1 #ifndef __KVM_HOST_H
2 #define __KVM_HOST_H
3
4 /*
5 * This work is licensed under the terms of the GNU GPL, version 2. See
6 * the COPYING file in the top-level directory.
7 */
8
9 #include <linux/types.h>
10 #include <linux/hardirq.h>
11 #include <linux/list.h>
12 #include <linux/mutex.h>
13 #include <linux/spinlock.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/bug.h>
17 #include <linux/mm.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/preempt.h>
20 #include <linux/msi.h>
21 #include <linux/slab.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <asm/signal.h>
28
29 #include <linux/kvm.h>
30 #include <linux/kvm_para.h>
31
32 #include <linux/kvm_types.h>
33
34 #include <asm/kvm_host.h>
35
36 /*
37 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
38 * in kvm, other bits are visible for userspace which are defined in
39 * include/linux/kvm_h.
40 */
41 #define KVM_MEMSLOT_INVALID (1UL << 16)
42 #define KVM_MEMSLOT_INCOHERENT (1UL << 17)
43
44 /* Two fragments for cross MMIO pages. */
45 #define KVM_MAX_MMIO_FRAGMENTS 2
46
47 /*
48 * For the normal pfn, the highest 12 bits should be zero,
49 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
50 * mask bit 63 to indicate the noslot pfn.
51 */
52 #define KVM_PFN_ERR_MASK (0x7ffULL << 52)
53 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
54 #define KVM_PFN_NOSLOT (0x1ULL << 63)
55
56 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
57 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
58 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
59
60 /*
61 * error pfns indicate that the gfn is in slot but faild to
62 * translate it to pfn on host.
63 */
is_error_pfn(pfn_t pfn)64 static inline bool is_error_pfn(pfn_t pfn)
65 {
66 return !!(pfn & KVM_PFN_ERR_MASK);
67 }
68
69 /*
70 * error_noslot pfns indicate that the gfn can not be
71 * translated to pfn - it is not in slot or failed to
72 * translate it to pfn.
73 */
is_error_noslot_pfn(pfn_t pfn)74 static inline bool is_error_noslot_pfn(pfn_t pfn)
75 {
76 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
77 }
78
79 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(pfn_t pfn)80 static inline bool is_noslot_pfn(pfn_t pfn)
81 {
82 return pfn == KVM_PFN_NOSLOT;
83 }
84
85 /*
86 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
87 * provide own defines and kvm_is_error_hva
88 */
89 #ifndef KVM_HVA_ERR_BAD
90
91 #define KVM_HVA_ERR_BAD (PAGE_OFFSET)
92 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
93
kvm_is_error_hva(unsigned long addr)94 static inline bool kvm_is_error_hva(unsigned long addr)
95 {
96 return addr >= PAGE_OFFSET;
97 }
98
99 #endif
100
101 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
102
is_error_page(struct page * page)103 static inline bool is_error_page(struct page *page)
104 {
105 return IS_ERR(page);
106 }
107
108 /*
109 * vcpu->requests bit members
110 */
111 #define KVM_REQ_TLB_FLUSH 0
112 #define KVM_REQ_MIGRATE_TIMER 1
113 #define KVM_REQ_REPORT_TPR_ACCESS 2
114 #define KVM_REQ_MMU_RELOAD 3
115 #define KVM_REQ_TRIPLE_FAULT 4
116 #define KVM_REQ_PENDING_TIMER 5
117 #define KVM_REQ_UNHALT 6
118 #define KVM_REQ_MMU_SYNC 7
119 #define KVM_REQ_CLOCK_UPDATE 8
120 #define KVM_REQ_KICK 9
121 #define KVM_REQ_DEACTIVATE_FPU 10
122 #define KVM_REQ_EVENT 11
123 #define KVM_REQ_APF_HALT 12
124 #define KVM_REQ_STEAL_UPDATE 13
125 #define KVM_REQ_NMI 14
126 #define KVM_REQ_PMU 15
127 #define KVM_REQ_PMI 16
128 #define KVM_REQ_WATCHDOG 17
129 #define KVM_REQ_MASTERCLOCK_UPDATE 18
130 #define KVM_REQ_MCLOCK_INPROGRESS 19
131 #define KVM_REQ_EPR_EXIT 20
132 #define KVM_REQ_SCAN_IOAPIC 21
133 #define KVM_REQ_GLOBAL_CLOCK_UPDATE 22
134 #define KVM_REQ_ENABLE_IBS 23
135 #define KVM_REQ_DISABLE_IBS 24
136 #define KVM_REQ_APIC_PAGE_RELOAD 25
137
138 #define KVM_USERSPACE_IRQ_SOURCE_ID 0
139 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
140
141 extern struct kmem_cache *kvm_vcpu_cache;
142
143 extern spinlock_t kvm_lock;
144 extern struct list_head vm_list;
145
146 struct kvm_io_range {
147 gpa_t addr;
148 int len;
149 struct kvm_io_device *dev;
150 };
151
152 #define NR_IOBUS_DEVS 1000
153
154 struct kvm_io_bus {
155 int dev_count;
156 int ioeventfd_count;
157 struct kvm_io_range range[];
158 };
159
160 enum kvm_bus {
161 KVM_MMIO_BUS,
162 KVM_PIO_BUS,
163 KVM_VIRTIO_CCW_NOTIFY_BUS,
164 KVM_FAST_MMIO_BUS,
165 KVM_NR_BUSES
166 };
167
168 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
169 int len, const void *val);
170 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
171 gpa_t addr, int len, const void *val, long cookie);
172 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
173 int len, void *val);
174 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
175 int len, struct kvm_io_device *dev);
176 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
177 struct kvm_io_device *dev);
178
179 #ifdef CONFIG_KVM_ASYNC_PF
180 struct kvm_async_pf {
181 struct work_struct work;
182 struct list_head link;
183 struct list_head queue;
184 struct kvm_vcpu *vcpu;
185 struct mm_struct *mm;
186 gva_t gva;
187 unsigned long addr;
188 struct kvm_arch_async_pf arch;
189 bool wakeup_all;
190 };
191
192 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
193 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
194 int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva,
195 struct kvm_arch_async_pf *arch);
196 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
197 #endif
198
199 enum {
200 OUTSIDE_GUEST_MODE,
201 IN_GUEST_MODE,
202 EXITING_GUEST_MODE,
203 READING_SHADOW_PAGE_TABLES,
204 };
205
206 /*
207 * Sometimes a large or cross-page mmio needs to be broken up into separate
208 * exits for userspace servicing.
209 */
210 struct kvm_mmio_fragment {
211 gpa_t gpa;
212 void *data;
213 unsigned len;
214 };
215
216 struct kvm_vcpu {
217 struct kvm *kvm;
218 #ifdef CONFIG_PREEMPT_NOTIFIERS
219 struct preempt_notifier preempt_notifier;
220 #endif
221 int cpu;
222 int vcpu_id;
223 int srcu_idx;
224 int mode;
225 unsigned long requests;
226 unsigned long guest_debug;
227
228 struct mutex mutex;
229 struct kvm_run *run;
230
231 int fpu_active;
232 int guest_fpu_loaded, guest_xcr0_loaded;
233 wait_queue_head_t wq;
234 struct pid *pid;
235 int sigset_active;
236 sigset_t sigset;
237 struct kvm_vcpu_stat stat;
238
239 #ifdef CONFIG_HAS_IOMEM
240 int mmio_needed;
241 int mmio_read_completed;
242 int mmio_is_write;
243 int mmio_cur_fragment;
244 int mmio_nr_fragments;
245 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
246 #endif
247
248 #ifdef CONFIG_KVM_ASYNC_PF
249 struct {
250 u32 queued;
251 struct list_head queue;
252 struct list_head done;
253 spinlock_t lock;
254 } async_pf;
255 #endif
256
257 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
258 /*
259 * Cpu relax intercept or pause loop exit optimization
260 * in_spin_loop: set when a vcpu does a pause loop exit
261 * or cpu relax intercepted.
262 * dy_eligible: indicates whether vcpu is eligible for directed yield.
263 */
264 struct {
265 bool in_spin_loop;
266 bool dy_eligible;
267 } spin_loop;
268 #endif
269 bool preempted;
270 struct kvm_vcpu_arch arch;
271 };
272
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)273 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
274 {
275 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
276 }
277
278 /*
279 * Some of the bitops functions do not support too long bitmaps.
280 * This number must be determined not to exceed such limits.
281 */
282 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
283
284 struct kvm_memory_slot {
285 gfn_t base_gfn;
286 unsigned long npages;
287 unsigned long *dirty_bitmap;
288 struct kvm_arch_memory_slot arch;
289 unsigned long userspace_addr;
290 u32 flags;
291 short id;
292 };
293
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)294 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
295 {
296 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
297 }
298
299 struct kvm_s390_adapter_int {
300 u64 ind_addr;
301 u64 summary_addr;
302 u64 ind_offset;
303 u32 summary_offset;
304 u32 adapter_id;
305 };
306
307 struct kvm_kernel_irq_routing_entry {
308 u32 gsi;
309 u32 type;
310 int (*set)(struct kvm_kernel_irq_routing_entry *e,
311 struct kvm *kvm, int irq_source_id, int level,
312 bool line_status);
313 union {
314 struct {
315 unsigned irqchip;
316 unsigned pin;
317 } irqchip;
318 struct msi_msg msi;
319 struct kvm_s390_adapter_int adapter;
320 };
321 struct hlist_node link;
322 };
323
324 #ifndef KVM_PRIVATE_MEM_SLOTS
325 #define KVM_PRIVATE_MEM_SLOTS 0
326 #endif
327
328 #ifndef KVM_MEM_SLOTS_NUM
329 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
330 #endif
331
332 /*
333 * Note:
334 * memslots are not sorted by id anymore, please use id_to_memslot()
335 * to get the memslot by its id.
336 */
337 struct kvm_memslots {
338 u64 generation;
339 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM];
340 /* The mapping table from slot id to the index in memslots[]. */
341 short id_to_index[KVM_MEM_SLOTS_NUM];
342 atomic_t lru_slot;
343 int used_slots;
344 };
345
346 struct kvm {
347 spinlock_t mmu_lock;
348 struct mutex slots_lock;
349 struct mm_struct *mm; /* userspace tied to this vm */
350 struct kvm_memslots *memslots;
351 struct srcu_struct srcu;
352 struct srcu_struct irq_srcu;
353 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
354 u32 bsp_vcpu_id;
355 #endif
356 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
357 atomic_t online_vcpus;
358 int last_boosted_vcpu;
359 struct list_head vm_list;
360 struct mutex lock;
361 struct kvm_io_bus *buses[KVM_NR_BUSES];
362 #ifdef CONFIG_HAVE_KVM_EVENTFD
363 struct {
364 spinlock_t lock;
365 struct list_head items;
366 struct list_head resampler_list;
367 struct mutex resampler_lock;
368 } irqfds;
369 struct list_head ioeventfds;
370 #endif
371 struct kvm_vm_stat stat;
372 struct kvm_arch arch;
373 atomic_t users_count;
374 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
375 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
376 spinlock_t ring_lock;
377 struct list_head coalesced_zones;
378 #endif
379
380 struct mutex irq_lock;
381 #ifdef CONFIG_HAVE_KVM_IRQCHIP
382 /*
383 * Update side is protected by irq_lock.
384 */
385 struct kvm_irq_routing_table __rcu *irq_routing;
386 #endif
387 #ifdef CONFIG_HAVE_KVM_IRQFD
388 struct hlist_head irq_ack_notifier_list;
389 #endif
390
391 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
392 struct mmu_notifier mmu_notifier;
393 unsigned long mmu_notifier_seq;
394 long mmu_notifier_count;
395 #endif
396 long tlbs_dirty;
397 struct list_head devices;
398 };
399
400 #define kvm_err(fmt, ...) \
401 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
402 #define kvm_info(fmt, ...) \
403 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
404 #define kvm_debug(fmt, ...) \
405 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
406 #define kvm_pr_unimpl(fmt, ...) \
407 pr_err_ratelimited("kvm [%i]: " fmt, \
408 task_tgid_nr(current), ## __VA_ARGS__)
409
410 /* The guest did something we don't support. */
411 #define vcpu_unimpl(vcpu, fmt, ...) \
412 kvm_pr_unimpl("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
413
kvm_get_vcpu(struct kvm * kvm,int i)414 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
415 {
416 smp_rmb();
417 return kvm->vcpus[i];
418 }
419
420 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
421 for (idx = 0; \
422 idx < atomic_read(&kvm->online_vcpus) && \
423 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
424 idx++)
425
kvm_get_vcpu_by_id(struct kvm * kvm,int id)426 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
427 {
428 struct kvm_vcpu *vcpu;
429 int i;
430
431 kvm_for_each_vcpu(i, vcpu, kvm)
432 if (vcpu->vcpu_id == id)
433 return vcpu;
434 return NULL;
435 }
436
437 #define kvm_for_each_memslot(memslot, slots) \
438 for (memslot = &slots->memslots[0]; \
439 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\
440 memslot++)
441
442 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id);
443 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu);
444
445 int __must_check vcpu_load(struct kvm_vcpu *vcpu);
446 void vcpu_put(struct kvm_vcpu *vcpu);
447
448 #ifdef __KVM_HAVE_IOAPIC
449 void kvm_vcpu_request_scan_ioapic(struct kvm *kvm);
450 #else
kvm_vcpu_request_scan_ioapic(struct kvm * kvm)451 static inline void kvm_vcpu_request_scan_ioapic(struct kvm *kvm)
452 {
453 }
454 #endif
455
456 #ifdef CONFIG_HAVE_KVM_IRQFD
457 int kvm_irqfd_init(void);
458 void kvm_irqfd_exit(void);
459 #else
kvm_irqfd_init(void)460 static inline int kvm_irqfd_init(void)
461 {
462 return 0;
463 }
464
kvm_irqfd_exit(void)465 static inline void kvm_irqfd_exit(void)
466 {
467 }
468 #endif
469 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
470 struct module *module);
471 void kvm_exit(void);
472
473 void kvm_get_kvm(struct kvm *kvm);
474 void kvm_put_kvm(struct kvm *kvm);
475
kvm_memslots(struct kvm * kvm)476 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
477 {
478 return rcu_dereference_check(kvm->memslots,
479 srcu_read_lock_held(&kvm->srcu)
480 || lockdep_is_held(&kvm->slots_lock));
481 }
482
483 static inline struct kvm_memory_slot *
id_to_memslot(struct kvm_memslots * slots,int id)484 id_to_memslot(struct kvm_memslots *slots, int id)
485 {
486 int index = slots->id_to_index[id];
487 struct kvm_memory_slot *slot;
488
489 slot = &slots->memslots[index];
490
491 WARN_ON(slot->id != id);
492 return slot;
493 }
494
495 /*
496 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
497 * - create a new memory slot
498 * - delete an existing memory slot
499 * - modify an existing memory slot
500 * -- move it in the guest physical memory space
501 * -- just change its flags
502 *
503 * Since flags can be changed by some of these operations, the following
504 * differentiation is the best we can do for __kvm_set_memory_region():
505 */
506 enum kvm_mr_change {
507 KVM_MR_CREATE,
508 KVM_MR_DELETE,
509 KVM_MR_MOVE,
510 KVM_MR_FLAGS_ONLY,
511 };
512
513 int kvm_set_memory_region(struct kvm *kvm,
514 struct kvm_userspace_memory_region *mem);
515 int __kvm_set_memory_region(struct kvm *kvm,
516 struct kvm_userspace_memory_region *mem);
517 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
518 struct kvm_memory_slot *dont);
519 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
520 unsigned long npages);
521 void kvm_arch_memslots_updated(struct kvm *kvm);
522 int kvm_arch_prepare_memory_region(struct kvm *kvm,
523 struct kvm_memory_slot *memslot,
524 struct kvm_userspace_memory_region *mem,
525 enum kvm_mr_change change);
526 void kvm_arch_commit_memory_region(struct kvm *kvm,
527 struct kvm_userspace_memory_region *mem,
528 const struct kvm_memory_slot *old,
529 enum kvm_mr_change change);
530 bool kvm_largepages_enabled(void);
531 void kvm_disable_largepages(void);
532 /* flush all memory translations */
533 void kvm_arch_flush_shadow_all(struct kvm *kvm);
534 /* flush memory translations pointing to 'slot' */
535 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
536 struct kvm_memory_slot *slot);
537
538 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
539 int nr_pages);
540
541 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
542 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
543 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
544 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
545 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
546 bool *writable);
547 void kvm_release_page_clean(struct page *page);
548 void kvm_release_page_dirty(struct page *page);
549 void kvm_set_page_accessed(struct page *page);
550
551 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn);
552 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
553 bool write_fault, bool *writable);
554 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
555 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
556 bool *writable);
557 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
558 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
559
560 void kvm_release_pfn_clean(pfn_t pfn);
561 void kvm_set_pfn_dirty(pfn_t pfn);
562 void kvm_set_pfn_accessed(pfn_t pfn);
563 void kvm_get_pfn(pfn_t pfn);
564
565 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
566 int len);
567 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
568 unsigned long len);
569 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
570 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
571 void *data, unsigned long len);
572 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
573 int offset, int len);
574 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
575 unsigned long len);
576 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
577 void *data, unsigned long len);
578 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
579 gpa_t gpa, unsigned long len);
580 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
581 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
582 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
583 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
584 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn);
585 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
586
587 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
588 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
589 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
590 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu);
591 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu);
592 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu);
593
594 void kvm_flush_remote_tlbs(struct kvm *kvm);
595 void kvm_reload_remote_mmus(struct kvm *kvm);
596 void kvm_make_mclock_inprogress_request(struct kvm *kvm);
597 void kvm_make_scan_ioapic_request(struct kvm *kvm);
598 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
599
600 long kvm_arch_dev_ioctl(struct file *filp,
601 unsigned int ioctl, unsigned long arg);
602 long kvm_arch_vcpu_ioctl(struct file *filp,
603 unsigned int ioctl, unsigned long arg);
604 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
605
606 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
607
608 int kvm_get_dirty_log(struct kvm *kvm,
609 struct kvm_dirty_log *log, int *is_dirty);
610
611 int kvm_get_dirty_log_protect(struct kvm *kvm,
612 struct kvm_dirty_log *log, bool *is_dirty);
613
614 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
615 struct kvm_memory_slot *slot,
616 gfn_t gfn_offset,
617 unsigned long mask);
618
619 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
620 struct kvm_dirty_log *log);
621
622 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
623 bool line_status);
624 long kvm_arch_vm_ioctl(struct file *filp,
625 unsigned int ioctl, unsigned long arg);
626
627 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
628 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
629
630 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
631 struct kvm_translation *tr);
632
633 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
634 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
635 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
636 struct kvm_sregs *sregs);
637 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
638 struct kvm_sregs *sregs);
639 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
640 struct kvm_mp_state *mp_state);
641 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
642 struct kvm_mp_state *mp_state);
643 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
644 struct kvm_guest_debug *dbg);
645 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run);
646
647 int kvm_arch_init(void *opaque);
648 void kvm_arch_exit(void);
649
650 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu);
651 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu);
652
653 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
654
655 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu);
656 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
657 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
658 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id);
659 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu);
660 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
661 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
662
663 int kvm_arch_hardware_enable(void);
664 void kvm_arch_hardware_disable(void);
665 int kvm_arch_hardware_setup(void);
666 void kvm_arch_hardware_unsetup(void);
667 void kvm_arch_check_processor_compat(void *rtn);
668 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
669 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
670
671 void *kvm_kvzalloc(unsigned long size);
672
673 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
kvm_arch_alloc_vm(void)674 static inline struct kvm *kvm_arch_alloc_vm(void)
675 {
676 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
677 }
678
kvm_arch_free_vm(struct kvm * kvm)679 static inline void kvm_arch_free_vm(struct kvm *kvm)
680 {
681 kfree(kvm);
682 }
683 #endif
684
685 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
686 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
687 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
688 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
689 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)690 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
691 {
692 }
693
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)694 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
695 {
696 }
697
kvm_arch_has_noncoherent_dma(struct kvm * kvm)698 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
699 {
700 return false;
701 }
702 #endif
703
kvm_arch_vcpu_wq(struct kvm_vcpu * vcpu)704 static inline wait_queue_head_t *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu)
705 {
706 #ifdef __KVM_HAVE_ARCH_WQP
707 return vcpu->arch.wqp;
708 #else
709 return &vcpu->wq;
710 #endif
711 }
712
713 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
714 /*
715 * returns true if the virtual interrupt controller is initialized and
716 * ready to accept virtual IRQ. On some architectures the virtual interrupt
717 * controller is dynamically instantiated and this is not always true.
718 */
719 bool kvm_arch_intc_initialized(struct kvm *kvm);
720 #else
kvm_arch_intc_initialized(struct kvm * kvm)721 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
722 {
723 return true;
724 }
725 #endif
726
727 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
728 void kvm_arch_destroy_vm(struct kvm *kvm);
729 void kvm_arch_sync_events(struct kvm *kvm);
730
731 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
732 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
733
734 bool kvm_is_reserved_pfn(pfn_t pfn);
735
736 struct kvm_irq_ack_notifier {
737 struct hlist_node link;
738 unsigned gsi;
739 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
740 };
741
742 int kvm_irq_map_gsi(struct kvm *kvm,
743 struct kvm_kernel_irq_routing_entry *entries, int gsi);
744 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
745
746 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
747 bool line_status);
748 int kvm_set_irq_inatomic(struct kvm *kvm, int irq_source_id, u32 irq, int level);
749 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
750 int irq_source_id, int level, bool line_status);
751 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
752 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
753 void kvm_register_irq_ack_notifier(struct kvm *kvm,
754 struct kvm_irq_ack_notifier *kian);
755 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
756 struct kvm_irq_ack_notifier *kian);
757 int kvm_request_irq_source_id(struct kvm *kvm);
758 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
759
760 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
761 int kvm_iommu_map_pages(struct kvm *kvm, struct kvm_memory_slot *slot);
762 void kvm_iommu_unmap_pages(struct kvm *kvm, struct kvm_memory_slot *slot);
763 #else
kvm_iommu_map_pages(struct kvm * kvm,struct kvm_memory_slot * slot)764 static inline int kvm_iommu_map_pages(struct kvm *kvm,
765 struct kvm_memory_slot *slot)
766 {
767 return 0;
768 }
769
kvm_iommu_unmap_pages(struct kvm * kvm,struct kvm_memory_slot * slot)770 static inline void kvm_iommu_unmap_pages(struct kvm *kvm,
771 struct kvm_memory_slot *slot)
772 {
773 }
774 #endif
775
kvm_guest_enter(void)776 static inline void kvm_guest_enter(void)
777 {
778 unsigned long flags;
779
780 BUG_ON(preemptible());
781
782 local_irq_save(flags);
783 guest_enter();
784 local_irq_restore(flags);
785
786 /* KVM does not hold any references to rcu protected data when it
787 * switches CPU into a guest mode. In fact switching to a guest mode
788 * is very similar to exiting to userspace from rcu point of view. In
789 * addition CPU may stay in a guest mode for quite a long time (up to
790 * one time slice). Lets treat guest mode as quiescent state, just like
791 * we do with user-mode execution.
792 */
793 if (!context_tracking_cpu_is_enabled())
794 rcu_virt_note_context_switch(smp_processor_id());
795 }
796
kvm_guest_exit(void)797 static inline void kvm_guest_exit(void)
798 {
799 unsigned long flags;
800
801 local_irq_save(flags);
802 guest_exit();
803 local_irq_restore(flags);
804 }
805
806 /*
807 * search_memslots() and __gfn_to_memslot() are here because they are
808 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
809 * gfn_to_memslot() itself isn't here as an inline because that would
810 * bloat other code too much.
811 */
812 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn)813 search_memslots(struct kvm_memslots *slots, gfn_t gfn)
814 {
815 int start = 0, end = slots->used_slots;
816 int slot = atomic_read(&slots->lru_slot);
817 struct kvm_memory_slot *memslots = slots->memslots;
818
819 if (gfn >= memslots[slot].base_gfn &&
820 gfn < memslots[slot].base_gfn + memslots[slot].npages)
821 return &memslots[slot];
822
823 while (start < end) {
824 slot = start + (end - start) / 2;
825
826 if (gfn >= memslots[slot].base_gfn)
827 end = slot;
828 else
829 start = slot + 1;
830 }
831
832 if (gfn >= memslots[start].base_gfn &&
833 gfn < memslots[start].base_gfn + memslots[start].npages) {
834 atomic_set(&slots->lru_slot, start);
835 return &memslots[start];
836 }
837
838 return NULL;
839 }
840
841 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)842 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
843 {
844 return search_memslots(slots, gfn);
845 }
846
847 static inline unsigned long
__gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)848 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
849 {
850 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
851 }
852
memslot_id(struct kvm * kvm,gfn_t gfn)853 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
854 {
855 return gfn_to_memslot(kvm, gfn)->id;
856 }
857
858 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)859 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
860 {
861 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
862
863 return slot->base_gfn + gfn_offset;
864 }
865
gfn_to_gpa(gfn_t gfn)866 static inline gpa_t gfn_to_gpa(gfn_t gfn)
867 {
868 return (gpa_t)gfn << PAGE_SHIFT;
869 }
870
gpa_to_gfn(gpa_t gpa)871 static inline gfn_t gpa_to_gfn(gpa_t gpa)
872 {
873 return (gfn_t)(gpa >> PAGE_SHIFT);
874 }
875
pfn_to_hpa(pfn_t pfn)876 static inline hpa_t pfn_to_hpa(pfn_t pfn)
877 {
878 return (hpa_t)pfn << PAGE_SHIFT;
879 }
880
kvm_is_error_gpa(struct kvm * kvm,gpa_t gpa)881 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
882 {
883 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
884
885 return kvm_is_error_hva(hva);
886 }
887
kvm_migrate_timers(struct kvm_vcpu * vcpu)888 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
889 {
890 set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
891 }
892
893 enum kvm_stat_kind {
894 KVM_STAT_VM,
895 KVM_STAT_VCPU,
896 };
897
898 struct kvm_stats_debugfs_item {
899 const char *name;
900 int offset;
901 enum kvm_stat_kind kind;
902 struct dentry *dentry;
903 };
904 extern struct kvm_stats_debugfs_item debugfs_entries[];
905 extern struct dentry *kvm_debugfs_dir;
906
907 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_retry(struct kvm * kvm,unsigned long mmu_seq)908 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
909 {
910 if (unlikely(kvm->mmu_notifier_count))
911 return 1;
912 /*
913 * Ensure the read of mmu_notifier_count happens before the read
914 * of mmu_notifier_seq. This interacts with the smp_wmb() in
915 * mmu_notifier_invalidate_range_end to make sure that the caller
916 * either sees the old (non-zero) value of mmu_notifier_count or
917 * the new (incremented) value of mmu_notifier_seq.
918 * PowerPC Book3s HV KVM calls this under a per-page lock
919 * rather than under kvm->mmu_lock, for scalability, so
920 * can't rely on kvm->mmu_lock to keep things ordered.
921 */
922 smp_rmb();
923 if (kvm->mmu_notifier_seq != mmu_seq)
924 return 1;
925 return 0;
926 }
927 #endif
928
929 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
930
931 #ifdef CONFIG_S390
932 #define KVM_MAX_IRQ_ROUTES 4096 //FIXME: we can have more than that...
933 #else
934 #define KVM_MAX_IRQ_ROUTES 1024
935 #endif
936
937 int kvm_setup_default_irq_routing(struct kvm *kvm);
938 int kvm_set_irq_routing(struct kvm *kvm,
939 const struct kvm_irq_routing_entry *entries,
940 unsigned nr,
941 unsigned flags);
942 int kvm_set_routing_entry(struct kvm_kernel_irq_routing_entry *e,
943 const struct kvm_irq_routing_entry *ue);
944 void kvm_free_irq_routing(struct kvm *kvm);
945
946 #else
947
kvm_free_irq_routing(struct kvm * kvm)948 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
949
950 #endif
951
952 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
953
954 #ifdef CONFIG_HAVE_KVM_EVENTFD
955
956 void kvm_eventfd_init(struct kvm *kvm);
957 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
958
959 #ifdef CONFIG_HAVE_KVM_IRQFD
960 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
961 void kvm_irqfd_release(struct kvm *kvm);
962 void kvm_irq_routing_update(struct kvm *);
963 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)964 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
965 {
966 return -EINVAL;
967 }
968
kvm_irqfd_release(struct kvm * kvm)969 static inline void kvm_irqfd_release(struct kvm *kvm) {}
970 #endif
971
972 #else
973
kvm_eventfd_init(struct kvm * kvm)974 static inline void kvm_eventfd_init(struct kvm *kvm) {}
975
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)976 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
977 {
978 return -EINVAL;
979 }
980
kvm_irqfd_release(struct kvm * kvm)981 static inline void kvm_irqfd_release(struct kvm *kvm) {}
982
983 #ifdef CONFIG_HAVE_KVM_IRQCHIP
kvm_irq_routing_update(struct kvm * kvm)984 static inline void kvm_irq_routing_update(struct kvm *kvm)
985 {
986 }
987 #endif
988
kvm_ioeventfd(struct kvm * kvm,struct kvm_ioeventfd * args)989 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
990 {
991 return -ENOSYS;
992 }
993
994 #endif /* CONFIG_HAVE_KVM_EVENTFD */
995
996 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)997 static inline bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
998 {
999 return vcpu->kvm->bsp_vcpu_id == vcpu->vcpu_id;
1000 }
1001
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)1002 static inline bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
1003 {
1004 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
1005 }
1006
1007 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu);
1008
1009 #else
1010
kvm_vcpu_compatible(struct kvm_vcpu * vcpu)1011 static inline bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) { return true; }
1012
1013 #endif
1014
kvm_make_request(int req,struct kvm_vcpu * vcpu)1015 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1016 {
1017 set_bit(req, &vcpu->requests);
1018 }
1019
kvm_check_request(int req,struct kvm_vcpu * vcpu)1020 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1021 {
1022 if (test_bit(req, &vcpu->requests)) {
1023 clear_bit(req, &vcpu->requests);
1024 return true;
1025 } else {
1026 return false;
1027 }
1028 }
1029
1030 extern bool kvm_rebooting;
1031
1032 struct kvm_device {
1033 struct kvm_device_ops *ops;
1034 struct kvm *kvm;
1035 void *private;
1036 struct list_head vm_node;
1037 };
1038
1039 /* create, destroy, and name are mandatory */
1040 struct kvm_device_ops {
1041 const char *name;
1042 int (*create)(struct kvm_device *dev, u32 type);
1043
1044 /*
1045 * Destroy is responsible for freeing dev.
1046 *
1047 * Destroy may be called before or after destructors are called
1048 * on emulated I/O regions, depending on whether a reference is
1049 * held by a vcpu or other kvm component that gets destroyed
1050 * after the emulated I/O.
1051 */
1052 void (*destroy)(struct kvm_device *dev);
1053
1054 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1055 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1056 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1057 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1058 unsigned long arg);
1059 };
1060
1061 void kvm_device_get(struct kvm_device *dev);
1062 void kvm_device_put(struct kvm_device *dev);
1063 struct kvm_device *kvm_device_from_filp(struct file *filp);
1064 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type);
1065 void kvm_unregister_device_ops(u32 type);
1066
1067 extern struct kvm_device_ops kvm_mpic_ops;
1068 extern struct kvm_device_ops kvm_xics_ops;
1069 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1070 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1071
1072 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1073
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)1074 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1075 {
1076 vcpu->spin_loop.in_spin_loop = val;
1077 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)1078 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1079 {
1080 vcpu->spin_loop.dy_eligible = val;
1081 }
1082
1083 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1084
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)1085 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1086 {
1087 }
1088
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)1089 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1090 {
1091 }
1092 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1093 #endif
1094
1095