1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 
19 /*
20  * Kernel-internal data types and definitions:
21  */
22 
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27 
28 struct perf_guest_info_callbacks {
29 	int				(*is_in_guest)(void);
30 	int				(*is_user_mode)(void);
31 	unsigned long			(*get_guest_ip)(void);
32 };
33 
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37 
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58 
59 struct perf_callchain_entry {
60 	__u64				nr;
61 	__u64				ip[PERF_MAX_STACK_DEPTH];
62 };
63 
64 struct perf_raw_record {
65 	u32				size;
66 	void				*data;
67 };
68 
69 /*
70  * branch stack layout:
71  *  nr: number of taken branches stored in entries[]
72  *
73  * Note that nr can vary from sample to sample
74  * branches (to, from) are stored from most recent
75  * to least recent, i.e., entries[0] contains the most
76  * recent branch.
77  */
78 struct perf_branch_stack {
79 	__u64				nr;
80 	struct perf_branch_entry	entries[0];
81 };
82 
83 struct task_struct;
84 
85 /*
86  * extra PMU register associated with an event
87  */
88 struct hw_perf_event_extra {
89 	u64		config;	/* register value */
90 	unsigned int	reg;	/* register address or index */
91 	int		alloc;	/* extra register already allocated */
92 	int		idx;	/* index in shared_regs->regs[] */
93 };
94 
95 /**
96  * struct hw_perf_event - performance event hardware details:
97  */
98 struct hw_perf_event {
99 #ifdef CONFIG_PERF_EVENTS
100 	union {
101 		struct { /* hardware */
102 			u64		config;
103 			u64		last_tag;
104 			unsigned long	config_base;
105 			unsigned long	event_base;
106 			int		event_base_rdpmc;
107 			int		idx;
108 			int		last_cpu;
109 			int		flags;
110 
111 			struct hw_perf_event_extra extra_reg;
112 			struct hw_perf_event_extra branch_reg;
113 		};
114 		struct { /* software */
115 			struct hrtimer	hrtimer;
116 		};
117 		struct { /* tracepoint */
118 			/* for tp_event->class */
119 			struct list_head	tp_list;
120 		};
121 		struct { /* intel_cqm */
122 			int			cqm_state;
123 			u32			cqm_rmid;
124 			struct list_head	cqm_events_entry;
125 			struct list_head	cqm_groups_entry;
126 			struct list_head	cqm_group_entry;
127 		};
128 		struct { /* itrace */
129 			int			itrace_started;
130 		};
131 #ifdef CONFIG_HAVE_HW_BREAKPOINT
132 		struct { /* breakpoint */
133 			/*
134 			 * Crufty hack to avoid the chicken and egg
135 			 * problem hw_breakpoint has with context
136 			 * creation and event initalization.
137 			 */
138 			struct arch_hw_breakpoint	info;
139 			struct list_head		bp_list;
140 		};
141 #endif
142 	};
143 	/*
144 	 * If the event is a per task event, this will point to the task in
145 	 * question. See the comment in perf_event_alloc().
146 	 */
147 	struct task_struct		*target;
148 
149 /*
150  * hw_perf_event::state flags; used to track the PERF_EF_* state.
151  */
152 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
153 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
154 #define PERF_HES_ARCH		0x04
155 
156 	int				state;
157 
158 	/*
159 	 * The last observed hardware counter value, updated with a
160 	 * local64_cmpxchg() such that pmu::read() can be called nested.
161 	 */
162 	local64_t			prev_count;
163 
164 	/*
165 	 * The period to start the next sample with.
166 	 */
167 	u64				sample_period;
168 
169 	/*
170 	 * The period we started this sample with.
171 	 */
172 	u64				last_period;
173 
174 	/*
175 	 * However much is left of the current period; note that this is
176 	 * a full 64bit value and allows for generation of periods longer
177 	 * than hardware might allow.
178 	 */
179 	local64_t			period_left;
180 
181 	/*
182 	 * State for throttling the event, see __perf_event_overflow() and
183 	 * perf_adjust_freq_unthr_context().
184 	 */
185 	u64                             interrupts_seq;
186 	u64				interrupts;
187 
188 	/*
189 	 * State for freq target events, see __perf_event_overflow() and
190 	 * perf_adjust_freq_unthr_context().
191 	 */
192 	u64				freq_time_stamp;
193 	u64				freq_count_stamp;
194 #endif
195 };
196 
197 struct perf_event;
198 
199 /*
200  * Common implementation detail of pmu::{start,commit,cancel}_txn
201  */
202 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
203 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
204 
205 /**
206  * pmu::capabilities flags
207  */
208 #define PERF_PMU_CAP_NO_INTERRUPT		0x01
209 #define PERF_PMU_CAP_NO_NMI			0x02
210 #define PERF_PMU_CAP_AUX_NO_SG			0x04
211 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF		0x08
212 #define PERF_PMU_CAP_EXCLUSIVE			0x10
213 #define PERF_PMU_CAP_ITRACE			0x20
214 
215 /**
216  * struct pmu - generic performance monitoring unit
217  */
218 struct pmu {
219 	struct list_head		entry;
220 
221 	struct module			*module;
222 	struct device			*dev;
223 	const struct attribute_group	**attr_groups;
224 	const char			*name;
225 	int				type;
226 
227 	/*
228 	 * various common per-pmu feature flags
229 	 */
230 	int				capabilities;
231 
232 	int * __percpu			pmu_disable_count;
233 	struct perf_cpu_context * __percpu pmu_cpu_context;
234 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
235 	int				task_ctx_nr;
236 	int				hrtimer_interval_ms;
237 
238 	/*
239 	 * Fully disable/enable this PMU, can be used to protect from the PMI
240 	 * as well as for lazy/batch writing of the MSRs.
241 	 */
242 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
243 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
244 
245 	/*
246 	 * Try and initialize the event for this PMU.
247 	 *
248 	 * Returns:
249 	 *  -ENOENT	-- @event is not for this PMU
250 	 *
251 	 *  -ENODEV	-- @event is for this PMU but PMU not present
252 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
253 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
254 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
255 	 *  -EACCESS	-- @event is for this PMU, @event is valid, but no privilidges
256 	 *
257 	 *  0		-- @event is for this PMU and valid
258 	 *
259 	 * Other error return values are allowed.
260 	 */
261 	int (*event_init)		(struct perf_event *event);
262 
263 	/*
264 	 * Notification that the event was mapped or unmapped.  Called
265 	 * in the context of the mapping task.
266 	 */
267 	void (*event_mapped)		(struct perf_event *event); /*optional*/
268 	void (*event_unmapped)		(struct perf_event *event); /*optional*/
269 
270 	/*
271 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
272 	 * matching hw_perf_event::state flags.
273 	 */
274 #define PERF_EF_START	0x01		/* start the counter when adding    */
275 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
276 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
277 
278 	/*
279 	 * Adds/Removes a counter to/from the PMU, can be done inside a
280 	 * transaction, see the ->*_txn() methods.
281 	 *
282 	 * The add/del callbacks will reserve all hardware resources required
283 	 * to service the event, this includes any counter constraint
284 	 * scheduling etc.
285 	 *
286 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
287 	 * is on.
288 	 *
289 	 * ->add() called without PERF_EF_START should result in the same state
290 	 *  as ->add() followed by ->stop().
291 	 *
292 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
293 	 *  ->stop() that must deal with already being stopped without
294 	 *  PERF_EF_UPDATE.
295 	 */
296 	int  (*add)			(struct perf_event *event, int flags);
297 	void (*del)			(struct perf_event *event, int flags);
298 
299 	/*
300 	 * Starts/Stops a counter present on the PMU.
301 	 *
302 	 * The PMI handler should stop the counter when perf_event_overflow()
303 	 * returns !0. ->start() will be used to continue.
304 	 *
305 	 * Also used to change the sample period.
306 	 *
307 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
308 	 * is on -- will be called from NMI context with the PMU generates
309 	 * NMIs.
310 	 *
311 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
312 	 *  period/count values like ->read() would.
313 	 *
314 	 * ->start() with PERF_EF_RELOAD will reprogram the the counter
315 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
316 	 */
317 	void (*start)			(struct perf_event *event, int flags);
318 	void (*stop)			(struct perf_event *event, int flags);
319 
320 	/*
321 	 * Updates the counter value of the event.
322 	 *
323 	 * For sampling capable PMUs this will also update the software period
324 	 * hw_perf_event::period_left field.
325 	 */
326 	void (*read)			(struct perf_event *event);
327 
328 	/*
329 	 * Group events scheduling is treated as a transaction, add
330 	 * group events as a whole and perform one schedulability test.
331 	 * If the test fails, roll back the whole group
332 	 *
333 	 * Start the transaction, after this ->add() doesn't need to
334 	 * do schedulability tests.
335 	 *
336 	 * Optional.
337 	 */
338 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
339 	/*
340 	 * If ->start_txn() disabled the ->add() schedulability test
341 	 * then ->commit_txn() is required to perform one. On success
342 	 * the transaction is closed. On error the transaction is kept
343 	 * open until ->cancel_txn() is called.
344 	 *
345 	 * Optional.
346 	 */
347 	int  (*commit_txn)		(struct pmu *pmu);
348 	/*
349 	 * Will cancel the transaction, assumes ->del() is called
350 	 * for each successful ->add() during the transaction.
351 	 *
352 	 * Optional.
353 	 */
354 	void (*cancel_txn)		(struct pmu *pmu);
355 
356 	/*
357 	 * Will return the value for perf_event_mmap_page::index for this event,
358 	 * if no implementation is provided it will default to: event->hw.idx + 1.
359 	 */
360 	int (*event_idx)		(struct perf_event *event); /*optional */
361 
362 	/*
363 	 * context-switches callback
364 	 */
365 	void (*sched_task)		(struct perf_event_context *ctx,
366 					bool sched_in);
367 	/*
368 	 * PMU specific data size
369 	 */
370 	size_t				task_ctx_size;
371 
372 
373 	/*
374 	 * Return the count value for a counter.
375 	 */
376 	u64 (*count)			(struct perf_event *event); /*optional*/
377 
378 	/*
379 	 * Set up pmu-private data structures for an AUX area
380 	 */
381 	void *(*setup_aux)		(int cpu, void **pages,
382 					 int nr_pages, bool overwrite);
383 					/* optional */
384 
385 	/*
386 	 * Free pmu-private AUX data structures
387 	 */
388 	void (*free_aux)		(void *aux); /* optional */
389 
390 	/*
391 	 * Filter events for PMU-specific reasons.
392 	 */
393 	int (*filter_match)		(struct perf_event *event); /* optional */
394 };
395 
396 /**
397  * enum perf_event_active_state - the states of a event
398  */
399 enum perf_event_active_state {
400 	PERF_EVENT_STATE_EXIT		= -3,
401 	PERF_EVENT_STATE_ERROR		= -2,
402 	PERF_EVENT_STATE_OFF		= -1,
403 	PERF_EVENT_STATE_INACTIVE	=  0,
404 	PERF_EVENT_STATE_ACTIVE		=  1,
405 };
406 
407 struct file;
408 struct perf_sample_data;
409 
410 typedef void (*perf_overflow_handler_t)(struct perf_event *,
411 					struct perf_sample_data *,
412 					struct pt_regs *regs);
413 
414 enum perf_group_flag {
415 	PERF_GROUP_SOFTWARE		= 0x1,
416 };
417 
418 #define SWEVENT_HLIST_BITS		8
419 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
420 
421 struct swevent_hlist {
422 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
423 	struct rcu_head			rcu_head;
424 };
425 
426 #define PERF_ATTACH_CONTEXT	0x01
427 #define PERF_ATTACH_GROUP	0x02
428 #define PERF_ATTACH_TASK	0x04
429 #define PERF_ATTACH_TASK_DATA	0x08
430 
431 struct perf_cgroup;
432 struct ring_buffer;
433 
434 /**
435  * struct perf_event - performance event kernel representation:
436  */
437 struct perf_event {
438 #ifdef CONFIG_PERF_EVENTS
439 	/*
440 	 * entry onto perf_event_context::event_list;
441 	 *   modifications require ctx->lock
442 	 *   RCU safe iterations.
443 	 */
444 	struct list_head		event_entry;
445 
446 	/*
447 	 * XXX: group_entry and sibling_list should be mutually exclusive;
448 	 * either you're a sibling on a group, or you're the group leader.
449 	 * Rework the code to always use the same list element.
450 	 *
451 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
452 	 * either sufficies for read.
453 	 */
454 	struct list_head		group_entry;
455 	struct list_head		sibling_list;
456 
457 	/*
458 	 * We need storage to track the entries in perf_pmu_migrate_context; we
459 	 * cannot use the event_entry because of RCU and we want to keep the
460 	 * group in tact which avoids us using the other two entries.
461 	 */
462 	struct list_head		migrate_entry;
463 
464 	struct hlist_node		hlist_entry;
465 	struct list_head		active_entry;
466 	int				nr_siblings;
467 	int				group_flags;
468 	struct perf_event		*group_leader;
469 	struct pmu			*pmu;
470 
471 	enum perf_event_active_state	state;
472 	unsigned int			attach_state;
473 	local64_t			count;
474 	atomic64_t			child_count;
475 
476 	/*
477 	 * These are the total time in nanoseconds that the event
478 	 * has been enabled (i.e. eligible to run, and the task has
479 	 * been scheduled in, if this is a per-task event)
480 	 * and running (scheduled onto the CPU), respectively.
481 	 *
482 	 * They are computed from tstamp_enabled, tstamp_running and
483 	 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
484 	 */
485 	u64				total_time_enabled;
486 	u64				total_time_running;
487 
488 	/*
489 	 * These are timestamps used for computing total_time_enabled
490 	 * and total_time_running when the event is in INACTIVE or
491 	 * ACTIVE state, measured in nanoseconds from an arbitrary point
492 	 * in time.
493 	 * tstamp_enabled: the notional time when the event was enabled
494 	 * tstamp_running: the notional time when the event was scheduled on
495 	 * tstamp_stopped: in INACTIVE state, the notional time when the
496 	 *	event was scheduled off.
497 	 */
498 	u64				tstamp_enabled;
499 	u64				tstamp_running;
500 	u64				tstamp_stopped;
501 
502 	/*
503 	 * timestamp shadows the actual context timing but it can
504 	 * be safely used in NMI interrupt context. It reflects the
505 	 * context time as it was when the event was last scheduled in.
506 	 *
507 	 * ctx_time already accounts for ctx->timestamp. Therefore to
508 	 * compute ctx_time for a sample, simply add perf_clock().
509 	 */
510 	u64				shadow_ctx_time;
511 
512 	struct perf_event_attr		attr;
513 	u16				header_size;
514 	u16				id_header_size;
515 	u16				read_size;
516 	struct hw_perf_event		hw;
517 
518 	struct perf_event_context	*ctx;
519 	atomic_long_t			refcount;
520 
521 	/*
522 	 * These accumulate total time (in nanoseconds) that children
523 	 * events have been enabled and running, respectively.
524 	 */
525 	atomic64_t			child_total_time_enabled;
526 	atomic64_t			child_total_time_running;
527 
528 	/*
529 	 * Protect attach/detach and child_list:
530 	 */
531 	struct mutex			child_mutex;
532 	struct list_head		child_list;
533 	struct perf_event		*parent;
534 
535 	int				oncpu;
536 	int				cpu;
537 
538 	struct list_head		owner_entry;
539 	struct task_struct		*owner;
540 
541 	/* mmap bits */
542 	struct mutex			mmap_mutex;
543 	atomic_t			mmap_count;
544 
545 	struct ring_buffer		*rb;
546 	struct list_head		rb_entry;
547 	unsigned long			rcu_batches;
548 	int				rcu_pending;
549 
550 	/* poll related */
551 	wait_queue_head_t		waitq;
552 	struct fasync_struct		*fasync;
553 
554 	/* delayed work for NMIs and such */
555 	int				pending_wakeup;
556 	int				pending_kill;
557 	int				pending_disable;
558 	struct irq_work			pending;
559 
560 	atomic_t			event_limit;
561 
562 	void (*destroy)(struct perf_event *);
563 	struct rcu_head			rcu_head;
564 
565 	struct pid_namespace		*ns;
566 	u64				id;
567 
568 	u64				(*clock)(void);
569 	perf_overflow_handler_t		overflow_handler;
570 	void				*overflow_handler_context;
571 
572 #ifdef CONFIG_EVENT_TRACING
573 	struct trace_event_call		*tp_event;
574 	struct event_filter		*filter;
575 #ifdef CONFIG_FUNCTION_TRACER
576 	struct ftrace_ops               ftrace_ops;
577 #endif
578 #endif
579 
580 #ifdef CONFIG_CGROUP_PERF
581 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
582 	int				cgrp_defer_enabled;
583 #endif
584 
585 #endif /* CONFIG_PERF_EVENTS */
586 };
587 
588 /**
589  * struct perf_event_context - event context structure
590  *
591  * Used as a container for task events and CPU events as well:
592  */
593 struct perf_event_context {
594 	struct pmu			*pmu;
595 	/*
596 	 * Protect the states of the events in the list,
597 	 * nr_active, and the list:
598 	 */
599 	raw_spinlock_t			lock;
600 	/*
601 	 * Protect the list of events.  Locking either mutex or lock
602 	 * is sufficient to ensure the list doesn't change; to change
603 	 * the list you need to lock both the mutex and the spinlock.
604 	 */
605 	struct mutex			mutex;
606 
607 	struct list_head		active_ctx_list;
608 	struct list_head		pinned_groups;
609 	struct list_head		flexible_groups;
610 	struct list_head		event_list;
611 	int				nr_events;
612 	int				nr_active;
613 	int				is_active;
614 	int				nr_stat;
615 	int				nr_freq;
616 	int				rotate_disable;
617 	atomic_t			refcount;
618 	struct task_struct		*task;
619 
620 	/*
621 	 * Context clock, runs when context enabled.
622 	 */
623 	u64				time;
624 	u64				timestamp;
625 
626 	/*
627 	 * These fields let us detect when two contexts have both
628 	 * been cloned (inherited) from a common ancestor.
629 	 */
630 	struct perf_event_context	*parent_ctx;
631 	u64				parent_gen;
632 	u64				generation;
633 	int				pin_count;
634 	int				nr_cgroups;	 /* cgroup evts */
635 	void				*task_ctx_data; /* pmu specific data */
636 	struct rcu_head			rcu_head;
637 
638 	struct delayed_work		orphans_remove;
639 	bool				orphans_remove_sched;
640 };
641 
642 /*
643  * Number of contexts where an event can trigger:
644  *	task, softirq, hardirq, nmi.
645  */
646 #define PERF_NR_CONTEXTS	4
647 
648 /**
649  * struct perf_event_cpu_context - per cpu event context structure
650  */
651 struct perf_cpu_context {
652 	struct perf_event_context	ctx;
653 	struct perf_event_context	*task_ctx;
654 	int				active_oncpu;
655 	int				exclusive;
656 
657 	raw_spinlock_t			hrtimer_lock;
658 	struct hrtimer			hrtimer;
659 	ktime_t				hrtimer_interval;
660 	unsigned int			hrtimer_active;
661 
662 	struct pmu			*unique_pmu;
663 	struct perf_cgroup		*cgrp;
664 };
665 
666 struct perf_output_handle {
667 	struct perf_event		*event;
668 	struct ring_buffer		*rb;
669 	unsigned long			wakeup;
670 	unsigned long			size;
671 	union {
672 		void			*addr;
673 		unsigned long		head;
674 	};
675 	int				page;
676 };
677 
678 #ifdef CONFIG_CGROUP_PERF
679 
680 /*
681  * perf_cgroup_info keeps track of time_enabled for a cgroup.
682  * This is a per-cpu dynamically allocated data structure.
683  */
684 struct perf_cgroup_info {
685 	u64				time;
686 	u64				timestamp;
687 };
688 
689 struct perf_cgroup {
690 	struct cgroup_subsys_state	css;
691 	struct perf_cgroup_info	__percpu *info;
692 };
693 
694 /*
695  * Must ensure cgroup is pinned (css_get) before calling
696  * this function. In other words, we cannot call this function
697  * if there is no cgroup event for the current CPU context.
698  */
699 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task,struct perf_event_context * ctx)700 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
701 {
702 	return container_of(task_css_check(task, perf_event_cgrp_id,
703 					   ctx ? lockdep_is_held(&ctx->lock)
704 					       : true),
705 			    struct perf_cgroup, css);
706 }
707 #endif /* CONFIG_CGROUP_PERF */
708 
709 #ifdef CONFIG_PERF_EVENTS
710 
711 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
712 				   struct perf_event *event);
713 extern void perf_aux_output_end(struct perf_output_handle *handle,
714 				unsigned long size, bool truncated);
715 extern int perf_aux_output_skip(struct perf_output_handle *handle,
716 				unsigned long size);
717 extern void *perf_get_aux(struct perf_output_handle *handle);
718 
719 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
720 extern void perf_pmu_unregister(struct pmu *pmu);
721 
722 extern int perf_num_counters(void);
723 extern const char *perf_pmu_name(void);
724 extern void __perf_event_task_sched_in(struct task_struct *prev,
725 				       struct task_struct *task);
726 extern void __perf_event_task_sched_out(struct task_struct *prev,
727 					struct task_struct *next);
728 extern int perf_event_init_task(struct task_struct *child);
729 extern void perf_event_exit_task(struct task_struct *child);
730 extern void perf_event_free_task(struct task_struct *task);
731 extern void perf_event_delayed_put(struct task_struct *task);
732 extern struct perf_event *perf_event_get(unsigned int fd);
733 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
734 extern void perf_event_print_debug(void);
735 extern void perf_pmu_disable(struct pmu *pmu);
736 extern void perf_pmu_enable(struct pmu *pmu);
737 extern void perf_sched_cb_dec(struct pmu *pmu);
738 extern void perf_sched_cb_inc(struct pmu *pmu);
739 extern int perf_event_task_disable(void);
740 extern int perf_event_task_enable(void);
741 extern int perf_event_refresh(struct perf_event *event, int refresh);
742 extern void perf_event_update_userpage(struct perf_event *event);
743 extern int perf_event_release_kernel(struct perf_event *event);
744 extern struct perf_event *
745 perf_event_create_kernel_counter(struct perf_event_attr *attr,
746 				int cpu,
747 				struct task_struct *task,
748 				perf_overflow_handler_t callback,
749 				void *context);
750 extern void perf_pmu_migrate_context(struct pmu *pmu,
751 				int src_cpu, int dst_cpu);
752 extern u64 perf_event_read_local(struct perf_event *event);
753 extern u64 perf_event_read_value(struct perf_event *event,
754 				 u64 *enabled, u64 *running);
755 
756 
757 struct perf_sample_data {
758 	/*
759 	 * Fields set by perf_sample_data_init(), group so as to
760 	 * minimize the cachelines touched.
761 	 */
762 	u64				addr;
763 	struct perf_raw_record		*raw;
764 	struct perf_branch_stack	*br_stack;
765 	u64				period;
766 	u64				weight;
767 	u64				txn;
768 	union  perf_mem_data_src	data_src;
769 
770 	/*
771 	 * The other fields, optionally {set,used} by
772 	 * perf_{prepare,output}_sample().
773 	 */
774 	u64				type;
775 	u64				ip;
776 	struct {
777 		u32	pid;
778 		u32	tid;
779 	}				tid_entry;
780 	u64				time;
781 	u64				id;
782 	u64				stream_id;
783 	struct {
784 		u32	cpu;
785 		u32	reserved;
786 	}				cpu_entry;
787 	struct perf_callchain_entry	*callchain;
788 
789 	/*
790 	 * regs_user may point to task_pt_regs or to regs_user_copy, depending
791 	 * on arch details.
792 	 */
793 	struct perf_regs		regs_user;
794 	struct pt_regs			regs_user_copy;
795 
796 	struct perf_regs		regs_intr;
797 	u64				stack_user_size;
798 } ____cacheline_aligned;
799 
800 /* default value for data source */
801 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
802 		    PERF_MEM_S(LVL, NA)   |\
803 		    PERF_MEM_S(SNOOP, NA) |\
804 		    PERF_MEM_S(LOCK, NA)  |\
805 		    PERF_MEM_S(TLB, NA))
806 
perf_sample_data_init(struct perf_sample_data * data,u64 addr,u64 period)807 static inline void perf_sample_data_init(struct perf_sample_data *data,
808 					 u64 addr, u64 period)
809 {
810 	/* remaining struct members initialized in perf_prepare_sample() */
811 	data->addr = addr;
812 	data->raw  = NULL;
813 	data->br_stack = NULL;
814 	data->period = period;
815 	data->weight = 0;
816 	data->data_src.val = PERF_MEM_NA;
817 	data->txn = 0;
818 }
819 
820 extern void perf_output_sample(struct perf_output_handle *handle,
821 			       struct perf_event_header *header,
822 			       struct perf_sample_data *data,
823 			       struct perf_event *event);
824 extern void perf_prepare_sample(struct perf_event_header *header,
825 				struct perf_sample_data *data,
826 				struct perf_event *event,
827 				struct pt_regs *regs);
828 
829 extern int perf_event_overflow(struct perf_event *event,
830 				 struct perf_sample_data *data,
831 				 struct pt_regs *regs);
832 
833 extern void perf_event_output(struct perf_event *event,
834 				struct perf_sample_data *data,
835 				struct pt_regs *regs);
836 
837 extern void
838 perf_event_header__init_id(struct perf_event_header *header,
839 			   struct perf_sample_data *data,
840 			   struct perf_event *event);
841 extern void
842 perf_event__output_id_sample(struct perf_event *event,
843 			     struct perf_output_handle *handle,
844 			     struct perf_sample_data *sample);
845 
846 extern void
847 perf_log_lost_samples(struct perf_event *event, u64 lost);
848 
is_sampling_event(struct perf_event * event)849 static inline bool is_sampling_event(struct perf_event *event)
850 {
851 	return event->attr.sample_period != 0;
852 }
853 
854 /*
855  * Return 1 for a software event, 0 for a hardware event
856  */
is_software_event(struct perf_event * event)857 static inline int is_software_event(struct perf_event *event)
858 {
859 	return event->pmu->task_ctx_nr == perf_sw_context;
860 }
861 
862 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
863 
864 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
865 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
866 
867 #ifndef perf_arch_fetch_caller_regs
perf_arch_fetch_caller_regs(struct pt_regs * regs,unsigned long ip)868 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
869 #endif
870 
871 /*
872  * Take a snapshot of the regs. Skip ip and frame pointer to
873  * the nth caller. We only need a few of the regs:
874  * - ip for PERF_SAMPLE_IP
875  * - cs for user_mode() tests
876  * - bp for callchains
877  * - eflags, for future purposes, just in case
878  */
perf_fetch_caller_regs(struct pt_regs * regs)879 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
880 {
881 	memset(regs, 0, sizeof(*regs));
882 
883 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
884 }
885 
886 static __always_inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)887 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
888 {
889 	if (static_key_false(&perf_swevent_enabled[event_id]))
890 		__perf_sw_event(event_id, nr, regs, addr);
891 }
892 
893 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
894 
895 /*
896  * 'Special' version for the scheduler, it hard assumes no recursion,
897  * which is guaranteed by us not actually scheduling inside other swevents
898  * because those disable preemption.
899  */
900 static __always_inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)901 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
902 {
903 	if (static_key_false(&perf_swevent_enabled[event_id])) {
904 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
905 
906 		perf_fetch_caller_regs(regs);
907 		___perf_sw_event(event_id, nr, regs, addr);
908 	}
909 }
910 
911 extern struct static_key_deferred perf_sched_events;
912 
913 static __always_inline bool
perf_sw_migrate_enabled(void)914 perf_sw_migrate_enabled(void)
915 {
916 	if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
917 		return true;
918 	return false;
919 }
920 
perf_event_task_migrate(struct task_struct * task)921 static inline void perf_event_task_migrate(struct task_struct *task)
922 {
923 	if (perf_sw_migrate_enabled())
924 		task->sched_migrated = 1;
925 }
926 
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)927 static inline void perf_event_task_sched_in(struct task_struct *prev,
928 					    struct task_struct *task)
929 {
930 	if (static_key_false(&perf_sched_events.key))
931 		__perf_event_task_sched_in(prev, task);
932 
933 	if (perf_sw_migrate_enabled() && task->sched_migrated) {
934 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
935 
936 		perf_fetch_caller_regs(regs);
937 		___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
938 		task->sched_migrated = 0;
939 	}
940 }
941 
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)942 static inline void perf_event_task_sched_out(struct task_struct *prev,
943 					     struct task_struct *next)
944 {
945 	perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
946 
947 	if (static_key_false(&perf_sched_events.key))
948 		__perf_event_task_sched_out(prev, next);
949 }
950 
__perf_event_count(struct perf_event * event)951 static inline u64 __perf_event_count(struct perf_event *event)
952 {
953 	return local64_read(&event->count) + atomic64_read(&event->child_count);
954 }
955 
956 extern void perf_event_mmap(struct vm_area_struct *vma);
957 extern struct perf_guest_info_callbacks *perf_guest_cbs;
958 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
959 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
960 
961 extern void perf_event_exec(void);
962 extern void perf_event_comm(struct task_struct *tsk, bool exec);
963 extern void perf_event_fork(struct task_struct *tsk);
964 
965 /* Callchains */
966 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
967 
968 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
969 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
970 
perf_callchain_store(struct perf_callchain_entry * entry,u64 ip)971 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
972 {
973 	if (entry->nr < PERF_MAX_STACK_DEPTH)
974 		entry->ip[entry->nr++] = ip;
975 }
976 
977 extern int sysctl_perf_event_paranoid;
978 extern int sysctl_perf_event_mlock;
979 extern int sysctl_perf_event_sample_rate;
980 extern int sysctl_perf_cpu_time_max_percent;
981 
982 extern void perf_sample_event_took(u64 sample_len_ns);
983 
984 extern int perf_proc_update_handler(struct ctl_table *table, int write,
985 		void __user *buffer, size_t *lenp,
986 		loff_t *ppos);
987 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
988 		void __user *buffer, size_t *lenp,
989 		loff_t *ppos);
990 
991 
perf_paranoid_tracepoint_raw(void)992 static inline bool perf_paranoid_tracepoint_raw(void)
993 {
994 	return sysctl_perf_event_paranoid > -1;
995 }
996 
perf_paranoid_cpu(void)997 static inline bool perf_paranoid_cpu(void)
998 {
999 	return sysctl_perf_event_paranoid > 0;
1000 }
1001 
perf_paranoid_kernel(void)1002 static inline bool perf_paranoid_kernel(void)
1003 {
1004 	return sysctl_perf_event_paranoid > 1;
1005 }
1006 
1007 extern void perf_event_init(void);
1008 extern void perf_tp_event(u64 addr, u64 count, void *record,
1009 			  int entry_size, struct pt_regs *regs,
1010 			  struct hlist_head *head, int rctx,
1011 			  struct task_struct *task);
1012 extern void perf_bp_event(struct perf_event *event, void *data);
1013 
1014 #ifndef perf_misc_flags
1015 # define perf_misc_flags(regs) \
1016 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1017 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1018 #endif
1019 
has_branch_stack(struct perf_event * event)1020 static inline bool has_branch_stack(struct perf_event *event)
1021 {
1022 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1023 }
1024 
needs_branch_stack(struct perf_event * event)1025 static inline bool needs_branch_stack(struct perf_event *event)
1026 {
1027 	return event->attr.branch_sample_type != 0;
1028 }
1029 
has_aux(struct perf_event * event)1030 static inline bool has_aux(struct perf_event *event)
1031 {
1032 	return event->pmu->setup_aux;
1033 }
1034 
1035 extern int perf_output_begin(struct perf_output_handle *handle,
1036 			     struct perf_event *event, unsigned int size);
1037 extern void perf_output_end(struct perf_output_handle *handle);
1038 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1039 			     const void *buf, unsigned int len);
1040 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1041 				     unsigned int len);
1042 extern int perf_swevent_get_recursion_context(void);
1043 extern void perf_swevent_put_recursion_context(int rctx);
1044 extern u64 perf_swevent_set_period(struct perf_event *event);
1045 extern void perf_event_enable(struct perf_event *event);
1046 extern void perf_event_disable(struct perf_event *event);
1047 extern int __perf_event_disable(void *info);
1048 extern void perf_event_task_tick(void);
1049 #else /* !CONFIG_PERF_EVENTS: */
1050 static inline void *
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)1051 perf_aux_output_begin(struct perf_output_handle *handle,
1052 		      struct perf_event *event)				{ return NULL; }
1053 static inline void
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size,bool truncated)1054 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
1055 		    bool truncated)					{ }
1056 static inline int
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)1057 perf_aux_output_skip(struct perf_output_handle *handle,
1058 		     unsigned long size)				{ return -EINVAL; }
1059 static inline void *
perf_get_aux(struct perf_output_handle * handle)1060 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1061 static inline void
perf_event_task_migrate(struct task_struct * task)1062 perf_event_task_migrate(struct task_struct *task)			{ }
1063 static inline void
perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)1064 perf_event_task_sched_in(struct task_struct *prev,
1065 			 struct task_struct *task)			{ }
1066 static inline void
perf_event_task_sched_out(struct task_struct * prev,struct task_struct * next)1067 perf_event_task_sched_out(struct task_struct *prev,
1068 			  struct task_struct *next)			{ }
perf_event_init_task(struct task_struct * child)1069 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
perf_event_exit_task(struct task_struct * child)1070 static inline void perf_event_exit_task(struct task_struct *child)	{ }
perf_event_free_task(struct task_struct * task)1071 static inline void perf_event_free_task(struct task_struct *task)	{ }
perf_event_delayed_put(struct task_struct * task)1072 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
perf_event_get(unsigned int fd)1073 static inline struct perf_event *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
perf_event_attrs(struct perf_event * event)1074 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1075 {
1076 	return ERR_PTR(-EINVAL);
1077 }
perf_event_read_local(struct perf_event * event)1078 static inline u64 perf_event_read_local(struct perf_event *event)	{ return -EINVAL; }
perf_event_print_debug(void)1079 static inline void perf_event_print_debug(void)				{ }
perf_event_task_disable(void)1080 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
perf_event_task_enable(void)1081 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
perf_event_refresh(struct perf_event * event,int refresh)1082 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1083 {
1084 	return -EINVAL;
1085 }
1086 
1087 static inline void
perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)1088 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1089 static inline void
perf_sw_event_sched(u32 event_id,u64 nr,u64 addr)1090 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)			{ }
1091 static inline void
perf_bp_event(struct perf_event * event,void * data)1092 perf_bp_event(struct perf_event *event, void *data)			{ }
1093 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1094 static inline int perf_register_guest_info_callbacks
1095 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * callbacks)1096 static inline int perf_unregister_guest_info_callbacks
1097 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1098 
perf_event_mmap(struct vm_area_struct * vma)1099 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
perf_event_exec(void)1100 static inline void perf_event_exec(void)				{ }
perf_event_comm(struct task_struct * tsk,bool exec)1101 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
perf_event_fork(struct task_struct * tsk)1102 static inline void perf_event_fork(struct task_struct *tsk)		{ }
perf_event_init(void)1103 static inline void perf_event_init(void)				{ }
perf_swevent_get_recursion_context(void)1104 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
perf_swevent_put_recursion_context(int rctx)1105 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
perf_swevent_set_period(struct perf_event * event)1106 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
perf_event_enable(struct perf_event * event)1107 static inline void perf_event_enable(struct perf_event *event)		{ }
perf_event_disable(struct perf_event * event)1108 static inline void perf_event_disable(struct perf_event *event)		{ }
__perf_event_disable(void * info)1109 static inline int __perf_event_disable(void *info)			{ return -1; }
perf_event_task_tick(void)1110 static inline void perf_event_task_tick(void)				{ }
perf_event_release_kernel(struct perf_event * event)1111 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1112 #endif
1113 
1114 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL)
1115 extern bool perf_event_can_stop_tick(void);
1116 #else
perf_event_can_stop_tick(void)1117 static inline bool perf_event_can_stop_tick(void)			{ return true; }
1118 #endif
1119 
1120 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1121 extern void perf_restore_debug_store(void);
1122 #else
perf_restore_debug_store(void)1123 static inline void perf_restore_debug_store(void)			{ }
1124 #endif
1125 
1126 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1127 
1128 /*
1129  * This has to have a higher priority than migration_notifier in sched/core.c.
1130  */
1131 #define perf_cpu_notifier(fn)						\
1132 do {									\
1133 	static struct notifier_block fn##_nb =				\
1134 		{ .notifier_call = fn, .priority = CPU_PRI_PERF };	\
1135 	unsigned long cpu = smp_processor_id();				\
1136 	unsigned long flags;						\
1137 									\
1138 	cpu_notifier_register_begin();					\
1139 	fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,			\
1140 		(void *)(unsigned long)cpu);				\
1141 	local_irq_save(flags);						\
1142 	fn(&fn##_nb, (unsigned long)CPU_STARTING,			\
1143 		(void *)(unsigned long)cpu);				\
1144 	local_irq_restore(flags);					\
1145 	fn(&fn##_nb, (unsigned long)CPU_ONLINE,				\
1146 		(void *)(unsigned long)cpu);				\
1147 	__register_cpu_notifier(&fn##_nb);				\
1148 	cpu_notifier_register_done();					\
1149 } while (0)
1150 
1151 /*
1152  * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the
1153  * callback for already online CPUs.
1154  */
1155 #define __perf_cpu_notifier(fn)						\
1156 do {									\
1157 	static struct notifier_block fn##_nb =				\
1158 		{ .notifier_call = fn, .priority = CPU_PRI_PERF };	\
1159 									\
1160 	__register_cpu_notifier(&fn##_nb);				\
1161 } while (0)
1162 
1163 struct perf_pmu_events_attr {
1164 	struct device_attribute attr;
1165 	u64 id;
1166 	const char *event_str;
1167 };
1168 
1169 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1170 			      char *page);
1171 
1172 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1173 static struct perf_pmu_events_attr _var = {				\
1174 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1175 	.id   =  _id,							\
1176 };
1177 
1178 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1179 static struct perf_pmu_events_attr _var = {				    \
1180 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1181 	.id		= 0,						    \
1182 	.event_str	= _str,						    \
1183 };
1184 
1185 #define PMU_FORMAT_ATTR(_name, _format)					\
1186 static ssize_t								\
1187 _name##_show(struct device *dev,					\
1188 			       struct device_attribute *attr,		\
1189 			       char *page)				\
1190 {									\
1191 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1192 	return sprintf(page, _format "\n");				\
1193 }									\
1194 									\
1195 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1196 
1197 #endif /* _LINUX_PERF_EVENT_H */
1198