1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
82 
83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
84 EXPORT_SYMBOL(sysctl_ip_default_ttl);
85 
86 static int
87 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
88 	    unsigned int mtu,
89 	    int (*output)(struct net *, struct sock *, struct sk_buff *));
90 
91 /* Generate a checksum for an outgoing IP datagram. */
ip_send_check(struct iphdr * iph)92 void ip_send_check(struct iphdr *iph)
93 {
94 	iph->check = 0;
95 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
96 }
97 EXPORT_SYMBOL(ip_send_check);
98 
__ip_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)99 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
100 {
101 	struct iphdr *iph = ip_hdr(skb);
102 
103 	iph->tot_len = htons(skb->len);
104 	ip_send_check(iph);
105 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
106 		       net, sk, skb, NULL, skb_dst(skb)->dev,
107 		       dst_output);
108 }
109 
ip_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)110 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
111 {
112 	int err;
113 
114 	err = __ip_local_out(net, sk, skb);
115 	if (likely(err == 1))
116 		err = dst_output(net, sk, skb);
117 
118 	return err;
119 }
120 EXPORT_SYMBOL_GPL(ip_local_out);
121 
ip_select_ttl(struct inet_sock * inet,struct dst_entry * dst)122 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
123 {
124 	int ttl = inet->uc_ttl;
125 
126 	if (ttl < 0)
127 		ttl = ip4_dst_hoplimit(dst);
128 	return ttl;
129 }
130 
131 /*
132  *		Add an ip header to a skbuff and send it out.
133  *
134  */
ip_build_and_send_pkt(struct sk_buff * skb,const struct sock * sk,__be32 saddr,__be32 daddr,struct ip_options_rcu * opt)135 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
136 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
137 {
138 	struct inet_sock *inet = inet_sk(sk);
139 	struct rtable *rt = skb_rtable(skb);
140 	struct net *net = sock_net(sk);
141 	struct iphdr *iph;
142 
143 	/* Build the IP header. */
144 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
145 	skb_reset_network_header(skb);
146 	iph = ip_hdr(skb);
147 	iph->version  = 4;
148 	iph->ihl      = 5;
149 	iph->tos      = inet->tos;
150 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
151 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
152 	iph->saddr    = saddr;
153 	iph->protocol = sk->sk_protocol;
154 	if (ip_dont_fragment(sk, &rt->dst)) {
155 		iph->frag_off = htons(IP_DF);
156 		iph->id = 0;
157 	} else {
158 		iph->frag_off = 0;
159 		__ip_select_ident(net, iph, 1);
160 	}
161 
162 	if (opt && opt->opt.optlen) {
163 		iph->ihl += opt->opt.optlen>>2;
164 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
165 	}
166 
167 	skb->priority = sk->sk_priority;
168 	skb->mark = sk->sk_mark;
169 
170 	/* Send it out. */
171 	return ip_local_out(net, skb->sk, skb);
172 }
173 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
174 
ip_finish_output2(struct net * net,struct sock * sk,struct sk_buff * skb)175 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
176 {
177 	struct dst_entry *dst = skb_dst(skb);
178 	struct rtable *rt = (struct rtable *)dst;
179 	struct net_device *dev = dst->dev;
180 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
181 	struct neighbour *neigh;
182 	u32 nexthop;
183 
184 	if (rt->rt_type == RTN_MULTICAST) {
185 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
186 	} else if (rt->rt_type == RTN_BROADCAST)
187 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
188 
189 	/* Be paranoid, rather than too clever. */
190 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
191 		struct sk_buff *skb2;
192 
193 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
194 		if (!skb2) {
195 			kfree_skb(skb);
196 			return -ENOMEM;
197 		}
198 		if (skb->sk)
199 			skb_set_owner_w(skb2, skb->sk);
200 		consume_skb(skb);
201 		skb = skb2;
202 	}
203 
204 	rcu_read_lock_bh();
205 	nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
206 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
207 	if (unlikely(!neigh))
208 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
209 	if (!IS_ERR(neigh)) {
210 		int res = dst_neigh_output(dst, neigh, skb);
211 
212 		rcu_read_unlock_bh();
213 		return res;
214 	}
215 	rcu_read_unlock_bh();
216 
217 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
218 			    __func__);
219 	kfree_skb(skb);
220 	return -EINVAL;
221 }
222 
ip_finish_output_gso(struct net * net,struct sock * sk,struct sk_buff * skb,unsigned int mtu)223 static int ip_finish_output_gso(struct net *net, struct sock *sk,
224 				struct sk_buff *skb, unsigned int mtu)
225 {
226 	netdev_features_t features;
227 	struct sk_buff *segs;
228 	int ret = 0;
229 
230 	/* common case: locally created skb or seglen is <= mtu */
231 	if (((IPCB(skb)->flags & IPSKB_FORWARDED) == 0) ||
232 	      skb_gso_network_seglen(skb) <= mtu)
233 		return ip_finish_output2(net, sk, skb);
234 
235 	/* Slowpath -  GSO segment length is exceeding the dst MTU.
236 	 *
237 	 * This can happen in two cases:
238 	 * 1) TCP GRO packet, DF bit not set
239 	 * 2) skb arrived via virtio-net, we thus get TSO/GSO skbs directly
240 	 * from host network stack.
241 	 */
242 	features = netif_skb_features(skb);
243 	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
244 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
245 	if (IS_ERR_OR_NULL(segs)) {
246 		kfree_skb(skb);
247 		return -ENOMEM;
248 	}
249 
250 	consume_skb(skb);
251 
252 	do {
253 		struct sk_buff *nskb = segs->next;
254 		int err;
255 
256 		segs->next = NULL;
257 		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
258 
259 		if (err && ret == 0)
260 			ret = err;
261 		segs = nskb;
262 	} while (segs);
263 
264 	return ret;
265 }
266 
ip_finish_output(struct net * net,struct sock * sk,struct sk_buff * skb)267 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
268 {
269 	unsigned int mtu;
270 
271 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
272 	/* Policy lookup after SNAT yielded a new policy */
273 	if (skb_dst(skb)->xfrm) {
274 		IPCB(skb)->flags |= IPSKB_REROUTED;
275 		return dst_output(net, sk, skb);
276 	}
277 #endif
278 	mtu = ip_skb_dst_mtu(skb);
279 	if (skb_is_gso(skb))
280 		return ip_finish_output_gso(net, sk, skb, mtu);
281 
282 	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
283 		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
284 
285 	return ip_finish_output2(net, sk, skb);
286 }
287 
ip_mc_output(struct net * net,struct sock * sk,struct sk_buff * skb)288 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
289 {
290 	struct rtable *rt = skb_rtable(skb);
291 	struct net_device *dev = rt->dst.dev;
292 
293 	/*
294 	 *	If the indicated interface is up and running, send the packet.
295 	 */
296 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
297 
298 	skb->dev = dev;
299 	skb->protocol = htons(ETH_P_IP);
300 
301 	/*
302 	 *	Multicasts are looped back for other local users
303 	 */
304 
305 	if (rt->rt_flags&RTCF_MULTICAST) {
306 		if (sk_mc_loop(sk)
307 #ifdef CONFIG_IP_MROUTE
308 		/* Small optimization: do not loopback not local frames,
309 		   which returned after forwarding; they will be  dropped
310 		   by ip_mr_input in any case.
311 		   Note, that local frames are looped back to be delivered
312 		   to local recipients.
313 
314 		   This check is duplicated in ip_mr_input at the moment.
315 		 */
316 		    &&
317 		    ((rt->rt_flags & RTCF_LOCAL) ||
318 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
319 #endif
320 		   ) {
321 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
322 			if (newskb)
323 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
324 					net, sk, newskb, NULL, newskb->dev,
325 					dev_loopback_xmit);
326 		}
327 
328 		/* Multicasts with ttl 0 must not go beyond the host */
329 
330 		if (ip_hdr(skb)->ttl == 0) {
331 			kfree_skb(skb);
332 			return 0;
333 		}
334 	}
335 
336 	if (rt->rt_flags&RTCF_BROADCAST) {
337 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
338 		if (newskb)
339 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
340 				net, sk, newskb, NULL, newskb->dev,
341 				dev_loopback_xmit);
342 	}
343 
344 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
345 			    net, sk, skb, NULL, skb->dev,
346 			    ip_finish_output,
347 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
348 }
349 
ip_output(struct net * net,struct sock * sk,struct sk_buff * skb)350 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
351 {
352 	struct net_device *dev = skb_dst(skb)->dev;
353 
354 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
355 
356 	skb->dev = dev;
357 	skb->protocol = htons(ETH_P_IP);
358 
359 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
360 			    net, sk, skb, NULL, dev,
361 			    ip_finish_output,
362 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
363 }
364 
365 /*
366  * copy saddr and daddr, possibly using 64bit load/stores
367  * Equivalent to :
368  *   iph->saddr = fl4->saddr;
369  *   iph->daddr = fl4->daddr;
370  */
ip_copy_addrs(struct iphdr * iph,const struct flowi4 * fl4)371 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
372 {
373 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
374 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
375 	memcpy(&iph->saddr, &fl4->saddr,
376 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
377 }
378 
379 /* Note: skb->sk can be different from sk, in case of tunnels */
ip_queue_xmit(struct sock * sk,struct sk_buff * skb,struct flowi * fl)380 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
381 {
382 	struct inet_sock *inet = inet_sk(sk);
383 	struct net *net = sock_net(sk);
384 	struct ip_options_rcu *inet_opt;
385 	struct flowi4 *fl4;
386 	struct rtable *rt;
387 	struct iphdr *iph;
388 	int res;
389 
390 	/* Skip all of this if the packet is already routed,
391 	 * f.e. by something like SCTP.
392 	 */
393 	rcu_read_lock();
394 	inet_opt = rcu_dereference(inet->inet_opt);
395 	fl4 = &fl->u.ip4;
396 	rt = skb_rtable(skb);
397 	if (rt)
398 		goto packet_routed;
399 
400 	/* Make sure we can route this packet. */
401 	rt = (struct rtable *)__sk_dst_check(sk, 0);
402 	if (!rt) {
403 		__be32 daddr;
404 
405 		/* Use correct destination address if we have options. */
406 		daddr = inet->inet_daddr;
407 		if (inet_opt && inet_opt->opt.srr)
408 			daddr = inet_opt->opt.faddr;
409 
410 		/* If this fails, retransmit mechanism of transport layer will
411 		 * keep trying until route appears or the connection times
412 		 * itself out.
413 		 */
414 		rt = ip_route_output_ports(net, fl4, sk,
415 					   daddr, inet->inet_saddr,
416 					   inet->inet_dport,
417 					   inet->inet_sport,
418 					   sk->sk_protocol,
419 					   RT_CONN_FLAGS(sk),
420 					   sk->sk_bound_dev_if);
421 		if (IS_ERR(rt))
422 			goto no_route;
423 		sk_setup_caps(sk, &rt->dst);
424 	}
425 	skb_dst_set_noref(skb, &rt->dst);
426 
427 packet_routed:
428 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
429 		goto no_route;
430 
431 	/* OK, we know where to send it, allocate and build IP header. */
432 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
433 	skb_reset_network_header(skb);
434 	iph = ip_hdr(skb);
435 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
436 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
437 		iph->frag_off = htons(IP_DF);
438 	else
439 		iph->frag_off = 0;
440 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
441 	iph->protocol = sk->sk_protocol;
442 	ip_copy_addrs(iph, fl4);
443 
444 	/* Transport layer set skb->h.foo itself. */
445 
446 	if (inet_opt && inet_opt->opt.optlen) {
447 		iph->ihl += inet_opt->opt.optlen >> 2;
448 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
449 	}
450 
451 	ip_select_ident_segs(net, skb, sk,
452 			     skb_shinfo(skb)->gso_segs ?: 1);
453 
454 	/* TODO : should we use skb->sk here instead of sk ? */
455 	skb->priority = sk->sk_priority;
456 	skb->mark = sk->sk_mark;
457 
458 	res = ip_local_out(net, sk, skb);
459 	rcu_read_unlock();
460 	return res;
461 
462 no_route:
463 	rcu_read_unlock();
464 	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
465 	kfree_skb(skb);
466 	return -EHOSTUNREACH;
467 }
468 EXPORT_SYMBOL(ip_queue_xmit);
469 
ip_copy_metadata(struct sk_buff * to,struct sk_buff * from)470 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
471 {
472 	to->pkt_type = from->pkt_type;
473 	to->priority = from->priority;
474 	to->protocol = from->protocol;
475 	skb_dst_drop(to);
476 	skb_dst_copy(to, from);
477 	to->dev = from->dev;
478 	to->mark = from->mark;
479 
480 	/* Copy the flags to each fragment. */
481 	IPCB(to)->flags = IPCB(from)->flags;
482 
483 #ifdef CONFIG_NET_SCHED
484 	to->tc_index = from->tc_index;
485 #endif
486 	nf_copy(to, from);
487 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
488 	to->ipvs_property = from->ipvs_property;
489 #endif
490 	skb_copy_secmark(to, from);
491 }
492 
ip_fragment(struct net * net,struct sock * sk,struct sk_buff * skb,unsigned int mtu,int (* output)(struct net *,struct sock *,struct sk_buff *))493 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
494 		       unsigned int mtu,
495 		       int (*output)(struct net *, struct sock *, struct sk_buff *))
496 {
497 	struct iphdr *iph = ip_hdr(skb);
498 
499 	if ((iph->frag_off & htons(IP_DF)) == 0)
500 		return ip_do_fragment(net, sk, skb, output);
501 
502 	if (unlikely(!skb->ignore_df ||
503 		     (IPCB(skb)->frag_max_size &&
504 		      IPCB(skb)->frag_max_size > mtu))) {
505 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
506 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
507 			  htonl(mtu));
508 		kfree_skb(skb);
509 		return -EMSGSIZE;
510 	}
511 
512 	return ip_do_fragment(net, sk, skb, output);
513 }
514 
515 /*
516  *	This IP datagram is too large to be sent in one piece.  Break it up into
517  *	smaller pieces (each of size equal to IP header plus
518  *	a block of the data of the original IP data part) that will yet fit in a
519  *	single device frame, and queue such a frame for sending.
520  */
521 
ip_do_fragment(struct net * net,struct sock * sk,struct sk_buff * skb,int (* output)(struct net *,struct sock *,struct sk_buff *))522 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
523 		   int (*output)(struct net *, struct sock *, struct sk_buff *))
524 {
525 	struct iphdr *iph;
526 	int ptr;
527 	struct net_device *dev;
528 	struct sk_buff *skb2;
529 	unsigned int mtu, hlen, left, len, ll_rs;
530 	int offset;
531 	__be16 not_last_frag;
532 	struct rtable *rt = skb_rtable(skb);
533 	int err = 0;
534 
535 	dev = rt->dst.dev;
536 
537 	/* for offloaded checksums cleanup checksum before fragmentation */
538 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
539 	    (err = skb_checksum_help(skb)))
540 		goto fail;
541 
542 	/*
543 	 *	Point into the IP datagram header.
544 	 */
545 
546 	iph = ip_hdr(skb);
547 
548 	mtu = ip_skb_dst_mtu(skb);
549 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
550 		mtu = IPCB(skb)->frag_max_size;
551 
552 	/*
553 	 *	Setup starting values.
554 	 */
555 
556 	hlen = iph->ihl * 4;
557 	mtu = mtu - hlen;	/* Size of data space */
558 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
559 
560 	/* When frag_list is given, use it. First, check its validity:
561 	 * some transformers could create wrong frag_list or break existing
562 	 * one, it is not prohibited. In this case fall back to copying.
563 	 *
564 	 * LATER: this step can be merged to real generation of fragments,
565 	 * we can switch to copy when see the first bad fragment.
566 	 */
567 	if (skb_has_frag_list(skb)) {
568 		struct sk_buff *frag, *frag2;
569 		int first_len = skb_pagelen(skb);
570 
571 		if (first_len - hlen > mtu ||
572 		    ((first_len - hlen) & 7) ||
573 		    ip_is_fragment(iph) ||
574 		    skb_cloned(skb))
575 			goto slow_path;
576 
577 		skb_walk_frags(skb, frag) {
578 			/* Correct geometry. */
579 			if (frag->len > mtu ||
580 			    ((frag->len & 7) && frag->next) ||
581 			    skb_headroom(frag) < hlen)
582 				goto slow_path_clean;
583 
584 			/* Partially cloned skb? */
585 			if (skb_shared(frag))
586 				goto slow_path_clean;
587 
588 			BUG_ON(frag->sk);
589 			if (skb->sk) {
590 				frag->sk = skb->sk;
591 				frag->destructor = sock_wfree;
592 			}
593 			skb->truesize -= frag->truesize;
594 		}
595 
596 		/* Everything is OK. Generate! */
597 
598 		err = 0;
599 		offset = 0;
600 		frag = skb_shinfo(skb)->frag_list;
601 		skb_frag_list_init(skb);
602 		skb->data_len = first_len - skb_headlen(skb);
603 		skb->len = first_len;
604 		iph->tot_len = htons(first_len);
605 		iph->frag_off = htons(IP_MF);
606 		ip_send_check(iph);
607 
608 		for (;;) {
609 			/* Prepare header of the next frame,
610 			 * before previous one went down. */
611 			if (frag) {
612 				frag->ip_summed = CHECKSUM_NONE;
613 				skb_reset_transport_header(frag);
614 				__skb_push(frag, hlen);
615 				skb_reset_network_header(frag);
616 				memcpy(skb_network_header(frag), iph, hlen);
617 				iph = ip_hdr(frag);
618 				iph->tot_len = htons(frag->len);
619 				ip_copy_metadata(frag, skb);
620 				if (offset == 0)
621 					ip_options_fragment(frag);
622 				offset += skb->len - hlen;
623 				iph->frag_off = htons(offset>>3);
624 				if (frag->next)
625 					iph->frag_off |= htons(IP_MF);
626 				/* Ready, complete checksum */
627 				ip_send_check(iph);
628 			}
629 
630 			err = output(net, sk, skb);
631 
632 			if (!err)
633 				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
634 			if (err || !frag)
635 				break;
636 
637 			skb = frag;
638 			frag = skb->next;
639 			skb->next = NULL;
640 		}
641 
642 		if (err == 0) {
643 			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
644 			return 0;
645 		}
646 
647 		while (frag) {
648 			skb = frag->next;
649 			kfree_skb(frag);
650 			frag = skb;
651 		}
652 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
653 		return err;
654 
655 slow_path_clean:
656 		skb_walk_frags(skb, frag2) {
657 			if (frag2 == frag)
658 				break;
659 			frag2->sk = NULL;
660 			frag2->destructor = NULL;
661 			skb->truesize += frag2->truesize;
662 		}
663 	}
664 
665 slow_path:
666 	iph = ip_hdr(skb);
667 
668 	left = skb->len - hlen;		/* Space per frame */
669 	ptr = hlen;		/* Where to start from */
670 
671 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
672 
673 	/*
674 	 *	Fragment the datagram.
675 	 */
676 
677 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
678 	not_last_frag = iph->frag_off & htons(IP_MF);
679 
680 	/*
681 	 *	Keep copying data until we run out.
682 	 */
683 
684 	while (left > 0) {
685 		len = left;
686 		/* IF: it doesn't fit, use 'mtu' - the data space left */
687 		if (len > mtu)
688 			len = mtu;
689 		/* IF: we are not sending up to and including the packet end
690 		   then align the next start on an eight byte boundary */
691 		if (len < left)	{
692 			len &= ~7;
693 		}
694 
695 		/* Allocate buffer */
696 		skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
697 		if (!skb2) {
698 			err = -ENOMEM;
699 			goto fail;
700 		}
701 
702 		/*
703 		 *	Set up data on packet
704 		 */
705 
706 		ip_copy_metadata(skb2, skb);
707 		skb_reserve(skb2, ll_rs);
708 		skb_put(skb2, len + hlen);
709 		skb_reset_network_header(skb2);
710 		skb2->transport_header = skb2->network_header + hlen;
711 
712 		/*
713 		 *	Charge the memory for the fragment to any owner
714 		 *	it might possess
715 		 */
716 
717 		if (skb->sk)
718 			skb_set_owner_w(skb2, skb->sk);
719 
720 		/*
721 		 *	Copy the packet header into the new buffer.
722 		 */
723 
724 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
725 
726 		/*
727 		 *	Copy a block of the IP datagram.
728 		 */
729 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
730 			BUG();
731 		left -= len;
732 
733 		/*
734 		 *	Fill in the new header fields.
735 		 */
736 		iph = ip_hdr(skb2);
737 		iph->frag_off = htons((offset >> 3));
738 
739 		if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
740 			iph->frag_off |= htons(IP_DF);
741 
742 		/* ANK: dirty, but effective trick. Upgrade options only if
743 		 * the segment to be fragmented was THE FIRST (otherwise,
744 		 * options are already fixed) and make it ONCE
745 		 * on the initial skb, so that all the following fragments
746 		 * will inherit fixed options.
747 		 */
748 		if (offset == 0)
749 			ip_options_fragment(skb);
750 
751 		/*
752 		 *	Added AC : If we are fragmenting a fragment that's not the
753 		 *		   last fragment then keep MF on each bit
754 		 */
755 		if (left > 0 || not_last_frag)
756 			iph->frag_off |= htons(IP_MF);
757 		ptr += len;
758 		offset += len;
759 
760 		/*
761 		 *	Put this fragment into the sending queue.
762 		 */
763 		iph->tot_len = htons(len + hlen);
764 
765 		ip_send_check(iph);
766 
767 		err = output(net, sk, skb2);
768 		if (err)
769 			goto fail;
770 
771 		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
772 	}
773 	consume_skb(skb);
774 	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
775 	return err;
776 
777 fail:
778 	kfree_skb(skb);
779 	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
780 	return err;
781 }
782 EXPORT_SYMBOL(ip_do_fragment);
783 
784 int
ip_generic_getfrag(void * from,char * to,int offset,int len,int odd,struct sk_buff * skb)785 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
786 {
787 	struct msghdr *msg = from;
788 
789 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
790 		if (copy_from_iter(to, len, &msg->msg_iter) != len)
791 			return -EFAULT;
792 	} else {
793 		__wsum csum = 0;
794 		if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len)
795 			return -EFAULT;
796 		skb->csum = csum_block_add(skb->csum, csum, odd);
797 	}
798 	return 0;
799 }
800 EXPORT_SYMBOL(ip_generic_getfrag);
801 
802 static inline __wsum
csum_page(struct page * page,int offset,int copy)803 csum_page(struct page *page, int offset, int copy)
804 {
805 	char *kaddr;
806 	__wsum csum;
807 	kaddr = kmap(page);
808 	csum = csum_partial(kaddr + offset, copy, 0);
809 	kunmap(page);
810 	return csum;
811 }
812 
ip_ufo_append_data(struct sock * sk,struct sk_buff_head * queue,int getfrag (void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length,int hh_len,int fragheaderlen,int transhdrlen,int maxfraglen,unsigned int flags)813 static inline int ip_ufo_append_data(struct sock *sk,
814 			struct sk_buff_head *queue,
815 			int getfrag(void *from, char *to, int offset, int len,
816 			       int odd, struct sk_buff *skb),
817 			void *from, int length, int hh_len, int fragheaderlen,
818 			int transhdrlen, int maxfraglen, unsigned int flags)
819 {
820 	struct sk_buff *skb;
821 	int err;
822 
823 	/* There is support for UDP fragmentation offload by network
824 	 * device, so create one single skb packet containing complete
825 	 * udp datagram
826 	 */
827 	skb = skb_peek_tail(queue);
828 	if (!skb) {
829 		skb = sock_alloc_send_skb(sk,
830 			hh_len + fragheaderlen + transhdrlen + 20,
831 			(flags & MSG_DONTWAIT), &err);
832 
833 		if (!skb)
834 			return err;
835 
836 		/* reserve space for Hardware header */
837 		skb_reserve(skb, hh_len);
838 
839 		/* create space for UDP/IP header */
840 		skb_put(skb, fragheaderlen + transhdrlen);
841 
842 		/* initialize network header pointer */
843 		skb_reset_network_header(skb);
844 
845 		/* initialize protocol header pointer */
846 		skb->transport_header = skb->network_header + fragheaderlen;
847 
848 		skb->csum = 0;
849 
850 		__skb_queue_tail(queue, skb);
851 	} else if (skb_is_gso(skb)) {
852 		goto append;
853 	}
854 
855 	skb->ip_summed = CHECKSUM_PARTIAL;
856 	/* specify the length of each IP datagram fragment */
857 	skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
858 	skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
859 
860 append:
861 	return skb_append_datato_frags(sk, skb, getfrag, from,
862 				       (length - transhdrlen));
863 }
864 
__ip_append_data(struct sock * sk,struct flowi4 * fl4,struct sk_buff_head * queue,struct inet_cork * cork,struct page_frag * pfrag,int getfrag (void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length,int transhdrlen,unsigned int flags)865 static int __ip_append_data(struct sock *sk,
866 			    struct flowi4 *fl4,
867 			    struct sk_buff_head *queue,
868 			    struct inet_cork *cork,
869 			    struct page_frag *pfrag,
870 			    int getfrag(void *from, char *to, int offset,
871 					int len, int odd, struct sk_buff *skb),
872 			    void *from, int length, int transhdrlen,
873 			    unsigned int flags)
874 {
875 	struct inet_sock *inet = inet_sk(sk);
876 	struct sk_buff *skb;
877 
878 	struct ip_options *opt = cork->opt;
879 	int hh_len;
880 	int exthdrlen;
881 	int mtu;
882 	int copy;
883 	int err;
884 	int offset = 0;
885 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
886 	int csummode = CHECKSUM_NONE;
887 	struct rtable *rt = (struct rtable *)cork->dst;
888 	u32 tskey = 0;
889 
890 	skb = skb_peek_tail(queue);
891 
892 	exthdrlen = !skb ? rt->dst.header_len : 0;
893 	mtu = cork->fragsize;
894 	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
895 	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
896 		tskey = sk->sk_tskey++;
897 
898 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
899 
900 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
901 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
902 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
903 
904 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
905 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
906 			       mtu - (opt ? opt->optlen : 0));
907 		return -EMSGSIZE;
908 	}
909 
910 	/*
911 	 * transhdrlen > 0 means that this is the first fragment and we wish
912 	 * it won't be fragmented in the future.
913 	 */
914 	if (transhdrlen &&
915 	    length + fragheaderlen <= mtu &&
916 	    rt->dst.dev->features & NETIF_F_V4_CSUM &&
917 	    !(flags & MSG_MORE) &&
918 	    !exthdrlen)
919 		csummode = CHECKSUM_PARTIAL;
920 
921 	cork->length += length;
922 	if (((length > mtu) || (skb && skb_is_gso(skb))) &&
923 	    (sk->sk_protocol == IPPROTO_UDP) &&
924 	    (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len &&
925 	    (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx) {
926 		err = ip_ufo_append_data(sk, queue, getfrag, from, length,
927 					 hh_len, fragheaderlen, transhdrlen,
928 					 maxfraglen, flags);
929 		if (err)
930 			goto error;
931 		return 0;
932 	}
933 
934 	/* So, what's going on in the loop below?
935 	 *
936 	 * We use calculated fragment length to generate chained skb,
937 	 * each of segments is IP fragment ready for sending to network after
938 	 * adding appropriate IP header.
939 	 */
940 
941 	if (!skb)
942 		goto alloc_new_skb;
943 
944 	while (length > 0) {
945 		/* Check if the remaining data fits into current packet. */
946 		copy = mtu - skb->len;
947 		if (copy < length)
948 			copy = maxfraglen - skb->len;
949 		if (copy <= 0) {
950 			char *data;
951 			unsigned int datalen;
952 			unsigned int fraglen;
953 			unsigned int fraggap;
954 			unsigned int alloclen;
955 			struct sk_buff *skb_prev;
956 alloc_new_skb:
957 			skb_prev = skb;
958 			if (skb_prev)
959 				fraggap = skb_prev->len - maxfraglen;
960 			else
961 				fraggap = 0;
962 
963 			/*
964 			 * If remaining data exceeds the mtu,
965 			 * we know we need more fragment(s).
966 			 */
967 			datalen = length + fraggap;
968 			if (datalen > mtu - fragheaderlen)
969 				datalen = maxfraglen - fragheaderlen;
970 			fraglen = datalen + fragheaderlen;
971 
972 			if ((flags & MSG_MORE) &&
973 			    !(rt->dst.dev->features&NETIF_F_SG))
974 				alloclen = mtu;
975 			else
976 				alloclen = fraglen;
977 
978 			alloclen += exthdrlen;
979 
980 			/* The last fragment gets additional space at tail.
981 			 * Note, with MSG_MORE we overallocate on fragments,
982 			 * because we have no idea what fragment will be
983 			 * the last.
984 			 */
985 			if (datalen == length + fraggap)
986 				alloclen += rt->dst.trailer_len;
987 
988 			if (transhdrlen) {
989 				skb = sock_alloc_send_skb(sk,
990 						alloclen + hh_len + 15,
991 						(flags & MSG_DONTWAIT), &err);
992 			} else {
993 				skb = NULL;
994 				if (atomic_read(&sk->sk_wmem_alloc) <=
995 				    2 * sk->sk_sndbuf)
996 					skb = sock_wmalloc(sk,
997 							   alloclen + hh_len + 15, 1,
998 							   sk->sk_allocation);
999 				if (unlikely(!skb))
1000 					err = -ENOBUFS;
1001 			}
1002 			if (!skb)
1003 				goto error;
1004 
1005 			/*
1006 			 *	Fill in the control structures
1007 			 */
1008 			skb->ip_summed = csummode;
1009 			skb->csum = 0;
1010 			skb_reserve(skb, hh_len);
1011 
1012 			/* only the initial fragment is time stamped */
1013 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1014 			cork->tx_flags = 0;
1015 			skb_shinfo(skb)->tskey = tskey;
1016 			tskey = 0;
1017 
1018 			/*
1019 			 *	Find where to start putting bytes.
1020 			 */
1021 			data = skb_put(skb, fraglen + exthdrlen);
1022 			skb_set_network_header(skb, exthdrlen);
1023 			skb->transport_header = (skb->network_header +
1024 						 fragheaderlen);
1025 			data += fragheaderlen + exthdrlen;
1026 
1027 			if (fraggap) {
1028 				skb->csum = skb_copy_and_csum_bits(
1029 					skb_prev, maxfraglen,
1030 					data + transhdrlen, fraggap, 0);
1031 				skb_prev->csum = csum_sub(skb_prev->csum,
1032 							  skb->csum);
1033 				data += fraggap;
1034 				pskb_trim_unique(skb_prev, maxfraglen);
1035 			}
1036 
1037 			copy = datalen - transhdrlen - fraggap;
1038 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1039 				err = -EFAULT;
1040 				kfree_skb(skb);
1041 				goto error;
1042 			}
1043 
1044 			offset += copy;
1045 			length -= datalen - fraggap;
1046 			transhdrlen = 0;
1047 			exthdrlen = 0;
1048 			csummode = CHECKSUM_NONE;
1049 
1050 			/*
1051 			 * Put the packet on the pending queue.
1052 			 */
1053 			__skb_queue_tail(queue, skb);
1054 			continue;
1055 		}
1056 
1057 		if (copy > length)
1058 			copy = length;
1059 
1060 		if (!(rt->dst.dev->features&NETIF_F_SG)) {
1061 			unsigned int off;
1062 
1063 			off = skb->len;
1064 			if (getfrag(from, skb_put(skb, copy),
1065 					offset, copy, off, skb) < 0) {
1066 				__skb_trim(skb, off);
1067 				err = -EFAULT;
1068 				goto error;
1069 			}
1070 		} else {
1071 			int i = skb_shinfo(skb)->nr_frags;
1072 
1073 			err = -ENOMEM;
1074 			if (!sk_page_frag_refill(sk, pfrag))
1075 				goto error;
1076 
1077 			if (!skb_can_coalesce(skb, i, pfrag->page,
1078 					      pfrag->offset)) {
1079 				err = -EMSGSIZE;
1080 				if (i == MAX_SKB_FRAGS)
1081 					goto error;
1082 
1083 				__skb_fill_page_desc(skb, i, pfrag->page,
1084 						     pfrag->offset, 0);
1085 				skb_shinfo(skb)->nr_frags = ++i;
1086 				get_page(pfrag->page);
1087 			}
1088 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1089 			if (getfrag(from,
1090 				    page_address(pfrag->page) + pfrag->offset,
1091 				    offset, copy, skb->len, skb) < 0)
1092 				goto error_efault;
1093 
1094 			pfrag->offset += copy;
1095 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1096 			skb->len += copy;
1097 			skb->data_len += copy;
1098 			skb->truesize += copy;
1099 			atomic_add(copy, &sk->sk_wmem_alloc);
1100 		}
1101 		offset += copy;
1102 		length -= copy;
1103 	}
1104 
1105 	return 0;
1106 
1107 error_efault:
1108 	err = -EFAULT;
1109 error:
1110 	cork->length -= length;
1111 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1112 	return err;
1113 }
1114 
ip_setup_cork(struct sock * sk,struct inet_cork * cork,struct ipcm_cookie * ipc,struct rtable ** rtp)1115 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1116 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1117 {
1118 	struct ip_options_rcu *opt;
1119 	struct rtable *rt;
1120 
1121 	/*
1122 	 * setup for corking.
1123 	 */
1124 	opt = ipc->opt;
1125 	if (opt) {
1126 		if (!cork->opt) {
1127 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1128 					    sk->sk_allocation);
1129 			if (unlikely(!cork->opt))
1130 				return -ENOBUFS;
1131 		}
1132 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1133 		cork->flags |= IPCORK_OPT;
1134 		cork->addr = ipc->addr;
1135 	}
1136 	rt = *rtp;
1137 	if (unlikely(!rt))
1138 		return -EFAULT;
1139 	/*
1140 	 * We steal reference to this route, caller should not release it
1141 	 */
1142 	*rtp = NULL;
1143 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1144 			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1145 	cork->dst = &rt->dst;
1146 	cork->length = 0;
1147 	cork->ttl = ipc->ttl;
1148 	cork->tos = ipc->tos;
1149 	cork->priority = ipc->priority;
1150 	cork->tx_flags = ipc->tx_flags;
1151 
1152 	return 0;
1153 }
1154 
1155 /*
1156  *	ip_append_data() and ip_append_page() can make one large IP datagram
1157  *	from many pieces of data. Each pieces will be holded on the socket
1158  *	until ip_push_pending_frames() is called. Each piece can be a page
1159  *	or non-page data.
1160  *
1161  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1162  *	this interface potentially.
1163  *
1164  *	LATER: length must be adjusted by pad at tail, when it is required.
1165  */
ip_append_data(struct sock * sk,struct flowi4 * fl4,int getfrag (void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length,int transhdrlen,struct ipcm_cookie * ipc,struct rtable ** rtp,unsigned int flags)1166 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1167 		   int getfrag(void *from, char *to, int offset, int len,
1168 			       int odd, struct sk_buff *skb),
1169 		   void *from, int length, int transhdrlen,
1170 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1171 		   unsigned int flags)
1172 {
1173 	struct inet_sock *inet = inet_sk(sk);
1174 	int err;
1175 
1176 	if (flags&MSG_PROBE)
1177 		return 0;
1178 
1179 	if (skb_queue_empty(&sk->sk_write_queue)) {
1180 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1181 		if (err)
1182 			return err;
1183 	} else {
1184 		transhdrlen = 0;
1185 	}
1186 
1187 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1188 				sk_page_frag(sk), getfrag,
1189 				from, length, transhdrlen, flags);
1190 }
1191 
ip_append_page(struct sock * sk,struct flowi4 * fl4,struct page * page,int offset,size_t size,int flags)1192 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1193 		       int offset, size_t size, int flags)
1194 {
1195 	struct inet_sock *inet = inet_sk(sk);
1196 	struct sk_buff *skb;
1197 	struct rtable *rt;
1198 	struct ip_options *opt = NULL;
1199 	struct inet_cork *cork;
1200 	int hh_len;
1201 	int mtu;
1202 	int len;
1203 	int err;
1204 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1205 
1206 	if (inet->hdrincl)
1207 		return -EPERM;
1208 
1209 	if (flags&MSG_PROBE)
1210 		return 0;
1211 
1212 	if (skb_queue_empty(&sk->sk_write_queue))
1213 		return -EINVAL;
1214 
1215 	cork = &inet->cork.base;
1216 	rt = (struct rtable *)cork->dst;
1217 	if (cork->flags & IPCORK_OPT)
1218 		opt = cork->opt;
1219 
1220 	if (!(rt->dst.dev->features&NETIF_F_SG))
1221 		return -EOPNOTSUPP;
1222 
1223 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1224 	mtu = cork->fragsize;
1225 
1226 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1227 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1228 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1229 
1230 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1231 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1232 			       mtu - (opt ? opt->optlen : 0));
1233 		return -EMSGSIZE;
1234 	}
1235 
1236 	skb = skb_peek_tail(&sk->sk_write_queue);
1237 	if (!skb)
1238 		return -EINVAL;
1239 
1240 	if ((size + skb->len > mtu) &&
1241 	    (sk->sk_protocol == IPPROTO_UDP) &&
1242 	    (rt->dst.dev->features & NETIF_F_UFO)) {
1243 		if (skb->ip_summed != CHECKSUM_PARTIAL)
1244 			return -EOPNOTSUPP;
1245 
1246 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1247 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1248 	}
1249 	cork->length += size;
1250 
1251 	while (size > 0) {
1252 		if (skb_is_gso(skb)) {
1253 			len = size;
1254 		} else {
1255 
1256 			/* Check if the remaining data fits into current packet. */
1257 			len = mtu - skb->len;
1258 			if (len < size)
1259 				len = maxfraglen - skb->len;
1260 		}
1261 		if (len <= 0) {
1262 			struct sk_buff *skb_prev;
1263 			int alloclen;
1264 
1265 			skb_prev = skb;
1266 			fraggap = skb_prev->len - maxfraglen;
1267 
1268 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1269 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1270 			if (unlikely(!skb)) {
1271 				err = -ENOBUFS;
1272 				goto error;
1273 			}
1274 
1275 			/*
1276 			 *	Fill in the control structures
1277 			 */
1278 			skb->ip_summed = CHECKSUM_NONE;
1279 			skb->csum = 0;
1280 			skb_reserve(skb, hh_len);
1281 
1282 			/*
1283 			 *	Find where to start putting bytes.
1284 			 */
1285 			skb_put(skb, fragheaderlen + fraggap);
1286 			skb_reset_network_header(skb);
1287 			skb->transport_header = (skb->network_header +
1288 						 fragheaderlen);
1289 			if (fraggap) {
1290 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1291 								   maxfraglen,
1292 						    skb_transport_header(skb),
1293 								   fraggap, 0);
1294 				skb_prev->csum = csum_sub(skb_prev->csum,
1295 							  skb->csum);
1296 				pskb_trim_unique(skb_prev, maxfraglen);
1297 			}
1298 
1299 			/*
1300 			 * Put the packet on the pending queue.
1301 			 */
1302 			__skb_queue_tail(&sk->sk_write_queue, skb);
1303 			continue;
1304 		}
1305 
1306 		if (len > size)
1307 			len = size;
1308 
1309 		if (skb_append_pagefrags(skb, page, offset, len)) {
1310 			err = -EMSGSIZE;
1311 			goto error;
1312 		}
1313 
1314 		if (skb->ip_summed == CHECKSUM_NONE) {
1315 			__wsum csum;
1316 			csum = csum_page(page, offset, len);
1317 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1318 		}
1319 
1320 		skb->len += len;
1321 		skb->data_len += len;
1322 		skb->truesize += len;
1323 		atomic_add(len, &sk->sk_wmem_alloc);
1324 		offset += len;
1325 		size -= len;
1326 	}
1327 	return 0;
1328 
1329 error:
1330 	cork->length -= size;
1331 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1332 	return err;
1333 }
1334 
ip_cork_release(struct inet_cork * cork)1335 static void ip_cork_release(struct inet_cork *cork)
1336 {
1337 	cork->flags &= ~IPCORK_OPT;
1338 	kfree(cork->opt);
1339 	cork->opt = NULL;
1340 	dst_release(cork->dst);
1341 	cork->dst = NULL;
1342 }
1343 
1344 /*
1345  *	Combined all pending IP fragments on the socket as one IP datagram
1346  *	and push them out.
1347  */
__ip_make_skb(struct sock * sk,struct flowi4 * fl4,struct sk_buff_head * queue,struct inet_cork * cork)1348 struct sk_buff *__ip_make_skb(struct sock *sk,
1349 			      struct flowi4 *fl4,
1350 			      struct sk_buff_head *queue,
1351 			      struct inet_cork *cork)
1352 {
1353 	struct sk_buff *skb, *tmp_skb;
1354 	struct sk_buff **tail_skb;
1355 	struct inet_sock *inet = inet_sk(sk);
1356 	struct net *net = sock_net(sk);
1357 	struct ip_options *opt = NULL;
1358 	struct rtable *rt = (struct rtable *)cork->dst;
1359 	struct iphdr *iph;
1360 	__be16 df = 0;
1361 	__u8 ttl;
1362 
1363 	skb = __skb_dequeue(queue);
1364 	if (!skb)
1365 		goto out;
1366 	tail_skb = &(skb_shinfo(skb)->frag_list);
1367 
1368 	/* move skb->data to ip header from ext header */
1369 	if (skb->data < skb_network_header(skb))
1370 		__skb_pull(skb, skb_network_offset(skb));
1371 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1372 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1373 		*tail_skb = tmp_skb;
1374 		tail_skb = &(tmp_skb->next);
1375 		skb->len += tmp_skb->len;
1376 		skb->data_len += tmp_skb->len;
1377 		skb->truesize += tmp_skb->truesize;
1378 		tmp_skb->destructor = NULL;
1379 		tmp_skb->sk = NULL;
1380 	}
1381 
1382 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1383 	 * to fragment the frame generated here. No matter, what transforms
1384 	 * how transforms change size of the packet, it will come out.
1385 	 */
1386 	skb->ignore_df = ip_sk_ignore_df(sk);
1387 
1388 	/* DF bit is set when we want to see DF on outgoing frames.
1389 	 * If ignore_df is set too, we still allow to fragment this frame
1390 	 * locally. */
1391 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1392 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1393 	    (skb->len <= dst_mtu(&rt->dst) &&
1394 	     ip_dont_fragment(sk, &rt->dst)))
1395 		df = htons(IP_DF);
1396 
1397 	if (cork->flags & IPCORK_OPT)
1398 		opt = cork->opt;
1399 
1400 	if (cork->ttl != 0)
1401 		ttl = cork->ttl;
1402 	else if (rt->rt_type == RTN_MULTICAST)
1403 		ttl = inet->mc_ttl;
1404 	else
1405 		ttl = ip_select_ttl(inet, &rt->dst);
1406 
1407 	iph = ip_hdr(skb);
1408 	iph->version = 4;
1409 	iph->ihl = 5;
1410 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1411 	iph->frag_off = df;
1412 	iph->ttl = ttl;
1413 	iph->protocol = sk->sk_protocol;
1414 	ip_copy_addrs(iph, fl4);
1415 	ip_select_ident(net, skb, sk);
1416 
1417 	if (opt) {
1418 		iph->ihl += opt->optlen>>2;
1419 		ip_options_build(skb, opt, cork->addr, rt, 0);
1420 	}
1421 
1422 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1423 	skb->mark = sk->sk_mark;
1424 	/*
1425 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1426 	 * on dst refcount
1427 	 */
1428 	cork->dst = NULL;
1429 	skb_dst_set(skb, &rt->dst);
1430 
1431 	if (iph->protocol == IPPROTO_ICMP)
1432 		icmp_out_count(net, ((struct icmphdr *)
1433 			skb_transport_header(skb))->type);
1434 
1435 	ip_cork_release(cork);
1436 out:
1437 	return skb;
1438 }
1439 
ip_send_skb(struct net * net,struct sk_buff * skb)1440 int ip_send_skb(struct net *net, struct sk_buff *skb)
1441 {
1442 	int err;
1443 
1444 	err = ip_local_out(net, skb->sk, skb);
1445 	if (err) {
1446 		if (err > 0)
1447 			err = net_xmit_errno(err);
1448 		if (err)
1449 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1450 	}
1451 
1452 	return err;
1453 }
1454 
ip_push_pending_frames(struct sock * sk,struct flowi4 * fl4)1455 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1456 {
1457 	struct sk_buff *skb;
1458 
1459 	skb = ip_finish_skb(sk, fl4);
1460 	if (!skb)
1461 		return 0;
1462 
1463 	/* Netfilter gets whole the not fragmented skb. */
1464 	return ip_send_skb(sock_net(sk), skb);
1465 }
1466 
1467 /*
1468  *	Throw away all pending data on the socket.
1469  */
__ip_flush_pending_frames(struct sock * sk,struct sk_buff_head * queue,struct inet_cork * cork)1470 static void __ip_flush_pending_frames(struct sock *sk,
1471 				      struct sk_buff_head *queue,
1472 				      struct inet_cork *cork)
1473 {
1474 	struct sk_buff *skb;
1475 
1476 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1477 		kfree_skb(skb);
1478 
1479 	ip_cork_release(cork);
1480 }
1481 
ip_flush_pending_frames(struct sock * sk)1482 void ip_flush_pending_frames(struct sock *sk)
1483 {
1484 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1485 }
1486 
ip_make_skb(struct sock * sk,struct flowi4 * fl4,int getfrag (void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length,int transhdrlen,struct ipcm_cookie * ipc,struct rtable ** rtp,unsigned int flags)1487 struct sk_buff *ip_make_skb(struct sock *sk,
1488 			    struct flowi4 *fl4,
1489 			    int getfrag(void *from, char *to, int offset,
1490 					int len, int odd, struct sk_buff *skb),
1491 			    void *from, int length, int transhdrlen,
1492 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1493 			    unsigned int flags)
1494 {
1495 	struct inet_cork cork;
1496 	struct sk_buff_head queue;
1497 	int err;
1498 
1499 	if (flags & MSG_PROBE)
1500 		return NULL;
1501 
1502 	__skb_queue_head_init(&queue);
1503 
1504 	cork.flags = 0;
1505 	cork.addr = 0;
1506 	cork.opt = NULL;
1507 	err = ip_setup_cork(sk, &cork, ipc, rtp);
1508 	if (err)
1509 		return ERR_PTR(err);
1510 
1511 	err = __ip_append_data(sk, fl4, &queue, &cork,
1512 			       &current->task_frag, getfrag,
1513 			       from, length, transhdrlen, flags);
1514 	if (err) {
1515 		__ip_flush_pending_frames(sk, &queue, &cork);
1516 		return ERR_PTR(err);
1517 	}
1518 
1519 	return __ip_make_skb(sk, fl4, &queue, &cork);
1520 }
1521 
1522 /*
1523  *	Fetch data from kernel space and fill in checksum if needed.
1524  */
ip_reply_glue_bits(void * dptr,char * to,int offset,int len,int odd,struct sk_buff * skb)1525 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1526 			      int len, int odd, struct sk_buff *skb)
1527 {
1528 	__wsum csum;
1529 
1530 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1531 	skb->csum = csum_block_add(skb->csum, csum, odd);
1532 	return 0;
1533 }
1534 
1535 /*
1536  *	Generic function to send a packet as reply to another packet.
1537  *	Used to send some TCP resets/acks so far.
1538  */
ip_send_unicast_reply(struct sock * sk,struct sk_buff * skb,const struct ip_options * sopt,__be32 daddr,__be32 saddr,const struct ip_reply_arg * arg,unsigned int len)1539 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1540 			   const struct ip_options *sopt,
1541 			   __be32 daddr, __be32 saddr,
1542 			   const struct ip_reply_arg *arg,
1543 			   unsigned int len)
1544 {
1545 	struct ip_options_data replyopts;
1546 	struct ipcm_cookie ipc;
1547 	struct flowi4 fl4;
1548 	struct rtable *rt = skb_rtable(skb);
1549 	struct net *net = sock_net(sk);
1550 	struct sk_buff *nskb;
1551 	int err;
1552 	int oif;
1553 
1554 	if (__ip_options_echo(&replyopts.opt.opt, skb, sopt))
1555 		return;
1556 
1557 	ipc.addr = daddr;
1558 	ipc.opt = NULL;
1559 	ipc.tx_flags = 0;
1560 	ipc.ttl = 0;
1561 	ipc.tos = -1;
1562 
1563 	if (replyopts.opt.opt.optlen) {
1564 		ipc.opt = &replyopts.opt;
1565 
1566 		if (replyopts.opt.opt.srr)
1567 			daddr = replyopts.opt.opt.faddr;
1568 	}
1569 
1570 	oif = arg->bound_dev_if;
1571 	if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1572 		oif = skb->skb_iif;
1573 
1574 	flowi4_init_output(&fl4, oif,
1575 			   IP4_REPLY_MARK(net, skb->mark),
1576 			   RT_TOS(arg->tos),
1577 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1578 			   ip_reply_arg_flowi_flags(arg),
1579 			   daddr, saddr,
1580 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1581 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1582 	rt = ip_route_output_key(net, &fl4);
1583 	if (IS_ERR(rt))
1584 		return;
1585 
1586 	inet_sk(sk)->tos = arg->tos;
1587 
1588 	sk->sk_priority = skb->priority;
1589 	sk->sk_protocol = ip_hdr(skb)->protocol;
1590 	sk->sk_bound_dev_if = arg->bound_dev_if;
1591 	sk->sk_sndbuf = sysctl_wmem_default;
1592 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1593 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1594 	if (unlikely(err)) {
1595 		ip_flush_pending_frames(sk);
1596 		goto out;
1597 	}
1598 
1599 	nskb = skb_peek(&sk->sk_write_queue);
1600 	if (nskb) {
1601 		if (arg->csumoffset >= 0)
1602 			*((__sum16 *)skb_transport_header(nskb) +
1603 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1604 								arg->csum));
1605 		nskb->ip_summed = CHECKSUM_NONE;
1606 		ip_push_pending_frames(sk, &fl4);
1607 	}
1608 out:
1609 	ip_rt_put(rt);
1610 }
1611 
ip_init(void)1612 void __init ip_init(void)
1613 {
1614 	ip_rt_init();
1615 	inet_initpeers();
1616 
1617 #if defined(CONFIG_IP_MULTICAST)
1618 	igmp_mc_init();
1619 #endif
1620 }
1621