit(const cpumask_t *mask)
358 {
359 smp_call_function_many(mask, exit_vm_noop, NULL, true);
360 }
361
362 /**
363 * need_new_vmid_gen - check that the VMID is still valid
364 * @kvm: The VM's VMID to checkt
365 *
366 * return true if there is a new generation of VMIDs being used
367 *
368 * The hardware supports only 256 values with the value zero reserved for the
369 * host, so we check if an assigned value belongs to a previous generation,
370 * which which requires us to assign a new value. If we're the first to use a
371 * VMID for the new generation, we must flush necessary caches and TLBs on all
372 * CPUs.
373 */
need_new_vmid_gen(struct kvm * kvm)374 static bool need_new_vmid_gen(struct kvm *kvm)
375 {
376 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
377 }
378
379 /**
380 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
381 * @kvm The guest that we are about to run
382 *
383 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
384 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
385 * caches and TLBs.
386 */
update_vttbr(struct kvm * kvm)387 static void update_vttbr(struct kvm *kvm)
388 {
389 phys_addr_t pgd_phys;
390 u64 vmid;
391
392 if (!need_new_vmid_gen(kvm))
393 return;
394
395 spin_lock(&kvm_vmid_lock);
396
397 /*
398 * We need to re-check the vmid_gen here to ensure that if another vcpu
399 * already allocated a valid vmid for this vm, then this vcpu should
400 * use the same vmid.
401 */
402 if (!need_new_vmid_gen(kvm)) {
403 spin_unlock(&kvm_vmid_lock);
404 return;
405 }
406
407 /* First user of a new VMID generation? */
408 if (unlikely(kvm_next_vmid == 0)) {
409 atomic64_inc(&kvm_vmid_gen);
410 kvm_next_vmid = 1;
411
412 /*
413 * On SMP we know no other CPUs can use this CPU's or each
414 * other's VMID after force_vm_exit returns since the
415 * kvm_vmid_lock blocks them from reentry to the guest.
416 */
417 force_vm_exit(cpu_all_mask);
418 /*
419 * Now broadcast TLB + ICACHE invalidation over the inner
420 * shareable domain to make sure all data structures are
421 * clean.
422 */
423 kvm_call_hyp(__kvm_flush_vm_context);
424 }
425
426 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
427 kvm->arch.vmid = kvm_next_vmid;
428 kvm_next_vmid++;
429
430 /* update vttbr to be used with the new vmid */
431 pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
432 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
433 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
434 kvm->arch.vttbr = pgd_phys | vmid;
435
436 spin_unlock(&kvm_vmid_lock);
437 }
438
kvm_vcpu_first_run_init(struct kvm_vcpu * vcpu)439 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
440 {
441 struct kvm *kvm = vcpu->kvm;
442 int ret;
443
444 if (likely(vcpu->arch.has_run_once))
445 return 0;
446
447 vcpu->arch.has_run_once = true;
448
449 /*
450 * Map the VGIC hardware resources before running a vcpu the first
451 * time on this VM.
452 */
453 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
454 ret = kvm_vgic_map_resources(kvm);
455 if (ret)
456 return ret;
457 }
458
459 /*
460 * Enable the arch timers only if we have an in-kernel VGIC
461 * and it has been properly initialized, since we cannot handle
462 * interrupts from the virtual timer with a userspace gic.
463 */
464 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
465 kvm_timer_enable(kvm);
466
467 return 0;
468 }
469
kvm_arch_intc_initialized(struct kvm * kvm)470 bool kvm_arch_intc_initialized(struct kvm *kvm)
471 {
472 return vgic_initialized(kvm);
473 }
474
vcpu_pause(struct kvm_vcpu * vcpu)475 static void vcpu_pause(struct kvm_vcpu *vcpu)
476 {
477 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
478
479 wait_event_interruptible(*wq, !vcpu->arch.pause);
480 }
481
kvm_vcpu_initialized(struct kvm_vcpu * vcpu)482 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
483 {
484 return vcpu->arch.target >= 0;
485 }
486
487 /**
488 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
489 * @vcpu: The VCPU pointer
490 * @run: The kvm_run structure pointer used for userspace state exchange
491 *
492 * This function is called through the VCPU_RUN ioctl called from user space. It
493 * will execute VM code in a loop until the time slice for the process is used
494 * or some emulation is needed from user space in which case the function will
495 * return with return value 0 and with the kvm_run structure filled in with the
496 * required data for the requested emulation.
497 */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * run)498 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
499 {
500 int ret;
501 sigset_t sigsaved;
502
503 if (unlikely(!kvm_vcpu_initialized(vcpu)))
504 return -ENOEXEC;
505
506 ret = kvm_vcpu_first_run_init(vcpu);
507 if (ret)
508 return ret;
509
510 if (run->exit_reason == KVM_EXIT_MMIO) {
511 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
512 if (ret)
513 return ret;
514 }
515
516 if (vcpu->sigset_active)
517 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
518
519 ret = 1;
520 run->exit_reason = KVM_EXIT_UNKNOWN;
521 while (ret > 0) {
522 /*
523 * Check conditions before entering the guest
524 */
525 cond_resched();
526
527 update_vttbr(vcpu->kvm);
528
529 if (vcpu->arch.pause)
530 vcpu_pause(vcpu);
531
532 kvm_vgic_flush_hwstate(vcpu);
533 kvm_timer_flush_hwstate(vcpu);
534
535 local_irq_disable();
536
537 /*
538 * Re-check atomic conditions
539 */
540 if (signal_pending(current)) {
541 ret = -EINTR;
542 run->exit_reason = KVM_EXIT_INTR;
543 }
544
545 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
546 local_irq_enable();
547 kvm_timer_sync_hwstate(vcpu);
548 kvm_vgic_sync_hwstate(vcpu);
549 continue;
550 }
551
552 /**************************************************************
553 * Enter the guest
554 */
555 trace_kvm_entry(*vcpu_pc(vcpu));
556 kvm_guest_enter();
557 vcpu->mode = IN_GUEST_MODE;
558
559 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
560
561 vcpu->mode = OUTSIDE_GUEST_MODE;
562 kvm_guest_exit();
563 trace_kvm_exit(kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
564 /*
565 * We may have taken a host interrupt in HYP mode (ie
566 * while executing the guest). This interrupt is still
567 * pending, as we haven't serviced it yet!
568 *
569 * We're now back in SVC mode, with interrupts
570 * disabled. Enabling the interrupts now will have
571 * the effect of taking the interrupt again, in SVC
572 * mode this time.
573 */
574 local_irq_enable();
575
576 /*
577 * Back from guest
578 *************************************************************/
579
580 kvm_timer_sync_hwstate(vcpu);
581 kvm_vgic_sync_hwstate(vcpu);
582
583 ret = handle_exit(vcpu, run, ret);
584 }
585
586 if (vcpu->sigset_active)
587 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
588 return ret;
589 }
590
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)591 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
592 {
593 int bit_index;
594 bool set;
595 unsigned long *ptr;
596
597 if (number == KVM_ARM_IRQ_CPU_IRQ)
598 bit_index = __ffs(HCR_VI);
599 else /* KVM_ARM_IRQ_CPU_FIQ */
600 bit_index = __ffs(HCR_VF);
601
602 ptr = (unsigned long *)&vcpu->arch.irq_lines;
603 if (level)
604 set = test_and_set_bit(bit_index, ptr);
605 else
606 set = test_and_clear_bit(bit_index, ptr);
607
608 /*
609 * If we didn't change anything, no need to wake up or kick other CPUs
610 */
611 if (set == level)
612 return 0;
613
614 /*
615 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
616 * trigger a world-switch round on the running physical CPU to set the
617 * virtual IRQ/FIQ fields in the HCR appropriately.
618 */
619 kvm_vcpu_kick(vcpu);
620
621 return 0;
622 }
623
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)624 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
625 bool line_status)
626 {
627 u32 irq = irq_level->irq;
628 unsigned int irq_type, vcpu_idx, irq_num;
629 int nrcpus = atomic_read(&kvm->online_vcpus);
630 struct kvm_vcpu *vcpu = NULL;
631 bool level = irq_level->level;
632
633 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
634 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
635 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
636
637 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
638
639 switch (irq_type) {
640 case KVM_ARM_IRQ_TYPE_CPU:
641 if (irqchip_in_kernel(kvm))
642 return -ENXIO;
643
644 if (vcpu_idx >= nrcpus)
645 return -EINVAL;
646
647 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
648 if (!vcpu)
649 return -EINVAL;
650
651 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
652 return -EINVAL;
653
654 return vcpu_interrupt_line(vcpu, irq_num, level);
655 case KVM_ARM_IRQ_TYPE_PPI:
656 if (!irqchip_in_kernel(kvm))
657 return -ENXIO;
658
659 if (vcpu_idx >= nrcpus)
660 return -EINVAL;
661
662 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
663 if (!vcpu)
664 return -EINVAL;
665
666 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
667 return -EINVAL;
668
669 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
670 case KVM_ARM_IRQ_TYPE_SPI:
671 if (!irqchip_in_kernel(kvm))
672 return -ENXIO;
673
674 if (irq_num < VGIC_NR_PRIVATE_IRQS)
675 return -EINVAL;
676
677 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
678 }
679
680 return -EINVAL;
681 }
682
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)683 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
684 const struct kvm_vcpu_init *init)
685 {
686 unsigned int i;
687 int phys_target = kvm_target_cpu();
688
689 if (init->target != phys_target)
690 return -EINVAL;
691
692 /*
693 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
694 * use the same target.
695 */
696 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
697 return -EINVAL;
698
699 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
700 for (i = 0; i < sizeof(init->features) * 8; i++) {
701 bool set = (init->features[i / 32] & (1 << (i % 32)));
702
703 if (set && i >= KVM_VCPU_MAX_FEATURES)
704 return -ENOENT;
705
706 /*
707 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
708 * use the same feature set.
709 */
710 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
711 test_bit(i, vcpu->arch.features) != set)
712 return -EINVAL;
713
714 if (set)
715 set_bit(i, vcpu->arch.features);
716 }
717
718 vcpu->arch.target = phys_target;
719
720 /* Now we know what it is, we can reset it. */
721 return kvm_reset_vcpu(vcpu);
722 }
723
724
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)725 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
726 struct kvm_vcpu_init *init)
727 {
728 int ret;
729
730 ret = kvm_vcpu_set_target(vcpu, init);
731 if (ret)
732 return ret;
733
734 /*
735 * Ensure a rebooted VM will fault in RAM pages and detect if the
736 * guest MMU is turned off and flush the caches as needed.
737 */
738 if (vcpu->arch.has_run_once)
739 stage2_unmap_vm(vcpu->kvm);
740
741 vcpu_reset_hcr(vcpu);
742
743 /*
744 * Handle the "start in power-off" case by marking the VCPU as paused.
745 */
746 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
747 vcpu->arch.pause = true;
748 else
749 vcpu->arch.pause = false;
750
751 return 0;
752 }
753
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)754 long kvm_arch_vcpu_ioctl(struct file *filp,
755 unsigned int ioctl, unsigned long arg)
756 {
757 struct kvm_vcpu *vcpu = filp->private_data;
758 void __user *argp = (void __user *)arg;
759
760 switch (ioctl) {
761 case KVM_ARM_VCPU_INIT: {
762 struct kvm_vcpu_init init;
763
764 if (copy_from_user(&init, argp, sizeof(init)))
765 return -EFAULT;
766
767 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
768 }
769 case KVM_SET_ONE_REG:
770 case KVM_GET_ONE_REG: {
771 struct kvm_one_reg reg;
772
773 if (unlikely(!kvm_vcpu_initialized(vcpu)))
774 return -ENOEXEC;
775
776 if (copy_from_user(®, argp, sizeof(reg)))
777 return -EFAULT;
778 if (ioctl == KVM_SET_ONE_REG)
779 return kvm_arm_set_reg(vcpu, ®);
780 else
781 return kvm_arm_get_reg(vcpu, ®);
782 }
783 case KVM_GET_REG_LIST: {
784 struct kvm_reg_list __user *user_list = argp;
785 struct kvm_reg_list reg_list;
786 unsigned n;
787
788 if (unlikely(!kvm_vcpu_initialized(vcpu)))
789 return -ENOEXEC;
790
791 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
792 return -EFAULT;
793 n = reg_list.n;
794 reg_list.n = kvm_arm_num_regs(vcpu);
795 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
796 return -EFAULT;
797 if (n < reg_list.n)
798 return -E2BIG;
799 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
800 }
801 default:
802 return -EINVAL;
803 }
804 }
805
806 /**
807 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
808 * @kvm: kvm instance
809 * @log: slot id and address to which we copy the log
810 *
811 * Steps 1-4 below provide general overview of dirty page logging. See
812 * kvm_get_dirty_log_protect() function description for additional details.
813 *
814 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
815 * always flush the TLB (step 4) even if previous step failed and the dirty
816 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
817 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
818 * writes will be marked dirty for next log read.
819 *
820 * 1. Take a snapshot of the bit and clear it if needed.
821 * 2. Write protect the corresponding page.
822 * 3. Copy the snapshot to the userspace.
823 * 4. Flush TLB's if needed.
824 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)825 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
826 {
827 bool is_dirty = false;
828 int r;
829
830 mutex_lock(&kvm->slots_lock);
831
832 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
833
834 if (is_dirty)
835 kvm_flush_remote_tlbs(kvm);
836
837 mutex_unlock(&kvm->slots_lock);
838 return r;
839 }
840
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)841 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
842 struct kvm_arm_device_addr *dev_addr)
843 {
844 unsigned long dev_id, type;
845
846 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
847 KVM_ARM_DEVICE_ID_SHIFT;
848 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
849 KVM_ARM_DEVICE_TYPE_SHIFT;
850
851 switch (dev_id) {
852 case KVM_ARM_DEVICE_VGIC_V2:
853 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
854 default:
855 return -ENODEV;
856 }
857 }
858
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)859 long kvm_arch_vm_ioctl(struct file *filp,
860 unsigned int ioctl, unsigned long arg)
861 {
862 struct kvm *kvm = filp->private_data;
863 void __user *argp = (void __user *)arg;
864
865 switch (ioctl) {
866 case KVM_CREATE_IRQCHIP: {
867 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
868 }
869 case KVM_ARM_SET_DEVICE_ADDR: {
870 struct kvm_arm_device_addr dev_addr;
871
872 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
873 return -EFAULT;
874 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
875 }
876 case KVM_ARM_PREFERRED_TARGET: {
877 int err;
878 struct kvm_vcpu_init init;
879
880 err = kvm_vcpu_preferred_target(&init);
881 if (err)
882 return err;
883
884 if (copy_to_user(argp, &init, sizeof(init)))
885 return -EFAULT;
886
887 return 0;
888 }
889 default:
890 return -EINVAL;
891 }
892 }
893
cpu_init_hyp_mode(void * dummy)894 static void cpu_init_hyp_mode(void *dummy)
895 {
896 phys_addr_t boot_pgd_ptr;
897 phys_addr_t pgd_ptr;
898 unsigned long hyp_stack_ptr;
899 unsigned long stack_page;
900 unsigned long vector_ptr;
901
902 /* Switch from the HYP stub to our own HYP init vector */
903 __hyp_set_vectors(kvm_get_idmap_vector());
904
905 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
906 pgd_ptr = kvm_mmu_get_httbr();
907 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
908 hyp_stack_ptr = stack_page + PAGE_SIZE;
909 vector_ptr = (unsigned long)__kvm_hyp_vector;
910
911 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
912 }
913
hyp_init_cpu_notify(struct notifier_block * self,unsigned long action,void * cpu)914 static int hyp_init_cpu_notify(struct notifier_block *self,
915 unsigned long action, void *cpu)
916 {
917 switch (action) {
918 case CPU_STARTING:
919 case CPU_STARTING_FROZEN:
920 if (__hyp_get_vectors() == hyp_default_vectors)
921 cpu_init_hyp_mode(NULL);
922 break;
923 }
924
925 return NOTIFY_OK;
926 }
927
928 static struct notifier_block hyp_init_cpu_nb = {
929 .notifier_call = hyp_init_cpu_notify,
930 };
931
932 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)933 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
934 unsigned long cmd,
935 void *v)
936 {
937 if (cmd == CPU_PM_EXIT &&
938 __hyp_get_vectors() == hyp_default_vectors) {
939 cpu_init_hyp_mode(NULL);
940 return NOTIFY_OK;
941 }
942
943 return NOTIFY_DONE;
944 }
945
946 static struct notifier_block hyp_init_cpu_pm_nb = {
947 .notifier_call = hyp_init_cpu_pm_notifier,
948 };
949
hyp_cpu_pm_init(void)950 static void __init hyp_cpu_pm_init(void)
951 {
952 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
953 }
954 #else
hyp_cpu_pm_init(void)955 static inline void hyp_cpu_pm_init(void)
956 {
957 }
958 #endif
959
960 /**
961 * Inits Hyp-mode on all online CPUs
962 */
init_hyp_mode(void)963 static int init_hyp_mode(void)
964 {
965 int cpu;
966 int err = 0;
967
968 /*
969 * Allocate Hyp PGD and setup Hyp identity mapping
970 */
971 err = kvm_mmu_init();
972 if (err)
973 goto out_err;
974
975 /*
976 * It is probably enough to obtain the default on one
977 * CPU. It's unlikely to be different on the others.
978 */
979 hyp_default_vectors = __hyp_get_vectors();
980
981 /*
982 * Allocate stack pages for Hypervisor-mode
983 */
984 for_each_possible_cpu(cpu) {
985 unsigned long stack_page;
986
987 stack_page = __get_free_page(GFP_KERNEL);
988 if (!stack_page) {
989 err = -ENOMEM;
990 goto out_free_stack_pages;
991 }
992
993 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
994 }
995
996 /*
997 * Map the Hyp-code called directly from the host
998 */
999 err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
1000 if (err) {
1001 kvm_err("Cannot map world-switch code\n");
1002 goto out_free_mappings;
1003 }
1004
1005 /*
1006 * Map the Hyp stack pages
1007 */
1008 for_each_possible_cpu(cpu) {
1009 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1010 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1011
1012 if (err) {
1013 kvm_err("Cannot map hyp stack\n");
1014 goto out_free_mappings;
1015 }
1016 }
1017
1018 /*
1019 * Map the host CPU structures
1020 */
1021 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1022 if (!kvm_host_cpu_state) {
1023 err = -ENOMEM;
1024 kvm_err("Cannot allocate host CPU state\n");
1025 goto out_free_mappings;
1026 }
1027
1028 for_each_possible_cpu(cpu) {
1029 kvm_cpu_context_t *cpu_ctxt;
1030
1031 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1032 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1033
1034 if (err) {
1035 kvm_err("Cannot map host CPU state: %d\n", err);
1036 goto out_free_context;
1037 }
1038 }
1039
1040 /*
1041 * Execute the init code on each CPU.
1042 */
1043 on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1044
1045 /*
1046 * Init HYP view of VGIC
1047 */
1048 err = kvm_vgic_hyp_init();
1049 if (err)
1050 goto out_free_context;
1051
1052 /*
1053 * Init HYP architected timer support
1054 */
1055 err = kvm_timer_hyp_init();
1056 if (err)
1057 goto out_free_mappings;
1058
1059 #ifndef CONFIG_HOTPLUG_CPU
1060 free_boot_hyp_pgd();
1061 #endif
1062
1063 kvm_perf_init();
1064
1065 kvm_info("Hyp mode initialized successfully\n");
1066
1067 return 0;
1068 out_free_context:
1069 free_percpu(kvm_host_cpu_state);
1070 out_free_mappings:
1071 free_hyp_pgds();
1072 out_free_stack_pages:
1073 for_each_possible_cpu(cpu)
1074 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1075 out_err:
1076 kvm_err("error initializing Hyp mode: %d\n", err);
1077 return err;
1078 }
1079
check_kvm_target_cpu(void * ret)1080 static void check_kvm_target_cpu(void *ret)
1081 {
1082 *(int *)ret = kvm_target_cpu();
1083 }
1084
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)1085 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1086 {
1087 struct kvm_vcpu *vcpu;
1088 int i;
1089
1090 mpidr &= MPIDR_HWID_BITMASK;
1091 kvm_for_each_vcpu(i, vcpu, kvm) {
1092 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1093 return vcpu;
1094 }
1095 return NULL;
1096 }
1097
1098 /**
1099 * Initialize Hyp-mode and memory mappings on all CPUs.
1100 */
kvm_arch_init(void * opaque)1101 int kvm_arch_init(void *opaque)
1102 {
1103 int err;
1104 int ret, cpu;
1105
1106 if (!is_hyp_mode_available()) {
1107 kvm_err("HYP mode not available\n");
1108 return -ENODEV;
1109 }
1110
1111 for_each_online_cpu(cpu) {
1112 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1113 if (ret < 0) {
1114 kvm_err("Error, CPU %d not supported!\n", cpu);
1115 return -ENODEV;
1116 }
1117 }
1118
1119 cpu_notifier_register_begin();
1120
1121 err = init_hyp_mode();
1122 if (err)
1123 goto out_err;
1124
1125 err = __register_cpu_notifier(&hyp_init_cpu_nb);
1126 if (err) {
1127 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1128 goto out_err;
1129 }
1130
1131 cpu_notifier_register_done();
1132
1133 hyp_cpu_pm_init();
1134
1135 kvm_coproc_table_init();
1136 return 0;
1137 out_err:
1138 cpu_notifier_register_done();
1139 return err;
1140 }
1141
1142 /* NOP: Compiling as a module not supported */
kvm_arch_exit(void)1143 void kvm_arch_exit(void)
1144 {
1145 kvm_perf_teardown();
1146 }
1147
arm_init(void)1148 static int arm_init(void)
1149 {
1150 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1151 return rc;
1152 }
1153
1154 module_init(arm_init);
1155