1 /*
2 * Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved.
3 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
4 * Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/slab.h>
37 #include <linux/delay.h>
38
39 #include "iscsi_iser.h"
40
41 #define ISCSI_ISER_MAX_CONN 8
42 #define ISER_MAX_RX_LEN (ISER_QP_MAX_RECV_DTOS * ISCSI_ISER_MAX_CONN)
43 #define ISER_MAX_TX_LEN (ISER_QP_MAX_REQ_DTOS * ISCSI_ISER_MAX_CONN)
44 #define ISER_MAX_CQ_LEN (ISER_MAX_RX_LEN + ISER_MAX_TX_LEN + \
45 ISCSI_ISER_MAX_CONN)
46
47 static int iser_cq_poll_limit = 512;
48
49 static void iser_cq_tasklet_fn(unsigned long data);
50 static void iser_cq_callback(struct ib_cq *cq, void *cq_context);
51
iser_cq_event_callback(struct ib_event * cause,void * context)52 static void iser_cq_event_callback(struct ib_event *cause, void *context)
53 {
54 iser_err("got cq event %d \n", cause->event);
55 }
56
iser_qp_event_callback(struct ib_event * cause,void * context)57 static void iser_qp_event_callback(struct ib_event *cause, void *context)
58 {
59 iser_err("got qp event %d\n",cause->event);
60 }
61
iser_event_handler(struct ib_event_handler * handler,struct ib_event * event)62 static void iser_event_handler(struct ib_event_handler *handler,
63 struct ib_event *event)
64 {
65 iser_err("async event %d on device %s port %d\n", event->event,
66 event->device->name, event->element.port_num);
67 }
68
69 /**
70 * iser_create_device_ib_res - creates Protection Domain (PD), Completion
71 * Queue (CQ), DMA Memory Region (DMA MR) with the device associated with
72 * the adapator.
73 *
74 * returns 0 on success, -1 on failure
75 */
iser_create_device_ib_res(struct iser_device * device)76 static int iser_create_device_ib_res(struct iser_device *device)
77 {
78 struct ib_device_attr *dev_attr = &device->dev_attr;
79 int ret, i, max_cqe;
80
81 ret = ib_query_device(device->ib_device, dev_attr);
82 if (ret) {
83 pr_warn("Query device failed for %s\n", device->ib_device->name);
84 return ret;
85 }
86
87 /* Assign function handles - based on FMR support */
88 if (device->ib_device->alloc_fmr && device->ib_device->dealloc_fmr &&
89 device->ib_device->map_phys_fmr && device->ib_device->unmap_fmr) {
90 iser_info("FMR supported, using FMR for registration\n");
91 device->iser_alloc_rdma_reg_res = iser_create_fmr_pool;
92 device->iser_free_rdma_reg_res = iser_free_fmr_pool;
93 device->iser_reg_rdma_mem = iser_reg_rdma_mem_fmr;
94 device->iser_unreg_rdma_mem = iser_unreg_mem_fmr;
95 } else
96 if (dev_attr->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) {
97 iser_info("FastReg supported, using FastReg for registration\n");
98 device->iser_alloc_rdma_reg_res = iser_create_fastreg_pool;
99 device->iser_free_rdma_reg_res = iser_free_fastreg_pool;
100 device->iser_reg_rdma_mem = iser_reg_rdma_mem_fastreg;
101 device->iser_unreg_rdma_mem = iser_unreg_mem_fastreg;
102 } else {
103 iser_err("IB device does not support FMRs nor FastRegs, can't register memory\n");
104 return -1;
105 }
106
107 device->comps_used = min_t(int, num_online_cpus(),
108 device->ib_device->num_comp_vectors);
109
110 device->comps = kcalloc(device->comps_used, sizeof(*device->comps),
111 GFP_KERNEL);
112 if (!device->comps)
113 goto comps_err;
114
115 max_cqe = min(ISER_MAX_CQ_LEN, dev_attr->max_cqe);
116
117 iser_info("using %d CQs, device %s supports %d vectors max_cqe %d\n",
118 device->comps_used, device->ib_device->name,
119 device->ib_device->num_comp_vectors, max_cqe);
120
121 device->pd = ib_alloc_pd(device->ib_device);
122 if (IS_ERR(device->pd))
123 goto pd_err;
124
125 for (i = 0; i < device->comps_used; i++) {
126 struct iser_comp *comp = &device->comps[i];
127
128 comp->device = device;
129 comp->cq = ib_create_cq(device->ib_device,
130 iser_cq_callback,
131 iser_cq_event_callback,
132 (void *)comp,
133 max_cqe, i);
134 if (IS_ERR(comp->cq)) {
135 comp->cq = NULL;
136 goto cq_err;
137 }
138
139 if (ib_req_notify_cq(comp->cq, IB_CQ_NEXT_COMP))
140 goto cq_err;
141
142 tasklet_init(&comp->tasklet, iser_cq_tasklet_fn,
143 (unsigned long)comp);
144 }
145
146 device->mr = ib_get_dma_mr(device->pd, IB_ACCESS_LOCAL_WRITE |
147 IB_ACCESS_REMOTE_WRITE |
148 IB_ACCESS_REMOTE_READ);
149 if (IS_ERR(device->mr))
150 goto dma_mr_err;
151
152 INIT_IB_EVENT_HANDLER(&device->event_handler, device->ib_device,
153 iser_event_handler);
154 if (ib_register_event_handler(&device->event_handler))
155 goto handler_err;
156
157 return 0;
158
159 handler_err:
160 ib_dereg_mr(device->mr);
161 dma_mr_err:
162 for (i = 0; i < device->comps_used; i++)
163 tasklet_kill(&device->comps[i].tasklet);
164 cq_err:
165 for (i = 0; i < device->comps_used; i++) {
166 struct iser_comp *comp = &device->comps[i];
167
168 if (comp->cq)
169 ib_destroy_cq(comp->cq);
170 }
171 ib_dealloc_pd(device->pd);
172 pd_err:
173 kfree(device->comps);
174 comps_err:
175 iser_err("failed to allocate an IB resource\n");
176 return -1;
177 }
178
179 /**
180 * iser_free_device_ib_res - destroy/dealloc/dereg the DMA MR,
181 * CQ and PD created with the device associated with the adapator.
182 */
iser_free_device_ib_res(struct iser_device * device)183 static void iser_free_device_ib_res(struct iser_device *device)
184 {
185 int i;
186 BUG_ON(device->mr == NULL);
187
188 for (i = 0; i < device->comps_used; i++) {
189 struct iser_comp *comp = &device->comps[i];
190
191 tasklet_kill(&comp->tasklet);
192 ib_destroy_cq(comp->cq);
193 comp->cq = NULL;
194 }
195
196 (void)ib_unregister_event_handler(&device->event_handler);
197 (void)ib_dereg_mr(device->mr);
198 (void)ib_dealloc_pd(device->pd);
199
200 kfree(device->comps);
201 device->comps = NULL;
202
203 device->mr = NULL;
204 device->pd = NULL;
205 }
206
207 /**
208 * iser_create_fmr_pool - Creates FMR pool and page_vector
209 *
210 * returns 0 on success, or errno code on failure
211 */
iser_create_fmr_pool(struct ib_conn * ib_conn,unsigned cmds_max)212 int iser_create_fmr_pool(struct ib_conn *ib_conn, unsigned cmds_max)
213 {
214 struct iser_device *device = ib_conn->device;
215 struct ib_fmr_pool_param params;
216 int ret = -ENOMEM;
217
218 ib_conn->fmr.page_vec = kmalloc(sizeof(*ib_conn->fmr.page_vec) +
219 (sizeof(u64)*(ISCSI_ISER_SG_TABLESIZE + 1)),
220 GFP_KERNEL);
221 if (!ib_conn->fmr.page_vec)
222 return ret;
223
224 ib_conn->fmr.page_vec->pages = (u64 *)(ib_conn->fmr.page_vec + 1);
225
226 params.page_shift = SHIFT_4K;
227 /* when the first/last SG element are not start/end *
228 * page aligned, the map whould be of N+1 pages */
229 params.max_pages_per_fmr = ISCSI_ISER_SG_TABLESIZE + 1;
230 /* make the pool size twice the max number of SCSI commands *
231 * the ML is expected to queue, watermark for unmap at 50% */
232 params.pool_size = cmds_max * 2;
233 params.dirty_watermark = cmds_max;
234 params.cache = 0;
235 params.flush_function = NULL;
236 params.access = (IB_ACCESS_LOCAL_WRITE |
237 IB_ACCESS_REMOTE_WRITE |
238 IB_ACCESS_REMOTE_READ);
239
240 ib_conn->fmr.pool = ib_create_fmr_pool(device->pd, ¶ms);
241 if (!IS_ERR(ib_conn->fmr.pool))
242 return 0;
243
244 /* no FMR => no need for page_vec */
245 kfree(ib_conn->fmr.page_vec);
246 ib_conn->fmr.page_vec = NULL;
247
248 ret = PTR_ERR(ib_conn->fmr.pool);
249 ib_conn->fmr.pool = NULL;
250 if (ret != -ENOSYS) {
251 iser_err("FMR allocation failed, err %d\n", ret);
252 return ret;
253 } else {
254 iser_warn("FMRs are not supported, using unaligned mode\n");
255 return 0;
256 }
257 }
258
259 /**
260 * iser_free_fmr_pool - releases the FMR pool and page vec
261 */
iser_free_fmr_pool(struct ib_conn * ib_conn)262 void iser_free_fmr_pool(struct ib_conn *ib_conn)
263 {
264 iser_info("freeing conn %p fmr pool %p\n",
265 ib_conn, ib_conn->fmr.pool);
266
267 if (ib_conn->fmr.pool != NULL)
268 ib_destroy_fmr_pool(ib_conn->fmr.pool);
269
270 ib_conn->fmr.pool = NULL;
271
272 kfree(ib_conn->fmr.page_vec);
273 ib_conn->fmr.page_vec = NULL;
274 }
275
276 static int
iser_alloc_pi_ctx(struct ib_device * ib_device,struct ib_pd * pd,struct fast_reg_descriptor * desc)277 iser_alloc_pi_ctx(struct ib_device *ib_device, struct ib_pd *pd,
278 struct fast_reg_descriptor *desc)
279 {
280 struct iser_pi_context *pi_ctx = NULL;
281 struct ib_mr_init_attr mr_init_attr = {.max_reg_descriptors = 2,
282 .flags = IB_MR_SIGNATURE_EN};
283 int ret = 0;
284
285 desc->pi_ctx = kzalloc(sizeof(*desc->pi_ctx), GFP_KERNEL);
286 if (!desc->pi_ctx)
287 return -ENOMEM;
288
289 pi_ctx = desc->pi_ctx;
290
291 pi_ctx->prot_frpl = ib_alloc_fast_reg_page_list(ib_device,
292 ISCSI_ISER_SG_TABLESIZE);
293 if (IS_ERR(pi_ctx->prot_frpl)) {
294 ret = PTR_ERR(pi_ctx->prot_frpl);
295 goto prot_frpl_failure;
296 }
297
298 pi_ctx->prot_mr = ib_alloc_fast_reg_mr(pd,
299 ISCSI_ISER_SG_TABLESIZE + 1);
300 if (IS_ERR(pi_ctx->prot_mr)) {
301 ret = PTR_ERR(pi_ctx->prot_mr);
302 goto prot_mr_failure;
303 }
304 desc->reg_indicators |= ISER_PROT_KEY_VALID;
305
306 pi_ctx->sig_mr = ib_create_mr(pd, &mr_init_attr);
307 if (IS_ERR(pi_ctx->sig_mr)) {
308 ret = PTR_ERR(pi_ctx->sig_mr);
309 goto sig_mr_failure;
310 }
311 desc->reg_indicators |= ISER_SIG_KEY_VALID;
312 desc->reg_indicators &= ~ISER_FASTREG_PROTECTED;
313
314 return 0;
315
316 sig_mr_failure:
317 ib_dereg_mr(desc->pi_ctx->prot_mr);
318 prot_mr_failure:
319 ib_free_fast_reg_page_list(desc->pi_ctx->prot_frpl);
320 prot_frpl_failure:
321 kfree(desc->pi_ctx);
322
323 return ret;
324 }
325
326 static void
iser_free_pi_ctx(struct iser_pi_context * pi_ctx)327 iser_free_pi_ctx(struct iser_pi_context *pi_ctx)
328 {
329 ib_free_fast_reg_page_list(pi_ctx->prot_frpl);
330 ib_dereg_mr(pi_ctx->prot_mr);
331 ib_destroy_mr(pi_ctx->sig_mr);
332 kfree(pi_ctx);
333 }
334
335 static int
iser_create_fastreg_desc(struct ib_device * ib_device,struct ib_pd * pd,bool pi_enable,struct fast_reg_descriptor * desc)336 iser_create_fastreg_desc(struct ib_device *ib_device, struct ib_pd *pd,
337 bool pi_enable, struct fast_reg_descriptor *desc)
338 {
339 int ret;
340
341 desc->data_frpl = ib_alloc_fast_reg_page_list(ib_device,
342 ISCSI_ISER_SG_TABLESIZE + 1);
343 if (IS_ERR(desc->data_frpl)) {
344 ret = PTR_ERR(desc->data_frpl);
345 iser_err("Failed to allocate ib_fast_reg_page_list err=%d\n",
346 ret);
347 return PTR_ERR(desc->data_frpl);
348 }
349
350 desc->data_mr = ib_alloc_fast_reg_mr(pd, ISCSI_ISER_SG_TABLESIZE + 1);
351 if (IS_ERR(desc->data_mr)) {
352 ret = PTR_ERR(desc->data_mr);
353 iser_err("Failed to allocate ib_fast_reg_mr err=%d\n", ret);
354 goto fast_reg_mr_failure;
355 }
356 desc->reg_indicators |= ISER_DATA_KEY_VALID;
357
358 if (pi_enable) {
359 ret = iser_alloc_pi_ctx(ib_device, pd, desc);
360 if (ret)
361 goto pi_ctx_alloc_failure;
362 }
363
364 return 0;
365 pi_ctx_alloc_failure:
366 ib_dereg_mr(desc->data_mr);
367 fast_reg_mr_failure:
368 ib_free_fast_reg_page_list(desc->data_frpl);
369
370 return ret;
371 }
372
373 /**
374 * iser_create_fastreg_pool - Creates pool of fast_reg descriptors
375 * for fast registration work requests.
376 * returns 0 on success, or errno code on failure
377 */
iser_create_fastreg_pool(struct ib_conn * ib_conn,unsigned cmds_max)378 int iser_create_fastreg_pool(struct ib_conn *ib_conn, unsigned cmds_max)
379 {
380 struct iser_device *device = ib_conn->device;
381 struct fast_reg_descriptor *desc;
382 int i, ret;
383
384 INIT_LIST_HEAD(&ib_conn->fastreg.pool);
385 ib_conn->fastreg.pool_size = 0;
386 for (i = 0; i < cmds_max; i++) {
387 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
388 if (!desc) {
389 iser_err("Failed to allocate a new fast_reg descriptor\n");
390 ret = -ENOMEM;
391 goto err;
392 }
393
394 ret = iser_create_fastreg_desc(device->ib_device, device->pd,
395 ib_conn->pi_support, desc);
396 if (ret) {
397 iser_err("Failed to create fastreg descriptor err=%d\n",
398 ret);
399 kfree(desc);
400 goto err;
401 }
402
403 list_add_tail(&desc->list, &ib_conn->fastreg.pool);
404 ib_conn->fastreg.pool_size++;
405 }
406
407 return 0;
408
409 err:
410 iser_free_fastreg_pool(ib_conn);
411 return ret;
412 }
413
414 /**
415 * iser_free_fastreg_pool - releases the pool of fast_reg descriptors
416 */
iser_free_fastreg_pool(struct ib_conn * ib_conn)417 void iser_free_fastreg_pool(struct ib_conn *ib_conn)
418 {
419 struct fast_reg_descriptor *desc, *tmp;
420 int i = 0;
421
422 if (list_empty(&ib_conn->fastreg.pool))
423 return;
424
425 iser_info("freeing conn %p fr pool\n", ib_conn);
426
427 list_for_each_entry_safe(desc, tmp, &ib_conn->fastreg.pool, list) {
428 list_del(&desc->list);
429 ib_free_fast_reg_page_list(desc->data_frpl);
430 ib_dereg_mr(desc->data_mr);
431 if (desc->pi_ctx)
432 iser_free_pi_ctx(desc->pi_ctx);
433 kfree(desc);
434 ++i;
435 }
436
437 if (i < ib_conn->fastreg.pool_size)
438 iser_warn("pool still has %d regions registered\n",
439 ib_conn->fastreg.pool_size - i);
440 }
441
442 /**
443 * iser_create_ib_conn_res - Queue-Pair (QP)
444 *
445 * returns 0 on success, -1 on failure
446 */
iser_create_ib_conn_res(struct ib_conn * ib_conn)447 static int iser_create_ib_conn_res(struct ib_conn *ib_conn)
448 {
449 struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn,
450 ib_conn);
451 struct iser_device *device;
452 struct ib_device_attr *dev_attr;
453 struct ib_qp_init_attr init_attr;
454 int ret = -ENOMEM;
455 int index, min_index = 0;
456
457 BUG_ON(ib_conn->device == NULL);
458
459 device = ib_conn->device;
460 dev_attr = &device->dev_attr;
461
462 memset(&init_attr, 0, sizeof init_attr);
463
464 mutex_lock(&ig.connlist_mutex);
465 /* select the CQ with the minimal number of usages */
466 for (index = 0; index < device->comps_used; index++) {
467 if (device->comps[index].active_qps <
468 device->comps[min_index].active_qps)
469 min_index = index;
470 }
471 ib_conn->comp = &device->comps[min_index];
472 ib_conn->comp->active_qps++;
473 mutex_unlock(&ig.connlist_mutex);
474 iser_info("cq index %d used for ib_conn %p\n", min_index, ib_conn);
475
476 init_attr.event_handler = iser_qp_event_callback;
477 init_attr.qp_context = (void *)ib_conn;
478 init_attr.send_cq = ib_conn->comp->cq;
479 init_attr.recv_cq = ib_conn->comp->cq;
480 init_attr.cap.max_recv_wr = ISER_QP_MAX_RECV_DTOS;
481 init_attr.cap.max_send_sge = 2;
482 init_attr.cap.max_recv_sge = 1;
483 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
484 init_attr.qp_type = IB_QPT_RC;
485 if (ib_conn->pi_support) {
486 init_attr.cap.max_send_wr = ISER_QP_SIG_MAX_REQ_DTOS + 1;
487 init_attr.create_flags |= IB_QP_CREATE_SIGNATURE_EN;
488 iser_conn->max_cmds =
489 ISER_GET_MAX_XMIT_CMDS(ISER_QP_SIG_MAX_REQ_DTOS);
490 } else {
491 if (dev_attr->max_qp_wr > ISER_QP_MAX_REQ_DTOS) {
492 init_attr.cap.max_send_wr = ISER_QP_MAX_REQ_DTOS + 1;
493 iser_conn->max_cmds =
494 ISER_GET_MAX_XMIT_CMDS(ISER_QP_MAX_REQ_DTOS);
495 } else {
496 init_attr.cap.max_send_wr = dev_attr->max_qp_wr;
497 iser_conn->max_cmds =
498 ISER_GET_MAX_XMIT_CMDS(dev_attr->max_qp_wr);
499 iser_dbg("device %s supports max_send_wr %d\n",
500 device->ib_device->name, dev_attr->max_qp_wr);
501 }
502 }
503
504 ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr);
505 if (ret)
506 goto out_err;
507
508 ib_conn->qp = ib_conn->cma_id->qp;
509 iser_info("setting conn %p cma_id %p qp %p\n",
510 ib_conn, ib_conn->cma_id,
511 ib_conn->cma_id->qp);
512 return ret;
513
514 out_err:
515 mutex_lock(&ig.connlist_mutex);
516 ib_conn->comp->active_qps--;
517 mutex_unlock(&ig.connlist_mutex);
518 iser_err("unable to alloc mem or create resource, err %d\n", ret);
519
520 return ret;
521 }
522
523 /**
524 * based on the resolved device node GUID see if there already allocated
525 * device for this device. If there's no such, create one.
526 */
527 static
iser_device_find_by_ib_device(struct rdma_cm_id * cma_id)528 struct iser_device *iser_device_find_by_ib_device(struct rdma_cm_id *cma_id)
529 {
530 struct iser_device *device;
531
532 mutex_lock(&ig.device_list_mutex);
533
534 list_for_each_entry(device, &ig.device_list, ig_list)
535 /* find if there's a match using the node GUID */
536 if (device->ib_device->node_guid == cma_id->device->node_guid)
537 goto inc_refcnt;
538
539 device = kzalloc(sizeof *device, GFP_KERNEL);
540 if (device == NULL)
541 goto out;
542
543 /* assign this device to the device */
544 device->ib_device = cma_id->device;
545 /* init the device and link it into ig device list */
546 if (iser_create_device_ib_res(device)) {
547 kfree(device);
548 device = NULL;
549 goto out;
550 }
551 list_add(&device->ig_list, &ig.device_list);
552
553 inc_refcnt:
554 device->refcount++;
555 out:
556 mutex_unlock(&ig.device_list_mutex);
557 return device;
558 }
559
560 /* if there's no demand for this device, release it */
iser_device_try_release(struct iser_device * device)561 static void iser_device_try_release(struct iser_device *device)
562 {
563 mutex_lock(&ig.device_list_mutex);
564 device->refcount--;
565 iser_info("device %p refcount %d\n", device, device->refcount);
566 if (!device->refcount) {
567 iser_free_device_ib_res(device);
568 list_del(&device->ig_list);
569 kfree(device);
570 }
571 mutex_unlock(&ig.device_list_mutex);
572 }
573
574 /**
575 * Called with state mutex held
576 **/
iser_conn_state_comp_exch(struct iser_conn * iser_conn,enum iser_conn_state comp,enum iser_conn_state exch)577 static int iser_conn_state_comp_exch(struct iser_conn *iser_conn,
578 enum iser_conn_state comp,
579 enum iser_conn_state exch)
580 {
581 int ret;
582
583 ret = (iser_conn->state == comp);
584 if (ret)
585 iser_conn->state = exch;
586
587 return ret;
588 }
589
iser_release_work(struct work_struct * work)590 void iser_release_work(struct work_struct *work)
591 {
592 struct iser_conn *iser_conn;
593
594 iser_conn = container_of(work, struct iser_conn, release_work);
595
596 /* Wait for conn_stop to complete */
597 wait_for_completion(&iser_conn->stop_completion);
598 /* Wait for IB resouces cleanup to complete */
599 wait_for_completion(&iser_conn->ib_completion);
600
601 mutex_lock(&iser_conn->state_mutex);
602 iser_conn->state = ISER_CONN_DOWN;
603 mutex_unlock(&iser_conn->state_mutex);
604
605 iser_conn_release(iser_conn);
606 }
607
608 /**
609 * iser_free_ib_conn_res - release IB related resources
610 * @iser_conn: iser connection struct
611 * @destroy: indicator if we need to try to release the
612 * iser device and memory regoins pool (only iscsi
613 * shutdown and DEVICE_REMOVAL will use this).
614 *
615 * This routine is called with the iser state mutex held
616 * so the cm_id removal is out of here. It is Safe to
617 * be invoked multiple times.
618 */
iser_free_ib_conn_res(struct iser_conn * iser_conn,bool destroy)619 static void iser_free_ib_conn_res(struct iser_conn *iser_conn,
620 bool destroy)
621 {
622 struct ib_conn *ib_conn = &iser_conn->ib_conn;
623 struct iser_device *device = ib_conn->device;
624
625 iser_info("freeing conn %p cma_id %p qp %p\n",
626 iser_conn, ib_conn->cma_id, ib_conn->qp);
627
628 if (ib_conn->qp != NULL) {
629 ib_conn->comp->active_qps--;
630 rdma_destroy_qp(ib_conn->cma_id);
631 ib_conn->qp = NULL;
632 }
633
634 if (destroy) {
635 if (iser_conn->rx_descs)
636 iser_free_rx_descriptors(iser_conn);
637
638 if (device != NULL) {
639 iser_device_try_release(device);
640 ib_conn->device = NULL;
641 }
642 }
643 }
644
645 /**
646 * Frees all conn objects and deallocs conn descriptor
647 */
iser_conn_release(struct iser_conn * iser_conn)648 void iser_conn_release(struct iser_conn *iser_conn)
649 {
650 struct ib_conn *ib_conn = &iser_conn->ib_conn;
651
652 mutex_lock(&ig.connlist_mutex);
653 list_del(&iser_conn->conn_list);
654 mutex_unlock(&ig.connlist_mutex);
655
656 mutex_lock(&iser_conn->state_mutex);
657 /* In case we endup here without ep_disconnect being invoked. */
658 if (iser_conn->state != ISER_CONN_DOWN) {
659 iser_warn("iser conn %p state %d, expected state down.\n",
660 iser_conn, iser_conn->state);
661 iscsi_destroy_endpoint(iser_conn->ep);
662 iser_conn->state = ISER_CONN_DOWN;
663 }
664 /*
665 * In case we never got to bind stage, we still need to
666 * release IB resources (which is safe to call more than once).
667 */
668 iser_free_ib_conn_res(iser_conn, true);
669 mutex_unlock(&iser_conn->state_mutex);
670
671 if (ib_conn->cma_id != NULL) {
672 rdma_destroy_id(ib_conn->cma_id);
673 ib_conn->cma_id = NULL;
674 }
675
676 kfree(iser_conn);
677 }
678
679 /**
680 * triggers start of the disconnect procedures and wait for them to be done
681 * Called with state mutex held
682 */
iser_conn_terminate(struct iser_conn * iser_conn)683 int iser_conn_terminate(struct iser_conn *iser_conn)
684 {
685 struct ib_conn *ib_conn = &iser_conn->ib_conn;
686 struct ib_send_wr *bad_wr;
687 int err = 0;
688
689 /* terminate the iser conn only if the conn state is UP */
690 if (!iser_conn_state_comp_exch(iser_conn, ISER_CONN_UP,
691 ISER_CONN_TERMINATING))
692 return 0;
693
694 iser_info("iser_conn %p state %d\n", iser_conn, iser_conn->state);
695
696 /* suspend queuing of new iscsi commands */
697 if (iser_conn->iscsi_conn)
698 iscsi_suspend_queue(iser_conn->iscsi_conn);
699
700 /*
701 * In case we didn't already clean up the cma_id (peer initiated
702 * a disconnection), we need to Cause the CMA to change the QP
703 * state to ERROR.
704 */
705 if (ib_conn->cma_id) {
706 err = rdma_disconnect(ib_conn->cma_id);
707 if (err)
708 iser_err("Failed to disconnect, conn: 0x%p err %d\n",
709 iser_conn, err);
710
711 /* post an indication that all flush errors were consumed */
712 err = ib_post_send(ib_conn->qp, &ib_conn->beacon, &bad_wr);
713 if (err) {
714 iser_err("conn %p failed to post beacon", ib_conn);
715 return 1;
716 }
717
718 wait_for_completion(&ib_conn->flush_comp);
719 }
720
721 return 1;
722 }
723
724 /**
725 * Called with state mutex held
726 **/
iser_connect_error(struct rdma_cm_id * cma_id)727 static void iser_connect_error(struct rdma_cm_id *cma_id)
728 {
729 struct iser_conn *iser_conn;
730
731 iser_conn = (struct iser_conn *)cma_id->context;
732 iser_conn->state = ISER_CONN_TERMINATING;
733 }
734
735 /**
736 * Called with state mutex held
737 **/
iser_addr_handler(struct rdma_cm_id * cma_id)738 static void iser_addr_handler(struct rdma_cm_id *cma_id)
739 {
740 struct iser_device *device;
741 struct iser_conn *iser_conn;
742 struct ib_conn *ib_conn;
743 int ret;
744
745 iser_conn = (struct iser_conn *)cma_id->context;
746 if (iser_conn->state != ISER_CONN_PENDING)
747 /* bailout */
748 return;
749
750 ib_conn = &iser_conn->ib_conn;
751 device = iser_device_find_by_ib_device(cma_id);
752 if (!device) {
753 iser_err("device lookup/creation failed\n");
754 iser_connect_error(cma_id);
755 return;
756 }
757
758 ib_conn->device = device;
759
760 /* connection T10-PI support */
761 if (iser_pi_enable) {
762 if (!(device->dev_attr.device_cap_flags &
763 IB_DEVICE_SIGNATURE_HANDOVER)) {
764 iser_warn("T10-PI requested but not supported on %s, "
765 "continue without T10-PI\n",
766 ib_conn->device->ib_device->name);
767 ib_conn->pi_support = false;
768 } else {
769 ib_conn->pi_support = true;
770 }
771 }
772
773 ret = rdma_resolve_route(cma_id, 1000);
774 if (ret) {
775 iser_err("resolve route failed: %d\n", ret);
776 iser_connect_error(cma_id);
777 return;
778 }
779 }
780
781 /**
782 * Called with state mutex held
783 **/
iser_route_handler(struct rdma_cm_id * cma_id)784 static void iser_route_handler(struct rdma_cm_id *cma_id)
785 {
786 struct rdma_conn_param conn_param;
787 int ret;
788 struct iser_cm_hdr req_hdr;
789 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
790 struct ib_conn *ib_conn = &iser_conn->ib_conn;
791 struct iser_device *device = ib_conn->device;
792
793 if (iser_conn->state != ISER_CONN_PENDING)
794 /* bailout */
795 return;
796
797 ret = iser_create_ib_conn_res(ib_conn);
798 if (ret)
799 goto failure;
800
801 memset(&conn_param, 0, sizeof conn_param);
802 conn_param.responder_resources = device->dev_attr.max_qp_rd_atom;
803 conn_param.initiator_depth = 1;
804 conn_param.retry_count = 7;
805 conn_param.rnr_retry_count = 6;
806
807 memset(&req_hdr, 0, sizeof(req_hdr));
808 req_hdr.flags = (ISER_ZBVA_NOT_SUPPORTED |
809 ISER_SEND_W_INV_NOT_SUPPORTED);
810 conn_param.private_data = (void *)&req_hdr;
811 conn_param.private_data_len = sizeof(struct iser_cm_hdr);
812
813 ret = rdma_connect(cma_id, &conn_param);
814 if (ret) {
815 iser_err("failure connecting: %d\n", ret);
816 goto failure;
817 }
818
819 return;
820 failure:
821 iser_connect_error(cma_id);
822 }
823
iser_connected_handler(struct rdma_cm_id * cma_id)824 static void iser_connected_handler(struct rdma_cm_id *cma_id)
825 {
826 struct iser_conn *iser_conn;
827 struct ib_qp_attr attr;
828 struct ib_qp_init_attr init_attr;
829
830 iser_conn = (struct iser_conn *)cma_id->context;
831 if (iser_conn->state != ISER_CONN_PENDING)
832 /* bailout */
833 return;
834
835 (void)ib_query_qp(cma_id->qp, &attr, ~0, &init_attr);
836 iser_info("remote qpn:%x my qpn:%x\n", attr.dest_qp_num, cma_id->qp->qp_num);
837
838 iser_conn->state = ISER_CONN_UP;
839 complete(&iser_conn->up_completion);
840 }
841
iser_disconnected_handler(struct rdma_cm_id * cma_id)842 static void iser_disconnected_handler(struct rdma_cm_id *cma_id)
843 {
844 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
845
846 if (iser_conn_terminate(iser_conn)) {
847 if (iser_conn->iscsi_conn)
848 iscsi_conn_failure(iser_conn->iscsi_conn,
849 ISCSI_ERR_CONN_FAILED);
850 else
851 iser_err("iscsi_iser connection isn't bound\n");
852 }
853 }
854
iser_cleanup_handler(struct rdma_cm_id * cma_id,bool destroy)855 static void iser_cleanup_handler(struct rdma_cm_id *cma_id,
856 bool destroy)
857 {
858 struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
859
860 /*
861 * We are not guaranteed that we visited disconnected_handler
862 * by now, call it here to be safe that we handle CM drep
863 * and flush errors.
864 */
865 iser_disconnected_handler(cma_id);
866 iser_free_ib_conn_res(iser_conn, destroy);
867 complete(&iser_conn->ib_completion);
868 };
869
iser_cma_handler(struct rdma_cm_id * cma_id,struct rdma_cm_event * event)870 static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event)
871 {
872 struct iser_conn *iser_conn;
873 int ret = 0;
874
875 iser_conn = (struct iser_conn *)cma_id->context;
876 iser_info("event %d status %d conn %p id %p\n",
877 event->event, event->status, cma_id->context, cma_id);
878
879 mutex_lock(&iser_conn->state_mutex);
880 switch (event->event) {
881 case RDMA_CM_EVENT_ADDR_RESOLVED:
882 iser_addr_handler(cma_id);
883 break;
884 case RDMA_CM_EVENT_ROUTE_RESOLVED:
885 iser_route_handler(cma_id);
886 break;
887 case RDMA_CM_EVENT_ESTABLISHED:
888 iser_connected_handler(cma_id);
889 break;
890 case RDMA_CM_EVENT_ADDR_ERROR:
891 case RDMA_CM_EVENT_ROUTE_ERROR:
892 case RDMA_CM_EVENT_CONNECT_ERROR:
893 case RDMA_CM_EVENT_UNREACHABLE:
894 case RDMA_CM_EVENT_REJECTED:
895 iser_connect_error(cma_id);
896 break;
897 case RDMA_CM_EVENT_DISCONNECTED:
898 case RDMA_CM_EVENT_ADDR_CHANGE:
899 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
900 iser_cleanup_handler(cma_id, false);
901 break;
902 case RDMA_CM_EVENT_DEVICE_REMOVAL:
903 /*
904 * we *must* destroy the device as we cannot rely
905 * on iscsid to be around to initiate error handling.
906 * also if we are not in state DOWN implicitly destroy
907 * the cma_id.
908 */
909 iser_cleanup_handler(cma_id, true);
910 if (iser_conn->state != ISER_CONN_DOWN) {
911 iser_conn->ib_conn.cma_id = NULL;
912 ret = 1;
913 }
914 break;
915 default:
916 iser_err("Unexpected RDMA CM event (%d)\n", event->event);
917 break;
918 }
919 mutex_unlock(&iser_conn->state_mutex);
920
921 return ret;
922 }
923
iser_conn_init(struct iser_conn * iser_conn)924 void iser_conn_init(struct iser_conn *iser_conn)
925 {
926 iser_conn->state = ISER_CONN_INIT;
927 iser_conn->ib_conn.post_recv_buf_count = 0;
928 init_completion(&iser_conn->ib_conn.flush_comp);
929 init_completion(&iser_conn->stop_completion);
930 init_completion(&iser_conn->ib_completion);
931 init_completion(&iser_conn->up_completion);
932 INIT_LIST_HEAD(&iser_conn->conn_list);
933 spin_lock_init(&iser_conn->ib_conn.lock);
934 mutex_init(&iser_conn->state_mutex);
935 }
936
937 /**
938 * starts the process of connecting to the target
939 * sleeps until the connection is established or rejected
940 */
iser_connect(struct iser_conn * iser_conn,struct sockaddr * src_addr,struct sockaddr * dst_addr,int non_blocking)941 int iser_connect(struct iser_conn *iser_conn,
942 struct sockaddr *src_addr,
943 struct sockaddr *dst_addr,
944 int non_blocking)
945 {
946 struct ib_conn *ib_conn = &iser_conn->ib_conn;
947 int err = 0;
948
949 mutex_lock(&iser_conn->state_mutex);
950
951 sprintf(iser_conn->name, "%pISp", dst_addr);
952
953 iser_info("connecting to: %s\n", iser_conn->name);
954
955 /* the device is known only --after-- address resolution */
956 ib_conn->device = NULL;
957
958 iser_conn->state = ISER_CONN_PENDING;
959
960 ib_conn->beacon.wr_id = ISER_BEACON_WRID;
961 ib_conn->beacon.opcode = IB_WR_SEND;
962
963 ib_conn->cma_id = rdma_create_id(iser_cma_handler,
964 (void *)iser_conn,
965 RDMA_PS_TCP, IB_QPT_RC);
966 if (IS_ERR(ib_conn->cma_id)) {
967 err = PTR_ERR(ib_conn->cma_id);
968 iser_err("rdma_create_id failed: %d\n", err);
969 goto id_failure;
970 }
971
972 err = rdma_resolve_addr(ib_conn->cma_id, src_addr, dst_addr, 1000);
973 if (err) {
974 iser_err("rdma_resolve_addr failed: %d\n", err);
975 goto addr_failure;
976 }
977
978 if (!non_blocking) {
979 wait_for_completion_interruptible(&iser_conn->up_completion);
980
981 if (iser_conn->state != ISER_CONN_UP) {
982 err = -EIO;
983 goto connect_failure;
984 }
985 }
986 mutex_unlock(&iser_conn->state_mutex);
987
988 mutex_lock(&ig.connlist_mutex);
989 list_add(&iser_conn->conn_list, &ig.connlist);
990 mutex_unlock(&ig.connlist_mutex);
991 return 0;
992
993 id_failure:
994 ib_conn->cma_id = NULL;
995 addr_failure:
996 iser_conn->state = ISER_CONN_DOWN;
997 connect_failure:
998 mutex_unlock(&iser_conn->state_mutex);
999 iser_conn_release(iser_conn);
1000 return err;
1001 }
1002
iser_post_recvl(struct iser_conn * iser_conn)1003 int iser_post_recvl(struct iser_conn *iser_conn)
1004 {
1005 struct ib_recv_wr rx_wr, *rx_wr_failed;
1006 struct ib_conn *ib_conn = &iser_conn->ib_conn;
1007 struct ib_sge sge;
1008 int ib_ret;
1009
1010 sge.addr = iser_conn->login_resp_dma;
1011 sge.length = ISER_RX_LOGIN_SIZE;
1012 sge.lkey = ib_conn->device->mr->lkey;
1013
1014 rx_wr.wr_id = (uintptr_t)iser_conn->login_resp_buf;
1015 rx_wr.sg_list = &sge;
1016 rx_wr.num_sge = 1;
1017 rx_wr.next = NULL;
1018
1019 ib_conn->post_recv_buf_count++;
1020 ib_ret = ib_post_recv(ib_conn->qp, &rx_wr, &rx_wr_failed);
1021 if (ib_ret) {
1022 iser_err("ib_post_recv failed ret=%d\n", ib_ret);
1023 ib_conn->post_recv_buf_count--;
1024 }
1025 return ib_ret;
1026 }
1027
iser_post_recvm(struct iser_conn * iser_conn,int count)1028 int iser_post_recvm(struct iser_conn *iser_conn, int count)
1029 {
1030 struct ib_recv_wr *rx_wr, *rx_wr_failed;
1031 int i, ib_ret;
1032 struct ib_conn *ib_conn = &iser_conn->ib_conn;
1033 unsigned int my_rx_head = iser_conn->rx_desc_head;
1034 struct iser_rx_desc *rx_desc;
1035
1036 for (rx_wr = ib_conn->rx_wr, i = 0; i < count; i++, rx_wr++) {
1037 rx_desc = &iser_conn->rx_descs[my_rx_head];
1038 rx_wr->wr_id = (uintptr_t)rx_desc;
1039 rx_wr->sg_list = &rx_desc->rx_sg;
1040 rx_wr->num_sge = 1;
1041 rx_wr->next = rx_wr + 1;
1042 my_rx_head = (my_rx_head + 1) & iser_conn->qp_max_recv_dtos_mask;
1043 }
1044
1045 rx_wr--;
1046 rx_wr->next = NULL; /* mark end of work requests list */
1047
1048 ib_conn->post_recv_buf_count += count;
1049 ib_ret = ib_post_recv(ib_conn->qp, ib_conn->rx_wr, &rx_wr_failed);
1050 if (ib_ret) {
1051 iser_err("ib_post_recv failed ret=%d\n", ib_ret);
1052 ib_conn->post_recv_buf_count -= count;
1053 } else
1054 iser_conn->rx_desc_head = my_rx_head;
1055 return ib_ret;
1056 }
1057
1058
1059 /**
1060 * iser_start_send - Initiate a Send DTO operation
1061 *
1062 * returns 0 on success, -1 on failure
1063 */
iser_post_send(struct ib_conn * ib_conn,struct iser_tx_desc * tx_desc,bool signal)1064 int iser_post_send(struct ib_conn *ib_conn, struct iser_tx_desc *tx_desc,
1065 bool signal)
1066 {
1067 int ib_ret;
1068 struct ib_send_wr send_wr, *send_wr_failed;
1069
1070 ib_dma_sync_single_for_device(ib_conn->device->ib_device,
1071 tx_desc->dma_addr, ISER_HEADERS_LEN,
1072 DMA_TO_DEVICE);
1073
1074 send_wr.next = NULL;
1075 send_wr.wr_id = (uintptr_t)tx_desc;
1076 send_wr.sg_list = tx_desc->tx_sg;
1077 send_wr.num_sge = tx_desc->num_sge;
1078 send_wr.opcode = IB_WR_SEND;
1079 send_wr.send_flags = signal ? IB_SEND_SIGNALED : 0;
1080
1081 ib_ret = ib_post_send(ib_conn->qp, &send_wr, &send_wr_failed);
1082 if (ib_ret)
1083 iser_err("ib_post_send failed, ret:%d\n", ib_ret);
1084
1085 return ib_ret;
1086 }
1087
1088 /**
1089 * is_iser_tx_desc - Indicate if the completion wr_id
1090 * is a TX descriptor or not.
1091 * @iser_conn: iser connection
1092 * @wr_id: completion WR identifier
1093 *
1094 * Since we cannot rely on wc opcode in FLUSH errors
1095 * we must work around it by checking if the wr_id address
1096 * falls in the iser connection rx_descs buffer. If so
1097 * it is an RX descriptor, otherwize it is a TX.
1098 */
1099 static inline bool
is_iser_tx_desc(struct iser_conn * iser_conn,void * wr_id)1100 is_iser_tx_desc(struct iser_conn *iser_conn, void *wr_id)
1101 {
1102 void *start = iser_conn->rx_descs;
1103 int len = iser_conn->num_rx_descs * sizeof(*iser_conn->rx_descs);
1104
1105 if (wr_id >= start && wr_id < start + len)
1106 return false;
1107
1108 return true;
1109 }
1110
1111 /**
1112 * iser_handle_comp_error() - Handle error completion
1113 * @ib_conn: connection RDMA resources
1114 * @wc: work completion
1115 *
1116 * Notes: We may handle a FLUSH error completion and in this case
1117 * we only cleanup in case TX type was DATAOUT. For non-FLUSH
1118 * error completion we should also notify iscsi layer that
1119 * connection is failed (in case we passed bind stage).
1120 */
1121 static void
iser_handle_comp_error(struct ib_conn * ib_conn,struct ib_wc * wc)1122 iser_handle_comp_error(struct ib_conn *ib_conn,
1123 struct ib_wc *wc)
1124 {
1125 void *wr_id = (void *)(uintptr_t)wc->wr_id;
1126 struct iser_conn *iser_conn = container_of(ib_conn, struct iser_conn,
1127 ib_conn);
1128
1129 if (wc->status != IB_WC_WR_FLUSH_ERR)
1130 if (iser_conn->iscsi_conn)
1131 iscsi_conn_failure(iser_conn->iscsi_conn,
1132 ISCSI_ERR_CONN_FAILED);
1133
1134 if (wc->wr_id == ISER_FASTREG_LI_WRID)
1135 return;
1136
1137 if (is_iser_tx_desc(iser_conn, wr_id)) {
1138 struct iser_tx_desc *desc = wr_id;
1139
1140 if (desc->type == ISCSI_TX_DATAOUT)
1141 kmem_cache_free(ig.desc_cache, desc);
1142 } else {
1143 ib_conn->post_recv_buf_count--;
1144 }
1145 }
1146
1147 /**
1148 * iser_handle_wc - handle a single work completion
1149 * @wc: work completion
1150 *
1151 * Soft-IRQ context, work completion can be either
1152 * SEND or RECV, and can turn out successful or
1153 * with error (or flush error).
1154 */
iser_handle_wc(struct ib_wc * wc)1155 static void iser_handle_wc(struct ib_wc *wc)
1156 {
1157 struct ib_conn *ib_conn;
1158 struct iser_tx_desc *tx_desc;
1159 struct iser_rx_desc *rx_desc;
1160
1161 ib_conn = wc->qp->qp_context;
1162 if (likely(wc->status == IB_WC_SUCCESS)) {
1163 if (wc->opcode == IB_WC_RECV) {
1164 rx_desc = (struct iser_rx_desc *)(uintptr_t)wc->wr_id;
1165 iser_rcv_completion(rx_desc, wc->byte_len,
1166 ib_conn);
1167 } else
1168 if (wc->opcode == IB_WC_SEND) {
1169 tx_desc = (struct iser_tx_desc *)(uintptr_t)wc->wr_id;
1170 iser_snd_completion(tx_desc, ib_conn);
1171 } else {
1172 iser_err("Unknown wc opcode %d\n", wc->opcode);
1173 }
1174 } else {
1175 if (wc->status != IB_WC_WR_FLUSH_ERR)
1176 iser_err("wr id %llx status %d vend_err %x\n",
1177 wc->wr_id, wc->status, wc->vendor_err);
1178 else
1179 iser_dbg("flush error: wr id %llx\n", wc->wr_id);
1180
1181 if (wc->wr_id == ISER_BEACON_WRID)
1182 /* all flush errors were consumed */
1183 complete(&ib_conn->flush_comp);
1184 else
1185 iser_handle_comp_error(ib_conn, wc);
1186 }
1187 }
1188
1189 /**
1190 * iser_cq_tasklet_fn - iSER completion polling loop
1191 * @data: iSER completion context
1192 *
1193 * Soft-IRQ context, polling connection CQ until
1194 * either CQ was empty or we exausted polling budget
1195 */
iser_cq_tasklet_fn(unsigned long data)1196 static void iser_cq_tasklet_fn(unsigned long data)
1197 {
1198 struct iser_comp *comp = (struct iser_comp *)data;
1199 struct ib_cq *cq = comp->cq;
1200 struct ib_wc *const wcs = comp->wcs;
1201 int i, n, completed = 0;
1202
1203 while ((n = ib_poll_cq(cq, ARRAY_SIZE(comp->wcs), wcs)) > 0) {
1204 for (i = 0; i < n; i++)
1205 iser_handle_wc(&wcs[i]);
1206
1207 completed += n;
1208 if (completed >= iser_cq_poll_limit)
1209 break;
1210 }
1211
1212 /*
1213 * It is assumed here that arming CQ only once its empty
1214 * would not cause interrupts to be missed.
1215 */
1216 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1217
1218 iser_dbg("got %d completions\n", completed);
1219 }
1220
iser_cq_callback(struct ib_cq * cq,void * cq_context)1221 static void iser_cq_callback(struct ib_cq *cq, void *cq_context)
1222 {
1223 struct iser_comp *comp = cq_context;
1224
1225 tasklet_schedule(&comp->tasklet);
1226 }
1227
iser_check_task_pi_status(struct iscsi_iser_task * iser_task,enum iser_data_dir cmd_dir,sector_t * sector)1228 u8 iser_check_task_pi_status(struct iscsi_iser_task *iser_task,
1229 enum iser_data_dir cmd_dir, sector_t *sector)
1230 {
1231 struct iser_mem_reg *reg = &iser_task->rdma_reg[cmd_dir];
1232 struct fast_reg_descriptor *desc = reg->mem_h;
1233 unsigned long sector_size = iser_task->sc->device->sector_size;
1234 struct ib_mr_status mr_status;
1235 int ret;
1236
1237 if (desc && desc->reg_indicators & ISER_FASTREG_PROTECTED) {
1238 desc->reg_indicators &= ~ISER_FASTREG_PROTECTED;
1239 ret = ib_check_mr_status(desc->pi_ctx->sig_mr,
1240 IB_MR_CHECK_SIG_STATUS, &mr_status);
1241 if (ret) {
1242 pr_err("ib_check_mr_status failed, ret %d\n", ret);
1243 goto err;
1244 }
1245
1246 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
1247 sector_t sector_off = mr_status.sig_err.sig_err_offset;
1248
1249 do_div(sector_off, sector_size + 8);
1250 *sector = scsi_get_lba(iser_task->sc) + sector_off;
1251
1252 pr_err("PI error found type %d at sector %llx "
1253 "expected %x vs actual %x\n",
1254 mr_status.sig_err.err_type,
1255 (unsigned long long)*sector,
1256 mr_status.sig_err.expected,
1257 mr_status.sig_err.actual);
1258
1259 switch (mr_status.sig_err.err_type) {
1260 case IB_SIG_BAD_GUARD:
1261 return 0x1;
1262 case IB_SIG_BAD_REFTAG:
1263 return 0x3;
1264 case IB_SIG_BAD_APPTAG:
1265 return 0x2;
1266 }
1267 }
1268 }
1269
1270 return 0;
1271 err:
1272 /* Not alot we can do here, return ambiguous guard error */
1273 return 0x1;
1274 }
1275