1 /*
2  * Copyright (C) 2009, 2010 Red Hat Inc, Steven Rostedt <srostedt@redhat.com>
3  *
4  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU Lesser General Public
7  * License as published by the Free Software Foundation;
8  * version 2.1 of the License (not later!)
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public
16  * License along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
20  */
21 #include <stdio.h>
22 #include <stdlib.h>
23 #include <string.h>
24 
25 #include "kbuffer.h"
26 
27 #define MISSING_EVENTS (1 << 31)
28 #define MISSING_STORED (1 << 30)
29 
30 #define COMMIT_MASK ((1 << 27) - 1)
31 
32 enum {
33 	KBUFFER_FL_HOST_BIG_ENDIAN	= (1<<0),
34 	KBUFFER_FL_BIG_ENDIAN		= (1<<1),
35 	KBUFFER_FL_LONG_8		= (1<<2),
36 	KBUFFER_FL_OLD_FORMAT		= (1<<3),
37 };
38 
39 #define ENDIAN_MASK (KBUFFER_FL_HOST_BIG_ENDIAN | KBUFFER_FL_BIG_ENDIAN)
40 
41 /** kbuffer
42  * @timestamp		- timestamp of current event
43  * @lost_events		- # of lost events between this subbuffer and previous
44  * @flags		- special flags of the kbuffer
45  * @subbuffer		- pointer to the sub-buffer page
46  * @data		- pointer to the start of data on the sub-buffer page
47  * @index		- index from @data to the @curr event data
48  * @curr		- offset from @data to the start of current event
49  *			   (includes metadata)
50  * @next		- offset from @data to the start of next event
51  * @size		- The size of data on @data
52  * @start		- The offset from @subbuffer where @data lives
53  *
54  * @read_4		- Function to read 4 raw bytes (may swap)
55  * @read_8		- Function to read 8 raw bytes (may swap)
56  * @read_long		- Function to read a long word (4 or 8 bytes with needed swap)
57  */
58 struct kbuffer {
59 	unsigned long long 	timestamp;
60 	long long		lost_events;
61 	unsigned long		flags;
62 	void			*subbuffer;
63 	void			*data;
64 	unsigned int		index;
65 	unsigned int		curr;
66 	unsigned int		next;
67 	unsigned int		size;
68 	unsigned int		start;
69 
70 	unsigned int (*read_4)(void *ptr);
71 	unsigned long long (*read_8)(void *ptr);
72 	unsigned long long (*read_long)(struct kbuffer *kbuf, void *ptr);
73 	int (*next_event)(struct kbuffer *kbuf);
74 };
75 
zmalloc(size_t size)76 static void *zmalloc(size_t size)
77 {
78 	return calloc(1, size);
79 }
80 
host_is_bigendian(void)81 static int host_is_bigendian(void)
82 {
83 	unsigned char str[] = { 0x1, 0x2, 0x3, 0x4 };
84 	unsigned int *ptr;
85 
86 	ptr = (unsigned int *)str;
87 	return *ptr == 0x01020304;
88 }
89 
do_swap(struct kbuffer * kbuf)90 static int do_swap(struct kbuffer *kbuf)
91 {
92 	return ((kbuf->flags & KBUFFER_FL_HOST_BIG_ENDIAN) + kbuf->flags) &
93 		ENDIAN_MASK;
94 }
95 
__read_8(void * ptr)96 static unsigned long long __read_8(void *ptr)
97 {
98 	unsigned long long data = *(unsigned long long *)ptr;
99 
100 	return data;
101 }
102 
__read_8_sw(void * ptr)103 static unsigned long long __read_8_sw(void *ptr)
104 {
105 	unsigned long long data = *(unsigned long long *)ptr;
106 	unsigned long long swap;
107 
108 	swap = ((data & 0xffULL) << 56) |
109 		((data & (0xffULL << 8)) << 40) |
110 		((data & (0xffULL << 16)) << 24) |
111 		((data & (0xffULL << 24)) << 8) |
112 		((data & (0xffULL << 32)) >> 8) |
113 		((data & (0xffULL << 40)) >> 24) |
114 		((data & (0xffULL << 48)) >> 40) |
115 		((data & (0xffULL << 56)) >> 56);
116 
117 	return swap;
118 }
119 
__read_4(void * ptr)120 static unsigned int __read_4(void *ptr)
121 {
122 	unsigned int data = *(unsigned int *)ptr;
123 
124 	return data;
125 }
126 
__read_4_sw(void * ptr)127 static unsigned int __read_4_sw(void *ptr)
128 {
129 	unsigned int data = *(unsigned int *)ptr;
130 	unsigned int swap;
131 
132 	swap = ((data & 0xffULL) << 24) |
133 		((data & (0xffULL << 8)) << 8) |
134 		((data & (0xffULL << 16)) >> 8) |
135 		((data & (0xffULL << 24)) >> 24);
136 
137 	return swap;
138 }
139 
read_8(struct kbuffer * kbuf,void * ptr)140 static unsigned long long read_8(struct kbuffer *kbuf, void *ptr)
141 {
142 	return kbuf->read_8(ptr);
143 }
144 
read_4(struct kbuffer * kbuf,void * ptr)145 static unsigned int read_4(struct kbuffer *kbuf, void *ptr)
146 {
147 	return kbuf->read_4(ptr);
148 }
149 
__read_long_8(struct kbuffer * kbuf,void * ptr)150 static unsigned long long __read_long_8(struct kbuffer *kbuf, void *ptr)
151 {
152 	return kbuf->read_8(ptr);
153 }
154 
__read_long_4(struct kbuffer * kbuf,void * ptr)155 static unsigned long long __read_long_4(struct kbuffer *kbuf, void *ptr)
156 {
157 	return kbuf->read_4(ptr);
158 }
159 
read_long(struct kbuffer * kbuf,void * ptr)160 static unsigned long long read_long(struct kbuffer *kbuf, void *ptr)
161 {
162 	return kbuf->read_long(kbuf, ptr);
163 }
164 
calc_index(struct kbuffer * kbuf,void * ptr)165 static int calc_index(struct kbuffer *kbuf, void *ptr)
166 {
167 	return (unsigned long)ptr - (unsigned long)kbuf->data;
168 }
169 
170 static int __next_event(struct kbuffer *kbuf);
171 
172 /**
173  * kbuffer_alloc - allocat a new kbuffer
174  * @size;	enum to denote size of word
175  * @endian:	enum to denote endianness
176  *
177  * Allocates and returns a new kbuffer.
178  */
179 struct kbuffer *
kbuffer_alloc(enum kbuffer_long_size size,enum kbuffer_endian endian)180 kbuffer_alloc(enum kbuffer_long_size size, enum kbuffer_endian endian)
181 {
182 	struct kbuffer *kbuf;
183 	int flags = 0;
184 
185 	switch (size) {
186 	case KBUFFER_LSIZE_4:
187 		break;
188 	case KBUFFER_LSIZE_8:
189 		flags |= KBUFFER_FL_LONG_8;
190 		break;
191 	default:
192 		return NULL;
193 	}
194 
195 	switch (endian) {
196 	case KBUFFER_ENDIAN_LITTLE:
197 		break;
198 	case KBUFFER_ENDIAN_BIG:
199 		flags |= KBUFFER_FL_BIG_ENDIAN;
200 		break;
201 	default:
202 		return NULL;
203 	}
204 
205 	kbuf = zmalloc(sizeof(*kbuf));
206 	if (!kbuf)
207 		return NULL;
208 
209 	kbuf->flags = flags;
210 
211 	if (host_is_bigendian())
212 		kbuf->flags |= KBUFFER_FL_HOST_BIG_ENDIAN;
213 
214 	if (do_swap(kbuf)) {
215 		kbuf->read_8 = __read_8_sw;
216 		kbuf->read_4 = __read_4_sw;
217 	} else {
218 		kbuf->read_8 = __read_8;
219 		kbuf->read_4 = __read_4;
220 	}
221 
222 	if (kbuf->flags & KBUFFER_FL_LONG_8)
223 		kbuf->read_long = __read_long_8;
224 	else
225 		kbuf->read_long = __read_long_4;
226 
227 	/* May be changed by kbuffer_set_old_format() */
228 	kbuf->next_event = __next_event;
229 
230 	return kbuf;
231 }
232 
233 /** kbuffer_free - free an allocated kbuffer
234  * @kbuf:	The kbuffer to free
235  *
236  * Can take NULL as a parameter.
237  */
kbuffer_free(struct kbuffer * kbuf)238 void kbuffer_free(struct kbuffer *kbuf)
239 {
240 	free(kbuf);
241 }
242 
type4host(struct kbuffer * kbuf,unsigned int type_len_ts)243 static unsigned int type4host(struct kbuffer *kbuf,
244 			      unsigned int type_len_ts)
245 {
246 	if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
247 		return (type_len_ts >> 29) & 3;
248 	else
249 		return type_len_ts & 3;
250 }
251 
len4host(struct kbuffer * kbuf,unsigned int type_len_ts)252 static unsigned int len4host(struct kbuffer *kbuf,
253 			     unsigned int type_len_ts)
254 {
255 	if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
256 		return (type_len_ts >> 27) & 7;
257 	else
258 		return (type_len_ts >> 2) & 7;
259 }
260 
type_len4host(struct kbuffer * kbuf,unsigned int type_len_ts)261 static unsigned int type_len4host(struct kbuffer *kbuf,
262 				  unsigned int type_len_ts)
263 {
264 	if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
265 		return (type_len_ts >> 27) & ((1 << 5) - 1);
266 	else
267 		return type_len_ts & ((1 << 5) - 1);
268 }
269 
ts4host(struct kbuffer * kbuf,unsigned int type_len_ts)270 static unsigned int ts4host(struct kbuffer *kbuf,
271 			    unsigned int type_len_ts)
272 {
273 	if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
274 		return type_len_ts & ((1 << 27) - 1);
275 	else
276 		return type_len_ts >> 5;
277 }
278 
279 /*
280  * Linux 2.6.30 and earlier (not much ealier) had a different
281  * ring buffer format. It should be obsolete, but we handle it anyway.
282  */
283 enum old_ring_buffer_type {
284 	OLD_RINGBUF_TYPE_PADDING,
285 	OLD_RINGBUF_TYPE_TIME_EXTEND,
286 	OLD_RINGBUF_TYPE_TIME_STAMP,
287 	OLD_RINGBUF_TYPE_DATA,
288 };
289 
old_update_pointers(struct kbuffer * kbuf)290 static unsigned int old_update_pointers(struct kbuffer *kbuf)
291 {
292 	unsigned long long extend;
293 	unsigned int type_len_ts;
294 	unsigned int type;
295 	unsigned int len;
296 	unsigned int delta;
297 	unsigned int length;
298 	void *ptr = kbuf->data + kbuf->curr;
299 
300 	type_len_ts = read_4(kbuf, ptr);
301 	ptr += 4;
302 
303 	type = type4host(kbuf, type_len_ts);
304 	len = len4host(kbuf, type_len_ts);
305 	delta = ts4host(kbuf, type_len_ts);
306 
307 	switch (type) {
308 	case OLD_RINGBUF_TYPE_PADDING:
309 		kbuf->next = kbuf->size;
310 		return 0;
311 
312 	case OLD_RINGBUF_TYPE_TIME_EXTEND:
313 		extend = read_4(kbuf, ptr);
314 		extend <<= TS_SHIFT;
315 		extend += delta;
316 		delta = extend;
317 		ptr += 4;
318 		break;
319 
320 	case OLD_RINGBUF_TYPE_TIME_STAMP:
321 		/* should never happen! */
322 		kbuf->curr = kbuf->size;
323 		kbuf->next = kbuf->size;
324 		kbuf->index = kbuf->size;
325 		return -1;
326 	default:
327 		if (len)
328 			length = len * 4;
329 		else {
330 			length = read_4(kbuf, ptr);
331 			length -= 4;
332 			ptr += 4;
333 		}
334 		break;
335 	}
336 
337 	kbuf->timestamp += delta;
338 	kbuf->index = calc_index(kbuf, ptr);
339 	kbuf->next = kbuf->index + length;
340 
341 	return type;
342 }
343 
__old_next_event(struct kbuffer * kbuf)344 static int __old_next_event(struct kbuffer *kbuf)
345 {
346 	int type;
347 
348 	do {
349 		kbuf->curr = kbuf->next;
350 		if (kbuf->next >= kbuf->size)
351 			return -1;
352 		type = old_update_pointers(kbuf);
353 	} while (type == OLD_RINGBUF_TYPE_TIME_EXTEND || type == OLD_RINGBUF_TYPE_PADDING);
354 
355 	return 0;
356 }
357 
358 static unsigned int
translate_data(struct kbuffer * kbuf,void * data,void ** rptr,unsigned long long * delta,int * length)359 translate_data(struct kbuffer *kbuf, void *data, void **rptr,
360 	       unsigned long long *delta, int *length)
361 {
362 	unsigned long long extend;
363 	unsigned int type_len_ts;
364 	unsigned int type_len;
365 
366 	type_len_ts = read_4(kbuf, data);
367 	data += 4;
368 
369 	type_len = type_len4host(kbuf, type_len_ts);
370 	*delta = ts4host(kbuf, type_len_ts);
371 
372 	switch (type_len) {
373 	case KBUFFER_TYPE_PADDING:
374 		*length = read_4(kbuf, data);
375 		break;
376 
377 	case KBUFFER_TYPE_TIME_EXTEND:
378 		extend = read_4(kbuf, data);
379 		data += 4;
380 		extend <<= TS_SHIFT;
381 		extend += *delta;
382 		*delta = extend;
383 		*length = 0;
384 		break;
385 
386 	case KBUFFER_TYPE_TIME_STAMP:
387 		data += 12;
388 		*length = 0;
389 		break;
390 	case 0:
391 		*length = read_4(kbuf, data) - 4;
392 		*length = (*length + 3) & ~3;
393 		data += 4;
394 		break;
395 	default:
396 		*length = type_len * 4;
397 		break;
398 	}
399 
400 	*rptr = data;
401 
402 	return type_len;
403 }
404 
update_pointers(struct kbuffer * kbuf)405 static unsigned int update_pointers(struct kbuffer *kbuf)
406 {
407 	unsigned long long delta;
408 	unsigned int type_len;
409 	int length;
410 	void *ptr = kbuf->data + kbuf->curr;
411 
412 	type_len = translate_data(kbuf, ptr, &ptr, &delta, &length);
413 
414 	kbuf->timestamp += delta;
415 	kbuf->index = calc_index(kbuf, ptr);
416 	kbuf->next = kbuf->index + length;
417 
418 	return type_len;
419 }
420 
421 /**
422  * kbuffer_translate_data - read raw data to get a record
423  * @swap:	Set to 1 if bytes in words need to be swapped when read
424  * @data:	The raw data to read
425  * @size:	Address to store the size of the event data.
426  *
427  * Returns a pointer to the event data. To determine the entire
428  * record size (record metadata + data) just add the difference between
429  * @data and the returned value to @size.
430  */
kbuffer_translate_data(int swap,void * data,unsigned int * size)431 void *kbuffer_translate_data(int swap, void *data, unsigned int *size)
432 {
433 	unsigned long long delta;
434 	struct kbuffer kbuf;
435 	int type_len;
436 	int length;
437 	void *ptr;
438 
439 	if (swap) {
440 		kbuf.read_8 = __read_8_sw;
441 		kbuf.read_4 = __read_4_sw;
442 		kbuf.flags = host_is_bigendian() ? 0 : KBUFFER_FL_BIG_ENDIAN;
443 	} else {
444 		kbuf.read_8 = __read_8;
445 		kbuf.read_4 = __read_4;
446 		kbuf.flags = host_is_bigendian() ? KBUFFER_FL_BIG_ENDIAN: 0;
447 	}
448 
449 	type_len = translate_data(&kbuf, data, &ptr, &delta, &length);
450 	switch (type_len) {
451 	case KBUFFER_TYPE_PADDING:
452 	case KBUFFER_TYPE_TIME_EXTEND:
453 	case KBUFFER_TYPE_TIME_STAMP:
454 		return NULL;
455 	};
456 
457 	*size = length;
458 
459 	return ptr;
460 }
461 
__next_event(struct kbuffer * kbuf)462 static int __next_event(struct kbuffer *kbuf)
463 {
464 	int type;
465 
466 	do {
467 		kbuf->curr = kbuf->next;
468 		if (kbuf->next >= kbuf->size)
469 			return -1;
470 		type = update_pointers(kbuf);
471 	} while (type == KBUFFER_TYPE_TIME_EXTEND || type == KBUFFER_TYPE_PADDING);
472 
473 	return 0;
474 }
475 
next_event(struct kbuffer * kbuf)476 static int next_event(struct kbuffer *kbuf)
477 {
478 	return kbuf->next_event(kbuf);
479 }
480 
481 /**
482  * kbuffer_next_event - increment the current pointer
483  * @kbuf:	The kbuffer to read
484  * @ts:		Address to store the next record's timestamp (may be NULL to ignore)
485  *
486  * Increments the pointers into the subbuffer of the kbuffer to point to the
487  * next event so that the next kbuffer_read_event() will return a
488  * new event.
489  *
490  * Returns the data of the next event if a new event exists on the subbuffer,
491  * NULL otherwise.
492  */
kbuffer_next_event(struct kbuffer * kbuf,unsigned long long * ts)493 void *kbuffer_next_event(struct kbuffer *kbuf, unsigned long long *ts)
494 {
495 	int ret;
496 
497 	if (!kbuf || !kbuf->subbuffer)
498 		return NULL;
499 
500 	ret = next_event(kbuf);
501 	if (ret < 0)
502 		return NULL;
503 
504 	if (ts)
505 		*ts = kbuf->timestamp;
506 
507 	return kbuf->data + kbuf->index;
508 }
509 
510 /**
511  * kbuffer_load_subbuffer - load a new subbuffer into the kbuffer
512  * @kbuf:	The kbuffer to load
513  * @subbuffer:	The subbuffer to load into @kbuf.
514  *
515  * Load a new subbuffer (page) into @kbuf. This will reset all
516  * the pointers and update the @kbuf timestamp. The next read will
517  * return the first event on @subbuffer.
518  *
519  * Returns 0 on succes, -1 otherwise.
520  */
kbuffer_load_subbuffer(struct kbuffer * kbuf,void * subbuffer)521 int kbuffer_load_subbuffer(struct kbuffer *kbuf, void *subbuffer)
522 {
523 	unsigned long long flags;
524 	void *ptr = subbuffer;
525 
526 	if (!kbuf || !subbuffer)
527 		return -1;
528 
529 	kbuf->subbuffer = subbuffer;
530 
531 	kbuf->timestamp = read_8(kbuf, ptr);
532 	ptr += 8;
533 
534 	kbuf->curr = 0;
535 
536 	if (kbuf->flags & KBUFFER_FL_LONG_8)
537 		kbuf->start = 16;
538 	else
539 		kbuf->start = 12;
540 
541 	kbuf->data = subbuffer + kbuf->start;
542 
543 	flags = read_long(kbuf, ptr);
544 	kbuf->size = (unsigned int)flags & COMMIT_MASK;
545 
546 	if (flags & MISSING_EVENTS) {
547 		if (flags & MISSING_STORED) {
548 			ptr = kbuf->data + kbuf->size;
549 			kbuf->lost_events = read_long(kbuf, ptr);
550 		} else
551 			kbuf->lost_events = -1;
552 	} else
553 		kbuf->lost_events = 0;
554 
555 	kbuf->index = 0;
556 	kbuf->next = 0;
557 
558 	next_event(kbuf);
559 
560 	return 0;
561 }
562 
563 /**
564  * kbuffer_read_event - read the next event in the kbuffer subbuffer
565  * @kbuf:	The kbuffer to read from
566  * @ts:		The address to store the timestamp of the event (may be NULL to ignore)
567  *
568  * Returns a pointer to the data part of the current event.
569  * NULL if no event is left on the subbuffer.
570  */
kbuffer_read_event(struct kbuffer * kbuf,unsigned long long * ts)571 void *kbuffer_read_event(struct kbuffer *kbuf, unsigned long long *ts)
572 {
573 	if (!kbuf || !kbuf->subbuffer)
574 		return NULL;
575 
576 	if (kbuf->curr >= kbuf->size)
577 		return NULL;
578 
579 	if (ts)
580 		*ts = kbuf->timestamp;
581 	return kbuf->data + kbuf->index;
582 }
583 
584 /**
585  * kbuffer_timestamp - Return the timestamp of the current event
586  * @kbuf:	The kbuffer to read from
587  *
588  * Returns the timestamp of the current (next) event.
589  */
kbuffer_timestamp(struct kbuffer * kbuf)590 unsigned long long kbuffer_timestamp(struct kbuffer *kbuf)
591 {
592 	return kbuf->timestamp;
593 }
594 
595 /**
596  * kbuffer_read_at_offset - read the event that is at offset
597  * @kbuf:	The kbuffer to read from
598  * @offset:	The offset into the subbuffer
599  * @ts:		The address to store the timestamp of the event (may be NULL to ignore)
600  *
601  * The @offset must be an index from the @kbuf subbuffer beginning.
602  * If @offset is bigger than the stored subbuffer, NULL will be returned.
603  *
604  * Returns the data of the record that is at @offset. Note, @offset does
605  * not need to be the start of the record, the offset just needs to be
606  * in the record (or beginning of it).
607  *
608  * Note, the kbuf timestamp and pointers are updated to the
609  * returned record. That is, kbuffer_read_event() will return the same
610  * data and timestamp, and kbuffer_next_event() will increment from
611  * this record.
612  */
kbuffer_read_at_offset(struct kbuffer * kbuf,int offset,unsigned long long * ts)613 void *kbuffer_read_at_offset(struct kbuffer *kbuf, int offset,
614 			     unsigned long long *ts)
615 {
616 	void *data;
617 
618 	if (offset < kbuf->start)
619 		offset = 0;
620 	else
621 		offset -= kbuf->start;
622 
623 	/* Reset the buffer */
624 	kbuffer_load_subbuffer(kbuf, kbuf->subbuffer);
625 
626 	while (kbuf->curr < offset) {
627 		data = kbuffer_next_event(kbuf, ts);
628 		if (!data)
629 			break;
630 	}
631 
632 	return data;
633 }
634 
635 /**
636  * kbuffer_subbuffer_size - the size of the loaded subbuffer
637  * @kbuf:	The kbuffer to read from
638  *
639  * Returns the size of the subbuffer. Note, this size is
640  * where the last event resides. The stored subbuffer may actually be
641  * bigger due to padding and such.
642  */
kbuffer_subbuffer_size(struct kbuffer * kbuf)643 int kbuffer_subbuffer_size(struct kbuffer *kbuf)
644 {
645 	return kbuf->size;
646 }
647 
648 /**
649  * kbuffer_curr_index - Return the index of the record
650  * @kbuf:	The kbuffer to read from
651  *
652  * Returns the index from the start of the data part of
653  * the subbuffer to the current location. Note this is not
654  * from the start of the subbuffer. An index of zero will
655  * point to the first record. Use kbuffer_curr_offset() for
656  * the actually offset (that can be used by kbuffer_read_at_offset())
657  */
kbuffer_curr_index(struct kbuffer * kbuf)658 int kbuffer_curr_index(struct kbuffer *kbuf)
659 {
660 	return kbuf->curr;
661 }
662 
663 /**
664  * kbuffer_curr_offset - Return the offset of the record
665  * @kbuf:	The kbuffer to read from
666  *
667  * Returns the offset from the start of the subbuffer to the
668  * current location.
669  */
kbuffer_curr_offset(struct kbuffer * kbuf)670 int kbuffer_curr_offset(struct kbuffer *kbuf)
671 {
672 	return kbuf->curr + kbuf->start;
673 }
674 
675 /**
676  * kbuffer_event_size - return the size of the event data
677  * @kbuf:	The kbuffer to read
678  *
679  * Returns the size of the event data (the payload not counting
680  * the meta data of the record) of the current event.
681  */
kbuffer_event_size(struct kbuffer * kbuf)682 int kbuffer_event_size(struct kbuffer *kbuf)
683 {
684 	return kbuf->next - kbuf->index;
685 }
686 
687 /**
688  * kbuffer_curr_size - return the size of the entire record
689  * @kbuf:	The kbuffer to read
690  *
691  * Returns the size of the entire record (meta data and payload)
692  * of the current event.
693  */
kbuffer_curr_size(struct kbuffer * kbuf)694 int kbuffer_curr_size(struct kbuffer *kbuf)
695 {
696 	return kbuf->next - kbuf->curr;
697 }
698 
699 /**
700  * kbuffer_missed_events - return the # of missed events from last event.
701  * @kbuf: 	The kbuffer to read from
702  *
703  * Returns the # of missed events (if recorded) before the current
704  * event. Note, only events on the beginning of a subbuffer can
705  * have missed events, all other events within the buffer will be
706  * zero.
707  */
kbuffer_missed_events(struct kbuffer * kbuf)708 int kbuffer_missed_events(struct kbuffer *kbuf)
709 {
710 	/* Only the first event can have missed events */
711 	if (kbuf->curr)
712 		return 0;
713 
714 	return kbuf->lost_events;
715 }
716 
717 /**
718  * kbuffer_set_old_forma - set the kbuffer to use the old format parsing
719  * @kbuf:	The kbuffer to set
720  *
721  * This is obsolete (or should be). The first kernels to use the
722  * new ring buffer had a slightly different ring buffer format
723  * (2.6.30 and earlier). It is still somewhat supported by kbuffer,
724  * but should not be counted on in the future.
725  */
kbuffer_set_old_format(struct kbuffer * kbuf)726 void kbuffer_set_old_format(struct kbuffer *kbuf)
727 {
728 	kbuf->flags |= KBUFFER_FL_OLD_FORMAT;
729 
730 	kbuf->next_event = __old_next_event;
731 }
732 
733 /**
734  * kbuffer_start_of_data - return offset of where data starts on subbuffer
735  * @kbuf:	The kbuffer
736  *
737  * Returns the location on the subbuffer where the data starts.
738  */
kbuffer_start_of_data(struct kbuffer * kbuf)739 int kbuffer_start_of_data(struct kbuffer *kbuf)
740 {
741 	return kbuf->start;
742 }
743