1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
35 #include <linux/fs.h>
36 #include <linux/vmalloc.h>
37 #include <linux/module.h>
38 #include <linux/mman.h>
39 #include <linux/highmem.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/cpufreq.h>
43 #include <linux/user-return-notifier.h>
44 #include <linux/srcu.h>
45 #include <linux/slab.h>
46 #include <linux/perf_event.h>
47 #include <linux/uaccess.h>
48 #include <linux/hash.h>
49 #include <linux/pci.h>
50 #include <linux/timekeeper_internal.h>
51 #include <linux/pvclock_gtod.h>
52 #include <trace/events/kvm.h>
53 
54 #define CREATE_TRACE_POINTS
55 #include "trace.h"
56 
57 #include <asm/debugreg.h>
58 #include <asm/msr.h>
59 #include <asm/desc.h>
60 #include <asm/mtrr.h>
61 #include <asm/mce.h>
62 #include <asm/i387.h>
63 #include <asm/fpu-internal.h> /* Ugh! */
64 #include <asm/xcr.h>
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71 
72 #define emul_to_vcpu(ctxt) \
73 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74 
75 /* EFER defaults:
76  * - enable syscall per default because its emulated by KVM
77  * - enable LME and LMA per default on 64 bit KVM
78  */
79 #ifdef CONFIG_X86_64
80 static
81 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 #else
83 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84 #endif
85 
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88 
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static void process_nmi(struct kvm_vcpu *vcpu);
91 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92 
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95 
96 static bool ignore_msrs = 0;
97 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98 
99 unsigned int min_timer_period_us = 500;
100 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101 
102 bool kvm_has_tsc_control;
103 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
104 u32  kvm_max_guest_tsc_khz;
105 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
106 
107 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
108 static u32 tsc_tolerance_ppm = 250;
109 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
110 
111 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
112 unsigned int lapic_timer_advance_ns = 0;
113 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
114 
115 static bool backwards_tsc_observed = false;
116 
117 #define KVM_NR_SHARED_MSRS 16
118 
119 struct kvm_shared_msrs_global {
120 	int nr;
121 	u32 msrs[KVM_NR_SHARED_MSRS];
122 };
123 
124 struct kvm_shared_msrs {
125 	struct user_return_notifier urn;
126 	bool registered;
127 	struct kvm_shared_msr_values {
128 		u64 host;
129 		u64 curr;
130 	} values[KVM_NR_SHARED_MSRS];
131 };
132 
133 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
134 static struct kvm_shared_msrs __percpu *shared_msrs;
135 
136 struct kvm_stats_debugfs_item debugfs_entries[] = {
137 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
138 	{ "pf_guest", VCPU_STAT(pf_guest) },
139 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
140 	{ "invlpg", VCPU_STAT(invlpg) },
141 	{ "exits", VCPU_STAT(exits) },
142 	{ "io_exits", VCPU_STAT(io_exits) },
143 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
144 	{ "signal_exits", VCPU_STAT(signal_exits) },
145 	{ "irq_window", VCPU_STAT(irq_window_exits) },
146 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
147 	{ "halt_exits", VCPU_STAT(halt_exits) },
148 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
149 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
150 	{ "hypercalls", VCPU_STAT(hypercalls) },
151 	{ "request_irq", VCPU_STAT(request_irq_exits) },
152 	{ "irq_exits", VCPU_STAT(irq_exits) },
153 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
154 	{ "efer_reload", VCPU_STAT(efer_reload) },
155 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
156 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
157 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
158 	{ "irq_injections", VCPU_STAT(irq_injections) },
159 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
160 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
161 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
162 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
163 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
164 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
165 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
166 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
167 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
168 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
169 	{ "largepages", VM_STAT(lpages) },
170 	{ NULL }
171 };
172 
173 u64 __read_mostly host_xcr0;
174 
175 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
176 
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)177 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
178 {
179 	int i;
180 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
181 		vcpu->arch.apf.gfns[i] = ~0;
182 }
183 
kvm_on_user_return(struct user_return_notifier * urn)184 static void kvm_on_user_return(struct user_return_notifier *urn)
185 {
186 	unsigned slot;
187 	struct kvm_shared_msrs *locals
188 		= container_of(urn, struct kvm_shared_msrs, urn);
189 	struct kvm_shared_msr_values *values;
190 
191 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
192 		values = &locals->values[slot];
193 		if (values->host != values->curr) {
194 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
195 			values->curr = values->host;
196 		}
197 	}
198 	locals->registered = false;
199 	user_return_notifier_unregister(urn);
200 }
201 
shared_msr_update(unsigned slot,u32 msr)202 static void shared_msr_update(unsigned slot, u32 msr)
203 {
204 	u64 value;
205 	unsigned int cpu = smp_processor_id();
206 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
207 
208 	/* only read, and nobody should modify it at this time,
209 	 * so don't need lock */
210 	if (slot >= shared_msrs_global.nr) {
211 		printk(KERN_ERR "kvm: invalid MSR slot!");
212 		return;
213 	}
214 	rdmsrl_safe(msr, &value);
215 	smsr->values[slot].host = value;
216 	smsr->values[slot].curr = value;
217 }
218 
kvm_define_shared_msr(unsigned slot,u32 msr)219 void kvm_define_shared_msr(unsigned slot, u32 msr)
220 {
221 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
222 	if (slot >= shared_msrs_global.nr)
223 		shared_msrs_global.nr = slot + 1;
224 	shared_msrs_global.msrs[slot] = msr;
225 	/* we need ensured the shared_msr_global have been updated */
226 	smp_wmb();
227 }
228 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
229 
kvm_shared_msr_cpu_online(void)230 static void kvm_shared_msr_cpu_online(void)
231 {
232 	unsigned i;
233 
234 	for (i = 0; i < shared_msrs_global.nr; ++i)
235 		shared_msr_update(i, shared_msrs_global.msrs[i]);
236 }
237 
kvm_set_shared_msr(unsigned slot,u64 value,u64 mask)238 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
239 {
240 	unsigned int cpu = smp_processor_id();
241 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
242 	int err;
243 
244 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
245 		return 0;
246 	smsr->values[slot].curr = value;
247 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
248 	if (err)
249 		return 1;
250 
251 	if (!smsr->registered) {
252 		smsr->urn.on_user_return = kvm_on_user_return;
253 		user_return_notifier_register(&smsr->urn);
254 		smsr->registered = true;
255 	}
256 	return 0;
257 }
258 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
259 
drop_user_return_notifiers(void)260 static void drop_user_return_notifiers(void)
261 {
262 	unsigned int cpu = smp_processor_id();
263 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
264 
265 	if (smsr->registered)
266 		kvm_on_user_return(&smsr->urn);
267 }
268 
kvm_get_apic_base(struct kvm_vcpu * vcpu)269 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
270 {
271 	return vcpu->arch.apic_base;
272 }
273 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
274 
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)275 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
276 {
277 	u64 old_state = vcpu->arch.apic_base &
278 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
279 	u64 new_state = msr_info->data &
280 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
281 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
282 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
283 
284 	if (!msr_info->host_initiated &&
285 	    ((msr_info->data & reserved_bits) != 0 ||
286 	     new_state == X2APIC_ENABLE ||
287 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
288 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
289 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
290 	      old_state == 0)))
291 		return 1;
292 
293 	kvm_lapic_set_base(vcpu, msr_info->data);
294 	return 0;
295 }
296 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
297 
kvm_spurious_fault(void)298 asmlinkage __visible void kvm_spurious_fault(void)
299 {
300 	/* Fault while not rebooting.  We want the trace. */
301 	BUG();
302 }
303 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
304 
305 #define EXCPT_BENIGN		0
306 #define EXCPT_CONTRIBUTORY	1
307 #define EXCPT_PF		2
308 
exception_class(int vector)309 static int exception_class(int vector)
310 {
311 	switch (vector) {
312 	case PF_VECTOR:
313 		return EXCPT_PF;
314 	case DE_VECTOR:
315 	case TS_VECTOR:
316 	case NP_VECTOR:
317 	case SS_VECTOR:
318 	case GP_VECTOR:
319 		return EXCPT_CONTRIBUTORY;
320 	default:
321 		break;
322 	}
323 	return EXCPT_BENIGN;
324 }
325 
326 #define EXCPT_FAULT		0
327 #define EXCPT_TRAP		1
328 #define EXCPT_ABORT		2
329 #define EXCPT_INTERRUPT		3
330 
exception_type(int vector)331 static int exception_type(int vector)
332 {
333 	unsigned int mask;
334 
335 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
336 		return EXCPT_INTERRUPT;
337 
338 	mask = 1 << vector;
339 
340 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
341 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
342 		return EXCPT_TRAP;
343 
344 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
345 		return EXCPT_ABORT;
346 
347 	/* Reserved exceptions will result in fault */
348 	return EXCPT_FAULT;
349 }
350 
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool reinject)351 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
352 		unsigned nr, bool has_error, u32 error_code,
353 		bool reinject)
354 {
355 	u32 prev_nr;
356 	int class1, class2;
357 
358 	kvm_make_request(KVM_REQ_EVENT, vcpu);
359 
360 	if (!vcpu->arch.exception.pending) {
361 	queue:
362 		if (has_error && !is_protmode(vcpu))
363 			has_error = false;
364 		vcpu->arch.exception.pending = true;
365 		vcpu->arch.exception.has_error_code = has_error;
366 		vcpu->arch.exception.nr = nr;
367 		vcpu->arch.exception.error_code = error_code;
368 		vcpu->arch.exception.reinject = reinject;
369 		return;
370 	}
371 
372 	/* to check exception */
373 	prev_nr = vcpu->arch.exception.nr;
374 	if (prev_nr == DF_VECTOR) {
375 		/* triple fault -> shutdown */
376 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
377 		return;
378 	}
379 	class1 = exception_class(prev_nr);
380 	class2 = exception_class(nr);
381 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
382 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
383 		/* generate double fault per SDM Table 5-5 */
384 		vcpu->arch.exception.pending = true;
385 		vcpu->arch.exception.has_error_code = true;
386 		vcpu->arch.exception.nr = DF_VECTOR;
387 		vcpu->arch.exception.error_code = 0;
388 	} else
389 		/* replace previous exception with a new one in a hope
390 		   that instruction re-execution will regenerate lost
391 		   exception */
392 		goto queue;
393 }
394 
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)395 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
396 {
397 	kvm_multiple_exception(vcpu, nr, false, 0, false);
398 }
399 EXPORT_SYMBOL_GPL(kvm_queue_exception);
400 
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)401 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
402 {
403 	kvm_multiple_exception(vcpu, nr, false, 0, true);
404 }
405 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
406 
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)407 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
408 {
409 	if (err)
410 		kvm_inject_gp(vcpu, 0);
411 	else
412 		kvm_x86_ops->skip_emulated_instruction(vcpu);
413 }
414 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
415 
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)416 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
417 {
418 	++vcpu->stat.pf_guest;
419 	vcpu->arch.cr2 = fault->address;
420 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
421 }
422 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
423 
kvm_propagate_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)424 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
425 {
426 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
427 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
428 	else
429 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
430 
431 	return fault->nested_page_fault;
432 }
433 
kvm_inject_nmi(struct kvm_vcpu * vcpu)434 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
435 {
436 	atomic_inc(&vcpu->arch.nmi_queued);
437 	kvm_make_request(KVM_REQ_NMI, vcpu);
438 }
439 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
440 
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)441 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
442 {
443 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
444 }
445 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
446 
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)447 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
448 {
449 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
450 }
451 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
452 
453 /*
454  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
455  * a #GP and return false.
456  */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)457 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
458 {
459 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
460 		return true;
461 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
462 	return false;
463 }
464 EXPORT_SYMBOL_GPL(kvm_require_cpl);
465 
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)466 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
467 {
468 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
469 		return true;
470 
471 	kvm_queue_exception(vcpu, UD_VECTOR);
472 	return false;
473 }
474 EXPORT_SYMBOL_GPL(kvm_require_dr);
475 
476 /*
477  * This function will be used to read from the physical memory of the currently
478  * running guest. The difference to kvm_read_guest_page is that this function
479  * can read from guest physical or from the guest's guest physical memory.
480  */
kvm_read_guest_page_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gfn_t ngfn,void * data,int offset,int len,u32 access)481 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
482 			    gfn_t ngfn, void *data, int offset, int len,
483 			    u32 access)
484 {
485 	struct x86_exception exception;
486 	gfn_t real_gfn;
487 	gpa_t ngpa;
488 
489 	ngpa     = gfn_to_gpa(ngfn);
490 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
491 	if (real_gfn == UNMAPPED_GVA)
492 		return -EFAULT;
493 
494 	real_gfn = gpa_to_gfn(real_gfn);
495 
496 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
497 }
498 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
499 
kvm_read_nested_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len,u32 access)500 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
501 			       void *data, int offset, int len, u32 access)
502 {
503 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
504 				       data, offset, len, access);
505 }
506 
507 /*
508  * Load the pae pdptrs.  Return true is they are all valid.
509  */
load_pdptrs(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned long cr3)510 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
511 {
512 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
513 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
514 	int i;
515 	int ret;
516 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
517 
518 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
519 				      offset * sizeof(u64), sizeof(pdpte),
520 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
521 	if (ret < 0) {
522 		ret = 0;
523 		goto out;
524 	}
525 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
526 		if (is_present_gpte(pdpte[i]) &&
527 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
528 			ret = 0;
529 			goto out;
530 		}
531 	}
532 	ret = 1;
533 
534 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
535 	__set_bit(VCPU_EXREG_PDPTR,
536 		  (unsigned long *)&vcpu->arch.regs_avail);
537 	__set_bit(VCPU_EXREG_PDPTR,
538 		  (unsigned long *)&vcpu->arch.regs_dirty);
539 out:
540 
541 	return ret;
542 }
543 EXPORT_SYMBOL_GPL(load_pdptrs);
544 
pdptrs_changed(struct kvm_vcpu * vcpu)545 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
546 {
547 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
548 	bool changed = true;
549 	int offset;
550 	gfn_t gfn;
551 	int r;
552 
553 	if (is_long_mode(vcpu) || !is_pae(vcpu))
554 		return false;
555 
556 	if (!test_bit(VCPU_EXREG_PDPTR,
557 		      (unsigned long *)&vcpu->arch.regs_avail))
558 		return true;
559 
560 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
561 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
562 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
563 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
564 	if (r < 0)
565 		goto out;
566 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
567 out:
568 
569 	return changed;
570 }
571 
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)572 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
573 {
574 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
575 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
576 				    X86_CR0_CD | X86_CR0_NW;
577 
578 	cr0 |= X86_CR0_ET;
579 
580 #ifdef CONFIG_X86_64
581 	if (cr0 & 0xffffffff00000000UL)
582 		return 1;
583 #endif
584 
585 	cr0 &= ~CR0_RESERVED_BITS;
586 
587 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
588 		return 1;
589 
590 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
591 		return 1;
592 
593 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
594 #ifdef CONFIG_X86_64
595 		if ((vcpu->arch.efer & EFER_LME)) {
596 			int cs_db, cs_l;
597 
598 			if (!is_pae(vcpu))
599 				return 1;
600 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
601 			if (cs_l)
602 				return 1;
603 		} else
604 #endif
605 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
606 						 kvm_read_cr3(vcpu)))
607 			return 1;
608 	}
609 
610 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
611 		return 1;
612 
613 	kvm_x86_ops->set_cr0(vcpu, cr0);
614 
615 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
616 		kvm_clear_async_pf_completion_queue(vcpu);
617 		kvm_async_pf_hash_reset(vcpu);
618 	}
619 
620 	if ((cr0 ^ old_cr0) & update_bits)
621 		kvm_mmu_reset_context(vcpu);
622 	return 0;
623 }
624 EXPORT_SYMBOL_GPL(kvm_set_cr0);
625 
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)626 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
627 {
628 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
629 }
630 EXPORT_SYMBOL_GPL(kvm_lmsw);
631 
kvm_load_guest_xcr0(struct kvm_vcpu * vcpu)632 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
633 {
634 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
635 			!vcpu->guest_xcr0_loaded) {
636 		/* kvm_set_xcr() also depends on this */
637 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
638 		vcpu->guest_xcr0_loaded = 1;
639 	}
640 }
641 
kvm_put_guest_xcr0(struct kvm_vcpu * vcpu)642 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
643 {
644 	if (vcpu->guest_xcr0_loaded) {
645 		if (vcpu->arch.xcr0 != host_xcr0)
646 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
647 		vcpu->guest_xcr0_loaded = 0;
648 	}
649 }
650 
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)651 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
652 {
653 	u64 xcr0 = xcr;
654 	u64 old_xcr0 = vcpu->arch.xcr0;
655 	u64 valid_bits;
656 
657 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
658 	if (index != XCR_XFEATURE_ENABLED_MASK)
659 		return 1;
660 	if (!(xcr0 & XSTATE_FP))
661 		return 1;
662 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
663 		return 1;
664 
665 	/*
666 	 * Do not allow the guest to set bits that we do not support
667 	 * saving.  However, xcr0 bit 0 is always set, even if the
668 	 * emulated CPU does not support XSAVE (see fx_init).
669 	 */
670 	valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
671 	if (xcr0 & ~valid_bits)
672 		return 1;
673 
674 	if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
675 		return 1;
676 
677 	if (xcr0 & XSTATE_AVX512) {
678 		if (!(xcr0 & XSTATE_YMM))
679 			return 1;
680 		if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
681 			return 1;
682 	}
683 	vcpu->arch.xcr0 = xcr0;
684 
685 	if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
686 		kvm_update_cpuid(vcpu);
687 	return 0;
688 }
689 
kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)690 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
691 {
692 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
693 	    __kvm_set_xcr(vcpu, index, xcr)) {
694 		kvm_inject_gp(vcpu, 0);
695 		return 1;
696 	}
697 	return 0;
698 }
699 EXPORT_SYMBOL_GPL(kvm_set_xcr);
700 
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)701 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
702 {
703 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
704 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
705 				   X86_CR4_SMEP | X86_CR4_SMAP;
706 
707 	if (cr4 & CR4_RESERVED_BITS)
708 		return 1;
709 
710 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
711 		return 1;
712 
713 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
714 		return 1;
715 
716 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
717 		return 1;
718 
719 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
720 		return 1;
721 
722 	if (is_long_mode(vcpu)) {
723 		if (!(cr4 & X86_CR4_PAE))
724 			return 1;
725 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
726 		   && ((cr4 ^ old_cr4) & pdptr_bits)
727 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
728 				   kvm_read_cr3(vcpu)))
729 		return 1;
730 
731 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
732 		if (!guest_cpuid_has_pcid(vcpu))
733 			return 1;
734 
735 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
736 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
737 			return 1;
738 	}
739 
740 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
741 		return 1;
742 
743 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
744 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
745 		kvm_mmu_reset_context(vcpu);
746 
747 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
748 		kvm_update_cpuid(vcpu);
749 
750 	return 0;
751 }
752 EXPORT_SYMBOL_GPL(kvm_set_cr4);
753 
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)754 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
755 {
756 #ifdef CONFIG_X86_64
757 	cr3 &= ~CR3_PCID_INVD;
758 #endif
759 
760 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
761 		kvm_mmu_sync_roots(vcpu);
762 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
763 		return 0;
764 	}
765 
766 	if (is_long_mode(vcpu)) {
767 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
768 			return 1;
769 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
770 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
771 		return 1;
772 
773 	vcpu->arch.cr3 = cr3;
774 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
775 	kvm_mmu_new_cr3(vcpu);
776 	return 0;
777 }
778 EXPORT_SYMBOL_GPL(kvm_set_cr3);
779 
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)780 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
781 {
782 	if (cr8 & CR8_RESERVED_BITS)
783 		return 1;
784 	if (irqchip_in_kernel(vcpu->kvm))
785 		kvm_lapic_set_tpr(vcpu, cr8);
786 	else
787 		vcpu->arch.cr8 = cr8;
788 	return 0;
789 }
790 EXPORT_SYMBOL_GPL(kvm_set_cr8);
791 
kvm_get_cr8(struct kvm_vcpu * vcpu)792 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
793 {
794 	if (irqchip_in_kernel(vcpu->kvm))
795 		return kvm_lapic_get_cr8(vcpu);
796 	else
797 		return vcpu->arch.cr8;
798 }
799 EXPORT_SYMBOL_GPL(kvm_get_cr8);
800 
kvm_update_dr0123(struct kvm_vcpu * vcpu)801 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
802 {
803 	int i;
804 
805 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
806 		for (i = 0; i < KVM_NR_DB_REGS; i++)
807 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
808 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
809 	}
810 }
811 
kvm_update_dr6(struct kvm_vcpu * vcpu)812 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
813 {
814 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
815 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
816 }
817 
kvm_update_dr7(struct kvm_vcpu * vcpu)818 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
819 {
820 	unsigned long dr7;
821 
822 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
823 		dr7 = vcpu->arch.guest_debug_dr7;
824 	else
825 		dr7 = vcpu->arch.dr7;
826 	kvm_x86_ops->set_dr7(vcpu, dr7);
827 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
828 	if (dr7 & DR7_BP_EN_MASK)
829 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
830 }
831 
kvm_dr6_fixed(struct kvm_vcpu * vcpu)832 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
833 {
834 	u64 fixed = DR6_FIXED_1;
835 
836 	if (!guest_cpuid_has_rtm(vcpu))
837 		fixed |= DR6_RTM;
838 	return fixed;
839 }
840 
__kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)841 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
842 {
843 	switch (dr) {
844 	case 0 ... 3:
845 		vcpu->arch.db[dr] = val;
846 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
847 			vcpu->arch.eff_db[dr] = val;
848 		break;
849 	case 4:
850 		/* fall through */
851 	case 6:
852 		if (val & 0xffffffff00000000ULL)
853 			return -1; /* #GP */
854 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
855 		kvm_update_dr6(vcpu);
856 		break;
857 	case 5:
858 		/* fall through */
859 	default: /* 7 */
860 		if (val & 0xffffffff00000000ULL)
861 			return -1; /* #GP */
862 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
863 		kvm_update_dr7(vcpu);
864 		break;
865 	}
866 
867 	return 0;
868 }
869 
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)870 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
871 {
872 	if (__kvm_set_dr(vcpu, dr, val)) {
873 		kvm_inject_gp(vcpu, 0);
874 		return 1;
875 	}
876 	return 0;
877 }
878 EXPORT_SYMBOL_GPL(kvm_set_dr);
879 
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)880 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
881 {
882 	switch (dr) {
883 	case 0 ... 3:
884 		*val = vcpu->arch.db[dr];
885 		break;
886 	case 4:
887 		/* fall through */
888 	case 6:
889 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
890 			*val = vcpu->arch.dr6;
891 		else
892 			*val = kvm_x86_ops->get_dr6(vcpu);
893 		break;
894 	case 5:
895 		/* fall through */
896 	default: /* 7 */
897 		*val = vcpu->arch.dr7;
898 		break;
899 	}
900 	return 0;
901 }
902 EXPORT_SYMBOL_GPL(kvm_get_dr);
903 
kvm_rdpmc(struct kvm_vcpu * vcpu)904 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
905 {
906 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
907 	u64 data;
908 	int err;
909 
910 	err = kvm_pmu_read_pmc(vcpu, ecx, &data);
911 	if (err)
912 		return err;
913 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
914 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
915 	return err;
916 }
917 EXPORT_SYMBOL_GPL(kvm_rdpmc);
918 
919 /*
920  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
921  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
922  *
923  * This list is modified at module load time to reflect the
924  * capabilities of the host cpu. This capabilities test skips MSRs that are
925  * kvm-specific. Those are put in the beginning of the list.
926  */
927 
928 #define KVM_SAVE_MSRS_BEGIN	12
929 static u32 msrs_to_save[] = {
930 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
931 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
932 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
933 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
934 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
935 	MSR_KVM_PV_EOI_EN,
936 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
937 	MSR_STAR,
938 #ifdef CONFIG_X86_64
939 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
940 #endif
941 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
942 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
943 };
944 
945 static unsigned num_msrs_to_save;
946 
947 static const u32 emulated_msrs[] = {
948 	MSR_IA32_TSC_ADJUST,
949 	MSR_IA32_TSCDEADLINE,
950 	MSR_IA32_MISC_ENABLE,
951 	MSR_IA32_MCG_STATUS,
952 	MSR_IA32_MCG_CTL,
953 };
954 
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)955 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
956 {
957 	if (efer & efer_reserved_bits)
958 		return false;
959 
960 	if (efer & EFER_FFXSR) {
961 		struct kvm_cpuid_entry2 *feat;
962 
963 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
964 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
965 			return false;
966 	}
967 
968 	if (efer & EFER_SVME) {
969 		struct kvm_cpuid_entry2 *feat;
970 
971 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
972 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
973 			return false;
974 	}
975 
976 	return true;
977 }
978 EXPORT_SYMBOL_GPL(kvm_valid_efer);
979 
set_efer(struct kvm_vcpu * vcpu,u64 efer)980 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
981 {
982 	u64 old_efer = vcpu->arch.efer;
983 
984 	if (!kvm_valid_efer(vcpu, efer))
985 		return 1;
986 
987 	if (is_paging(vcpu)
988 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
989 		return 1;
990 
991 	efer &= ~EFER_LMA;
992 	efer |= vcpu->arch.efer & EFER_LMA;
993 
994 	kvm_x86_ops->set_efer(vcpu, efer);
995 
996 	/* Update reserved bits */
997 	if ((efer ^ old_efer) & EFER_NX)
998 		kvm_mmu_reset_context(vcpu);
999 
1000 	return 0;
1001 }
1002 
kvm_enable_efer_bits(u64 mask)1003 void kvm_enable_efer_bits(u64 mask)
1004 {
1005        efer_reserved_bits &= ~mask;
1006 }
1007 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1008 
1009 /*
1010  * Writes msr value into into the appropriate "register".
1011  * Returns 0 on success, non-0 otherwise.
1012  * Assumes vcpu_load() was already called.
1013  */
kvm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)1014 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1015 {
1016 	switch (msr->index) {
1017 	case MSR_FS_BASE:
1018 	case MSR_GS_BASE:
1019 	case MSR_KERNEL_GS_BASE:
1020 	case MSR_CSTAR:
1021 	case MSR_LSTAR:
1022 		if (is_noncanonical_address(msr->data))
1023 			return 1;
1024 		break;
1025 	case MSR_IA32_SYSENTER_EIP:
1026 	case MSR_IA32_SYSENTER_ESP:
1027 		/*
1028 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1029 		 * non-canonical address is written on Intel but not on
1030 		 * AMD (which ignores the top 32-bits, because it does
1031 		 * not implement 64-bit SYSENTER).
1032 		 *
1033 		 * 64-bit code should hence be able to write a non-canonical
1034 		 * value on AMD.  Making the address canonical ensures that
1035 		 * vmentry does not fail on Intel after writing a non-canonical
1036 		 * value, and that something deterministic happens if the guest
1037 		 * invokes 64-bit SYSENTER.
1038 		 */
1039 		msr->data = get_canonical(msr->data);
1040 	}
1041 	return kvm_x86_ops->set_msr(vcpu, msr);
1042 }
1043 EXPORT_SYMBOL_GPL(kvm_set_msr);
1044 
1045 /*
1046  * Adapt set_msr() to msr_io()'s calling convention
1047  */
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1048 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1049 {
1050 	struct msr_data msr;
1051 
1052 	msr.data = *data;
1053 	msr.index = index;
1054 	msr.host_initiated = true;
1055 	return kvm_set_msr(vcpu, &msr);
1056 }
1057 
1058 #ifdef CONFIG_X86_64
1059 struct pvclock_gtod_data {
1060 	seqcount_t	seq;
1061 
1062 	struct { /* extract of a clocksource struct */
1063 		int vclock_mode;
1064 		cycle_t	cycle_last;
1065 		cycle_t	mask;
1066 		u32	mult;
1067 		u32	shift;
1068 	} clock;
1069 
1070 	u64		boot_ns;
1071 	u64		nsec_base;
1072 };
1073 
1074 static struct pvclock_gtod_data pvclock_gtod_data;
1075 
update_pvclock_gtod(struct timekeeper * tk)1076 static void update_pvclock_gtod(struct timekeeper *tk)
1077 {
1078 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1079 	u64 boot_ns;
1080 
1081 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1082 
1083 	write_seqcount_begin(&vdata->seq);
1084 
1085 	/* copy pvclock gtod data */
1086 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1087 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1088 	vdata->clock.mask		= tk->tkr_mono.mask;
1089 	vdata->clock.mult		= tk->tkr_mono.mult;
1090 	vdata->clock.shift		= tk->tkr_mono.shift;
1091 
1092 	vdata->boot_ns			= boot_ns;
1093 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1094 
1095 	write_seqcount_end(&vdata->seq);
1096 }
1097 #endif
1098 
kvm_set_pending_timer(struct kvm_vcpu * vcpu)1099 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1100 {
1101 	/*
1102 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1103 	 * vcpu_enter_guest.  This function is only called from
1104 	 * the physical CPU that is running vcpu.
1105 	 */
1106 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1107 }
1108 
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock)1109 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1110 {
1111 	int version;
1112 	int r;
1113 	struct pvclock_wall_clock wc;
1114 	struct timespec boot;
1115 
1116 	if (!wall_clock)
1117 		return;
1118 
1119 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1120 	if (r)
1121 		return;
1122 
1123 	if (version & 1)
1124 		++version;  /* first time write, random junk */
1125 
1126 	++version;
1127 
1128 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1129 
1130 	/*
1131 	 * The guest calculates current wall clock time by adding
1132 	 * system time (updated by kvm_guest_time_update below) to the
1133 	 * wall clock specified here.  guest system time equals host
1134 	 * system time for us, thus we must fill in host boot time here.
1135 	 */
1136 	getboottime(&boot);
1137 
1138 	if (kvm->arch.kvmclock_offset) {
1139 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1140 		boot = timespec_sub(boot, ts);
1141 	}
1142 	wc.sec = boot.tv_sec;
1143 	wc.nsec = boot.tv_nsec;
1144 	wc.version = version;
1145 
1146 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1147 
1148 	version++;
1149 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1150 }
1151 
div_frac(uint32_t dividend,uint32_t divisor)1152 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1153 {
1154 	uint32_t quotient, remainder;
1155 
1156 	/* Don't try to replace with do_div(), this one calculates
1157 	 * "(dividend << 32) / divisor" */
1158 	__asm__ ( "divl %4"
1159 		  : "=a" (quotient), "=d" (remainder)
1160 		  : "0" (0), "1" (dividend), "r" (divisor) );
1161 	return quotient;
1162 }
1163 
kvm_get_time_scale(uint32_t scaled_khz,uint32_t base_khz,s8 * pshift,u32 * pmultiplier)1164 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1165 			       s8 *pshift, u32 *pmultiplier)
1166 {
1167 	uint64_t scaled64;
1168 	int32_t  shift = 0;
1169 	uint64_t tps64;
1170 	uint32_t tps32;
1171 
1172 	tps64 = base_khz * 1000LL;
1173 	scaled64 = scaled_khz * 1000LL;
1174 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1175 		tps64 >>= 1;
1176 		shift--;
1177 	}
1178 
1179 	tps32 = (uint32_t)tps64;
1180 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1181 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1182 			scaled64 >>= 1;
1183 		else
1184 			tps32 <<= 1;
1185 		shift++;
1186 	}
1187 
1188 	*pshift = shift;
1189 	*pmultiplier = div_frac(scaled64, tps32);
1190 
1191 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1192 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1193 }
1194 
get_kernel_ns(void)1195 static inline u64 get_kernel_ns(void)
1196 {
1197 	return ktime_get_boot_ns();
1198 }
1199 
1200 #ifdef CONFIG_X86_64
1201 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1202 #endif
1203 
1204 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1205 static unsigned long max_tsc_khz;
1206 
nsec_to_cycles(struct kvm_vcpu * vcpu,u64 nsec)1207 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1208 {
1209 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1210 				   vcpu->arch.virtual_tsc_shift);
1211 }
1212 
adjust_tsc_khz(u32 khz,s32 ppm)1213 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1214 {
1215 	u64 v = (u64)khz * (1000000 + ppm);
1216 	do_div(v, 1000000);
1217 	return v;
1218 }
1219 
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 this_tsc_khz)1220 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1221 {
1222 	u32 thresh_lo, thresh_hi;
1223 	int use_scaling = 0;
1224 
1225 	/* tsc_khz can be zero if TSC calibration fails */
1226 	if (this_tsc_khz == 0)
1227 		return;
1228 
1229 	/* Compute a scale to convert nanoseconds in TSC cycles */
1230 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1231 			   &vcpu->arch.virtual_tsc_shift,
1232 			   &vcpu->arch.virtual_tsc_mult);
1233 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1234 
1235 	/*
1236 	 * Compute the variation in TSC rate which is acceptable
1237 	 * within the range of tolerance and decide if the
1238 	 * rate being applied is within that bounds of the hardware
1239 	 * rate.  If so, no scaling or compensation need be done.
1240 	 */
1241 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1242 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1243 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1244 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1245 		use_scaling = 1;
1246 	}
1247 	kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1248 }
1249 
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)1250 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1251 {
1252 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1253 				      vcpu->arch.virtual_tsc_mult,
1254 				      vcpu->arch.virtual_tsc_shift);
1255 	tsc += vcpu->arch.this_tsc_write;
1256 	return tsc;
1257 }
1258 
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)1259 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1260 {
1261 #ifdef CONFIG_X86_64
1262 	bool vcpus_matched;
1263 	struct kvm_arch *ka = &vcpu->kvm->arch;
1264 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1265 
1266 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1267 			 atomic_read(&vcpu->kvm->online_vcpus));
1268 
1269 	/*
1270 	 * Once the masterclock is enabled, always perform request in
1271 	 * order to update it.
1272 	 *
1273 	 * In order to enable masterclock, the host clocksource must be TSC
1274 	 * and the vcpus need to have matched TSCs.  When that happens,
1275 	 * perform request to enable masterclock.
1276 	 */
1277 	if (ka->use_master_clock ||
1278 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1279 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1280 
1281 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1282 			    atomic_read(&vcpu->kvm->online_vcpus),
1283 		            ka->use_master_clock, gtod->clock.vclock_mode);
1284 #endif
1285 }
1286 
update_ia32_tsc_adjust_msr(struct kvm_vcpu * vcpu,s64 offset)1287 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1288 {
1289 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1290 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1291 }
1292 
kvm_write_tsc(struct kvm_vcpu * vcpu,struct msr_data * msr)1293 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1294 {
1295 	struct kvm *kvm = vcpu->kvm;
1296 	u64 offset, ns, elapsed;
1297 	unsigned long flags;
1298 	s64 usdiff;
1299 	bool matched;
1300 	bool already_matched;
1301 	u64 data = msr->data;
1302 
1303 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1304 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1305 	ns = get_kernel_ns();
1306 	elapsed = ns - kvm->arch.last_tsc_nsec;
1307 
1308 	if (vcpu->arch.virtual_tsc_khz) {
1309 		int faulted = 0;
1310 
1311 		/* n.b - signed multiplication and division required */
1312 		usdiff = data - kvm->arch.last_tsc_write;
1313 #ifdef CONFIG_X86_64
1314 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1315 #else
1316 		/* do_div() only does unsigned */
1317 		asm("1: idivl %[divisor]\n"
1318 		    "2: xor %%edx, %%edx\n"
1319 		    "   movl $0, %[faulted]\n"
1320 		    "3:\n"
1321 		    ".section .fixup,\"ax\"\n"
1322 		    "4: movl $1, %[faulted]\n"
1323 		    "   jmp  3b\n"
1324 		    ".previous\n"
1325 
1326 		_ASM_EXTABLE(1b, 4b)
1327 
1328 		: "=A"(usdiff), [faulted] "=r" (faulted)
1329 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1330 
1331 #endif
1332 		do_div(elapsed, 1000);
1333 		usdiff -= elapsed;
1334 		if (usdiff < 0)
1335 			usdiff = -usdiff;
1336 
1337 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1338 		if (faulted)
1339 			usdiff = USEC_PER_SEC;
1340 	} else
1341 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1342 
1343 	/*
1344 	 * Special case: TSC write with a small delta (1 second) of virtual
1345 	 * cycle time against real time is interpreted as an attempt to
1346 	 * synchronize the CPU.
1347          *
1348 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1349 	 * TSC, we add elapsed time in this computation.  We could let the
1350 	 * compensation code attempt to catch up if we fall behind, but
1351 	 * it's better to try to match offsets from the beginning.
1352          */
1353 	if (usdiff < USEC_PER_SEC &&
1354 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1355 		if (!check_tsc_unstable()) {
1356 			offset = kvm->arch.cur_tsc_offset;
1357 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1358 		} else {
1359 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1360 			data += delta;
1361 			offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1362 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1363 		}
1364 		matched = true;
1365 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1366 	} else {
1367 		/*
1368 		 * We split periods of matched TSC writes into generations.
1369 		 * For each generation, we track the original measured
1370 		 * nanosecond time, offset, and write, so if TSCs are in
1371 		 * sync, we can match exact offset, and if not, we can match
1372 		 * exact software computation in compute_guest_tsc()
1373 		 *
1374 		 * These values are tracked in kvm->arch.cur_xxx variables.
1375 		 */
1376 		kvm->arch.cur_tsc_generation++;
1377 		kvm->arch.cur_tsc_nsec = ns;
1378 		kvm->arch.cur_tsc_write = data;
1379 		kvm->arch.cur_tsc_offset = offset;
1380 		matched = false;
1381 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1382 			 kvm->arch.cur_tsc_generation, data);
1383 	}
1384 
1385 	/*
1386 	 * We also track th most recent recorded KHZ, write and time to
1387 	 * allow the matching interval to be extended at each write.
1388 	 */
1389 	kvm->arch.last_tsc_nsec = ns;
1390 	kvm->arch.last_tsc_write = data;
1391 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1392 
1393 	vcpu->arch.last_guest_tsc = data;
1394 
1395 	/* Keep track of which generation this VCPU has synchronized to */
1396 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1397 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1398 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1399 
1400 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1401 		update_ia32_tsc_adjust_msr(vcpu, offset);
1402 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1403 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1404 
1405 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1406 	if (!matched) {
1407 		kvm->arch.nr_vcpus_matched_tsc = 0;
1408 	} else if (!already_matched) {
1409 		kvm->arch.nr_vcpus_matched_tsc++;
1410 	}
1411 
1412 	kvm_track_tsc_matching(vcpu);
1413 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1414 }
1415 
1416 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1417 
1418 #ifdef CONFIG_X86_64
1419 
read_tsc(void)1420 static cycle_t read_tsc(void)
1421 {
1422 	cycle_t ret;
1423 	u64 last;
1424 
1425 	/*
1426 	 * Empirically, a fence (of type that depends on the CPU)
1427 	 * before rdtsc is enough to ensure that rdtsc is ordered
1428 	 * with respect to loads.  The various CPU manuals are unclear
1429 	 * as to whether rdtsc can be reordered with later loads,
1430 	 * but no one has ever seen it happen.
1431 	 */
1432 	rdtsc_barrier();
1433 	ret = (cycle_t)vget_cycles();
1434 
1435 	last = pvclock_gtod_data.clock.cycle_last;
1436 
1437 	if (likely(ret >= last))
1438 		return ret;
1439 
1440 	/*
1441 	 * GCC likes to generate cmov here, but this branch is extremely
1442 	 * predictable (it's just a funciton of time and the likely is
1443 	 * very likely) and there's a data dependence, so force GCC
1444 	 * to generate a branch instead.  I don't barrier() because
1445 	 * we don't actually need a barrier, and if this function
1446 	 * ever gets inlined it will generate worse code.
1447 	 */
1448 	asm volatile ("");
1449 	return last;
1450 }
1451 
vgettsc(cycle_t * cycle_now)1452 static inline u64 vgettsc(cycle_t *cycle_now)
1453 {
1454 	long v;
1455 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1456 
1457 	*cycle_now = read_tsc();
1458 
1459 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1460 	return v * gtod->clock.mult;
1461 }
1462 
do_monotonic_boot(s64 * t,cycle_t * cycle_now)1463 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1464 {
1465 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1466 	unsigned long seq;
1467 	int mode;
1468 	u64 ns;
1469 
1470 	do {
1471 		seq = read_seqcount_begin(&gtod->seq);
1472 		mode = gtod->clock.vclock_mode;
1473 		ns = gtod->nsec_base;
1474 		ns += vgettsc(cycle_now);
1475 		ns >>= gtod->clock.shift;
1476 		ns += gtod->boot_ns;
1477 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1478 	*t = ns;
1479 
1480 	return mode;
1481 }
1482 
1483 /* returns true if host is using tsc clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,cycle_t * cycle_now)1484 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1485 {
1486 	/* checked again under seqlock below */
1487 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1488 		return false;
1489 
1490 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1491 }
1492 #endif
1493 
1494 /*
1495  *
1496  * Assuming a stable TSC across physical CPUS, and a stable TSC
1497  * across virtual CPUs, the following condition is possible.
1498  * Each numbered line represents an event visible to both
1499  * CPUs at the next numbered event.
1500  *
1501  * "timespecX" represents host monotonic time. "tscX" represents
1502  * RDTSC value.
1503  *
1504  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1505  *
1506  * 1.  read timespec0,tsc0
1507  * 2.					| timespec1 = timespec0 + N
1508  * 					| tsc1 = tsc0 + M
1509  * 3. transition to guest		| transition to guest
1510  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1511  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1512  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1513  *
1514  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1515  *
1516  * 	- ret0 < ret1
1517  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1518  *		...
1519  *	- 0 < N - M => M < N
1520  *
1521  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1522  * always the case (the difference between two distinct xtime instances
1523  * might be smaller then the difference between corresponding TSC reads,
1524  * when updating guest vcpus pvclock areas).
1525  *
1526  * To avoid that problem, do not allow visibility of distinct
1527  * system_timestamp/tsc_timestamp values simultaneously: use a master
1528  * copy of host monotonic time values. Update that master copy
1529  * in lockstep.
1530  *
1531  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1532  *
1533  */
1534 
pvclock_update_vm_gtod_copy(struct kvm * kvm)1535 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1536 {
1537 #ifdef CONFIG_X86_64
1538 	struct kvm_arch *ka = &kvm->arch;
1539 	int vclock_mode;
1540 	bool host_tsc_clocksource, vcpus_matched;
1541 
1542 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1543 			atomic_read(&kvm->online_vcpus));
1544 
1545 	/*
1546 	 * If the host uses TSC clock, then passthrough TSC as stable
1547 	 * to the guest.
1548 	 */
1549 	host_tsc_clocksource = kvm_get_time_and_clockread(
1550 					&ka->master_kernel_ns,
1551 					&ka->master_cycle_now);
1552 
1553 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1554 				&& !backwards_tsc_observed
1555 				&& !ka->boot_vcpu_runs_old_kvmclock;
1556 
1557 	if (ka->use_master_clock)
1558 		atomic_set(&kvm_guest_has_master_clock, 1);
1559 
1560 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1561 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1562 					vcpus_matched);
1563 #endif
1564 }
1565 
kvm_gen_update_masterclock(struct kvm * kvm)1566 static void kvm_gen_update_masterclock(struct kvm *kvm)
1567 {
1568 #ifdef CONFIG_X86_64
1569 	int i;
1570 	struct kvm_vcpu *vcpu;
1571 	struct kvm_arch *ka = &kvm->arch;
1572 
1573 	spin_lock(&ka->pvclock_gtod_sync_lock);
1574 	kvm_make_mclock_inprogress_request(kvm);
1575 	/* no guest entries from this point */
1576 	pvclock_update_vm_gtod_copy(kvm);
1577 
1578 	kvm_for_each_vcpu(i, vcpu, kvm)
1579 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1580 
1581 	/* guest entries allowed */
1582 	kvm_for_each_vcpu(i, vcpu, kvm)
1583 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1584 
1585 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1586 #endif
1587 }
1588 
kvm_guest_time_update(struct kvm_vcpu * v)1589 static int kvm_guest_time_update(struct kvm_vcpu *v)
1590 {
1591 	unsigned long flags, this_tsc_khz;
1592 	struct kvm_vcpu_arch *vcpu = &v->arch;
1593 	struct kvm_arch *ka = &v->kvm->arch;
1594 	s64 kernel_ns;
1595 	u64 tsc_timestamp, host_tsc;
1596 	struct pvclock_vcpu_time_info guest_hv_clock;
1597 	u8 pvclock_flags;
1598 	bool use_master_clock;
1599 
1600 	kernel_ns = 0;
1601 	host_tsc = 0;
1602 
1603 	/*
1604 	 * If the host uses TSC clock, then passthrough TSC as stable
1605 	 * to the guest.
1606 	 */
1607 	spin_lock(&ka->pvclock_gtod_sync_lock);
1608 	use_master_clock = ka->use_master_clock;
1609 	if (use_master_clock) {
1610 		host_tsc = ka->master_cycle_now;
1611 		kernel_ns = ka->master_kernel_ns;
1612 	}
1613 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1614 
1615 	/* Keep irq disabled to prevent changes to the clock */
1616 	local_irq_save(flags);
1617 	this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1618 	if (unlikely(this_tsc_khz == 0)) {
1619 		local_irq_restore(flags);
1620 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1621 		return 1;
1622 	}
1623 	if (!use_master_clock) {
1624 		host_tsc = native_read_tsc();
1625 		kernel_ns = get_kernel_ns();
1626 	}
1627 
1628 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1629 
1630 	/*
1631 	 * We may have to catch up the TSC to match elapsed wall clock
1632 	 * time for two reasons, even if kvmclock is used.
1633 	 *   1) CPU could have been running below the maximum TSC rate
1634 	 *   2) Broken TSC compensation resets the base at each VCPU
1635 	 *      entry to avoid unknown leaps of TSC even when running
1636 	 *      again on the same CPU.  This may cause apparent elapsed
1637 	 *      time to disappear, and the guest to stand still or run
1638 	 *	very slowly.
1639 	 */
1640 	if (vcpu->tsc_catchup) {
1641 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1642 		if (tsc > tsc_timestamp) {
1643 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1644 			tsc_timestamp = tsc;
1645 		}
1646 	}
1647 
1648 	local_irq_restore(flags);
1649 
1650 	if (!vcpu->pv_time_enabled)
1651 		return 0;
1652 
1653 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1654 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1655 				   &vcpu->hv_clock.tsc_shift,
1656 				   &vcpu->hv_clock.tsc_to_system_mul);
1657 		vcpu->hw_tsc_khz = this_tsc_khz;
1658 	}
1659 
1660 	/* With all the info we got, fill in the values */
1661 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1662 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1663 	vcpu->last_guest_tsc = tsc_timestamp;
1664 
1665 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1666 		&guest_hv_clock, sizeof(guest_hv_clock))))
1667 		return 0;
1668 
1669 	/* This VCPU is paused, but it's legal for a guest to read another
1670 	 * VCPU's kvmclock, so we really have to follow the specification where
1671 	 * it says that version is odd if data is being modified, and even after
1672 	 * it is consistent.
1673 	 *
1674 	 * Version field updates must be kept separate.  This is because
1675 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1676 	 * writes within a string instruction are weakly ordered.  So there
1677 	 * are three writes overall.
1678 	 *
1679 	 * As a small optimization, only write the version field in the first
1680 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1681 	 * version field is the first in the struct.
1682 	 */
1683 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1684 
1685 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1686 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1687 				&vcpu->hv_clock,
1688 				sizeof(vcpu->hv_clock.version));
1689 
1690 	smp_wmb();
1691 
1692 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1693 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1694 
1695 	if (vcpu->pvclock_set_guest_stopped_request) {
1696 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1697 		vcpu->pvclock_set_guest_stopped_request = false;
1698 	}
1699 
1700 	/* If the host uses TSC clocksource, then it is stable */
1701 	if (use_master_clock)
1702 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1703 
1704 	vcpu->hv_clock.flags = pvclock_flags;
1705 
1706 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1707 
1708 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1709 				&vcpu->hv_clock,
1710 				sizeof(vcpu->hv_clock));
1711 
1712 	smp_wmb();
1713 
1714 	vcpu->hv_clock.version++;
1715 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1716 				&vcpu->hv_clock,
1717 				sizeof(vcpu->hv_clock.version));
1718 	return 0;
1719 }
1720 
1721 /*
1722  * kvmclock updates which are isolated to a given vcpu, such as
1723  * vcpu->cpu migration, should not allow system_timestamp from
1724  * the rest of the vcpus to remain static. Otherwise ntp frequency
1725  * correction applies to one vcpu's system_timestamp but not
1726  * the others.
1727  *
1728  * So in those cases, request a kvmclock update for all vcpus.
1729  * We need to rate-limit these requests though, as they can
1730  * considerably slow guests that have a large number of vcpus.
1731  * The time for a remote vcpu to update its kvmclock is bound
1732  * by the delay we use to rate-limit the updates.
1733  */
1734 
1735 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1736 
kvmclock_update_fn(struct work_struct * work)1737 static void kvmclock_update_fn(struct work_struct *work)
1738 {
1739 	int i;
1740 	struct delayed_work *dwork = to_delayed_work(work);
1741 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1742 					   kvmclock_update_work);
1743 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1744 	struct kvm_vcpu *vcpu;
1745 
1746 	kvm_for_each_vcpu(i, vcpu, kvm) {
1747 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1748 		kvm_vcpu_kick(vcpu);
1749 	}
1750 }
1751 
kvm_gen_kvmclock_update(struct kvm_vcpu * v)1752 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1753 {
1754 	struct kvm *kvm = v->kvm;
1755 
1756 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1757 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1758 					KVMCLOCK_UPDATE_DELAY);
1759 }
1760 
1761 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1762 
kvmclock_sync_fn(struct work_struct * work)1763 static void kvmclock_sync_fn(struct work_struct *work)
1764 {
1765 	struct delayed_work *dwork = to_delayed_work(work);
1766 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1767 					   kvmclock_sync_work);
1768 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1769 
1770 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1771 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1772 					KVMCLOCK_SYNC_PERIOD);
1773 }
1774 
msr_mtrr_valid(unsigned msr)1775 static bool msr_mtrr_valid(unsigned msr)
1776 {
1777 	switch (msr) {
1778 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1779 	case MSR_MTRRfix64K_00000:
1780 	case MSR_MTRRfix16K_80000:
1781 	case MSR_MTRRfix16K_A0000:
1782 	case MSR_MTRRfix4K_C0000:
1783 	case MSR_MTRRfix4K_C8000:
1784 	case MSR_MTRRfix4K_D0000:
1785 	case MSR_MTRRfix4K_D8000:
1786 	case MSR_MTRRfix4K_E0000:
1787 	case MSR_MTRRfix4K_E8000:
1788 	case MSR_MTRRfix4K_F0000:
1789 	case MSR_MTRRfix4K_F8000:
1790 	case MSR_MTRRdefType:
1791 	case MSR_IA32_CR_PAT:
1792 		return true;
1793 	case 0x2f8:
1794 		return true;
1795 	}
1796 	return false;
1797 }
1798 
valid_pat_type(unsigned t)1799 static bool valid_pat_type(unsigned t)
1800 {
1801 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1802 }
1803 
valid_mtrr_type(unsigned t)1804 static bool valid_mtrr_type(unsigned t)
1805 {
1806 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1807 }
1808 
kvm_mtrr_valid(struct kvm_vcpu * vcpu,u32 msr,u64 data)1809 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1810 {
1811 	int i;
1812 	u64 mask;
1813 
1814 	if (!msr_mtrr_valid(msr))
1815 		return false;
1816 
1817 	if (msr == MSR_IA32_CR_PAT) {
1818 		for (i = 0; i < 8; i++)
1819 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
1820 				return false;
1821 		return true;
1822 	} else if (msr == MSR_MTRRdefType) {
1823 		if (data & ~0xcff)
1824 			return false;
1825 		return valid_mtrr_type(data & 0xff);
1826 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1827 		for (i = 0; i < 8 ; i++)
1828 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1829 				return false;
1830 		return true;
1831 	}
1832 
1833 	/* variable MTRRs */
1834 	WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1835 
1836 	mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1837 	if ((msr & 1) == 0) {
1838 		/* MTRR base */
1839 		if (!valid_mtrr_type(data & 0xff))
1840 			return false;
1841 		mask |= 0xf00;
1842 	} else
1843 		/* MTRR mask */
1844 		mask |= 0x7ff;
1845 	if (data & mask) {
1846 		kvm_inject_gp(vcpu, 0);
1847 		return false;
1848 	}
1849 
1850 	return true;
1851 }
1852 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
1853 
set_msr_mtrr(struct kvm_vcpu * vcpu,u32 msr,u64 data)1854 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1855 {
1856 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1857 
1858 	if (!kvm_mtrr_valid(vcpu, msr, data))
1859 		return 1;
1860 
1861 	if (msr == MSR_MTRRdefType) {
1862 		vcpu->arch.mtrr_state.def_type = data;
1863 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1864 	} else if (msr == MSR_MTRRfix64K_00000)
1865 		p[0] = data;
1866 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1867 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
1868 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1869 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1870 	else if (msr == MSR_IA32_CR_PAT)
1871 		vcpu->arch.pat = data;
1872 	else {	/* Variable MTRRs */
1873 		int idx, is_mtrr_mask;
1874 		u64 *pt;
1875 
1876 		idx = (msr - 0x200) / 2;
1877 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1878 		if (!is_mtrr_mask)
1879 			pt =
1880 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1881 		else
1882 			pt =
1883 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1884 		*pt = data;
1885 	}
1886 
1887 	kvm_mmu_reset_context(vcpu);
1888 	return 0;
1889 }
1890 
set_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 data)1891 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1892 {
1893 	u64 mcg_cap = vcpu->arch.mcg_cap;
1894 	unsigned bank_num = mcg_cap & 0xff;
1895 
1896 	switch (msr) {
1897 	case MSR_IA32_MCG_STATUS:
1898 		vcpu->arch.mcg_status = data;
1899 		break;
1900 	case MSR_IA32_MCG_CTL:
1901 		if (!(mcg_cap & MCG_CTL_P))
1902 			return 1;
1903 		if (data != 0 && data != ~(u64)0)
1904 			return -1;
1905 		vcpu->arch.mcg_ctl = data;
1906 		break;
1907 	default:
1908 		if (msr >= MSR_IA32_MC0_CTL &&
1909 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1910 			u32 offset = msr - MSR_IA32_MC0_CTL;
1911 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1912 			 * some Linux kernels though clear bit 10 in bank 4 to
1913 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1914 			 * this to avoid an uncatched #GP in the guest
1915 			 */
1916 			if ((offset & 0x3) == 0 &&
1917 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1918 				return -1;
1919 			vcpu->arch.mce_banks[offset] = data;
1920 			break;
1921 		}
1922 		return 1;
1923 	}
1924 	return 0;
1925 }
1926 
xen_hvm_config(struct kvm_vcpu * vcpu,u64 data)1927 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1928 {
1929 	struct kvm *kvm = vcpu->kvm;
1930 	int lm = is_long_mode(vcpu);
1931 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1932 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1933 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1934 		: kvm->arch.xen_hvm_config.blob_size_32;
1935 	u32 page_num = data & ~PAGE_MASK;
1936 	u64 page_addr = data & PAGE_MASK;
1937 	u8 *page;
1938 	int r;
1939 
1940 	r = -E2BIG;
1941 	if (page_num >= blob_size)
1942 		goto out;
1943 	r = -ENOMEM;
1944 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1945 	if (IS_ERR(page)) {
1946 		r = PTR_ERR(page);
1947 		goto out;
1948 	}
1949 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1950 		goto out_free;
1951 	r = 0;
1952 out_free:
1953 	kfree(page);
1954 out:
1955 	return r;
1956 }
1957 
kvm_hv_hypercall_enabled(struct kvm * kvm)1958 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1959 {
1960 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1961 }
1962 
kvm_hv_msr_partition_wide(u32 msr)1963 static bool kvm_hv_msr_partition_wide(u32 msr)
1964 {
1965 	bool r = false;
1966 	switch (msr) {
1967 	case HV_X64_MSR_GUEST_OS_ID:
1968 	case HV_X64_MSR_HYPERCALL:
1969 	case HV_X64_MSR_REFERENCE_TSC:
1970 	case HV_X64_MSR_TIME_REF_COUNT:
1971 		r = true;
1972 		break;
1973 	}
1974 
1975 	return r;
1976 }
1977 
set_msr_hyperv_pw(struct kvm_vcpu * vcpu,u32 msr,u64 data)1978 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1979 {
1980 	struct kvm *kvm = vcpu->kvm;
1981 
1982 	switch (msr) {
1983 	case HV_X64_MSR_GUEST_OS_ID:
1984 		kvm->arch.hv_guest_os_id = data;
1985 		/* setting guest os id to zero disables hypercall page */
1986 		if (!kvm->arch.hv_guest_os_id)
1987 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1988 		break;
1989 	case HV_X64_MSR_HYPERCALL: {
1990 		u64 gfn;
1991 		unsigned long addr;
1992 		u8 instructions[4];
1993 
1994 		/* if guest os id is not set hypercall should remain disabled */
1995 		if (!kvm->arch.hv_guest_os_id)
1996 			break;
1997 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1998 			kvm->arch.hv_hypercall = data;
1999 			break;
2000 		}
2001 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
2002 		addr = gfn_to_hva(kvm, gfn);
2003 		if (kvm_is_error_hva(addr))
2004 			return 1;
2005 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
2006 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
2007 		if (__copy_to_user((void __user *)addr, instructions, 4))
2008 			return 1;
2009 		kvm->arch.hv_hypercall = data;
2010 		mark_page_dirty(kvm, gfn);
2011 		break;
2012 	}
2013 	case HV_X64_MSR_REFERENCE_TSC: {
2014 		u64 gfn;
2015 		HV_REFERENCE_TSC_PAGE tsc_ref;
2016 		memset(&tsc_ref, 0, sizeof(tsc_ref));
2017 		kvm->arch.hv_tsc_page = data;
2018 		if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
2019 			break;
2020 		gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
2021 		if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
2022 			&tsc_ref, sizeof(tsc_ref)))
2023 			return 1;
2024 		mark_page_dirty(kvm, gfn);
2025 		break;
2026 	}
2027 	default:
2028 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2029 			    "data 0x%llx\n", msr, data);
2030 		return 1;
2031 	}
2032 	return 0;
2033 }
2034 
set_msr_hyperv(struct kvm_vcpu * vcpu,u32 msr,u64 data)2035 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2036 {
2037 	switch (msr) {
2038 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
2039 		u64 gfn;
2040 		unsigned long addr;
2041 
2042 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
2043 			vcpu->arch.hv_vapic = data;
2044 			if (kvm_lapic_enable_pv_eoi(vcpu, 0))
2045 				return 1;
2046 			break;
2047 		}
2048 		gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
2049 		addr = gfn_to_hva(vcpu->kvm, gfn);
2050 		if (kvm_is_error_hva(addr))
2051 			return 1;
2052 		if (__clear_user((void __user *)addr, PAGE_SIZE))
2053 			return 1;
2054 		vcpu->arch.hv_vapic = data;
2055 		mark_page_dirty(vcpu->kvm, gfn);
2056 		if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
2057 			return 1;
2058 		break;
2059 	}
2060 	case HV_X64_MSR_EOI:
2061 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
2062 	case HV_X64_MSR_ICR:
2063 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
2064 	case HV_X64_MSR_TPR:
2065 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
2066 	default:
2067 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2068 			    "data 0x%llx\n", msr, data);
2069 		return 1;
2070 	}
2071 
2072 	return 0;
2073 }
2074 
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)2075 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2076 {
2077 	gpa_t gpa = data & ~0x3f;
2078 
2079 	/* Bits 2:5 are reserved, Should be zero */
2080 	if (data & 0x3c)
2081 		return 1;
2082 
2083 	vcpu->arch.apf.msr_val = data;
2084 
2085 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
2086 		kvm_clear_async_pf_completion_queue(vcpu);
2087 		kvm_async_pf_hash_reset(vcpu);
2088 		return 0;
2089 	}
2090 
2091 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2092 					sizeof(u32)))
2093 		return 1;
2094 
2095 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2096 	kvm_async_pf_wakeup_all(vcpu);
2097 	return 0;
2098 }
2099 
kvmclock_reset(struct kvm_vcpu * vcpu)2100 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2101 {
2102 	vcpu->arch.pv_time_enabled = false;
2103 }
2104 
accumulate_steal_time(struct kvm_vcpu * vcpu)2105 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2106 {
2107 	u64 delta;
2108 
2109 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2110 		return;
2111 
2112 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2113 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2114 	vcpu->arch.st.accum_steal = delta;
2115 }
2116 
record_steal_time(struct kvm_vcpu * vcpu)2117 static void record_steal_time(struct kvm_vcpu *vcpu)
2118 {
2119 	accumulate_steal_time(vcpu);
2120 
2121 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2122 		return;
2123 
2124 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2125 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2126 		return;
2127 
2128 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2129 	vcpu->arch.st.steal.version += 2;
2130 	vcpu->arch.st.accum_steal = 0;
2131 
2132 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2133 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2134 }
2135 
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2136 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2137 {
2138 	bool pr = false;
2139 	u32 msr = msr_info->index;
2140 	u64 data = msr_info->data;
2141 
2142 	switch (msr) {
2143 	case MSR_AMD64_NB_CFG:
2144 	case MSR_IA32_UCODE_REV:
2145 	case MSR_IA32_UCODE_WRITE:
2146 	case MSR_VM_HSAVE_PA:
2147 	case MSR_AMD64_PATCH_LOADER:
2148 	case MSR_AMD64_BU_CFG2:
2149 		break;
2150 
2151 	case MSR_EFER:
2152 		return set_efer(vcpu, data);
2153 	case MSR_K7_HWCR:
2154 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2155 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2156 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2157 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2158 		if (data != 0) {
2159 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2160 				    data);
2161 			return 1;
2162 		}
2163 		break;
2164 	case MSR_FAM10H_MMIO_CONF_BASE:
2165 		if (data != 0) {
2166 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2167 				    "0x%llx\n", data);
2168 			return 1;
2169 		}
2170 		break;
2171 	case MSR_IA32_DEBUGCTLMSR:
2172 		if (!data) {
2173 			/* We support the non-activated case already */
2174 			break;
2175 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2176 			/* Values other than LBR and BTF are vendor-specific,
2177 			   thus reserved and should throw a #GP */
2178 			return 1;
2179 		}
2180 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2181 			    __func__, data);
2182 		break;
2183 	case 0x200 ... 0x2ff:
2184 		return set_msr_mtrr(vcpu, msr, data);
2185 	case MSR_IA32_APICBASE:
2186 		return kvm_set_apic_base(vcpu, msr_info);
2187 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2188 		return kvm_x2apic_msr_write(vcpu, msr, data);
2189 	case MSR_IA32_TSCDEADLINE:
2190 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2191 		break;
2192 	case MSR_IA32_TSC_ADJUST:
2193 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2194 			if (!msr_info->host_initiated) {
2195 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2196 				adjust_tsc_offset_guest(vcpu, adj);
2197 			}
2198 			vcpu->arch.ia32_tsc_adjust_msr = data;
2199 		}
2200 		break;
2201 	case MSR_IA32_MISC_ENABLE:
2202 		vcpu->arch.ia32_misc_enable_msr = data;
2203 		break;
2204 	case MSR_KVM_WALL_CLOCK_NEW:
2205 	case MSR_KVM_WALL_CLOCK:
2206 		vcpu->kvm->arch.wall_clock = data;
2207 		kvm_write_wall_clock(vcpu->kvm, data);
2208 		break;
2209 	case MSR_KVM_SYSTEM_TIME_NEW:
2210 	case MSR_KVM_SYSTEM_TIME: {
2211 		u64 gpa_offset;
2212 		struct kvm_arch *ka = &vcpu->kvm->arch;
2213 
2214 		kvmclock_reset(vcpu);
2215 
2216 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2217 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2218 
2219 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2220 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2221 					&vcpu->requests);
2222 
2223 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2224 		}
2225 
2226 		vcpu->arch.time = data;
2227 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2228 
2229 		/* we verify if the enable bit is set... */
2230 		if (!(data & 1))
2231 			break;
2232 
2233 		gpa_offset = data & ~(PAGE_MASK | 1);
2234 
2235 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2236 		     &vcpu->arch.pv_time, data & ~1ULL,
2237 		     sizeof(struct pvclock_vcpu_time_info)))
2238 			vcpu->arch.pv_time_enabled = false;
2239 		else
2240 			vcpu->arch.pv_time_enabled = true;
2241 
2242 		break;
2243 	}
2244 	case MSR_KVM_ASYNC_PF_EN:
2245 		if (kvm_pv_enable_async_pf(vcpu, data))
2246 			return 1;
2247 		break;
2248 	case MSR_KVM_STEAL_TIME:
2249 
2250 		if (unlikely(!sched_info_on()))
2251 			return 1;
2252 
2253 		if (data & KVM_STEAL_RESERVED_MASK)
2254 			return 1;
2255 
2256 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2257 						data & KVM_STEAL_VALID_BITS,
2258 						sizeof(struct kvm_steal_time)))
2259 			return 1;
2260 
2261 		vcpu->arch.st.msr_val = data;
2262 
2263 		if (!(data & KVM_MSR_ENABLED))
2264 			break;
2265 
2266 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2267 
2268 		break;
2269 	case MSR_KVM_PV_EOI_EN:
2270 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2271 			return 1;
2272 		break;
2273 
2274 	case MSR_IA32_MCG_CTL:
2275 	case MSR_IA32_MCG_STATUS:
2276 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2277 		return set_msr_mce(vcpu, msr, data);
2278 
2279 	/* Performance counters are not protected by a CPUID bit,
2280 	 * so we should check all of them in the generic path for the sake of
2281 	 * cross vendor migration.
2282 	 * Writing a zero into the event select MSRs disables them,
2283 	 * which we perfectly emulate ;-). Any other value should be at least
2284 	 * reported, some guests depend on them.
2285 	 */
2286 	case MSR_K7_EVNTSEL0:
2287 	case MSR_K7_EVNTSEL1:
2288 	case MSR_K7_EVNTSEL2:
2289 	case MSR_K7_EVNTSEL3:
2290 		if (data != 0)
2291 			vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2292 				    "0x%x data 0x%llx\n", msr, data);
2293 		break;
2294 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
2295 	 * so we ignore writes to make it happy.
2296 	 */
2297 	case MSR_K7_PERFCTR0:
2298 	case MSR_K7_PERFCTR1:
2299 	case MSR_K7_PERFCTR2:
2300 	case MSR_K7_PERFCTR3:
2301 		vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2302 			    "0x%x data 0x%llx\n", msr, data);
2303 		break;
2304 	case MSR_P6_PERFCTR0:
2305 	case MSR_P6_PERFCTR1:
2306 		pr = true;
2307 	case MSR_P6_EVNTSEL0:
2308 	case MSR_P6_EVNTSEL1:
2309 		if (kvm_pmu_msr(vcpu, msr))
2310 			return kvm_pmu_set_msr(vcpu, msr_info);
2311 
2312 		if (pr || data != 0)
2313 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2314 				    "0x%x data 0x%llx\n", msr, data);
2315 		break;
2316 	case MSR_K7_CLK_CTL:
2317 		/*
2318 		 * Ignore all writes to this no longer documented MSR.
2319 		 * Writes are only relevant for old K7 processors,
2320 		 * all pre-dating SVM, but a recommended workaround from
2321 		 * AMD for these chips. It is possible to specify the
2322 		 * affected processor models on the command line, hence
2323 		 * the need to ignore the workaround.
2324 		 */
2325 		break;
2326 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2327 		if (kvm_hv_msr_partition_wide(msr)) {
2328 			int r;
2329 			mutex_lock(&vcpu->kvm->lock);
2330 			r = set_msr_hyperv_pw(vcpu, msr, data);
2331 			mutex_unlock(&vcpu->kvm->lock);
2332 			return r;
2333 		} else
2334 			return set_msr_hyperv(vcpu, msr, data);
2335 		break;
2336 	case MSR_IA32_BBL_CR_CTL3:
2337 		/* Drop writes to this legacy MSR -- see rdmsr
2338 		 * counterpart for further detail.
2339 		 */
2340 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2341 		break;
2342 	case MSR_AMD64_OSVW_ID_LENGTH:
2343 		if (!guest_cpuid_has_osvw(vcpu))
2344 			return 1;
2345 		vcpu->arch.osvw.length = data;
2346 		break;
2347 	case MSR_AMD64_OSVW_STATUS:
2348 		if (!guest_cpuid_has_osvw(vcpu))
2349 			return 1;
2350 		vcpu->arch.osvw.status = data;
2351 		break;
2352 	default:
2353 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2354 			return xen_hvm_config(vcpu, data);
2355 		if (kvm_pmu_msr(vcpu, msr))
2356 			return kvm_pmu_set_msr(vcpu, msr_info);
2357 		if (!ignore_msrs) {
2358 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2359 				    msr, data);
2360 			return 1;
2361 		} else {
2362 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2363 				    msr, data);
2364 			break;
2365 		}
2366 	}
2367 	return 0;
2368 }
2369 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2370 
2371 
2372 /*
2373  * Reads an msr value (of 'msr_index') into 'pdata'.
2374  * Returns 0 on success, non-0 otherwise.
2375  * Assumes vcpu_load() was already called.
2376  */
kvm_get_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 * pdata)2377 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2378 {
2379 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2380 }
2381 EXPORT_SYMBOL_GPL(kvm_get_msr);
2382 
get_msr_mtrr(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)2383 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2384 {
2385 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2386 
2387 	if (!msr_mtrr_valid(msr))
2388 		return 1;
2389 
2390 	if (msr == MSR_MTRRdefType)
2391 		*pdata = vcpu->arch.mtrr_state.def_type +
2392 			 (vcpu->arch.mtrr_state.enabled << 10);
2393 	else if (msr == MSR_MTRRfix64K_00000)
2394 		*pdata = p[0];
2395 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2396 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2397 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2398 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2399 	else if (msr == MSR_IA32_CR_PAT)
2400 		*pdata = vcpu->arch.pat;
2401 	else {	/* Variable MTRRs */
2402 		int idx, is_mtrr_mask;
2403 		u64 *pt;
2404 
2405 		idx = (msr - 0x200) / 2;
2406 		is_mtrr_mask = msr - 0x200 - 2 * idx;
2407 		if (!is_mtrr_mask)
2408 			pt =
2409 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2410 		else
2411 			pt =
2412 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2413 		*pdata = *pt;
2414 	}
2415 
2416 	return 0;
2417 }
2418 
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)2419 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2420 {
2421 	u64 data;
2422 	u64 mcg_cap = vcpu->arch.mcg_cap;
2423 	unsigned bank_num = mcg_cap & 0xff;
2424 
2425 	switch (msr) {
2426 	case MSR_IA32_P5_MC_ADDR:
2427 	case MSR_IA32_P5_MC_TYPE:
2428 		data = 0;
2429 		break;
2430 	case MSR_IA32_MCG_CAP:
2431 		data = vcpu->arch.mcg_cap;
2432 		break;
2433 	case MSR_IA32_MCG_CTL:
2434 		if (!(mcg_cap & MCG_CTL_P))
2435 			return 1;
2436 		data = vcpu->arch.mcg_ctl;
2437 		break;
2438 	case MSR_IA32_MCG_STATUS:
2439 		data = vcpu->arch.mcg_status;
2440 		break;
2441 	default:
2442 		if (msr >= MSR_IA32_MC0_CTL &&
2443 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2444 			u32 offset = msr - MSR_IA32_MC0_CTL;
2445 			data = vcpu->arch.mce_banks[offset];
2446 			break;
2447 		}
2448 		return 1;
2449 	}
2450 	*pdata = data;
2451 	return 0;
2452 }
2453 
get_msr_hyperv_pw(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)2454 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2455 {
2456 	u64 data = 0;
2457 	struct kvm *kvm = vcpu->kvm;
2458 
2459 	switch (msr) {
2460 	case HV_X64_MSR_GUEST_OS_ID:
2461 		data = kvm->arch.hv_guest_os_id;
2462 		break;
2463 	case HV_X64_MSR_HYPERCALL:
2464 		data = kvm->arch.hv_hypercall;
2465 		break;
2466 	case HV_X64_MSR_TIME_REF_COUNT: {
2467 		data =
2468 		     div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2469 		break;
2470 	}
2471 	case HV_X64_MSR_REFERENCE_TSC:
2472 		data = kvm->arch.hv_tsc_page;
2473 		break;
2474 	default:
2475 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2476 		return 1;
2477 	}
2478 
2479 	*pdata = data;
2480 	return 0;
2481 }
2482 
get_msr_hyperv(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)2483 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2484 {
2485 	u64 data = 0;
2486 
2487 	switch (msr) {
2488 	case HV_X64_MSR_VP_INDEX: {
2489 		int r;
2490 		struct kvm_vcpu *v;
2491 		kvm_for_each_vcpu(r, v, vcpu->kvm) {
2492 			if (v == vcpu) {
2493 				data = r;
2494 				break;
2495 			}
2496 		}
2497 		break;
2498 	}
2499 	case HV_X64_MSR_EOI:
2500 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2501 	case HV_X64_MSR_ICR:
2502 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2503 	case HV_X64_MSR_TPR:
2504 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2505 	case HV_X64_MSR_APIC_ASSIST_PAGE:
2506 		data = vcpu->arch.hv_vapic;
2507 		break;
2508 	default:
2509 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2510 		return 1;
2511 	}
2512 	*pdata = data;
2513 	return 0;
2514 }
2515 
kvm_get_msr_common(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)2516 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2517 {
2518 	u64 data;
2519 
2520 	switch (msr) {
2521 	case MSR_IA32_PLATFORM_ID:
2522 	case MSR_IA32_EBL_CR_POWERON:
2523 	case MSR_IA32_DEBUGCTLMSR:
2524 	case MSR_IA32_LASTBRANCHFROMIP:
2525 	case MSR_IA32_LASTBRANCHTOIP:
2526 	case MSR_IA32_LASTINTFROMIP:
2527 	case MSR_IA32_LASTINTTOIP:
2528 	case MSR_K8_SYSCFG:
2529 	case MSR_K7_HWCR:
2530 	case MSR_VM_HSAVE_PA:
2531 	case MSR_K7_EVNTSEL0:
2532 	case MSR_K7_EVNTSEL1:
2533 	case MSR_K7_EVNTSEL2:
2534 	case MSR_K7_EVNTSEL3:
2535 	case MSR_K7_PERFCTR0:
2536 	case MSR_K7_PERFCTR1:
2537 	case MSR_K7_PERFCTR2:
2538 	case MSR_K7_PERFCTR3:
2539 	case MSR_K8_INT_PENDING_MSG:
2540 	case MSR_AMD64_NB_CFG:
2541 	case MSR_FAM10H_MMIO_CONF_BASE:
2542 	case MSR_AMD64_BU_CFG2:
2543 		data = 0;
2544 		break;
2545 	case MSR_P6_PERFCTR0:
2546 	case MSR_P6_PERFCTR1:
2547 	case MSR_P6_EVNTSEL0:
2548 	case MSR_P6_EVNTSEL1:
2549 		if (kvm_pmu_msr(vcpu, msr))
2550 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2551 		data = 0;
2552 		break;
2553 	case MSR_IA32_UCODE_REV:
2554 		data = 0x100000000ULL;
2555 		break;
2556 	case MSR_MTRRcap:
2557 		data = 0x500 | KVM_NR_VAR_MTRR;
2558 		break;
2559 	case 0x200 ... 0x2ff:
2560 		return get_msr_mtrr(vcpu, msr, pdata);
2561 	case 0xcd: /* fsb frequency */
2562 		data = 3;
2563 		break;
2564 		/*
2565 		 * MSR_EBC_FREQUENCY_ID
2566 		 * Conservative value valid for even the basic CPU models.
2567 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2568 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2569 		 * and 266MHz for model 3, or 4. Set Core Clock
2570 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2571 		 * 31:24) even though these are only valid for CPU
2572 		 * models > 2, however guests may end up dividing or
2573 		 * multiplying by zero otherwise.
2574 		 */
2575 	case MSR_EBC_FREQUENCY_ID:
2576 		data = 1 << 24;
2577 		break;
2578 	case MSR_IA32_APICBASE:
2579 		data = kvm_get_apic_base(vcpu);
2580 		break;
2581 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2582 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
2583 		break;
2584 	case MSR_IA32_TSCDEADLINE:
2585 		data = kvm_get_lapic_tscdeadline_msr(vcpu);
2586 		break;
2587 	case MSR_IA32_TSC_ADJUST:
2588 		data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2589 		break;
2590 	case MSR_IA32_MISC_ENABLE:
2591 		data = vcpu->arch.ia32_misc_enable_msr;
2592 		break;
2593 	case MSR_IA32_PERF_STATUS:
2594 		/* TSC increment by tick */
2595 		data = 1000ULL;
2596 		/* CPU multiplier */
2597 		data |= (((uint64_t)4ULL) << 40);
2598 		break;
2599 	case MSR_EFER:
2600 		data = vcpu->arch.efer;
2601 		break;
2602 	case MSR_KVM_WALL_CLOCK:
2603 	case MSR_KVM_WALL_CLOCK_NEW:
2604 		data = vcpu->kvm->arch.wall_clock;
2605 		break;
2606 	case MSR_KVM_SYSTEM_TIME:
2607 	case MSR_KVM_SYSTEM_TIME_NEW:
2608 		data = vcpu->arch.time;
2609 		break;
2610 	case MSR_KVM_ASYNC_PF_EN:
2611 		data = vcpu->arch.apf.msr_val;
2612 		break;
2613 	case MSR_KVM_STEAL_TIME:
2614 		data = vcpu->arch.st.msr_val;
2615 		break;
2616 	case MSR_KVM_PV_EOI_EN:
2617 		data = vcpu->arch.pv_eoi.msr_val;
2618 		break;
2619 	case MSR_IA32_P5_MC_ADDR:
2620 	case MSR_IA32_P5_MC_TYPE:
2621 	case MSR_IA32_MCG_CAP:
2622 	case MSR_IA32_MCG_CTL:
2623 	case MSR_IA32_MCG_STATUS:
2624 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2625 		return get_msr_mce(vcpu, msr, pdata);
2626 	case MSR_K7_CLK_CTL:
2627 		/*
2628 		 * Provide expected ramp-up count for K7. All other
2629 		 * are set to zero, indicating minimum divisors for
2630 		 * every field.
2631 		 *
2632 		 * This prevents guest kernels on AMD host with CPU
2633 		 * type 6, model 8 and higher from exploding due to
2634 		 * the rdmsr failing.
2635 		 */
2636 		data = 0x20000000;
2637 		break;
2638 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2639 		if (kvm_hv_msr_partition_wide(msr)) {
2640 			int r;
2641 			mutex_lock(&vcpu->kvm->lock);
2642 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
2643 			mutex_unlock(&vcpu->kvm->lock);
2644 			return r;
2645 		} else
2646 			return get_msr_hyperv(vcpu, msr, pdata);
2647 		break;
2648 	case MSR_IA32_BBL_CR_CTL3:
2649 		/* This legacy MSR exists but isn't fully documented in current
2650 		 * silicon.  It is however accessed by winxp in very narrow
2651 		 * scenarios where it sets bit #19, itself documented as
2652 		 * a "reserved" bit.  Best effort attempt to source coherent
2653 		 * read data here should the balance of the register be
2654 		 * interpreted by the guest:
2655 		 *
2656 		 * L2 cache control register 3: 64GB range, 256KB size,
2657 		 * enabled, latency 0x1, configured
2658 		 */
2659 		data = 0xbe702111;
2660 		break;
2661 	case MSR_AMD64_OSVW_ID_LENGTH:
2662 		if (!guest_cpuid_has_osvw(vcpu))
2663 			return 1;
2664 		data = vcpu->arch.osvw.length;
2665 		break;
2666 	case MSR_AMD64_OSVW_STATUS:
2667 		if (!guest_cpuid_has_osvw(vcpu))
2668 			return 1;
2669 		data = vcpu->arch.osvw.status;
2670 		break;
2671 	default:
2672 		if (kvm_pmu_msr(vcpu, msr))
2673 			return kvm_pmu_get_msr(vcpu, msr, pdata);
2674 		if (!ignore_msrs) {
2675 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2676 			return 1;
2677 		} else {
2678 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2679 			data = 0;
2680 		}
2681 		break;
2682 	}
2683 	*pdata = data;
2684 	return 0;
2685 }
2686 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2687 
2688 /*
2689  * Read or write a bunch of msrs. All parameters are kernel addresses.
2690  *
2691  * @return number of msrs set successfully.
2692  */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))2693 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2694 		    struct kvm_msr_entry *entries,
2695 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2696 				  unsigned index, u64 *data))
2697 {
2698 	int i, idx;
2699 
2700 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2701 	for (i = 0; i < msrs->nmsrs; ++i)
2702 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2703 			break;
2704 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2705 
2706 	return i;
2707 }
2708 
2709 /*
2710  * Read or write a bunch of msrs. Parameters are user addresses.
2711  *
2712  * @return number of msrs set successfully.
2713  */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)2714 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2715 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2716 				unsigned index, u64 *data),
2717 		  int writeback)
2718 {
2719 	struct kvm_msrs msrs;
2720 	struct kvm_msr_entry *entries;
2721 	int r, n;
2722 	unsigned size;
2723 
2724 	r = -EFAULT;
2725 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2726 		goto out;
2727 
2728 	r = -E2BIG;
2729 	if (msrs.nmsrs >= MAX_IO_MSRS)
2730 		goto out;
2731 
2732 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2733 	entries = memdup_user(user_msrs->entries, size);
2734 	if (IS_ERR(entries)) {
2735 		r = PTR_ERR(entries);
2736 		goto out;
2737 	}
2738 
2739 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2740 	if (r < 0)
2741 		goto out_free;
2742 
2743 	r = -EFAULT;
2744 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2745 		goto out_free;
2746 
2747 	r = n;
2748 
2749 out_free:
2750 	kfree(entries);
2751 out:
2752 	return r;
2753 }
2754 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)2755 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2756 {
2757 	int r;
2758 
2759 	switch (ext) {
2760 	case KVM_CAP_IRQCHIP:
2761 	case KVM_CAP_HLT:
2762 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2763 	case KVM_CAP_SET_TSS_ADDR:
2764 	case KVM_CAP_EXT_CPUID:
2765 	case KVM_CAP_EXT_EMUL_CPUID:
2766 	case KVM_CAP_CLOCKSOURCE:
2767 	case KVM_CAP_PIT:
2768 	case KVM_CAP_NOP_IO_DELAY:
2769 	case KVM_CAP_MP_STATE:
2770 	case KVM_CAP_SYNC_MMU:
2771 	case KVM_CAP_USER_NMI:
2772 	case KVM_CAP_REINJECT_CONTROL:
2773 	case KVM_CAP_IRQ_INJECT_STATUS:
2774 	case KVM_CAP_IOEVENTFD:
2775 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2776 	case KVM_CAP_PIT2:
2777 	case KVM_CAP_PIT_STATE2:
2778 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2779 	case KVM_CAP_XEN_HVM:
2780 	case KVM_CAP_ADJUST_CLOCK:
2781 	case KVM_CAP_VCPU_EVENTS:
2782 	case KVM_CAP_HYPERV:
2783 	case KVM_CAP_HYPERV_VAPIC:
2784 	case KVM_CAP_HYPERV_SPIN:
2785 	case KVM_CAP_PCI_SEGMENT:
2786 	case KVM_CAP_DEBUGREGS:
2787 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2788 	case KVM_CAP_XSAVE:
2789 	case KVM_CAP_ASYNC_PF:
2790 	case KVM_CAP_GET_TSC_KHZ:
2791 	case KVM_CAP_KVMCLOCK_CTRL:
2792 	case KVM_CAP_READONLY_MEM:
2793 	case KVM_CAP_HYPERV_TIME:
2794 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2795 	case KVM_CAP_TSC_DEADLINE_TIMER:
2796 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2797 	case KVM_CAP_ASSIGN_DEV_IRQ:
2798 	case KVM_CAP_PCI_2_3:
2799 #endif
2800 		r = 1;
2801 		break;
2802 	case KVM_CAP_COALESCED_MMIO:
2803 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2804 		break;
2805 	case KVM_CAP_VAPIC:
2806 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2807 		break;
2808 	case KVM_CAP_NR_VCPUS:
2809 		r = KVM_SOFT_MAX_VCPUS;
2810 		break;
2811 	case KVM_CAP_MAX_VCPUS:
2812 		r = KVM_MAX_VCPUS;
2813 		break;
2814 	case KVM_CAP_NR_MEMSLOTS:
2815 		r = KVM_USER_MEM_SLOTS;
2816 		break;
2817 	case KVM_CAP_PV_MMU:	/* obsolete */
2818 		r = 0;
2819 		break;
2820 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2821 	case KVM_CAP_IOMMU:
2822 		r = iommu_present(&pci_bus_type);
2823 		break;
2824 #endif
2825 	case KVM_CAP_MCE:
2826 		r = KVM_MAX_MCE_BANKS;
2827 		break;
2828 	case KVM_CAP_XCRS:
2829 		r = cpu_has_xsave;
2830 		break;
2831 	case KVM_CAP_TSC_CONTROL:
2832 		r = kvm_has_tsc_control;
2833 		break;
2834 	default:
2835 		r = 0;
2836 		break;
2837 	}
2838 	return r;
2839 
2840 }
2841 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2842 long kvm_arch_dev_ioctl(struct file *filp,
2843 			unsigned int ioctl, unsigned long arg)
2844 {
2845 	void __user *argp = (void __user *)arg;
2846 	long r;
2847 
2848 	switch (ioctl) {
2849 	case KVM_GET_MSR_INDEX_LIST: {
2850 		struct kvm_msr_list __user *user_msr_list = argp;
2851 		struct kvm_msr_list msr_list;
2852 		unsigned n;
2853 
2854 		r = -EFAULT;
2855 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2856 			goto out;
2857 		n = msr_list.nmsrs;
2858 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2859 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2860 			goto out;
2861 		r = -E2BIG;
2862 		if (n < msr_list.nmsrs)
2863 			goto out;
2864 		r = -EFAULT;
2865 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2866 				 num_msrs_to_save * sizeof(u32)))
2867 			goto out;
2868 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2869 				 &emulated_msrs,
2870 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2871 			goto out;
2872 		r = 0;
2873 		break;
2874 	}
2875 	case KVM_GET_SUPPORTED_CPUID:
2876 	case KVM_GET_EMULATED_CPUID: {
2877 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2878 		struct kvm_cpuid2 cpuid;
2879 
2880 		r = -EFAULT;
2881 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2882 			goto out;
2883 
2884 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2885 					    ioctl);
2886 		if (r)
2887 			goto out;
2888 
2889 		r = -EFAULT;
2890 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2891 			goto out;
2892 		r = 0;
2893 		break;
2894 	}
2895 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2896 		u64 mce_cap;
2897 
2898 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2899 		r = -EFAULT;
2900 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2901 			goto out;
2902 		r = 0;
2903 		break;
2904 	}
2905 	default:
2906 		r = -EINVAL;
2907 	}
2908 out:
2909 	return r;
2910 }
2911 
wbinvd_ipi(void * garbage)2912 static void wbinvd_ipi(void *garbage)
2913 {
2914 	wbinvd();
2915 }
2916 
need_emulate_wbinvd(struct kvm_vcpu * vcpu)2917 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2918 {
2919 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2920 }
2921 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2922 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2923 {
2924 	/* Address WBINVD may be executed by guest */
2925 	if (need_emulate_wbinvd(vcpu)) {
2926 		if (kvm_x86_ops->has_wbinvd_exit())
2927 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2928 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2929 			smp_call_function_single(vcpu->cpu,
2930 					wbinvd_ipi, NULL, 1);
2931 	}
2932 
2933 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2934 
2935 	/* Apply any externally detected TSC adjustments (due to suspend) */
2936 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2937 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2938 		vcpu->arch.tsc_offset_adjustment = 0;
2939 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2940 	}
2941 
2942 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2943 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2944 				native_read_tsc() - vcpu->arch.last_host_tsc;
2945 		if (tsc_delta < 0)
2946 			mark_tsc_unstable("KVM discovered backwards TSC");
2947 		if (check_tsc_unstable()) {
2948 			u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2949 						vcpu->arch.last_guest_tsc);
2950 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2951 			vcpu->arch.tsc_catchup = 1;
2952 		}
2953 		/*
2954 		 * On a host with synchronized TSC, there is no need to update
2955 		 * kvmclock on vcpu->cpu migration
2956 		 */
2957 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2958 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2959 		if (vcpu->cpu != cpu)
2960 			kvm_migrate_timers(vcpu);
2961 		vcpu->cpu = cpu;
2962 	}
2963 
2964 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2965 }
2966 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)2967 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2968 {
2969 	kvm_x86_ops->vcpu_put(vcpu);
2970 	kvm_put_guest_fpu(vcpu);
2971 	vcpu->arch.last_host_tsc = native_read_tsc();
2972 }
2973 
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)2974 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2975 				    struct kvm_lapic_state *s)
2976 {
2977 	kvm_x86_ops->sync_pir_to_irr(vcpu);
2978 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2979 
2980 	return 0;
2981 }
2982 
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)2983 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2984 				    struct kvm_lapic_state *s)
2985 {
2986 	kvm_apic_post_state_restore(vcpu, s);
2987 	update_cr8_intercept(vcpu);
2988 
2989 	return 0;
2990 }
2991 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)2992 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2993 				    struct kvm_interrupt *irq)
2994 {
2995 	if (irq->irq >= KVM_NR_INTERRUPTS)
2996 		return -EINVAL;
2997 	if (irqchip_in_kernel(vcpu->kvm))
2998 		return -ENXIO;
2999 
3000 	kvm_queue_interrupt(vcpu, irq->irq, false);
3001 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3002 
3003 	return 0;
3004 }
3005 
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)3006 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3007 {
3008 	kvm_inject_nmi(vcpu);
3009 
3010 	return 0;
3011 }
3012 
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)3013 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3014 					   struct kvm_tpr_access_ctl *tac)
3015 {
3016 	if (tac->flags)
3017 		return -EINVAL;
3018 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
3019 	return 0;
3020 }
3021 
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)3022 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3023 					u64 mcg_cap)
3024 {
3025 	int r;
3026 	unsigned bank_num = mcg_cap & 0xff, bank;
3027 
3028 	r = -EINVAL;
3029 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3030 		goto out;
3031 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
3032 		goto out;
3033 	r = 0;
3034 	vcpu->arch.mcg_cap = mcg_cap;
3035 	/* Init IA32_MCG_CTL to all 1s */
3036 	if (mcg_cap & MCG_CTL_P)
3037 		vcpu->arch.mcg_ctl = ~(u64)0;
3038 	/* Init IA32_MCi_CTL to all 1s */
3039 	for (bank = 0; bank < bank_num; bank++)
3040 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3041 out:
3042 	return r;
3043 }
3044 
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)3045 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3046 				      struct kvm_x86_mce *mce)
3047 {
3048 	u64 mcg_cap = vcpu->arch.mcg_cap;
3049 	unsigned bank_num = mcg_cap & 0xff;
3050 	u64 *banks = vcpu->arch.mce_banks;
3051 
3052 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3053 		return -EINVAL;
3054 	/*
3055 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3056 	 * reporting is disabled
3057 	 */
3058 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3059 	    vcpu->arch.mcg_ctl != ~(u64)0)
3060 		return 0;
3061 	banks += 4 * mce->bank;
3062 	/*
3063 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3064 	 * reporting is disabled for the bank
3065 	 */
3066 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3067 		return 0;
3068 	if (mce->status & MCI_STATUS_UC) {
3069 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3070 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3071 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3072 			return 0;
3073 		}
3074 		if (banks[1] & MCI_STATUS_VAL)
3075 			mce->status |= MCI_STATUS_OVER;
3076 		banks[2] = mce->addr;
3077 		banks[3] = mce->misc;
3078 		vcpu->arch.mcg_status = mce->mcg_status;
3079 		banks[1] = mce->status;
3080 		kvm_queue_exception(vcpu, MC_VECTOR);
3081 	} else if (!(banks[1] & MCI_STATUS_VAL)
3082 		   || !(banks[1] & MCI_STATUS_UC)) {
3083 		if (banks[1] & MCI_STATUS_VAL)
3084 			mce->status |= MCI_STATUS_OVER;
3085 		banks[2] = mce->addr;
3086 		banks[3] = mce->misc;
3087 		banks[1] = mce->status;
3088 	} else
3089 		banks[1] |= MCI_STATUS_OVER;
3090 	return 0;
3091 }
3092 
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)3093 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3094 					       struct kvm_vcpu_events *events)
3095 {
3096 	process_nmi(vcpu);
3097 	events->exception.injected =
3098 		vcpu->arch.exception.pending &&
3099 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
3100 	events->exception.nr = vcpu->arch.exception.nr;
3101 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3102 	events->exception.pad = 0;
3103 	events->exception.error_code = vcpu->arch.exception.error_code;
3104 
3105 	events->interrupt.injected =
3106 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3107 	events->interrupt.nr = vcpu->arch.interrupt.nr;
3108 	events->interrupt.soft = 0;
3109 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3110 
3111 	events->nmi.injected = vcpu->arch.nmi_injected;
3112 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
3113 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3114 	events->nmi.pad = 0;
3115 
3116 	events->sipi_vector = 0; /* never valid when reporting to user space */
3117 
3118 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3119 			 | KVM_VCPUEVENT_VALID_SHADOW);
3120 	memset(&events->reserved, 0, sizeof(events->reserved));
3121 }
3122 
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)3123 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3124 					      struct kvm_vcpu_events *events)
3125 {
3126 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3127 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3128 			      | KVM_VCPUEVENT_VALID_SHADOW))
3129 		return -EINVAL;
3130 
3131 	process_nmi(vcpu);
3132 	vcpu->arch.exception.pending = events->exception.injected;
3133 	vcpu->arch.exception.nr = events->exception.nr;
3134 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3135 	vcpu->arch.exception.error_code = events->exception.error_code;
3136 
3137 	vcpu->arch.interrupt.pending = events->interrupt.injected;
3138 	vcpu->arch.interrupt.nr = events->interrupt.nr;
3139 	vcpu->arch.interrupt.soft = events->interrupt.soft;
3140 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3141 		kvm_x86_ops->set_interrupt_shadow(vcpu,
3142 						  events->interrupt.shadow);
3143 
3144 	vcpu->arch.nmi_injected = events->nmi.injected;
3145 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3146 		vcpu->arch.nmi_pending = events->nmi.pending;
3147 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3148 
3149 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3150 	    kvm_vcpu_has_lapic(vcpu))
3151 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
3152 
3153 	kvm_make_request(KVM_REQ_EVENT, vcpu);
3154 
3155 	return 0;
3156 }
3157 
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)3158 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3159 					     struct kvm_debugregs *dbgregs)
3160 {
3161 	unsigned long val;
3162 
3163 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3164 	kvm_get_dr(vcpu, 6, &val);
3165 	dbgregs->dr6 = val;
3166 	dbgregs->dr7 = vcpu->arch.dr7;
3167 	dbgregs->flags = 0;
3168 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3169 }
3170 
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)3171 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3172 					    struct kvm_debugregs *dbgregs)
3173 {
3174 	if (dbgregs->flags)
3175 		return -EINVAL;
3176 
3177 	if (dbgregs->dr6 & ~0xffffffffull)
3178 		return -EINVAL;
3179 	if (dbgregs->dr7 & ~0xffffffffull)
3180 		return -EINVAL;
3181 
3182 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3183 	kvm_update_dr0123(vcpu);
3184 	vcpu->arch.dr6 = dbgregs->dr6;
3185 	kvm_update_dr6(vcpu);
3186 	vcpu->arch.dr7 = dbgregs->dr7;
3187 	kvm_update_dr7(vcpu);
3188 
3189 	return 0;
3190 }
3191 
3192 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3193 
fill_xsave(u8 * dest,struct kvm_vcpu * vcpu)3194 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3195 {
3196 	struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3197 	u64 xstate_bv = xsave->xsave_hdr.xstate_bv;
3198 	u64 valid;
3199 
3200 	/*
3201 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3202 	 * leaves 0 and 1 in the loop below.
3203 	 */
3204 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3205 
3206 	/* Set XSTATE_BV */
3207 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3208 
3209 	/*
3210 	 * Copy each region from the possibly compacted offset to the
3211 	 * non-compacted offset.
3212 	 */
3213 	valid = xstate_bv & ~XSTATE_FPSSE;
3214 	while (valid) {
3215 		u64 feature = valid & -valid;
3216 		int index = fls64(feature) - 1;
3217 		void *src = get_xsave_addr(xsave, feature);
3218 
3219 		if (src) {
3220 			u32 size, offset, ecx, edx;
3221 			cpuid_count(XSTATE_CPUID, index,
3222 				    &size, &offset, &ecx, &edx);
3223 			memcpy(dest + offset, src, size);
3224 		}
3225 
3226 		valid -= feature;
3227 	}
3228 }
3229 
load_xsave(struct kvm_vcpu * vcpu,u8 * src)3230 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3231 {
3232 	struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3233 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3234 	u64 valid;
3235 
3236 	/*
3237 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3238 	 * leaves 0 and 1 in the loop below.
3239 	 */
3240 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3241 
3242 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3243 	xsave->xsave_hdr.xstate_bv = xstate_bv;
3244 	if (cpu_has_xsaves)
3245 		xsave->xsave_hdr.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3246 
3247 	/*
3248 	 * Copy each region from the non-compacted offset to the
3249 	 * possibly compacted offset.
3250 	 */
3251 	valid = xstate_bv & ~XSTATE_FPSSE;
3252 	while (valid) {
3253 		u64 feature = valid & -valid;
3254 		int index = fls64(feature) - 1;
3255 		void *dest = get_xsave_addr(xsave, feature);
3256 
3257 		if (dest) {
3258 			u32 size, offset, ecx, edx;
3259 			cpuid_count(XSTATE_CPUID, index,
3260 				    &size, &offset, &ecx, &edx);
3261 			memcpy(dest, src + offset, size);
3262 		} else
3263 			WARN_ON_ONCE(1);
3264 
3265 		valid -= feature;
3266 	}
3267 }
3268 
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)3269 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3270 					 struct kvm_xsave *guest_xsave)
3271 {
3272 	if (cpu_has_xsave) {
3273 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3274 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3275 	} else {
3276 		memcpy(guest_xsave->region,
3277 			&vcpu->arch.guest_fpu.state->fxsave,
3278 			sizeof(struct i387_fxsave_struct));
3279 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3280 			XSTATE_FPSSE;
3281 	}
3282 }
3283 
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)3284 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3285 					struct kvm_xsave *guest_xsave)
3286 {
3287 	u64 xstate_bv =
3288 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3289 
3290 	if (cpu_has_xsave) {
3291 		/*
3292 		 * Here we allow setting states that are not present in
3293 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3294 		 * with old userspace.
3295 		 */
3296 		if (xstate_bv & ~kvm_supported_xcr0())
3297 			return -EINVAL;
3298 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3299 	} else {
3300 		if (xstate_bv & ~XSTATE_FPSSE)
3301 			return -EINVAL;
3302 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3303 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
3304 	}
3305 	return 0;
3306 }
3307 
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)3308 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3309 					struct kvm_xcrs *guest_xcrs)
3310 {
3311 	if (!cpu_has_xsave) {
3312 		guest_xcrs->nr_xcrs = 0;
3313 		return;
3314 	}
3315 
3316 	guest_xcrs->nr_xcrs = 1;
3317 	guest_xcrs->flags = 0;
3318 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3319 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3320 }
3321 
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)3322 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3323 				       struct kvm_xcrs *guest_xcrs)
3324 {
3325 	int i, r = 0;
3326 
3327 	if (!cpu_has_xsave)
3328 		return -EINVAL;
3329 
3330 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3331 		return -EINVAL;
3332 
3333 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3334 		/* Only support XCR0 currently */
3335 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3336 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3337 				guest_xcrs->xcrs[i].value);
3338 			break;
3339 		}
3340 	if (r)
3341 		r = -EINVAL;
3342 	return r;
3343 }
3344 
3345 /*
3346  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3347  * stopped by the hypervisor.  This function will be called from the host only.
3348  * EINVAL is returned when the host attempts to set the flag for a guest that
3349  * does not support pv clocks.
3350  */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)3351 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3352 {
3353 	if (!vcpu->arch.pv_time_enabled)
3354 		return -EINVAL;
3355 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3356 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3357 	return 0;
3358 }
3359 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3360 long kvm_arch_vcpu_ioctl(struct file *filp,
3361 			 unsigned int ioctl, unsigned long arg)
3362 {
3363 	struct kvm_vcpu *vcpu = filp->private_data;
3364 	void __user *argp = (void __user *)arg;
3365 	int r;
3366 	union {
3367 		struct kvm_lapic_state *lapic;
3368 		struct kvm_xsave *xsave;
3369 		struct kvm_xcrs *xcrs;
3370 		void *buffer;
3371 	} u;
3372 
3373 	u.buffer = NULL;
3374 	switch (ioctl) {
3375 	case KVM_GET_LAPIC: {
3376 		r = -EINVAL;
3377 		if (!vcpu->arch.apic)
3378 			goto out;
3379 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3380 
3381 		r = -ENOMEM;
3382 		if (!u.lapic)
3383 			goto out;
3384 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3385 		if (r)
3386 			goto out;
3387 		r = -EFAULT;
3388 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3389 			goto out;
3390 		r = 0;
3391 		break;
3392 	}
3393 	case KVM_SET_LAPIC: {
3394 		r = -EINVAL;
3395 		if (!vcpu->arch.apic)
3396 			goto out;
3397 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3398 		if (IS_ERR(u.lapic))
3399 			return PTR_ERR(u.lapic);
3400 
3401 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3402 		break;
3403 	}
3404 	case KVM_INTERRUPT: {
3405 		struct kvm_interrupt irq;
3406 
3407 		r = -EFAULT;
3408 		if (copy_from_user(&irq, argp, sizeof irq))
3409 			goto out;
3410 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3411 		break;
3412 	}
3413 	case KVM_NMI: {
3414 		r = kvm_vcpu_ioctl_nmi(vcpu);
3415 		break;
3416 	}
3417 	case KVM_SET_CPUID: {
3418 		struct kvm_cpuid __user *cpuid_arg = argp;
3419 		struct kvm_cpuid cpuid;
3420 
3421 		r = -EFAULT;
3422 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3423 			goto out;
3424 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3425 		break;
3426 	}
3427 	case KVM_SET_CPUID2: {
3428 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3429 		struct kvm_cpuid2 cpuid;
3430 
3431 		r = -EFAULT;
3432 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3433 			goto out;
3434 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3435 					      cpuid_arg->entries);
3436 		break;
3437 	}
3438 	case KVM_GET_CPUID2: {
3439 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3440 		struct kvm_cpuid2 cpuid;
3441 
3442 		r = -EFAULT;
3443 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3444 			goto out;
3445 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3446 					      cpuid_arg->entries);
3447 		if (r)
3448 			goto out;
3449 		r = -EFAULT;
3450 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3451 			goto out;
3452 		r = 0;
3453 		break;
3454 	}
3455 	case KVM_GET_MSRS:
3456 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
3457 		break;
3458 	case KVM_SET_MSRS:
3459 		r = msr_io(vcpu, argp, do_set_msr, 0);
3460 		break;
3461 	case KVM_TPR_ACCESS_REPORTING: {
3462 		struct kvm_tpr_access_ctl tac;
3463 
3464 		r = -EFAULT;
3465 		if (copy_from_user(&tac, argp, sizeof tac))
3466 			goto out;
3467 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3468 		if (r)
3469 			goto out;
3470 		r = -EFAULT;
3471 		if (copy_to_user(argp, &tac, sizeof tac))
3472 			goto out;
3473 		r = 0;
3474 		break;
3475 	};
3476 	case KVM_SET_VAPIC_ADDR: {
3477 		struct kvm_vapic_addr va;
3478 
3479 		r = -EINVAL;
3480 		if (!irqchip_in_kernel(vcpu->kvm))
3481 			goto out;
3482 		r = -EFAULT;
3483 		if (copy_from_user(&va, argp, sizeof va))
3484 			goto out;
3485 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3486 		break;
3487 	}
3488 	case KVM_X86_SETUP_MCE: {
3489 		u64 mcg_cap;
3490 
3491 		r = -EFAULT;
3492 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3493 			goto out;
3494 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3495 		break;
3496 	}
3497 	case KVM_X86_SET_MCE: {
3498 		struct kvm_x86_mce mce;
3499 
3500 		r = -EFAULT;
3501 		if (copy_from_user(&mce, argp, sizeof mce))
3502 			goto out;
3503 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3504 		break;
3505 	}
3506 	case KVM_GET_VCPU_EVENTS: {
3507 		struct kvm_vcpu_events events;
3508 
3509 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3510 
3511 		r = -EFAULT;
3512 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3513 			break;
3514 		r = 0;
3515 		break;
3516 	}
3517 	case KVM_SET_VCPU_EVENTS: {
3518 		struct kvm_vcpu_events events;
3519 
3520 		r = -EFAULT;
3521 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3522 			break;
3523 
3524 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3525 		break;
3526 	}
3527 	case KVM_GET_DEBUGREGS: {
3528 		struct kvm_debugregs dbgregs;
3529 
3530 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3531 
3532 		r = -EFAULT;
3533 		if (copy_to_user(argp, &dbgregs,
3534 				 sizeof(struct kvm_debugregs)))
3535 			break;
3536 		r = 0;
3537 		break;
3538 	}
3539 	case KVM_SET_DEBUGREGS: {
3540 		struct kvm_debugregs dbgregs;
3541 
3542 		r = -EFAULT;
3543 		if (copy_from_user(&dbgregs, argp,
3544 				   sizeof(struct kvm_debugregs)))
3545 			break;
3546 
3547 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3548 		break;
3549 	}
3550 	case KVM_GET_XSAVE: {
3551 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3552 		r = -ENOMEM;
3553 		if (!u.xsave)
3554 			break;
3555 
3556 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3557 
3558 		r = -EFAULT;
3559 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3560 			break;
3561 		r = 0;
3562 		break;
3563 	}
3564 	case KVM_SET_XSAVE: {
3565 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3566 		if (IS_ERR(u.xsave))
3567 			return PTR_ERR(u.xsave);
3568 
3569 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3570 		break;
3571 	}
3572 	case KVM_GET_XCRS: {
3573 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3574 		r = -ENOMEM;
3575 		if (!u.xcrs)
3576 			break;
3577 
3578 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3579 
3580 		r = -EFAULT;
3581 		if (copy_to_user(argp, u.xcrs,
3582 				 sizeof(struct kvm_xcrs)))
3583 			break;
3584 		r = 0;
3585 		break;
3586 	}
3587 	case KVM_SET_XCRS: {
3588 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3589 		if (IS_ERR(u.xcrs))
3590 			return PTR_ERR(u.xcrs);
3591 
3592 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3593 		break;
3594 	}
3595 	case KVM_SET_TSC_KHZ: {
3596 		u32 user_tsc_khz;
3597 
3598 		r = -EINVAL;
3599 		user_tsc_khz = (u32)arg;
3600 
3601 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3602 			goto out;
3603 
3604 		if (user_tsc_khz == 0)
3605 			user_tsc_khz = tsc_khz;
3606 
3607 		kvm_set_tsc_khz(vcpu, user_tsc_khz);
3608 
3609 		r = 0;
3610 		goto out;
3611 	}
3612 	case KVM_GET_TSC_KHZ: {
3613 		r = vcpu->arch.virtual_tsc_khz;
3614 		goto out;
3615 	}
3616 	case KVM_KVMCLOCK_CTRL: {
3617 		r = kvm_set_guest_paused(vcpu);
3618 		goto out;
3619 	}
3620 	default:
3621 		r = -EINVAL;
3622 	}
3623 out:
3624 	kfree(u.buffer);
3625 	return r;
3626 }
3627 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)3628 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3629 {
3630 	return VM_FAULT_SIGBUS;
3631 }
3632 
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)3633 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3634 {
3635 	int ret;
3636 
3637 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3638 		return -EINVAL;
3639 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3640 	return ret;
3641 }
3642 
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)3643 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3644 					      u64 ident_addr)
3645 {
3646 	kvm->arch.ept_identity_map_addr = ident_addr;
3647 	return 0;
3648 }
3649 
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,u32 kvm_nr_mmu_pages)3650 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3651 					  u32 kvm_nr_mmu_pages)
3652 {
3653 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3654 		return -EINVAL;
3655 
3656 	mutex_lock(&kvm->slots_lock);
3657 
3658 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3659 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3660 
3661 	mutex_unlock(&kvm->slots_lock);
3662 	return 0;
3663 }
3664 
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm * kvm)3665 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3666 {
3667 	return kvm->arch.n_max_mmu_pages;
3668 }
3669 
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)3670 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3671 {
3672 	int r;
3673 
3674 	r = 0;
3675 	switch (chip->chip_id) {
3676 	case KVM_IRQCHIP_PIC_MASTER:
3677 		memcpy(&chip->chip.pic,
3678 			&pic_irqchip(kvm)->pics[0],
3679 			sizeof(struct kvm_pic_state));
3680 		break;
3681 	case KVM_IRQCHIP_PIC_SLAVE:
3682 		memcpy(&chip->chip.pic,
3683 			&pic_irqchip(kvm)->pics[1],
3684 			sizeof(struct kvm_pic_state));
3685 		break;
3686 	case KVM_IRQCHIP_IOAPIC:
3687 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3688 		break;
3689 	default:
3690 		r = -EINVAL;
3691 		break;
3692 	}
3693 	return r;
3694 }
3695 
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)3696 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3697 {
3698 	int r;
3699 
3700 	r = 0;
3701 	switch (chip->chip_id) {
3702 	case KVM_IRQCHIP_PIC_MASTER:
3703 		spin_lock(&pic_irqchip(kvm)->lock);
3704 		memcpy(&pic_irqchip(kvm)->pics[0],
3705 			&chip->chip.pic,
3706 			sizeof(struct kvm_pic_state));
3707 		spin_unlock(&pic_irqchip(kvm)->lock);
3708 		break;
3709 	case KVM_IRQCHIP_PIC_SLAVE:
3710 		spin_lock(&pic_irqchip(kvm)->lock);
3711 		memcpy(&pic_irqchip(kvm)->pics[1],
3712 			&chip->chip.pic,
3713 			sizeof(struct kvm_pic_state));
3714 		spin_unlock(&pic_irqchip(kvm)->lock);
3715 		break;
3716 	case KVM_IRQCHIP_IOAPIC:
3717 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3718 		break;
3719 	default:
3720 		r = -EINVAL;
3721 		break;
3722 	}
3723 	kvm_pic_update_irq(pic_irqchip(kvm));
3724 	return r;
3725 }
3726 
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)3727 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3728 {
3729 	int r = 0;
3730 
3731 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3732 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3733 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3734 	return r;
3735 }
3736 
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)3737 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3738 {
3739 	int i;
3740 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3741 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3742 	for (i = 0; i < 3; i++)
3743 		kvm_pit_load_count(kvm, i, ps->channels[i].count, 0);
3744 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3745 	return 0;
3746 }
3747 
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)3748 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3749 {
3750 	int r = 0;
3751 
3752 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3753 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3754 		sizeof(ps->channels));
3755 	ps->flags = kvm->arch.vpit->pit_state.flags;
3756 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3757 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3758 	return r;
3759 }
3760 
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)3761 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3762 {
3763 	int r = 0, start = 0;
3764 	int i;
3765 	u32 prev_legacy, cur_legacy;
3766 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3767 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3768 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3769 	if (!prev_legacy && cur_legacy)
3770 		start = 1;
3771 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3772 	       sizeof(kvm->arch.vpit->pit_state.channels));
3773 	kvm->arch.vpit->pit_state.flags = ps->flags;
3774 	for (i = 0; i < 3; i++)
3775 		kvm_pit_load_count(kvm, i, kvm->arch.vpit->pit_state.channels[i].count, start);
3776 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3777 	return r;
3778 }
3779 
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)3780 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3781 				 struct kvm_reinject_control *control)
3782 {
3783 	if (!kvm->arch.vpit)
3784 		return -ENXIO;
3785 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3786 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3787 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3788 	return 0;
3789 }
3790 
3791 /**
3792  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3793  * @kvm: kvm instance
3794  * @log: slot id and address to which we copy the log
3795  *
3796  * Steps 1-4 below provide general overview of dirty page logging. See
3797  * kvm_get_dirty_log_protect() function description for additional details.
3798  *
3799  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3800  * always flush the TLB (step 4) even if previous step failed  and the dirty
3801  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3802  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3803  * writes will be marked dirty for next log read.
3804  *
3805  *   1. Take a snapshot of the bit and clear it if needed.
3806  *   2. Write protect the corresponding page.
3807  *   3. Copy the snapshot to the userspace.
3808  *   4. Flush TLB's if needed.
3809  */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)3810 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3811 {
3812 	bool is_dirty = false;
3813 	int r;
3814 
3815 	mutex_lock(&kvm->slots_lock);
3816 
3817 	/*
3818 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3819 	 */
3820 	if (kvm_x86_ops->flush_log_dirty)
3821 		kvm_x86_ops->flush_log_dirty(kvm);
3822 
3823 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3824 
3825 	/*
3826 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3827 	 * kvm_mmu_slot_remove_write_access().
3828 	 */
3829 	lockdep_assert_held(&kvm->slots_lock);
3830 	if (is_dirty)
3831 		kvm_flush_remote_tlbs(kvm);
3832 
3833 	mutex_unlock(&kvm->slots_lock);
3834 	return r;
3835 }
3836 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)3837 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3838 			bool line_status)
3839 {
3840 	if (!irqchip_in_kernel(kvm))
3841 		return -ENXIO;
3842 
3843 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3844 					irq_event->irq, irq_event->level,
3845 					line_status);
3846 	return 0;
3847 }
3848 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3849 long kvm_arch_vm_ioctl(struct file *filp,
3850 		       unsigned int ioctl, unsigned long arg)
3851 {
3852 	struct kvm *kvm = filp->private_data;
3853 	void __user *argp = (void __user *)arg;
3854 	int r = -ENOTTY;
3855 	/*
3856 	 * This union makes it completely explicit to gcc-3.x
3857 	 * that these two variables' stack usage should be
3858 	 * combined, not added together.
3859 	 */
3860 	union {
3861 		struct kvm_pit_state ps;
3862 		struct kvm_pit_state2 ps2;
3863 		struct kvm_pit_config pit_config;
3864 	} u;
3865 
3866 	switch (ioctl) {
3867 	case KVM_SET_TSS_ADDR:
3868 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3869 		break;
3870 	case KVM_SET_IDENTITY_MAP_ADDR: {
3871 		u64 ident_addr;
3872 
3873 		r = -EFAULT;
3874 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3875 			goto out;
3876 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3877 		break;
3878 	}
3879 	case KVM_SET_NR_MMU_PAGES:
3880 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3881 		break;
3882 	case KVM_GET_NR_MMU_PAGES:
3883 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3884 		break;
3885 	case KVM_CREATE_IRQCHIP: {
3886 		struct kvm_pic *vpic;
3887 
3888 		mutex_lock(&kvm->lock);
3889 		r = -EEXIST;
3890 		if (kvm->arch.vpic)
3891 			goto create_irqchip_unlock;
3892 		r = -EINVAL;
3893 		if (atomic_read(&kvm->online_vcpus))
3894 			goto create_irqchip_unlock;
3895 		r = -ENOMEM;
3896 		vpic = kvm_create_pic(kvm);
3897 		if (vpic) {
3898 			r = kvm_ioapic_init(kvm);
3899 			if (r) {
3900 				mutex_lock(&kvm->slots_lock);
3901 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3902 							  &vpic->dev_master);
3903 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3904 							  &vpic->dev_slave);
3905 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3906 							  &vpic->dev_eclr);
3907 				mutex_unlock(&kvm->slots_lock);
3908 				kfree(vpic);
3909 				goto create_irqchip_unlock;
3910 			}
3911 		} else
3912 			goto create_irqchip_unlock;
3913 		smp_wmb();
3914 		kvm->arch.vpic = vpic;
3915 		smp_wmb();
3916 		r = kvm_setup_default_irq_routing(kvm);
3917 		if (r) {
3918 			mutex_lock(&kvm->slots_lock);
3919 			mutex_lock(&kvm->irq_lock);
3920 			kvm_ioapic_destroy(kvm);
3921 			kvm_destroy_pic(kvm);
3922 			mutex_unlock(&kvm->irq_lock);
3923 			mutex_unlock(&kvm->slots_lock);
3924 		}
3925 	create_irqchip_unlock:
3926 		mutex_unlock(&kvm->lock);
3927 		break;
3928 	}
3929 	case KVM_CREATE_PIT:
3930 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3931 		goto create_pit;
3932 	case KVM_CREATE_PIT2:
3933 		r = -EFAULT;
3934 		if (copy_from_user(&u.pit_config, argp,
3935 				   sizeof(struct kvm_pit_config)))
3936 			goto out;
3937 	create_pit:
3938 		mutex_lock(&kvm->slots_lock);
3939 		r = -EEXIST;
3940 		if (kvm->arch.vpit)
3941 			goto create_pit_unlock;
3942 		r = -ENOMEM;
3943 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3944 		if (kvm->arch.vpit)
3945 			r = 0;
3946 	create_pit_unlock:
3947 		mutex_unlock(&kvm->slots_lock);
3948 		break;
3949 	case KVM_GET_IRQCHIP: {
3950 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3951 		struct kvm_irqchip *chip;
3952 
3953 		chip = memdup_user(argp, sizeof(*chip));
3954 		if (IS_ERR(chip)) {
3955 			r = PTR_ERR(chip);
3956 			goto out;
3957 		}
3958 
3959 		r = -ENXIO;
3960 		if (!irqchip_in_kernel(kvm))
3961 			goto get_irqchip_out;
3962 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3963 		if (r)
3964 			goto get_irqchip_out;
3965 		r = -EFAULT;
3966 		if (copy_to_user(argp, chip, sizeof *chip))
3967 			goto get_irqchip_out;
3968 		r = 0;
3969 	get_irqchip_out:
3970 		kfree(chip);
3971 		break;
3972 	}
3973 	case KVM_SET_IRQCHIP: {
3974 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3975 		struct kvm_irqchip *chip;
3976 
3977 		chip = memdup_user(argp, sizeof(*chip));
3978 		if (IS_ERR(chip)) {
3979 			r = PTR_ERR(chip);
3980 			goto out;
3981 		}
3982 
3983 		r = -ENXIO;
3984 		if (!irqchip_in_kernel(kvm))
3985 			goto set_irqchip_out;
3986 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3987 		if (r)
3988 			goto set_irqchip_out;
3989 		r = 0;
3990 	set_irqchip_out:
3991 		kfree(chip);
3992 		break;
3993 	}
3994 	case KVM_GET_PIT: {
3995 		r = -EFAULT;
3996 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3997 			goto out;
3998 		r = -ENXIO;
3999 		if (!kvm->arch.vpit)
4000 			goto out;
4001 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4002 		if (r)
4003 			goto out;
4004 		r = -EFAULT;
4005 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4006 			goto out;
4007 		r = 0;
4008 		break;
4009 	}
4010 	case KVM_SET_PIT: {
4011 		r = -EFAULT;
4012 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
4013 			goto out;
4014 		r = -ENXIO;
4015 		if (!kvm->arch.vpit)
4016 			goto out;
4017 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4018 		break;
4019 	}
4020 	case KVM_GET_PIT2: {
4021 		r = -ENXIO;
4022 		if (!kvm->arch.vpit)
4023 			goto out;
4024 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4025 		if (r)
4026 			goto out;
4027 		r = -EFAULT;
4028 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4029 			goto out;
4030 		r = 0;
4031 		break;
4032 	}
4033 	case KVM_SET_PIT2: {
4034 		r = -EFAULT;
4035 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4036 			goto out;
4037 		r = -ENXIO;
4038 		if (!kvm->arch.vpit)
4039 			goto out;
4040 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4041 		break;
4042 	}
4043 	case KVM_REINJECT_CONTROL: {
4044 		struct kvm_reinject_control control;
4045 		r =  -EFAULT;
4046 		if (copy_from_user(&control, argp, sizeof(control)))
4047 			goto out;
4048 		r = kvm_vm_ioctl_reinject(kvm, &control);
4049 		break;
4050 	}
4051 	case KVM_XEN_HVM_CONFIG: {
4052 		r = -EFAULT;
4053 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4054 				   sizeof(struct kvm_xen_hvm_config)))
4055 			goto out;
4056 		r = -EINVAL;
4057 		if (kvm->arch.xen_hvm_config.flags)
4058 			goto out;
4059 		r = 0;
4060 		break;
4061 	}
4062 	case KVM_SET_CLOCK: {
4063 		struct kvm_clock_data user_ns;
4064 		u64 now_ns;
4065 		s64 delta;
4066 
4067 		r = -EFAULT;
4068 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4069 			goto out;
4070 
4071 		r = -EINVAL;
4072 		if (user_ns.flags)
4073 			goto out;
4074 
4075 		r = 0;
4076 		local_irq_disable();
4077 		now_ns = get_kernel_ns();
4078 		delta = user_ns.clock - now_ns;
4079 		local_irq_enable();
4080 		kvm->arch.kvmclock_offset = delta;
4081 		kvm_gen_update_masterclock(kvm);
4082 		break;
4083 	}
4084 	case KVM_GET_CLOCK: {
4085 		struct kvm_clock_data user_ns;
4086 		u64 now_ns;
4087 
4088 		local_irq_disable();
4089 		now_ns = get_kernel_ns();
4090 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4091 		local_irq_enable();
4092 		user_ns.flags = 0;
4093 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4094 
4095 		r = -EFAULT;
4096 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4097 			goto out;
4098 		r = 0;
4099 		break;
4100 	}
4101 
4102 	default:
4103 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4104 	}
4105 out:
4106 	return r;
4107 }
4108 
kvm_init_msr_list(void)4109 static void kvm_init_msr_list(void)
4110 {
4111 	u32 dummy[2];
4112 	unsigned i, j;
4113 
4114 	/* skip the first msrs in the list. KVM-specific */
4115 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
4116 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4117 			continue;
4118 
4119 		/*
4120 		 * Even MSRs that are valid in the host may not be exposed
4121 		 * to the guests in some cases.
4122 		 */
4123 		switch (msrs_to_save[i]) {
4124 		case MSR_IA32_BNDCFGS:
4125 			if (!kvm_x86_ops->mpx_supported())
4126 				continue;
4127 			break;
4128 		case MSR_TSC_AUX:
4129 			if (!kvm_x86_ops->rdtscp_supported())
4130 				continue;
4131 			break;
4132 		default:
4133 			break;
4134 		}
4135 
4136 		if (j < i)
4137 			msrs_to_save[j] = msrs_to_save[i];
4138 		j++;
4139 	}
4140 	num_msrs_to_save = j;
4141 }
4142 
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)4143 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4144 			   const void *v)
4145 {
4146 	int handled = 0;
4147 	int n;
4148 
4149 	do {
4150 		n = min(len, 8);
4151 		if (!(vcpu->arch.apic &&
4152 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4153 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4154 			break;
4155 		handled += n;
4156 		addr += n;
4157 		len -= n;
4158 		v += n;
4159 	} while (len);
4160 
4161 	return handled;
4162 }
4163 
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)4164 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4165 {
4166 	int handled = 0;
4167 	int n;
4168 
4169 	do {
4170 		n = min(len, 8);
4171 		if (!(vcpu->arch.apic &&
4172 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4173 					 addr, n, v))
4174 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4175 			break;
4176 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4177 		handled += n;
4178 		addr += n;
4179 		len -= n;
4180 		v += n;
4181 	} while (len);
4182 
4183 	return handled;
4184 }
4185 
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)4186 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4187 			struct kvm_segment *var, int seg)
4188 {
4189 	kvm_x86_ops->set_segment(vcpu, var, seg);
4190 }
4191 
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)4192 void kvm_get_segment(struct kvm_vcpu *vcpu,
4193 		     struct kvm_segment *var, int seg)
4194 {
4195 	kvm_x86_ops->get_segment(vcpu, var, seg);
4196 }
4197 
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)4198 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4199 			   struct x86_exception *exception)
4200 {
4201 	gpa_t t_gpa;
4202 
4203 	BUG_ON(!mmu_is_nested(vcpu));
4204 
4205 	/* NPT walks are always user-walks */
4206 	access |= PFERR_USER_MASK;
4207 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4208 
4209 	return t_gpa;
4210 }
4211 
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4212 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4213 			      struct x86_exception *exception)
4214 {
4215 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4216 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4217 }
4218 
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4219  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4220 				struct x86_exception *exception)
4221 {
4222 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4223 	access |= PFERR_FETCH_MASK;
4224 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4225 }
4226 
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4227 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4228 			       struct x86_exception *exception)
4229 {
4230 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4231 	access |= PFERR_WRITE_MASK;
4232 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4233 }
4234 
4235 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4236 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4237 				struct x86_exception *exception)
4238 {
4239 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4240 }
4241 
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)4242 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4243 				      struct kvm_vcpu *vcpu, u32 access,
4244 				      struct x86_exception *exception)
4245 {
4246 	void *data = val;
4247 	int r = X86EMUL_CONTINUE;
4248 
4249 	while (bytes) {
4250 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4251 							    exception);
4252 		unsigned offset = addr & (PAGE_SIZE-1);
4253 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4254 		int ret;
4255 
4256 		if (gpa == UNMAPPED_GVA)
4257 			return X86EMUL_PROPAGATE_FAULT;
4258 		ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
4259 					  offset, toread);
4260 		if (ret < 0) {
4261 			r = X86EMUL_IO_NEEDED;
4262 			goto out;
4263 		}
4264 
4265 		bytes -= toread;
4266 		data += toread;
4267 		addr += toread;
4268 	}
4269 out:
4270 	return r;
4271 }
4272 
4273 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4274 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4275 				gva_t addr, void *val, unsigned int bytes,
4276 				struct x86_exception *exception)
4277 {
4278 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4279 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4280 	unsigned offset;
4281 	int ret;
4282 
4283 	/* Inline kvm_read_guest_virt_helper for speed.  */
4284 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4285 						    exception);
4286 	if (unlikely(gpa == UNMAPPED_GVA))
4287 		return X86EMUL_PROPAGATE_FAULT;
4288 
4289 	offset = addr & (PAGE_SIZE-1);
4290 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4291 		bytes = (unsigned)PAGE_SIZE - offset;
4292 	ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
4293 				  offset, bytes);
4294 	if (unlikely(ret < 0))
4295 		return X86EMUL_IO_NEEDED;
4296 
4297 	return X86EMUL_CONTINUE;
4298 }
4299 
kvm_read_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4300 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4301 			       gva_t addr, void *val, unsigned int bytes,
4302 			       struct x86_exception *exception)
4303 {
4304 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4305 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4306 
4307 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4308 					  exception);
4309 }
4310 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4311 
kvm_read_guest_virt_system(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4312 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4313 				      gva_t addr, void *val, unsigned int bytes,
4314 				      struct x86_exception *exception)
4315 {
4316 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4317 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4318 }
4319 
kvm_write_guest_virt_system(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4320 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4321 				       gva_t addr, void *val,
4322 				       unsigned int bytes,
4323 				       struct x86_exception *exception)
4324 {
4325 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4326 	void *data = val;
4327 	int r = X86EMUL_CONTINUE;
4328 
4329 	while (bytes) {
4330 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4331 							     PFERR_WRITE_MASK,
4332 							     exception);
4333 		unsigned offset = addr & (PAGE_SIZE-1);
4334 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4335 		int ret;
4336 
4337 		if (gpa == UNMAPPED_GVA)
4338 			return X86EMUL_PROPAGATE_FAULT;
4339 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4340 		if (ret < 0) {
4341 			r = X86EMUL_IO_NEEDED;
4342 			goto out;
4343 		}
4344 
4345 		bytes -= towrite;
4346 		data += towrite;
4347 		addr += towrite;
4348 	}
4349 out:
4350 	return r;
4351 }
4352 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4353 
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)4354 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4355 				gpa_t *gpa, struct x86_exception *exception,
4356 				bool write)
4357 {
4358 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4359 		| (write ? PFERR_WRITE_MASK : 0);
4360 
4361 	if (vcpu_match_mmio_gva(vcpu, gva)
4362 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4363 				 vcpu->arch.access, access)) {
4364 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4365 					(gva & (PAGE_SIZE - 1));
4366 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4367 		return 1;
4368 	}
4369 
4370 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4371 
4372 	if (*gpa == UNMAPPED_GVA)
4373 		return -1;
4374 
4375 	/* For APIC access vmexit */
4376 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4377 		return 1;
4378 
4379 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4380 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4381 		return 1;
4382 	}
4383 
4384 	return 0;
4385 }
4386 
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)4387 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4388 			const void *val, int bytes)
4389 {
4390 	int ret;
4391 
4392 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4393 	if (ret < 0)
4394 		return 0;
4395 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4396 	return 1;
4397 }
4398 
4399 struct read_write_emulator_ops {
4400 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4401 				  int bytes);
4402 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4403 				  void *val, int bytes);
4404 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4405 			       int bytes, void *val);
4406 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4407 				    void *val, int bytes);
4408 	bool write;
4409 };
4410 
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)4411 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4412 {
4413 	if (vcpu->mmio_read_completed) {
4414 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4415 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4416 		vcpu->mmio_read_completed = 0;
4417 		return 1;
4418 	}
4419 
4420 	return 0;
4421 }
4422 
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4423 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4424 			void *val, int bytes)
4425 {
4426 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4427 }
4428 
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4429 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4430 			 void *val, int bytes)
4431 {
4432 	return emulator_write_phys(vcpu, gpa, val, bytes);
4433 }
4434 
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)4435 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4436 {
4437 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4438 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4439 }
4440 
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4441 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4442 			  void *val, int bytes)
4443 {
4444 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4445 	return X86EMUL_IO_NEEDED;
4446 }
4447 
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4448 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4449 			   void *val, int bytes)
4450 {
4451 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4452 
4453 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4454 	return X86EMUL_CONTINUE;
4455 }
4456 
4457 static const struct read_write_emulator_ops read_emultor = {
4458 	.read_write_prepare = read_prepare,
4459 	.read_write_emulate = read_emulate,
4460 	.read_write_mmio = vcpu_mmio_read,
4461 	.read_write_exit_mmio = read_exit_mmio,
4462 };
4463 
4464 static const struct read_write_emulator_ops write_emultor = {
4465 	.read_write_emulate = write_emulate,
4466 	.read_write_mmio = write_mmio,
4467 	.read_write_exit_mmio = write_exit_mmio,
4468 	.write = true,
4469 };
4470 
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)4471 static int emulator_read_write_onepage(unsigned long addr, void *val,
4472 				       unsigned int bytes,
4473 				       struct x86_exception *exception,
4474 				       struct kvm_vcpu *vcpu,
4475 				       const struct read_write_emulator_ops *ops)
4476 {
4477 	gpa_t gpa;
4478 	int handled, ret;
4479 	bool write = ops->write;
4480 	struct kvm_mmio_fragment *frag;
4481 
4482 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4483 
4484 	if (ret < 0)
4485 		return X86EMUL_PROPAGATE_FAULT;
4486 
4487 	/* For APIC access vmexit */
4488 	if (ret)
4489 		goto mmio;
4490 
4491 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4492 		return X86EMUL_CONTINUE;
4493 
4494 mmio:
4495 	/*
4496 	 * Is this MMIO handled locally?
4497 	 */
4498 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4499 	if (handled == bytes)
4500 		return X86EMUL_CONTINUE;
4501 
4502 	gpa += handled;
4503 	bytes -= handled;
4504 	val += handled;
4505 
4506 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4507 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4508 	frag->gpa = gpa;
4509 	frag->data = val;
4510 	frag->len = bytes;
4511 	return X86EMUL_CONTINUE;
4512 }
4513 
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)4514 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4515 			unsigned long addr,
4516 			void *val, unsigned int bytes,
4517 			struct x86_exception *exception,
4518 			const struct read_write_emulator_ops *ops)
4519 {
4520 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4521 	gpa_t gpa;
4522 	int rc;
4523 
4524 	if (ops->read_write_prepare &&
4525 		  ops->read_write_prepare(vcpu, val, bytes))
4526 		return X86EMUL_CONTINUE;
4527 
4528 	vcpu->mmio_nr_fragments = 0;
4529 
4530 	/* Crossing a page boundary? */
4531 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4532 		int now;
4533 
4534 		now = -addr & ~PAGE_MASK;
4535 		rc = emulator_read_write_onepage(addr, val, now, exception,
4536 						 vcpu, ops);
4537 
4538 		if (rc != X86EMUL_CONTINUE)
4539 			return rc;
4540 		addr += now;
4541 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4542 			addr = (u32)addr;
4543 		val += now;
4544 		bytes -= now;
4545 	}
4546 
4547 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4548 					 vcpu, ops);
4549 	if (rc != X86EMUL_CONTINUE)
4550 		return rc;
4551 
4552 	if (!vcpu->mmio_nr_fragments)
4553 		return rc;
4554 
4555 	gpa = vcpu->mmio_fragments[0].gpa;
4556 
4557 	vcpu->mmio_needed = 1;
4558 	vcpu->mmio_cur_fragment = 0;
4559 
4560 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4561 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4562 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4563 	vcpu->run->mmio.phys_addr = gpa;
4564 
4565 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4566 }
4567 
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)4568 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4569 				  unsigned long addr,
4570 				  void *val,
4571 				  unsigned int bytes,
4572 				  struct x86_exception *exception)
4573 {
4574 	return emulator_read_write(ctxt, addr, val, bytes,
4575 				   exception, &read_emultor);
4576 }
4577 
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)4578 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4579 			    unsigned long addr,
4580 			    const void *val,
4581 			    unsigned int bytes,
4582 			    struct x86_exception *exception)
4583 {
4584 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4585 				   exception, &write_emultor);
4586 }
4587 
4588 #define CMPXCHG_TYPE(t, ptr, old, new) \
4589 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4590 
4591 #ifdef CONFIG_X86_64
4592 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4593 #else
4594 #  define CMPXCHG64(ptr, old, new) \
4595 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4596 #endif
4597 
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)4598 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4599 				     unsigned long addr,
4600 				     const void *old,
4601 				     const void *new,
4602 				     unsigned int bytes,
4603 				     struct x86_exception *exception)
4604 {
4605 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4606 	gpa_t gpa;
4607 	struct page *page;
4608 	char *kaddr;
4609 	bool exchanged;
4610 
4611 	/* guests cmpxchg8b have to be emulated atomically */
4612 	if (bytes > 8 || (bytes & (bytes - 1)))
4613 		goto emul_write;
4614 
4615 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4616 
4617 	if (gpa == UNMAPPED_GVA ||
4618 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4619 		goto emul_write;
4620 
4621 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4622 		goto emul_write;
4623 
4624 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4625 	if (is_error_page(page))
4626 		goto emul_write;
4627 
4628 	kaddr = kmap_atomic(page);
4629 	kaddr += offset_in_page(gpa);
4630 	switch (bytes) {
4631 	case 1:
4632 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4633 		break;
4634 	case 2:
4635 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4636 		break;
4637 	case 4:
4638 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4639 		break;
4640 	case 8:
4641 		exchanged = CMPXCHG64(kaddr, old, new);
4642 		break;
4643 	default:
4644 		BUG();
4645 	}
4646 	kunmap_atomic(kaddr);
4647 	kvm_release_page_dirty(page);
4648 
4649 	if (!exchanged)
4650 		return X86EMUL_CMPXCHG_FAILED;
4651 
4652 	mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4653 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4654 
4655 	return X86EMUL_CONTINUE;
4656 
4657 emul_write:
4658 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4659 
4660 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4661 }
4662 
kernel_pio(struct kvm_vcpu * vcpu,void * pd)4663 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4664 {
4665 	/* TODO: String I/O for in kernel device */
4666 	int r;
4667 
4668 	if (vcpu->arch.pio.in)
4669 		r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4670 				    vcpu->arch.pio.size, pd);
4671 	else
4672 		r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4673 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4674 				     pd);
4675 	return r;
4676 }
4677 
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count,bool in)4678 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4679 			       unsigned short port, void *val,
4680 			       unsigned int count, bool in)
4681 {
4682 	vcpu->arch.pio.port = port;
4683 	vcpu->arch.pio.in = in;
4684 	vcpu->arch.pio.count  = count;
4685 	vcpu->arch.pio.size = size;
4686 
4687 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4688 		vcpu->arch.pio.count = 0;
4689 		return 1;
4690 	}
4691 
4692 	vcpu->run->exit_reason = KVM_EXIT_IO;
4693 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4694 	vcpu->run->io.size = size;
4695 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4696 	vcpu->run->io.count = count;
4697 	vcpu->run->io.port = port;
4698 
4699 	return 0;
4700 }
4701 
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)4702 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4703 				    int size, unsigned short port, void *val,
4704 				    unsigned int count)
4705 {
4706 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4707 	int ret;
4708 
4709 	if (vcpu->arch.pio.count)
4710 		goto data_avail;
4711 
4712 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4713 	if (ret) {
4714 data_avail:
4715 		memcpy(val, vcpu->arch.pio_data, size * count);
4716 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4717 		vcpu->arch.pio.count = 0;
4718 		return 1;
4719 	}
4720 
4721 	return 0;
4722 }
4723 
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)4724 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4725 				     int size, unsigned short port,
4726 				     const void *val, unsigned int count)
4727 {
4728 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4729 
4730 	memcpy(vcpu->arch.pio_data, val, size * count);
4731 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4732 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4733 }
4734 
get_segment_base(struct kvm_vcpu * vcpu,int seg)4735 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4736 {
4737 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4738 }
4739 
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)4740 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4741 {
4742 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4743 }
4744 
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)4745 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4746 {
4747 	if (!need_emulate_wbinvd(vcpu))
4748 		return X86EMUL_CONTINUE;
4749 
4750 	if (kvm_x86_ops->has_wbinvd_exit()) {
4751 		int cpu = get_cpu();
4752 
4753 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4754 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4755 				wbinvd_ipi, NULL, 1);
4756 		put_cpu();
4757 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4758 	} else
4759 		wbinvd();
4760 	return X86EMUL_CONTINUE;
4761 }
4762 
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)4763 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4764 {
4765 	kvm_x86_ops->skip_emulated_instruction(vcpu);
4766 	return kvm_emulate_wbinvd_noskip(vcpu);
4767 }
4768 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4769 
4770 
4771 
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)4772 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4773 {
4774 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4775 }
4776 
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)4777 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4778 			   unsigned long *dest)
4779 {
4780 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4781 }
4782 
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)4783 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4784 			   unsigned long value)
4785 {
4786 
4787 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4788 }
4789 
mk_cr_64(u64 curr_cr,u32 new_val)4790 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4791 {
4792 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4793 }
4794 
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)4795 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4796 {
4797 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4798 	unsigned long value;
4799 
4800 	switch (cr) {
4801 	case 0:
4802 		value = kvm_read_cr0(vcpu);
4803 		break;
4804 	case 2:
4805 		value = vcpu->arch.cr2;
4806 		break;
4807 	case 3:
4808 		value = kvm_read_cr3(vcpu);
4809 		break;
4810 	case 4:
4811 		value = kvm_read_cr4(vcpu);
4812 		break;
4813 	case 8:
4814 		value = kvm_get_cr8(vcpu);
4815 		break;
4816 	default:
4817 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4818 		return 0;
4819 	}
4820 
4821 	return value;
4822 }
4823 
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)4824 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4825 {
4826 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4827 	int res = 0;
4828 
4829 	switch (cr) {
4830 	case 0:
4831 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4832 		break;
4833 	case 2:
4834 		vcpu->arch.cr2 = val;
4835 		break;
4836 	case 3:
4837 		res = kvm_set_cr3(vcpu, val);
4838 		break;
4839 	case 4:
4840 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4841 		break;
4842 	case 8:
4843 		res = kvm_set_cr8(vcpu, val);
4844 		break;
4845 	default:
4846 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4847 		res = -1;
4848 	}
4849 
4850 	return res;
4851 }
4852 
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)4853 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4854 {
4855 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4856 }
4857 
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4858 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4859 {
4860 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4861 }
4862 
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4863 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4864 {
4865 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4866 }
4867 
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4868 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4869 {
4870 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4871 }
4872 
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4873 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4874 {
4875 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4876 }
4877 
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)4878 static unsigned long emulator_get_cached_segment_base(
4879 	struct x86_emulate_ctxt *ctxt, int seg)
4880 {
4881 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4882 }
4883 
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)4884 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4885 				 struct desc_struct *desc, u32 *base3,
4886 				 int seg)
4887 {
4888 	struct kvm_segment var;
4889 
4890 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4891 	*selector = var.selector;
4892 
4893 	if (var.unusable) {
4894 		memset(desc, 0, sizeof(*desc));
4895 		return false;
4896 	}
4897 
4898 	if (var.g)
4899 		var.limit >>= 12;
4900 	set_desc_limit(desc, var.limit);
4901 	set_desc_base(desc, (unsigned long)var.base);
4902 #ifdef CONFIG_X86_64
4903 	if (base3)
4904 		*base3 = var.base >> 32;
4905 #endif
4906 	desc->type = var.type;
4907 	desc->s = var.s;
4908 	desc->dpl = var.dpl;
4909 	desc->p = var.present;
4910 	desc->avl = var.avl;
4911 	desc->l = var.l;
4912 	desc->d = var.db;
4913 	desc->g = var.g;
4914 
4915 	return true;
4916 }
4917 
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)4918 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4919 				 struct desc_struct *desc, u32 base3,
4920 				 int seg)
4921 {
4922 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4923 	struct kvm_segment var;
4924 
4925 	var.selector = selector;
4926 	var.base = get_desc_base(desc);
4927 #ifdef CONFIG_X86_64
4928 	var.base |= ((u64)base3) << 32;
4929 #endif
4930 	var.limit = get_desc_limit(desc);
4931 	if (desc->g)
4932 		var.limit = (var.limit << 12) | 0xfff;
4933 	var.type = desc->type;
4934 	var.dpl = desc->dpl;
4935 	var.db = desc->d;
4936 	var.s = desc->s;
4937 	var.l = desc->l;
4938 	var.g = desc->g;
4939 	var.avl = desc->avl;
4940 	var.present = desc->p;
4941 	var.unusable = !var.present;
4942 	var.padding = 0;
4943 
4944 	kvm_set_segment(vcpu, &var, seg);
4945 	return;
4946 }
4947 
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)4948 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4949 			    u32 msr_index, u64 *pdata)
4950 {
4951 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4952 }
4953 
emulator_set_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)4954 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4955 			    u32 msr_index, u64 data)
4956 {
4957 	struct msr_data msr;
4958 
4959 	msr.data = data;
4960 	msr.index = msr_index;
4961 	msr.host_initiated = false;
4962 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4963 }
4964 
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)4965 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4966 			      u32 pmc)
4967 {
4968 	return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
4969 }
4970 
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)4971 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4972 			     u32 pmc, u64 *pdata)
4973 {
4974 	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4975 }
4976 
emulator_halt(struct x86_emulate_ctxt * ctxt)4977 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4978 {
4979 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4980 }
4981 
emulator_get_fpu(struct x86_emulate_ctxt * ctxt)4982 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4983 {
4984 	preempt_disable();
4985 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4986 	/*
4987 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4988 	 * so it may be clear at this point.
4989 	 */
4990 	clts();
4991 }
4992 
emulator_put_fpu(struct x86_emulate_ctxt * ctxt)4993 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4994 {
4995 	preempt_enable();
4996 }
4997 
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)4998 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4999 			      struct x86_instruction_info *info,
5000 			      enum x86_intercept_stage stage)
5001 {
5002 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5003 }
5004 
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx)5005 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5006 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5007 {
5008 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5009 }
5010 
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)5011 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5012 {
5013 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
5014 }
5015 
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)5016 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5017 {
5018 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5019 }
5020 
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)5021 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5022 {
5023 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5024 }
5025 
5026 static const struct x86_emulate_ops emulate_ops = {
5027 	.read_gpr            = emulator_read_gpr,
5028 	.write_gpr           = emulator_write_gpr,
5029 	.read_std            = kvm_read_guest_virt_system,
5030 	.write_std           = kvm_write_guest_virt_system,
5031 	.fetch               = kvm_fetch_guest_virt,
5032 	.read_emulated       = emulator_read_emulated,
5033 	.write_emulated      = emulator_write_emulated,
5034 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
5035 	.invlpg              = emulator_invlpg,
5036 	.pio_in_emulated     = emulator_pio_in_emulated,
5037 	.pio_out_emulated    = emulator_pio_out_emulated,
5038 	.get_segment         = emulator_get_segment,
5039 	.set_segment         = emulator_set_segment,
5040 	.get_cached_segment_base = emulator_get_cached_segment_base,
5041 	.get_gdt             = emulator_get_gdt,
5042 	.get_idt	     = emulator_get_idt,
5043 	.set_gdt             = emulator_set_gdt,
5044 	.set_idt	     = emulator_set_idt,
5045 	.get_cr              = emulator_get_cr,
5046 	.set_cr              = emulator_set_cr,
5047 	.cpl                 = emulator_get_cpl,
5048 	.get_dr              = emulator_get_dr,
5049 	.set_dr              = emulator_set_dr,
5050 	.set_msr             = emulator_set_msr,
5051 	.get_msr             = emulator_get_msr,
5052 	.check_pmc	     = emulator_check_pmc,
5053 	.read_pmc            = emulator_read_pmc,
5054 	.halt                = emulator_halt,
5055 	.wbinvd              = emulator_wbinvd,
5056 	.fix_hypercall       = emulator_fix_hypercall,
5057 	.get_fpu             = emulator_get_fpu,
5058 	.put_fpu             = emulator_put_fpu,
5059 	.intercept           = emulator_intercept,
5060 	.get_cpuid           = emulator_get_cpuid,
5061 	.set_nmi_mask        = emulator_set_nmi_mask,
5062 };
5063 
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)5064 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5065 {
5066 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5067 	/*
5068 	 * an sti; sti; sequence only disable interrupts for the first
5069 	 * instruction. So, if the last instruction, be it emulated or
5070 	 * not, left the system with the INT_STI flag enabled, it
5071 	 * means that the last instruction is an sti. We should not
5072 	 * leave the flag on in this case. The same goes for mov ss
5073 	 */
5074 	if (int_shadow & mask)
5075 		mask = 0;
5076 	if (unlikely(int_shadow || mask)) {
5077 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5078 		if (!mask)
5079 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5080 	}
5081 }
5082 
inject_emulated_exception(struct kvm_vcpu * vcpu)5083 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5084 {
5085 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5086 	if (ctxt->exception.vector == PF_VECTOR)
5087 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5088 
5089 	if (ctxt->exception.error_code_valid)
5090 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5091 				      ctxt->exception.error_code);
5092 	else
5093 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5094 	return false;
5095 }
5096 
init_emulate_ctxt(struct kvm_vcpu * vcpu)5097 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5098 {
5099 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5100 	int cs_db, cs_l;
5101 
5102 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5103 
5104 	ctxt->eflags = kvm_get_rflags(vcpu);
5105 	ctxt->eip = kvm_rip_read(vcpu);
5106 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5107 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5108 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5109 		     cs_db				? X86EMUL_MODE_PROT32 :
5110 							  X86EMUL_MODE_PROT16;
5111 	ctxt->guest_mode = is_guest_mode(vcpu);
5112 
5113 	init_decode_cache(ctxt);
5114 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5115 }
5116 
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)5117 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5118 {
5119 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5120 	int ret;
5121 
5122 	init_emulate_ctxt(vcpu);
5123 
5124 	ctxt->op_bytes = 2;
5125 	ctxt->ad_bytes = 2;
5126 	ctxt->_eip = ctxt->eip + inc_eip;
5127 	ret = emulate_int_real(ctxt, irq);
5128 
5129 	if (ret != X86EMUL_CONTINUE)
5130 		return EMULATE_FAIL;
5131 
5132 	ctxt->eip = ctxt->_eip;
5133 	kvm_rip_write(vcpu, ctxt->eip);
5134 	kvm_set_rflags(vcpu, ctxt->eflags);
5135 
5136 	if (irq == NMI_VECTOR)
5137 		vcpu->arch.nmi_pending = 0;
5138 	else
5139 		vcpu->arch.interrupt.pending = false;
5140 
5141 	return EMULATE_DONE;
5142 }
5143 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5144 
handle_emulation_failure(struct kvm_vcpu * vcpu)5145 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5146 {
5147 	int r = EMULATE_DONE;
5148 
5149 	++vcpu->stat.insn_emulation_fail;
5150 	trace_kvm_emulate_insn_failed(vcpu);
5151 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5152 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5153 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5154 		vcpu->run->internal.ndata = 0;
5155 		r = EMULATE_FAIL;
5156 	}
5157 	kvm_queue_exception(vcpu, UD_VECTOR);
5158 
5159 	return r;
5160 }
5161 
reexecute_instruction(struct kvm_vcpu * vcpu,gva_t cr2,bool write_fault_to_shadow_pgtable,int emulation_type)5162 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5163 				  bool write_fault_to_shadow_pgtable,
5164 				  int emulation_type)
5165 {
5166 	gpa_t gpa = cr2;
5167 	pfn_t pfn;
5168 
5169 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5170 		return false;
5171 
5172 	if (!vcpu->arch.mmu.direct_map) {
5173 		/*
5174 		 * Write permission should be allowed since only
5175 		 * write access need to be emulated.
5176 		 */
5177 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5178 
5179 		/*
5180 		 * If the mapping is invalid in guest, let cpu retry
5181 		 * it to generate fault.
5182 		 */
5183 		if (gpa == UNMAPPED_GVA)
5184 			return true;
5185 	}
5186 
5187 	/*
5188 	 * Do not retry the unhandleable instruction if it faults on the
5189 	 * readonly host memory, otherwise it will goto a infinite loop:
5190 	 * retry instruction -> write #PF -> emulation fail -> retry
5191 	 * instruction -> ...
5192 	 */
5193 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5194 
5195 	/*
5196 	 * If the instruction failed on the error pfn, it can not be fixed,
5197 	 * report the error to userspace.
5198 	 */
5199 	if (is_error_noslot_pfn(pfn))
5200 		return false;
5201 
5202 	kvm_release_pfn_clean(pfn);
5203 
5204 	/* The instructions are well-emulated on direct mmu. */
5205 	if (vcpu->arch.mmu.direct_map) {
5206 		unsigned int indirect_shadow_pages;
5207 
5208 		spin_lock(&vcpu->kvm->mmu_lock);
5209 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5210 		spin_unlock(&vcpu->kvm->mmu_lock);
5211 
5212 		if (indirect_shadow_pages)
5213 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5214 
5215 		return true;
5216 	}
5217 
5218 	/*
5219 	 * if emulation was due to access to shadowed page table
5220 	 * and it failed try to unshadow page and re-enter the
5221 	 * guest to let CPU execute the instruction.
5222 	 */
5223 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5224 
5225 	/*
5226 	 * If the access faults on its page table, it can not
5227 	 * be fixed by unprotecting shadow page and it should
5228 	 * be reported to userspace.
5229 	 */
5230 	return !write_fault_to_shadow_pgtable;
5231 }
5232 
retry_instruction(struct x86_emulate_ctxt * ctxt,unsigned long cr2,int emulation_type)5233 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5234 			      unsigned long cr2,  int emulation_type)
5235 {
5236 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5237 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5238 
5239 	last_retry_eip = vcpu->arch.last_retry_eip;
5240 	last_retry_addr = vcpu->arch.last_retry_addr;
5241 
5242 	/*
5243 	 * If the emulation is caused by #PF and it is non-page_table
5244 	 * writing instruction, it means the VM-EXIT is caused by shadow
5245 	 * page protected, we can zap the shadow page and retry this
5246 	 * instruction directly.
5247 	 *
5248 	 * Note: if the guest uses a non-page-table modifying instruction
5249 	 * on the PDE that points to the instruction, then we will unmap
5250 	 * the instruction and go to an infinite loop. So, we cache the
5251 	 * last retried eip and the last fault address, if we meet the eip
5252 	 * and the address again, we can break out of the potential infinite
5253 	 * loop.
5254 	 */
5255 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5256 
5257 	if (!(emulation_type & EMULTYPE_RETRY))
5258 		return false;
5259 
5260 	if (x86_page_table_writing_insn(ctxt))
5261 		return false;
5262 
5263 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5264 		return false;
5265 
5266 	vcpu->arch.last_retry_eip = ctxt->eip;
5267 	vcpu->arch.last_retry_addr = cr2;
5268 
5269 	if (!vcpu->arch.mmu.direct_map)
5270 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5271 
5272 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5273 
5274 	return true;
5275 }
5276 
5277 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5278 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5279 
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)5280 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5281 				unsigned long *db)
5282 {
5283 	u32 dr6 = 0;
5284 	int i;
5285 	u32 enable, rwlen;
5286 
5287 	enable = dr7;
5288 	rwlen = dr7 >> 16;
5289 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5290 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5291 			dr6 |= (1 << i);
5292 	return dr6;
5293 }
5294 
kvm_vcpu_check_singlestep(struct kvm_vcpu * vcpu,unsigned long rflags,int * r)5295 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5296 {
5297 	struct kvm_run *kvm_run = vcpu->run;
5298 
5299 	/*
5300 	 * rflags is the old, "raw" value of the flags.  The new value has
5301 	 * not been saved yet.
5302 	 *
5303 	 * This is correct even for TF set by the guest, because "the
5304 	 * processor will not generate this exception after the instruction
5305 	 * that sets the TF flag".
5306 	 */
5307 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5308 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5309 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5310 						  DR6_RTM;
5311 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5312 			kvm_run->debug.arch.exception = DB_VECTOR;
5313 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5314 			*r = EMULATE_USER_EXIT;
5315 		} else {
5316 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5317 			/*
5318 			 * "Certain debug exceptions may clear bit 0-3.  The
5319 			 * remaining contents of the DR6 register are never
5320 			 * cleared by the processor".
5321 			 */
5322 			vcpu->arch.dr6 &= ~15;
5323 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5324 			kvm_queue_exception(vcpu, DB_VECTOR);
5325 		}
5326 	}
5327 }
5328 
kvm_vcpu_check_breakpoint(struct kvm_vcpu * vcpu,int * r)5329 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5330 {
5331 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5332 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5333 		struct kvm_run *kvm_run = vcpu->run;
5334 		unsigned long eip = kvm_get_linear_rip(vcpu);
5335 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5336 					   vcpu->arch.guest_debug_dr7,
5337 					   vcpu->arch.eff_db);
5338 
5339 		if (dr6 != 0) {
5340 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5341 			kvm_run->debug.arch.pc = eip;
5342 			kvm_run->debug.arch.exception = DB_VECTOR;
5343 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5344 			*r = EMULATE_USER_EXIT;
5345 			return true;
5346 		}
5347 	}
5348 
5349 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5350 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5351 		unsigned long eip = kvm_get_linear_rip(vcpu);
5352 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5353 					   vcpu->arch.dr7,
5354 					   vcpu->arch.db);
5355 
5356 		if (dr6 != 0) {
5357 			vcpu->arch.dr6 &= ~15;
5358 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5359 			kvm_queue_exception(vcpu, DB_VECTOR);
5360 			*r = EMULATE_DONE;
5361 			return true;
5362 		}
5363 	}
5364 
5365 	return false;
5366 }
5367 
x86_emulate_instruction(struct kvm_vcpu * vcpu,unsigned long cr2,int emulation_type,void * insn,int insn_len)5368 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5369 			    unsigned long cr2,
5370 			    int emulation_type,
5371 			    void *insn,
5372 			    int insn_len)
5373 {
5374 	int r;
5375 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5376 	bool writeback = true;
5377 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5378 
5379 	/*
5380 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5381 	 * never reused.
5382 	 */
5383 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5384 	kvm_clear_exception_queue(vcpu);
5385 
5386 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5387 		init_emulate_ctxt(vcpu);
5388 
5389 		/*
5390 		 * We will reenter on the same instruction since
5391 		 * we do not set complete_userspace_io.  This does not
5392 		 * handle watchpoints yet, those would be handled in
5393 		 * the emulate_ops.
5394 		 */
5395 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5396 			return r;
5397 
5398 		ctxt->interruptibility = 0;
5399 		ctxt->have_exception = false;
5400 		ctxt->exception.vector = -1;
5401 		ctxt->perm_ok = false;
5402 
5403 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5404 
5405 		r = x86_decode_insn(ctxt, insn, insn_len);
5406 
5407 		trace_kvm_emulate_insn_start(vcpu);
5408 		++vcpu->stat.insn_emulation;
5409 		if (r != EMULATION_OK)  {
5410 			if (emulation_type & EMULTYPE_TRAP_UD)
5411 				return EMULATE_FAIL;
5412 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5413 						emulation_type))
5414 				return EMULATE_DONE;
5415 			if (emulation_type & EMULTYPE_SKIP)
5416 				return EMULATE_FAIL;
5417 			return handle_emulation_failure(vcpu);
5418 		}
5419 	}
5420 
5421 	if (emulation_type & EMULTYPE_SKIP) {
5422 		kvm_rip_write(vcpu, ctxt->_eip);
5423 		if (ctxt->eflags & X86_EFLAGS_RF)
5424 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5425 		return EMULATE_DONE;
5426 	}
5427 
5428 	if (retry_instruction(ctxt, cr2, emulation_type))
5429 		return EMULATE_DONE;
5430 
5431 	/* this is needed for vmware backdoor interface to work since it
5432 	   changes registers values  during IO operation */
5433 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5434 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5435 		emulator_invalidate_register_cache(ctxt);
5436 	}
5437 
5438 restart:
5439 	r = x86_emulate_insn(ctxt);
5440 
5441 	if (r == EMULATION_INTERCEPTED)
5442 		return EMULATE_DONE;
5443 
5444 	if (r == EMULATION_FAILED) {
5445 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5446 					emulation_type))
5447 			return EMULATE_DONE;
5448 
5449 		return handle_emulation_failure(vcpu);
5450 	}
5451 
5452 	if (ctxt->have_exception) {
5453 		r = EMULATE_DONE;
5454 		if (inject_emulated_exception(vcpu))
5455 			return r;
5456 	} else if (vcpu->arch.pio.count) {
5457 		if (!vcpu->arch.pio.in) {
5458 			/* FIXME: return into emulator if single-stepping.  */
5459 			vcpu->arch.pio.count = 0;
5460 		} else {
5461 			writeback = false;
5462 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5463 		}
5464 		r = EMULATE_USER_EXIT;
5465 	} else if (vcpu->mmio_needed) {
5466 		if (!vcpu->mmio_is_write)
5467 			writeback = false;
5468 		r = EMULATE_USER_EXIT;
5469 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5470 	} else if (r == EMULATION_RESTART)
5471 		goto restart;
5472 	else
5473 		r = EMULATE_DONE;
5474 
5475 	if (writeback) {
5476 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5477 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5478 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5479 		kvm_rip_write(vcpu, ctxt->eip);
5480 		if (r == EMULATE_DONE)
5481 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5482 		if (!ctxt->have_exception ||
5483 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5484 			__kvm_set_rflags(vcpu, ctxt->eflags);
5485 
5486 		/*
5487 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5488 		 * do nothing, and it will be requested again as soon as
5489 		 * the shadow expires.  But we still need to check here,
5490 		 * because POPF has no interrupt shadow.
5491 		 */
5492 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5493 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5494 	} else
5495 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5496 
5497 	return r;
5498 }
5499 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5500 
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)5501 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5502 {
5503 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5504 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5505 					    size, port, &val, 1);
5506 	/* do not return to emulator after return from userspace */
5507 	vcpu->arch.pio.count = 0;
5508 	return ret;
5509 }
5510 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5511 
tsc_bad(void * info)5512 static void tsc_bad(void *info)
5513 {
5514 	__this_cpu_write(cpu_tsc_khz, 0);
5515 }
5516 
tsc_khz_changed(void * data)5517 static void tsc_khz_changed(void *data)
5518 {
5519 	struct cpufreq_freqs *freq = data;
5520 	unsigned long khz = 0;
5521 
5522 	if (data)
5523 		khz = freq->new;
5524 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5525 		khz = cpufreq_quick_get(raw_smp_processor_id());
5526 	if (!khz)
5527 		khz = tsc_khz;
5528 	__this_cpu_write(cpu_tsc_khz, khz);
5529 }
5530 
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)5531 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5532 				     void *data)
5533 {
5534 	struct cpufreq_freqs *freq = data;
5535 	struct kvm *kvm;
5536 	struct kvm_vcpu *vcpu;
5537 	int i, send_ipi = 0;
5538 
5539 	/*
5540 	 * We allow guests to temporarily run on slowing clocks,
5541 	 * provided we notify them after, or to run on accelerating
5542 	 * clocks, provided we notify them before.  Thus time never
5543 	 * goes backwards.
5544 	 *
5545 	 * However, we have a problem.  We can't atomically update
5546 	 * the frequency of a given CPU from this function; it is
5547 	 * merely a notifier, which can be called from any CPU.
5548 	 * Changing the TSC frequency at arbitrary points in time
5549 	 * requires a recomputation of local variables related to
5550 	 * the TSC for each VCPU.  We must flag these local variables
5551 	 * to be updated and be sure the update takes place with the
5552 	 * new frequency before any guests proceed.
5553 	 *
5554 	 * Unfortunately, the combination of hotplug CPU and frequency
5555 	 * change creates an intractable locking scenario; the order
5556 	 * of when these callouts happen is undefined with respect to
5557 	 * CPU hotplug, and they can race with each other.  As such,
5558 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5559 	 * undefined; you can actually have a CPU frequency change take
5560 	 * place in between the computation of X and the setting of the
5561 	 * variable.  To protect against this problem, all updates of
5562 	 * the per_cpu tsc_khz variable are done in an interrupt
5563 	 * protected IPI, and all callers wishing to update the value
5564 	 * must wait for a synchronous IPI to complete (which is trivial
5565 	 * if the caller is on the CPU already).  This establishes the
5566 	 * necessary total order on variable updates.
5567 	 *
5568 	 * Note that because a guest time update may take place
5569 	 * anytime after the setting of the VCPU's request bit, the
5570 	 * correct TSC value must be set before the request.  However,
5571 	 * to ensure the update actually makes it to any guest which
5572 	 * starts running in hardware virtualization between the set
5573 	 * and the acquisition of the spinlock, we must also ping the
5574 	 * CPU after setting the request bit.
5575 	 *
5576 	 */
5577 
5578 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5579 		return 0;
5580 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5581 		return 0;
5582 
5583 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5584 
5585 	spin_lock(&kvm_lock);
5586 	list_for_each_entry(kvm, &vm_list, vm_list) {
5587 		kvm_for_each_vcpu(i, vcpu, kvm) {
5588 			if (vcpu->cpu != freq->cpu)
5589 				continue;
5590 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5591 			if (vcpu->cpu != smp_processor_id())
5592 				send_ipi = 1;
5593 		}
5594 	}
5595 	spin_unlock(&kvm_lock);
5596 
5597 	if (freq->old < freq->new && send_ipi) {
5598 		/*
5599 		 * We upscale the frequency.  Must make the guest
5600 		 * doesn't see old kvmclock values while running with
5601 		 * the new frequency, otherwise we risk the guest sees
5602 		 * time go backwards.
5603 		 *
5604 		 * In case we update the frequency for another cpu
5605 		 * (which might be in guest context) send an interrupt
5606 		 * to kick the cpu out of guest context.  Next time
5607 		 * guest context is entered kvmclock will be updated,
5608 		 * so the guest will not see stale values.
5609 		 */
5610 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5611 	}
5612 	return 0;
5613 }
5614 
5615 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5616 	.notifier_call  = kvmclock_cpufreq_notifier
5617 };
5618 
kvmclock_cpu_notifier(struct notifier_block * nfb,unsigned long action,void * hcpu)5619 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5620 					unsigned long action, void *hcpu)
5621 {
5622 	unsigned int cpu = (unsigned long)hcpu;
5623 
5624 	switch (action) {
5625 		case CPU_ONLINE:
5626 		case CPU_DOWN_FAILED:
5627 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5628 			break;
5629 		case CPU_DOWN_PREPARE:
5630 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5631 			break;
5632 	}
5633 	return NOTIFY_OK;
5634 }
5635 
5636 static struct notifier_block kvmclock_cpu_notifier_block = {
5637 	.notifier_call  = kvmclock_cpu_notifier,
5638 	.priority = -INT_MAX
5639 };
5640 
kvm_timer_init(void)5641 static void kvm_timer_init(void)
5642 {
5643 	int cpu;
5644 
5645 	max_tsc_khz = tsc_khz;
5646 
5647 	cpu_notifier_register_begin();
5648 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5649 #ifdef CONFIG_CPU_FREQ
5650 		struct cpufreq_policy policy;
5651 		memset(&policy, 0, sizeof(policy));
5652 		cpu = get_cpu();
5653 		cpufreq_get_policy(&policy, cpu);
5654 		if (policy.cpuinfo.max_freq)
5655 			max_tsc_khz = policy.cpuinfo.max_freq;
5656 		put_cpu();
5657 #endif
5658 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5659 					  CPUFREQ_TRANSITION_NOTIFIER);
5660 	}
5661 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5662 	for_each_online_cpu(cpu)
5663 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5664 
5665 	__register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5666 	cpu_notifier_register_done();
5667 
5668 }
5669 
5670 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5671 
kvm_is_in_guest(void)5672 int kvm_is_in_guest(void)
5673 {
5674 	return __this_cpu_read(current_vcpu) != NULL;
5675 }
5676 
kvm_is_user_mode(void)5677 static int kvm_is_user_mode(void)
5678 {
5679 	int user_mode = 3;
5680 
5681 	if (__this_cpu_read(current_vcpu))
5682 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5683 
5684 	return user_mode != 0;
5685 }
5686 
kvm_get_guest_ip(void)5687 static unsigned long kvm_get_guest_ip(void)
5688 {
5689 	unsigned long ip = 0;
5690 
5691 	if (__this_cpu_read(current_vcpu))
5692 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5693 
5694 	return ip;
5695 }
5696 
5697 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5698 	.is_in_guest		= kvm_is_in_guest,
5699 	.is_user_mode		= kvm_is_user_mode,
5700 	.get_guest_ip		= kvm_get_guest_ip,
5701 };
5702 
kvm_before_handle_nmi(struct kvm_vcpu * vcpu)5703 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5704 {
5705 	__this_cpu_write(current_vcpu, vcpu);
5706 }
5707 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5708 
kvm_after_handle_nmi(struct kvm_vcpu * vcpu)5709 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5710 {
5711 	__this_cpu_write(current_vcpu, NULL);
5712 }
5713 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5714 
kvm_set_mmio_spte_mask(void)5715 static void kvm_set_mmio_spte_mask(void)
5716 {
5717 	u64 mask;
5718 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5719 
5720 	/*
5721 	 * Set the reserved bits and the present bit of an paging-structure
5722 	 * entry to generate page fault with PFER.RSV = 1.
5723 	 */
5724 	 /* Mask the reserved physical address bits. */
5725 	mask = rsvd_bits(maxphyaddr, 51);
5726 
5727 	/* Bit 62 is always reserved for 32bit host. */
5728 	mask |= 0x3ull << 62;
5729 
5730 	/* Set the present bit. */
5731 	mask |= 1ull;
5732 
5733 #ifdef CONFIG_X86_64
5734 	/*
5735 	 * If reserved bit is not supported, clear the present bit to disable
5736 	 * mmio page fault.
5737 	 */
5738 	if (maxphyaddr == 52)
5739 		mask &= ~1ull;
5740 #endif
5741 
5742 	kvm_mmu_set_mmio_spte_mask(mask);
5743 }
5744 
5745 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)5746 static void pvclock_gtod_update_fn(struct work_struct *work)
5747 {
5748 	struct kvm *kvm;
5749 
5750 	struct kvm_vcpu *vcpu;
5751 	int i;
5752 
5753 	spin_lock(&kvm_lock);
5754 	list_for_each_entry(kvm, &vm_list, vm_list)
5755 		kvm_for_each_vcpu(i, vcpu, kvm)
5756 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5757 	atomic_set(&kvm_guest_has_master_clock, 0);
5758 	spin_unlock(&kvm_lock);
5759 }
5760 
5761 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5762 
5763 /*
5764  * Notification about pvclock gtod data update.
5765  */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)5766 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5767 			       void *priv)
5768 {
5769 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5770 	struct timekeeper *tk = priv;
5771 
5772 	update_pvclock_gtod(tk);
5773 
5774 	/* disable master clock if host does not trust, or does not
5775 	 * use, TSC clocksource
5776 	 */
5777 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5778 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5779 		queue_work(system_long_wq, &pvclock_gtod_work);
5780 
5781 	return 0;
5782 }
5783 
5784 static struct notifier_block pvclock_gtod_notifier = {
5785 	.notifier_call = pvclock_gtod_notify,
5786 };
5787 #endif
5788 
kvm_arch_init(void * opaque)5789 int kvm_arch_init(void *opaque)
5790 {
5791 	int r;
5792 	struct kvm_x86_ops *ops = opaque;
5793 
5794 	if (kvm_x86_ops) {
5795 		printk(KERN_ERR "kvm: already loaded the other module\n");
5796 		r = -EEXIST;
5797 		goto out;
5798 	}
5799 
5800 	if (!ops->cpu_has_kvm_support()) {
5801 		printk(KERN_ERR "kvm: no hardware support\n");
5802 		r = -EOPNOTSUPP;
5803 		goto out;
5804 	}
5805 	if (ops->disabled_by_bios()) {
5806 		printk(KERN_ERR "kvm: disabled by bios\n");
5807 		r = -EOPNOTSUPP;
5808 		goto out;
5809 	}
5810 
5811 	r = -ENOMEM;
5812 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5813 	if (!shared_msrs) {
5814 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5815 		goto out;
5816 	}
5817 
5818 	r = kvm_mmu_module_init();
5819 	if (r)
5820 		goto out_free_percpu;
5821 
5822 	kvm_set_mmio_spte_mask();
5823 
5824 	kvm_x86_ops = ops;
5825 
5826 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5827 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5828 
5829 	kvm_timer_init();
5830 
5831 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5832 
5833 	if (cpu_has_xsave)
5834 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5835 
5836 	kvm_lapic_init();
5837 #ifdef CONFIG_X86_64
5838 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5839 #endif
5840 
5841 	return 0;
5842 
5843 out_free_percpu:
5844 	free_percpu(shared_msrs);
5845 out:
5846 	return r;
5847 }
5848 
kvm_arch_exit(void)5849 void kvm_arch_exit(void)
5850 {
5851 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5852 
5853 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5854 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5855 					    CPUFREQ_TRANSITION_NOTIFIER);
5856 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5857 #ifdef CONFIG_X86_64
5858 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5859 #endif
5860 	kvm_x86_ops = NULL;
5861 	kvm_mmu_module_exit();
5862 	free_percpu(shared_msrs);
5863 }
5864 
kvm_vcpu_halt(struct kvm_vcpu * vcpu)5865 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5866 {
5867 	++vcpu->stat.halt_exits;
5868 	if (irqchip_in_kernel(vcpu->kvm)) {
5869 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5870 		return 1;
5871 	} else {
5872 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5873 		return 0;
5874 	}
5875 }
5876 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5877 
kvm_emulate_halt(struct kvm_vcpu * vcpu)5878 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5879 {
5880 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5881 	return kvm_vcpu_halt(vcpu);
5882 }
5883 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5884 
kvm_hv_hypercall(struct kvm_vcpu * vcpu)5885 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5886 {
5887 	u64 param, ingpa, outgpa, ret;
5888 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5889 	bool fast, longmode;
5890 
5891 	/*
5892 	 * hypercall generates UD from non zero cpl and real mode
5893 	 * per HYPER-V spec
5894 	 */
5895 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5896 		kvm_queue_exception(vcpu, UD_VECTOR);
5897 		return 0;
5898 	}
5899 
5900 	longmode = is_64_bit_mode(vcpu);
5901 
5902 	if (!longmode) {
5903 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5904 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5905 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5906 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5907 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5908 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5909 	}
5910 #ifdef CONFIG_X86_64
5911 	else {
5912 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5913 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5914 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5915 	}
5916 #endif
5917 
5918 	code = param & 0xffff;
5919 	fast = (param >> 16) & 0x1;
5920 	rep_cnt = (param >> 32) & 0xfff;
5921 	rep_idx = (param >> 48) & 0xfff;
5922 
5923 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5924 
5925 	switch (code) {
5926 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5927 		kvm_vcpu_on_spin(vcpu);
5928 		break;
5929 	default:
5930 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
5931 		break;
5932 	}
5933 
5934 	ret = res | (((u64)rep_done & 0xfff) << 32);
5935 	if (longmode) {
5936 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5937 	} else {
5938 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5939 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5940 	}
5941 
5942 	return 1;
5943 }
5944 
5945 /*
5946  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5947  *
5948  * @apicid - apicid of vcpu to be kicked.
5949  */
kvm_pv_kick_cpu_op(struct kvm * kvm,unsigned long flags,int apicid)5950 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5951 {
5952 	struct kvm_lapic_irq lapic_irq;
5953 
5954 	lapic_irq.shorthand = 0;
5955 	lapic_irq.dest_mode = 0;
5956 	lapic_irq.dest_id = apicid;
5957 
5958 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5959 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5960 }
5961 
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)5962 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5963 {
5964 	unsigned long nr, a0, a1, a2, a3, ret;
5965 	int op_64_bit, r = 1;
5966 
5967 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5968 
5969 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5970 		return kvm_hv_hypercall(vcpu);
5971 
5972 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5973 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5974 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5975 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5976 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5977 
5978 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5979 
5980 	op_64_bit = is_64_bit_mode(vcpu);
5981 	if (!op_64_bit) {
5982 		nr &= 0xFFFFFFFF;
5983 		a0 &= 0xFFFFFFFF;
5984 		a1 &= 0xFFFFFFFF;
5985 		a2 &= 0xFFFFFFFF;
5986 		a3 &= 0xFFFFFFFF;
5987 	}
5988 
5989 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5990 		ret = -KVM_EPERM;
5991 		goto out;
5992 	}
5993 
5994 	switch (nr) {
5995 	case KVM_HC_VAPIC_POLL_IRQ:
5996 		ret = 0;
5997 		break;
5998 	case KVM_HC_KICK_CPU:
5999 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6000 		ret = 0;
6001 		break;
6002 	default:
6003 		ret = -KVM_ENOSYS;
6004 		break;
6005 	}
6006 out:
6007 	if (!op_64_bit)
6008 		ret = (u32)ret;
6009 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6010 	++vcpu->stat.hypercalls;
6011 	return r;
6012 }
6013 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6014 
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)6015 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6016 {
6017 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6018 	char instruction[3];
6019 	unsigned long rip = kvm_rip_read(vcpu);
6020 
6021 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
6022 
6023 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6024 }
6025 
6026 /*
6027  * Check if userspace requested an interrupt window, and that the
6028  * interrupt window is open.
6029  *
6030  * No need to exit to userspace if we already have an interrupt queued.
6031  */
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)6032 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6033 {
6034 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
6035 		vcpu->run->request_interrupt_window &&
6036 		kvm_arch_interrupt_allowed(vcpu));
6037 }
6038 
post_kvm_run_save(struct kvm_vcpu * vcpu)6039 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6040 {
6041 	struct kvm_run *kvm_run = vcpu->run;
6042 
6043 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6044 	kvm_run->cr8 = kvm_get_cr8(vcpu);
6045 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
6046 	if (irqchip_in_kernel(vcpu->kvm))
6047 		kvm_run->ready_for_interrupt_injection = 1;
6048 	else
6049 		kvm_run->ready_for_interrupt_injection =
6050 			kvm_arch_interrupt_allowed(vcpu) &&
6051 			!kvm_cpu_has_interrupt(vcpu) &&
6052 			!kvm_event_needs_reinjection(vcpu);
6053 }
6054 
update_cr8_intercept(struct kvm_vcpu * vcpu)6055 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6056 {
6057 	int max_irr, tpr;
6058 
6059 	if (!kvm_x86_ops->update_cr8_intercept)
6060 		return;
6061 
6062 	if (!vcpu->arch.apic)
6063 		return;
6064 
6065 	if (!vcpu->arch.apic->vapic_addr)
6066 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6067 	else
6068 		max_irr = -1;
6069 
6070 	if (max_irr != -1)
6071 		max_irr >>= 4;
6072 
6073 	tpr = kvm_lapic_get_cr8(vcpu);
6074 
6075 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6076 }
6077 
inject_pending_event(struct kvm_vcpu * vcpu,bool req_int_win)6078 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6079 {
6080 	int r;
6081 
6082 	/* try to reinject previous events if any */
6083 	if (vcpu->arch.exception.pending) {
6084 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
6085 					vcpu->arch.exception.has_error_code,
6086 					vcpu->arch.exception.error_code);
6087 
6088 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6089 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6090 					     X86_EFLAGS_RF);
6091 
6092 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6093 		    (vcpu->arch.dr7 & DR7_GD)) {
6094 			vcpu->arch.dr7 &= ~DR7_GD;
6095 			kvm_update_dr7(vcpu);
6096 		}
6097 
6098 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6099 					  vcpu->arch.exception.has_error_code,
6100 					  vcpu->arch.exception.error_code,
6101 					  vcpu->arch.exception.reinject);
6102 		return 0;
6103 	}
6104 
6105 	if (vcpu->arch.nmi_injected) {
6106 		kvm_x86_ops->set_nmi(vcpu);
6107 		return 0;
6108 	}
6109 
6110 	if (vcpu->arch.interrupt.pending) {
6111 		kvm_x86_ops->set_irq(vcpu);
6112 		return 0;
6113 	}
6114 
6115 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6116 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6117 		if (r != 0)
6118 			return r;
6119 	}
6120 
6121 	/* try to inject new event if pending */
6122 	if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6123 		--vcpu->arch.nmi_pending;
6124 		vcpu->arch.nmi_injected = true;
6125 		kvm_x86_ops->set_nmi(vcpu);
6126 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6127 		/*
6128 		 * Because interrupts can be injected asynchronously, we are
6129 		 * calling check_nested_events again here to avoid a race condition.
6130 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6131 		 * proposal and current concerns.  Perhaps we should be setting
6132 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6133 		 */
6134 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6135 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6136 			if (r != 0)
6137 				return r;
6138 		}
6139 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6140 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6141 					    false);
6142 			kvm_x86_ops->set_irq(vcpu);
6143 		}
6144 	}
6145 	return 0;
6146 }
6147 
process_nmi(struct kvm_vcpu * vcpu)6148 static void process_nmi(struct kvm_vcpu *vcpu)
6149 {
6150 	unsigned limit = 2;
6151 
6152 	/*
6153 	 * x86 is limited to one NMI running, and one NMI pending after it.
6154 	 * If an NMI is already in progress, limit further NMIs to just one.
6155 	 * Otherwise, allow two (and we'll inject the first one immediately).
6156 	 */
6157 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6158 		limit = 1;
6159 
6160 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6161 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6162 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6163 }
6164 
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)6165 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6166 {
6167 	u64 eoi_exit_bitmap[4];
6168 	u32 tmr[8];
6169 
6170 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6171 		return;
6172 
6173 	memset(eoi_exit_bitmap, 0, 32);
6174 	memset(tmr, 0, 32);
6175 
6176 	kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6177 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6178 	kvm_apic_update_tmr(vcpu, tmr);
6179 }
6180 
kvm_vcpu_flush_tlb(struct kvm_vcpu * vcpu)6181 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6182 {
6183 	++vcpu->stat.tlb_flush;
6184 	kvm_x86_ops->tlb_flush(vcpu);
6185 }
6186 
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)6187 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6188 {
6189 	struct page *page = NULL;
6190 
6191 	if (!irqchip_in_kernel(vcpu->kvm))
6192 		return;
6193 
6194 	if (!kvm_x86_ops->set_apic_access_page_addr)
6195 		return;
6196 
6197 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6198 	if (is_error_page(page))
6199 		return;
6200 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6201 
6202 	/*
6203 	 * Do not pin apic access page in memory, the MMU notifier
6204 	 * will call us again if it is migrated or swapped out.
6205 	 */
6206 	put_page(page);
6207 }
6208 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6209 
kvm_arch_mmu_notifier_invalidate_page(struct kvm * kvm,unsigned long address)6210 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6211 					   unsigned long address)
6212 {
6213 	/*
6214 	 * The physical address of apic access page is stored in the VMCS.
6215 	 * Update it when it becomes invalid.
6216 	 */
6217 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6218 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6219 }
6220 
6221 /*
6222  * Returns 1 to let vcpu_run() continue the guest execution loop without
6223  * exiting to the userspace.  Otherwise, the value will be returned to the
6224  * userspace.
6225  */
vcpu_enter_guest(struct kvm_vcpu * vcpu)6226 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6227 {
6228 	int r;
6229 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6230 		vcpu->run->request_interrupt_window;
6231 	bool req_immediate_exit = false;
6232 
6233 	if (vcpu->requests) {
6234 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6235 			kvm_mmu_unload(vcpu);
6236 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6237 			__kvm_migrate_timers(vcpu);
6238 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6239 			kvm_gen_update_masterclock(vcpu->kvm);
6240 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6241 			kvm_gen_kvmclock_update(vcpu);
6242 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6243 			r = kvm_guest_time_update(vcpu);
6244 			if (unlikely(r))
6245 				goto out;
6246 		}
6247 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6248 			kvm_mmu_sync_roots(vcpu);
6249 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6250 			kvm_vcpu_flush_tlb(vcpu);
6251 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6252 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6253 			r = 0;
6254 			goto out;
6255 		}
6256 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6257 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6258 			r = 0;
6259 			goto out;
6260 		}
6261 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6262 			vcpu->fpu_active = 0;
6263 			kvm_x86_ops->fpu_deactivate(vcpu);
6264 		}
6265 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6266 			/* Page is swapped out. Do synthetic halt */
6267 			vcpu->arch.apf.halted = true;
6268 			r = 1;
6269 			goto out;
6270 		}
6271 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6272 			record_steal_time(vcpu);
6273 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6274 			process_nmi(vcpu);
6275 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6276 			kvm_handle_pmu_event(vcpu);
6277 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6278 			kvm_deliver_pmi(vcpu);
6279 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6280 			vcpu_scan_ioapic(vcpu);
6281 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6282 			kvm_vcpu_reload_apic_access_page(vcpu);
6283 	}
6284 
6285 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6286 		kvm_apic_accept_events(vcpu);
6287 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6288 			r = 1;
6289 			goto out;
6290 		}
6291 
6292 		if (inject_pending_event(vcpu, req_int_win) != 0)
6293 			req_immediate_exit = true;
6294 		/* enable NMI/IRQ window open exits if needed */
6295 		else {
6296 			if (vcpu->arch.nmi_pending)
6297 				kvm_x86_ops->enable_nmi_window(vcpu);
6298 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6299 				kvm_x86_ops->enable_irq_window(vcpu);
6300 		}
6301 
6302 		if (kvm_lapic_enabled(vcpu)) {
6303 			/*
6304 			 * Update architecture specific hints for APIC
6305 			 * virtual interrupt delivery.
6306 			 */
6307 			if (kvm_x86_ops->hwapic_irr_update)
6308 				kvm_x86_ops->hwapic_irr_update(vcpu,
6309 					kvm_lapic_find_highest_irr(vcpu));
6310 			update_cr8_intercept(vcpu);
6311 			kvm_lapic_sync_to_vapic(vcpu);
6312 		}
6313 	}
6314 
6315 	r = kvm_mmu_reload(vcpu);
6316 	if (unlikely(r)) {
6317 		goto cancel_injection;
6318 	}
6319 
6320 	preempt_disable();
6321 
6322 	kvm_x86_ops->prepare_guest_switch(vcpu);
6323 	if (vcpu->fpu_active)
6324 		kvm_load_guest_fpu(vcpu);
6325 	vcpu->mode = IN_GUEST_MODE;
6326 
6327 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6328 
6329 	/* We should set ->mode before check ->requests,
6330 	 * see the comment in make_all_cpus_request.
6331 	 */
6332 	smp_mb__after_srcu_read_unlock();
6333 
6334 	local_irq_disable();
6335 
6336 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6337 	    || need_resched() || signal_pending(current)) {
6338 		vcpu->mode = OUTSIDE_GUEST_MODE;
6339 		smp_wmb();
6340 		local_irq_enable();
6341 		preempt_enable();
6342 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6343 		r = 1;
6344 		goto cancel_injection;
6345 	}
6346 
6347 	kvm_load_guest_xcr0(vcpu);
6348 
6349 	if (req_immediate_exit)
6350 		smp_send_reschedule(vcpu->cpu);
6351 
6352 	kvm_guest_enter();
6353 
6354 	if (unlikely(vcpu->arch.switch_db_regs)) {
6355 		set_debugreg(0, 7);
6356 		set_debugreg(vcpu->arch.eff_db[0], 0);
6357 		set_debugreg(vcpu->arch.eff_db[1], 1);
6358 		set_debugreg(vcpu->arch.eff_db[2], 2);
6359 		set_debugreg(vcpu->arch.eff_db[3], 3);
6360 		set_debugreg(vcpu->arch.dr6, 6);
6361 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6362 	}
6363 
6364 	trace_kvm_entry(vcpu->vcpu_id);
6365 	wait_lapic_expire(vcpu);
6366 	kvm_x86_ops->run(vcpu);
6367 
6368 	/*
6369 	 * Do this here before restoring debug registers on the host.  And
6370 	 * since we do this before handling the vmexit, a DR access vmexit
6371 	 * can (a) read the correct value of the debug registers, (b) set
6372 	 * KVM_DEBUGREG_WONT_EXIT again.
6373 	 */
6374 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6375 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6376 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6377 		kvm_update_dr0123(vcpu);
6378 		kvm_update_dr6(vcpu);
6379 		kvm_update_dr7(vcpu);
6380 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6381 	}
6382 
6383 	/*
6384 	 * If the guest has used debug registers, at least dr7
6385 	 * will be disabled while returning to the host.
6386 	 * If we don't have active breakpoints in the host, we don't
6387 	 * care about the messed up debug address registers. But if
6388 	 * we have some of them active, restore the old state.
6389 	 */
6390 	if (hw_breakpoint_active())
6391 		hw_breakpoint_restore();
6392 
6393 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6394 							   native_read_tsc());
6395 
6396 	vcpu->mode = OUTSIDE_GUEST_MODE;
6397 	smp_wmb();
6398 
6399 	kvm_put_guest_xcr0(vcpu);
6400 
6401 	/* Interrupt is enabled by handle_external_intr() */
6402 	kvm_x86_ops->handle_external_intr(vcpu);
6403 
6404 	++vcpu->stat.exits;
6405 
6406 	/*
6407 	 * We must have an instruction between local_irq_enable() and
6408 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6409 	 * the interrupt shadow.  The stat.exits increment will do nicely.
6410 	 * But we need to prevent reordering, hence this barrier():
6411 	 */
6412 	barrier();
6413 
6414 	kvm_guest_exit();
6415 
6416 	preempt_enable();
6417 
6418 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6419 
6420 	/*
6421 	 * Profile KVM exit RIPs:
6422 	 */
6423 	if (unlikely(prof_on == KVM_PROFILING)) {
6424 		unsigned long rip = kvm_rip_read(vcpu);
6425 		profile_hit(KVM_PROFILING, (void *)rip);
6426 	}
6427 
6428 	if (unlikely(vcpu->arch.tsc_always_catchup))
6429 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6430 
6431 	if (vcpu->arch.apic_attention)
6432 		kvm_lapic_sync_from_vapic(vcpu);
6433 
6434 	r = kvm_x86_ops->handle_exit(vcpu);
6435 	return r;
6436 
6437 cancel_injection:
6438 	kvm_x86_ops->cancel_injection(vcpu);
6439 	if (unlikely(vcpu->arch.apic_attention))
6440 		kvm_lapic_sync_from_vapic(vcpu);
6441 out:
6442 	return r;
6443 }
6444 
vcpu_block(struct kvm * kvm,struct kvm_vcpu * vcpu)6445 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6446 {
6447 	if (!kvm_arch_vcpu_runnable(vcpu)) {
6448 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6449 		kvm_vcpu_block(vcpu);
6450 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6451 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6452 			return 1;
6453 	}
6454 
6455 	kvm_apic_accept_events(vcpu);
6456 	switch(vcpu->arch.mp_state) {
6457 	case KVM_MP_STATE_HALTED:
6458 		vcpu->arch.pv.pv_unhalted = false;
6459 		vcpu->arch.mp_state =
6460 			KVM_MP_STATE_RUNNABLE;
6461 	case KVM_MP_STATE_RUNNABLE:
6462 		vcpu->arch.apf.halted = false;
6463 		break;
6464 	case KVM_MP_STATE_INIT_RECEIVED:
6465 		break;
6466 	default:
6467 		return -EINTR;
6468 		break;
6469 	}
6470 	return 1;
6471 }
6472 
vcpu_run(struct kvm_vcpu * vcpu)6473 static int vcpu_run(struct kvm_vcpu *vcpu)
6474 {
6475 	int r;
6476 	struct kvm *kvm = vcpu->kvm;
6477 
6478 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6479 
6480 	for (;;) {
6481 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6482 		    !vcpu->arch.apf.halted)
6483 			r = vcpu_enter_guest(vcpu);
6484 		else
6485 			r = vcpu_block(kvm, vcpu);
6486 		if (r <= 0)
6487 			break;
6488 
6489 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6490 		if (kvm_cpu_has_pending_timer(vcpu))
6491 			kvm_inject_pending_timer_irqs(vcpu);
6492 
6493 		if (dm_request_for_irq_injection(vcpu)) {
6494 			r = -EINTR;
6495 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6496 			++vcpu->stat.request_irq_exits;
6497 			break;
6498 		}
6499 
6500 		kvm_check_async_pf_completion(vcpu);
6501 
6502 		if (signal_pending(current)) {
6503 			r = -EINTR;
6504 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6505 			++vcpu->stat.signal_exits;
6506 			break;
6507 		}
6508 		if (need_resched()) {
6509 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6510 			cond_resched();
6511 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6512 		}
6513 	}
6514 
6515 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6516 
6517 	return r;
6518 }
6519 
complete_emulated_io(struct kvm_vcpu * vcpu)6520 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6521 {
6522 	int r;
6523 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6524 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6525 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6526 	if (r != EMULATE_DONE)
6527 		return 0;
6528 	return 1;
6529 }
6530 
complete_emulated_pio(struct kvm_vcpu * vcpu)6531 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6532 {
6533 	BUG_ON(!vcpu->arch.pio.count);
6534 
6535 	return complete_emulated_io(vcpu);
6536 }
6537 
6538 /*
6539  * Implements the following, as a state machine:
6540  *
6541  * read:
6542  *   for each fragment
6543  *     for each mmio piece in the fragment
6544  *       write gpa, len
6545  *       exit
6546  *       copy data
6547  *   execute insn
6548  *
6549  * write:
6550  *   for each fragment
6551  *     for each mmio piece in the fragment
6552  *       write gpa, len
6553  *       copy data
6554  *       exit
6555  */
complete_emulated_mmio(struct kvm_vcpu * vcpu)6556 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6557 {
6558 	struct kvm_run *run = vcpu->run;
6559 	struct kvm_mmio_fragment *frag;
6560 	unsigned len;
6561 
6562 	BUG_ON(!vcpu->mmio_needed);
6563 
6564 	/* Complete previous fragment */
6565 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6566 	len = min(8u, frag->len);
6567 	if (!vcpu->mmio_is_write)
6568 		memcpy(frag->data, run->mmio.data, len);
6569 
6570 	if (frag->len <= 8) {
6571 		/* Switch to the next fragment. */
6572 		frag++;
6573 		vcpu->mmio_cur_fragment++;
6574 	} else {
6575 		/* Go forward to the next mmio piece. */
6576 		frag->data += len;
6577 		frag->gpa += len;
6578 		frag->len -= len;
6579 	}
6580 
6581 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6582 		vcpu->mmio_needed = 0;
6583 
6584 		/* FIXME: return into emulator if single-stepping.  */
6585 		if (vcpu->mmio_is_write)
6586 			return 1;
6587 		vcpu->mmio_read_completed = 1;
6588 		return complete_emulated_io(vcpu);
6589 	}
6590 
6591 	run->exit_reason = KVM_EXIT_MMIO;
6592 	run->mmio.phys_addr = frag->gpa;
6593 	if (vcpu->mmio_is_write)
6594 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6595 	run->mmio.len = min(8u, frag->len);
6596 	run->mmio.is_write = vcpu->mmio_is_write;
6597 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6598 	return 0;
6599 }
6600 
6601 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)6602 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6603 {
6604 	int r;
6605 	sigset_t sigsaved;
6606 
6607 	if (!tsk_used_math(current) && init_fpu(current))
6608 		return -ENOMEM;
6609 
6610 	if (vcpu->sigset_active)
6611 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6612 
6613 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6614 		kvm_vcpu_block(vcpu);
6615 		kvm_apic_accept_events(vcpu);
6616 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6617 		r = -EAGAIN;
6618 		goto out;
6619 	}
6620 
6621 	/* re-sync apic's tpr */
6622 	if (!irqchip_in_kernel(vcpu->kvm)) {
6623 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6624 			r = -EINVAL;
6625 			goto out;
6626 		}
6627 	}
6628 
6629 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6630 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6631 		vcpu->arch.complete_userspace_io = NULL;
6632 		r = cui(vcpu);
6633 		if (r <= 0)
6634 			goto out;
6635 	} else
6636 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6637 
6638 	r = vcpu_run(vcpu);
6639 
6640 out:
6641 	post_kvm_run_save(vcpu);
6642 	if (vcpu->sigset_active)
6643 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6644 
6645 	return r;
6646 }
6647 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)6648 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6649 {
6650 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6651 		/*
6652 		 * We are here if userspace calls get_regs() in the middle of
6653 		 * instruction emulation. Registers state needs to be copied
6654 		 * back from emulation context to vcpu. Userspace shouldn't do
6655 		 * that usually, but some bad designed PV devices (vmware
6656 		 * backdoor interface) need this to work
6657 		 */
6658 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6659 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6660 	}
6661 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6662 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6663 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6664 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6665 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6666 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6667 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6668 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6669 #ifdef CONFIG_X86_64
6670 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6671 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6672 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6673 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6674 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6675 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6676 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6677 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6678 #endif
6679 
6680 	regs->rip = kvm_rip_read(vcpu);
6681 	regs->rflags = kvm_get_rflags(vcpu);
6682 
6683 	return 0;
6684 }
6685 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)6686 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6687 {
6688 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6689 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6690 
6691 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6692 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6693 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6694 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6695 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6696 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6697 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6698 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6699 #ifdef CONFIG_X86_64
6700 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6701 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6702 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6703 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6704 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6705 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6706 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6707 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6708 #endif
6709 
6710 	kvm_rip_write(vcpu, regs->rip);
6711 	kvm_set_rflags(vcpu, regs->rflags);
6712 
6713 	vcpu->arch.exception.pending = false;
6714 
6715 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6716 
6717 	return 0;
6718 }
6719 
kvm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)6720 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6721 {
6722 	struct kvm_segment cs;
6723 
6724 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6725 	*db = cs.db;
6726 	*l = cs.l;
6727 }
6728 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6729 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)6730 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6731 				  struct kvm_sregs *sregs)
6732 {
6733 	struct desc_ptr dt;
6734 
6735 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6736 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6737 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6738 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6739 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6740 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6741 
6742 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6743 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6744 
6745 	kvm_x86_ops->get_idt(vcpu, &dt);
6746 	sregs->idt.limit = dt.size;
6747 	sregs->idt.base = dt.address;
6748 	kvm_x86_ops->get_gdt(vcpu, &dt);
6749 	sregs->gdt.limit = dt.size;
6750 	sregs->gdt.base = dt.address;
6751 
6752 	sregs->cr0 = kvm_read_cr0(vcpu);
6753 	sregs->cr2 = vcpu->arch.cr2;
6754 	sregs->cr3 = kvm_read_cr3(vcpu);
6755 	sregs->cr4 = kvm_read_cr4(vcpu);
6756 	sregs->cr8 = kvm_get_cr8(vcpu);
6757 	sregs->efer = vcpu->arch.efer;
6758 	sregs->apic_base = kvm_get_apic_base(vcpu);
6759 
6760 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6761 
6762 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6763 		set_bit(vcpu->arch.interrupt.nr,
6764 			(unsigned long *)sregs->interrupt_bitmap);
6765 
6766 	return 0;
6767 }
6768 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)6769 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6770 				    struct kvm_mp_state *mp_state)
6771 {
6772 	kvm_apic_accept_events(vcpu);
6773 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6774 					vcpu->arch.pv.pv_unhalted)
6775 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6776 	else
6777 		mp_state->mp_state = vcpu->arch.mp_state;
6778 
6779 	return 0;
6780 }
6781 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)6782 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6783 				    struct kvm_mp_state *mp_state)
6784 {
6785 	if (!kvm_vcpu_has_lapic(vcpu) &&
6786 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6787 		return -EINVAL;
6788 
6789 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6790 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6791 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6792 	} else
6793 		vcpu->arch.mp_state = mp_state->mp_state;
6794 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6795 	return 0;
6796 }
6797 
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)6798 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6799 		    int reason, bool has_error_code, u32 error_code)
6800 {
6801 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6802 	int ret;
6803 
6804 	init_emulate_ctxt(vcpu);
6805 
6806 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6807 				   has_error_code, error_code);
6808 
6809 	if (ret)
6810 		return EMULATE_FAIL;
6811 
6812 	kvm_rip_write(vcpu, ctxt->eip);
6813 	kvm_set_rflags(vcpu, ctxt->eflags);
6814 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6815 	return EMULATE_DONE;
6816 }
6817 EXPORT_SYMBOL_GPL(kvm_task_switch);
6818 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)6819 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6820 				  struct kvm_sregs *sregs)
6821 {
6822 	struct msr_data apic_base_msr;
6823 	int mmu_reset_needed = 0;
6824 	int pending_vec, max_bits, idx;
6825 	struct desc_ptr dt;
6826 
6827 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6828 		return -EINVAL;
6829 
6830 	dt.size = sregs->idt.limit;
6831 	dt.address = sregs->idt.base;
6832 	kvm_x86_ops->set_idt(vcpu, &dt);
6833 	dt.size = sregs->gdt.limit;
6834 	dt.address = sregs->gdt.base;
6835 	kvm_x86_ops->set_gdt(vcpu, &dt);
6836 
6837 	vcpu->arch.cr2 = sregs->cr2;
6838 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6839 	vcpu->arch.cr3 = sregs->cr3;
6840 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6841 
6842 	kvm_set_cr8(vcpu, sregs->cr8);
6843 
6844 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6845 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
6846 	apic_base_msr.data = sregs->apic_base;
6847 	apic_base_msr.host_initiated = true;
6848 	kvm_set_apic_base(vcpu, &apic_base_msr);
6849 
6850 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6851 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6852 	vcpu->arch.cr0 = sregs->cr0;
6853 
6854 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6855 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6856 	if (sregs->cr4 & X86_CR4_OSXSAVE)
6857 		kvm_update_cpuid(vcpu);
6858 
6859 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6860 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6861 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6862 		mmu_reset_needed = 1;
6863 	}
6864 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6865 
6866 	if (mmu_reset_needed)
6867 		kvm_mmu_reset_context(vcpu);
6868 
6869 	max_bits = KVM_NR_INTERRUPTS;
6870 	pending_vec = find_first_bit(
6871 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
6872 	if (pending_vec < max_bits) {
6873 		kvm_queue_interrupt(vcpu, pending_vec, false);
6874 		pr_debug("Set back pending irq %d\n", pending_vec);
6875 	}
6876 
6877 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6878 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6879 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6880 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6881 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6882 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6883 
6884 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6885 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6886 
6887 	update_cr8_intercept(vcpu);
6888 
6889 	/* Older userspace won't unhalt the vcpu on reset. */
6890 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6891 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6892 	    !is_protmode(vcpu))
6893 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6894 
6895 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6896 
6897 	return 0;
6898 }
6899 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)6900 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6901 					struct kvm_guest_debug *dbg)
6902 {
6903 	unsigned long rflags;
6904 	int i, r;
6905 
6906 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6907 		r = -EBUSY;
6908 		if (vcpu->arch.exception.pending)
6909 			goto out;
6910 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6911 			kvm_queue_exception(vcpu, DB_VECTOR);
6912 		else
6913 			kvm_queue_exception(vcpu, BP_VECTOR);
6914 	}
6915 
6916 	/*
6917 	 * Read rflags as long as potentially injected trace flags are still
6918 	 * filtered out.
6919 	 */
6920 	rflags = kvm_get_rflags(vcpu);
6921 
6922 	vcpu->guest_debug = dbg->control;
6923 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6924 		vcpu->guest_debug = 0;
6925 
6926 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6927 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
6928 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6929 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6930 	} else {
6931 		for (i = 0; i < KVM_NR_DB_REGS; i++)
6932 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6933 	}
6934 	kvm_update_dr7(vcpu);
6935 
6936 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6937 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6938 			get_segment_base(vcpu, VCPU_SREG_CS);
6939 
6940 	/*
6941 	 * Trigger an rflags update that will inject or remove the trace
6942 	 * flags.
6943 	 */
6944 	kvm_set_rflags(vcpu, rflags);
6945 
6946 	kvm_x86_ops->update_db_bp_intercept(vcpu);
6947 
6948 	r = 0;
6949 
6950 out:
6951 
6952 	return r;
6953 }
6954 
6955 /*
6956  * Translate a guest virtual address to a guest physical address.
6957  */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)6958 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6959 				    struct kvm_translation *tr)
6960 {
6961 	unsigned long vaddr = tr->linear_address;
6962 	gpa_t gpa;
6963 	int idx;
6964 
6965 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6966 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6967 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6968 	tr->physical_address = gpa;
6969 	tr->valid = gpa != UNMAPPED_GVA;
6970 	tr->writeable = 1;
6971 	tr->usermode = 0;
6972 
6973 	return 0;
6974 }
6975 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)6976 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6977 {
6978 	struct i387_fxsave_struct *fxsave =
6979 			&vcpu->arch.guest_fpu.state->fxsave;
6980 
6981 	memcpy(fpu->fpr, fxsave->st_space, 128);
6982 	fpu->fcw = fxsave->cwd;
6983 	fpu->fsw = fxsave->swd;
6984 	fpu->ftwx = fxsave->twd;
6985 	fpu->last_opcode = fxsave->fop;
6986 	fpu->last_ip = fxsave->rip;
6987 	fpu->last_dp = fxsave->rdp;
6988 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6989 
6990 	return 0;
6991 }
6992 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)6993 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6994 {
6995 	struct i387_fxsave_struct *fxsave =
6996 			&vcpu->arch.guest_fpu.state->fxsave;
6997 
6998 	memcpy(fxsave->st_space, fpu->fpr, 128);
6999 	fxsave->cwd = fpu->fcw;
7000 	fxsave->swd = fpu->fsw;
7001 	fxsave->twd = fpu->ftwx;
7002 	fxsave->fop = fpu->last_opcode;
7003 	fxsave->rip = fpu->last_ip;
7004 	fxsave->rdp = fpu->last_dp;
7005 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7006 
7007 	return 0;
7008 }
7009 
fx_init(struct kvm_vcpu * vcpu)7010 int fx_init(struct kvm_vcpu *vcpu)
7011 {
7012 	int err;
7013 
7014 	err = fpu_alloc(&vcpu->arch.guest_fpu);
7015 	if (err)
7016 		return err;
7017 
7018 	fpu_finit(&vcpu->arch.guest_fpu);
7019 	if (cpu_has_xsaves)
7020 		vcpu->arch.guest_fpu.state->xsave.xsave_hdr.xcomp_bv =
7021 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7022 
7023 	/*
7024 	 * Ensure guest xcr0 is valid for loading
7025 	 */
7026 	vcpu->arch.xcr0 = XSTATE_FP;
7027 
7028 	vcpu->arch.cr0 |= X86_CR0_ET;
7029 
7030 	return 0;
7031 }
7032 EXPORT_SYMBOL_GPL(fx_init);
7033 
fx_free(struct kvm_vcpu * vcpu)7034 static void fx_free(struct kvm_vcpu *vcpu)
7035 {
7036 	fpu_free(&vcpu->arch.guest_fpu);
7037 }
7038 
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)7039 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7040 {
7041 	if (vcpu->guest_fpu_loaded)
7042 		return;
7043 
7044 	/*
7045 	 * Restore all possible states in the guest,
7046 	 * and assume host would use all available bits.
7047 	 * Guest xcr0 would be loaded later.
7048 	 */
7049 	vcpu->guest_fpu_loaded = 1;
7050 	__kernel_fpu_begin();
7051 	fpu_restore_checking(&vcpu->arch.guest_fpu);
7052 	trace_kvm_fpu(1);
7053 }
7054 
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)7055 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7056 {
7057 	if (!vcpu->guest_fpu_loaded)
7058 		return;
7059 
7060 	vcpu->guest_fpu_loaded = 0;
7061 	fpu_save_init(&vcpu->arch.guest_fpu);
7062 	__kernel_fpu_end();
7063 	++vcpu->stat.fpu_reload;
7064 	if (!vcpu->arch.eager_fpu)
7065 		kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7066 
7067 	trace_kvm_fpu(0);
7068 }
7069 
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)7070 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7071 {
7072 	kvmclock_reset(vcpu);
7073 
7074 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7075 	fx_free(vcpu);
7076 	kvm_x86_ops->vcpu_free(vcpu);
7077 }
7078 
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)7079 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7080 						unsigned int id)
7081 {
7082 	struct kvm_vcpu *vcpu;
7083 
7084 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7085 		printk_once(KERN_WARNING
7086 		"kvm: SMP vm created on host with unstable TSC; "
7087 		"guest TSC will not be reliable\n");
7088 
7089 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7090 
7091 	/*
7092 	 * Activate fpu unconditionally in case the guest needs eager FPU.  It will be
7093 	 * deactivated soon if it doesn't.
7094 	 */
7095 	kvm_x86_ops->fpu_activate(vcpu);
7096 	return vcpu;
7097 }
7098 
kvm_arch_vcpu_setup(struct kvm_vcpu * vcpu)7099 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7100 {
7101 	int r;
7102 
7103 	vcpu->arch.mtrr_state.have_fixed = 1;
7104 	r = vcpu_load(vcpu);
7105 	if (r)
7106 		return r;
7107 	kvm_vcpu_reset(vcpu);
7108 	kvm_mmu_setup(vcpu);
7109 	vcpu_put(vcpu);
7110 
7111 	return r;
7112 }
7113 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)7114 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7115 {
7116 	struct msr_data msr;
7117 	struct kvm *kvm = vcpu->kvm;
7118 
7119 	if (vcpu_load(vcpu))
7120 		return;
7121 	msr.data = 0x0;
7122 	msr.index = MSR_IA32_TSC;
7123 	msr.host_initiated = true;
7124 	kvm_write_tsc(vcpu, &msr);
7125 	vcpu_put(vcpu);
7126 
7127 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7128 					KVMCLOCK_SYNC_PERIOD);
7129 }
7130 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)7131 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7132 {
7133 	int r;
7134 	vcpu->arch.apf.msr_val = 0;
7135 
7136 	r = vcpu_load(vcpu);
7137 	BUG_ON(r);
7138 	kvm_mmu_unload(vcpu);
7139 	vcpu_put(vcpu);
7140 
7141 	fx_free(vcpu);
7142 	kvm_x86_ops->vcpu_free(vcpu);
7143 }
7144 
kvm_vcpu_reset(struct kvm_vcpu * vcpu)7145 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
7146 {
7147 	atomic_set(&vcpu->arch.nmi_queued, 0);
7148 	vcpu->arch.nmi_pending = 0;
7149 	vcpu->arch.nmi_injected = false;
7150 	kvm_clear_interrupt_queue(vcpu);
7151 	kvm_clear_exception_queue(vcpu);
7152 
7153 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7154 	kvm_update_dr0123(vcpu);
7155 	vcpu->arch.dr6 = DR6_INIT;
7156 	kvm_update_dr6(vcpu);
7157 	vcpu->arch.dr7 = DR7_FIXED_1;
7158 	kvm_update_dr7(vcpu);
7159 
7160 	vcpu->arch.cr2 = 0;
7161 
7162 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7163 	vcpu->arch.apf.msr_val = 0;
7164 	vcpu->arch.st.msr_val = 0;
7165 
7166 	kvmclock_reset(vcpu);
7167 
7168 	kvm_clear_async_pf_completion_queue(vcpu);
7169 	kvm_async_pf_hash_reset(vcpu);
7170 	vcpu->arch.apf.halted = false;
7171 
7172 	kvm_pmu_reset(vcpu);
7173 
7174 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7175 	vcpu->arch.regs_avail = ~0;
7176 	vcpu->arch.regs_dirty = ~0;
7177 
7178 	kvm_x86_ops->vcpu_reset(vcpu);
7179 }
7180 
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)7181 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7182 {
7183 	struct kvm_segment cs;
7184 
7185 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7186 	cs.selector = vector << 8;
7187 	cs.base = vector << 12;
7188 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7189 	kvm_rip_write(vcpu, 0);
7190 }
7191 
kvm_arch_hardware_enable(void)7192 int kvm_arch_hardware_enable(void)
7193 {
7194 	struct kvm *kvm;
7195 	struct kvm_vcpu *vcpu;
7196 	int i;
7197 	int ret;
7198 	u64 local_tsc;
7199 	u64 max_tsc = 0;
7200 	bool stable, backwards_tsc = false;
7201 
7202 	kvm_shared_msr_cpu_online();
7203 	ret = kvm_x86_ops->hardware_enable();
7204 	if (ret != 0)
7205 		return ret;
7206 
7207 	local_tsc = native_read_tsc();
7208 	stable = !check_tsc_unstable();
7209 	list_for_each_entry(kvm, &vm_list, vm_list) {
7210 		kvm_for_each_vcpu(i, vcpu, kvm) {
7211 			if (!stable && vcpu->cpu == smp_processor_id())
7212 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7213 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7214 				backwards_tsc = true;
7215 				if (vcpu->arch.last_host_tsc > max_tsc)
7216 					max_tsc = vcpu->arch.last_host_tsc;
7217 			}
7218 		}
7219 	}
7220 
7221 	/*
7222 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7223 	 * platforms that reset TSC during suspend or hibernate actions, but
7224 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7225 	 * detect that condition here, which happens early in CPU bringup,
7226 	 * before any KVM threads can be running.  Unfortunately, we can't
7227 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7228 	 * enough into CPU bringup that we know how much real time has actually
7229 	 * elapsed; our helper function, get_kernel_ns() will be using boot
7230 	 * variables that haven't been updated yet.
7231 	 *
7232 	 * So we simply find the maximum observed TSC above, then record the
7233 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7234 	 * the adjustment will be applied.  Note that we accumulate
7235 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7236 	 * gets a chance to run again.  In the event that no KVM threads get a
7237 	 * chance to run, we will miss the entire elapsed period, as we'll have
7238 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7239 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7240 	 * uniform across all VCPUs (not to mention the scenario is extremely
7241 	 * unlikely). It is possible that a second hibernate recovery happens
7242 	 * much faster than a first, causing the observed TSC here to be
7243 	 * smaller; this would require additional padding adjustment, which is
7244 	 * why we set last_host_tsc to the local tsc observed here.
7245 	 *
7246 	 * N.B. - this code below runs only on platforms with reliable TSC,
7247 	 * as that is the only way backwards_tsc is set above.  Also note
7248 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7249 	 * have the same delta_cyc adjustment applied if backwards_tsc
7250 	 * is detected.  Note further, this adjustment is only done once,
7251 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7252 	 * called multiple times (one for each physical CPU bringup).
7253 	 *
7254 	 * Platforms with unreliable TSCs don't have to deal with this, they
7255 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7256 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7257 	 * guarantee that they stay in perfect synchronization.
7258 	 */
7259 	if (backwards_tsc) {
7260 		u64 delta_cyc = max_tsc - local_tsc;
7261 		backwards_tsc_observed = true;
7262 		list_for_each_entry(kvm, &vm_list, vm_list) {
7263 			kvm_for_each_vcpu(i, vcpu, kvm) {
7264 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7265 				vcpu->arch.last_host_tsc = local_tsc;
7266 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7267 			}
7268 
7269 			/*
7270 			 * We have to disable TSC offset matching.. if you were
7271 			 * booting a VM while issuing an S4 host suspend....
7272 			 * you may have some problem.  Solving this issue is
7273 			 * left as an exercise to the reader.
7274 			 */
7275 			kvm->arch.last_tsc_nsec = 0;
7276 			kvm->arch.last_tsc_write = 0;
7277 		}
7278 
7279 	}
7280 	return 0;
7281 }
7282 
kvm_arch_hardware_disable(void)7283 void kvm_arch_hardware_disable(void)
7284 {
7285 	kvm_x86_ops->hardware_disable();
7286 	drop_user_return_notifiers();
7287 }
7288 
kvm_arch_hardware_setup(void)7289 int kvm_arch_hardware_setup(void)
7290 {
7291 	int r;
7292 
7293 	r = kvm_x86_ops->hardware_setup();
7294 	if (r != 0)
7295 		return r;
7296 
7297 	kvm_init_msr_list();
7298 	return 0;
7299 }
7300 
kvm_arch_hardware_unsetup(void)7301 void kvm_arch_hardware_unsetup(void)
7302 {
7303 	kvm_x86_ops->hardware_unsetup();
7304 }
7305 
kvm_arch_check_processor_compat(void * rtn)7306 void kvm_arch_check_processor_compat(void *rtn)
7307 {
7308 	kvm_x86_ops->check_processor_compatibility(rtn);
7309 }
7310 
kvm_vcpu_compatible(struct kvm_vcpu * vcpu)7311 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7312 {
7313 	return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7314 }
7315 
7316 struct static_key kvm_no_apic_vcpu __read_mostly;
7317 
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)7318 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7319 {
7320 	struct page *page;
7321 	struct kvm *kvm;
7322 	int r;
7323 
7324 	BUG_ON(vcpu->kvm == NULL);
7325 	kvm = vcpu->kvm;
7326 
7327 	vcpu->arch.pv.pv_unhalted = false;
7328 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7329 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7330 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7331 	else
7332 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7333 
7334 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7335 	if (!page) {
7336 		r = -ENOMEM;
7337 		goto fail;
7338 	}
7339 	vcpu->arch.pio_data = page_address(page);
7340 
7341 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7342 
7343 	r = kvm_mmu_create(vcpu);
7344 	if (r < 0)
7345 		goto fail_free_pio_data;
7346 
7347 	if (irqchip_in_kernel(kvm)) {
7348 		r = kvm_create_lapic(vcpu);
7349 		if (r < 0)
7350 			goto fail_mmu_destroy;
7351 	} else
7352 		static_key_slow_inc(&kvm_no_apic_vcpu);
7353 
7354 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7355 				       GFP_KERNEL);
7356 	if (!vcpu->arch.mce_banks) {
7357 		r = -ENOMEM;
7358 		goto fail_free_lapic;
7359 	}
7360 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7361 
7362 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7363 		r = -ENOMEM;
7364 		goto fail_free_mce_banks;
7365 	}
7366 
7367 	r = fx_init(vcpu);
7368 	if (r)
7369 		goto fail_free_wbinvd_dirty_mask;
7370 
7371 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7372 	vcpu->arch.pv_time_enabled = false;
7373 
7374 	vcpu->arch.guest_supported_xcr0 = 0;
7375 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7376 
7377 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7378 
7379 	kvm_async_pf_hash_reset(vcpu);
7380 	kvm_pmu_init(vcpu);
7381 
7382 	return 0;
7383 fail_free_wbinvd_dirty_mask:
7384 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7385 fail_free_mce_banks:
7386 	kfree(vcpu->arch.mce_banks);
7387 fail_free_lapic:
7388 	kvm_free_lapic(vcpu);
7389 fail_mmu_destroy:
7390 	kvm_mmu_destroy(vcpu);
7391 fail_free_pio_data:
7392 	free_page((unsigned long)vcpu->arch.pio_data);
7393 fail:
7394 	return r;
7395 }
7396 
kvm_arch_vcpu_uninit(struct kvm_vcpu * vcpu)7397 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7398 {
7399 	int idx;
7400 
7401 	kvm_pmu_destroy(vcpu);
7402 	kfree(vcpu->arch.mce_banks);
7403 	kvm_free_lapic(vcpu);
7404 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7405 	kvm_mmu_destroy(vcpu);
7406 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7407 	free_page((unsigned long)vcpu->arch.pio_data);
7408 	if (!irqchip_in_kernel(vcpu->kvm))
7409 		static_key_slow_dec(&kvm_no_apic_vcpu);
7410 }
7411 
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)7412 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7413 {
7414 	kvm_x86_ops->sched_in(vcpu, cpu);
7415 }
7416 
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)7417 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7418 {
7419 	if (type)
7420 		return -EINVAL;
7421 
7422 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7423 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7424 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7425 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7426 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7427 
7428 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7429 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7430 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7431 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7432 		&kvm->arch.irq_sources_bitmap);
7433 
7434 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7435 	mutex_init(&kvm->arch.apic_map_lock);
7436 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7437 
7438 	pvclock_update_vm_gtod_copy(kvm);
7439 
7440 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7441 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7442 
7443 	return 0;
7444 }
7445 
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)7446 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7447 {
7448 	int r;
7449 	r = vcpu_load(vcpu);
7450 	BUG_ON(r);
7451 	kvm_mmu_unload(vcpu);
7452 	vcpu_put(vcpu);
7453 }
7454 
kvm_free_vcpus(struct kvm * kvm)7455 static void kvm_free_vcpus(struct kvm *kvm)
7456 {
7457 	unsigned int i;
7458 	struct kvm_vcpu *vcpu;
7459 
7460 	/*
7461 	 * Unpin any mmu pages first.
7462 	 */
7463 	kvm_for_each_vcpu(i, vcpu, kvm) {
7464 		kvm_clear_async_pf_completion_queue(vcpu);
7465 		kvm_unload_vcpu_mmu(vcpu);
7466 	}
7467 	kvm_for_each_vcpu(i, vcpu, kvm)
7468 		kvm_arch_vcpu_free(vcpu);
7469 
7470 	mutex_lock(&kvm->lock);
7471 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7472 		kvm->vcpus[i] = NULL;
7473 
7474 	atomic_set(&kvm->online_vcpus, 0);
7475 	mutex_unlock(&kvm->lock);
7476 }
7477 
kvm_arch_sync_events(struct kvm * kvm)7478 void kvm_arch_sync_events(struct kvm *kvm)
7479 {
7480 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7481 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7482 	kvm_free_all_assigned_devices(kvm);
7483 	kvm_free_pit(kvm);
7484 }
7485 
kvm_arch_destroy_vm(struct kvm * kvm)7486 void kvm_arch_destroy_vm(struct kvm *kvm)
7487 {
7488 	if (current->mm == kvm->mm) {
7489 		/*
7490 		 * Free memory regions allocated on behalf of userspace,
7491 		 * unless the the memory map has changed due to process exit
7492 		 * or fd copying.
7493 		 */
7494 		struct kvm_userspace_memory_region mem;
7495 		memset(&mem, 0, sizeof(mem));
7496 		mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7497 		kvm_set_memory_region(kvm, &mem);
7498 
7499 		mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7500 		kvm_set_memory_region(kvm, &mem);
7501 
7502 		mem.slot = TSS_PRIVATE_MEMSLOT;
7503 		kvm_set_memory_region(kvm, &mem);
7504 	}
7505 	kvm_iommu_unmap_guest(kvm);
7506 	kfree(kvm->arch.vpic);
7507 	kfree(kvm->arch.vioapic);
7508 	kvm_free_vcpus(kvm);
7509 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7510 }
7511 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)7512 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7513 			   struct kvm_memory_slot *dont)
7514 {
7515 	int i;
7516 
7517 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7518 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7519 			kvfree(free->arch.rmap[i]);
7520 			free->arch.rmap[i] = NULL;
7521 		}
7522 		if (i == 0)
7523 			continue;
7524 
7525 		if (!dont || free->arch.lpage_info[i - 1] !=
7526 			     dont->arch.lpage_info[i - 1]) {
7527 			kvfree(free->arch.lpage_info[i - 1]);
7528 			free->arch.lpage_info[i - 1] = NULL;
7529 		}
7530 	}
7531 }
7532 
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)7533 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7534 			    unsigned long npages)
7535 {
7536 	int i;
7537 
7538 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7539 		unsigned long ugfn;
7540 		int lpages;
7541 		int level = i + 1;
7542 
7543 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7544 				      slot->base_gfn, level) + 1;
7545 
7546 		slot->arch.rmap[i] =
7547 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7548 		if (!slot->arch.rmap[i])
7549 			goto out_free;
7550 		if (i == 0)
7551 			continue;
7552 
7553 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7554 					sizeof(*slot->arch.lpage_info[i - 1]));
7555 		if (!slot->arch.lpage_info[i - 1])
7556 			goto out_free;
7557 
7558 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7559 			slot->arch.lpage_info[i - 1][0].write_count = 1;
7560 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7561 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7562 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7563 		/*
7564 		 * If the gfn and userspace address are not aligned wrt each
7565 		 * other, or if explicitly asked to, disable large page
7566 		 * support for this slot
7567 		 */
7568 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7569 		    !kvm_largepages_enabled()) {
7570 			unsigned long j;
7571 
7572 			for (j = 0; j < lpages; ++j)
7573 				slot->arch.lpage_info[i - 1][j].write_count = 1;
7574 		}
7575 	}
7576 
7577 	return 0;
7578 
7579 out_free:
7580 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7581 		kvfree(slot->arch.rmap[i]);
7582 		slot->arch.rmap[i] = NULL;
7583 		if (i == 0)
7584 			continue;
7585 
7586 		kvfree(slot->arch.lpage_info[i - 1]);
7587 		slot->arch.lpage_info[i - 1] = NULL;
7588 	}
7589 	return -ENOMEM;
7590 }
7591 
kvm_arch_memslots_updated(struct kvm * kvm)7592 void kvm_arch_memslots_updated(struct kvm *kvm)
7593 {
7594 	/*
7595 	 * memslots->generation has been incremented.
7596 	 * mmio generation may have reached its maximum value.
7597 	 */
7598 	kvm_mmu_invalidate_mmio_sptes(kvm);
7599 }
7600 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)7601 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7602 				struct kvm_memory_slot *memslot,
7603 				struct kvm_userspace_memory_region *mem,
7604 				enum kvm_mr_change change)
7605 {
7606 	/*
7607 	 * Only private memory slots need to be mapped here since
7608 	 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7609 	 */
7610 	if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7611 		unsigned long userspace_addr;
7612 
7613 		/*
7614 		 * MAP_SHARED to prevent internal slot pages from being moved
7615 		 * by fork()/COW.
7616 		 */
7617 		userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7618 					 PROT_READ | PROT_WRITE,
7619 					 MAP_SHARED | MAP_ANONYMOUS, 0);
7620 
7621 		if (IS_ERR((void *)userspace_addr))
7622 			return PTR_ERR((void *)userspace_addr);
7623 
7624 		memslot->userspace_addr = userspace_addr;
7625 	}
7626 
7627 	return 0;
7628 }
7629 
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * new)7630 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7631 				     struct kvm_memory_slot *new)
7632 {
7633 	/* Still write protect RO slot */
7634 	if (new->flags & KVM_MEM_READONLY) {
7635 		kvm_mmu_slot_remove_write_access(kvm, new);
7636 		return;
7637 	}
7638 
7639 	/*
7640 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
7641 	 *
7642 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
7643 	 *
7644 	 *  - KVM_MR_CREATE with dirty logging is disabled
7645 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7646 	 *
7647 	 * The reason is, in case of PML, we need to set D-bit for any slots
7648 	 * with dirty logging disabled in order to eliminate unnecessary GPA
7649 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
7650 	 * guarantees leaving PML enabled during guest's lifetime won't have
7651 	 * any additonal overhead from PML when guest is running with dirty
7652 	 * logging disabled for memory slots.
7653 	 *
7654 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7655 	 * to dirty logging mode.
7656 	 *
7657 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7658 	 *
7659 	 * In case of write protect:
7660 	 *
7661 	 * Write protect all pages for dirty logging.
7662 	 *
7663 	 * All the sptes including the large sptes which point to this
7664 	 * slot are set to readonly. We can not create any new large
7665 	 * spte on this slot until the end of the logging.
7666 	 *
7667 	 * See the comments in fast_page_fault().
7668 	 */
7669 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7670 		if (kvm_x86_ops->slot_enable_log_dirty)
7671 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7672 		else
7673 			kvm_mmu_slot_remove_write_access(kvm, new);
7674 	} else {
7675 		if (kvm_x86_ops->slot_disable_log_dirty)
7676 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7677 	}
7678 }
7679 
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,enum kvm_mr_change change)7680 void kvm_arch_commit_memory_region(struct kvm *kvm,
7681 				struct kvm_userspace_memory_region *mem,
7682 				const struct kvm_memory_slot *old,
7683 				enum kvm_mr_change change)
7684 {
7685 	struct kvm_memory_slot *new;
7686 	int nr_mmu_pages = 0;
7687 
7688 	if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7689 		int ret;
7690 
7691 		ret = vm_munmap(old->userspace_addr,
7692 				old->npages * PAGE_SIZE);
7693 		if (ret < 0)
7694 			printk(KERN_WARNING
7695 			       "kvm_vm_ioctl_set_memory_region: "
7696 			       "failed to munmap memory\n");
7697 	}
7698 
7699 	if (!kvm->arch.n_requested_mmu_pages)
7700 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7701 
7702 	if (nr_mmu_pages)
7703 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7704 
7705 	/* It's OK to get 'new' slot here as it has already been installed */
7706 	new = id_to_memslot(kvm->memslots, mem->slot);
7707 
7708 	/*
7709 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
7710 	 * sptes have to be split.  If live migration is successful, the guest
7711 	 * in the source machine will be destroyed and large sptes will be
7712 	 * created in the destination. However, if the guest continues to run
7713 	 * in the source machine (for example if live migration fails), small
7714 	 * sptes will remain around and cause bad performance.
7715 	 *
7716 	 * Scan sptes if dirty logging has been stopped, dropping those
7717 	 * which can be collapsed into a single large-page spte.  Later
7718 	 * page faults will create the large-page sptes.
7719 	 */
7720 	if ((change != KVM_MR_DELETE) &&
7721 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7722 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7723 		kvm_mmu_zap_collapsible_sptes(kvm, new);
7724 
7725 	/*
7726 	 * Set up write protection and/or dirty logging for the new slot.
7727 	 *
7728 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7729 	 * been zapped so no dirty logging staff is needed for old slot. For
7730 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7731 	 * new and it's also covered when dealing with the new slot.
7732 	 */
7733 	if (change != KVM_MR_DELETE)
7734 		kvm_mmu_slot_apply_flags(kvm, new);
7735 }
7736 
kvm_arch_flush_shadow_all(struct kvm * kvm)7737 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7738 {
7739 	kvm_mmu_invalidate_zap_all_pages(kvm);
7740 }
7741 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)7742 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7743 				   struct kvm_memory_slot *slot)
7744 {
7745 	kvm_mmu_invalidate_zap_all_pages(kvm);
7746 }
7747 
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)7748 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7749 {
7750 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7751 		kvm_x86_ops->check_nested_events(vcpu, false);
7752 
7753 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7754 		!vcpu->arch.apf.halted)
7755 		|| !list_empty_careful(&vcpu->async_pf.done)
7756 		|| kvm_apic_has_events(vcpu)
7757 		|| vcpu->arch.pv.pv_unhalted
7758 		|| atomic_read(&vcpu->arch.nmi_queued) ||
7759 		(kvm_arch_interrupt_allowed(vcpu) &&
7760 		 kvm_cpu_has_interrupt(vcpu));
7761 }
7762 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)7763 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7764 {
7765 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7766 }
7767 
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)7768 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7769 {
7770 	return kvm_x86_ops->interrupt_allowed(vcpu);
7771 }
7772 
kvm_get_linear_rip(struct kvm_vcpu * vcpu)7773 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7774 {
7775 	if (is_64_bit_mode(vcpu))
7776 		return kvm_rip_read(vcpu);
7777 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7778 		     kvm_rip_read(vcpu));
7779 }
7780 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7781 
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)7782 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7783 {
7784 	return kvm_get_linear_rip(vcpu) == linear_rip;
7785 }
7786 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7787 
kvm_get_rflags(struct kvm_vcpu * vcpu)7788 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7789 {
7790 	unsigned long rflags;
7791 
7792 	rflags = kvm_x86_ops->get_rflags(vcpu);
7793 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7794 		rflags &= ~X86_EFLAGS_TF;
7795 	return rflags;
7796 }
7797 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7798 
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)7799 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7800 {
7801 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7802 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7803 		rflags |= X86_EFLAGS_TF;
7804 	kvm_x86_ops->set_rflags(vcpu, rflags);
7805 }
7806 
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)7807 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7808 {
7809 	__kvm_set_rflags(vcpu, rflags);
7810 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7811 }
7812 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7813 
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)7814 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7815 {
7816 	int r;
7817 
7818 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7819 	      work->wakeup_all)
7820 		return;
7821 
7822 	r = kvm_mmu_reload(vcpu);
7823 	if (unlikely(r))
7824 		return;
7825 
7826 	if (!vcpu->arch.mmu.direct_map &&
7827 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7828 		return;
7829 
7830 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7831 }
7832 
kvm_async_pf_hash_fn(gfn_t gfn)7833 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7834 {
7835 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7836 }
7837 
kvm_async_pf_next_probe(u32 key)7838 static inline u32 kvm_async_pf_next_probe(u32 key)
7839 {
7840 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7841 }
7842 
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)7843 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7844 {
7845 	u32 key = kvm_async_pf_hash_fn(gfn);
7846 
7847 	while (vcpu->arch.apf.gfns[key] != ~0)
7848 		key = kvm_async_pf_next_probe(key);
7849 
7850 	vcpu->arch.apf.gfns[key] = gfn;
7851 }
7852 
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)7853 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7854 {
7855 	int i;
7856 	u32 key = kvm_async_pf_hash_fn(gfn);
7857 
7858 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7859 		     (vcpu->arch.apf.gfns[key] != gfn &&
7860 		      vcpu->arch.apf.gfns[key] != ~0); i++)
7861 		key = kvm_async_pf_next_probe(key);
7862 
7863 	return key;
7864 }
7865 
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)7866 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7867 {
7868 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7869 }
7870 
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)7871 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7872 {
7873 	u32 i, j, k;
7874 
7875 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7876 	while (true) {
7877 		vcpu->arch.apf.gfns[i] = ~0;
7878 		do {
7879 			j = kvm_async_pf_next_probe(j);
7880 			if (vcpu->arch.apf.gfns[j] == ~0)
7881 				return;
7882 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7883 			/*
7884 			 * k lies cyclically in ]i,j]
7885 			 * |    i.k.j |
7886 			 * |....j i.k.| or  |.k..j i...|
7887 			 */
7888 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7889 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7890 		i = j;
7891 	}
7892 }
7893 
apf_put_user(struct kvm_vcpu * vcpu,u32 val)7894 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7895 {
7896 
7897 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7898 				      sizeof(val));
7899 }
7900 
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)7901 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7902 				     struct kvm_async_pf *work)
7903 {
7904 	struct x86_exception fault;
7905 
7906 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7907 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7908 
7909 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7910 	    (vcpu->arch.apf.send_user_only &&
7911 	     kvm_x86_ops->get_cpl(vcpu) == 0))
7912 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7913 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7914 		fault.vector = PF_VECTOR;
7915 		fault.error_code_valid = true;
7916 		fault.error_code = 0;
7917 		fault.nested_page_fault = false;
7918 		fault.address = work->arch.token;
7919 		kvm_inject_page_fault(vcpu, &fault);
7920 	}
7921 }
7922 
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)7923 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7924 				 struct kvm_async_pf *work)
7925 {
7926 	struct x86_exception fault;
7927 
7928 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
7929 	if (work->wakeup_all)
7930 		work->arch.token = ~0; /* broadcast wakeup */
7931 	else
7932 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7933 
7934 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7935 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7936 		fault.vector = PF_VECTOR;
7937 		fault.error_code_valid = true;
7938 		fault.error_code = 0;
7939 		fault.nested_page_fault = false;
7940 		fault.address = work->arch.token;
7941 		kvm_inject_page_fault(vcpu, &fault);
7942 	}
7943 	vcpu->arch.apf.halted = false;
7944 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7945 }
7946 
kvm_arch_can_inject_async_page_present(struct kvm_vcpu * vcpu)7947 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7948 {
7949 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7950 		return true;
7951 	else
7952 		return !kvm_event_needs_reinjection(vcpu) &&
7953 			kvm_x86_ops->interrupt_allowed(vcpu);
7954 }
7955 
kvm_arch_register_noncoherent_dma(struct kvm * kvm)7956 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7957 {
7958 	atomic_inc(&kvm->arch.noncoherent_dma_count);
7959 }
7960 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7961 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)7962 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7963 {
7964 	atomic_dec(&kvm->arch.noncoherent_dma_count);
7965 }
7966 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7967 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)7968 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7969 {
7970 	return atomic_read(&kvm->arch.noncoherent_dma_count);
7971 }
7972 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7973 
7974 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7975 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7976 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7977 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7978 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7979 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7980 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7981 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7982 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7983 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7984 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7985 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7986 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
7987 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
7988 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
7989