1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20 
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26 
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39 
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44 
45 /*
46  * When setting this variable to true it enables Two-Dimensional-Paging
47  * where the hardware walks 2 page tables:
48  * 1. the guest-virtual to guest-physical
49  * 2. while doing 1. it walks guest-physical to host-physical
50  * If the hardware supports that we don't need to do shadow paging.
51  */
52 bool tdp_enabled = false;
53 
54 enum {
55 	AUDIT_PRE_PAGE_FAULT,
56 	AUDIT_POST_PAGE_FAULT,
57 	AUDIT_PRE_PTE_WRITE,
58 	AUDIT_POST_PTE_WRITE,
59 	AUDIT_PRE_SYNC,
60 	AUDIT_POST_SYNC
61 };
62 
63 #undef MMU_DEBUG
64 
65 #ifdef MMU_DEBUG
66 static bool dbg = 0;
67 module_param(dbg, bool, 0644);
68 
69 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71 #define MMU_WARN_ON(x) WARN_ON(x)
72 #else
73 #define pgprintk(x...) do { } while (0)
74 #define rmap_printk(x...) do { } while (0)
75 #define MMU_WARN_ON(x) do { } while (0)
76 #endif
77 
78 #define PTE_PREFETCH_NUM		8
79 
80 #define PT_FIRST_AVAIL_BITS_SHIFT 10
81 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
82 
83 #define PT64_LEVEL_BITS 9
84 
85 #define PT64_LEVEL_SHIFT(level) \
86 		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
87 
88 #define PT64_INDEX(address, level)\
89 	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90 
91 
92 #define PT32_LEVEL_BITS 10
93 
94 #define PT32_LEVEL_SHIFT(level) \
95 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
96 
97 #define PT32_LVL_OFFSET_MASK(level) \
98 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99 						* PT32_LEVEL_BITS))) - 1))
100 
101 #define PT32_INDEX(address, level)\
102 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103 
104 
105 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
106 #define PT64_DIR_BASE_ADDR_MASK \
107 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108 #define PT64_LVL_ADDR_MASK(level) \
109 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110 						* PT64_LEVEL_BITS))) - 1))
111 #define PT64_LVL_OFFSET_MASK(level) \
112 	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 						* PT64_LEVEL_BITS))) - 1))
114 
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118 #define PT32_LVL_ADDR_MASK(level) \
119 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 					    * PT32_LEVEL_BITS))) - 1))
121 
122 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123 			| shadow_x_mask | shadow_nx_mask)
124 
125 #define ACC_EXEC_MASK    1
126 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
127 #define ACC_USER_MASK    PT_USER_MASK
128 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129 
130 #include <trace/events/kvm.h>
131 
132 #define CREATE_TRACE_POINTS
133 #include "mmutrace.h"
134 
135 #define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136 #define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
137 
138 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139 
140 /* make pte_list_desc fit well in cache line */
141 #define PTE_LIST_EXT 3
142 
143 struct pte_list_desc {
144 	u64 *sptes[PTE_LIST_EXT];
145 	struct pte_list_desc *more;
146 };
147 
148 struct kvm_shadow_walk_iterator {
149 	u64 addr;
150 	hpa_t shadow_addr;
151 	u64 *sptep;
152 	int level;
153 	unsigned index;
154 };
155 
156 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
157 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
158 	     shadow_walk_okay(&(_walker));			\
159 	     shadow_walk_next(&(_walker)))
160 
161 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
162 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
163 	     shadow_walk_okay(&(_walker)) &&				\
164 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
165 	     __shadow_walk_next(&(_walker), spte))
166 
167 static struct kmem_cache *pte_list_desc_cache;
168 static struct kmem_cache *mmu_page_header_cache;
169 static struct percpu_counter kvm_total_used_mmu_pages;
170 
171 static u64 __read_mostly shadow_nx_mask;
172 static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
173 static u64 __read_mostly shadow_user_mask;
174 static u64 __read_mostly shadow_accessed_mask;
175 static u64 __read_mostly shadow_dirty_mask;
176 static u64 __read_mostly shadow_mmio_mask;
177 
178 static void mmu_spte_set(u64 *sptep, u64 spte);
179 static void mmu_free_roots(struct kvm_vcpu *vcpu);
180 
kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)181 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182 {
183 	shadow_mmio_mask = mmio_mask;
184 }
185 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186 
187 /*
188  * the low bit of the generation number is always presumed to be zero.
189  * This disables mmio caching during memslot updates.  The concept is
190  * similar to a seqcount but instead of retrying the access we just punt
191  * and ignore the cache.
192  *
193  * spte bits 3-11 are used as bits 1-9 of the generation number,
194  * the bits 52-61 are used as bits 10-19 of the generation number.
195  */
196 #define MMIO_SPTE_GEN_LOW_SHIFT		2
197 #define MMIO_SPTE_GEN_HIGH_SHIFT	52
198 
199 #define MMIO_GEN_SHIFT			20
200 #define MMIO_GEN_LOW_SHIFT		10
201 #define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
202 #define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
203 
generation_mmio_spte_mask(unsigned int gen)204 static u64 generation_mmio_spte_mask(unsigned int gen)
205 {
206 	u64 mask;
207 
208 	WARN_ON(gen & ~MMIO_GEN_MASK);
209 
210 	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211 	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212 	return mask;
213 }
214 
get_mmio_spte_generation(u64 spte)215 static unsigned int get_mmio_spte_generation(u64 spte)
216 {
217 	unsigned int gen;
218 
219 	spte &= ~shadow_mmio_mask;
220 
221 	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222 	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223 	return gen;
224 }
225 
kvm_current_mmio_generation(struct kvm * kvm)226 static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
227 {
228 	return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
229 }
230 
mark_mmio_spte(struct kvm * kvm,u64 * sptep,u64 gfn,unsigned access)231 static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
232 			   unsigned access)
233 {
234 	unsigned int gen = kvm_current_mmio_generation(kvm);
235 	u64 mask = generation_mmio_spte_mask(gen);
236 
237 	access &= ACC_WRITE_MASK | ACC_USER_MASK;
238 	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
239 
240 	trace_mark_mmio_spte(sptep, gfn, access, gen);
241 	mmu_spte_set(sptep, mask);
242 }
243 
is_mmio_spte(u64 spte)244 static bool is_mmio_spte(u64 spte)
245 {
246 	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247 }
248 
get_mmio_spte_gfn(u64 spte)249 static gfn_t get_mmio_spte_gfn(u64 spte)
250 {
251 	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
252 	return (spte & ~mask) >> PAGE_SHIFT;
253 }
254 
get_mmio_spte_access(u64 spte)255 static unsigned get_mmio_spte_access(u64 spte)
256 {
257 	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
258 	return (spte & ~mask) & ~PAGE_MASK;
259 }
260 
set_mmio_spte(struct kvm * kvm,u64 * sptep,gfn_t gfn,pfn_t pfn,unsigned access)261 static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
262 			  pfn_t pfn, unsigned access)
263 {
264 	if (unlikely(is_noslot_pfn(pfn))) {
265 		mark_mmio_spte(kvm, sptep, gfn, access);
266 		return true;
267 	}
268 
269 	return false;
270 }
271 
check_mmio_spte(struct kvm * kvm,u64 spte)272 static bool check_mmio_spte(struct kvm *kvm, u64 spte)
273 {
274 	unsigned int kvm_gen, spte_gen;
275 
276 	kvm_gen = kvm_current_mmio_generation(kvm);
277 	spte_gen = get_mmio_spte_generation(spte);
278 
279 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280 	return likely(kvm_gen == spte_gen);
281 }
282 
kvm_mmu_set_mask_ptes(u64 user_mask,u64 accessed_mask,u64 dirty_mask,u64 nx_mask,u64 x_mask)283 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
284 		u64 dirty_mask, u64 nx_mask, u64 x_mask)
285 {
286 	shadow_user_mask = user_mask;
287 	shadow_accessed_mask = accessed_mask;
288 	shadow_dirty_mask = dirty_mask;
289 	shadow_nx_mask = nx_mask;
290 	shadow_x_mask = x_mask;
291 }
292 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293 
is_cpuid_PSE36(void)294 static int is_cpuid_PSE36(void)
295 {
296 	return 1;
297 }
298 
is_nx(struct kvm_vcpu * vcpu)299 static int is_nx(struct kvm_vcpu *vcpu)
300 {
301 	return vcpu->arch.efer & EFER_NX;
302 }
303 
is_shadow_present_pte(u64 pte)304 static int is_shadow_present_pte(u64 pte)
305 {
306 	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
307 }
308 
is_large_pte(u64 pte)309 static int is_large_pte(u64 pte)
310 {
311 	return pte & PT_PAGE_SIZE_MASK;
312 }
313 
is_rmap_spte(u64 pte)314 static int is_rmap_spte(u64 pte)
315 {
316 	return is_shadow_present_pte(pte);
317 }
318 
is_last_spte(u64 pte,int level)319 static int is_last_spte(u64 pte, int level)
320 {
321 	if (level == PT_PAGE_TABLE_LEVEL)
322 		return 1;
323 	if (is_large_pte(pte))
324 		return 1;
325 	return 0;
326 }
327 
spte_to_pfn(u64 pte)328 static pfn_t spte_to_pfn(u64 pte)
329 {
330 	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
331 }
332 
pse36_gfn_delta(u32 gpte)333 static gfn_t pse36_gfn_delta(u32 gpte)
334 {
335 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336 
337 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
338 }
339 
340 #ifdef CONFIG_X86_64
__set_spte(u64 * sptep,u64 spte)341 static void __set_spte(u64 *sptep, u64 spte)
342 {
343 	*sptep = spte;
344 }
345 
__update_clear_spte_fast(u64 * sptep,u64 spte)346 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347 {
348 	*sptep = spte;
349 }
350 
__update_clear_spte_slow(u64 * sptep,u64 spte)351 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352 {
353 	return xchg(sptep, spte);
354 }
355 
__get_spte_lockless(u64 * sptep)356 static u64 __get_spte_lockless(u64 *sptep)
357 {
358 	return ACCESS_ONCE(*sptep);
359 }
360 #else
361 union split_spte {
362 	struct {
363 		u32 spte_low;
364 		u32 spte_high;
365 	};
366 	u64 spte;
367 };
368 
count_spte_clear(u64 * sptep,u64 spte)369 static void count_spte_clear(u64 *sptep, u64 spte)
370 {
371 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
372 
373 	if (is_shadow_present_pte(spte))
374 		return;
375 
376 	/* Ensure the spte is completely set before we increase the count */
377 	smp_wmb();
378 	sp->clear_spte_count++;
379 }
380 
__set_spte(u64 * sptep,u64 spte)381 static void __set_spte(u64 *sptep, u64 spte)
382 {
383 	union split_spte *ssptep, sspte;
384 
385 	ssptep = (union split_spte *)sptep;
386 	sspte = (union split_spte)spte;
387 
388 	ssptep->spte_high = sspte.spte_high;
389 
390 	/*
391 	 * If we map the spte from nonpresent to present, We should store
392 	 * the high bits firstly, then set present bit, so cpu can not
393 	 * fetch this spte while we are setting the spte.
394 	 */
395 	smp_wmb();
396 
397 	ssptep->spte_low = sspte.spte_low;
398 }
399 
__update_clear_spte_fast(u64 * sptep,u64 spte)400 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
401 {
402 	union split_spte *ssptep, sspte;
403 
404 	ssptep = (union split_spte *)sptep;
405 	sspte = (union split_spte)spte;
406 
407 	ssptep->spte_low = sspte.spte_low;
408 
409 	/*
410 	 * If we map the spte from present to nonpresent, we should clear
411 	 * present bit firstly to avoid vcpu fetch the old high bits.
412 	 */
413 	smp_wmb();
414 
415 	ssptep->spte_high = sspte.spte_high;
416 	count_spte_clear(sptep, spte);
417 }
418 
__update_clear_spte_slow(u64 * sptep,u64 spte)419 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
420 {
421 	union split_spte *ssptep, sspte, orig;
422 
423 	ssptep = (union split_spte *)sptep;
424 	sspte = (union split_spte)spte;
425 
426 	/* xchg acts as a barrier before the setting of the high bits */
427 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
428 	orig.spte_high = ssptep->spte_high;
429 	ssptep->spte_high = sspte.spte_high;
430 	count_spte_clear(sptep, spte);
431 
432 	return orig.spte;
433 }
434 
435 /*
436  * The idea using the light way get the spte on x86_32 guest is from
437  * gup_get_pte(arch/x86/mm/gup.c).
438  *
439  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
440  * coalesces them and we are running out of the MMU lock.  Therefore
441  * we need to protect against in-progress updates of the spte.
442  *
443  * Reading the spte while an update is in progress may get the old value
444  * for the high part of the spte.  The race is fine for a present->non-present
445  * change (because the high part of the spte is ignored for non-present spte),
446  * but for a present->present change we must reread the spte.
447  *
448  * All such changes are done in two steps (present->non-present and
449  * non-present->present), hence it is enough to count the number of
450  * present->non-present updates: if it changed while reading the spte,
451  * we might have hit the race.  This is done using clear_spte_count.
452  */
__get_spte_lockless(u64 * sptep)453 static u64 __get_spte_lockless(u64 *sptep)
454 {
455 	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
456 	union split_spte spte, *orig = (union split_spte *)sptep;
457 	int count;
458 
459 retry:
460 	count = sp->clear_spte_count;
461 	smp_rmb();
462 
463 	spte.spte_low = orig->spte_low;
464 	smp_rmb();
465 
466 	spte.spte_high = orig->spte_high;
467 	smp_rmb();
468 
469 	if (unlikely(spte.spte_low != orig->spte_low ||
470 	      count != sp->clear_spte_count))
471 		goto retry;
472 
473 	return spte.spte;
474 }
475 #endif
476 
spte_is_locklessly_modifiable(u64 spte)477 static bool spte_is_locklessly_modifiable(u64 spte)
478 {
479 	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
480 		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
481 }
482 
spte_has_volatile_bits(u64 spte)483 static bool spte_has_volatile_bits(u64 spte)
484 {
485 	/*
486 	 * Always atomicly update spte if it can be updated
487 	 * out of mmu-lock, it can ensure dirty bit is not lost,
488 	 * also, it can help us to get a stable is_writable_pte()
489 	 * to ensure tlb flush is not missed.
490 	 */
491 	if (spte_is_locklessly_modifiable(spte))
492 		return true;
493 
494 	if (!shadow_accessed_mask)
495 		return false;
496 
497 	if (!is_shadow_present_pte(spte))
498 		return false;
499 
500 	if ((spte & shadow_accessed_mask) &&
501 	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
502 		return false;
503 
504 	return true;
505 }
506 
spte_is_bit_cleared(u64 old_spte,u64 new_spte,u64 bit_mask)507 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
508 {
509 	return (old_spte & bit_mask) && !(new_spte & bit_mask);
510 }
511 
spte_is_bit_changed(u64 old_spte,u64 new_spte,u64 bit_mask)512 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
513 {
514 	return (old_spte & bit_mask) != (new_spte & bit_mask);
515 }
516 
517 /* Rules for using mmu_spte_set:
518  * Set the sptep from nonpresent to present.
519  * Note: the sptep being assigned *must* be either not present
520  * or in a state where the hardware will not attempt to update
521  * the spte.
522  */
mmu_spte_set(u64 * sptep,u64 new_spte)523 static void mmu_spte_set(u64 *sptep, u64 new_spte)
524 {
525 	WARN_ON(is_shadow_present_pte(*sptep));
526 	__set_spte(sptep, new_spte);
527 }
528 
529 /* Rules for using mmu_spte_update:
530  * Update the state bits, it means the mapped pfn is not changged.
531  *
532  * Whenever we overwrite a writable spte with a read-only one we
533  * should flush remote TLBs. Otherwise rmap_write_protect
534  * will find a read-only spte, even though the writable spte
535  * might be cached on a CPU's TLB, the return value indicates this
536  * case.
537  */
mmu_spte_update(u64 * sptep,u64 new_spte)538 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
539 {
540 	u64 old_spte = *sptep;
541 	bool ret = false;
542 
543 	WARN_ON(!is_rmap_spte(new_spte));
544 
545 	if (!is_shadow_present_pte(old_spte)) {
546 		mmu_spte_set(sptep, new_spte);
547 		return ret;
548 	}
549 
550 	if (!spte_has_volatile_bits(old_spte))
551 		__update_clear_spte_fast(sptep, new_spte);
552 	else
553 		old_spte = __update_clear_spte_slow(sptep, new_spte);
554 
555 	/*
556 	 * For the spte updated out of mmu-lock is safe, since
557 	 * we always atomicly update it, see the comments in
558 	 * spte_has_volatile_bits().
559 	 */
560 	if (spte_is_locklessly_modifiable(old_spte) &&
561 	      !is_writable_pte(new_spte))
562 		ret = true;
563 
564 	if (!shadow_accessed_mask)
565 		return ret;
566 
567 	/*
568 	 * Flush TLB when accessed/dirty bits are changed in the page tables,
569 	 * to guarantee consistency between TLB and page tables.
570 	 */
571 	if (spte_is_bit_changed(old_spte, new_spte,
572                                 shadow_accessed_mask | shadow_dirty_mask))
573 		ret = true;
574 
575 	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
576 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
577 	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
578 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
579 
580 	return ret;
581 }
582 
583 /*
584  * Rules for using mmu_spte_clear_track_bits:
585  * It sets the sptep from present to nonpresent, and track the
586  * state bits, it is used to clear the last level sptep.
587  */
mmu_spte_clear_track_bits(u64 * sptep)588 static int mmu_spte_clear_track_bits(u64 *sptep)
589 {
590 	pfn_t pfn;
591 	u64 old_spte = *sptep;
592 
593 	if (!spte_has_volatile_bits(old_spte))
594 		__update_clear_spte_fast(sptep, 0ull);
595 	else
596 		old_spte = __update_clear_spte_slow(sptep, 0ull);
597 
598 	if (!is_rmap_spte(old_spte))
599 		return 0;
600 
601 	pfn = spte_to_pfn(old_spte);
602 
603 	/*
604 	 * KVM does not hold the refcount of the page used by
605 	 * kvm mmu, before reclaiming the page, we should
606 	 * unmap it from mmu first.
607 	 */
608 	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
609 
610 	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
611 		kvm_set_pfn_accessed(pfn);
612 	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
613 		kvm_set_pfn_dirty(pfn);
614 	return 1;
615 }
616 
617 /*
618  * Rules for using mmu_spte_clear_no_track:
619  * Directly clear spte without caring the state bits of sptep,
620  * it is used to set the upper level spte.
621  */
mmu_spte_clear_no_track(u64 * sptep)622 static void mmu_spte_clear_no_track(u64 *sptep)
623 {
624 	__update_clear_spte_fast(sptep, 0ull);
625 }
626 
mmu_spte_get_lockless(u64 * sptep)627 static u64 mmu_spte_get_lockless(u64 *sptep)
628 {
629 	return __get_spte_lockless(sptep);
630 }
631 
walk_shadow_page_lockless_begin(struct kvm_vcpu * vcpu)632 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
633 {
634 	/*
635 	 * Prevent page table teardown by making any free-er wait during
636 	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
637 	 */
638 	local_irq_disable();
639 	vcpu->mode = READING_SHADOW_PAGE_TABLES;
640 	/*
641 	 * Make sure a following spte read is not reordered ahead of the write
642 	 * to vcpu->mode.
643 	 */
644 	smp_mb();
645 }
646 
walk_shadow_page_lockless_end(struct kvm_vcpu * vcpu)647 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
648 {
649 	/*
650 	 * Make sure the write to vcpu->mode is not reordered in front of
651 	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
652 	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
653 	 */
654 	smp_mb();
655 	vcpu->mode = OUTSIDE_GUEST_MODE;
656 	local_irq_enable();
657 }
658 
mmu_topup_memory_cache(struct kvm_mmu_memory_cache * cache,struct kmem_cache * base_cache,int min)659 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
660 				  struct kmem_cache *base_cache, int min)
661 {
662 	void *obj;
663 
664 	if (cache->nobjs >= min)
665 		return 0;
666 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
667 		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
668 		if (!obj)
669 			return -ENOMEM;
670 		cache->objects[cache->nobjs++] = obj;
671 	}
672 	return 0;
673 }
674 
mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache * cache)675 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
676 {
677 	return cache->nobjs;
678 }
679 
mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc,struct kmem_cache * cache)680 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
681 				  struct kmem_cache *cache)
682 {
683 	while (mc->nobjs)
684 		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
685 }
686 
mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache * cache,int min)687 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
688 				       int min)
689 {
690 	void *page;
691 
692 	if (cache->nobjs >= min)
693 		return 0;
694 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
695 		page = (void *)__get_free_page(GFP_KERNEL);
696 		if (!page)
697 			return -ENOMEM;
698 		cache->objects[cache->nobjs++] = page;
699 	}
700 	return 0;
701 }
702 
mmu_free_memory_cache_page(struct kvm_mmu_memory_cache * mc)703 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
704 {
705 	while (mc->nobjs)
706 		free_page((unsigned long)mc->objects[--mc->nobjs]);
707 }
708 
mmu_topup_memory_caches(struct kvm_vcpu * vcpu)709 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
710 {
711 	int r;
712 
713 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
714 				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
715 	if (r)
716 		goto out;
717 	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
718 	if (r)
719 		goto out;
720 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
721 				   mmu_page_header_cache, 4);
722 out:
723 	return r;
724 }
725 
mmu_free_memory_caches(struct kvm_vcpu * vcpu)726 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
727 {
728 	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
729 				pte_list_desc_cache);
730 	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
731 	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
732 				mmu_page_header_cache);
733 }
734 
mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)735 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
736 {
737 	void *p;
738 
739 	BUG_ON(!mc->nobjs);
740 	p = mc->objects[--mc->nobjs];
741 	return p;
742 }
743 
mmu_alloc_pte_list_desc(struct kvm_vcpu * vcpu)744 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
745 {
746 	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
747 }
748 
mmu_free_pte_list_desc(struct pte_list_desc * pte_list_desc)749 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
750 {
751 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
752 }
753 
kvm_mmu_page_get_gfn(struct kvm_mmu_page * sp,int index)754 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
755 {
756 	if (!sp->role.direct)
757 		return sp->gfns[index];
758 
759 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
760 }
761 
kvm_mmu_page_set_gfn(struct kvm_mmu_page * sp,int index,gfn_t gfn)762 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
763 {
764 	if (sp->role.direct)
765 		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
766 	else
767 		sp->gfns[index] = gfn;
768 }
769 
770 /*
771  * Return the pointer to the large page information for a given gfn,
772  * handling slots that are not large page aligned.
773  */
lpage_info_slot(gfn_t gfn,struct kvm_memory_slot * slot,int level)774 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
775 					      struct kvm_memory_slot *slot,
776 					      int level)
777 {
778 	unsigned long idx;
779 
780 	idx = gfn_to_index(gfn, slot->base_gfn, level);
781 	return &slot->arch.lpage_info[level - 2][idx];
782 }
783 
account_shadowed(struct kvm * kvm,gfn_t gfn)784 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
785 {
786 	struct kvm_memory_slot *slot;
787 	struct kvm_lpage_info *linfo;
788 	int i;
789 
790 	slot = gfn_to_memslot(kvm, gfn);
791 	for (i = PT_DIRECTORY_LEVEL;
792 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
793 		linfo = lpage_info_slot(gfn, slot, i);
794 		linfo->write_count += 1;
795 	}
796 	kvm->arch.indirect_shadow_pages++;
797 }
798 
unaccount_shadowed(struct kvm * kvm,gfn_t gfn)799 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
800 {
801 	struct kvm_memory_slot *slot;
802 	struct kvm_lpage_info *linfo;
803 	int i;
804 
805 	slot = gfn_to_memslot(kvm, gfn);
806 	for (i = PT_DIRECTORY_LEVEL;
807 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
808 		linfo = lpage_info_slot(gfn, slot, i);
809 		linfo->write_count -= 1;
810 		WARN_ON(linfo->write_count < 0);
811 	}
812 	kvm->arch.indirect_shadow_pages--;
813 }
814 
has_wrprotected_page(struct kvm * kvm,gfn_t gfn,int level)815 static int has_wrprotected_page(struct kvm *kvm,
816 				gfn_t gfn,
817 				int level)
818 {
819 	struct kvm_memory_slot *slot;
820 	struct kvm_lpage_info *linfo;
821 
822 	slot = gfn_to_memslot(kvm, gfn);
823 	if (slot) {
824 		linfo = lpage_info_slot(gfn, slot, level);
825 		return linfo->write_count;
826 	}
827 
828 	return 1;
829 }
830 
host_mapping_level(struct kvm * kvm,gfn_t gfn)831 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
832 {
833 	unsigned long page_size;
834 	int i, ret = 0;
835 
836 	page_size = kvm_host_page_size(kvm, gfn);
837 
838 	for (i = PT_PAGE_TABLE_LEVEL;
839 	     i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
840 		if (page_size >= KVM_HPAGE_SIZE(i))
841 			ret = i;
842 		else
843 			break;
844 	}
845 
846 	return ret;
847 }
848 
849 static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)850 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
851 			    bool no_dirty_log)
852 {
853 	struct kvm_memory_slot *slot;
854 
855 	slot = gfn_to_memslot(vcpu->kvm, gfn);
856 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
857 	      (no_dirty_log && slot->dirty_bitmap))
858 		slot = NULL;
859 
860 	return slot;
861 }
862 
mapping_level_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t large_gfn)863 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
864 {
865 	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
866 }
867 
mapping_level(struct kvm_vcpu * vcpu,gfn_t large_gfn)868 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
869 {
870 	int host_level, level, max_level;
871 
872 	host_level = host_mapping_level(vcpu->kvm, large_gfn);
873 
874 	if (host_level == PT_PAGE_TABLE_LEVEL)
875 		return host_level;
876 
877 	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878 
879 	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
880 		if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
881 			break;
882 
883 	return level - 1;
884 }
885 
886 /*
887  * Pte mapping structures:
888  *
889  * If pte_list bit zero is zero, then pte_list point to the spte.
890  *
891  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
892  * pte_list_desc containing more mappings.
893  *
894  * Returns the number of pte entries before the spte was added or zero if
895  * the spte was not added.
896  *
897  */
pte_list_add(struct kvm_vcpu * vcpu,u64 * spte,unsigned long * pte_list)898 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
899 			unsigned long *pte_list)
900 {
901 	struct pte_list_desc *desc;
902 	int i, count = 0;
903 
904 	if (!*pte_list) {
905 		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
906 		*pte_list = (unsigned long)spte;
907 	} else if (!(*pte_list & 1)) {
908 		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
909 		desc = mmu_alloc_pte_list_desc(vcpu);
910 		desc->sptes[0] = (u64 *)*pte_list;
911 		desc->sptes[1] = spte;
912 		*pte_list = (unsigned long)desc | 1;
913 		++count;
914 	} else {
915 		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
916 		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
917 		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
918 			desc = desc->more;
919 			count += PTE_LIST_EXT;
920 		}
921 		if (desc->sptes[PTE_LIST_EXT-1]) {
922 			desc->more = mmu_alloc_pte_list_desc(vcpu);
923 			desc = desc->more;
924 		}
925 		for (i = 0; desc->sptes[i]; ++i)
926 			++count;
927 		desc->sptes[i] = spte;
928 	}
929 	return count;
930 }
931 
932 static void
pte_list_desc_remove_entry(unsigned long * pte_list,struct pte_list_desc * desc,int i,struct pte_list_desc * prev_desc)933 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
934 			   int i, struct pte_list_desc *prev_desc)
935 {
936 	int j;
937 
938 	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
939 		;
940 	desc->sptes[i] = desc->sptes[j];
941 	desc->sptes[j] = NULL;
942 	if (j != 0)
943 		return;
944 	if (!prev_desc && !desc->more)
945 		*pte_list = (unsigned long)desc->sptes[0];
946 	else
947 		if (prev_desc)
948 			prev_desc->more = desc->more;
949 		else
950 			*pte_list = (unsigned long)desc->more | 1;
951 	mmu_free_pte_list_desc(desc);
952 }
953 
pte_list_remove(u64 * spte,unsigned long * pte_list)954 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
955 {
956 	struct pte_list_desc *desc;
957 	struct pte_list_desc *prev_desc;
958 	int i;
959 
960 	if (!*pte_list) {
961 		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
962 		BUG();
963 	} else if (!(*pte_list & 1)) {
964 		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
965 		if ((u64 *)*pte_list != spte) {
966 			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
967 			BUG();
968 		}
969 		*pte_list = 0;
970 	} else {
971 		rmap_printk("pte_list_remove:  %p many->many\n", spte);
972 		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
973 		prev_desc = NULL;
974 		while (desc) {
975 			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
976 				if (desc->sptes[i] == spte) {
977 					pte_list_desc_remove_entry(pte_list,
978 							       desc, i,
979 							       prev_desc);
980 					return;
981 				}
982 			prev_desc = desc;
983 			desc = desc->more;
984 		}
985 		pr_err("pte_list_remove: %p many->many\n", spte);
986 		BUG();
987 	}
988 }
989 
990 typedef void (*pte_list_walk_fn) (u64 *spte);
pte_list_walk(unsigned long * pte_list,pte_list_walk_fn fn)991 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
992 {
993 	struct pte_list_desc *desc;
994 	int i;
995 
996 	if (!*pte_list)
997 		return;
998 
999 	if (!(*pte_list & 1))
1000 		return fn((u64 *)*pte_list);
1001 
1002 	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1003 	while (desc) {
1004 		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1005 			fn(desc->sptes[i]);
1006 		desc = desc->more;
1007 	}
1008 }
1009 
__gfn_to_rmap(gfn_t gfn,int level,struct kvm_memory_slot * slot)1010 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1011 				    struct kvm_memory_slot *slot)
1012 {
1013 	unsigned long idx;
1014 
1015 	idx = gfn_to_index(gfn, slot->base_gfn, level);
1016 	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1017 }
1018 
1019 /*
1020  * Take gfn and return the reverse mapping to it.
1021  */
gfn_to_rmap(struct kvm * kvm,gfn_t gfn,int level)1022 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1023 {
1024 	struct kvm_memory_slot *slot;
1025 
1026 	slot = gfn_to_memslot(kvm, gfn);
1027 	return __gfn_to_rmap(gfn, level, slot);
1028 }
1029 
rmap_can_add(struct kvm_vcpu * vcpu)1030 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1031 {
1032 	struct kvm_mmu_memory_cache *cache;
1033 
1034 	cache = &vcpu->arch.mmu_pte_list_desc_cache;
1035 	return mmu_memory_cache_free_objects(cache);
1036 }
1037 
rmap_add(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)1038 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1039 {
1040 	struct kvm_mmu_page *sp;
1041 	unsigned long *rmapp;
1042 
1043 	sp = page_header(__pa(spte));
1044 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1045 	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1046 	return pte_list_add(vcpu, spte, rmapp);
1047 }
1048 
rmap_remove(struct kvm * kvm,u64 * spte)1049 static void rmap_remove(struct kvm *kvm, u64 *spte)
1050 {
1051 	struct kvm_mmu_page *sp;
1052 	gfn_t gfn;
1053 	unsigned long *rmapp;
1054 
1055 	sp = page_header(__pa(spte));
1056 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1057 	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1058 	pte_list_remove(spte, rmapp);
1059 }
1060 
1061 /*
1062  * Used by the following functions to iterate through the sptes linked by a
1063  * rmap.  All fields are private and not assumed to be used outside.
1064  */
1065 struct rmap_iterator {
1066 	/* private fields */
1067 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1068 	int pos;			/* index of the sptep */
1069 };
1070 
1071 /*
1072  * Iteration must be started by this function.  This should also be used after
1073  * removing/dropping sptes from the rmap link because in such cases the
1074  * information in the itererator may not be valid.
1075  *
1076  * Returns sptep if found, NULL otherwise.
1077  */
rmap_get_first(unsigned long rmap,struct rmap_iterator * iter)1078 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1079 {
1080 	if (!rmap)
1081 		return NULL;
1082 
1083 	if (!(rmap & 1)) {
1084 		iter->desc = NULL;
1085 		return (u64 *)rmap;
1086 	}
1087 
1088 	iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1089 	iter->pos = 0;
1090 	return iter->desc->sptes[iter->pos];
1091 }
1092 
1093 /*
1094  * Must be used with a valid iterator: e.g. after rmap_get_first().
1095  *
1096  * Returns sptep if found, NULL otherwise.
1097  */
rmap_get_next(struct rmap_iterator * iter)1098 static u64 *rmap_get_next(struct rmap_iterator *iter)
1099 {
1100 	if (iter->desc) {
1101 		if (iter->pos < PTE_LIST_EXT - 1) {
1102 			u64 *sptep;
1103 
1104 			++iter->pos;
1105 			sptep = iter->desc->sptes[iter->pos];
1106 			if (sptep)
1107 				return sptep;
1108 		}
1109 
1110 		iter->desc = iter->desc->more;
1111 
1112 		if (iter->desc) {
1113 			iter->pos = 0;
1114 			/* desc->sptes[0] cannot be NULL */
1115 			return iter->desc->sptes[iter->pos];
1116 		}
1117 	}
1118 
1119 	return NULL;
1120 }
1121 
drop_spte(struct kvm * kvm,u64 * sptep)1122 static void drop_spte(struct kvm *kvm, u64 *sptep)
1123 {
1124 	if (mmu_spte_clear_track_bits(sptep))
1125 		rmap_remove(kvm, sptep);
1126 }
1127 
1128 
__drop_large_spte(struct kvm * kvm,u64 * sptep)1129 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1130 {
1131 	if (is_large_pte(*sptep)) {
1132 		WARN_ON(page_header(__pa(sptep))->role.level ==
1133 			PT_PAGE_TABLE_LEVEL);
1134 		drop_spte(kvm, sptep);
1135 		--kvm->stat.lpages;
1136 		return true;
1137 	}
1138 
1139 	return false;
1140 }
1141 
drop_large_spte(struct kvm_vcpu * vcpu,u64 * sptep)1142 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1143 {
1144 	if (__drop_large_spte(vcpu->kvm, sptep))
1145 		kvm_flush_remote_tlbs(vcpu->kvm);
1146 }
1147 
1148 /*
1149  * Write-protect on the specified @sptep, @pt_protect indicates whether
1150  * spte write-protection is caused by protecting shadow page table.
1151  *
1152  * Note: write protection is difference between dirty logging and spte
1153  * protection:
1154  * - for dirty logging, the spte can be set to writable at anytime if
1155  *   its dirty bitmap is properly set.
1156  * - for spte protection, the spte can be writable only after unsync-ing
1157  *   shadow page.
1158  *
1159  * Return true if tlb need be flushed.
1160  */
spte_write_protect(struct kvm * kvm,u64 * sptep,bool pt_protect)1161 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1162 {
1163 	u64 spte = *sptep;
1164 
1165 	if (!is_writable_pte(spte) &&
1166 	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1167 		return false;
1168 
1169 	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1170 
1171 	if (pt_protect)
1172 		spte &= ~SPTE_MMU_WRITEABLE;
1173 	spte = spte & ~PT_WRITABLE_MASK;
1174 
1175 	return mmu_spte_update(sptep, spte);
1176 }
1177 
__rmap_write_protect(struct kvm * kvm,unsigned long * rmapp,bool pt_protect)1178 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1179 				 bool pt_protect)
1180 {
1181 	u64 *sptep;
1182 	struct rmap_iterator iter;
1183 	bool flush = false;
1184 
1185 	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1186 		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1187 
1188 		flush |= spte_write_protect(kvm, sptep, pt_protect);
1189 		sptep = rmap_get_next(&iter);
1190 	}
1191 
1192 	return flush;
1193 }
1194 
spte_clear_dirty(struct kvm * kvm,u64 * sptep)1195 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1196 {
1197 	u64 spte = *sptep;
1198 
1199 	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1200 
1201 	spte &= ~shadow_dirty_mask;
1202 
1203 	return mmu_spte_update(sptep, spte);
1204 }
1205 
__rmap_clear_dirty(struct kvm * kvm,unsigned long * rmapp)1206 static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1207 {
1208 	u64 *sptep;
1209 	struct rmap_iterator iter;
1210 	bool flush = false;
1211 
1212 	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1213 		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1214 
1215 		flush |= spte_clear_dirty(kvm, sptep);
1216 		sptep = rmap_get_next(&iter);
1217 	}
1218 
1219 	return flush;
1220 }
1221 
spte_set_dirty(struct kvm * kvm,u64 * sptep)1222 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1223 {
1224 	u64 spte = *sptep;
1225 
1226 	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1227 
1228 	spte |= shadow_dirty_mask;
1229 
1230 	return mmu_spte_update(sptep, spte);
1231 }
1232 
__rmap_set_dirty(struct kvm * kvm,unsigned long * rmapp)1233 static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
1234 {
1235 	u64 *sptep;
1236 	struct rmap_iterator iter;
1237 	bool flush = false;
1238 
1239 	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1240 		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1241 
1242 		flush |= spte_set_dirty(kvm, sptep);
1243 		sptep = rmap_get_next(&iter);
1244 	}
1245 
1246 	return flush;
1247 }
1248 
1249 /**
1250  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1251  * @kvm: kvm instance
1252  * @slot: slot to protect
1253  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1254  * @mask: indicates which pages we should protect
1255  *
1256  * Used when we do not need to care about huge page mappings: e.g. during dirty
1257  * logging we do not have any such mappings.
1258  */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1259 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1260 				     struct kvm_memory_slot *slot,
1261 				     gfn_t gfn_offset, unsigned long mask)
1262 {
1263 	unsigned long *rmapp;
1264 
1265 	while (mask) {
1266 		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1267 				      PT_PAGE_TABLE_LEVEL, slot);
1268 		__rmap_write_protect(kvm, rmapp, false);
1269 
1270 		/* clear the first set bit */
1271 		mask &= mask - 1;
1272 	}
1273 }
1274 
1275 /**
1276  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1277  * @kvm: kvm instance
1278  * @slot: slot to clear D-bit
1279  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1280  * @mask: indicates which pages we should clear D-bit
1281  *
1282  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1283  */
kvm_mmu_clear_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1284 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1285 				     struct kvm_memory_slot *slot,
1286 				     gfn_t gfn_offset, unsigned long mask)
1287 {
1288 	unsigned long *rmapp;
1289 
1290 	while (mask) {
1291 		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1292 				      PT_PAGE_TABLE_LEVEL, slot);
1293 		__rmap_clear_dirty(kvm, rmapp);
1294 
1295 		/* clear the first set bit */
1296 		mask &= mask - 1;
1297 	}
1298 }
1299 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1300 
1301 /**
1302  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1303  * PT level pages.
1304  *
1305  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1306  * enable dirty logging for them.
1307  *
1308  * Used when we do not need to care about huge page mappings: e.g. during dirty
1309  * logging we do not have any such mappings.
1310  */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1311 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1312 				struct kvm_memory_slot *slot,
1313 				gfn_t gfn_offset, unsigned long mask)
1314 {
1315 	if (kvm_x86_ops->enable_log_dirty_pt_masked)
1316 		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1317 				mask);
1318 	else
1319 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1320 }
1321 
rmap_write_protect(struct kvm * kvm,u64 gfn)1322 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1323 {
1324 	struct kvm_memory_slot *slot;
1325 	unsigned long *rmapp;
1326 	int i;
1327 	bool write_protected = false;
1328 
1329 	slot = gfn_to_memslot(kvm, gfn);
1330 
1331 	for (i = PT_PAGE_TABLE_LEVEL;
1332 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1333 		rmapp = __gfn_to_rmap(gfn, i, slot);
1334 		write_protected |= __rmap_write_protect(kvm, rmapp, true);
1335 	}
1336 
1337 	return write_protected;
1338 }
1339 
kvm_unmap_rmapp(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1340 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1341 			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
1342 			   unsigned long data)
1343 {
1344 	u64 *sptep;
1345 	struct rmap_iterator iter;
1346 	int need_tlb_flush = 0;
1347 
1348 	while ((sptep = rmap_get_first(*rmapp, &iter))) {
1349 		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1350 		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
1351 			     sptep, *sptep, gfn, level);
1352 
1353 		drop_spte(kvm, sptep);
1354 		need_tlb_flush = 1;
1355 	}
1356 
1357 	return need_tlb_flush;
1358 }
1359 
kvm_set_pte_rmapp(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1360 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1361 			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
1362 			     unsigned long data)
1363 {
1364 	u64 *sptep;
1365 	struct rmap_iterator iter;
1366 	int need_flush = 0;
1367 	u64 new_spte;
1368 	pte_t *ptep = (pte_t *)data;
1369 	pfn_t new_pfn;
1370 
1371 	WARN_ON(pte_huge(*ptep));
1372 	new_pfn = pte_pfn(*ptep);
1373 
1374 	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1375 		BUG_ON(!is_shadow_present_pte(*sptep));
1376 		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1377 			     sptep, *sptep, gfn, level);
1378 
1379 		need_flush = 1;
1380 
1381 		if (pte_write(*ptep)) {
1382 			drop_spte(kvm, sptep);
1383 			sptep = rmap_get_first(*rmapp, &iter);
1384 		} else {
1385 			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1386 			new_spte |= (u64)new_pfn << PAGE_SHIFT;
1387 
1388 			new_spte &= ~PT_WRITABLE_MASK;
1389 			new_spte &= ~SPTE_HOST_WRITEABLE;
1390 			new_spte &= ~shadow_accessed_mask;
1391 
1392 			mmu_spte_clear_track_bits(sptep);
1393 			mmu_spte_set(sptep, new_spte);
1394 			sptep = rmap_get_next(&iter);
1395 		}
1396 	}
1397 
1398 	if (need_flush)
1399 		kvm_flush_remote_tlbs(kvm);
1400 
1401 	return 0;
1402 }
1403 
kvm_handle_hva_range(struct kvm * kvm,unsigned long start,unsigned long end,unsigned long data,int (* handler)(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data))1404 static int kvm_handle_hva_range(struct kvm *kvm,
1405 				unsigned long start,
1406 				unsigned long end,
1407 				unsigned long data,
1408 				int (*handler)(struct kvm *kvm,
1409 					       unsigned long *rmapp,
1410 					       struct kvm_memory_slot *slot,
1411 					       gfn_t gfn,
1412 					       int level,
1413 					       unsigned long data))
1414 {
1415 	int j;
1416 	int ret = 0;
1417 	struct kvm_memslots *slots;
1418 	struct kvm_memory_slot *memslot;
1419 
1420 	slots = kvm_memslots(kvm);
1421 
1422 	kvm_for_each_memslot(memslot, slots) {
1423 		unsigned long hva_start, hva_end;
1424 		gfn_t gfn_start, gfn_end;
1425 
1426 		hva_start = max(start, memslot->userspace_addr);
1427 		hva_end = min(end, memslot->userspace_addr +
1428 					(memslot->npages << PAGE_SHIFT));
1429 		if (hva_start >= hva_end)
1430 			continue;
1431 		/*
1432 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1433 		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1434 		 */
1435 		gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1436 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1437 
1438 		for (j = PT_PAGE_TABLE_LEVEL;
1439 		     j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1440 			unsigned long idx, idx_end;
1441 			unsigned long *rmapp;
1442 			gfn_t gfn = gfn_start;
1443 
1444 			/*
1445 			 * {idx(page_j) | page_j intersects with
1446 			 *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1447 			 */
1448 			idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1449 			idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1450 
1451 			rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1452 
1453 			for (; idx <= idx_end;
1454 			       ++idx, gfn += (1UL << KVM_HPAGE_GFN_SHIFT(j)))
1455 				ret |= handler(kvm, rmapp++, memslot,
1456 					       gfn, j, data);
1457 		}
1458 	}
1459 
1460 	return ret;
1461 }
1462 
kvm_handle_hva(struct kvm * kvm,unsigned long hva,unsigned long data,int (* handler)(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data))1463 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1464 			  unsigned long data,
1465 			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1466 					 struct kvm_memory_slot *slot,
1467 					 gfn_t gfn, int level,
1468 					 unsigned long data))
1469 {
1470 	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1471 }
1472 
kvm_unmap_hva(struct kvm * kvm,unsigned long hva)1473 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1474 {
1475 	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1476 }
1477 
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end)1478 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1479 {
1480 	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1481 }
1482 
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)1483 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1484 {
1485 	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1486 }
1487 
kvm_age_rmapp(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1488 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1489 			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1490 			 unsigned long data)
1491 {
1492 	u64 *sptep;
1493 	struct rmap_iterator uninitialized_var(iter);
1494 	int young = 0;
1495 
1496 	BUG_ON(!shadow_accessed_mask);
1497 
1498 	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1499 	     sptep = rmap_get_next(&iter)) {
1500 		BUG_ON(!is_shadow_present_pte(*sptep));
1501 
1502 		if (*sptep & shadow_accessed_mask) {
1503 			young = 1;
1504 			clear_bit((ffs(shadow_accessed_mask) - 1),
1505 				 (unsigned long *)sptep);
1506 		}
1507 	}
1508 	trace_kvm_age_page(gfn, level, slot, young);
1509 	return young;
1510 }
1511 
kvm_test_age_rmapp(struct kvm * kvm,unsigned long * rmapp,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1512 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1513 			      struct kvm_memory_slot *slot, gfn_t gfn,
1514 			      int level, unsigned long data)
1515 {
1516 	u64 *sptep;
1517 	struct rmap_iterator iter;
1518 	int young = 0;
1519 
1520 	/*
1521 	 * If there's no access bit in the secondary pte set by the
1522 	 * hardware it's up to gup-fast/gup to set the access bit in
1523 	 * the primary pte or in the page structure.
1524 	 */
1525 	if (!shadow_accessed_mask)
1526 		goto out;
1527 
1528 	for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1529 	     sptep = rmap_get_next(&iter)) {
1530 		BUG_ON(!is_shadow_present_pte(*sptep));
1531 
1532 		if (*sptep & shadow_accessed_mask) {
1533 			young = 1;
1534 			break;
1535 		}
1536 	}
1537 out:
1538 	return young;
1539 }
1540 
1541 #define RMAP_RECYCLE_THRESHOLD 1000
1542 
rmap_recycle(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)1543 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1544 {
1545 	unsigned long *rmapp;
1546 	struct kvm_mmu_page *sp;
1547 
1548 	sp = page_header(__pa(spte));
1549 
1550 	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1551 
1552 	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1553 	kvm_flush_remote_tlbs(vcpu->kvm);
1554 }
1555 
kvm_age_hva(struct kvm * kvm,unsigned long start,unsigned long end)1556 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1557 {
1558 	/*
1559 	 * In case of absence of EPT Access and Dirty Bits supports,
1560 	 * emulate the accessed bit for EPT, by checking if this page has
1561 	 * an EPT mapping, and clearing it if it does. On the next access,
1562 	 * a new EPT mapping will be established.
1563 	 * This has some overhead, but not as much as the cost of swapping
1564 	 * out actively used pages or breaking up actively used hugepages.
1565 	 */
1566 	if (!shadow_accessed_mask) {
1567 		/*
1568 		 * We are holding the kvm->mmu_lock, and we are blowing up
1569 		 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1570 		 * This is correct as long as we don't decouple the mmu_lock
1571 		 * protected regions (like invalidate_range_start|end does).
1572 		 */
1573 		kvm->mmu_notifier_seq++;
1574 		return kvm_handle_hva_range(kvm, start, end, 0,
1575 					    kvm_unmap_rmapp);
1576 	}
1577 
1578 	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1579 }
1580 
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)1581 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1582 {
1583 	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1584 }
1585 
1586 #ifdef MMU_DEBUG
is_empty_shadow_page(u64 * spt)1587 static int is_empty_shadow_page(u64 *spt)
1588 {
1589 	u64 *pos;
1590 	u64 *end;
1591 
1592 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1593 		if (is_shadow_present_pte(*pos)) {
1594 			printk(KERN_ERR "%s: %p %llx\n", __func__,
1595 			       pos, *pos);
1596 			return 0;
1597 		}
1598 	return 1;
1599 }
1600 #endif
1601 
1602 /*
1603  * This value is the sum of all of the kvm instances's
1604  * kvm->arch.n_used_mmu_pages values.  We need a global,
1605  * aggregate version in order to make the slab shrinker
1606  * faster
1607  */
kvm_mod_used_mmu_pages(struct kvm * kvm,int nr)1608 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1609 {
1610 	kvm->arch.n_used_mmu_pages += nr;
1611 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1612 }
1613 
kvm_mmu_free_page(struct kvm_mmu_page * sp)1614 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1615 {
1616 	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1617 	hlist_del(&sp->hash_link);
1618 	list_del(&sp->link);
1619 	free_page((unsigned long)sp->spt);
1620 	if (!sp->role.direct)
1621 		free_page((unsigned long)sp->gfns);
1622 	kmem_cache_free(mmu_page_header_cache, sp);
1623 }
1624 
kvm_page_table_hashfn(gfn_t gfn)1625 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1626 {
1627 	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1628 }
1629 
mmu_page_add_parent_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * parent_pte)1630 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1631 				    struct kvm_mmu_page *sp, u64 *parent_pte)
1632 {
1633 	if (!parent_pte)
1634 		return;
1635 
1636 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1637 }
1638 
mmu_page_remove_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1639 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1640 				       u64 *parent_pte)
1641 {
1642 	pte_list_remove(parent_pte, &sp->parent_ptes);
1643 }
1644 
drop_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1645 static void drop_parent_pte(struct kvm_mmu_page *sp,
1646 			    u64 *parent_pte)
1647 {
1648 	mmu_page_remove_parent_pte(sp, parent_pte);
1649 	mmu_spte_clear_no_track(parent_pte);
1650 }
1651 
kvm_mmu_alloc_page(struct kvm_vcpu * vcpu,u64 * parent_pte,int direct)1652 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1653 					       u64 *parent_pte, int direct)
1654 {
1655 	struct kvm_mmu_page *sp;
1656 
1657 	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1658 	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1659 	if (!direct)
1660 		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1661 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1662 
1663 	/*
1664 	 * The active_mmu_pages list is the FIFO list, do not move the
1665 	 * page until it is zapped. kvm_zap_obsolete_pages depends on
1666 	 * this feature. See the comments in kvm_zap_obsolete_pages().
1667 	 */
1668 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1669 	sp->parent_ptes = 0;
1670 	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1671 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1672 	return sp;
1673 }
1674 
1675 static void mark_unsync(u64 *spte);
kvm_mmu_mark_parents_unsync(struct kvm_mmu_page * sp)1676 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1677 {
1678 	pte_list_walk(&sp->parent_ptes, mark_unsync);
1679 }
1680 
mark_unsync(u64 * spte)1681 static void mark_unsync(u64 *spte)
1682 {
1683 	struct kvm_mmu_page *sp;
1684 	unsigned int index;
1685 
1686 	sp = page_header(__pa(spte));
1687 	index = spte - sp->spt;
1688 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1689 		return;
1690 	if (sp->unsync_children++)
1691 		return;
1692 	kvm_mmu_mark_parents_unsync(sp);
1693 }
1694 
nonpaging_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1695 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1696 			       struct kvm_mmu_page *sp)
1697 {
1698 	return 1;
1699 }
1700 
nonpaging_invlpg(struct kvm_vcpu * vcpu,gva_t gva)1701 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1702 {
1703 }
1704 
nonpaging_update_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,const void * pte)1705 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1706 				 struct kvm_mmu_page *sp, u64 *spte,
1707 				 const void *pte)
1708 {
1709 	WARN_ON(1);
1710 }
1711 
1712 #define KVM_PAGE_ARRAY_NR 16
1713 
1714 struct kvm_mmu_pages {
1715 	struct mmu_page_and_offset {
1716 		struct kvm_mmu_page *sp;
1717 		unsigned int idx;
1718 	} page[KVM_PAGE_ARRAY_NR];
1719 	unsigned int nr;
1720 };
1721 
mmu_pages_add(struct kvm_mmu_pages * pvec,struct kvm_mmu_page * sp,int idx)1722 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1723 			 int idx)
1724 {
1725 	int i;
1726 
1727 	if (sp->unsync)
1728 		for (i=0; i < pvec->nr; i++)
1729 			if (pvec->page[i].sp == sp)
1730 				return 0;
1731 
1732 	pvec->page[pvec->nr].sp = sp;
1733 	pvec->page[pvec->nr].idx = idx;
1734 	pvec->nr++;
1735 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1736 }
1737 
__mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1738 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1739 			   struct kvm_mmu_pages *pvec)
1740 {
1741 	int i, ret, nr_unsync_leaf = 0;
1742 
1743 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1744 		struct kvm_mmu_page *child;
1745 		u64 ent = sp->spt[i];
1746 
1747 		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1748 			goto clear_child_bitmap;
1749 
1750 		child = page_header(ent & PT64_BASE_ADDR_MASK);
1751 
1752 		if (child->unsync_children) {
1753 			if (mmu_pages_add(pvec, child, i))
1754 				return -ENOSPC;
1755 
1756 			ret = __mmu_unsync_walk(child, pvec);
1757 			if (!ret)
1758 				goto clear_child_bitmap;
1759 			else if (ret > 0)
1760 				nr_unsync_leaf += ret;
1761 			else
1762 				return ret;
1763 		} else if (child->unsync) {
1764 			nr_unsync_leaf++;
1765 			if (mmu_pages_add(pvec, child, i))
1766 				return -ENOSPC;
1767 		} else
1768 			 goto clear_child_bitmap;
1769 
1770 		continue;
1771 
1772 clear_child_bitmap:
1773 		__clear_bit(i, sp->unsync_child_bitmap);
1774 		sp->unsync_children--;
1775 		WARN_ON((int)sp->unsync_children < 0);
1776 	}
1777 
1778 
1779 	return nr_unsync_leaf;
1780 }
1781 
mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1782 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1783 			   struct kvm_mmu_pages *pvec)
1784 {
1785 	if (!sp->unsync_children)
1786 		return 0;
1787 
1788 	mmu_pages_add(pvec, sp, 0);
1789 	return __mmu_unsync_walk(sp, pvec);
1790 }
1791 
kvm_unlink_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)1792 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1793 {
1794 	WARN_ON(!sp->unsync);
1795 	trace_kvm_mmu_sync_page(sp);
1796 	sp->unsync = 0;
1797 	--kvm->stat.mmu_unsync;
1798 }
1799 
1800 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1801 				    struct list_head *invalid_list);
1802 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1803 				    struct list_head *invalid_list);
1804 
1805 /*
1806  * NOTE: we should pay more attention on the zapped-obsolete page
1807  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1808  * since it has been deleted from active_mmu_pages but still can be found
1809  * at hast list.
1810  *
1811  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1812  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1813  * all the obsolete pages.
1814  */
1815 #define for_each_gfn_sp(_kvm, _sp, _gfn)				\
1816 	hlist_for_each_entry(_sp,					\
1817 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1818 		if ((_sp)->gfn != (_gfn)) {} else
1819 
1820 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1821 	for_each_gfn_sp(_kvm, _sp, _gfn)				\
1822 		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1823 
1824 /* @sp->gfn should be write-protected at the call site */
__kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list,bool clear_unsync)1825 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1826 			   struct list_head *invalid_list, bool clear_unsync)
1827 {
1828 	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1829 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1830 		return 1;
1831 	}
1832 
1833 	if (clear_unsync)
1834 		kvm_unlink_unsync_page(vcpu->kvm, sp);
1835 
1836 	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1837 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1838 		return 1;
1839 	}
1840 
1841 	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1842 	return 0;
1843 }
1844 
kvm_sync_page_transient(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1845 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1846 				   struct kvm_mmu_page *sp)
1847 {
1848 	LIST_HEAD(invalid_list);
1849 	int ret;
1850 
1851 	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1852 	if (ret)
1853 		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1854 
1855 	return ret;
1856 }
1857 
1858 #ifdef CONFIG_KVM_MMU_AUDIT
1859 #include "mmu_audit.c"
1860 #else
kvm_mmu_audit(struct kvm_vcpu * vcpu,int point)1861 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
mmu_audit_disable(void)1862 static void mmu_audit_disable(void) { }
1863 #endif
1864 
kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)1865 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1866 			 struct list_head *invalid_list)
1867 {
1868 	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1869 }
1870 
1871 /* @gfn should be write-protected at the call site */
kvm_sync_pages(struct kvm_vcpu * vcpu,gfn_t gfn)1872 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1873 {
1874 	struct kvm_mmu_page *s;
1875 	LIST_HEAD(invalid_list);
1876 	bool flush = false;
1877 
1878 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1879 		if (!s->unsync)
1880 			continue;
1881 
1882 		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1883 		kvm_unlink_unsync_page(vcpu->kvm, s);
1884 		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1885 			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1886 			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1887 			continue;
1888 		}
1889 		flush = true;
1890 	}
1891 
1892 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1893 	if (flush)
1894 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1895 }
1896 
1897 struct mmu_page_path {
1898 	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1899 	unsigned int idx[PT64_ROOT_LEVEL-1];
1900 };
1901 
1902 #define for_each_sp(pvec, sp, parents, i)			\
1903 		for (i = mmu_pages_next(&pvec, &parents, -1),	\
1904 			sp = pvec.page[i].sp;			\
1905 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1906 			i = mmu_pages_next(&pvec, &parents, i))
1907 
mmu_pages_next(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents,int i)1908 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1909 			  struct mmu_page_path *parents,
1910 			  int i)
1911 {
1912 	int n;
1913 
1914 	for (n = i+1; n < pvec->nr; n++) {
1915 		struct kvm_mmu_page *sp = pvec->page[n].sp;
1916 
1917 		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1918 			parents->idx[0] = pvec->page[n].idx;
1919 			return n;
1920 		}
1921 
1922 		parents->parent[sp->role.level-2] = sp;
1923 		parents->idx[sp->role.level-1] = pvec->page[n].idx;
1924 	}
1925 
1926 	return n;
1927 }
1928 
mmu_pages_clear_parents(struct mmu_page_path * parents)1929 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1930 {
1931 	struct kvm_mmu_page *sp;
1932 	unsigned int level = 0;
1933 
1934 	do {
1935 		unsigned int idx = parents->idx[level];
1936 
1937 		sp = parents->parent[level];
1938 		if (!sp)
1939 			return;
1940 
1941 		--sp->unsync_children;
1942 		WARN_ON((int)sp->unsync_children < 0);
1943 		__clear_bit(idx, sp->unsync_child_bitmap);
1944 		level++;
1945 	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1946 }
1947 
kvm_mmu_pages_init(struct kvm_mmu_page * parent,struct mmu_page_path * parents,struct kvm_mmu_pages * pvec)1948 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1949 			       struct mmu_page_path *parents,
1950 			       struct kvm_mmu_pages *pvec)
1951 {
1952 	parents->parent[parent->role.level-1] = NULL;
1953 	pvec->nr = 0;
1954 }
1955 
mmu_sync_children(struct kvm_vcpu * vcpu,struct kvm_mmu_page * parent)1956 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1957 			      struct kvm_mmu_page *parent)
1958 {
1959 	int i;
1960 	struct kvm_mmu_page *sp;
1961 	struct mmu_page_path parents;
1962 	struct kvm_mmu_pages pages;
1963 	LIST_HEAD(invalid_list);
1964 
1965 	kvm_mmu_pages_init(parent, &parents, &pages);
1966 	while (mmu_unsync_walk(parent, &pages)) {
1967 		bool protected = false;
1968 
1969 		for_each_sp(pages, sp, parents, i)
1970 			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1971 
1972 		if (protected)
1973 			kvm_flush_remote_tlbs(vcpu->kvm);
1974 
1975 		for_each_sp(pages, sp, parents, i) {
1976 			kvm_sync_page(vcpu, sp, &invalid_list);
1977 			mmu_pages_clear_parents(&parents);
1978 		}
1979 		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1980 		cond_resched_lock(&vcpu->kvm->mmu_lock);
1981 		kvm_mmu_pages_init(parent, &parents, &pages);
1982 	}
1983 }
1984 
init_shadow_page_table(struct kvm_mmu_page * sp)1985 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1986 {
1987 	int i;
1988 
1989 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1990 		sp->spt[i] = 0ull;
1991 }
1992 
__clear_sp_write_flooding_count(struct kvm_mmu_page * sp)1993 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1994 {
1995 	sp->write_flooding_count = 0;
1996 }
1997 
clear_sp_write_flooding_count(u64 * spte)1998 static void clear_sp_write_flooding_count(u64 *spte)
1999 {
2000 	struct kvm_mmu_page *sp =  page_header(__pa(spte));
2001 
2002 	__clear_sp_write_flooding_count(sp);
2003 }
2004 
is_obsolete_sp(struct kvm * kvm,struct kvm_mmu_page * sp)2005 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2006 {
2007 	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2008 }
2009 
kvm_mmu_get_page(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gaddr,unsigned level,int direct,unsigned access,u64 * parent_pte)2010 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2011 					     gfn_t gfn,
2012 					     gva_t gaddr,
2013 					     unsigned level,
2014 					     int direct,
2015 					     unsigned access,
2016 					     u64 *parent_pte)
2017 {
2018 	union kvm_mmu_page_role role;
2019 	unsigned quadrant;
2020 	struct kvm_mmu_page *sp;
2021 	bool need_sync = false;
2022 
2023 	role = vcpu->arch.mmu.base_role;
2024 	role.level = level;
2025 	role.direct = direct;
2026 	if (role.direct)
2027 		role.cr4_pae = 0;
2028 	role.access = access;
2029 	if (!vcpu->arch.mmu.direct_map
2030 	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2031 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2032 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2033 		role.quadrant = quadrant;
2034 	}
2035 	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2036 		if (is_obsolete_sp(vcpu->kvm, sp))
2037 			continue;
2038 
2039 		if (!need_sync && sp->unsync)
2040 			need_sync = true;
2041 
2042 		if (sp->role.word != role.word)
2043 			continue;
2044 
2045 		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2046 			break;
2047 
2048 		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2049 		if (sp->unsync_children) {
2050 			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2051 			kvm_mmu_mark_parents_unsync(sp);
2052 		} else if (sp->unsync)
2053 			kvm_mmu_mark_parents_unsync(sp);
2054 
2055 		__clear_sp_write_flooding_count(sp);
2056 		trace_kvm_mmu_get_page(sp, false);
2057 		return sp;
2058 	}
2059 	++vcpu->kvm->stat.mmu_cache_miss;
2060 	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
2061 	if (!sp)
2062 		return sp;
2063 	sp->gfn = gfn;
2064 	sp->role = role;
2065 	hlist_add_head(&sp->hash_link,
2066 		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2067 	if (!direct) {
2068 		if (rmap_write_protect(vcpu->kvm, gfn))
2069 			kvm_flush_remote_tlbs(vcpu->kvm);
2070 		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2071 			kvm_sync_pages(vcpu, gfn);
2072 
2073 		account_shadowed(vcpu->kvm, gfn);
2074 	}
2075 	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2076 	init_shadow_page_table(sp);
2077 	trace_kvm_mmu_get_page(sp, true);
2078 	return sp;
2079 }
2080 
shadow_walk_init(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,u64 addr)2081 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2082 			     struct kvm_vcpu *vcpu, u64 addr)
2083 {
2084 	iterator->addr = addr;
2085 	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2086 	iterator->level = vcpu->arch.mmu.shadow_root_level;
2087 
2088 	if (iterator->level == PT64_ROOT_LEVEL &&
2089 	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2090 	    !vcpu->arch.mmu.direct_map)
2091 		--iterator->level;
2092 
2093 	if (iterator->level == PT32E_ROOT_LEVEL) {
2094 		iterator->shadow_addr
2095 			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2096 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2097 		--iterator->level;
2098 		if (!iterator->shadow_addr)
2099 			iterator->level = 0;
2100 	}
2101 }
2102 
shadow_walk_okay(struct kvm_shadow_walk_iterator * iterator)2103 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2104 {
2105 	if (iterator->level < PT_PAGE_TABLE_LEVEL)
2106 		return false;
2107 
2108 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2109 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2110 	return true;
2111 }
2112 
__shadow_walk_next(struct kvm_shadow_walk_iterator * iterator,u64 spte)2113 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2114 			       u64 spte)
2115 {
2116 	if (is_last_spte(spte, iterator->level)) {
2117 		iterator->level = 0;
2118 		return;
2119 	}
2120 
2121 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2122 	--iterator->level;
2123 }
2124 
shadow_walk_next(struct kvm_shadow_walk_iterator * iterator)2125 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2126 {
2127 	return __shadow_walk_next(iterator, *iterator->sptep);
2128 }
2129 
link_shadow_page(u64 * sptep,struct kvm_mmu_page * sp,bool accessed)2130 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2131 {
2132 	u64 spte;
2133 
2134 	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2135 			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2136 
2137 	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2138 	       shadow_user_mask | shadow_x_mask;
2139 
2140 	if (accessed)
2141 		spte |= shadow_accessed_mask;
2142 
2143 	mmu_spte_set(sptep, spte);
2144 }
2145 
validate_direct_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned direct_access)2146 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2147 				   unsigned direct_access)
2148 {
2149 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2150 		struct kvm_mmu_page *child;
2151 
2152 		/*
2153 		 * For the direct sp, if the guest pte's dirty bit
2154 		 * changed form clean to dirty, it will corrupt the
2155 		 * sp's access: allow writable in the read-only sp,
2156 		 * so we should update the spte at this point to get
2157 		 * a new sp with the correct access.
2158 		 */
2159 		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2160 		if (child->role.access == direct_access)
2161 			return;
2162 
2163 		drop_parent_pte(child, sptep);
2164 		kvm_flush_remote_tlbs(vcpu->kvm);
2165 	}
2166 }
2167 
mmu_page_zap_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * spte)2168 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2169 			     u64 *spte)
2170 {
2171 	u64 pte;
2172 	struct kvm_mmu_page *child;
2173 
2174 	pte = *spte;
2175 	if (is_shadow_present_pte(pte)) {
2176 		if (is_last_spte(pte, sp->role.level)) {
2177 			drop_spte(kvm, spte);
2178 			if (is_large_pte(pte))
2179 				--kvm->stat.lpages;
2180 		} else {
2181 			child = page_header(pte & PT64_BASE_ADDR_MASK);
2182 			drop_parent_pte(child, spte);
2183 		}
2184 		return true;
2185 	}
2186 
2187 	if (is_mmio_spte(pte))
2188 		mmu_spte_clear_no_track(spte);
2189 
2190 	return false;
2191 }
2192 
kvm_mmu_page_unlink_children(struct kvm * kvm,struct kvm_mmu_page * sp)2193 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2194 					 struct kvm_mmu_page *sp)
2195 {
2196 	unsigned i;
2197 
2198 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2199 		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2200 }
2201 
kvm_mmu_put_page(struct kvm_mmu_page * sp,u64 * parent_pte)2202 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2203 {
2204 	mmu_page_remove_parent_pte(sp, parent_pte);
2205 }
2206 
kvm_mmu_unlink_parents(struct kvm * kvm,struct kvm_mmu_page * sp)2207 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2208 {
2209 	u64 *sptep;
2210 	struct rmap_iterator iter;
2211 
2212 	while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2213 		drop_parent_pte(sp, sptep);
2214 }
2215 
mmu_zap_unsync_children(struct kvm * kvm,struct kvm_mmu_page * parent,struct list_head * invalid_list)2216 static int mmu_zap_unsync_children(struct kvm *kvm,
2217 				   struct kvm_mmu_page *parent,
2218 				   struct list_head *invalid_list)
2219 {
2220 	int i, zapped = 0;
2221 	struct mmu_page_path parents;
2222 	struct kvm_mmu_pages pages;
2223 
2224 	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2225 		return 0;
2226 
2227 	kvm_mmu_pages_init(parent, &parents, &pages);
2228 	while (mmu_unsync_walk(parent, &pages)) {
2229 		struct kvm_mmu_page *sp;
2230 
2231 		for_each_sp(pages, sp, parents, i) {
2232 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2233 			mmu_pages_clear_parents(&parents);
2234 			zapped++;
2235 		}
2236 		kvm_mmu_pages_init(parent, &parents, &pages);
2237 	}
2238 
2239 	return zapped;
2240 }
2241 
kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2242 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2243 				    struct list_head *invalid_list)
2244 {
2245 	int ret;
2246 
2247 	trace_kvm_mmu_prepare_zap_page(sp);
2248 	++kvm->stat.mmu_shadow_zapped;
2249 	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2250 	kvm_mmu_page_unlink_children(kvm, sp);
2251 	kvm_mmu_unlink_parents(kvm, sp);
2252 
2253 	if (!sp->role.invalid && !sp->role.direct)
2254 		unaccount_shadowed(kvm, sp->gfn);
2255 
2256 	if (sp->unsync)
2257 		kvm_unlink_unsync_page(kvm, sp);
2258 	if (!sp->root_count) {
2259 		/* Count self */
2260 		ret++;
2261 		list_move(&sp->link, invalid_list);
2262 		kvm_mod_used_mmu_pages(kvm, -1);
2263 	} else {
2264 		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2265 
2266 		/*
2267 		 * The obsolete pages can not be used on any vcpus.
2268 		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2269 		 */
2270 		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2271 			kvm_reload_remote_mmus(kvm);
2272 	}
2273 
2274 	sp->role.invalid = 1;
2275 	return ret;
2276 }
2277 
kvm_mmu_commit_zap_page(struct kvm * kvm,struct list_head * invalid_list)2278 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2279 				    struct list_head *invalid_list)
2280 {
2281 	struct kvm_mmu_page *sp, *nsp;
2282 
2283 	if (list_empty(invalid_list))
2284 		return;
2285 
2286 	/*
2287 	 * wmb: make sure everyone sees our modifications to the page tables
2288 	 * rmb: make sure we see changes to vcpu->mode
2289 	 */
2290 	smp_mb();
2291 
2292 	/*
2293 	 * Wait for all vcpus to exit guest mode and/or lockless shadow
2294 	 * page table walks.
2295 	 */
2296 	kvm_flush_remote_tlbs(kvm);
2297 
2298 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2299 		WARN_ON(!sp->role.invalid || sp->root_count);
2300 		kvm_mmu_free_page(sp);
2301 	}
2302 }
2303 
prepare_zap_oldest_mmu_page(struct kvm * kvm,struct list_head * invalid_list)2304 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2305 					struct list_head *invalid_list)
2306 {
2307 	struct kvm_mmu_page *sp;
2308 
2309 	if (list_empty(&kvm->arch.active_mmu_pages))
2310 		return false;
2311 
2312 	sp = list_entry(kvm->arch.active_mmu_pages.prev,
2313 			struct kvm_mmu_page, link);
2314 	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2315 
2316 	return true;
2317 }
2318 
2319 /*
2320  * Changing the number of mmu pages allocated to the vm
2321  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2322  */
kvm_mmu_change_mmu_pages(struct kvm * kvm,unsigned int goal_nr_mmu_pages)2323 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2324 {
2325 	LIST_HEAD(invalid_list);
2326 
2327 	spin_lock(&kvm->mmu_lock);
2328 
2329 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2330 		/* Need to free some mmu pages to achieve the goal. */
2331 		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2332 			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2333 				break;
2334 
2335 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2336 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2337 	}
2338 
2339 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2340 
2341 	spin_unlock(&kvm->mmu_lock);
2342 }
2343 
kvm_mmu_unprotect_page(struct kvm * kvm,gfn_t gfn)2344 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2345 {
2346 	struct kvm_mmu_page *sp;
2347 	LIST_HEAD(invalid_list);
2348 	int r;
2349 
2350 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2351 	r = 0;
2352 	spin_lock(&kvm->mmu_lock);
2353 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2354 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2355 			 sp->role.word);
2356 		r = 1;
2357 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2358 	}
2359 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2360 	spin_unlock(&kvm->mmu_lock);
2361 
2362 	return r;
2363 }
2364 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2365 
2366 /*
2367  * The function is based on mtrr_type_lookup() in
2368  * arch/x86/kernel/cpu/mtrr/generic.c
2369  */
get_mtrr_type(struct mtrr_state_type * mtrr_state,u64 start,u64 end)2370 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2371 			 u64 start, u64 end)
2372 {
2373 	int i;
2374 	u64 base, mask;
2375 	u8 prev_match, curr_match;
2376 	int num_var_ranges = KVM_NR_VAR_MTRR;
2377 
2378 	if (!mtrr_state->enabled)
2379 		return 0xFF;
2380 
2381 	/* Make end inclusive end, instead of exclusive */
2382 	end--;
2383 
2384 	/* Look in fixed ranges. Just return the type as per start */
2385 	if (mtrr_state->have_fixed && (start < 0x100000)) {
2386 		int idx;
2387 
2388 		if (start < 0x80000) {
2389 			idx = 0;
2390 			idx += (start >> 16);
2391 			return mtrr_state->fixed_ranges[idx];
2392 		} else if (start < 0xC0000) {
2393 			idx = 1 * 8;
2394 			idx += ((start - 0x80000) >> 14);
2395 			return mtrr_state->fixed_ranges[idx];
2396 		} else if (start < 0x1000000) {
2397 			idx = 3 * 8;
2398 			idx += ((start - 0xC0000) >> 12);
2399 			return mtrr_state->fixed_ranges[idx];
2400 		}
2401 	}
2402 
2403 	/*
2404 	 * Look in variable ranges
2405 	 * Look of multiple ranges matching this address and pick type
2406 	 * as per MTRR precedence
2407 	 */
2408 	if (!(mtrr_state->enabled & 2))
2409 		return mtrr_state->def_type;
2410 
2411 	prev_match = 0xFF;
2412 	for (i = 0; i < num_var_ranges; ++i) {
2413 		unsigned short start_state, end_state;
2414 
2415 		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2416 			continue;
2417 
2418 		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2419 		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2420 		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2421 		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2422 
2423 		start_state = ((start & mask) == (base & mask));
2424 		end_state = ((end & mask) == (base & mask));
2425 		if (start_state != end_state)
2426 			return 0xFE;
2427 
2428 		if ((start & mask) != (base & mask))
2429 			continue;
2430 
2431 		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2432 		if (prev_match == 0xFF) {
2433 			prev_match = curr_match;
2434 			continue;
2435 		}
2436 
2437 		if (prev_match == MTRR_TYPE_UNCACHABLE ||
2438 		    curr_match == MTRR_TYPE_UNCACHABLE)
2439 			return MTRR_TYPE_UNCACHABLE;
2440 
2441 		if ((prev_match == MTRR_TYPE_WRBACK &&
2442 		     curr_match == MTRR_TYPE_WRTHROUGH) ||
2443 		    (prev_match == MTRR_TYPE_WRTHROUGH &&
2444 		     curr_match == MTRR_TYPE_WRBACK)) {
2445 			prev_match = MTRR_TYPE_WRTHROUGH;
2446 			curr_match = MTRR_TYPE_WRTHROUGH;
2447 		}
2448 
2449 		if (prev_match != curr_match)
2450 			return MTRR_TYPE_UNCACHABLE;
2451 	}
2452 
2453 	if (prev_match != 0xFF)
2454 		return prev_match;
2455 
2456 	return mtrr_state->def_type;
2457 }
2458 
kvm_get_guest_memory_type(struct kvm_vcpu * vcpu,gfn_t gfn)2459 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2460 {
2461 	u8 mtrr;
2462 
2463 	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2464 			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
2465 	if (mtrr == 0xfe || mtrr == 0xff)
2466 		mtrr = MTRR_TYPE_WRBACK;
2467 	return mtrr;
2468 }
2469 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2470 
__kvm_unsync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)2471 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2472 {
2473 	trace_kvm_mmu_unsync_page(sp);
2474 	++vcpu->kvm->stat.mmu_unsync;
2475 	sp->unsync = 1;
2476 
2477 	kvm_mmu_mark_parents_unsync(sp);
2478 }
2479 
kvm_unsync_pages(struct kvm_vcpu * vcpu,gfn_t gfn)2480 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2481 {
2482 	struct kvm_mmu_page *s;
2483 
2484 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2485 		if (s->unsync)
2486 			continue;
2487 		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2488 		__kvm_unsync_page(vcpu, s);
2489 	}
2490 }
2491 
mmu_need_write_protect(struct kvm_vcpu * vcpu,gfn_t gfn,bool can_unsync)2492 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2493 				  bool can_unsync)
2494 {
2495 	struct kvm_mmu_page *s;
2496 	bool need_unsync = false;
2497 
2498 	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2499 		if (!can_unsync)
2500 			return 1;
2501 
2502 		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2503 			return 1;
2504 
2505 		if (!s->unsync)
2506 			need_unsync = true;
2507 	}
2508 	if (need_unsync)
2509 		kvm_unsync_pages(vcpu, gfn);
2510 	return 0;
2511 }
2512 
set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned pte_access,int level,gfn_t gfn,pfn_t pfn,bool speculative,bool can_unsync,bool host_writable)2513 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2514 		    unsigned pte_access, int level,
2515 		    gfn_t gfn, pfn_t pfn, bool speculative,
2516 		    bool can_unsync, bool host_writable)
2517 {
2518 	u64 spte;
2519 	int ret = 0;
2520 
2521 	if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2522 		return 0;
2523 
2524 	spte = PT_PRESENT_MASK;
2525 	if (!speculative)
2526 		spte |= shadow_accessed_mask;
2527 
2528 	if (pte_access & ACC_EXEC_MASK)
2529 		spte |= shadow_x_mask;
2530 	else
2531 		spte |= shadow_nx_mask;
2532 
2533 	if (pte_access & ACC_USER_MASK)
2534 		spte |= shadow_user_mask;
2535 
2536 	if (level > PT_PAGE_TABLE_LEVEL)
2537 		spte |= PT_PAGE_SIZE_MASK;
2538 	if (tdp_enabled)
2539 		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2540 			kvm_is_reserved_pfn(pfn));
2541 
2542 	if (host_writable)
2543 		spte |= SPTE_HOST_WRITEABLE;
2544 	else
2545 		pte_access &= ~ACC_WRITE_MASK;
2546 
2547 	spte |= (u64)pfn << PAGE_SHIFT;
2548 
2549 	if (pte_access & ACC_WRITE_MASK) {
2550 
2551 		/*
2552 		 * Other vcpu creates new sp in the window between
2553 		 * mapping_level() and acquiring mmu-lock. We can
2554 		 * allow guest to retry the access, the mapping can
2555 		 * be fixed if guest refault.
2556 		 */
2557 		if (level > PT_PAGE_TABLE_LEVEL &&
2558 		    has_wrprotected_page(vcpu->kvm, gfn, level))
2559 			goto done;
2560 
2561 		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2562 
2563 		/*
2564 		 * Optimization: for pte sync, if spte was writable the hash
2565 		 * lookup is unnecessary (and expensive). Write protection
2566 		 * is responsibility of mmu_get_page / kvm_sync_page.
2567 		 * Same reasoning can be applied to dirty page accounting.
2568 		 */
2569 		if (!can_unsync && is_writable_pte(*sptep))
2570 			goto set_pte;
2571 
2572 		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2573 			pgprintk("%s: found shadow page for %llx, marking ro\n",
2574 				 __func__, gfn);
2575 			ret = 1;
2576 			pte_access &= ~ACC_WRITE_MASK;
2577 			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2578 		}
2579 	}
2580 
2581 	if (pte_access & ACC_WRITE_MASK) {
2582 		mark_page_dirty(vcpu->kvm, gfn);
2583 		spte |= shadow_dirty_mask;
2584 	}
2585 
2586 set_pte:
2587 	if (mmu_spte_update(sptep, spte))
2588 		kvm_flush_remote_tlbs(vcpu->kvm);
2589 done:
2590 	return ret;
2591 }
2592 
mmu_set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned pte_access,int write_fault,int * emulate,int level,gfn_t gfn,pfn_t pfn,bool speculative,bool host_writable)2593 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2594 			 unsigned pte_access, int write_fault, int *emulate,
2595 			 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2596 			 bool host_writable)
2597 {
2598 	int was_rmapped = 0;
2599 	int rmap_count;
2600 
2601 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2602 		 *sptep, write_fault, gfn);
2603 
2604 	if (is_rmap_spte(*sptep)) {
2605 		/*
2606 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2607 		 * the parent of the now unreachable PTE.
2608 		 */
2609 		if (level > PT_PAGE_TABLE_LEVEL &&
2610 		    !is_large_pte(*sptep)) {
2611 			struct kvm_mmu_page *child;
2612 			u64 pte = *sptep;
2613 
2614 			child = page_header(pte & PT64_BASE_ADDR_MASK);
2615 			drop_parent_pte(child, sptep);
2616 			kvm_flush_remote_tlbs(vcpu->kvm);
2617 		} else if (pfn != spte_to_pfn(*sptep)) {
2618 			pgprintk("hfn old %llx new %llx\n",
2619 				 spte_to_pfn(*sptep), pfn);
2620 			drop_spte(vcpu->kvm, sptep);
2621 			kvm_flush_remote_tlbs(vcpu->kvm);
2622 		} else
2623 			was_rmapped = 1;
2624 	}
2625 
2626 	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2627 	      true, host_writable)) {
2628 		if (write_fault)
2629 			*emulate = 1;
2630 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2631 	}
2632 
2633 	if (unlikely(is_mmio_spte(*sptep) && emulate))
2634 		*emulate = 1;
2635 
2636 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2637 	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2638 		 is_large_pte(*sptep)? "2MB" : "4kB",
2639 		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2640 		 *sptep, sptep);
2641 	if (!was_rmapped && is_large_pte(*sptep))
2642 		++vcpu->kvm->stat.lpages;
2643 
2644 	if (is_shadow_present_pte(*sptep)) {
2645 		if (!was_rmapped) {
2646 			rmap_count = rmap_add(vcpu, sptep, gfn);
2647 			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2648 				rmap_recycle(vcpu, sptep, gfn);
2649 		}
2650 	}
2651 
2652 	kvm_release_pfn_clean(pfn);
2653 }
2654 
pte_prefetch_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)2655 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2656 				     bool no_dirty_log)
2657 {
2658 	struct kvm_memory_slot *slot;
2659 
2660 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2661 	if (!slot)
2662 		return KVM_PFN_ERR_FAULT;
2663 
2664 	return gfn_to_pfn_memslot_atomic(slot, gfn);
2665 }
2666 
direct_pte_prefetch_many(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * start,u64 * end)2667 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2668 				    struct kvm_mmu_page *sp,
2669 				    u64 *start, u64 *end)
2670 {
2671 	struct page *pages[PTE_PREFETCH_NUM];
2672 	unsigned access = sp->role.access;
2673 	int i, ret;
2674 	gfn_t gfn;
2675 
2676 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2677 	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2678 		return -1;
2679 
2680 	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2681 	if (ret <= 0)
2682 		return -1;
2683 
2684 	for (i = 0; i < ret; i++, gfn++, start++)
2685 		mmu_set_spte(vcpu, start, access, 0, NULL,
2686 			     sp->role.level, gfn, page_to_pfn(pages[i]),
2687 			     true, true);
2688 
2689 	return 0;
2690 }
2691 
__direct_pte_prefetch(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep)2692 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2693 				  struct kvm_mmu_page *sp, u64 *sptep)
2694 {
2695 	u64 *spte, *start = NULL;
2696 	int i;
2697 
2698 	WARN_ON(!sp->role.direct);
2699 
2700 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2701 	spte = sp->spt + i;
2702 
2703 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2704 		if (is_shadow_present_pte(*spte) || spte == sptep) {
2705 			if (!start)
2706 				continue;
2707 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2708 				break;
2709 			start = NULL;
2710 		} else if (!start)
2711 			start = spte;
2712 	}
2713 }
2714 
direct_pte_prefetch(struct kvm_vcpu * vcpu,u64 * sptep)2715 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2716 {
2717 	struct kvm_mmu_page *sp;
2718 
2719 	/*
2720 	 * Since it's no accessed bit on EPT, it's no way to
2721 	 * distinguish between actually accessed translations
2722 	 * and prefetched, so disable pte prefetch if EPT is
2723 	 * enabled.
2724 	 */
2725 	if (!shadow_accessed_mask)
2726 		return;
2727 
2728 	sp = page_header(__pa(sptep));
2729 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2730 		return;
2731 
2732 	__direct_pte_prefetch(vcpu, sp, sptep);
2733 }
2734 
__direct_map(struct kvm_vcpu * vcpu,gpa_t v,int write,int map_writable,int level,gfn_t gfn,pfn_t pfn,bool prefault)2735 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2736 			int map_writable, int level, gfn_t gfn, pfn_t pfn,
2737 			bool prefault)
2738 {
2739 	struct kvm_shadow_walk_iterator iterator;
2740 	struct kvm_mmu_page *sp;
2741 	int emulate = 0;
2742 	gfn_t pseudo_gfn;
2743 
2744 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2745 		return 0;
2746 
2747 	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2748 		if (iterator.level == level) {
2749 			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2750 				     write, &emulate, level, gfn, pfn,
2751 				     prefault, map_writable);
2752 			direct_pte_prefetch(vcpu, iterator.sptep);
2753 			++vcpu->stat.pf_fixed;
2754 			break;
2755 		}
2756 
2757 		drop_large_spte(vcpu, iterator.sptep);
2758 		if (!is_shadow_present_pte(*iterator.sptep)) {
2759 			u64 base_addr = iterator.addr;
2760 
2761 			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2762 			pseudo_gfn = base_addr >> PAGE_SHIFT;
2763 			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2764 					      iterator.level - 1,
2765 					      1, ACC_ALL, iterator.sptep);
2766 
2767 			link_shadow_page(iterator.sptep, sp, true);
2768 		}
2769 	}
2770 	return emulate;
2771 }
2772 
kvm_send_hwpoison_signal(unsigned long address,struct task_struct * tsk)2773 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2774 {
2775 	siginfo_t info;
2776 
2777 	info.si_signo	= SIGBUS;
2778 	info.si_errno	= 0;
2779 	info.si_code	= BUS_MCEERR_AR;
2780 	info.si_addr	= (void __user *)address;
2781 	info.si_addr_lsb = PAGE_SHIFT;
2782 
2783 	send_sig_info(SIGBUS, &info, tsk);
2784 }
2785 
kvm_handle_bad_page(struct kvm_vcpu * vcpu,gfn_t gfn,pfn_t pfn)2786 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2787 {
2788 	/*
2789 	 * Do not cache the mmio info caused by writing the readonly gfn
2790 	 * into the spte otherwise read access on readonly gfn also can
2791 	 * caused mmio page fault and treat it as mmio access.
2792 	 * Return 1 to tell kvm to emulate it.
2793 	 */
2794 	if (pfn == KVM_PFN_ERR_RO_FAULT)
2795 		return 1;
2796 
2797 	if (pfn == KVM_PFN_ERR_HWPOISON) {
2798 		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2799 		return 0;
2800 	}
2801 
2802 	return -EFAULT;
2803 }
2804 
transparent_hugepage_adjust(struct kvm_vcpu * vcpu,gfn_t * gfnp,pfn_t * pfnp,int * levelp)2805 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2806 					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2807 {
2808 	pfn_t pfn = *pfnp;
2809 	gfn_t gfn = *gfnp;
2810 	int level = *levelp;
2811 
2812 	/*
2813 	 * Check if it's a transparent hugepage. If this would be an
2814 	 * hugetlbfs page, level wouldn't be set to
2815 	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2816 	 * here.
2817 	 */
2818 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2819 	    level == PT_PAGE_TABLE_LEVEL &&
2820 	    PageTransCompound(pfn_to_page(pfn)) &&
2821 	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2822 		unsigned long mask;
2823 		/*
2824 		 * mmu_notifier_retry was successful and we hold the
2825 		 * mmu_lock here, so the pmd can't become splitting
2826 		 * from under us, and in turn
2827 		 * __split_huge_page_refcount() can't run from under
2828 		 * us and we can safely transfer the refcount from
2829 		 * PG_tail to PG_head as we switch the pfn to tail to
2830 		 * head.
2831 		 */
2832 		*levelp = level = PT_DIRECTORY_LEVEL;
2833 		mask = KVM_PAGES_PER_HPAGE(level) - 1;
2834 		VM_BUG_ON((gfn & mask) != (pfn & mask));
2835 		if (pfn & mask) {
2836 			gfn &= ~mask;
2837 			*gfnp = gfn;
2838 			kvm_release_pfn_clean(pfn);
2839 			pfn &= ~mask;
2840 			kvm_get_pfn(pfn);
2841 			*pfnp = pfn;
2842 		}
2843 	}
2844 }
2845 
handle_abnormal_pfn(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn,pfn_t pfn,unsigned access,int * ret_val)2846 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2847 				pfn_t pfn, unsigned access, int *ret_val)
2848 {
2849 	bool ret = true;
2850 
2851 	/* The pfn is invalid, report the error! */
2852 	if (unlikely(is_error_pfn(pfn))) {
2853 		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2854 		goto exit;
2855 	}
2856 
2857 	if (unlikely(is_noslot_pfn(pfn)))
2858 		vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2859 
2860 	ret = false;
2861 exit:
2862 	return ret;
2863 }
2864 
page_fault_can_be_fast(u32 error_code)2865 static bool page_fault_can_be_fast(u32 error_code)
2866 {
2867 	/*
2868 	 * Do not fix the mmio spte with invalid generation number which
2869 	 * need to be updated by slow page fault path.
2870 	 */
2871 	if (unlikely(error_code & PFERR_RSVD_MASK))
2872 		return false;
2873 
2874 	/*
2875 	 * #PF can be fast only if the shadow page table is present and it
2876 	 * is caused by write-protect, that means we just need change the
2877 	 * W bit of the spte which can be done out of mmu-lock.
2878 	 */
2879 	if (!(error_code & PFERR_PRESENT_MASK) ||
2880 	      !(error_code & PFERR_WRITE_MASK))
2881 		return false;
2882 
2883 	return true;
2884 }
2885 
2886 static bool
fast_pf_fix_direct_spte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep,u64 spte)2887 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2888 			u64 *sptep, u64 spte)
2889 {
2890 	gfn_t gfn;
2891 
2892 	WARN_ON(!sp->role.direct);
2893 
2894 	/*
2895 	 * The gfn of direct spte is stable since it is calculated
2896 	 * by sp->gfn.
2897 	 */
2898 	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2899 
2900 	/*
2901 	 * Theoretically we could also set dirty bit (and flush TLB) here in
2902 	 * order to eliminate unnecessary PML logging. See comments in
2903 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
2904 	 * enabled, so we do not do this. This might result in the same GPA
2905 	 * to be logged in PML buffer again when the write really happens, and
2906 	 * eventually to be called by mark_page_dirty twice. But it's also no
2907 	 * harm. This also avoids the TLB flush needed after setting dirty bit
2908 	 * so non-PML cases won't be impacted.
2909 	 *
2910 	 * Compare with set_spte where instead shadow_dirty_mask is set.
2911 	 */
2912 	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2913 		mark_page_dirty(vcpu->kvm, gfn);
2914 
2915 	return true;
2916 }
2917 
2918 /*
2919  * Return value:
2920  * - true: let the vcpu to access on the same address again.
2921  * - false: let the real page fault path to fix it.
2922  */
fast_page_fault(struct kvm_vcpu * vcpu,gva_t gva,int level,u32 error_code)2923 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2924 			    u32 error_code)
2925 {
2926 	struct kvm_shadow_walk_iterator iterator;
2927 	struct kvm_mmu_page *sp;
2928 	bool ret = false;
2929 	u64 spte = 0ull;
2930 
2931 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2932 		return false;
2933 
2934 	if (!page_fault_can_be_fast(error_code))
2935 		return false;
2936 
2937 	walk_shadow_page_lockless_begin(vcpu);
2938 	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2939 		if (!is_shadow_present_pte(spte) || iterator.level < level)
2940 			break;
2941 
2942 	/*
2943 	 * If the mapping has been changed, let the vcpu fault on the
2944 	 * same address again.
2945 	 */
2946 	if (!is_rmap_spte(spte)) {
2947 		ret = true;
2948 		goto exit;
2949 	}
2950 
2951 	sp = page_header(__pa(iterator.sptep));
2952 	if (!is_last_spte(spte, sp->role.level))
2953 		goto exit;
2954 
2955 	/*
2956 	 * Check if it is a spurious fault caused by TLB lazily flushed.
2957 	 *
2958 	 * Need not check the access of upper level table entries since
2959 	 * they are always ACC_ALL.
2960 	 */
2961 	 if (is_writable_pte(spte)) {
2962 		ret = true;
2963 		goto exit;
2964 	}
2965 
2966 	/*
2967 	 * Currently, to simplify the code, only the spte write-protected
2968 	 * by dirty-log can be fast fixed.
2969 	 */
2970 	if (!spte_is_locklessly_modifiable(spte))
2971 		goto exit;
2972 
2973 	/*
2974 	 * Do not fix write-permission on the large spte since we only dirty
2975 	 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2976 	 * that means other pages are missed if its slot is dirty-logged.
2977 	 *
2978 	 * Instead, we let the slow page fault path create a normal spte to
2979 	 * fix the access.
2980 	 *
2981 	 * See the comments in kvm_arch_commit_memory_region().
2982 	 */
2983 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2984 		goto exit;
2985 
2986 	/*
2987 	 * Currently, fast page fault only works for direct mapping since
2988 	 * the gfn is not stable for indirect shadow page.
2989 	 * See Documentation/virtual/kvm/locking.txt to get more detail.
2990 	 */
2991 	ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2992 exit:
2993 	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2994 			      spte, ret);
2995 	walk_shadow_page_lockless_end(vcpu);
2996 
2997 	return ret;
2998 }
2999 
3000 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3001 			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
3002 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3003 
nonpaging_map(struct kvm_vcpu * vcpu,gva_t v,u32 error_code,gfn_t gfn,bool prefault)3004 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3005 			 gfn_t gfn, bool prefault)
3006 {
3007 	int r;
3008 	int level;
3009 	int force_pt_level;
3010 	pfn_t pfn;
3011 	unsigned long mmu_seq;
3012 	bool map_writable, write = error_code & PFERR_WRITE_MASK;
3013 
3014 	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3015 	if (likely(!force_pt_level)) {
3016 		level = mapping_level(vcpu, gfn);
3017 		/*
3018 		 * This path builds a PAE pagetable - so we can map
3019 		 * 2mb pages at maximum. Therefore check if the level
3020 		 * is larger than that.
3021 		 */
3022 		if (level > PT_DIRECTORY_LEVEL)
3023 			level = PT_DIRECTORY_LEVEL;
3024 
3025 		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3026 	} else
3027 		level = PT_PAGE_TABLE_LEVEL;
3028 
3029 	if (fast_page_fault(vcpu, v, level, error_code))
3030 		return 0;
3031 
3032 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3033 	smp_rmb();
3034 
3035 	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3036 		return 0;
3037 
3038 	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3039 		return r;
3040 
3041 	spin_lock(&vcpu->kvm->mmu_lock);
3042 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3043 		goto out_unlock;
3044 	make_mmu_pages_available(vcpu);
3045 	if (likely(!force_pt_level))
3046 		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3047 	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3048 			 prefault);
3049 	spin_unlock(&vcpu->kvm->mmu_lock);
3050 
3051 
3052 	return r;
3053 
3054 out_unlock:
3055 	spin_unlock(&vcpu->kvm->mmu_lock);
3056 	kvm_release_pfn_clean(pfn);
3057 	return 0;
3058 }
3059 
3060 
mmu_free_roots(struct kvm_vcpu * vcpu)3061 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3062 {
3063 	int i;
3064 	struct kvm_mmu_page *sp;
3065 	LIST_HEAD(invalid_list);
3066 
3067 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3068 		return;
3069 
3070 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3071 	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3072 	     vcpu->arch.mmu.direct_map)) {
3073 		hpa_t root = vcpu->arch.mmu.root_hpa;
3074 
3075 		spin_lock(&vcpu->kvm->mmu_lock);
3076 		sp = page_header(root);
3077 		--sp->root_count;
3078 		if (!sp->root_count && sp->role.invalid) {
3079 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3080 			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3081 		}
3082 		spin_unlock(&vcpu->kvm->mmu_lock);
3083 		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3084 		return;
3085 	}
3086 
3087 	spin_lock(&vcpu->kvm->mmu_lock);
3088 	for (i = 0; i < 4; ++i) {
3089 		hpa_t root = vcpu->arch.mmu.pae_root[i];
3090 
3091 		if (root) {
3092 			root &= PT64_BASE_ADDR_MASK;
3093 			sp = page_header(root);
3094 			--sp->root_count;
3095 			if (!sp->root_count && sp->role.invalid)
3096 				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3097 							 &invalid_list);
3098 		}
3099 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3100 	}
3101 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3102 	spin_unlock(&vcpu->kvm->mmu_lock);
3103 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3104 }
3105 
mmu_check_root(struct kvm_vcpu * vcpu,gfn_t root_gfn)3106 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3107 {
3108 	int ret = 0;
3109 
3110 	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3111 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3112 		ret = 1;
3113 	}
3114 
3115 	return ret;
3116 }
3117 
mmu_alloc_direct_roots(struct kvm_vcpu * vcpu)3118 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3119 {
3120 	struct kvm_mmu_page *sp;
3121 	unsigned i;
3122 
3123 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3124 		spin_lock(&vcpu->kvm->mmu_lock);
3125 		make_mmu_pages_available(vcpu);
3126 		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3127 				      1, ACC_ALL, NULL);
3128 		++sp->root_count;
3129 		spin_unlock(&vcpu->kvm->mmu_lock);
3130 		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3131 	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3132 		for (i = 0; i < 4; ++i) {
3133 			hpa_t root = vcpu->arch.mmu.pae_root[i];
3134 
3135 			MMU_WARN_ON(VALID_PAGE(root));
3136 			spin_lock(&vcpu->kvm->mmu_lock);
3137 			make_mmu_pages_available(vcpu);
3138 			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3139 					      i << 30,
3140 					      PT32_ROOT_LEVEL, 1, ACC_ALL,
3141 					      NULL);
3142 			root = __pa(sp->spt);
3143 			++sp->root_count;
3144 			spin_unlock(&vcpu->kvm->mmu_lock);
3145 			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3146 		}
3147 		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3148 	} else
3149 		BUG();
3150 
3151 	return 0;
3152 }
3153 
mmu_alloc_shadow_roots(struct kvm_vcpu * vcpu)3154 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3155 {
3156 	struct kvm_mmu_page *sp;
3157 	u64 pdptr, pm_mask;
3158 	gfn_t root_gfn;
3159 	int i;
3160 
3161 	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3162 
3163 	if (mmu_check_root(vcpu, root_gfn))
3164 		return 1;
3165 
3166 	/*
3167 	 * Do we shadow a long mode page table? If so we need to
3168 	 * write-protect the guests page table root.
3169 	 */
3170 	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3171 		hpa_t root = vcpu->arch.mmu.root_hpa;
3172 
3173 		MMU_WARN_ON(VALID_PAGE(root));
3174 
3175 		spin_lock(&vcpu->kvm->mmu_lock);
3176 		make_mmu_pages_available(vcpu);
3177 		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3178 				      0, ACC_ALL, NULL);
3179 		root = __pa(sp->spt);
3180 		++sp->root_count;
3181 		spin_unlock(&vcpu->kvm->mmu_lock);
3182 		vcpu->arch.mmu.root_hpa = root;
3183 		return 0;
3184 	}
3185 
3186 	/*
3187 	 * We shadow a 32 bit page table. This may be a legacy 2-level
3188 	 * or a PAE 3-level page table. In either case we need to be aware that
3189 	 * the shadow page table may be a PAE or a long mode page table.
3190 	 */
3191 	pm_mask = PT_PRESENT_MASK;
3192 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3193 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3194 
3195 	for (i = 0; i < 4; ++i) {
3196 		hpa_t root = vcpu->arch.mmu.pae_root[i];
3197 
3198 		MMU_WARN_ON(VALID_PAGE(root));
3199 		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3200 			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3201 			if (!is_present_gpte(pdptr)) {
3202 				vcpu->arch.mmu.pae_root[i] = 0;
3203 				continue;
3204 			}
3205 			root_gfn = pdptr >> PAGE_SHIFT;
3206 			if (mmu_check_root(vcpu, root_gfn))
3207 				return 1;
3208 		}
3209 		spin_lock(&vcpu->kvm->mmu_lock);
3210 		make_mmu_pages_available(vcpu);
3211 		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3212 				      PT32_ROOT_LEVEL, 0,
3213 				      ACC_ALL, NULL);
3214 		root = __pa(sp->spt);
3215 		++sp->root_count;
3216 		spin_unlock(&vcpu->kvm->mmu_lock);
3217 
3218 		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3219 	}
3220 	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3221 
3222 	/*
3223 	 * If we shadow a 32 bit page table with a long mode page
3224 	 * table we enter this path.
3225 	 */
3226 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3227 		if (vcpu->arch.mmu.lm_root == NULL) {
3228 			/*
3229 			 * The additional page necessary for this is only
3230 			 * allocated on demand.
3231 			 */
3232 
3233 			u64 *lm_root;
3234 
3235 			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3236 			if (lm_root == NULL)
3237 				return 1;
3238 
3239 			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3240 
3241 			vcpu->arch.mmu.lm_root = lm_root;
3242 		}
3243 
3244 		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3245 	}
3246 
3247 	return 0;
3248 }
3249 
mmu_alloc_roots(struct kvm_vcpu * vcpu)3250 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3251 {
3252 	if (vcpu->arch.mmu.direct_map)
3253 		return mmu_alloc_direct_roots(vcpu);
3254 	else
3255 		return mmu_alloc_shadow_roots(vcpu);
3256 }
3257 
mmu_sync_roots(struct kvm_vcpu * vcpu)3258 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3259 {
3260 	int i;
3261 	struct kvm_mmu_page *sp;
3262 
3263 	if (vcpu->arch.mmu.direct_map)
3264 		return;
3265 
3266 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3267 		return;
3268 
3269 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3270 	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3271 	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3272 		hpa_t root = vcpu->arch.mmu.root_hpa;
3273 		sp = page_header(root);
3274 		mmu_sync_children(vcpu, sp);
3275 		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3276 		return;
3277 	}
3278 	for (i = 0; i < 4; ++i) {
3279 		hpa_t root = vcpu->arch.mmu.pae_root[i];
3280 
3281 		if (root && VALID_PAGE(root)) {
3282 			root &= PT64_BASE_ADDR_MASK;
3283 			sp = page_header(root);
3284 			mmu_sync_children(vcpu, sp);
3285 		}
3286 	}
3287 	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3288 }
3289 
kvm_mmu_sync_roots(struct kvm_vcpu * vcpu)3290 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3291 {
3292 	spin_lock(&vcpu->kvm->mmu_lock);
3293 	mmu_sync_roots(vcpu);
3294 	spin_unlock(&vcpu->kvm->mmu_lock);
3295 }
3296 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3297 
nonpaging_gva_to_gpa(struct kvm_vcpu * vcpu,gva_t vaddr,u32 access,struct x86_exception * exception)3298 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3299 				  u32 access, struct x86_exception *exception)
3300 {
3301 	if (exception)
3302 		exception->error_code = 0;
3303 	return vaddr;
3304 }
3305 
nonpaging_gva_to_gpa_nested(struct kvm_vcpu * vcpu,gva_t vaddr,u32 access,struct x86_exception * exception)3306 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3307 					 u32 access,
3308 					 struct x86_exception *exception)
3309 {
3310 	if (exception)
3311 		exception->error_code = 0;
3312 	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3313 }
3314 
quickly_check_mmio_pf(struct kvm_vcpu * vcpu,u64 addr,bool direct)3315 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3316 {
3317 	if (direct)
3318 		return vcpu_match_mmio_gpa(vcpu, addr);
3319 
3320 	return vcpu_match_mmio_gva(vcpu, addr);
3321 }
3322 
walk_shadow_page_get_mmio_spte(struct kvm_vcpu * vcpu,u64 addr)3323 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3324 {
3325 	struct kvm_shadow_walk_iterator iterator;
3326 	u64 spte = 0ull;
3327 
3328 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3329 		return spte;
3330 
3331 	walk_shadow_page_lockless_begin(vcpu);
3332 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3333 		if (!is_shadow_present_pte(spte))
3334 			break;
3335 	walk_shadow_page_lockless_end(vcpu);
3336 
3337 	return spte;
3338 }
3339 
handle_mmio_page_fault_common(struct kvm_vcpu * vcpu,u64 addr,bool direct)3340 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3341 {
3342 	u64 spte;
3343 
3344 	if (quickly_check_mmio_pf(vcpu, addr, direct))
3345 		return RET_MMIO_PF_EMULATE;
3346 
3347 	spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3348 
3349 	if (is_mmio_spte(spte)) {
3350 		gfn_t gfn = get_mmio_spte_gfn(spte);
3351 		unsigned access = get_mmio_spte_access(spte);
3352 
3353 		if (!check_mmio_spte(vcpu->kvm, spte))
3354 			return RET_MMIO_PF_INVALID;
3355 
3356 		if (direct)
3357 			addr = 0;
3358 
3359 		trace_handle_mmio_page_fault(addr, gfn, access);
3360 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3361 		return RET_MMIO_PF_EMULATE;
3362 	}
3363 
3364 	/*
3365 	 * If the page table is zapped by other cpus, let CPU fault again on
3366 	 * the address.
3367 	 */
3368 	return RET_MMIO_PF_RETRY;
3369 }
3370 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3371 
handle_mmio_page_fault(struct kvm_vcpu * vcpu,u64 addr,u32 error_code,bool direct)3372 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3373 				  u32 error_code, bool direct)
3374 {
3375 	int ret;
3376 
3377 	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3378 	WARN_ON(ret == RET_MMIO_PF_BUG);
3379 	return ret;
3380 }
3381 
nonpaging_page_fault(struct kvm_vcpu * vcpu,gva_t gva,u32 error_code,bool prefault)3382 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3383 				u32 error_code, bool prefault)
3384 {
3385 	gfn_t gfn;
3386 	int r;
3387 
3388 	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3389 
3390 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
3391 		r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3392 
3393 		if (likely(r != RET_MMIO_PF_INVALID))
3394 			return r;
3395 	}
3396 
3397 	r = mmu_topup_memory_caches(vcpu);
3398 	if (r)
3399 		return r;
3400 
3401 	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3402 
3403 	gfn = gva >> PAGE_SHIFT;
3404 
3405 	return nonpaging_map(vcpu, gva & PAGE_MASK,
3406 			     error_code, gfn, prefault);
3407 }
3408 
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn)3409 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3410 {
3411 	struct kvm_arch_async_pf arch;
3412 
3413 	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3414 	arch.gfn = gfn;
3415 	arch.direct_map = vcpu->arch.mmu.direct_map;
3416 	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3417 
3418 	return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
3419 }
3420 
can_do_async_pf(struct kvm_vcpu * vcpu)3421 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3422 {
3423 	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3424 		     kvm_event_needs_reinjection(vcpu)))
3425 		return false;
3426 
3427 	return kvm_x86_ops->interrupt_allowed(vcpu);
3428 }
3429 
try_async_pf(struct kvm_vcpu * vcpu,bool prefault,gfn_t gfn,gva_t gva,pfn_t * pfn,bool write,bool * writable)3430 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3431 			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3432 {
3433 	bool async;
3434 
3435 	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3436 
3437 	if (!async)
3438 		return false; /* *pfn has correct page already */
3439 
3440 	if (!prefault && can_do_async_pf(vcpu)) {
3441 		trace_kvm_try_async_get_page(gva, gfn);
3442 		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3443 			trace_kvm_async_pf_doublefault(gva, gfn);
3444 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3445 			return true;
3446 		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3447 			return true;
3448 	}
3449 
3450 	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3451 
3452 	return false;
3453 }
3454 
tdp_page_fault(struct kvm_vcpu * vcpu,gva_t gpa,u32 error_code,bool prefault)3455 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3456 			  bool prefault)
3457 {
3458 	pfn_t pfn;
3459 	int r;
3460 	int level;
3461 	int force_pt_level;
3462 	gfn_t gfn = gpa >> PAGE_SHIFT;
3463 	unsigned long mmu_seq;
3464 	int write = error_code & PFERR_WRITE_MASK;
3465 	bool map_writable;
3466 
3467 	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3468 
3469 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
3470 		r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3471 
3472 		if (likely(r != RET_MMIO_PF_INVALID))
3473 			return r;
3474 	}
3475 
3476 	r = mmu_topup_memory_caches(vcpu);
3477 	if (r)
3478 		return r;
3479 
3480 	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3481 	if (likely(!force_pt_level)) {
3482 		level = mapping_level(vcpu, gfn);
3483 		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3484 	} else
3485 		level = PT_PAGE_TABLE_LEVEL;
3486 
3487 	if (fast_page_fault(vcpu, gpa, level, error_code))
3488 		return 0;
3489 
3490 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3491 	smp_rmb();
3492 
3493 	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3494 		return 0;
3495 
3496 	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3497 		return r;
3498 
3499 	spin_lock(&vcpu->kvm->mmu_lock);
3500 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3501 		goto out_unlock;
3502 	make_mmu_pages_available(vcpu);
3503 	if (likely(!force_pt_level))
3504 		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3505 	r = __direct_map(vcpu, gpa, write, map_writable,
3506 			 level, gfn, pfn, prefault);
3507 	spin_unlock(&vcpu->kvm->mmu_lock);
3508 
3509 	return r;
3510 
3511 out_unlock:
3512 	spin_unlock(&vcpu->kvm->mmu_lock);
3513 	kvm_release_pfn_clean(pfn);
3514 	return 0;
3515 }
3516 
nonpaging_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3517 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3518 				   struct kvm_mmu *context)
3519 {
3520 	context->page_fault = nonpaging_page_fault;
3521 	context->gva_to_gpa = nonpaging_gva_to_gpa;
3522 	context->sync_page = nonpaging_sync_page;
3523 	context->invlpg = nonpaging_invlpg;
3524 	context->update_pte = nonpaging_update_pte;
3525 	context->root_level = 0;
3526 	context->shadow_root_level = PT32E_ROOT_LEVEL;
3527 	context->root_hpa = INVALID_PAGE;
3528 	context->direct_map = true;
3529 	context->nx = false;
3530 }
3531 
kvm_mmu_new_cr3(struct kvm_vcpu * vcpu)3532 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3533 {
3534 	mmu_free_roots(vcpu);
3535 }
3536 
get_cr3(struct kvm_vcpu * vcpu)3537 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3538 {
3539 	return kvm_read_cr3(vcpu);
3540 }
3541 
inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)3542 static void inject_page_fault(struct kvm_vcpu *vcpu,
3543 			      struct x86_exception *fault)
3544 {
3545 	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3546 }
3547 
sync_mmio_spte(struct kvm * kvm,u64 * sptep,gfn_t gfn,unsigned access,int * nr_present)3548 static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3549 			   unsigned access, int *nr_present)
3550 {
3551 	if (unlikely(is_mmio_spte(*sptep))) {
3552 		if (gfn != get_mmio_spte_gfn(*sptep)) {
3553 			mmu_spte_clear_no_track(sptep);
3554 			return true;
3555 		}
3556 
3557 		(*nr_present)++;
3558 		mark_mmio_spte(kvm, sptep, gfn, access);
3559 		return true;
3560 	}
3561 
3562 	return false;
3563 }
3564 
is_last_gpte(struct kvm_mmu * mmu,unsigned level,unsigned gpte)3565 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3566 {
3567 	unsigned index;
3568 
3569 	index = level - 1;
3570 	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3571 	return mmu->last_pte_bitmap & (1 << index);
3572 }
3573 
3574 #define PTTYPE_EPT 18 /* arbitrary */
3575 #define PTTYPE PTTYPE_EPT
3576 #include "paging_tmpl.h"
3577 #undef PTTYPE
3578 
3579 #define PTTYPE 64
3580 #include "paging_tmpl.h"
3581 #undef PTTYPE
3582 
3583 #define PTTYPE 32
3584 #include "paging_tmpl.h"
3585 #undef PTTYPE
3586 
reset_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3587 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3588 				  struct kvm_mmu *context)
3589 {
3590 	int maxphyaddr = cpuid_maxphyaddr(vcpu);
3591 	u64 exb_bit_rsvd = 0;
3592 	u64 gbpages_bit_rsvd = 0;
3593 	u64 nonleaf_bit8_rsvd = 0;
3594 
3595 	context->bad_mt_xwr = 0;
3596 
3597 	if (!context->nx)
3598 		exb_bit_rsvd = rsvd_bits(63, 63);
3599 	if (!guest_cpuid_has_gbpages(vcpu))
3600 		gbpages_bit_rsvd = rsvd_bits(7, 7);
3601 
3602 	/*
3603 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3604 	 * leaf entries) on AMD CPUs only.
3605 	 */
3606 	if (guest_cpuid_is_amd(vcpu))
3607 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3608 
3609 	switch (context->root_level) {
3610 	case PT32_ROOT_LEVEL:
3611 		/* no rsvd bits for 2 level 4K page table entries */
3612 		context->rsvd_bits_mask[0][1] = 0;
3613 		context->rsvd_bits_mask[0][0] = 0;
3614 		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3615 
3616 		if (!is_pse(vcpu)) {
3617 			context->rsvd_bits_mask[1][1] = 0;
3618 			break;
3619 		}
3620 
3621 		if (is_cpuid_PSE36())
3622 			/* 36bits PSE 4MB page */
3623 			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3624 		else
3625 			/* 32 bits PSE 4MB page */
3626 			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3627 		break;
3628 	case PT32E_ROOT_LEVEL:
3629 		context->rsvd_bits_mask[0][2] =
3630 			rsvd_bits(maxphyaddr, 63) |
3631 			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3632 		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3633 			rsvd_bits(maxphyaddr, 62);	/* PDE */
3634 		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3635 			rsvd_bits(maxphyaddr, 62); 	/* PTE */
3636 		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3637 			rsvd_bits(maxphyaddr, 62) |
3638 			rsvd_bits(13, 20);		/* large page */
3639 		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3640 		break;
3641 	case PT64_ROOT_LEVEL:
3642 		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3643 			nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
3644 		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3645 			nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3646 		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3647 			rsvd_bits(maxphyaddr, 51);
3648 		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3649 			rsvd_bits(maxphyaddr, 51);
3650 		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3651 		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3652 			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3653 			rsvd_bits(13, 29);
3654 		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3655 			rsvd_bits(maxphyaddr, 51) |
3656 			rsvd_bits(13, 20);		/* large page */
3657 		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3658 		break;
3659 	}
3660 }
3661 
reset_rsvds_bits_mask_ept(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly)3662 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3663 		struct kvm_mmu *context, bool execonly)
3664 {
3665 	int maxphyaddr = cpuid_maxphyaddr(vcpu);
3666 	int pte;
3667 
3668 	context->rsvd_bits_mask[0][3] =
3669 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3670 	context->rsvd_bits_mask[0][2] =
3671 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3672 	context->rsvd_bits_mask[0][1] =
3673 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3674 	context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3675 
3676 	/* large page */
3677 	context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3678 	context->rsvd_bits_mask[1][2] =
3679 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3680 	context->rsvd_bits_mask[1][1] =
3681 		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3682 	context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3683 
3684 	for (pte = 0; pte < 64; pte++) {
3685 		int rwx_bits = pte & 7;
3686 		int mt = pte >> 3;
3687 		if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3688 				rwx_bits == 0x2 || rwx_bits == 0x6 ||
3689 				(rwx_bits == 0x4 && !execonly))
3690 			context->bad_mt_xwr |= (1ull << pte);
3691 	}
3692 }
3693 
update_permission_bitmask(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,bool ept)3694 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3695 				      struct kvm_mmu *mmu, bool ept)
3696 {
3697 	unsigned bit, byte, pfec;
3698 	u8 map;
3699 	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3700 
3701 	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3702 	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3703 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3704 		pfec = byte << 1;
3705 		map = 0;
3706 		wf = pfec & PFERR_WRITE_MASK;
3707 		uf = pfec & PFERR_USER_MASK;
3708 		ff = pfec & PFERR_FETCH_MASK;
3709 		/*
3710 		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3711 		 * subject to SMAP restrictions, and cleared otherwise. The
3712 		 * bit is only meaningful if the SMAP bit is set in CR4.
3713 		 */
3714 		smapf = !(pfec & PFERR_RSVD_MASK);
3715 		for (bit = 0; bit < 8; ++bit) {
3716 			x = bit & ACC_EXEC_MASK;
3717 			w = bit & ACC_WRITE_MASK;
3718 			u = bit & ACC_USER_MASK;
3719 
3720 			if (!ept) {
3721 				/* Not really needed: !nx will cause pte.nx to fault */
3722 				x |= !mmu->nx;
3723 				/* Allow supervisor writes if !cr0.wp */
3724 				w |= !is_write_protection(vcpu) && !uf;
3725 				/* Disallow supervisor fetches of user code if cr4.smep */
3726 				x &= !(cr4_smep && u && !uf);
3727 
3728 				/*
3729 				 * SMAP:kernel-mode data accesses from user-mode
3730 				 * mappings should fault. A fault is considered
3731 				 * as a SMAP violation if all of the following
3732 				 * conditions are ture:
3733 				 *   - X86_CR4_SMAP is set in CR4
3734 				 *   - An user page is accessed
3735 				 *   - Page fault in kernel mode
3736 				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
3737 				 *
3738 				 *   Here, we cover the first three conditions.
3739 				 *   The fourth is computed dynamically in
3740 				 *   permission_fault() and is in smapf.
3741 				 *
3742 				 *   Also, SMAP does not affect instruction
3743 				 *   fetches, add the !ff check here to make it
3744 				 *   clearer.
3745 				 */
3746 				smap = cr4_smap && u && !uf && !ff;
3747 			} else
3748 				/* Not really needed: no U/S accesses on ept  */
3749 				u = 1;
3750 
3751 			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3752 				(smapf && smap);
3753 			map |= fault << bit;
3754 		}
3755 		mmu->permissions[byte] = map;
3756 	}
3757 }
3758 
update_last_pte_bitmap(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)3759 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3760 {
3761 	u8 map;
3762 	unsigned level, root_level = mmu->root_level;
3763 	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3764 
3765 	if (root_level == PT32E_ROOT_LEVEL)
3766 		--root_level;
3767 	/* PT_PAGE_TABLE_LEVEL always terminates */
3768 	map = 1 | (1 << ps_set_index);
3769 	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3770 		if (level <= PT_PDPE_LEVEL
3771 		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3772 			map |= 1 << (ps_set_index | (level - 1));
3773 	}
3774 	mmu->last_pte_bitmap = map;
3775 }
3776 
paging64_init_context_common(struct kvm_vcpu * vcpu,struct kvm_mmu * context,int level)3777 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3778 					 struct kvm_mmu *context,
3779 					 int level)
3780 {
3781 	context->nx = is_nx(vcpu);
3782 	context->root_level = level;
3783 
3784 	reset_rsvds_bits_mask(vcpu, context);
3785 	update_permission_bitmask(vcpu, context, false);
3786 	update_last_pte_bitmap(vcpu, context);
3787 
3788 	MMU_WARN_ON(!is_pae(vcpu));
3789 	context->page_fault = paging64_page_fault;
3790 	context->gva_to_gpa = paging64_gva_to_gpa;
3791 	context->sync_page = paging64_sync_page;
3792 	context->invlpg = paging64_invlpg;
3793 	context->update_pte = paging64_update_pte;
3794 	context->shadow_root_level = level;
3795 	context->root_hpa = INVALID_PAGE;
3796 	context->direct_map = false;
3797 }
3798 
paging64_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3799 static void paging64_init_context(struct kvm_vcpu *vcpu,
3800 				  struct kvm_mmu *context)
3801 {
3802 	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3803 }
3804 
paging32_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3805 static void paging32_init_context(struct kvm_vcpu *vcpu,
3806 				  struct kvm_mmu *context)
3807 {
3808 	context->nx = false;
3809 	context->root_level = PT32_ROOT_LEVEL;
3810 
3811 	reset_rsvds_bits_mask(vcpu, context);
3812 	update_permission_bitmask(vcpu, context, false);
3813 	update_last_pte_bitmap(vcpu, context);
3814 
3815 	context->page_fault = paging32_page_fault;
3816 	context->gva_to_gpa = paging32_gva_to_gpa;
3817 	context->sync_page = paging32_sync_page;
3818 	context->invlpg = paging32_invlpg;
3819 	context->update_pte = paging32_update_pte;
3820 	context->shadow_root_level = PT32E_ROOT_LEVEL;
3821 	context->root_hpa = INVALID_PAGE;
3822 	context->direct_map = false;
3823 }
3824 
paging32E_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3825 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3826 				   struct kvm_mmu *context)
3827 {
3828 	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3829 }
3830 
init_kvm_tdp_mmu(struct kvm_vcpu * vcpu)3831 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3832 {
3833 	struct kvm_mmu *context = &vcpu->arch.mmu;
3834 
3835 	context->base_role.word = 0;
3836 	context->page_fault = tdp_page_fault;
3837 	context->sync_page = nonpaging_sync_page;
3838 	context->invlpg = nonpaging_invlpg;
3839 	context->update_pte = nonpaging_update_pte;
3840 	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3841 	context->root_hpa = INVALID_PAGE;
3842 	context->direct_map = true;
3843 	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3844 	context->get_cr3 = get_cr3;
3845 	context->get_pdptr = kvm_pdptr_read;
3846 	context->inject_page_fault = kvm_inject_page_fault;
3847 
3848 	if (!is_paging(vcpu)) {
3849 		context->nx = false;
3850 		context->gva_to_gpa = nonpaging_gva_to_gpa;
3851 		context->root_level = 0;
3852 	} else if (is_long_mode(vcpu)) {
3853 		context->nx = is_nx(vcpu);
3854 		context->root_level = PT64_ROOT_LEVEL;
3855 		reset_rsvds_bits_mask(vcpu, context);
3856 		context->gva_to_gpa = paging64_gva_to_gpa;
3857 	} else if (is_pae(vcpu)) {
3858 		context->nx = is_nx(vcpu);
3859 		context->root_level = PT32E_ROOT_LEVEL;
3860 		reset_rsvds_bits_mask(vcpu, context);
3861 		context->gva_to_gpa = paging64_gva_to_gpa;
3862 	} else {
3863 		context->nx = false;
3864 		context->root_level = PT32_ROOT_LEVEL;
3865 		reset_rsvds_bits_mask(vcpu, context);
3866 		context->gva_to_gpa = paging32_gva_to_gpa;
3867 	}
3868 
3869 	update_permission_bitmask(vcpu, context, false);
3870 	update_last_pte_bitmap(vcpu, context);
3871 }
3872 
kvm_init_shadow_mmu(struct kvm_vcpu * vcpu)3873 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
3874 {
3875 	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3876 	bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3877 	struct kvm_mmu *context = &vcpu->arch.mmu;
3878 
3879 	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
3880 
3881 	if (!is_paging(vcpu))
3882 		nonpaging_init_context(vcpu, context);
3883 	else if (is_long_mode(vcpu))
3884 		paging64_init_context(vcpu, context);
3885 	else if (is_pae(vcpu))
3886 		paging32E_init_context(vcpu, context);
3887 	else
3888 		paging32_init_context(vcpu, context);
3889 
3890 	context->base_role.nxe = is_nx(vcpu);
3891 	context->base_role.cr4_pae = !!is_pae(vcpu);
3892 	context->base_role.cr0_wp  = is_write_protection(vcpu);
3893 	context->base_role.smep_andnot_wp
3894 		= smep && !is_write_protection(vcpu);
3895 	context->base_role.smap_andnot_wp
3896 		= smap && !is_write_protection(vcpu);
3897 }
3898 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3899 
kvm_init_shadow_ept_mmu(struct kvm_vcpu * vcpu,bool execonly)3900 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
3901 {
3902 	struct kvm_mmu *context = &vcpu->arch.mmu;
3903 
3904 	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
3905 
3906 	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3907 
3908 	context->nx = true;
3909 	context->page_fault = ept_page_fault;
3910 	context->gva_to_gpa = ept_gva_to_gpa;
3911 	context->sync_page = ept_sync_page;
3912 	context->invlpg = ept_invlpg;
3913 	context->update_pte = ept_update_pte;
3914 	context->root_level = context->shadow_root_level;
3915 	context->root_hpa = INVALID_PAGE;
3916 	context->direct_map = false;
3917 
3918 	update_permission_bitmask(vcpu, context, true);
3919 	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
3920 }
3921 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3922 
init_kvm_softmmu(struct kvm_vcpu * vcpu)3923 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3924 {
3925 	struct kvm_mmu *context = &vcpu->arch.mmu;
3926 
3927 	kvm_init_shadow_mmu(vcpu);
3928 	context->set_cr3           = kvm_x86_ops->set_cr3;
3929 	context->get_cr3           = get_cr3;
3930 	context->get_pdptr         = kvm_pdptr_read;
3931 	context->inject_page_fault = kvm_inject_page_fault;
3932 }
3933 
init_kvm_nested_mmu(struct kvm_vcpu * vcpu)3934 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3935 {
3936 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3937 
3938 	g_context->get_cr3           = get_cr3;
3939 	g_context->get_pdptr         = kvm_pdptr_read;
3940 	g_context->inject_page_fault = kvm_inject_page_fault;
3941 
3942 	/*
3943 	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3944 	 * translation of l2_gpa to l1_gpa addresses is done using the
3945 	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3946 	 * functions between mmu and nested_mmu are swapped.
3947 	 */
3948 	if (!is_paging(vcpu)) {
3949 		g_context->nx = false;
3950 		g_context->root_level = 0;
3951 		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3952 	} else if (is_long_mode(vcpu)) {
3953 		g_context->nx = is_nx(vcpu);
3954 		g_context->root_level = PT64_ROOT_LEVEL;
3955 		reset_rsvds_bits_mask(vcpu, g_context);
3956 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3957 	} else if (is_pae(vcpu)) {
3958 		g_context->nx = is_nx(vcpu);
3959 		g_context->root_level = PT32E_ROOT_LEVEL;
3960 		reset_rsvds_bits_mask(vcpu, g_context);
3961 		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3962 	} else {
3963 		g_context->nx = false;
3964 		g_context->root_level = PT32_ROOT_LEVEL;
3965 		reset_rsvds_bits_mask(vcpu, g_context);
3966 		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3967 	}
3968 
3969 	update_permission_bitmask(vcpu, g_context, false);
3970 	update_last_pte_bitmap(vcpu, g_context);
3971 }
3972 
init_kvm_mmu(struct kvm_vcpu * vcpu)3973 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
3974 {
3975 	if (mmu_is_nested(vcpu))
3976 		init_kvm_nested_mmu(vcpu);
3977 	else if (tdp_enabled)
3978 		init_kvm_tdp_mmu(vcpu);
3979 	else
3980 		init_kvm_softmmu(vcpu);
3981 }
3982 
kvm_mmu_reset_context(struct kvm_vcpu * vcpu)3983 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3984 {
3985 	kvm_mmu_unload(vcpu);
3986 	init_kvm_mmu(vcpu);
3987 }
3988 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3989 
kvm_mmu_load(struct kvm_vcpu * vcpu)3990 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3991 {
3992 	int r;
3993 
3994 	r = mmu_topup_memory_caches(vcpu);
3995 	if (r)
3996 		goto out;
3997 	r = mmu_alloc_roots(vcpu);
3998 	kvm_mmu_sync_roots(vcpu);
3999 	if (r)
4000 		goto out;
4001 	/* set_cr3() should ensure TLB has been flushed */
4002 	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4003 out:
4004 	return r;
4005 }
4006 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4007 
kvm_mmu_unload(struct kvm_vcpu * vcpu)4008 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4009 {
4010 	mmu_free_roots(vcpu);
4011 	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4012 }
4013 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4014 
mmu_pte_write_new_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,const void * new)4015 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4016 				  struct kvm_mmu_page *sp, u64 *spte,
4017 				  const void *new)
4018 {
4019 	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4020 		++vcpu->kvm->stat.mmu_pde_zapped;
4021 		return;
4022         }
4023 
4024 	++vcpu->kvm->stat.mmu_pte_updated;
4025 	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4026 }
4027 
need_remote_flush(u64 old,u64 new)4028 static bool need_remote_flush(u64 old, u64 new)
4029 {
4030 	if (!is_shadow_present_pte(old))
4031 		return false;
4032 	if (!is_shadow_present_pte(new))
4033 		return true;
4034 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
4035 		return true;
4036 	old ^= shadow_nx_mask;
4037 	new ^= shadow_nx_mask;
4038 	return (old & ~new & PT64_PERM_MASK) != 0;
4039 }
4040 
mmu_pte_write_flush_tlb(struct kvm_vcpu * vcpu,bool zap_page,bool remote_flush,bool local_flush)4041 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4042 				    bool remote_flush, bool local_flush)
4043 {
4044 	if (zap_page)
4045 		return;
4046 
4047 	if (remote_flush)
4048 		kvm_flush_remote_tlbs(vcpu->kvm);
4049 	else if (local_flush)
4050 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4051 }
4052 
mmu_pte_write_fetch_gpte(struct kvm_vcpu * vcpu,gpa_t * gpa,const u8 * new,int * bytes)4053 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4054 				    const u8 *new, int *bytes)
4055 {
4056 	u64 gentry;
4057 	int r;
4058 
4059 	/*
4060 	 * Assume that the pte write on a page table of the same type
4061 	 * as the current vcpu paging mode since we update the sptes only
4062 	 * when they have the same mode.
4063 	 */
4064 	if (is_pae(vcpu) && *bytes == 4) {
4065 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4066 		*gpa &= ~(gpa_t)7;
4067 		*bytes = 8;
4068 		r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
4069 		if (r)
4070 			gentry = 0;
4071 		new = (const u8 *)&gentry;
4072 	}
4073 
4074 	switch (*bytes) {
4075 	case 4:
4076 		gentry = *(const u32 *)new;
4077 		break;
4078 	case 8:
4079 		gentry = *(const u64 *)new;
4080 		break;
4081 	default:
4082 		gentry = 0;
4083 		break;
4084 	}
4085 
4086 	return gentry;
4087 }
4088 
4089 /*
4090  * If we're seeing too many writes to a page, it may no longer be a page table,
4091  * or we may be forking, in which case it is better to unmap the page.
4092  */
detect_write_flooding(struct kvm_mmu_page * sp)4093 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4094 {
4095 	/*
4096 	 * Skip write-flooding detected for the sp whose level is 1, because
4097 	 * it can become unsync, then the guest page is not write-protected.
4098 	 */
4099 	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4100 		return false;
4101 
4102 	return ++sp->write_flooding_count >= 3;
4103 }
4104 
4105 /*
4106  * Misaligned accesses are too much trouble to fix up; also, they usually
4107  * indicate a page is not used as a page table.
4108  */
detect_write_misaligned(struct kvm_mmu_page * sp,gpa_t gpa,int bytes)4109 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4110 				    int bytes)
4111 {
4112 	unsigned offset, pte_size, misaligned;
4113 
4114 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4115 		 gpa, bytes, sp->role.word);
4116 
4117 	offset = offset_in_page(gpa);
4118 	pte_size = sp->role.cr4_pae ? 8 : 4;
4119 
4120 	/*
4121 	 * Sometimes, the OS only writes the last one bytes to update status
4122 	 * bits, for example, in linux, andb instruction is used in clear_bit().
4123 	 */
4124 	if (!(offset & (pte_size - 1)) && bytes == 1)
4125 		return false;
4126 
4127 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4128 	misaligned |= bytes < 4;
4129 
4130 	return misaligned;
4131 }
4132 
get_written_sptes(struct kvm_mmu_page * sp,gpa_t gpa,int * nspte)4133 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4134 {
4135 	unsigned page_offset, quadrant;
4136 	u64 *spte;
4137 	int level;
4138 
4139 	page_offset = offset_in_page(gpa);
4140 	level = sp->role.level;
4141 	*nspte = 1;
4142 	if (!sp->role.cr4_pae) {
4143 		page_offset <<= 1;	/* 32->64 */
4144 		/*
4145 		 * A 32-bit pde maps 4MB while the shadow pdes map
4146 		 * only 2MB.  So we need to double the offset again
4147 		 * and zap two pdes instead of one.
4148 		 */
4149 		if (level == PT32_ROOT_LEVEL) {
4150 			page_offset &= ~7; /* kill rounding error */
4151 			page_offset <<= 1;
4152 			*nspte = 2;
4153 		}
4154 		quadrant = page_offset >> PAGE_SHIFT;
4155 		page_offset &= ~PAGE_MASK;
4156 		if (quadrant != sp->role.quadrant)
4157 			return NULL;
4158 	}
4159 
4160 	spte = &sp->spt[page_offset / sizeof(*spte)];
4161 	return spte;
4162 }
4163 
kvm_mmu_pte_write(struct kvm_vcpu * vcpu,gpa_t gpa,const u8 * new,int bytes)4164 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4165 		       const u8 *new, int bytes)
4166 {
4167 	gfn_t gfn = gpa >> PAGE_SHIFT;
4168 	struct kvm_mmu_page *sp;
4169 	LIST_HEAD(invalid_list);
4170 	u64 entry, gentry, *spte;
4171 	int npte;
4172 	bool remote_flush, local_flush, zap_page;
4173 	union kvm_mmu_page_role mask = { };
4174 
4175 	mask.cr0_wp = 1;
4176 	mask.cr4_pae = 1;
4177 	mask.nxe = 1;
4178 	mask.smep_andnot_wp = 1;
4179 	mask.smap_andnot_wp = 1;
4180 
4181 	/*
4182 	 * If we don't have indirect shadow pages, it means no page is
4183 	 * write-protected, so we can exit simply.
4184 	 */
4185 	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4186 		return;
4187 
4188 	zap_page = remote_flush = local_flush = false;
4189 
4190 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4191 
4192 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4193 
4194 	/*
4195 	 * No need to care whether allocation memory is successful
4196 	 * or not since pte prefetch is skiped if it does not have
4197 	 * enough objects in the cache.
4198 	 */
4199 	mmu_topup_memory_caches(vcpu);
4200 
4201 	spin_lock(&vcpu->kvm->mmu_lock);
4202 	++vcpu->kvm->stat.mmu_pte_write;
4203 	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4204 
4205 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4206 		if (detect_write_misaligned(sp, gpa, bytes) ||
4207 		      detect_write_flooding(sp)) {
4208 			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4209 						     &invalid_list);
4210 			++vcpu->kvm->stat.mmu_flooded;
4211 			continue;
4212 		}
4213 
4214 		spte = get_written_sptes(sp, gpa, &npte);
4215 		if (!spte)
4216 			continue;
4217 
4218 		local_flush = true;
4219 		while (npte--) {
4220 			entry = *spte;
4221 			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4222 			if (gentry &&
4223 			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4224 			      & mask.word) && rmap_can_add(vcpu))
4225 				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4226 			if (need_remote_flush(entry, *spte))
4227 				remote_flush = true;
4228 			++spte;
4229 		}
4230 	}
4231 	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4232 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4233 	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4234 	spin_unlock(&vcpu->kvm->mmu_lock);
4235 }
4236 
kvm_mmu_unprotect_page_virt(struct kvm_vcpu * vcpu,gva_t gva)4237 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4238 {
4239 	gpa_t gpa;
4240 	int r;
4241 
4242 	if (vcpu->arch.mmu.direct_map)
4243 		return 0;
4244 
4245 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4246 
4247 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4248 
4249 	return r;
4250 }
4251 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4252 
make_mmu_pages_available(struct kvm_vcpu * vcpu)4253 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4254 {
4255 	LIST_HEAD(invalid_list);
4256 
4257 	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4258 		return;
4259 
4260 	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4261 		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4262 			break;
4263 
4264 		++vcpu->kvm->stat.mmu_recycled;
4265 	}
4266 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4267 }
4268 
is_mmio_page_fault(struct kvm_vcpu * vcpu,gva_t addr)4269 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4270 {
4271 	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4272 		return vcpu_match_mmio_gpa(vcpu, addr);
4273 
4274 	return vcpu_match_mmio_gva(vcpu, addr);
4275 }
4276 
kvm_mmu_page_fault(struct kvm_vcpu * vcpu,gva_t cr2,u32 error_code,void * insn,int insn_len)4277 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4278 		       void *insn, int insn_len)
4279 {
4280 	int r, emulation_type = EMULTYPE_RETRY;
4281 	enum emulation_result er;
4282 
4283 	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4284 	if (r < 0)
4285 		goto out;
4286 
4287 	if (!r) {
4288 		r = 1;
4289 		goto out;
4290 	}
4291 
4292 	if (is_mmio_page_fault(vcpu, cr2))
4293 		emulation_type = 0;
4294 
4295 	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4296 
4297 	switch (er) {
4298 	case EMULATE_DONE:
4299 		return 1;
4300 	case EMULATE_USER_EXIT:
4301 		++vcpu->stat.mmio_exits;
4302 		/* fall through */
4303 	case EMULATE_FAIL:
4304 		return 0;
4305 	default:
4306 		BUG();
4307 	}
4308 out:
4309 	return r;
4310 }
4311 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4312 
kvm_mmu_invlpg(struct kvm_vcpu * vcpu,gva_t gva)4313 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4314 {
4315 	vcpu->arch.mmu.invlpg(vcpu, gva);
4316 	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4317 	++vcpu->stat.invlpg;
4318 }
4319 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4320 
kvm_enable_tdp(void)4321 void kvm_enable_tdp(void)
4322 {
4323 	tdp_enabled = true;
4324 }
4325 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4326 
kvm_disable_tdp(void)4327 void kvm_disable_tdp(void)
4328 {
4329 	tdp_enabled = false;
4330 }
4331 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4332 
free_mmu_pages(struct kvm_vcpu * vcpu)4333 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4334 {
4335 	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4336 	if (vcpu->arch.mmu.lm_root != NULL)
4337 		free_page((unsigned long)vcpu->arch.mmu.lm_root);
4338 }
4339 
alloc_mmu_pages(struct kvm_vcpu * vcpu)4340 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4341 {
4342 	struct page *page;
4343 	int i;
4344 
4345 	/*
4346 	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4347 	 * Therefore we need to allocate shadow page tables in the first
4348 	 * 4GB of memory, which happens to fit the DMA32 zone.
4349 	 */
4350 	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4351 	if (!page)
4352 		return -ENOMEM;
4353 
4354 	vcpu->arch.mmu.pae_root = page_address(page);
4355 	for (i = 0; i < 4; ++i)
4356 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4357 
4358 	return 0;
4359 }
4360 
kvm_mmu_create(struct kvm_vcpu * vcpu)4361 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4362 {
4363 	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4364 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4365 	vcpu->arch.mmu.translate_gpa = translate_gpa;
4366 	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4367 
4368 	return alloc_mmu_pages(vcpu);
4369 }
4370 
kvm_mmu_setup(struct kvm_vcpu * vcpu)4371 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4372 {
4373 	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4374 
4375 	init_kvm_mmu(vcpu);
4376 }
4377 
kvm_mmu_slot_remove_write_access(struct kvm * kvm,struct kvm_memory_slot * memslot)4378 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4379 				      struct kvm_memory_slot *memslot)
4380 {
4381 	gfn_t last_gfn;
4382 	int i;
4383 	bool flush = false;
4384 
4385 	last_gfn = memslot->base_gfn + memslot->npages - 1;
4386 
4387 	spin_lock(&kvm->mmu_lock);
4388 
4389 	for (i = PT_PAGE_TABLE_LEVEL;
4390 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4391 		unsigned long *rmapp;
4392 		unsigned long last_index, index;
4393 
4394 		rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4395 		last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4396 
4397 		for (index = 0; index <= last_index; ++index, ++rmapp) {
4398 			if (*rmapp)
4399 				flush |= __rmap_write_protect(kvm, rmapp,
4400 						false);
4401 
4402 			if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4403 				cond_resched_lock(&kvm->mmu_lock);
4404 		}
4405 	}
4406 
4407 	spin_unlock(&kvm->mmu_lock);
4408 
4409 	/*
4410 	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4411 	 * which do tlb flush out of mmu-lock should be serialized by
4412 	 * kvm->slots_lock otherwise tlb flush would be missed.
4413 	 */
4414 	lockdep_assert_held(&kvm->slots_lock);
4415 
4416 	/*
4417 	 * We can flush all the TLBs out of the mmu lock without TLB
4418 	 * corruption since we just change the spte from writable to
4419 	 * readonly so that we only need to care the case of changing
4420 	 * spte from present to present (changing the spte from present
4421 	 * to nonpresent will flush all the TLBs immediately), in other
4422 	 * words, the only case we care is mmu_spte_update() where we
4423 	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4424 	 * instead of PT_WRITABLE_MASK, that means it does not depend
4425 	 * on PT_WRITABLE_MASK anymore.
4426 	 */
4427 	if (flush)
4428 		kvm_flush_remote_tlbs(kvm);
4429 }
4430 
kvm_mmu_zap_collapsible_spte(struct kvm * kvm,unsigned long * rmapp)4431 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4432 		unsigned long *rmapp)
4433 {
4434 	u64 *sptep;
4435 	struct rmap_iterator iter;
4436 	int need_tlb_flush = 0;
4437 	pfn_t pfn;
4438 	struct kvm_mmu_page *sp;
4439 
4440 	for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
4441 		BUG_ON(!(*sptep & PT_PRESENT_MASK));
4442 
4443 		sp = page_header(__pa(sptep));
4444 		pfn = spte_to_pfn(*sptep);
4445 
4446 		/*
4447 		 * We cannot do huge page mapping for indirect shadow pages,
4448 		 * which are found on the last rmap (level = 1) when not using
4449 		 * tdp; such shadow pages are synced with the page table in
4450 		 * the guest, and the guest page table is using 4K page size
4451 		 * mapping if the indirect sp has level = 1.
4452 		 */
4453 		if (sp->role.direct &&
4454 			!kvm_is_reserved_pfn(pfn) &&
4455 			PageTransCompound(pfn_to_page(pfn))) {
4456 			drop_spte(kvm, sptep);
4457 			sptep = rmap_get_first(*rmapp, &iter);
4458 			need_tlb_flush = 1;
4459 		} else
4460 			sptep = rmap_get_next(&iter);
4461 	}
4462 
4463 	return need_tlb_flush;
4464 }
4465 
kvm_mmu_zap_collapsible_sptes(struct kvm * kvm,struct kvm_memory_slot * memslot)4466 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4467 			struct kvm_memory_slot *memslot)
4468 {
4469 	bool flush = false;
4470 	unsigned long *rmapp;
4471 	unsigned long last_index, index;
4472 
4473 	spin_lock(&kvm->mmu_lock);
4474 
4475 	rmapp = memslot->arch.rmap[0];
4476 	last_index = gfn_to_index(memslot->base_gfn + memslot->npages - 1,
4477 				memslot->base_gfn, PT_PAGE_TABLE_LEVEL);
4478 
4479 	for (index = 0; index <= last_index; ++index, ++rmapp) {
4480 		if (*rmapp)
4481 			flush |= kvm_mmu_zap_collapsible_spte(kvm, rmapp);
4482 
4483 		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4484 			if (flush) {
4485 				kvm_flush_remote_tlbs(kvm);
4486 				flush = false;
4487 			}
4488 			cond_resched_lock(&kvm->mmu_lock);
4489 		}
4490 	}
4491 
4492 	if (flush)
4493 		kvm_flush_remote_tlbs(kvm);
4494 
4495 	spin_unlock(&kvm->mmu_lock);
4496 }
4497 
kvm_mmu_slot_leaf_clear_dirty(struct kvm * kvm,struct kvm_memory_slot * memslot)4498 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4499 				   struct kvm_memory_slot *memslot)
4500 {
4501 	gfn_t last_gfn;
4502 	unsigned long *rmapp;
4503 	unsigned long last_index, index;
4504 	bool flush = false;
4505 
4506 	last_gfn = memslot->base_gfn + memslot->npages - 1;
4507 
4508 	spin_lock(&kvm->mmu_lock);
4509 
4510 	rmapp = memslot->arch.rmap[PT_PAGE_TABLE_LEVEL - 1];
4511 	last_index = gfn_to_index(last_gfn, memslot->base_gfn,
4512 			PT_PAGE_TABLE_LEVEL);
4513 
4514 	for (index = 0; index <= last_index; ++index, ++rmapp) {
4515 		if (*rmapp)
4516 			flush |= __rmap_clear_dirty(kvm, rmapp);
4517 
4518 		if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4519 			cond_resched_lock(&kvm->mmu_lock);
4520 	}
4521 
4522 	spin_unlock(&kvm->mmu_lock);
4523 
4524 	lockdep_assert_held(&kvm->slots_lock);
4525 
4526 	/*
4527 	 * It's also safe to flush TLBs out of mmu lock here as currently this
4528 	 * function is only used for dirty logging, in which case flushing TLB
4529 	 * out of mmu lock also guarantees no dirty pages will be lost in
4530 	 * dirty_bitmap.
4531 	 */
4532 	if (flush)
4533 		kvm_flush_remote_tlbs(kvm);
4534 }
4535 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4536 
kvm_mmu_slot_largepage_remove_write_access(struct kvm * kvm,struct kvm_memory_slot * memslot)4537 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4538 					struct kvm_memory_slot *memslot)
4539 {
4540 	gfn_t last_gfn;
4541 	int i;
4542 	bool flush = false;
4543 
4544 	last_gfn = memslot->base_gfn + memslot->npages - 1;
4545 
4546 	spin_lock(&kvm->mmu_lock);
4547 
4548 	for (i = PT_PAGE_TABLE_LEVEL + 1; /* skip rmap for 4K page */
4549 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4550 		unsigned long *rmapp;
4551 		unsigned long last_index, index;
4552 
4553 		rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4554 		last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4555 
4556 		for (index = 0; index <= last_index; ++index, ++rmapp) {
4557 			if (*rmapp)
4558 				flush |= __rmap_write_protect(kvm, rmapp,
4559 						false);
4560 
4561 			if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4562 				cond_resched_lock(&kvm->mmu_lock);
4563 		}
4564 	}
4565 	spin_unlock(&kvm->mmu_lock);
4566 
4567 	/* see kvm_mmu_slot_remove_write_access */
4568 	lockdep_assert_held(&kvm->slots_lock);
4569 
4570 	if (flush)
4571 		kvm_flush_remote_tlbs(kvm);
4572 }
4573 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4574 
kvm_mmu_slot_set_dirty(struct kvm * kvm,struct kvm_memory_slot * memslot)4575 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4576 			    struct kvm_memory_slot *memslot)
4577 {
4578 	gfn_t last_gfn;
4579 	int i;
4580 	bool flush = false;
4581 
4582 	last_gfn = memslot->base_gfn + memslot->npages - 1;
4583 
4584 	spin_lock(&kvm->mmu_lock);
4585 
4586 	for (i = PT_PAGE_TABLE_LEVEL;
4587 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4588 		unsigned long *rmapp;
4589 		unsigned long last_index, index;
4590 
4591 		rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4592 		last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4593 
4594 		for (index = 0; index <= last_index; ++index, ++rmapp) {
4595 			if (*rmapp)
4596 				flush |= __rmap_set_dirty(kvm, rmapp);
4597 
4598 			if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4599 				cond_resched_lock(&kvm->mmu_lock);
4600 		}
4601 	}
4602 
4603 	spin_unlock(&kvm->mmu_lock);
4604 
4605 	lockdep_assert_held(&kvm->slots_lock);
4606 
4607 	/* see kvm_mmu_slot_leaf_clear_dirty */
4608 	if (flush)
4609 		kvm_flush_remote_tlbs(kvm);
4610 }
4611 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4612 
4613 #define BATCH_ZAP_PAGES	10
kvm_zap_obsolete_pages(struct kvm * kvm)4614 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4615 {
4616 	struct kvm_mmu_page *sp, *node;
4617 	int batch = 0;
4618 
4619 restart:
4620 	list_for_each_entry_safe_reverse(sp, node,
4621 	      &kvm->arch.active_mmu_pages, link) {
4622 		int ret;
4623 
4624 		/*
4625 		 * No obsolete page exists before new created page since
4626 		 * active_mmu_pages is the FIFO list.
4627 		 */
4628 		if (!is_obsolete_sp(kvm, sp))
4629 			break;
4630 
4631 		/*
4632 		 * Since we are reversely walking the list and the invalid
4633 		 * list will be moved to the head, skip the invalid page
4634 		 * can help us to avoid the infinity list walking.
4635 		 */
4636 		if (sp->role.invalid)
4637 			continue;
4638 
4639 		/*
4640 		 * Need not flush tlb since we only zap the sp with invalid
4641 		 * generation number.
4642 		 */
4643 		if (batch >= BATCH_ZAP_PAGES &&
4644 		      cond_resched_lock(&kvm->mmu_lock)) {
4645 			batch = 0;
4646 			goto restart;
4647 		}
4648 
4649 		ret = kvm_mmu_prepare_zap_page(kvm, sp,
4650 				&kvm->arch.zapped_obsolete_pages);
4651 		batch += ret;
4652 
4653 		if (ret)
4654 			goto restart;
4655 	}
4656 
4657 	/*
4658 	 * Should flush tlb before free page tables since lockless-walking
4659 	 * may use the pages.
4660 	 */
4661 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4662 }
4663 
4664 /*
4665  * Fast invalidate all shadow pages and use lock-break technique
4666  * to zap obsolete pages.
4667  *
4668  * It's required when memslot is being deleted or VM is being
4669  * destroyed, in these cases, we should ensure that KVM MMU does
4670  * not use any resource of the being-deleted slot or all slots
4671  * after calling the function.
4672  */
kvm_mmu_invalidate_zap_all_pages(struct kvm * kvm)4673 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4674 {
4675 	spin_lock(&kvm->mmu_lock);
4676 	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4677 	kvm->arch.mmu_valid_gen++;
4678 
4679 	/*
4680 	 * Notify all vcpus to reload its shadow page table
4681 	 * and flush TLB. Then all vcpus will switch to new
4682 	 * shadow page table with the new mmu_valid_gen.
4683 	 *
4684 	 * Note: we should do this under the protection of
4685 	 * mmu-lock, otherwise, vcpu would purge shadow page
4686 	 * but miss tlb flush.
4687 	 */
4688 	kvm_reload_remote_mmus(kvm);
4689 
4690 	kvm_zap_obsolete_pages(kvm);
4691 	spin_unlock(&kvm->mmu_lock);
4692 }
4693 
kvm_has_zapped_obsolete_pages(struct kvm * kvm)4694 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4695 {
4696 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4697 }
4698 
kvm_mmu_invalidate_mmio_sptes(struct kvm * kvm)4699 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4700 {
4701 	/*
4702 	 * The very rare case: if the generation-number is round,
4703 	 * zap all shadow pages.
4704 	 */
4705 	if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
4706 		printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4707 		kvm_mmu_invalidate_zap_all_pages(kvm);
4708 	}
4709 }
4710 
4711 static unsigned long
mmu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)4712 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4713 {
4714 	struct kvm *kvm;
4715 	int nr_to_scan = sc->nr_to_scan;
4716 	unsigned long freed = 0;
4717 
4718 	spin_lock(&kvm_lock);
4719 
4720 	list_for_each_entry(kvm, &vm_list, vm_list) {
4721 		int idx;
4722 		LIST_HEAD(invalid_list);
4723 
4724 		/*
4725 		 * Never scan more than sc->nr_to_scan VM instances.
4726 		 * Will not hit this condition practically since we do not try
4727 		 * to shrink more than one VM and it is very unlikely to see
4728 		 * !n_used_mmu_pages so many times.
4729 		 */
4730 		if (!nr_to_scan--)
4731 			break;
4732 		/*
4733 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4734 		 * here. We may skip a VM instance errorneosly, but we do not
4735 		 * want to shrink a VM that only started to populate its MMU
4736 		 * anyway.
4737 		 */
4738 		if (!kvm->arch.n_used_mmu_pages &&
4739 		      !kvm_has_zapped_obsolete_pages(kvm))
4740 			continue;
4741 
4742 		idx = srcu_read_lock(&kvm->srcu);
4743 		spin_lock(&kvm->mmu_lock);
4744 
4745 		if (kvm_has_zapped_obsolete_pages(kvm)) {
4746 			kvm_mmu_commit_zap_page(kvm,
4747 			      &kvm->arch.zapped_obsolete_pages);
4748 			goto unlock;
4749 		}
4750 
4751 		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4752 			freed++;
4753 		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4754 
4755 unlock:
4756 		spin_unlock(&kvm->mmu_lock);
4757 		srcu_read_unlock(&kvm->srcu, idx);
4758 
4759 		/*
4760 		 * unfair on small ones
4761 		 * per-vm shrinkers cry out
4762 		 * sadness comes quickly
4763 		 */
4764 		list_move_tail(&kvm->vm_list, &vm_list);
4765 		break;
4766 	}
4767 
4768 	spin_unlock(&kvm_lock);
4769 	return freed;
4770 }
4771 
4772 static unsigned long
mmu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)4773 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4774 {
4775 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4776 }
4777 
4778 static struct shrinker mmu_shrinker = {
4779 	.count_objects = mmu_shrink_count,
4780 	.scan_objects = mmu_shrink_scan,
4781 	.seeks = DEFAULT_SEEKS * 10,
4782 };
4783 
mmu_destroy_caches(void)4784 static void mmu_destroy_caches(void)
4785 {
4786 	if (pte_list_desc_cache)
4787 		kmem_cache_destroy(pte_list_desc_cache);
4788 	if (mmu_page_header_cache)
4789 		kmem_cache_destroy(mmu_page_header_cache);
4790 }
4791 
kvm_mmu_module_init(void)4792 int kvm_mmu_module_init(void)
4793 {
4794 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4795 					    sizeof(struct pte_list_desc),
4796 					    0, 0, NULL);
4797 	if (!pte_list_desc_cache)
4798 		goto nomem;
4799 
4800 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4801 						  sizeof(struct kvm_mmu_page),
4802 						  0, 0, NULL);
4803 	if (!mmu_page_header_cache)
4804 		goto nomem;
4805 
4806 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4807 		goto nomem;
4808 
4809 	register_shrinker(&mmu_shrinker);
4810 
4811 	return 0;
4812 
4813 nomem:
4814 	mmu_destroy_caches();
4815 	return -ENOMEM;
4816 }
4817 
4818 /*
4819  * Caculate mmu pages needed for kvm.
4820  */
kvm_mmu_calculate_mmu_pages(struct kvm * kvm)4821 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4822 {
4823 	unsigned int nr_mmu_pages;
4824 	unsigned int  nr_pages = 0;
4825 	struct kvm_memslots *slots;
4826 	struct kvm_memory_slot *memslot;
4827 
4828 	slots = kvm_memslots(kvm);
4829 
4830 	kvm_for_each_memslot(memslot, slots)
4831 		nr_pages += memslot->npages;
4832 
4833 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4834 	nr_mmu_pages = max(nr_mmu_pages,
4835 			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4836 
4837 	return nr_mmu_pages;
4838 }
4839 
kvm_mmu_get_spte_hierarchy(struct kvm_vcpu * vcpu,u64 addr,u64 sptes[4])4840 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4841 {
4842 	struct kvm_shadow_walk_iterator iterator;
4843 	u64 spte;
4844 	int nr_sptes = 0;
4845 
4846 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4847 		return nr_sptes;
4848 
4849 	walk_shadow_page_lockless_begin(vcpu);
4850 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4851 		sptes[iterator.level-1] = spte;
4852 		nr_sptes++;
4853 		if (!is_shadow_present_pte(spte))
4854 			break;
4855 	}
4856 	walk_shadow_page_lockless_end(vcpu);
4857 
4858 	return nr_sptes;
4859 }
4860 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4861 
kvm_mmu_destroy(struct kvm_vcpu * vcpu)4862 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4863 {
4864 	kvm_mmu_unload(vcpu);
4865 	free_mmu_pages(vcpu);
4866 	mmu_free_memory_caches(vcpu);
4867 }
4868 
kvm_mmu_module_exit(void)4869 void kvm_mmu_module_exit(void)
4870 {
4871 	mmu_destroy_caches();
4872 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
4873 	unregister_shrinker(&mmu_shrinker);
4874 	mmu_audit_disable();
4875 }
4876